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Zusammenfassung

In dieser Arbeit werden Multiple-Input-Multiple-Output (MIMO)-Systeme in zweier-
lei Hinsicht untersucht. Informationstheoretischen Konzepte verwendet um RF-Front-
Ends für kompakte Antennen-Arrays mit gekoppelten Antennen zu entwerfen, und
zum anderen werden nichtlineare Vorkodierungsalgorithmen für Massive MIMO Mul-
tiuser Downlink-Kanäle mit grob quantisierten Kanaleingängen betrachtet. Für den
Entwurf des HF-Frontends wird gezeigt, dass eine Klasse von verlustfreien passiven
Multiport-Anpassungsnetzwerken die Informationsraten bei beliebig wählbaren An-
tennenabständen maximiert. Diese Lösung ist jedoch empfindlich gegenüber Störun-
gen, die durch Fertigungsvariationen verursacht werden und gilt nur innerhalb enger
Frequenzbänder um die Designfrequenz. Für MIMO systeme mit mehreren Benutzern
wird die Vorkodierung sowohl für flache als auch frequenzselektive Fading-Kanäle be-
trachtet. Es werden mehrere Optimierungsalgorithmen für grob quantisierte Eingänge
untersucht, die den quadratischen Fehler am Empfänger minimieren sollen. Die Al-
gorithmen bieten die Möglichkeit, zwischen Leistung und Komplexität abzuwägen
und arbeiten nah an den unteren Schranken des minimal erreichbaren quadratischen
Fehlers und arbeiten zuverlässig. Außerdem funktionieren sie über einen großen Bere-
ich des Signal-zu-Rausch-Verhältnisses. Darüber hinaus liegen die Informationsraten
innerhalb eines kleinen, konstanten Abstands von der Kapazität unendlich genau
auflösender linearer Vorkodierer. Schlussendlich können die entworfene Hardware Ar-
chitektur und die Kodierungsalgorithmen in bestehende Infrastruktur integriert wer-
den und ermöglichen einen Arbeitspunkt in der Nähe des theoretischen Optimums
bei geringer Komplexität.
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Abstract

This thesis studies Multiple Input Multiple Output (MIMO) systems from two points
of view: information theoretic design of Radio Frequency (RF) front-ends for com-
pact antenna arrays with mutual coupling and, on the other hand, nonlinear precoding
algorithms for Massive MIMO multiuser downlink channels with coarsely quantized
channel inputs. For the RF front-end design, it is shown that a class of lossless passive
multiport matching networks maximizes information rates at arbitrary antenna spac-
ing. However, the solution is sensitive to perturbations caused by process variations
and is valid only within narrow fractional bandwidths around the design frequency.
For the multiuser MIMO precoding problem, both flat and frequency-selective fading
channels are considered. Several coordinate descent algorithms for coarsely quantized
input alphabets are studied that aim to minimize a Mean Squared Error (MSE) at
the receiver. The algorithms offer good performance complexity trade-offs and oper-
ate close to MSE lower bounds over a broad range of Signal to Noise Ratios (SNRs).
Moreover, the information rates are within a small constant gap from the capacity of
infinite resolution linear Minimum Mean Squared Error (MMSE) precoders. Finally,
the proposed hardware architecture and precoding algorithms can be integrated with
existing infrastructure and operate close to the ideal massive MIMO regime at low
complexity.



1
Introduction

Figure 1.1 [1] shows the global explosion of monthly mobile data usage, which is orders
of magnitude larger than the network load incurred by voice. The overwhelming
majority of data is video streaming traffic (76%) followed by social media networks
with 19%. The trend is expected to continue because of the increasing resolution and
services associated with streaming, e.g., Youtube 360. Communication standards such
as 5G, 802.11ax and the emerging 6G rely heavily on technologies that increase data
rates at scale and low cost. In particular, MIMO and massive MIMO are cornerstone
physical layer technologies that can offer the desired increase in spectral and energy
efficiency.

1.1. Challenges of Compact MIMO Systems

Communication standards such as 5th Generation New Radio (5G-NR) and 802.11ax
are including more antennas at both ends of the communication chain. Since mobile
terminals should remain small, the antenna elements must be placed closer together.
When this happens, the electromagnetic field radiated by one antenna generates cur-
rents on the antennas in its vicinity, which is called mutual coupling. This causes the
port impedance and the radiated far field patterns to change, which may result in
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Figure 1.1.: Global mobile data traffic and year-on-year growth

power that couples back into the array, or that reflects back into the front-end due to
the mismatch between the matching networks and the new antenna impedance. More-
over, the antenna currents become increasingly correlated which reduces the channel’s
degrees of freedom and thereby the information rates.

A secondary effect of coupling, more prevalent in the receivers, is that both signal
and amplifier noise couple through the arrays. Noise coupling may seem advantageous
at first, since increasing noise correlation generally results in higher rates if appropriate
power allocation strategies are employed at the transmitter. However, in a physical
system the noise correlation increases the total noise power because of the impedance
mismatch caused by coupling.

Some of these issues were addressed in [2] that showed that internal RF front-
end coupling does not impact channel capacity if the amplifier noise is ignored, and
otherwise capacity is reduced. These topics were further explored in [3, 4] where
matching networks were derived to minimize the noise figure and to maximize the
mutual information. We provide an alternative proof of optimality and study the
sensitivity of capacity to device variations. We remark that we only briefly touch
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Figure 1.2.: Power consumption of a single high resolution downlink RF chain.

upon broadband matching that has been studied in more depth in [5, 6].

1.2. Challenges of Massive MIMO Systems

Massive MIMO promises unparalleled data rates and user densities, but it also re-
quires that the base station be equipped with many more antennas than what is
currently technologically feasible. Testbeds and prototypes of massive MIMO show
how integration, cost and power consumption put strong limitations on scaling. To
bring massive MIMO to the market one must address the following limitations, see [7].

. Power consumption due to Radio Frequency (RF) chains with a low efficiency
(linear) power amplifier and a high resolution Digital to Analog Converter
(DAC) and Analog to Digital Converter (ADC). Figure 1.2 breaks down the
power consumption for the case of a pico-cell [7].

. Inexpensive modular hardware.

. Large physical size of antenna arrays in “low” frequency bands.

Several architectures have been proposed to address these challenges. For instance,
analog beamforming [8] with and without antenna selection and hybrid analog beam-
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forming [9] have been proposed to reduce power consumption. However, analog beam-
forming cannot achieve the same performance of fully digital solutions in most sce-
narios. In addition, hybrid architectures require increased analog complexity and
high resolution phase shifters to approach what a fully digital approach can provide.
To address these challenges, we design and investigate an architecture that offers al-
gorithmic simplicity, efficient waveforms, nonlinear amplification, and low-resolution
DACs.

1.3. Dissertation Overview

The dissertation has two main parts.

. Chapter 2: Information theory for coupled MIMO, including optimal match-
ing circuits and numerical analyses of the sensitivity of information rates for
narrowband coupled antenna arrays.

. Chapter 3: Efficient precoding algorithms for multiuser downlink MIMO chan-
nels with coarse discrete signaling and frequency selectivity.

1.3.1. Information Rates for Coupled MIMO

Chapter 2 studies coupled antenna arrays from an information theoretic perspective.
We extend and generalize previous results in the literature and show that a class
of lossless passive matching networks maximizes the mutual information and orders
the channels with respect to a generalized noise figure. Our study is based on linear
channels with Gaussian noise but is otherwise general with respect to the physical
channel correlation structure, the antenna array, and the transmit signal covariance.
We further examine the sensitivity of optimal and sub-optimal matching networks
with respect to imperfections of lumped element lossless networks. We also inspect
the sensitivity with respect to bandwidth, and show that the structures we used are
essentially narrowband in nature.
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1.3.2. Precoding for Multi-User MIMO with Discrete
Signaling

Chapter 3 considers fully digital beamforming when the number of antennas at the
base station is much larger than the number of (single antenna) users served in the cell.
The main challenge is to develop a high rate and computationally efficient algorithm
that specifies a nonlinear precoder. High rate means that one should approach the
sum information rate of full resolution solutions such as Minimum Mean Squared
Error (MMSE) or Zero Forcing (ZF) linear beamforming.
We first propose a hybrid coordinate minimization algorithm for flat fading chan-

nels. We then extend this approach to frequency-selective channels with Orthogonal
Frequency Division Multiplex (OFDM). We show that the proposed algorithm has
a low computational complexity as compared to state-of-the-art solutions from the
literature. To evaluate information rates, we use the Generalized Mutual Information
(GMI) and show that this framework fairly compares linear and nonlinear techniques.
We evaluate the complexity of the proposed algorithms by developing tight upper and
lower bounds on complexity based on semidefinite relaxation and branch-and-bound
algorithms.
The second half of the chapter develops architectures for which our precoding algo-

rithms are used as plug-in extensions for legacy base stations. We show that relatively
simple and computationally efficient coordinate descent algorithms with offline power
allocation are near-optimal for realistic wireless models.
The suggestion to study the coarsely quantized precoding problem in the GMI

framework originated with my co-author Fabian Steiner [10].

1.4. Notation

We introduce notation that we use throughout the thesis.

Probability and Expectation

. The probability of event A is denoted by Pr(A).
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. Uppercase letters denote discrete or continuous random variables, and lowercase
letters their realizations. The density of a real, Gaussian, random variable
X with mean m and variance σ2 is written as N (m,σ2), and we write X ∼
N (m,σ2). The density of a circularly-symmetric, complex, Gaussian, random
variable X with variance E [|X|2] = σ2 is written as CN (0, σ2). Similarly, the
density of m+X is CN (m,σ2).

. The expectation of a random variable Y is written as E [Y ] and the expecta-
tion of Y conditioned on the random variable Z is written as E [Y |Z]. The
expectation of Y conditioned on the event Z = z is written as E [Y |Z = z].

. We denote a scalar random variable as X and a random column vector as X.
The covariance matrix of Z is CZ = E

[
(Z − E [Z])(Z − E [Z])H

]
. The density

of a circularly-symmetric, complex, Gaussian, random vector Z is written as
CN (0,CZ). Similarly, the density of m + Z is CN (m,CZ).

Information Measures

. For a pair of random variables X and Y with joint density pXY = pXpY |X , the
mutual information of X and Y is

I(X;Y ) = E
[
log2

(
pY |X(Y |X)
pY (Y )

)]
(1.1)

where pY is the density of Y . The same definition is used if X has a discrete
alphabet.

Sets, Vectors, Matrices and Norms

. We write the set of integers from 1 to M as U := {1, · · · ,M}. The Cartesian
product of a set A with itself is denoted as A2.

. Vectors are denoted in bold lowercase letters x and matrices are denoted with
bold uppercase letters X. The distinction between random vectors and fixed-
value matrices will be clear from the context. The transpose and Hermitian
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transpose of a vector z are given by zT and zH , respectively. The real an
imaginary parts of a complex valued vector z are given by <{z} and ={z}.

. We denote the trace of a matrix C as Tr (C) and the determinant as det(C).
The inverse of a matrix is denoted as C−1.

. We write A � B if the matrix A −B is positive semidefinite and A � B if
A−B is positive definite. Recall that the n×n matrixA is positive semidefinite
if and only if zHAz ≥ 0 for all z ∈ Cn.

. We write the p-norm of a vector as ‖u‖p and the squared p-norm as ‖u‖2
p. The

infinity-norm is denoted as ‖u‖∞ and is defined as the maximum of the absolute
values of u.

. The Hadamard (element-wise) product of two matrices A and B is denoted as
A ◦B.

Complexity

. We use the Bachmann–Landau big-O notation f(x) = O(g(x)) to say that f(x)
does not grow faster than the positive-valued g(x) as a function of x, i.e., there
are finite M and x0 such that |f(x)| ≤Mg(x) for all x ≥ x0.





2
Information Rates for Coupled
MIMO

2.1. Introduction

Antenna arrays should be made compact to save space but antenna proximity causes
coupling which may impact performance. Matching circuits placed at the transmitter
and receiver antennas serve to de-couple the antennas, or even better to maximize
the mutual information between the information bits and the received signal.

We investigate matching circuits for narrowband signals. Sec. 2.2 reviews models
and theory for optimal matching for Single Input Single Output (SISO) systems.
Sec. 2.3 and Sec. 2.4 review models and theory for Multiple Input Multiple Output
(MIMO) systems, including the capacity for passive, lossless, and reciprocal matching
circuits. Sec. 2.5 presents a sensitivity analysis, where the sensitivity is computed by
varying the antenna spacing, the device parameters, and the bandwidth. Sec. 2.6
concludes the chapter.
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Figure 2.1.: Noisy fourpole models and equivalent circuits

2.2. SISO Antenna Systems

2.2.1. Amplifier Noise

Rothe and Dahlke [11] introduced a theory to characterize the noise behaviour of pas-
sive and active fourpoles. The equivalent Thévenin representation of a noisy fourpole
is shown in Fig. 2.1. The internal noise sources can be equivalently represented by a
noiseless twoport and external noise voltage generators at the input, output or both.
The noise sources represent physical phenomena in a small volume, and they are corre-
lated in general. The output noise voltage source can be represented by an equivalent
input noise current that may be correlated with the input noise voltage [11]. This
representation separates the effects of noise from the noise-free downstream circuits.
Furthermore, the signal to noise ratio (SNR) is computed conveniently because the
noise and signal are known at the same ports in the equivalent circuit.
We now generally follow the notation in [12], except that we write random variables

with uppercase letters, e.g., VN and IN , and their realizations with the corresponding
lowercase letters, e.g., vn and iN . Define the quantities:

β = E
[
|IN |2

]
= kT0WGN (2.1)

RN =

√√√√E [|VN |2]
E [|IN |2] (2.2)

ρ = E [VNI?N ]√
E [|IN |2] E [|VN |2]

(2.3)

where β is the input-referenced noise current total power, k is Boltzmann’s constant,
T0 is the environment equilibrium temperature, W is the bandwidth, GN is the equiv-
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alent noise conductance of the amplifier, RN is the equivalent noise resistance, and
ρ is the correlation coefficient of the noise voltage and the noise current. The noise
random variables IN and VN are modeled as zero mean Gaussian with variances β
and βR2

N respectively. This is consistent with the definitions of the noise parame-
ters from [11] where the noise voltage VN = VNuncorr + ZcorrIN is separated into a
correlated ZcorrIN and an uncorrelated VNuncorr component.

2.2.2. Antenna Noise

Apart from the noise originating at the active elements (amplifiers) there is also noise
at the antenna [13]. Using the Rayleigh-Jeans approximation (which approximates the
Planck black body radiation law for the range of frequencies at which the noise power
spectral density (Power Spectral Density (PSD)) is white), the antenna noise source
can be represented by an equivalent Thévenin voltage source VSN = vSN with [13]:

E
[
|VSN |2

]
= 4kTantWRAR (2.4)

where the antenna noise temperature Tant is the equivalent temperature of a resistor
with resistance RAR required to produce the same noise power as the actual environ-
ment seen by the antenna.
Antenna noise may be generated by the surrounding environment or by loss mech-

anisms of the antenna itself. The background noise temperature of the antenna is
given by integrating over the background noise temperature weighted by the antenna
directivity [13]:

Tbr =
∫ 2π
φ=0

∫ π
θ=0 TB(θ, φ)D(θ, φ) sin θ dθ dφ∫ 2π
φ=0

∫ π
θ=0D(θ, φ) sin θ dθ dφ

(2.5)

where Tbr is the brightness temperature or the equivalent total noise temperature
of the antenna absorbed from background sources, TB(θ, φ) is the distribution of the
background temperature, D(θ, φ) is the directivity of the antenna, and θ and φ are the
elevation and azimuth angles, respectively. The directivity is used here instead of gain
such that the brightness temperature captures only the influence of the background
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Figure 2.2.: Single antenna front-end receiver without impedance matching

and not also the losses of the antenna.
If the antenna is lossy then it can be modeled by an equivalent lossless antenna

followed by an attenuator with loss factor L = 1/ηrad where ηrad is the radiation
efficiency. The overall noise temperature of a lossless antenna cascaded with an at-
tenuator at temperature Tp is [13]:

Tant = 1
L
Tbr + L− 1

L
Tp . (2.6)

As in [13] the antenna noise temperature is referenced at the antenna terminals. If
the antenna is terminated on a matched load then the total noise power delivered by
the antenna is kTantW Watts.

2.2.3. Circuit Model

Consider the circuit in Fig. 2.2. The information-carrying voltage source is vS,
the antenna noise source is vSN , and the antenna impedance is ZAR with real part
<{ZAR} = RAR. We model the voltages as random variables with zero mean. The
noisy two-port has the impedance matrix

Zamp =
Zamp11 Zamp12

Zamp21 Zamp22

 (2.7)

and the currents and voltages at the ports are related by:va
vb

 = Zamp

ia
ib

 . (2.8)
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With the conventions for voltage and currents (voltage drop from the + pole to the
- pole and current flowing into the + pole and out of the - pole with positive signs)
we have vb = vL = −ibZL. Applying (2.8), we can write

−Zamp21ia = (Zamp22 + ZL)ib (2.9)

and using Kirchhoff’s laws we compute

0 = −vS − vSN + vN + ZAR(ia − iN) + iaZamp11 + ibZamp12 (2.10)
0 = (Zamp22 + ZL)ib + Zamp21ia. (2.11)

Solving for ib, we have

ib((Zamp22 + ZL)(Zamp11 + ZAR)− Zamp21Zamp12)
= (−vS − vSN + vN − ZARiN)Zamp21 (2.12)

which together with vb = vL = −ibZL gives

vL = Zamp21ZL(vS + vSN − vN + ZARiN)
(Zamp22 + ZL)(Zamp11 + ZAR)− Zamp21Zamp12

. (2.13)

Define the transfer function

T = Zamp21ZL
(Zamp22 + ZL)(Zamp11 + ZAR)− Zamp21Zamp12

(2.14)

and nN = vSN − vN + ZARiN so that we have the noisy channel output

vL = T (vS + nN). (2.15)

2.2.4. Noise Figure

A traditional quantity in our context is the noise figure

F = 1 + Tant
T0

(
E [|NN |2]
E [|VSN |2] − 1

)
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= 1 + βR2
N − 2<{Z?

ARρβRN}+ β|ZAR|2

4kT0W<{ZAR}
(2.16)

where the second step follows by

E
[
|NN |2

]
= E [|(VSN − VN + ZARIN)|]2

= E
[
|VSN |2

]
+ βR2

N − 2<{Z?
ARρβRN}+ β|ZAR|2. (2.17)

The background noise VSN captured by the antenna is assumed to be independent of
the amplifier noise VN and IN because of the separate random mechanisms for these
noise sources. Note that F is computed at a source noise temperature T0.
We consider only passive antennas that have <{ZAR} > 0, which means that their

radiation efficiency is non-negative and nonzero. Suppose we could optimize ZAR to
minimize F . We compute

∂F

∂={ZAR}
= β

2kT0W<{ZAR}
(−={ρ}RN + ={ZAR}) = 0

∂F

∂<{ZAR}
= β

4kT0W<{ZAR}2

(
<{ZAR}2 −={ZAR}2 −R2

N + 2={ZAR}RN={ρ}
)

= 0

and the ZAR that minimizes the noise figure is

Zopt = RN

(√
1−={ρ}2 + j={ρ}

)
. (2.18)

The resulting minimum noise figure after substituting (2.18) in (2.16) is

Fmin = 1 + 2βRN

4kT0W

(√
1−={ρ}2 −<{ρ}

)
(2.19)

and one may write

F = Fmin + β

4kT0W<{ZAR}
|ZAR − Zopt|2. (2.20)

We add a few remarks [14].

. The noise parameter RN depends on the technology. For Complementary Metal
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Oxide Semiconductor (CMOS) RN is relatively stable across different instances
of the manufacturing process.

. RN may vary with the impedance ZAR, in which case the optimization changes.

. Noise matching minimizes F but creates a mismatch from the input impedance
that maximizes the amplifier gain. Noise matching and maximum power transfer
matching are often performed jointly as they trade-off against each other.

. Further design steps (negative feedback) can insure that the input impedance
of the amplifier approaches Z?

opt, a technique denoted as simultaneous noise and
input matching. This technique ensures that the optimum noise behavior is
achieved and the gain of the amplifier is optimized. The authors in [14] observe
that the gain behavior is much less sensitive to parameter variations than Fmin
and RN .

. The quality of the matching depends on the fabrication technology and the size
and power dissipation of the transistors. Perfect noise matching may not be
possible in practice.

2.2.5. Impedance Matching

We next derive a circuit to transform the antenna impedance to the desired Zopt.
Consider a single frequency optimization at or very close to the antenna resonance,
which in most cases is also the carrier frequency. A lossless reciprocal matching circuit
is shown in Fig. 2.3. The lossless constraint means that the matching circuit has pure
reactive elements (impedance has only an imaginary part) and does not increase the
antenna temperature.
A two-port lossless reciprocal matching circuit in matrix form can be expressed as

ZM =
ZM11 ZM12

ZM12 ZM22

 = j

XM11 XM12

XM12 XM22

 (2.21)

where the XM11, XM12, XM22 are real. In other words, the lossless restriction requires
ZM to have purely imaginary entries, and the reciprocal constraint means ZM = ZT

M .



16 Chapter 2. Information Rates for Coupled MIMO

Figure 2.3.: Single Antenna Front-End Receiver with Impedance Matching

Suppose we wish to make the impedance Zout at the output of the matching network
to be Zopt:

Zout = − ZM12ZM12

ZAR + ZM11
+ ZM22 = RN

(√
1−={ρ}2 − j={ρ}

)
. (2.22)

To accomplish this, one can choose several values of the elements of the matching
network to satisfy (2.22). For example, if ZM11 is a free parameter then ZM22 depends
on this choice and the other fixed values. If we choose ZM11 = −j={ZAR} we obtain

ZM =
 −j={ZAR} ±j

√
<{ZAR}<{Zopt}

±j
√
<{ZAR}<{Zopt} j={Zopt}

 . (2.23)

On the other hand, if the input impedance of the amplifier is Z?
opt then the input

impedance of the matching network is:

Zin = − ZM12ZM12

Z?
opt + ZM22

+ ZM11. (2.24)

If Zin = Z?
AR then we have an input conjugate match and the matching maximizes

power transfer to the amplifier.

The above considerations for optimization confirm practices from microwave an-
tenna design [13] [15]. These guidelines are often derived using the scattering param-
eter formalism which is equivalent to the Z formalism used here.
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2.2.6. Source-Load Information Rates

Assuming T 6= 0, the mutual information between the source and the load is:

I(VS;VL) = I(VS;T−1VL)
= h(VS +NN)− log2

(
πeE

[
|NN |2

])
(a)
≤ log2

(
πe(E

[
|VS|2

]
+ E

[
|NN |2

])
− log2

(
πeE

[
|NN |2

])
(b)= log2

(
1 + Psig

(F − 1 + Tant/T0)4kT0W<{ZAR}

)
(2.25)

where (a) follows by a maximum entropy theorem [16](Chapter 12, pg. 409), and (b)
by using Psig = E [|VS|2] and the definition of F .

Note that F is the SNR drop across the receiver because of the intrinsic added noise
of the amplifier with T0 as reference noise temperature for the source. Note also that
the SNR drop across the receiver is computed for a source at noise temperature Tant
whereas F is computed at T0. This difference was stressed in [13, p. 496].

A natural question is why an amplifier is needed, since it reduces the mutual in-
formation. The reason is that for digital processing the electric signal generated at
the antenna ports must be sampled and quantized. Quantization requires adapting
to the dynamic range of the ADC which is often on the order of volts as opposed to
fractions of microvolts at the antenna terminals in most cellular communications.

In fact, multiple stages of amplification, mixing, filtering usually occur, depending
on the receiver architecture [17], see Fig. 2.4. The cascaded system noise figure is [13]

Freceiver = FLNA + F2 − 1
GLNA

+ F3 − 1
G2GLNA

+ ... (2.26)

where FLNA is the noise figure of the low noise amplifier, GLNA is the transducer gain
of the Low Noise Amplifier (LNA), F2, F3, ... are the noise figures of further stages of
the receiver and G2, G3, ... are the transducer gains of these subsequent stages. We
will assume the gain of the LNA is large enough so the noise contributions of the
stages following the LNA do not significantly change the receiver noise figure.
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Figure 2.4.: Receiver Chain

2.3. MIMO Channels

2.3.1. Input-Output Information Rates

The system model of Sec. 2.2 can be extended to MIMO systems (see, e.g., [4, 12]).
Consider the MIMO flat fading channel

y = Hx + z (2.27)

where x ∈ CM is the transmitted signal, y ∈ CN is the received signal, H ∈ CM×N is
the channel transfer matrix and z ∈ CN is AWGN noise. The total average transmit
power and the transmit covariance matrix are given by

PX = Tr (CX) , CX = E
[
XXH

]
(2.28)

respectively, where X is assumed to have zero mean. The mutual information when
the receiver has perfect channel state information (Channel State Information (CSI))
is

I(X;Y ) = h(Y )− h(Y |X) (2.29)

where h(Y ) denotes the differential entropy of Y and h(Y |X) is the average dif-
ferential entropy of Y conditioned on X. Since X and N are independent, (2.29)
becomes

I(X;Y ) = h(Y )− h(Z). (2.30)
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The differential entropy of circularly symmetric complex Gaussian noise is be ex-
pressed in terms of its covariance matrix [18] as

h(Y ) = log2 det(πeCY ). (2.31)

Using CY = HCXHH + CZ gives

I(X;Y ) = log2 det
(
πe(HCXHH + CZ)

)
− log2 det(πeCZ)

= log2 det
(
I + C−1

Z HCXHH
)
. (2.32)

Suppose the transmitter does not know H and chooses to distribute power equally
across all signal dimensions, which is known to be the optimum strategy with Gaussian
signaling if the channel is random and has certain symmetries [18]. The covariance
matrix of the channel input is thus given by

CX = PX

M
I. (2.33)

If we assume spatially uncorrelated Gaussian noise at the receiver, then we have

CZ = E
[
ZZH

]
= PZI. (2.34)

Inserting the expressions (2.33) and (2.34) into (2.32) gives

I(X;Y ) = log2 det
(
I + SNR

M
HHH

)
(2.35)

with the SISO SNR = PX/PZ and with units bit/s/Hz or bpcu.

2.3.2. Ergodic Information Rates

A spatially white channel model is defined by the random matrix Hw with

E [[Hw]i,j] = 0 (2.36a)
E
[
|[Hw]i,j|2

]
= 1 (2.36b)
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E
[
[Hw]i,j[Hw]∗m,n

]
= 0 if i 6= m or j 6= n (2.36c)

E [[Hw]i,j[Hw]m,n] = 0 for all i, j,m, n. (2.36d)

The instantaneous information rates are random variables that depend on the realiza-
tions of Hw. The ergodic channel capacity is defined as the expected instantaneous
information rate, and can generally be determined via Monte Carlo simulations by
sampling Hw and averaging:

Cerg = E
[
log2 det

(
I + SNR

M
HwH

H
w

)]

≈ 1
S

S∑
i=1

log2 det
(
I + SNR

M
HiH

H
i

)
(2.37)

where Hi is the i-th realization of Hw. The accuracy of the ergodic channel capacity
estimate depends on the number of experiments. In this chapter, we use sample sizes
of at least S = 50, 000 independent channel realizations.

2.3.3. Kronecker Fading Model

The Kronecker channel model [19] captures the influence of the relative positions of
antennas and the incident field angle of arrival distribution on the correlation between
the signals at the output ports of the antennas. The model separates the spatial
correlation at the receiver and the transmitter sides, i.e., it essentially assumes that
correlation is a local effect given by the geometry in the proximity of the antenna
arrays and that the rest of the macroscopic channel is a rich multipath environment.
A Rayleigh fading channel with double-sided correlation according to the Kronecker
model is given by

H = R
1
2
rHwR

1
2
t (2.38)

where Rr and Rt are positive definite Hermitian matrices that specify the receive
and transmit correlations. The spatially white channel Hw has the defined properties
introduced in (2.36a)-(2.36d). The correlation matrices are normalized such that the
E
[
Tr(HHH)

]
= MN . The off-diagonal elements are complex values that specify the

spatial correlation.
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The average mutual information with Gaussian inputs is now

Cerg = E
[
log2 det

(
I + SNR

N
HHH

)]

= E
[
log2 det

(
I + SNR

N
RrHwRtH

H
w

)]
(2.39)

where we have used Sylvester’s determinant identity

det (I + AB) = det (I + BA) (2.40)

if the dimensions of A and B are compatible. We simulate the ergodic channel
capacity of a 2 × 2 MIMO system and examine the resulting capacity for different
correlation coefficients at the transmitter and receiver as depicted in Fig. 2.5. The
correlation matrices for the 2× 2 MIMO system are

Rt/r =
 1 ρ∗t/r
ρt/r 1


where ρt/r is the correlation coefficient for either the transmitter or receiver. We see
that spatial correlation decreases the channel capacity. If we are interested in the
channel capacity at high SNR, then we use (2.39) and neglect the identity matrix
resulting in:

Cerg ≈ E
[
log2 det

(
SNR
M

RrHwRtH
H
w

)]

= E
[
log2 det

(
SNR
M

HwRtH
H
w

)]
+ log2 det (Rr)

= E
[
log2 det

(
SNR
M

HH
wHw

)]
︸ ︷︷ ︸
≈ Cerg, no spatial correlation

+ log2 det (Rr) + log2 det (Rt) . (2.41)

The correlation matrix Rt/r is a positive Hermitian matrix, therefore all its eigen-
values satisfy λi(Rt/r) > 0. On the other hand, the determinant is upper bounded
det(Rt/r) ≤ 1. Hence we have log2(det(Rt/r)) ≤ 0. Observe that the capacity is only
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Figure 2.5.: Ergodic rates (2.39) for a 2×2 MIMO system with ρt = 0.15 and different
correlation coefficients ρr at the receiver

reduced by correlations at either the transmitter or receiver. Moreover, in the limit
of high SNR the reduction is determined only by the determinants of the correlation
matrices that do not depend on SNR and therefore do not affect the growth rate of
capacity with SNR.

2.4. MIMO Antenna Systems

Consider the MIMO radio model developed in [2,12,20]. Fig. 2.6 shows a system with
M transmit antennas, N receive antennas, N amplifiers, a 2M×2M matching circuit
at the transmitter, and a 2N × 2N matching circuit at the receiver (more generally,
one could use A× B matching circuits with A 6= B). Our focus will be on matching
and we begin with a narrow-band assumption, i.e., the bandwidth is a small fraction
of the carrier frequency. We will assume as in Sec. 2.2 that the matching networks
are passive, lossless, and reciprocal. We consider amplifiers operating in the linear
regime.
We continue to focus on the caseM = N . At the transmitter the RF input voltages
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Figure 2.6.: MIMO front-end transceiver with matching

are collected into a vector:

vG =
[
vG,1 vG,2 . . . vG,N

]T
. (2.42)

The voltage vT at the input of the transmitter matching network is thus

vT = vG −ZGiT (2.43)

where vG is the source voltage, ZG is the source impedance, and iT is the loop current.
The input-output relation of the impedance matching network ZMT is given by vT

vAT

 =
ZMT11 ZMT12

ZMT21 ZMT22


︸ ︷︷ ︸

ZMT

 iT

−iAT

 . (2.44)

Similarly, we have vAT
vAR

 =
 ZAT ZATR

ZART ZAR


︸ ︷︷ ︸

ZTCR

iAT
iAR

 (2.45)

and we assume that the voltage at the input of the receive array does not couple back
into the transmit array, i.e., back-scattering is negligible and ZATR = 0.
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For instance, at the antenna array port we have

vAT = ZAT iAT . (2.46)

Substituting (2.46) in the second equation of (2.44) and rearranging for iAT gives

iAT = (ZAT + ZM22)−1 ZMT21iT . (2.47)

Now use the first row of (2.44) and (2.47) to write

vT =
(
ZMT11 −ZMT12(ZAT + ZMT22)−1ZMT21

)
︸ ︷︷ ︸

ZT

iT (2.48)

whereZT is the transformed input impedance matrix when looking into the impedance
matching circuit.

The physical channel ZRT can be modeled by methods presented in [21]. We again
use the Kronecker model [21] and compute the following source-load voltage equation
(see [12, eq. (16)]):

vL = CL(X + ZR)−1FR (HvG + vnoise) (2.49)

where

H = ZRTZTT (2.50)
vnoise = vSN + F−1

R (ZRiN − vN) (2.51)

with the component matrices [12, eq. (17)-(20)]

CL = ZL(ZL + Z22amp)−1 (2.52)
FR = ZMR21(ZMR11 + ZAR)−1 (2.53)
ZR = ZMR22 − FRZMR12 (2.54)
X = Z11amp −Z12amp(Z22amp + ZL)−1Z21amp (2.55)

ZTT = F T
T (ZT + ZG)−1 (2.56)
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FT = ZMT12(ZMT22 + ZAT )−1 (2.57)
ZT = ZMT11 − FTZMT21. (2.58)

We assume that FR in (2.53) is invertible. Observe from (2.49) that CL(X+ZR)−1FR

multiplies both the signal and noise and is invertible. We thus focus on

v̂L = HvG + vnoise. (2.59)

We restrict attention to passive, lossless, and reciprocal matching networks, i.e., ZMR

has imaginary entries and ZMR = −ZH
MR. The matching network impedance matrix

thus has the form

ZMR =
ZMR11 ZMR12

ZT
MR12 ZMR22

 = j

XMR11 XMR12

XT
MR12 XMR22

 (2.60)

where the XMRab are real matrices, and XMR11 and XMR22 are symmetric.

2.4.1. Amplifier Noise

The amplifier voltage and current noise noise sources are modeled by Gaussian random
variables with zero mean and second order statistics given by (see [12, eq. (10)])

E
[
INI

H
N

]
= βI (2.61)

E
[
VNV

H
N

]
= βR2

NI (2.62)

E
[
VNI

H
N

]
= ρβRNI. (2.63)

Diagonal noise covariance matrices are reasonable if the amplifiers are well isolated
on a chip, see [12], [4], [20] .

2.4.2. Antenna Noise

Suppose the background noise is caused by randomly polarized planar waves propa-
gating from all angles uniformly. The open circuit noise voltage covariance then takes
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Figure 2.7.: Simplified MIMO front-end transceiver without coupling at the receiver

the form (see [12])

E
[
VSNV

H
SN

]
= 4kTantW<{ZAR} (2.64)

where <{ZAR} is positive semi-definite. If there are additional losses then the antenna
impedance is augmented by a real positive definite matrix RAL at an equivalent noise
temperature Tant,L to obtain

E
[
VSNV

H
SN

]
= 4kTantW<{ZAR}+ 4kTant,LWRAL. (2.65)

To illustrate the effects of the correlations and matching, consider a model with only
mutual transmitter coupling and no mutual coupling or antenna correlation at the re-
ceiver, see Fig. 2.7. We model the power amplifier outputs as generators with internal
impedance and examine the effects of multiport matching on the capacity of a single
user MIMO system with channel correlation. The results for two different matching
approaches are shown in Fig. 2.8. One solution for decoupling and matching is given
in closed form in (2.77), and the second, denoted in the figure as individual power
matching, is the result of a global optimization over elements of a matching network
that only connect individual antenna elements with their corresponding LNA. The
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Figure 2.8.: Rates vs. SNR with receiver CSI

Clarke model correlation coefficients ρt/r for the Kronecker spatial correlation matrix
Rt/r are equal to sinc(2d

λ
), where d is the distance between two consecutive antenna

elements and λ is the wavelength [22]. Interestingly, this simple correlation model
captures very well the behaviour of the simulated antenna system with individual
two-port antenna matching.

2.4.3. Capacity

Let the transmitter and receiver symbol samples be represented by vG and v̂L, re-
spectively. Combining (2.59) and (2.50) we have

v̂L = ZRTZTTvG + vnoise. (2.66)

The mutual information of the source and load voltages with perfect receiver CSI is
thus

I(VG; V̂L) = h(V̂L)− log2

(
(πe)N det(Cnoise)

)
≤ log2 det

(
I + C−1

noiseZRTZTTCVGZ
H
TTZ

H
RT

)
(2.67)
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with equality if and only if vG is a Gaussian distributed vector. Using (2.51) and
(2.61)-(2.64), the noise covariance matrix is

Cnoise = E
[
VSNV

H
SN

]
+ F−1

R E
[
(ZRIN − VN) (ZRIN − VN)H

]
F−H
R

= 4kTantW<{ZAR}+ β F−1
R

(
ZRZH

R +R2
NI − 2RN<{ρZH

R}
)

F−H
R . (2.68)

The capacity is obtained by maximizing the mutual information over the transmit-
ter and receiver matching networks, subject to the power constraints

Tr(CVG) ≤ Pav (2.69)
E
[
<{V H

G CTVG}
]
≤ Prad. (2.70)

The constraint (2.69) limits the total supplied power which for decoupled antennas
with perfect matching also constrains the radiated power. However, in a coupled
MIMO system the supplied power is not necessarily the same as the radiated power,
which is the quantity constrained by regulatory bodies. This has been highlighted
in [20] that introduced the radiated power constraint (2.70).
To determine the optimal receiver matching network we use the following lemma.

Lemma 2.1. For a fixed M � 0 and C1 � C2 � 0 we have

log2 det
(
I + C−1

2 M
)
≥ log2 det

(
I + C−1

1 M
)
. (2.71)

Proof: According to [23, Theorem 7.2.6], there is a positive semidefinite matrix
M 1/2 such that M 1/2M 1/2 = M and

det
(
I + C−1

i M
)

= det
(
I + M 1/2C−1

i M 1/2
)

(2.72)

for = 1, 2. Moreover, by [23, Corollary 7.7.4] we have C−1
2 � C−1

1 and thus

I + M 1/2C−1
2 M 1/2 � I + M 1/2C−1

1 M 1/2.

The proof is completed by using [23, Corollary 7.7.4 (b)] which states thatA � B � 0
implies detA ≥ detB.
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By (2.67) and Lemma 2.1, we wish to find a smallest Cnoise in the positive definite
ordering. Using similar steps as in [4, Sec. V], one may rewrite (2.68) as

Cnoise = 4kTantW<{ZAR}+ F−1
R β

(
(ZR − ZoptI)(ZR − ZoptI)H

−2RN<{ρZH
R}+ 2<{ZoptZH

R}
)

F−H
R

= 4kTantW<{ZAR}+ F−1
R β(ZR − ZoptI)(ZR − ZoptI)HF−H

R

+ 4kT0W (Fmin − 1)<{ZAR} (2.73)

where the last step follows by using (2.18), (2.19), and the lossless property of the
matching network, i.e., the power at the input and output of the matching network
is conserved with

<{ZR} = FR<{ZAR}FH
R. (2.74)

We thus have the following theorem.

Theorem 2.2. The capacity of the MIMO antenna system under consideration is
achieved by a lossless, passive, and reciprocal matching network satisfying ZR = ZoptI

so that

C = log2 det
(
I + (C∗noise)−1ZRTZTTCVGZ

H
TTZ

H
RT

)
(2.75)

where

C∗noise = 4kT0W<{ZAR}
(
Fmin − 1 + Tant

T0

)
. (2.76)

Proof: From (2.73) we have Cnoise � C∗noise with equality if ZR = ZoptI, i.e., the
array has been effectively decoupled. Now apply Lemma 2.1 to (2.67). There is, in
general, a class of lossless, passive, and reciprocal ZMR that achieve capacity. For
instance, one may choose (see [4, 12] and also [24])

ZMR = j

 −={ZAR} (<{ZAR}<{Zopt})1/2

(<{ZAR}<{Zopt})1/2 ={Zopt}I

 . (2.77)

Inserting ZMR into (2.54) with (2.53) we have the desired decoupling.
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Theorem 2.2 effectively appears in [4] and Lemma 2.1 provides an alternative and
slightly simpler proof.

2.5. Sensitivity Analysis

We next evaluate the sensitivity of the above matching circuits by varying the device
tolerances, the bandwidth, and the antenna spacing.

Antennas

Suppose both the transmit and receive arrays are uniform linear arrays (ULA) with
half-wavelength (resonant) dipoles with center feed oriented in parallel to each other.
Closed form expressions exist for the self and mutual impedance of very thin wire
dipoles [15], however no such expressions exist for radiation patterns. This moti-
vates evaluating the antenna array impedance matrix and patterns using a numerical
method of moments (MoM) provided by the Antenna Toolbox in Matlab and bench-
marked against 4nec2 [25] software. We use dipoles of length λ/2 and width λ/100
separated by spacings no smaller than 0.05λ. We evaluate the antenna properties at
the center frequency fc = 800MHz.

Noise Parameters

Consider amplifiers with RN = 10 Ω, Zopt = 56.74+j10.66, and minimum noise figure
F = 1.36 dB. These parameters are motivated by perfectly unilateral amplifiers with
Zamp12 = 0 Ω, |Zamp21| >> 1, and Zamp11 = Z∗opt, i.e., we consider

Zamp =
 Z∗opt 0
Zamp21 Zamp22

 . (2.78)

Such models do not depart much from well-designed catalog amplifiers used in [4,20],
for example. Note, however, that Zamp does not affect the capacity calculation.
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Information Rates

Consider CSI at the receiver while the transmitter knows only the statistics of the
channel. In this case isotropic diagonal power allocation CVG = P

N
I, where P is

the transmitter power and N is the number of transmit/receive antennas, is the best
strategy [18].
For each antenna spacing we evaluate the rate by Monte Carlo simulation with

25,000 channel realizations. We compare the optimal receive matching rates with:

. independent and identically distributed (iid) fading and noise; the fading is
Rayleigh and flat, and the receiver noise is spatially white;

. self-matching, i.e., the dipole antennas are matched to the optimal noise impedance
of the amplifier so that

ZMR,self,ab = j diag (XMRab) (2.79)

where diag(·) retains the diagonal of a matrix.

For fair comparison we scale the channel matrices so that E
[
Tr(HHH)

]
= N2.

The SNR is defined with respect to the SISO SNR. For uncoupled and uncorrelated
MIMO RF chains the individual chain SNR is equal to our definition of the SISO
SNR.

2.5.1. Antenna Spacing

Consider N = 4 dipole antenna elements. Fig. 2.9 shows the rate as a function of
the spacing between antennas at the receive array for the cases described above. The
SNR is fixed at 20dB. Both uniform linear and circular arrays are considered. For
small antenna spacings the rates exceed those of i.i.d. fading and noise because of the
larger power collected by the decoupled and matched array through its larger effective
aperture as compared to the uncoupled array (e.g., see [26]). This is reflected also in
our simulations by having the SNR benchmarked to the isolated dipole impedance,
whereas the coupled dipoles’ self impedance can be considerably larger. We further
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Figure 2.9.: Rate vs. antenna spacings for various matching strategies

observe that the results are qualitatively consistent for both array architectures, hint-
ing that the placement of the dipoles in a 2-D plane does not fundamentally change
the results, e.g., the ordering of the rates at a given spacing. Furthermore, for the
uniform circular array (UCA) and a specified information rate, the antenna spacing
is smaller than for the ULA. We expect that optimizing the positions of the antenna
elements will improve these results.
Fig. 2.10 plots the information rate vs. SNR for d = 0.1λ and d = 0.2λ for both

UCAs and ULAs. At low SNR the gap between suboptimal and optimal matching
is not significant and therefore closer spacing can be used with suboptimal matching
without rate penalties. However, at high SNR the gap is significant. For example, for
UCA at a spacing of 0.1λ and a rate of 15 bits/s/Hz there is a SNR loss of 7 dB as
compared to optimal matching. Again, the slope of the information rate vs SNR is
steeper for UCA than for ULA for the suboptimal self-matching strategy. This shows
that both antenna-matching network co-design and optimizing the positions of the
antenna elements is of practical relevance.
We remark that an optimal decoupling network is complex and may result in a

large and bulky front-end. An optimal dense matching network has a complexity of
2N2 + N network elements and requires connections between all pairs of antennas.
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Figure 2.10.: Rate vs. SNR for various matching strategies

For lossless and reciprocal networks, which we focus on in this thesis, the number of
components can be reduced by N2. Research into low complexity implementations
of such networks is presented in [24] and references therein. However, there are still
strong limitations in bridging the gap to practicality for such structures and medium
and large size arrays. This motivates a joint antenna and matching co-design as a
viable complexity performance trade-off.

2.5.2. Device Variations

The receiver matching network was derived by maximizing the mutual information
at one frequency. However, most applications require operating over a large spectral
range. In addition, realistic components will cause the entries of the matching network
to differ from the desired ones because of losses, parasitic effects, availability of only
a discrete set of nominal values (e.g. for lumped elements), fabrication tolerances,
temperature and aging effects. We investigate the robustness of the matching network
to device variations.
We evaluate the rates for a specific matching circuit architecture, namely the gen-

eralized Π network shown in Fig. 2.11. This network is taken as a benchmark because
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AR

Figure 2.11.: MIMO receiver with a generalized Π matching network

it naturally extends classical Π networks from SISO matching as in Fig. 2.12. The
two-port Π network admittance matrix is given by:

YΠ =
Y1,1 + Y1,2 −Y1,2

−Y1,2 Y2,2 + Y1,2

. (2.80)

Similarly, the generalized 2N -port Π network has an admittance matrix:

Ygen−Π =



∑2N
j=1 Y1,j −Y1,2 · · · −Y1,2N

−Y1,2
∑2N
j=1 Y2,j · · · −Y2,2N

... ... ... ...
−Y1,2N −Y2,2N · · · −Y2N,2N

. (2.81)

If we consider purely reactive networks we only have Yi,i = 1
2πfcLi,i or Yi,i = 2πfcCi,i

for inductors and capacitors at the design frequency fc. We thus perturb only the
imaginary part of our lumped network components, but in practice we may also have
resistive parasitics.

Fig. 2.13 plots the average information rate as a function of antenna spacing at an
SNR of 20dB. The tolerances have been chosen to be equal for all components, both
capacitors or inductors. The value of individual components with tolerance is com-
puted as YL,C = YL,Cnominal(1 + x ∗ tol.) where x ∼ N (0, 1). We use only one channel
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Figure 2.12.: Two-port Π network with lumped elements

realization that is chosen at random and then reused for all our experiments. We
generate 50,000 random samples for each perturbed component to obtain statistically
significant results.

Fig. 2.13 plots information rates for the unperturbed optimal matching network,
and the average and range of information rates evaluated by sampling from the el-
ements with component tolerances. We also perturb the self matching solution for
comparison. The solid curves are the empirical means of the collected statistics. The
shaded areas are generated by collecting the realizations into two classes: those that
fall above and those that fall below the empirical mean. We then compute the vari-
ances of the samples of these two classes. The shaded area shows the values between
the mean plus the variance of the “above the mean” curves, and the mean minus the
variance of the “below the mean” curves. The resulting region is thus asymmetric
around the mean value in general and the plot emphasizes the heavier tails one one
side of the distribution.

We observe that the UCA is insensitive to perturbations up to tolerance values of
5%, while the ULA shows significant performance degradation even at 1%. While
perturbations only decrease rates for optimum matching, self-matching can benefit
with higher rates than for the unperturbed case. This is expected, since self matching
is a sub-optimal diagonal matching. Optimal networks exhibit lower rates with close
antenna spacing with a given level of perturbation, but the variations are consistently
low for both ULA and UCA, which is not the case for self matching. This seems to be
an unexpected result of practical importance, as self matching appears more sensitive
to perturbations (larger variance). For antenna spacings larger than d/λ ≥ 0.5 the



36 Chapter 2. Information Rates for Coupled MIMO

0.2 0.4 0.6 0.8 14

6

8

10

12

14

16

Antenna Spacing, d/λ

R
[b
/s
/H

z]

(a) ULA, tolerance= 1%

0.2 0.4 0.6 0.8 14

6

8

10

12

14

16

Antenna Spacing, d/λ

R
[b
/s
/H

z]

(b) ULA, tolerance= 2%

0.2 0.4 0.6 0.8 14

6

8

10

12

14

16

Antenna Spacing, d/λ

R
[b
/s
/H

z]

(c) ULA, tolerance= 5%

0.2 0.4 0.6 0.8 14
6
8

10
12
14
16

Antenna Spacing, d/λ

R
[b
/s
/H

z]

(d) UCA, tolerance= 1%

0.2 0.4 0.6 0.8 14
6
8

10
12
14
16

Antenna Spacing, d/λ

R
[b
/s
/H

z]

(e) UCA, tolerance= 2%

0.2 0.4 0.6 0.8 14
6
8

10
12
14
16

Antenna Spacing, d/λ

R
[b
/s
/H

z]

(f) UCA, tolerance= 5%

Figure 2.13.: UCA and ULA information rates with element tolerances. The unper-
turbed optimal rates are given in solid green. Average perturbed optimal
matching (blue solid line), range for perturbed optimal matching (blue
shaded area); average perturbed self matching (red solid line), range for
perturbed self matching (red shaded area).

effects of perturbations are much less significant for both matching strategies, as the
effects of mutual coupling are reduced.
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Figure 2.14.: Broadband information rates with the optimal matching network de-
signed at the central frequency (blue solid line); with the self-matching
network designed at the central frequency (red solid line); and with
channel correlations but without antenna coupling (purple solid line).

2.5.3. Broadband Rates

Fig. 2.14 shows information rates as a function of antenna spacing at two-sided fac-
tional bandwidths of 1%, 5% and 10% of the carrier frequency fc. The receiver optimal
matching network is computed for the parameters found at the central frequency. The
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bandwidth is divided inK = 200 equally spaced bands, and the mid-frequency in each
band is denoted as fk. Therefore the total rate per unit of bandwidth is

I(VG; V̂L) = 1
K

K∑
k=1

log2 det
(
I + C−1

noise,fk
ZRT,fkZTT,fkCVGZ

H
TT,fk

ZH
RT,fk

)
(2.82)

where all other channel and network parameters except the matching network are
evaluated at the equispaced frequencies fk over which the summation is done.
Fig. 2.14 emphasizes that the optimal matching network is highly frequency selec-

tive. This is expected since the matching network is a function of the antenna array
impedance matrix that changes with frequency. The optimal matching networks de-
rived in the previous chapter do not account for the frequency dependence. These
aspects are outside the scope of this thesis but are studied in [5, 27–30] for example.

2.6. Conclusions

In this chapter we have shown that the information-rate optimal design of receivers
with lossless, passive, and reciprocal matching networks for MIMO RF front-ends
can be solved in closed form. The optimal networks form a parametrized family of
circuits. Our models consider both signal and noise correlations as well as all circuit
theoretic interactions relevant for a compact antenna array with mutual coupling.
The results shows that noise covariance minimization in the positive definite matrix
sense is equivalent to mutual information maximization with Gaussian noise and
Gaussian signaling. Interestingly, this is a vector extension of the single antenna
case where mutual information maximization is equivalent to minimization of the
noise figure of the receiver. This is true irrespective of the optimization of the signal
covariance at the transmitter, since there are no non-positive eigenvalues of the noise
covariance of a physical system (all signal directions contain some noise, and the
optimization decreases noise in all directions). An optimally matched receiver is
one where the coupled array is simultaneously decoupled, and where each LNA is
individually presented with the minimum noise input impedance at the input port.
Both signal and noise paths are decoupled and the resulting front end can be seen as
a collection of independent RF chains, one for each antenna element.
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The performance of the matching networks is, however, sensitive to device man-
ufacturing variations. For example, depending of the architecture of the matching
network and the design of the antenna array, a tolerance of 5% in each lumped el-
ement in the matching network can degrade the rate by 10% to 30% at an antenna
spacing of 0.2λ. It is also noted that antenna array design can significantly influence
the rates. For instance, the antennas can be spaced more closely for a UCA than for
a ULA for a specified information rate.
Finally, the matching networks are no longer optimal if we consider transmission

in larger bandwidths. A system operating in a fractional bandwidth of 10% around
the carrier frequency does not benefit from optimal matching and supports only the
same information rates as single port self matching for both ULA and UCA arrays.





3
Precoding for Multi-User MIMO
with Discrete Signaling

3.1. Introduction

Massive multiple input multiple output (massive MIMO) uses large antenna arrays
at base stations to serve many users that each have a small number of antennas [31].
The gains of massive MIMO include improved power and spectral efficiencies, and
simplified signal processing [32]. The gains are often stated for a large number N of
base station antennas and a large number K of User Equipment (UE) when the ratio
N/K is held constant.
An implementation for large N and K is challenging. For example, consider a base

station deployment with N radio frequency (RF) chains. It seems impractical from
a cost and power consumption point of view to use high-resolution analog-to-digital
and digital-to-analog converters (ADCs/DACs) along with linear but low-efficiency
power amplifiers. In fact, the papers [33] and [34] argue that high resolution DACs
and linear power amplifiers not only dominate the power consumption of Massive
MIMO base-stations (up to 75% of the total power) but also account for major heat
dissipation bottlenecks.
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Figure 3.1.: Multi-user MIMO downlink with a low resolution digitally controlled ana-
log architecture.

There are two main directions of research aimed at obtaining practical solutions for
implementing massive MIMO. First, hybrid-beamforming [35] uses analog beamform-
ers in the RF chain of each antenna, and the digital baseband processing is shared
among different RF chains. This solution is mainly targeted at use cases in very high
frequency bands (millimeter wave). Second, low-resolution ADCs/DACs or low reso-
lution digitally controlled RF chains simplify the transceivers, e.g., one bit quantizers
use simple comparators and they permit using non-linear power amplifiers combined
with quasi-constant envelope waveforms.
We follow the second approach and propose a transceiver architecture and nonlin-

ear baseband precoding algorithms to obtain a low-power, low-cost and high efficiency
RF co-design. We propose to eliminate the DACs and replace them with low resolu-
tion digitally controlled phase-shifters that can be used together with high efficiency
nonlinear amplifiers [36].
The high-level joint digital-analog architecture is shown in Fig. 3.1. The Inverse

fast Fourier Transform (IFFT) and the Precoder are implemented fully in the digital
domain, while the Local Oscillator (LO), programmable phase shifter, RF switch and
Power Amplifier (PA) are RF components. The phase shifter is actuated directly from
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the digital domain with b bits without mixed signal components such as DACs, and
operates on the signal generated by a local oscillator. The phase shifter is placed before
a power amplifier to both mitigate its insertion loss and to simplify the matching of
the PA and the antenna. We emphasize that the phase shifter is in general operated
at baseband sampling rate, thus considerably reducing the switching time. The RF
switch turns individual chains on and off as specified by the precoder in order to
mitigate self-interference, this will be reflected in the choice of signaling alphabet.

3.2. System Model

Fig. 3.1 depicts the downlink of a Multi-User MIMO (MU-MIMO) channel with N

transmit antennas and K UEs that each have a single antenna. A discrete-time,
frequency selective, time-varying, baseband channel has a finite impulse response filter
between each pair of transmit and receive antennas. We collect the received signals
yk[t] at time t, t = 1, 2, . . . , T , of user k, k = 1, 2, . . . , K, into the K-dimensional
column vector y[t] = [y1[t], . . . , yK [t]]T. We have

y[t] =
L−1∑
l=0

H [t, l]x[t− l] + z[t] (3.1)

where x[t] = [x1[t], . . . , xN [t]]T is the N-dimensional transmit vector, the H [t, l],
` = 0, 1, . . . , L− 1, are time-varying K ×N channel matrices, and z[t] is a circularly-
symmetric, complex, Gaussian, column vector with a scaled identity covariance ma-
trix, i.e., we have z ∼ CN (0, σ2I). We write x for x[t] when the time parameter is
clear from the context. Power constraints are given by one or more of the following
inequalities: an average power constraint E

[
‖x‖2

]
≤ P , an instantaneous power con-

straint ‖x‖2 ≤ P with probability one, or individual power constraints |xn|2 ≤ P/N ,
n = 1, 2, . . . , N , with probability one. These constraints often allow closed form ex-
pressions to optimization problems, and efficient numerical algorithms that can find
solutions that are globally optimal.
Equation (3.1) represents the Shannon-Nyquist sampled input-output relationship

of a time-varying multi-path communication channel. For example, a single tap chan-
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nel has L = 1 and with time-variations we recover the flat fading channel model

y[t] = H [t]x[t] + z[t]. (3.2)

Another interesting model is the block fading channel where the channel matrix
changes every T channel uses:

y[kT + 1 : (k + 1)T ] = H [kT + 1]x[kT + 1 : (k + 1)T ]
+ z[kT + 1 : (k + 1)T ] (3.3)

where k is an integer representing the k-th block, T is the block length, and we use
the notation x[t : t+ T − 1] = [x[t], . . . ,x[t+ T − 1]].

For the remainder of this chapter we study block fading channels. We write

H [t, l] = H [l] =


h11[l] h12[l] . . . h1N [l]
h21[l] h22[l] . . . h2N [l]
... ... . . . ...

hK1[l] hK2[l] . . . hKN [l]

 (3.4)

for a generic block, where hkn[l], l = 0, 1, . . . , L − 1, is the channel impulse re-
sponse from the n-th antenna at the base station to the k-th UE. We consider a
Rayleigh fading frequency selective channel with a uniform power delay profile, i.e.,
we choose E [|hkn[l]|2] = 1

L
, where the hkn[l] ∼ CN (0, 1

L
) are iid circularly-symmetric,

complex Gaussian random variables. We mostly assume that the realizations H [l],
l = 0, 1, . . . , L − 1, are known perfectly at the transmitter (CSIT) but we do study
the effects of approximate knowledge in Sec. 3.8 below.

Finally, we give the discrete frequency domain formulation for the channel input-
output relation since precoding for frequency selective channels is usually performed
on a per-subcarrier basis. Let x̂[m] and ŷ[m], m = 1, . . . , T , denote the frequency-
domain transmit and receive vectors in (3.1) when using OFDM with a cyclic prefix
and a size T DFT. The new channel can be expressed as

ŷ[m] = Ĥ [m]x̂[m] + ẑ[m] (3.5)
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where Ĥ [m] is a K × N matrix representing the frequency domain channel matrix
per subcarrier:

Ĥ [m] =
L−1∑
l=0

H [l]e− j 2πl(m−1)/T , m = 1, . . . , T (3.6)

and where the noise ẑ[m] corresponds to the frequency domain transformation of z[t].

3.2.1. Modulation and Receiver Metric

We consider x with entries taken from a discrete alphabet X that has 2b + 1 elements
where b bits encode the phase of each entry xn. More precisely, we choose

X = {0} ∪

√
P

N
ej 2πq/2b ; q = 0, 1, . . . , 2b − 1

 . (3.7)

We select P = 1 and define SNR = 1/σ2. The alphabet (3.7) permits per-symbol
antenna selection through the {0} symbol. The idea of joint precoding and antenna
selection also appeared in [37] but our algorithms will select antennas without enforc-
ing sparsity. The 0 symbol corresponds to a digitally controlled RF switch that can
turn individual antennas on and off.
We use the mean squared error (MSE) as a precoding metric. For example, consider

the fading model (3.2) with H [t] = H . The MSE between a target signal u and its
estimate ū = αy = α(Hx + z) at the receiver is

MSE = E
[
‖u− ū‖2

2

]
= ‖u− αHx‖2

2 + α2Kσ2. (3.8)

This choice is motivated by the massive MIMO literature [38] that shows that pre-
coders designed with simple criteria can approach capacity. Also, the MSE is related
to the mutual information [39] for Gaussian channels.

3.2.2. Flat Fading Channels

Let uk ∈ U be the complex symbol that we wish to generate at the k-th UE, k =
1, . . . , K, where U is either a 4-, 16-, or 64-Quadrature Amplitude Modulation (QAM)
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signaling set. Let u be a column vector with K symbols. Consider the precoding
problem

min
x,α

‖u− αHx‖2
2 + α2Kσ2

s.t. x ∈ XN

α > 0.

(3.9)

The factor α permits trading off noise enhancement and the received signal power. For
example, the latter is more important at low SNR when the MSE is minimized by the
Matched Filter (MF) [40]. Problem (3.9) is not a convex optimization program, unlike
the classical linear MMSE counterpart, where α = 1 and X = C. In particular, the
constraint set is a bounded discrete Cartesian product set, thus making our problem
a combinatorial problem.

3.2.3. Block Fading

The transmitter must compute x and α for each transmit vector u. The precod-
ing factor α can be broadcast to the receiver through a control channel but such a
broadcast channel is not necessarily available. Moreover, the number of distinct α
values is generally large for a large number of users and for large modulation sets. We
approach the problem by studying three scenarios.

. Scenario 1: The base station computes a pair (α,x) for each u and broadcasts
all precoding factors to the receivers. This scenario seems practically unrealistic
but provides a performance benchmark.

. Scenario 2: The base station computes a pair (α,x) for each u and the receiver
estimates an auxiliary channel as described in Sec. 3.3.3 below. This scenario
requires no side information on the precoding factors.

. Scenario 3: The base station computes one α per coherence interval and the
receiver estimates an auxiliary channel as described in Sec. 3.3.3 below.

The precoding factor α turns out to be mostly relevant for hard detection where
proper scaling is needed to apply symbol-wise decision thresholds. For soft-decision
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receivers that generate log likelihood ratios (LLRs) this factor impacts mainly de-
coders that are sensitive to LLR magnitude scaling. In [41], the authors also discuss
block fading and different estimation strategies.

For the block fading channel in (3.3) the precoding problem with H = H [1] is

min
x[1],...,x[T ],α

T∑
t=1
‖u[t]− αHx[t]‖2

2 + α2TKσ2

s.t. x[t] ∈ XN , t = 1, 2, . . . , T .
α > 0.

(3.10)

3.2.4. Frequency Selective Channels

For time-invariant frequency selective channels (3.1) with H [t, l] = H [l], the precoder
outputs a string of column vectors x[1], . . . ,x[T ] where T is the OFDM symbol length.
In practice, T is chosen to balance the need for accurate channel state information
(CSI) and quality-of-service (QoS) requirements.

Consider the target vectors u[1], . . . ,u[T ]. The optimization problem is now

min
x[1],...,x[T ],α

T∑
t=1

∥∥∥∥∥u[t]− α
L−1∑
l=0

H [l]x[t− l]
∥∥∥∥∥

2

2
+ α2TKσ2

s.t. x[t] ∈ XN , t = 1, . . . , T
α > 0.

(3.11)

The problem (3.11) suggests a time domain approach rather than the frequency do-
main approach of [42]. The main advantage of the former approach is that one does
not need to switch between time and frequency domains to enforce the discrete al-
phabet constraint (3.7). The cost of each such shift is a length T discrete Fourier
transform.
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3.3. Multiuser MIMO

3.3.1. Broadcast Channel

MU-MIMO has a base station serving multiple terminals on the same time-frequency
resources by exploiting spatial degrees of freedom. The idea dates back at least to [43]
and the information theoretic limits of MU-MIMO have been examined in [44–46] and
many other papers.

The baseband received signal at user k for the Gaussian MIMO Broadcast Channel
(GMBC) with block fading is given by (3.2)

yk[t] = hT
kx[t] + zk[t], t = 1, 2, . . . , T. (3.12)

where hT
k = [hk1, . . . , hkN ] is the channel vector corresponding to user k. The capacity

region of the time-invariant GMBC is achieved by Gaussian input distributions with
an optimized covariance matrix Q. The sum-rate optimization problem simplifies to
diagonal Q with entries defined by the power allocation vector q = [q1, . . . , qN ]T. The
best sum-rate is

Rsum =max
q

log2 det
(
I + HQHH

)
s.t. Tr(Q) ≤ Ptotal

Q � 0

(3.13)

where

Q =


q1 0 · · · 0
0 q2 · · · 0
... ... . . . ...
0 0 · · · qN

 .

However, for massive MIMO it usually suffices to consider uniform power allocation,
and we obtain

Rsum = log2 det
(
I + P

K
HHH

)
≤ C. (3.14)

If coding is performed across many realizations of a stationary and ergodic channel,
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then the sum capacity with perfect CSI at the receiver is given by [47,48]:

E
[
max
Q

log2 det
(
I + HQHH

)]
s.t. Tr(Q) ≤ Ptotal

Q � 0.

(3.15)

The optimization can be computed with standard convex optimization tools [49,50].
It was shown in [44] that the sum capacity in (3.13) can be achieved by Dirty Paper

Coding (DPC). The main idea of DPC consists of coding against known interference
at the transmitter [44,51,52]. Unfortunately, DPC currently seems to be too complex
even for medium size systems. Also, the presence of perfect CSI at both the trans-
mitter and receiver can be a strong limitation in practice. One thus usually applies
lower-complexity suboptimal techniques.

3.3.2. Linear Precoding

Linear Precoding (LP) [53,54] has the receivers treat interference as noise. Users’ mes-
sages are encoded independently, a beamformer is chosen for each stream, the beam-
former outputs are added, and the result is transmitted through the channel. The
beamforming is expressed as a linear operation x = Pu, where u is a K-dimensional
vector carrying the messages of the K users, and where P is the precoding matrix.
The received vector of the k-th user is

yk[t] = hT
k pkuk[t] +

K∑
i=1,i 6=k

hT
k piui[t] + zk[t]. (3.16)

where pi is the i-th column of P .
Zero forcing (ZF) [55, 56] is a technique that cancels the multi-user interference,

which is the second summand of (3.16), but ignores the effect of noise at the receivers.
The ZF precoder is the pseudo-inverse of H multiplied by the inverse of a constant
αZF chosen to satisfy the power constraint:

PZF = 1
αZF

HH(HHH)−1, αZF =
√

tr ((HHH)−1). (3.17)
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The matched filter (MF) is designed to maximize the single-user SNR, and therefore
in the multi-user system the precoder ignores multi-user interference. For a frequency
selective channel the linear precoding matrix and the normalization coefficient are
computed per subcarrier in the frequency domain:

PMF = 1
αMF

HH, αMF =
√

tr (HHH). (3.18)

Finally, the linear minimum mean square error (MMSE) [56] precoder minimizes the
squared norm of the distortion between the receiver estimate of the signal and the
transmitted signal:

PWF = 1
αWF

HH
(
HHH + 1

K · SNR
I
)−1

= 1
αWF

P

αWF =
√

tr ((PP H)). (3.19)

This precoder, also called a Wiener Filter (WF), maximizes the received Signal to
Interference Noise Ratio (SINR) under symmetry assumptions [57].

3.3.3. Information Rate Lower Bounds

Capacity is difficult to approach because of the discrete alphabet constraints. We
instead consider mutual information lower bounds for single user decoding. To estab-
lish lower bounds, we model the per-user channels as equivalent parallel channels as
illustrated in Fig. 3.2. The intuition follows from the literature on massive MIMO as
well as interference channels [58–61] which shows that treating interference as additive
noise is close to optimal in the weak interference regime.
We use the mismatched decoding framework [62, 63], see Appendix A. Consider

a channel pY |X(·|·) with input X and output Y . A lower bound on the mutual
information

I(X;Y ) = E
[
log2

(
pY |X(Y |X)∑

a pY |X(Y |a)PX(a)

)]
(3.20)
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Figure 3.2.: Non-linear Precoding (left) and Equivalent Interpretation (right)

is the generalized mutual information (GMI)

E
[
log2

(
qY |X(Y |X)s∑

a qY |X(Y |a)sPX(a)

)]
(3.21)

where qY |X(·|·) is an auxiliary channel. The lower bound is tight if qY |X = pY |X . How-
ever, pY |X is often difficult to characterize and hence we resort to tractable channels
qY |X to simplify the calculations and get insight on receiver design.
To benchmark the performance of different precoding strategies, consider Scenario

1 where the receivers know the α values. As mentioned above, this scenario may be
unrealistic, but we will see that the performance trends for Scenarios 2 and 3 are
similar. We proceed as follows:

1. Perform Monte Carlo simulations to collect long sample sequences u(1), . . . ,u(S)

and y(1), . . . ,y(S) of length S from the true channel.

2. We distinguish different cases.

. For Scenario 1 in Sec. 3.2.3, the receiver knows the α values, and it scales
each received sample with the corresponding α, i.e., we compute

ỹ(i) = α(i)y(i), i = 1, . . . , S. (3.22)

. For Scenarios 2 and 3, the receivers do not know α. Instead, the effect of
the α values is captured in the estimation of the channel coefficient, see
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step 3 below, and we set ỹ(i) = y(i). Note that, because the precoding
factor depends on u, the estimated α are inherently mismatched, as only
pilot symbols are available to the receiver.

. For the frequency selective case of problem (3.11), the precoding factor is
updated once per coherence interval. As before, we have ỹ[t](i) = y[t](i), t =
1, . . . , T , and the calculated channel in step 3 below is used for all received
samples within one coherence interval.

3. Every receiver chooses a Gaussian auxiliary channel Ỹ = h · U + Z with condi-
tional density

qỸ |U(ỹ|u;h, σ2
q ) = 1

πσ2
q

e
− |ỹ−h·u|

2

σ2
q . (3.23)

The parameters h ∈ C and σ2
q ∈ R+ are obtained by maximum-likelihood (ML)

estimation from the sample sequences for a particular user k:

h =
∑S
i=1 ỹ

(i)
k u

(i)∗
k∑S

i=1

∣∣∣u(i)
k

∣∣∣2 ; σ2
q = 1

S

S∑
i=1

∣∣∣ỹ(i)
k − hu

(i)
k

∣∣∣2 . (3.24)

A Gaussian auxiliary channel seems reasonable, especially for large N .

4. Estimate the GMI as the empirical mean

Ra ≈ max
s≥0

1
S

S∑
i=1

log2

 qỸ |U
(
ỹ

(i)
k |u

(i)
k

)s
∑
a∈U qỸ |U

(
ỹ

(i)
k |a

)s 1
|U|

 . (3.25)

Fig 3.3 shows the calculated Ra for a massive MIMO scenario with N = 128 anten-
nas at the base station and a considerably lower K = 16 number of served users. Note
that the capacity with uniform power allocation and the WF precoder lower bound
are close, meaning that linear precoding with Gaussian inputs achieves rates that are
close to the capacity. Furthermore, with uniformly distributed 256−QAM and the
lower bound (3.25), the WF operates within the shaping gap from the Gaussian lower
bound. Shaping will be needed to close this gap [64].
As outlined above, GMI can address general input distributions, metrics that in-

corporate channel estimation, and sub-optimal decoders. An educated guess for the
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Figure 3.3.: Rate per user vs. SNR for N = 128 and K = 16.

auxiliary channel qY |X also gives insight because the rates are achievable by a decoder
performing maximum likelihood decoding using the chosen metric [62]. On the other
hand, the method provides suboptimal rates and the choice of qY |X may hide rele-
vant problem structure. For example, our choice of metric is similar to the nearest
neighbor decoding rule for Additive White Gaussian Noise (AWGN) channels. This
means that our decoder treats distortion as Gaussian and thus opts for a worst case
assumption on the noise.

In the following section we present alternative lower bounds that can be seen as par-
ticular instances of the GMI with different implicit or explicit choices of the auxiliary
channel.

3.3.4. Lower Bounds with a Gaussian Noise Model

A memoryless channel model for a Gaussian interference channel is given by:

yk[t] = ckuk[t] +
K∑

i=1,i 6=k
ciui[t] + zk[t] (3.26)
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where the channel coefficients ck and ci for users k and i, respectively, specify the
joint effect of the channel and the precoder.

We collect these coefficients in the vector c. The mutual information of the channel
input and output given C = c is:

I(Uk;Yk|C = c) = h(Uk)− h(Uk|Yk,C = c)
= h(Uk)− h(Uk − Ûk|Yk,C = c)
≥ h(Uk)− log2 var(Uk − Ûk|Yk,C = c)

= log2(πe)− log2

(
πe

σ2 +∑K
i=1,i 6=k |ci|2

|ck|2 + σ2 +∑K
i=1,i 6=k |ci|2

)

= log2

(
1 + |ck|2

σ2 +∑K
i=1,i 6=k |ci|2

)
(3.27)

where we applied the maximum entropy theorem and a Gaussian distribution of the
transmitted symbols with P = 1. The ergodic rate is defined as the average mutual
information with respect to the distribution of the channel coefficients:

Rk = I(Uk;Yk|C) = E
[
log2

(
1 + |Ck|2

σ2 +∑K
i=1,i 6=k |Ci|2

)]
. (3.28)

Another class of lower bounds is based on treating quantization noise as additive
noise that is uncorrelated with the input; this is known as a Bussgang decomposition
[65, Thm. 2]. According to this decomposition, the transmitted vector x can be
written as:

x[t] = GPu[t] + d[t]. (3.29)

where P is the precoding matrix, G is a diagonal matrix that is a nonlinear function
of P , and d[t] is noise where E

[
u[t]d[t]H

]
= 0. The received signal for user k is now

yk[t] = ckuk[t] +
∑
i 6=k

ciui[t] + (hT
k d[t] + zk[t]) (3.30)

where ck = hT
kGpk and ci = hT

kGpi.
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The authors of [65] propose a lower bound based on (3.27) by assuming that the
total noise term is Gaussian with the same covariance as ∑i 6=k ciui[t] + (hT

k d[t] +
zk[t]). G and the covariance matrix Cd = E

[
ddH

]
can be numerically computed or

approximated using asymptotic results from random matrix theory [65]. The resulting
approximation is

I(Uk;Yk|C = c) ≈ log2

(
1 + |ck|2

σ2 + hT
kCdh?k +∑K

i=1,i 6=k |ci|2

)
(3.31)

We remark that, as argued above, (3.31) is a valid lower bound when the Uk are iid
and Gaussian with variance P = 1.

3.4. Non-linear Precoding Algorithms

This section reviews algorithms that address the symbol-wise precoding problem for
discrete signaling. We begin with a literature review.

3.4.1. Prior Work

There are numerous studies of the uplink with either linear detectors, e.g., Matched
Filter (MF), Zero Forcing (ZF) and Wiener Filter (WF), or non-linear detectors such
as Approximate Message Passing (AMP) [66–68]. For example, even for low-resolution
quantization at the UEs, reliable communication with higher order modulation is
possible if N is sufficiently large [68].
The downlink has also received attention [65, 69–76]. The authors of [69] use the

Bussgang decomposition to design Quantized Linear Precoding (QLP). The paper [70]
introduces a lookup-table based precoder for Quadrature Phase Shift Keying (QPSK)
that minimizes the uncoded Bit Error Rate (BER) at the UE. The paper [71] intro-
duces a hybrid RF architecture that combines a constrained and a conventional MIMO
array. A greedy knapsack-like algorithm is used to minimize the mean square error
(MSE) between the desired and constructed UE signal points.
The authors of [65] describe nonlinear approaches based on semidefinite relaxation,

`∞ norm relaxation and sphere decoding. For a reasonable performance and complex-
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ity tradeoff, they recommend `∞ norm relaxation, which is named SQUared-Infinity
norm Douglas-rachford splitting (SQUID) [65, Sec. IV]. Another approach is de-
scribed in [72], where the authors extend the framework of Alternating Direction
Method of Multipliers (ADMM), and they report slight improvements over SQUID.
The precoding problem for coarsely quantized, frequency-selective channels and its
integration with OFDM was considered in [73], where the authors use linear pre-
coding and a frequency domain approach. An extension of SQUID to OFDM and
frequency selective channels was presented in [42]. A different approach to symbol
level precoding is taken in [74], where the authors propose a scheme that starts from
a minimum symbol error probability and relaxes the discrete set constraint to obtain
a linear program. The solution of the linear program is projected element-wise on
the discrete set to obtain the precoding vector. The authors from the same research
group extend this method to frequency selective channels in [75].

We proposed an iterative algorithm called Multiple Antenna Greedy Iterative Quan-
tized (MAGIQ) in [76] inspired by coordinate minimization. A simple extension of
MAGIQ is here called Quantized Coordinate Minimization (QCM). These algorithms
are equally well-suited for flat and frequency selective channels and offer an advan-
tageous trade-off between simplicity, computational efficiency and achievable rates.
An algorithm similar to MAGIQ/QCM was proposed in [77] at about the same time.
These algorithms use a cyclic coordinate descent algorithm to perform the OFDM
symbol-wise precoding, and they use MSE as a cost function. The same group [78]
proposed a hardware architecture and precoding algorithm that are similar to the
ones presented in [76].

Another approach is described in [79], where the authors derive bounds for non-
linear precoding based on MSE minimization. Replica method [80] approximations
are shown to be give inexact predictions for discrete signaling, and they require so-
phisticated approaches such as 1- or 2-replica symmetry breaking to tighten the ap-
proximation.
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3.4.2. Quantized Linear Precoding

A heuristic approach to quantized precoding is to apply a scalar quantizer to a LP
output. Quantized Linear Precoding (QLP) approximates the solution of (3.9) by
x = Q(Pu), where P ∈ CN×K is a precoding matrix and Q(·) is a quantization
function with range X that operates entry-wise on x. QLP is conceptually simple,
and inherits the computational complexity advantages of linear precoding. However,
it performs poorly for higher order modulations and intermediate ranges of K/N , as
shown below by both simulation and analysis.

3.4.3. SQUID Algorithm

Define the auxiliary variable z = αx and rewrite (3.9) in the following form:

minimize
z∈BN

‖u−Hz‖2
2 + Kσ2

P
‖z‖2

2 (3.32)

where B = αX and α2 = ||z||22/P . The complex-valued problem can be transformed
into a real-valued one by the following transformations:

zR =
<{z}
={z}

 , uR =
<{u}
={u}

 , and HR =
<{H} −={H}
={H} <{H}

. (3.33)

Now (3.32) can be reformulated as a real valued problem that can be relaxed by
replacing the discrete set constraint with zR ∈ R. We thus have

minimize
zR

‖uR −HRzR‖2
2 + Kσ2

P
‖zR‖2

2

subject to z2
R,1 = z2

R,b for b = 2, . . . , 2N.
(3.34)

This particular form of the optimization problem is non-convex because of the equality
constraint.
The authors of [65] propose to relax (3.34) by using a l∞ regularization, and then

dropping the non-convex constraint. The intent is to enforce the equality constraint
through a l∞ regularizer, much as the l1 proves to be a good proxy for sparsity in
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compressed sensing. We arrive at

minimize
zR

‖uR −HRzR‖2
2 + 2NKσ2

P
‖zR‖2

∞ . (3.35)

The resulting expression is further split as a sum of two convex functions

g(zR) = ‖uR −HRzR‖2
2

and
f(zR) = 2NKσ2

P
‖zR‖2

∞ .

The Douglas-Rachford Splitting (DRS) algorithm can be used to find the solution
to the relaxed problem. We define the proximal operator for the function h(·) as

proxh(w) = argmin
zR

h(zR) + 1
2‖zR −w‖2

2. (3.36)

The proximal operator is a small optimization problem and converts the minimization
of the function h(·), that is possibly not smooth nor differentiable, into a smooth and
differentiable problem. The proximal operator has a number of interpretations, and
an intuitive one is to consider it to be a mixture of a generalized projection on a set
(the constrained domain of h(·)) and a gradient step towards the minimum of the
function.
For example, for our optimization problem the proximal operator of g(·) is an

unconstrained smooth differentiable convex program. Thus, the minimum is found
by solving

dg(zR)
dzR

= −2HT
R (uR −HRzR) + (zR −w) = 0 (3.37)

⇒ zR = (HR
THR + 1

2I)−1(HR
TuR + w

2 ). (3.38)

The proximal operator for f(·) does not have a closed form, but it can be computed
with a simple iterative algorithm given in [65].
We now step back and derive the DRS algorithm. Define the reflection operator

Rh(x) = 2proxh(x)−x and note that the proximal operator and the resolvent relation
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(I + ∂h) have the same unique solution [81]. Starting from the optimality condition
(from subgradient calculus) we can obtain a fixed point equation to calculate the
minimum of the sum of two operators:

0 ∈ ∂f(x) + ∂g(x) optimality condition
2x ∈ (I + ∂f)(x) + (I + ∂g)(x)
2x ∈ (I + ∂f)(x) + z

x = proxg(z), the prox operator has same solution as the resolvent
Rg(z) = (I + ∂f)(x)→ x = proxf (Rg(z))

z = 2x−Rg(z) = 2proxf (Rg(z))−Rg(z). (3.39)

Finally, SQUID can be summarized as a fixed point iteration:

x = proxg(z)

z = Rf (Rg(z))

z = 1
2z + 1

2Rf (Rg(z)).

(3.40)

The DRS fixed point procedure can be written in several ways by splitting the fixed
point equation and introducing dummy variables:

a
(i)
R = proxg(2z

(i−1)
R − c

(i−1)
R )

z
(i)
R = proxf (c

(i−1)
R − a

(i)
R − z

(i−1)
R )

c
(i)
R = c

(i−1)
R + a

(i)
R − z

(i−1)
R (3.41)

where i denotes the iteration number. These equations are iterated until either zR

converges or a given number of steps is completed. The final solution is quantized
with Q(·) to give an approximate solution of the original problem.
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3.4.4. ADMM Algorithm

To cast problem (3.9) in the ADMM framework, we formulate it as a consensus
problem:

min
x1,x

‖u−Hx1‖2
2 + IX (x),

s.t. x1 − x = 0
(3.42)

where IX (·) is the indicator function of XN :

IX (x) =
 0, if x ∈ XN ,

∞, otherwise.
(3.43)

The augmented Lagrangian of (3.42) is expressed as

Lr (x1,x, s) = ‖u−Hx1‖2
2 + IX (x) + sH(x1 − x) + γ ‖x1 − x‖2

2 (3.44)

where s is the dual vector, and γ > 0 is a penalty parameter (or the augmented
Lagrangian parameter). The ADMM for this problem is:

x
(i+1)
1 =

(
HHH + γI

)−1 (
HHu + γx(i) − s(i)

)
x(i+1) = ΠX

(
x

(i+1)
1 + 1

2γs
(i)
)

s(i+1) = s(i) + γ
(
x

(i+1)
1 − x(i+1)

)
(3.45)

where ΠX is the entry-wise projection onto X . In (3.45), the x1-update solves a
minimization problem, the x-update involves projection onto the finite-alphabet set
XN , and the s-update can be interpreted as a consensus adjustment step with step
size γ.

It is known [72] that the ADMM algorithm may not converge when applied to non-
convex problems. Unfortunately this happens with the formulation in (3.45). It turns
out that the projection onto the finite set X is the main culprit, and to fix this the
authors of [72] dampen the updates so that there is no oscillatory behavior or sudden
transitions from one iteration to the next. Furthermore, the dual variable update also
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results in divergent behavior, so it is eliminated. The result is the expression:

x
(i+1)
1 =

(
HHH + γI

)−1 (
HHu + γx(i)

)
x(i+1) = ΠX

(
x

(i+1)
1

)
x(i+1) = βx(i) + (1− β)x(i+1). (3.46)

This algorithm still does not to converge and it is observed that the update step for
x

(i+1)
1 is a biased MMSE estimator, and steps are taken to debias the estimation at

least asymptotically as N →∞. The matrix
(
HHH + γI

)−1
HH is thus augmented

as D
(
HHH + γI

)−1
HH where the matrix D is chosen so that the diagonal values

of the product are 1, and the off diagonals vanish.
Since the values of γ tend to be large one can further approximate:

(HHH + γI)−1 ≈ 1
γ
I. (3.47)

We use this simplified algorithm as a benchmark and we refer to it as ADMM from
here on:

x(i+1) = ΠX
(
x(i) + D

(
u−Hx(i)

))
x(i+1) = βx(i) + (1− β)x(i+1). (3.48)

3.4.5. MSM Algorithm

The Maximum Safety Margin (MSM) algorithm [74] is based on the idea of exploiting
interference. Constructive interference starts from the observation that only the inter-
ference that moves a received symbol close to the border of, or beyond, the detection
region is disadvantageous and should be controlled. Precoding has to therefore jointly
consider the transmitted symbol, the channel, the quantizer and AWGN noise power.
The symbols to be reconstructed at the receivers belong to theM -PSK constellation

defined by the set U:

U :=
{
ej(2i−1)θ : i = 1, · · · ,M

}
, where θ = π

M
. (3.49)
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Figure 3.4.: PSK detection cell in a rotated coordinate system.

The Voronoi detection cell determined by U in the complex plane is shown as the
shaded green area in Fig. 3.4, rotated so that the elements of U are brought on the
real axis. This formulation allows to state the optimization problem independent of
angle.

The complex noiseless received signal is given by y′ = Hx, and the vector of
coordinates on the real and imaginary axes of the rotated coordinate system are
given by zR = <{Hx ◦ u∗} and zI = ={Hx ◦ u∗}, respectively, where ’◦’ stands for
element-wise multiplication. The shaded region is uniquely described by the pair of
equations:

|={Hx ◦ u∗}| ≤ (<{Hx ◦ u∗} − τ1M) tan θ (3.50)
<{Hx ◦ u∗} ≥ τ.1M (3.51)

The authors in [74] adopt a real-valued decomposition which further casts the opti-
mization as a problem over the reals:

<{H̃x} =
[
<{H̃} −={H̃}

]
︸ ︷︷ ︸

=A

<{x}
={x}


︸ ︷︷ ︸

=x′

= Ax′ (3.52)
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={H̃x} =
[
={H̃} <{H̃}

]
︸ ︷︷ ︸

=B

<{x}
={x}

 = Bx′ (3.53)

where H̃ = diag(u∗)H , and diag(·) forms a diagonal matrix from a column vector.
Finally, the non-convex constraint on x is relaxed to include the polytope:

x′ ≤ 1√
2

12N and − x′ ≤ 1√
2

12N . (3.54)

With this, the MSM optimization can be formulated as a linear program:

max
x′

τ

s.t.
 B − tan θA 1

cos θ1M
−B − tan θA 1

cos θ1M

 x′
δ

 ≤ 02M .

and x′ ≤ 1√
2

12N ,−x′ ≤
1√
2

12N .

(3.55)

The final solution is then quantized by a nearest-neighbour element-wise operator to
the original constraint set X .
All the algorithms presented above deal with the nonconvex constraint by apply-

ing relaxations and then casting the relaxed problem into a family of optimization
algorithms aimed at reaching a good trade-off between the quality of the solution and
computational efficiency, essentially proposing different global heuristics.

3.5. Quantized Coordinate Minimization
Precoding

The problem stated in (3.9) is a non-convex combinatorial problem that can be trans-
formed into a problem known to belong to a class of hard problems to solve exactly.
For example, the case X = {−1,+1} can be reformulated into a quadratic binary min-
imization problem, which is known to belong to the class ofNP -hard problems [82,83].
This, however, does not mean that the problem cannot be efficiently approximated
by a simple deterministic algorithm.
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As we have already seen, ADMM, SQUID and MSM are based on different relax-
ations of the constraint set and then recovering the feasible solution by projections.
The approach is facilitated by nice properties of the cost function (e.g. convex, contin-
uous, smooth) that guarantee the approximate solution is near the global optimum.

We now take a different approach that is based on coordinate minimization. This
method is related to coordinate descent algorithms that have been successful in, e.g.,
compressed sensing [84] and date back to at least [85]. Observe that while the joint
minimization over all coordinates xi of x is expensive (in the worst case sense), the
minimization of each coordinate xi requires evaluating the function of a scalar only
|X | times (which for our application is a small number e.g. 5 or 10). This and the large
number of degrees of freedom available in the channel suggest that minimizing the cost
function one coordinate a time, while holding the other coordinates fixed, will result
not only in a computationally efficient algorithm, but also in a good approximation
of the optimal solution. At each step we choose the best coordinate to update, i.e.,
a greedy approach. We later explore cyclic and random schedules for choosing the
coordinates, and we compare these with the greedy approach.

We emphasize that our method is closely related to coordinate descent but we
do not exploit gradient information, choosing instead to optimally solve the sub-
problems. The iterative nature of the algorithm and the discreteness of the constraint
set seem to make a theoretic analysis of convergence a cumbersome task. Previous
works on alternating minimization rely on properties of the function to be minimized
and the constraint set that our problem does not share, more details can be found in
Chapter 14 of [86]. What we can ensure is that the algorithm delivers a non-decreasing
sequence of values, which in addition to the boundedness of the discrete support are
also feasible and enjoy a coordinate-wise optimality.

In [76] we denoted the greedy version of the quantized coordinate minimization as
MAGIQ and throughout this chapter we keep this name. We further denote as QCM
the instances where we use the cyclic and random coordinate update schedules.
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3.5.1. Flat Fading Channels

Algorithm 1 outlines MAGIQ for frequency-flat channels. The inner loop evaluates
the cost function

F (x, α) = ‖u− αHx‖2
2 + α2Kσ2 (3.56)

and selects (without replacement) an antenna index n and a precoded symbol xn from
X such that (3.56) is minimized. That is, each iteration selects the best coordinate
among the remaining coordinates to be explored, in a greedy fashion, best-first. The
n-th coordinate of x at the i-th iteration is individually optimized as:

x(i)
n = argmin

z, with x{1,...,N}\n ct.
‖u− αHx‖2

2 + α2Kσ2

=
∥∥∥∥∥∥u− hnz +

n−1∑
j=1

hjx
(i)
j +

N∑
j=n+1

hjx
(i−1)
j

∥∥∥∥∥∥
2

2

+ α2Kσ2

= F (x(i)
{1,...,n−1}, xn,x

(i−1)
{n+1,...,N}). (3.57)

After computing a vector x with the procedure outlined above, the precoding factor
α is chosen by setting the gradient of (3.9) with respect to α to zero and solving the
resulting equation in α. α is thus a function of the channel, the target vector u, as
well as the precoding vector x:

∂F (x, α)
∂α

= Re{uHHx}+ α ‖Hx‖2
2 + αKσ2 = 0

α = Re{uHHx}
‖Hx‖2

2 +Kσ2
. (3.58)

The simple gradient criteria for α follows from the observation that (3.9) is quadratic
in α for a fixed x. The algorithm then performs alternating updates of x and α

until it reaches a predefined stopping criterion or a maximum number of iterations.
Although the alternating optimization of biconvex problems is known not to converge
to the global optimum in general, simulations presented in Sec. 3.10 show that the
algorithm converges to a good local minimum with a small number of iterations, and
that the quality of the local minimum is at least as good as the minima obtained by
SQUID, ADMM or MSM [65, 72] at low SNR, and considerably better at high rates
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Algorithm 1: MAGIQ for frequency-flat channels
1 Inputs: u, H , S = {1, . . . , N}, errmin
2 Initialize: x = xinit, α = αinit
3 err(0) = ‖u‖2

4 for i = 1 : I do
5 n = 1
6 err(i) = err(i−1)

7 while (err(i)
n > errmin) ∨ (err(i)

n < err
(i)
n−1) ∨ (n ≤ N) do

8 (x?n? , n?) = argminxn∈X ,n∈S F (x, α)
9 (x(i)

1 , . . . , x
(i)
n , . . . , x

(i)
N )T = (x(i)

1 , . . . , x
?
n? , . . . , x

(i)
N )T

10 S ← S \ {n?}
11 err(i)

n =
∥∥∥u− α(i)Hx(i)

∥∥∥2

2
+ (α(i))2Kσ2

12 n← n+ 1
13 end
14 α(i) = Re{uHHx(i)}

‖Hx(i)‖2
2
+Kσ2

15 end
16 Output x, α

and at high SNR.

3.5.2. Quantized Precoding for OFDM

Fig. 3.1 shows how OFDM can be combined with quantized precoding. The frequency
domain vector û[·] corresponding to the K users is converted to the time domain
vector u[·] by a length T Inverse Discrete Fourier Transform (IDFT):

uk[t] = 1
T

T∑
m=1

ûk[v]ej 2π(m−1)(t−1)/T (3.59)

û[t] = [û1[t], . . . , ûK [t]]T

u[t] = [u1[t], . . . , uK [t]]T

for k = 1, . . . , K, t = 1, . . . , T . For the simulations we generated the frequency
domain symbols ûk[t] uniformly from a QPSK, 16-QAM, or 64-QAM regular con-
stellation. Each UE performs single-user OFDM demodulation followed by a hard
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or soft decision. MAGIQ and QCM are flexible with respect to shaping constraints,
constellation size, number of users, number of sub-carriers, and channel models.

For frequency selective channels, the vector x[t] of transmit symbols at time t
should be chosen as a function of the transmit symbols at other time instances due
to the channel memory, i.e., a choice for x[t] influences the channel output at times
t + 1, t + 2, . . . , t + L − 1. However, a joint optimization over strings of length T is
highly complex because of the exponential increase in the size of the constraint space
XNT .

We approach the problem by splitting the joint optimization into a set of sub-
problems with reduced complexity, see Algorithm 2. We perform a two-fold coordinate-
wise splitting of the problem stated in (3.11). First, we solve the precoding problem
for one time coordinate t at a time, starting at time 1 and ending at time T . Under
this formulation, we replace the cost function (3.56) with:

G(x[1], . . . ,x[t− 1],x[t],x[t+ 1], . . . ,x[T ])

=
T∑
t=1

∥∥∥∥∥u[t]− α
L−1∑
l=0

H [l]x[t− l]
∥∥∥∥∥

2

2
+ α2TKσ2

=
T∑
t=1
‖ũ[t]− αH [0]x[t]‖2

2 + α2TKσ2 (3.60)

where
ũ[t] = u[t]− α

L−1∑
l=1

H [l]x[t− l]. (3.61)

The last line in (3.60) has the same form as the cost function in (3.9). We again split
this problem in a coordinate-wise fashion and solve it as we did in Algorithm 1 in
the inner loop that processes antenna coordinates. Algorithm 2 then iterates over the
frame samples until prescribed convergence criteria are met. Simulations show that
the performance over frequency selective channels is close to that of the best known
precoders over frequency flat channels with as little as 4-6 iterations.
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Algorithm 2: MAGIQ precoding for frequency selective channels
1 Input: H [l], u[t], t = 1, . . . , T
2 Initialization: x(0)[t] = x[t]init, t = 0, . . . , T − 1, α=αinit, S = {1, . . . , N}
3 for i = 1 : I do
4 for t = 0 : T − 1 do
5 while S 6= ∅ do
6 (x?n? , n?) = argminzn∈X ,n∈S G(x(i)[0], . . . ,x(i)[t− 1], z,

x(i−1)[t+ 1], . . . ,x(i−1)[T − 1])
7 (x(i)

1 , . . . , x
(i)
n , . . . , x

(i)
N )T[t] = (x(i)

1 , . . . , x
?
n? , . . . , x

(i)
N )T

8 S ← S \ {n?}
9 end

10 S = {1, . . . , N}
11 end

12 α(i) =
∑T−1

t=0 Re(u[t]H
∑L−1

l=0 H[l]x(i)[t−l])∑T

t=0‖
∑L−1

l=0 H[l]x(i)[t−l]‖2

2
+TKσ2

13 end
14 Output: x[t], t = 1, . . . , T, α

3.5.3. Coordinate Update Policy

MAGIQ is a greedy coordinate minimization. This is in contrast to first order methods
such as coordinate descent with a Gauss-Southwell rule (largest gradient magnitude)
[87] which progresses in the steepest descent direction, but with no knowledge on how
good the direction is. MAGIQ, however, progresses only through feasible points and
the local choice is always optimal.
Our complexity analysis will show that the greedy rule demands high storage capac-

ity and sophisticated memory addressing features, or alternatively increased compu-
tational complexity. From a real-time implementation point of view we would like to
find simple rules that are competitive. For example, consider optimizing coordinates
in a fixed order (or random but fixed at run-time). The set T is either an ordered
set (a list) that we write as a vector T = [1, 2, . . . , N ] or a random permutation of
T . The resulting algorithms for both flat-fading and frequency selective channels are
presented in Algorithms 3 and 4.
Fig. 3.5a shows achievable rates for 64-QAM with both b = 2 and b = 3 bits of

phase for MAGIQ and for Algorithm 3, N = 128, K = 16. MAGIQ is run with 3
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Algorithm 3: QCM precoding for frequency-flat channels
1 Inputs: u, H , T , errmin
2 Initialize: x = xinit, α = αinit
3 for i = 1 : I do
4 for n ∈ T do
5 x?n = argminxn∈X F (x, α)
6 (x(i)

1 , . . . , x
(i)
n , . . . , x

(i)
N )T = (x(i)

1 , . . . , x
?
n, . . . , x

(i)
N )T

7 T ← T \ {n}
8 end
9 α(i) = Re{uHHx(i)}

‖Hx(i)‖2
2
+Kσ2

10 end
11 Output x, α

Algorithm 4: QCM precoding for frequency-selective channels
1 Input: H [l], u[t], t = 1, . . . , T
2 Initialization: x(0)[t] = x[t]init, t = 0, . . . , T − 1, α=αinit, T
3 for i = 1 : I do
4 for t = 0 : T − 1 do
5 for n ∈ T do
6 x?n = argminzn G(x(i)[0], . . . ,x(i)[t− 1], z,

x(i−1)[t+ 1], . . . ,x(i−1)[T − 1])
7 (x(i)

1 , . . . , x
(i)
n , . . . , x

(i)
N )T[t] = (x(i)

1 , . . . , x
?
n, . . . , x

(i)
N )T

8 T ← T \ {n}
9 end

10 end

11 α(i) =
∑T−1

t=0 Re(u[t]H
∑L−1

l=0 H[l]x(i)[t−l])∑T−1
t=0 ‖

∑L−1
l=0 H[l]x(i)[t−l]‖2

2
+TKσ2

12 end
13 Output: x[t], t = 1, . . . , T, α

iterations, while Algorithm 3 is run for 5 iterations because of slower convergence.
For a uncorrelated Rayleigh fading scenario the penalty for not using a greedy rule is
only about 0.5dB at high SNR and almost zero at very low SNR.
In contrast, Fig. 3.5b shows the achievable rates with the transmitter correlation

matrix eigenvalue profile given in Fig. 3.6. This corresponds to a linear uniform array
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Figure 3.5.: Impact of greedy search with ZF infinite resolution ( ), MAGIQ b = 2
( ), MAGIQ b = 3 ( ), QCM b = 2 ( ), QCM b = 3 ( )

with the Jakes correlation model [88] and λ/4 antenna spacing. The receivers are
assumed to be uncorrelated. Note that the gap between MAGIQ and QCM increases
to 0.8 − 1.2dB at high SNR, while it becomes non-negligible at lower SNR’s. These
results emphasize that the computationally complex greedy rule is more robust to
less than ideal channel conditions, although by a small margin. It remains as a
topic for further studies to establish the feasibility of these heuristics for more sparse
channels and also with smaller numbers of transmit antennas (and implicitly degrees
of freedom). We include further results for the frequency selective case in Sec. 3.10.

3.6. Complexity Analysis

This section studies the complexity of MAGIQ and QCM and compares it with SQUID
[65, Sec. IV], ADMM [72] and MSM [74]. We begin with an example to show how to
implement MAGIQ with a small number of complex multiplications. We emphasize
that this kind of implementation may not be preferred as it complicates memory
storage and addressing and may result in larger latency for real-time applications.
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Figure 3.6.: Transmit correlation eigenvalue profile

Nonetheless, the example shows that MAGIQ offers significant flexibility.

Consider a system with 3 antennas as 2 users:

H =
h11 h12 h13

h21 h22 h23

 .
For the norm calculation ||u−Hx||2 we compute and store Hx for each antenna

and for all symbols in the alphabet X (here we can also use the symmetry of X and
store only a quadrant and apply sign changes where appropriate). For x1 ∈ {0, 1,−1},
for the first antenna we compute and store

H =
h11 h12 h13

h21 h22 h23



x1

0
0

 .

For the second antenna we compute and store

H =
h11 h12 h13

h21 h22 h23




0
x2

0

 .
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These complex multiplications require only sign changes since the symbols in our
alphabet are {+1,−1}(for 1 bit of phase) or {1 + j, 1− j,−1 + j,−1− j} (for 2 bits
of phase). We now compute

∥∥∥∥∥∥
u1

u1

−
h11x1 + h12x2 + h13x3

h21x1 + h22x2 + h23x3

∥∥∥∥∥∥
2

.

Since we have to do the same calculations for each coordinate of u, we focus on u1.
For the first iteration of the algorithm, we compute |u1 − h1ixi|2 for i = 1, 2, 3:

|u1 − h1ixi|2 =u1u
∗
1 − 2 Re {h1ixiu

∗
1}+ h1ixix

∗
ih
∗
1i

= |u1|2 − 2 Re {h1ixiu
∗
1}+ |h1i|2. (3.62)

The first and last terms in (3.62) are the absolute values squared of u1 and h1i, which
can be precomputed and stored. The term |u1|2 does not depend on xi and and can
be dropped. We are thus left with NK complex multiplications. Products of the
type h1iu

∗
1xi can be written as h1iu

∗
1 (see the discussion above about the structure of

X ). We compute and store these values, and that results in another NK complex
multiplications. In total so far we need 2NK complex multiplications and the memory
storage for the results.

After the first iteration, suppose that x1 = +1 on antenna 1 gives the largest
reduction in MSE and is therefore fixed. We are now left with antenna 2 and antenna
3 to update. Because we have fixed antenna 1 to transmit +1, the updated value for
u1 is u′1 = u1 − h11. For antenna 2 the function that is evaluated is

|u′1 − h12x2|2 =u′1u′∗1 − 2<{h12x2u
′∗
1 }+ h12x2x

∗
2h
∗
12

which can be expanded as:

|h12|2 already computed
h12x2u

′∗
1 = h12x2u

∗
1 − h12x2h

∗
11 = x2(h12u

∗
1 − h12h

∗
11).

The term that we did not consider already for pre-computing is h12h
∗
11(respectively
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h13h
∗
11 for the third antenna).

Suppose that the second antenna is selected as the best candidate with x2 = −1.
The updated value for u′1 is u′′1 = u′1 + h12 = u1 − h11 + h12. Finally we have:

|u′′1 − h13x3|2 = u′′1u
′′∗
1 − 2<{h13x3u

′′∗
1 }+ h13x3x

∗
3h
∗
13

|h13|2 already computed
h13x3u

′′∗
1 = h13x3u

∗
1 − h13x3h

∗
11 + h13x3h

∗
12 = x3(h13u

∗
1 − h13h

∗
11 + h13h

∗
12).

The terms of the type hijhik and the conjugate versions can be stored. For sym-
metry reasons one would need to store only ordered permutations and manage the
conjugates and multiplications with xi as sign changes. For our example we need to
store h11h12, h11h13, h13h12, which means that for the general case there would be N
terms to compute and store per equation. Since there are K equations, we would
need an additional NK complex multiplications. Including the final NK complex
multiplications from the initialization with the quantized MF solution, this results in
3NK + NK complex multiplications and the corresponding storage space for these
terms. In practice (for example on platforms that use GPUs) it may be more efficient
and convenient to perform online multiplications of terms such as h13x3u

′′∗
1 , since that

will save memory access and many additions and subtractions.
A worst case running time for Algorithm 1 would have the while loop evaluated

a maximum number of N of times. Evaluating the minimum requires log2(N |X |)
comparisons and therefore a worst case of ∑N−1

i=1 log2((N − i)|X |) comparisons. In
addition, except for the terms already considered for multiplications, all the other
operations left in computing norms and comparisons are additions and subtractions,
and we will not include them in our complexity analysis.
The worst case complexity seems large, but the average complexity of MAGIQ can

be substantially reduced. For example, one can initialize the algorithm with a good
starting point xinit. The results presented below are based on initializing MAGIQ
with the QLP solution of the MF, which adds only NK multiplications. One can
further update a coordinate only if the reduction of the MSE is significant. The
significance level can be translated into a threshold for the update.
For example, Fig. 3.7 shows the empirical Cumulative Distribution Function (CDF)
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Figure 3.7.: Empirical CDF of the number of iterations with N = 128 and I = 6. The
average CDF is the thick black curve.

of the total number of coordinate updates of MAGIQ with the aforementioned fine
tuning for I = 6 iterations for 16-QAM, over the whole SNR range −10 dB to 14 dB.
The worst case number of loop passes is therefore N ·I = 128·6 = 768, but the average
number of loop passes is an order of magnitude lower than the worst case. Fig. 3.8
shows the GMI for 16 and 64-QAM for MAGIQ with and without the thresholding
operation. We show that 64-QAM exhibits the largest gap in performance compared
to no thresholding. The reduction in computational complexity comes at a price.
However, even at the aggressive levels we have set in this example, there is only a
0.5 dB gap at a spectral efficiency of 5.4 bpcu, corresponding to a code rate of 0.9,
which is a reasonable operating point for a coded system. However, in the range 3 bpcu
to 4.5 bpcu (corresponding to code rates of 0.5 to 0.75), the gap is insignificant. For
16-QAM there is virtually no penalty across the entire SNR range. The optimized
value of the threshold is 10−4 for 16-QAM and 10−6 for 64-QAM.
The ADMM algorithm, in its least complex implementation (denoted as IDE2

in [72]), has a complexity of 4NK + 3N multiplications for the first iteration, and
another 2NK +N multiplications for each new iteration. The reason is that initially
computed quantities can be cached and then used as memory calls in later iterations.
We note that the computational burden of calculating the matrix D could be dis-
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Figure 3.8.: GMI rates for N = 128 and K = 16.

counted, since it could be approximated by results in random matrix theory, as long
as the statistics of H are known and the channel is stationary. For SQUID there are
NK2 +K3 + 3NK multiplications in the pre-processing phase. After pre-processing,
there are 2NK+N multiplications per iteration. If the precoding factor α is updated
for ADMM and SQUID, we consider I outer iterations that correspond to the number
of times α is updated, and J inner iterations to compute x for a fixed value of α.
Unlike MAGIQ that has a variable number of loop passes that depend on stopping
criteria, ADMM and SQUID have fixed complexity once the number of iterations is
fixed.

For frequency selective channels, we focus on the relatively simpler rules of QCM
outlined in Sec. 3.5.3 and compare their performance with SQUID [42] and MSM [75]
extensions for OFDM. The complexity of SQUID is thoroughly described in [42].
On the other hand, the computation complexity of MSM depends strongly on the
chosen solver. In [75], the authors present a complexity analysis based on a particular
instance of the simplex algorithm. We find by computer simulations that the simplex
algorithm requires a very large number of iterations for convergence. In addition, the
number of iterations is proportional to the number of variables and linear inequalities
which grows with the size of the system (N,K,L, T ). On the other hand, an interior
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Table 3.1.: Computational complexity in multiplications for frequency flat channels
Algorithm Total No. of multiplications
SQUID I · (NK2 +K3 + 3NK) + I · J · (2NK +N)
SQUID Num. example Fig. 3.20 1.01× 106

ADMM I · (4NK + 3N) + I · J · (2NK +N)
ADMM Num. example Fig. 3.20 5.08× 105

MAGIQ (worst case) I · (3NK) +NK + J · 0
MAGIQ Num. example Fig. 3.20 104

MAGIQ (average, Jav. = 62) Fig. 3.7-3.8 104

Table 3.2.: Computational complexity per iteration for frequency selective channels
Algorithm Complex Multiplications including Preprocessing (in red) Iterations
SQUID 2T · (5

3K
3 + 3NK2 + (6N − 2

3)K) +O(8NTK + 8NT log2 T ) 20-50
MSM 4KNT +O(4NKT 2 + 4KT + 2NT ) ≈ 8400
QCM KNT + 4NT log2 T +O(NKLT +NKL|X |) 4-6

point solver converges much faster, but has a much higher per iteration complexity.

For QCM, by inspecting (3.60) we note that updating the current vector x[t] re-
quires updating only L of the T terms, each a Euclidean norm. Terms of the form
u[t]Hu[t] do not depend on x[t] and therefore are not involved in the maximization
process; terms like ‖αHx‖2

2 can be pre-computed and stored (with a complexity of
NKL|X |) and then reused as they do not change during one iteration; the inner prod-
uct αũHHx, however, needs to be computed for each of the L terms for each antenna
update (N in total) and for each time instance, resulting in a complexity of order
O(NKL) per time sample. To this we add the cost of initialization which is NKT
plus the cost of transforming the solutions to the time domain. We discount the cost
of updating the precoding factor α as all the terms involved in its computation are
already available as a byproduct of the iterative process over the time samples.

Table 3.1 presents the computational complexity analysis for frequency flat chan-
nels, including numerical results shown in our examples. For frequency selective
channels, the intricacy of the proposed algorithms increases and we avoid giving an
exact number of multiplications but rather an order of complexity that is useful in
ranking the presented algorithms. The results are summarized in Table 3.2
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3.7. MSE Upper and Lower Bounds

In this section we present methods to bound and evaluate the MSE performance of the
algorithms proposed so far for the optimization problem stated in (3.9). The approach
taken here has been extensively used in the signal processing and communication
literature. The lower bounds are based on relaxing the non-convex constraints and
reformulating the cost function as a Semi-Definite Programming (SDP). This is known
as a Semi-Definite Relaxation (SDR). SDR recovers a feasible solution to (3.9) by
solving first the SDP and then applying a randomization and rounding procedure.
Further details regarding the methods are given below as well as in Appendix B.
SDR is attractive because it belongs to the well-studied class of convex optimiza-

tion problems, and can therefore be solved with polynomial complexity algorithms
for a given arbitrary accuracy [89]. In some instances, it also provides theoretical
guarantees on the solutions approximated by the SDR with respect to the optimal
solution of the nonconvex problem and the SDP solution [90–92].

3.7.1. Bounds Based on Set Relaxation

We first derive a complex SDP relaxation based on [93]. Note that [65] also considered
a real-valued SDR for the antipodal binary alphabet X = {−1,+1}/

√
2. We modify

the problem slightly by excluding the 0 symbol:

X =

√

1
N
ej 2πq/2b with q = 0, 1, . . . , 2b − 1

 .
We start from our original problem (3.9):

min
x,α

‖u− αHx‖2
2 + α2Kσ2

s.t. x ∈ XN

α > 0

(3.63)

and proceed by defining a new variable z = αx. The term α2Kσ2 can be written as
Kσ2 ‖z‖2

2 because of the constant envelope of property of X . In addition, we relax
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the discrete set membership to a continuous modulus constraint:

min
x

‖u−Hz‖2
2 +Kσ2 ‖z‖2

2

s.t. |z1| = |zi|, for i = 2, . . . , N.
(3.64)

The program (3.64) is not a homogenous quadratic problem (it contains linear terms,
not only quadratic terms). However, it can be converted into a quadratic problem by
an extra variable c with constant modulus |c| = 1. While this addition may change
the optimal solution of the non-convex problem (3.64), it does not change the optimal
value for the solution. This is easily seen by the unitary invariance of the squared
Euclidian norm. We reformulate our cost function into a homogeneous quadratic
problem of dimension N + 1:

min
z,c

[
zH c∗

] HHH +Kσ2I −HHu

−uHH ‖u‖2
2

 z
c

 (3.65)

with

Q =
HHH +Kσ2I −HHu

−uHH ‖u‖2
2

 . (3.66)

Finally, we restate the optimization problem by introducing the matrix variable Y =
[z c]H[z c]. The rank of this matrix is constrained to be 1, in accordance with the
rank of the optimal solution of the original problem:

min
Y

Trace (QY )

s.t. Y1,1 = Yi,i, for i = 2, . . . , N
YN+1,N+1 = 1
Y � 0
rank(Y ) = 1.

(3.67)
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Figure 3.9.: SDR upper and lower bounds to (3.63).

Discarding the non-convex rank constraint, we obtain the SDR relaxation:

min
Y

Trace (QY )

s.t. Y1,1 = Yi,i, for i = 2, . . . , N
YN+1,N+1 = 1
Y � 0.

(3.68)

The solution of the minimization above is a lower bound to (3.63) by virtue of en-
larging the constraint set and properties of convex optimization problems [89]. If
the optimal Y ? is of rank one after solving (3.68), then the solution to the relaxed
problem (3.64) can be directly recovered from the eigenvector corresponding to the
single non-zero eigenvalue. Furthermore, to obtain a feasible solution for (3.63) we
project component-wise onto the feasible set.
If the solution is not rank one, then feasible solutions and a selection of the best is

obtained by the randomization algorithm presented in Table I in [93]. This method
gives an upper bound to (3.63). We add that SQUID, ADMM, MAGIQ and QCM all
obtain feasible solutions for (3.63) and therefore upper bounds to the cost function.
Fig. 3.9 shows the lower bound to (3.63) obtained from (3.68). Note that in the low
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SNR regime the bounds are tight, while at high SNR (for higher rates) the bounds
become loose and uninformative. The lower bound is unaffected by the increasing
cardinality of the transmit set X as it assumes a relaxed transmit set on a disc
centered at the origin. Note also that there is a constant gap of approximately 1.5dB
between the SDP solution and the WF, suggesting that a constant envelope signaling
method would be fundamentally bounded away from an infinite resolution WF.

3.7.2. Improved Bounds

We tighten the lower bound by an approach that extends the methods presented
in [94–97]. Consider the cost function:

‖u−Hz‖2
2 +Kσ2 ‖z‖2

2 = zH(HHH +Kσ2I)z − 2 Re{zHHHu}+ ‖u‖2
2 (3.69)

The last term does not depend on z and therefore does not impact the optimization.
We introduce the variable X = zzH and perform the SDP relaxation X � zzH.
With these modifications we reformulate (3.64) as

min
X,z

Trace
(
(HHH +Kσ2I)X

)
− 2 Re{zHHHu}+ ‖u‖2

2

s.t. X1,1 = Xi,i, for i = 2, . . . , N
X � zzH.

(3.70)

We have now a SDP in two variables, X and z, connected through the positive
semidefinite constraint.
However, (3.70) does not preserve information about the discrete nature of the

original set X . We introduce linear constraints on z that are consistent with a tight
convex relaxation of X . Let Aconst be the convex hull of the discrete set αX , e.g.,
Aconst is illustrated in Fig. 3.10(a) for b = 3. Next, since each element in αX has a
constant modulus that is part of our optimization, we introduce the variable r = |zi|.
The constraints X1,1 = Xi,i, for i = 2, . . . , N and X � zzH can be restated as
Xi,i ≥ r2, for i = 2, . . . , N . Moreover, this constraint can be tightened by noticing
that r can be upper and lower bounded as rmin ≤ r ≤ rmax. A trivial lower bound is
0. For the upper bound, at high SNR a simple derivation gives r ≤ ‖u‖2

2 /
√
N . The
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(a) The constraint set Aconst for b = 3

r0
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rmax

(b) The constraint set GrX

Figure 3.10.: Convex envelopes by linear inequalities.

set that summarizes these constraints is illustrated in Fig. 3.10(b) and is given by:

GrX =
{

(Xi,i, r) | Xi,i ≥ r2 ∧Xi,i − (rmin + rmax)r + rminrmax ≤ 0
}
. (3.71)

We are now ready to give the final tightened complex SDR formulation (TCSDR):

min
X,z,r

Trace
(
(HHH +Kσ2I)X

)
− 2 Re{zHHHu}+ ‖u‖2

2 .

s.t. (r, zi) ∈ Aconst, for i = 1, . . . , N
(Xi,i, r) ∈ GrX , for i = 1, . . . , N
r2
min ≤ Xi,i ≤ r2

max

X � zzH.

(3.72)

The TCSDR (3.72) solution is used in a Gaussian randomized procedure, given by
Algorithm 5, to obtain feasible solutions and upper bounds.
We also tighten the upper bound by starting from the already proposed MAGIQ

algorithm and extend it to cover a larger search space. Since the decision at the first
layer is based on a best first strategy, and any of the unselected runner-up coordinates
can be very close to the winning candidate, we proceed with a subset (a list) of the
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Algorithm 5: Semidefinite Relaxation with Gaussian Randomization
1 Solve the TCSDR program, obtain optimal solutions X?, z?

2 Compute Cholesky factorization of MMT = X? − z?z?H

3 for samples = 1 : R do
4 Generate a random sample r = z? + Mw where w ∼ CN (0, I)
5 Project onto feasible set rΠ = ΠX{r}
6 If F (rΠ, r) < Fmin then x = rΠ, α = r, Fmin = F (x, α)
7 end
8 Output: x,α,Fmin

unselected coordinates at each iteration and repeat the MAGIQ procedure for the
selected list. The method is presented in Algorithm 6 and is called L-MAGIQ.

Finally, to validate the hypothesis that improved performance at high SNR demands
considerably more computational complexity for a fixed bit-width, we examine a
quasi-Maximum Likelihood (ML) algorithm. Sphere Precoding (SP) is known as an
efficient implementation of ML algorithms for Closest Vector Problem (CVP) and
Shortest Vector Problem (SVP) [98]. The core idea of SP is to constrain the search
over a radius that can be adapted as the algorithm advances. The SP algorithm has
an average polynomial complexity for finding the ML solution for smaller problems
at high SNR, but still with a worst case exponential complexity, similar to exhaustive
search [99]. We reformulate the precoding problem so that we can apply the formalism
of SP:

F (x, α) = ‖u− αHx‖2
2 + α2Kσ2 (3.73)

= ‖u− αHx‖2
2 + α2Kσ2‖x‖

2

P
(3.74)

=
∥∥∥û− αĤx

∥∥∥2

2
(3.75)

where û = [uT 0T]T and Ĥ = [HT
√
Kσ2/P IT]T. With the QR factorization of

Ĥ we can further write:
∥∥∥û− αĤx

∥∥∥2

2
=
∥∥∥QHû− αRx

∥∥∥2

2
= ‖ũ− αRx‖2

2 (3.76)
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Algorithm 6: L-MAGIQ
1 Inputs: u, H , S = {1, . . . , N}, errmin
2 Initialize: x = xinit, α = αinit, L = ∅, E = ∅, B = ∅, T = ∅
3 for j = 1 : L do
4 S = {1, . . . , N}
5 for i = 1 : I do
6 n = 1
7 err0 = ‖u‖2

8 while (errn > errmin) ∨ (errn < errn−1) ∨ (n ≤ N) do
9 if n = 1 ∧ i = 1 then

10 (x?n? , n?) = argminxn∈X ,n∈S\L F (x, α)
11 (x1, . . . , xn, . . . , xN)T = (x1, . . . , x

?
n? , . . . , xN)T

12 L ← L ∪ {n?}
13 else
14 (x?n? , n?) = argminxn∈X ,n∈S F (x, α)
15 (x1, . . . , xn, . . . , xN)T = (x1, . . . , x

?
n? , . . . , xN)T

16 end
17 S ← S \ {n?}
18 n← n+ 1
19 errn = ‖u− αHx‖2

2 + α2Kσ2

20 end
21 α = Re(uHHx)

‖Hx‖2
2+Kσ2

22 B = B ∪ {x}
23 E = E ∪ {errN}
24 T = T ∪ {α}
25 end
26 end
27 Output B, E , T

The SP problem is finally formulated as:

min
x

‖ũ− αRx‖2
2

s.t. x ∈ XN .
(3.77)

We approach the solution with the K-Best [100] tree search algorithm. The SP
traverses the tree depth-first (from the root to a leaf) and then backtracks to upper
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levels of the tree after updating the search radius each time it encounters a leaf.
This allows SP to prune a significant number of nodes from the tree and thus reduce
the search complexity. However, the number of leaves grows exponentially with the
depth of the tree (number of antennas) and although we have tested SP for our
massive MIMO scenario, the run-time of the algorithm is prohibitive and could not
be evaluated.
Fig. 3.11 shows both the operation of SP and K-Best. K-Best processes nodes in

the tree in parallel one level at a time. After computing the partial branch metric
at the current level it selects K nodes with minimum metric that are then considered
for expansion for the next level. This process continues until the leaves of the tree,
where we are left with K candidates and the declared solution is the node with the
minimum accumulated metric. This procedure reveals that K-Best operates at each
step based on only partial knowledge (available at the current level) and could miss
the ML solution. The likelihood of the true ML solution being in the candidate set
grows with K and therefore K-Best with a sufficiently large K operates very close
to SP (when K is equal to the number of leaves in the tree, K-Best is identical to
exhaustive search). We obtain our numerical results with a value of K that allows for
an acceptable runtime of the algorithm.
Improving the K-Best decisions made at the levels closest to the root significantly

impacts the quality of the solution. We take a twofold approach to alleviate this issue.
First, we retain all nodes at the first levels of the tree in the candidate list (we do this
for the first 4 levels). In addition, we use a sorted QR decomposition, that orders the
diagonal values of R in an ascending order. This results in partial branch metrics at
the early levels of the tree being a substantial portion of the final metric, i.e., decisions
taken at early levels are less likely to be changed later in the tree search. These two
procedures significantly improve K-Best detectors for MIMO receivers [101].
Note that the precoding factor α is not part of the optimization problem (3.77). The

optimization with respect to α follows the procedure outlined for MAGIQ, alternating
between updates of x and α, until convergence is achieved or a predefined number of
iterations is performed. Thus, even if SP provides the optimal solution to (3.77), the
alternating procedure does not necessarily provide the optimal solution of (3.9).
Fig. 3.12 and Fig. 3.13 show the improved upper (L-MAGIQ with L = 64 and
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Figure 3.11.: Optimal (a) and quasi-optimal (b) tree search algorithms for solving the
quantized precoding problem. The tree traversal schedule is shown with
dashed arrows, the order of exploration is marked with numbers and the
pruned branches from the search are marked with a red ’X’. The leaf
corresponding to the final solution is marked with green.

K-Best with K = 4096 and 6 iterations) and lower bounds (TCSDR) as well as the
results returned by MAGIQ and ADMM. Note that, for an alphabet X supported on
4 mass points (b = 2), the new lower bound offers a 4dB improvement on the SDR
relaxation (3.68) at MSE = 10−2. For the upper bound, L-MAGIQ offers a 27%
improvement over MAGIQ, while K-Best provides a significant 44% decrease in MSE
at an SNR of 24 dB. For b = 3 we observe that the upper bounds are considerably
closer to the SDR lower bound over a large SNR range and the tighter lower and
upper bounds (TCSDR and K-Best) offer an improvement of 68% at an SNR of 24
dB. This is important from an algorithmic point of view because the upper bounds
are always achievable and inform us that more sophisticated algorithms or increased
resolution are needed for higher rates. Interestingly, all the bounds are tight with
the SDR lower bound up until 10 − 12dB showing that all the proposed algorithms
are nearly optimal for the chosen metric at low and medium rates. These results are
consistent with the lower bounds to information rates shown below in Sec. 3.10.
Fig. 3.13 also shows the upper bound obtained with the infinite resolution (b =∞)
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Figure 3.12.: Tightened upper and lower bounds for b = 2.

precoder from [102]. Observe that the gap to the SDR lower bound is negligible at
almost all operational SNR levels, demonstrating that a simple projected coordinate
descent algorithm with a constant modulus constraint achieves the SDR lower bound.
This provides a quantitative evaluation of the constant gap to WF for constant enve-
lope signaling.

3.8. Sensitivity to Channel Uncertainty

All results presented so far assume that the transmitter has perfect CSI, i.e., the
channel matrix H that the precoder uses is the same as the channel realization.
However, in practice the base station has access to imperfect channel knowledge due
to noise, quantization, channel calibration errors, etc. We do not try to model these
effects exactly. Instead, we adopt a common approach for evaluating robustness that
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Figure 3.13.: Tightened upper and lower bounds for b = 3.

provides the precoder with a noisy channel matrix Ĥ that satisfies

H =
√

1− εĤ +
√
εZ (3.78)

where ε ∈ [0, 1] and Z is a K × N matrix of mutually independent, zero-mean,
variance σ2

h Gaussian entries. Taking expectations over Z, we thus have

E
[
HHH

]
= (1− ε)ĤHĤ + εCz (3.79)

where Cz is an N × N covariance matrix. We refer to ε as the channel-estimation
power: ε = 0 corresponds to perfect CSI and ε = 1 corresponds to no CSI.

We first consider the case where the precoder considers the estimated channel ma-
trix Ĥ to be the actual channel realization H . Fig. 3.14 shows an example of the
degradation of mutual information rates for all non-linear precoders presented in this
report and benchmarks them against the performance of an infinite resolution ZF. The
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Figure 3.14.: GMI rates for 16-QAM, N = 128, and K = 16 vs ε

simulation is done for the particular case of Cz = σ2
hI . There is a constant decay of

rates with the variance of the disturbance added to the perfect channel knowledge,
which shows that the performance degradation of the precoders is both continuous
and graceful.
We now derive a robust MAGIQ (QCM) and show that, within the framework of

MMSE precoding, the effect of the channel estimation error can be efficiently incor-
porated into the cost function with negligible computational penalty. We compute:

MSE = E
[
‖u− αHx‖2

2 + α2Kσ2
]

= E
[
(u− αHx)H (u− αHx) + α2Kσ2

]
= E

[(
u− α(

√
1− εĤ +

√
εZ)x

)H (
u− α(

√
1− εĤ +

√
εZ)x

)
+ α2Kσ2

]
= uHu−

√
1− εαuHĤx−

√
1− εαxHĤHu + α2(1− ε)xHĤHĤx

+ α2εxHCzx + α2Kσ2. (3.80)

The robust MAGIQ precoder cost function has an extra quadratic term α2εxHCzx as
compared to the non-robust MAGIQ (3.9). This term acts as a regularizer for the cost
function and weighs the beamforming directions with the channel error covariance,
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Figure 3.15.: GMI rates for 16-QAM, K = 16.

i.e., it modifies the directions where the norm of the channel error is large, and favours
those directions with smaller norms. This is similar to results obtained in the literature
for robust linear precoding [103]. Observe from (3.80) that the extra computational
complexity of robust MAGIQ resides in the computation of Cz and (1− ε)ĤHĤ .

3.9. Mixed Resolution RF Chains

Fig. 3.15 shows one important limitation of the proposed architecture and precoder.
For a high system load, either because of a small number of antennas at the base
station or a large number of users, the achievable rates are significantly reduced as a
result of multiuser interference. As can be observed, MAGIQ with b = 2 and b = 3
and with N = 20 and N = 32 antennas performs far (at least 2.2 bits) from the WF
at high SNR.
An interesting option to introduce low resolution RF chains may be low-cost plug-

in upgrades of legacy infrastructure, e.g., an Long Term Evolution (LTE) evolved
Node B (eNB) with high resolution RF chains upgraded to 64 additional antennas
with low resolution RF chains. We thus consider precoding for antennas with both
low resolution RF chains, like the ones proposed in Sec. 3.2, and high resolution
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Figure 3.16.: Multi-user MIMO downlink with mixed resolution RF chains.

RF chains, e.g., 16 to 20 bits per dimension. For simplicity, we assume that each
antenna is assigned a fixed RF chain, i.e., the DAC/phase shifter resolutions cannot
be dynamically adjusted (such options would likely improve performance, but they are
outside the scope of this work). A typical downlink system is presented in Fig. 3.16.

We denote high resolution RF chains with the acronym Full RF (FRF) and low
resolution chains with Quantized RF (QRF). The precoding vector can be represented
as a concatenation of two sub-vectors in the manner x = [xQRF , xFRF ]. The channel
matrix H = [HQRF , HFRF ] can be similarly split. We consider a single cell with
N − M FRF transmit antennas, M QRF transmit antennas, and K users. The
modulation set for each QRF antenna is defined as:

X̃ = {0} ∪

√
P (1− θ)

M
ej 2πq/2b ; q = 1, 2, . . . , 2b

 . (3.81)

For FRF, we consider an average power constraint E
[
‖xFRF‖2

2

]
≤ Pθ.
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The precoding problem for flat-fading channels is based on the MSE criteria

min
x,α,θ

‖u− αHQRFxQRF − αHFRFxFRF‖2
2 + α2Kσ2

subject to xQRF ∈ X̃M , E
[
‖xFRF‖2

2

]
≤ Pθ

α > 0.

(3.82)

Apart from the precoding vector x and the precoding factor α, we have an additional
power allocation variable θ which determines what percent of the total available power
is divided between the FRF and QRF sub-arrays. Because of the discrete constraints
on the QRF, the problem (3.82) is a mixed-integer program and therefore also NP-
hard.
The precoding problem must be solved jointly and we propose several iterative

optimization algorithms. These algorithms require CSI only about individual links
between the corresponding antennas and users. We propose two iterative optimization
schedules:

. Minimize the cost function by updating the FRF precoding vector for each
greedy choice of a single QRF antenna (FRF-MAGIQ);

. Minimize the cost function alternately between the MAGIQ solution and FRF
solution (Alt-MAGIQ);

. θ is optimized offline with a line search and with the ergodic achievable rate as
a cost function (rater than the MSE cost function used for precoding).

The optimization over θ could be done instantaneously for each transmitted symbol,
which gives an upper bound on the performance. However, to be consistent with
our CSI assumptions, we will optimize the power allocation offline and apply it only
once. Fig. 3.17 shows how the average per user GMI depends on θ at a given SNR.
Interestingly, the rate variation is slow and smooth, and is maximized by a ratio close
to 1−M/N .
The iterative schedule lets us solve simplified problems with reduced computational

complexity. With a QRF solution x?QRF , the precoding problem simplifies to

‖ũ− αHFRFxFRF‖2
2 + α2Kσ2
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where ũ = u− αHQRFx
?
QRF .

We further relax the cost to an obtain the well known MMSE:

min
xFRF ,α

E
[
‖ũ− αHFRFxFRF‖2

2

]
+ α2Kσ2

subject to E
[
‖xFRF‖2

2

]
≤ Pθ

α > 0.

(3.83)

The solution to (3.83) is the WF presented in Sec. 3.3.2. and denoted here for FRF
as x?FRF , the remaining problem can be solved approximately by MAGIQ. This is the
basis of our algorithms as outlined in Alg. 7 and Alg. 8

We emphasize here that the main reason for proposing these solutions is to reuse
MAGIQ with existing linear precoding techniques. The mixed RF problem is akin to
a quadratic mixed-integer program and one could design more powerful algorithms
based on state-of-the-art branch-and-bound or branch-and-cut methods [104] that can
find optimal solutions to such problems. However, for our specific application, com-
plexity and run-time are of utmost importance and we rely on sub-optimal techniques
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Algorithm 7: FRF-MAGIQ for frequency-flat channels
1 Inputs: u, H , S = {1, . . . , N}
2 Initialize: x = xinit, α = αinit
3 for i = 1 : I do
4 while error decreasing do
5 for n ∈ S do
6 for xn ∈ X do
7 xFRF (xn) = HH

FRF

(
HFRFH

H
FRF + γI

)−1
(u− α(i)HQRFxQRF )

8 end
9 (x?n,x?FRF ) = arg minxn,xFRF (xn) MSE(x, α)

10 end
11 (x(i)

1 , . . . , x
(i)
n , . . . , x

(i)
N−M)T = (x(i)

1 , . . . , x
?
n? , . . . , x

(i)
N−M)T

12 x
(i)
FRF = x?FRF

13 S← S \ {n?}
14 end
15 x(i) = [x(i)

QRF , x
(i)
FRF ]

16 α(i) = Real{uHHx(i)}
||Hx(i)||22+Kσ2

17 end
18 Output x(I), α(I)

that offer a solid trade-off between the design constraints and solution accuracy.

3.10. Numerical Results

We begin the numerical study with the frequency-flat case. We compare the perfor-
mance of different precoding schemes by means of their GMI for massive MIMO with
K = 16 UEs and N = 128 antennas at the base station. If not stated otherwise, all
results are reported for Scenario 1 presented in Sec. 3.2.3.

3.10.1. Quantized Linear Precoding

In Fig. 3.18 and Fig. 3.19 we compare the lower bounds and signaling alphabets
proposed in this work and in [65] for QLPs. The performance of the transmit WF with
infinite resolution (up to machine precision) signaling with both Gaussian distributed
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Algorithm 8: Alt-MAGIQ for frequency-flat channels
1 Inputs: u, H , S = {1, . . . , N}
2 Initialize: x = xinit, α = αinit
3 for i = 1 : I do
4 while error decreasing do
5 for n ∈ S do
6 (x?n? , n?) = arg minxn∈X ,n∈S MSE(x, α)
7 (x(i)

1 , . . . , x
(i)
n , . . . , x

(i)
N−M)T = (x(i)

1 , . . . , x
?
n? , . . . , x

(i)
N−M)T

8 S← S \ {n?}
9 end

10 end
11 x

(i)
FRF = HH

FRF

(
HFRFH

H
FRF + γI

)−1
(u− α(i)HQRFx

(i)
QRF )

12 x(i) = [x(i)
QRF , x

(i)
FRF ]

13 α(i) = Real{uHHx(i)}
||Hx(i)||22+Kσ2

14 end
15 Output x, α

and uniform 256-QAM inputs is plotted to benchmark the quantized precoders.
We first note that the lower bounds obtained from the Bussgang decomposition

in Fig. 3.18b employ closed form approximations for the covariance matrix Cd and
Gaussian input distributions, and are thus evaluated with (3.31). The lower bounds
based on histogram approximations of probability density functions, discussed in [65],
are shown as a benchmark, and numerically evaluated for uniform 256-QAM inputs.
Second, as shown in Fig. 3.18a, the choice of quantizer (signaling alphabet) has a

non-negligible impact on the achievable rates. The choice of X results in a loss of
average transmit power due to the 0 symbol, and consequently a rate loss in the low
SNR regime. However, in the high SNR regime, especially for the case with b = 2,
it outperforms both the Bussgang approximation and the optimized quantization
from [65], designed for Gaussian signals. This suggests that an optimization of the
signaling alphabet is worthwhile.
QLP is a competitive choice for low SNR, exhibiting the same computational com-

plexity as classical LP schemes and achievable rates. However, at high SNR these
information rates saturate and result in large penalties. This is the main motiva-



3.10. Numerical Results 95

S
u
m

 R
at

e 
[b

p
cu

]

(a) GMI evaluated with the uniform quan-
tizer X

−10 −5 0 5 10 15
0

20

40

60

80

100

120

SNR [dB]

S
u
m

 R
a
te

 [
b
p
cu

]

(b) GMI evaluated with the quantizer from
[65]

Figure 3.18.: Achievable sum rates for GaussianWF( ), 256-QAMWF( ), QLP with
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Figure 3.19.: Signaling alphabets.

tion to develop computationally efficient non-linear methods that mitigate this loss
in performance.
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3.10.2. Non-linear Precoding

For the more advanced methods, we first show the results for flat fading channels. As
a reference, we use the zero forcing (ZF) solution with infinite precision ADCs. We
also include the performance of the MF and ZF QLP schemes, and the performance
of the SQUID and ADMM algorithms. MAGIQ performs I = 3 iterations, SQUID
I = 50 iterations, and ADMM uses I = 100 iterations. Going beyond these values
did not result in further noticeable improvements in our scenarios. We do not claim
that these numbers are optimal, but we tuned them for good performance for higher
order modulations.
We apply the same α optimization as Scenario 1 to SQUID with J = 4 outer

iterations. We call this precoding algorithm SQUID-α. For MAGIQ and ADMM, the
quantization resolution is one bit per real dimension, i.e., we set b = 2 in (3.7). The
precoding solution for SQUID uses phase modulation only, i.e., the zero symbol is not
included in the transmitter alphabet. Also, MAGIQ is initialized with the solution of
the quantized MF in order to speed up convergence. The results are obtained from
2, 000 channel realizations for flat fading, and 200 channel realizations for frequency
selective fading.
We show the achievable rates for 16-QAM and 64-QAM in Figs. 3.20 and 3.21,

respectively. Both MAGIQ and ADMM show similar performance for higher order
modulation formats. For 16-QAM, SQUID-α with adaptive α is competitive with
MAGIQ and ADMM, but exhibits convergence issues at high signal-to-noise ratio
(SNR) for large spectral efficiency. QLP is shown here again in order to quantify the
improvement offered by non-linear precoders. The gap becomes more pronounced as
higher spectral efficiency is required.
Fig. 3.22 shows the achievable rates with 64-QAM in a block fading scenario with

the transceivers designed according to the guidelines presented in Sec. 3.2.3. Observe
that both Scenarios 2 and 3 seem to be interference limited at high SNR, but Scenario
3 operates close to Scenario 1. This demonstrates that broadcasting the precoding
factors at the receiver is not necessary.
Fig. 3.23 shows the trade-off between achievable rates, number of antennas and

resolution of the digitally controlled phase shifters. We first note that a system with
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Figure 3.20.: GMI rates for 16-QAM, N = 128, and K = 16.
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Figure 3.21.: GMI rates for 64-QAM, N = 128, and K = 16.

b = 2 bits of phase needs about 1.3 times more antennas than one with an infinite
resolution ZF precoder to achieve the same average user rates. Second, we notice
that increasing the number of bits from b = 2 to b = 6 has diminishing returns, and
saturates away from the ZF even for an infinite number of bits, as noted before in our
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Figure 3.22.: GMI rates for 64-QAM, N = 128, and K = 16.

analysis of SDP-based upper and lower bounds. The setting with b = 3 yields 3/4 of
the rate increase and all other settings with b = 4, . . . ,∞ the remaining 1/4. This
suggests that b = 3 offers a good trade-off between achievable rates, computational
and hardware complexity.
Frequency selective fading is considered in Fig. 3.24 for a channel with L = 15

taps, N = 128 antennas, K = 16 users, and OFDM symbols with T = 286. We
evaluate the GMI for 16-QAM and 64-QAM. The GMI reported is computed per-
subcarrier and then averaged over the subcarriers. This assumes channel coding is
performed over multiple subcarriers and symbols. The frequency selective MAGIQ
performs I = 4 iterations for each OFDM symbol and computes a single precoding
factor over the OFDM symbol. The algorithm was initialized with a time domain
quantized solution of the frequency domain MF. The results show that the gap to
the flat fading Scenario 1 solution is negligible. We further notice that QCM with 6
iterations is equivalent with MAGIQ, with only an insignificant SNR penalty.
Fig. 3.25 compares achievable rates of QCM, SQUID and MSM for a medium-sized

scenario (N = 64, K = 8) borrowed from [75]. We choose M-PSK because the MSM
algorithm was originally proposed for OFDM with PSK. We see that MSM is superior
to both SQUID and QCM at lower SNR (and low-medium rates), whereas at high
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Figure 3.23.: Excess antennas vs. resolution for K = 16, SNR = 0 dB, 16-QAM. The
baseline systems (green) has N = 128 transmit antennas.

rates QCM is undoubtedly superior. We also tried to replicate our larger system
scenario but unfortunately the MSM algorithm could not be run on our simulation
platform because of memory limitations (2 AMD EPYC 7282 16-Core, 125GiB of
system memory, Matlab with both dual-simplex and interior-point solvers).
Fig. 3.26a shows the impact that iterations have on the achievable rates for OFDM,

as well as the convergence of the proposed MAGIQ and QCM. We observe that both
the greedy and the cyclic/random schedules achieve very good performance although
at the cost of extra iterations (5-6 compared to 3-4 for MAGIQ).
Fig. 3.26b shows that the inclusion of the precoder factor α in the optimization is

fundamental to the good performance of MAGIQ, exhibiting a gap as large as 10dB
to the precoder without the inclusion of a precoding factor.
Finally, we show simulations for a Winner 2 non-line-of-sight (NLOS) C2 urban

scenario [105]. The purpose of this investigation is to confirm the viability of the
proposed precoders in semi-deterministic channel models that are extensively used
as proxies for real physical channels. The considered geometric layout is shown in
Fig. 3.27 and the detailed parameters are as follows:
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Figure 3.24.: GMI rates for OFDM, 16-QAM and 64-QAM, N = 128, K = 16, T =
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. 8 uniformly distributed users on a disk of radius 150m at every drop;

. 80 (8x10) dipole uniform rectangular antenna array at the base station (with
λ/2 spacing);

. 5 MHz bandwidth at a 2.53 GHz center frequency;

. MAGIQ precoder with b = 2 bits of phase;

. OFDM with 128 subcarriers and uniform 16-QAM;

. No Doppler shift, shadowing and pathloss;

. we compare with a Rayleigh 22 tap channel.

Fig. 3.28 shows the achievable GMI rates for both an infinite precision ZF precoder
and the MAGIQ frequency selective precoder. For a Winner 2 NLOS scenario, two-
bit MAGIQ with 16-QAM performs close to its Rayleigh counterpart. At high SNR,
there is a decrease in the GMI slope as compared to ZF. This shows that for more
correlated channels one may need to increase the number of bits (or equivalently the
number of antennas) to avoid becoming interference limited.
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Figure 3.25.: GMI rates for OFDM with 4, 8, 16, 32-PSK, 2 bits, N = 64, K = 8,
T = 32, L = 4.

3.10.3. Mixed Resolution RF chains

Recall that FRF refers to high resolution RF chains and QRF to low resolution
RF chains. Fig. 3.29 shows the GMI for a Rayleigh flat fading channel where the
transmitter hasN = 32 antennas of whichM = 16 orM = 12 are QRF antennas. The
QRF antennas use two bits of phase b = 2. We further consider 64-QAM modulation
and K = 16 UEs. The performance is compared with a WF with infinite resolution
with N = 32, and also with plain MAGIQ (M = 0) with N = 32. Observe that
MAGIQ cannot support high order modulations (not even 16-QAM) for such a system
load, whereas the FRF-MAGIQ can achieve the required spectral efficiency with a
SNR penalty compared to WF. Alt-MAGIQ has convergence issues at high SNR, i.e.,
it can get trapped in poor local minima.

Doubling the number of antennas toN = 64 considerably improves the GMI of plain
MAGIQ with b = 2, 3, as shown in Fig. 3.30. Observe that both FRF-MAGIQ and
Alt-MAGIQ with N −M = K have convergence issues in the high SNR regime. The
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Figure 3.26.: Impact of iterations and optimization of α for MAGIQ for Flat and
Frequency Selective Channels.

number of iterations for FRF-MAGIQ and Alt-MAGIQ is fixed at four. However,
the computational complexity of the two algorithms is vastly different because of
the different update schedules. Alt-MAGIQ esentially requires approximately four
times the number of computations of MAGIQ and one WF computation (the WF is
computed only once for all iterations and is reused), whereas FRF-MAGIQ computes
(N −M)|X | WF solutions (a matrix vector multiplication) at each iteration.

3.11. Conclusions

We introduced QCM and MAGIQ for quantized precoding in a massive MIMO down-
link channel. MAGIQ applies to both frequency-flat and frequency selective channels.
Numerical performance comparisons using lower bounds on information rates suggest
that MAGIQ outperforms QLP, SQUID and MSM, and it achieves similar perfor-
mance as ADMM. We studied different update schedules of the precoding factor α.
For frequency-selective channels and OFDM, MAGIQ loses only about 0.25 dB as



3.11. Conclusions 103

Base Station Array

−150 −100 −50 0 50 100 150

0

50

100

150

200

250

300

350

x-coord in [m]

y-
co
or
d
in

[m
]

Figure 3.27.: Single-cell Winner 2 network scenario with 3 independent drops of 8
users shown in red, green and blue.

compared to the frequency-flat case for 16-QAM at 3 bpcu. The results further show
that the implementation complexity of MAGIQ can be significantly reduced through
slight modifications in the optimization strategy for frequency selective channels with-
out sacrificing achievable rates.

MAGIQ and QCM with very low numbers of bits b = 2 or b = 3 with a relatively
high system load (K/N ≈ 0.5) are insufficient to achieve high spectral efficiency. How-
ever, a combination of high resolution and low resolution RF chains with precoding
algorithms such as Alt-MAGIQ or FRF-MAGIQ recover the performance observed
with much larger systems with lower system loads, at affordable computational com-
plexity.

Future work should consider the combination of MAGIQ with multi-user scheduling
and the influence of imperfect CSI at the receiver. Another research direction is
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to extend MAGIQ and QCM for multiple antennas at the receivers. It is also of
practical importance to analyze a transmission chain where both the transmitter
and the receivers operate at very low resolutions. Finally, one should evaluate the
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performance of the proposed algorithms in combination with time and frequency
synchronization at the receiver.





4
Summary and Outlook

MIMO communications are essential to achieve the high spectral efficiency targets of
future communications standards. However, integrating more antennas in the lim-
ited space of handheld devices, or scaling up the number of base station antennas
into the hundreds, can be complex and expensive. This thesis investigated two as-
pects of MIMO systems and proposed information-theoretic and hardware-informed
approaches for both compact and massive MIMO.

4.1. Summary

Chapter 2 presented a circuit-level model of MIMO RF front-ends that captures the
physical interactions of signal and noise caused by antenna array elements operating
in each others’ electromagnetic fields. We reviewed a closed-form optimal design for
lossless passive matching networks that maximizes the mutual information rates of a
Gaussian linear channel. The solution is sensitive to manufacturing variations that
are present in real-world implementations of such a circuit. The effects are shown to
be a function of the matching network architecture and the antenna array design, sug-
gesting that substantial performance degradation could be mitigated by appropriate
design choices. The optimal matching networks are quintessentially narrow-band and
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are no longer optimal outside a small bandwidth centered at the carrier frequency.
In Chapter 3 we studied downlink precoding for multiuser MIMO with large an-

tenna arrays at the base station and with frequency selective fading. To make such
systems practical, scalable and power efficient, the transmitted signals were restricted
to have a constant envelope and, in addition, to have a low resolution compared
to existing deployments. The constant envelope limitation was motivated by efficient
power amplifier design, while coarse quantization relaxes the design of DACs and con-
siderably reduces their power consumption. Simple implementations of low resolution
quantization of classical linear precoders result in significant performance degradation
at high SNR. We showed that a computationally efficient nonlinear precoder can re-
cover most of the loss and operate close to the information rates of infinite resolution
MMSE precoders. Finally, we showed that the proposed architecture and algorithms
can be seamlessly integrated with existing infrastructure for energy and cost efficient
upgrades to Massive MIMO.

4.2. Outlook

Future Massive MIMO base stations will need to be compact for dense deployment.
Thus merging the two topics studied in this thesis is a natural progression of research.
An example is offered in [106] where sigma-delta quantizers are considered together
with closely spaced antennas to direct distortion caused by coarse quantization away
from intended directions of propagation (position of intended users).
An interesting direction to expand the results in Chapter 3 is to develop realistic

channel estimation error models when the same array is used to estimate the uplink
CSI. These models could lead to robust precoding schemes in combination with re-
ceiver design. For example, supervised learning techniques such as autoencoders could
learn the models implicitly from data by adapting parameters of neural networks to
minimize suitably chosen cost functions.
Next, in Chapter 2 we showed that the information rates for coupled MIMO arrays

depend on the matching networks and the shape of the antenna array. We optimized
the matching networks, but did not carefully consider the antenna array. An inter-
esting direction of research is to optimize the positions and/or the types of antenna
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Figure 4.1.: ULA with 3 active and 2 parasitic elements

elements. Figure 4.1 shows an example: instead of changing the positions or the
design of the antenna elements we could choose a uniform spacing but place antenna
elements that are simply terminated by a single impedance between antenna elements
connected to the (low noise) amplifiers. These elements are called parasitic elements
in the antenna and propagation literature [107].
Figure 4.2 shows information rates vs. antenna separation between antenna ele-

ments connected to low noise amplifiers. In solid red we show the rates of a 5x3
MIMO link without parasitic elements and in solid green we show the rates for the
same 5x3 MIMO for self matching. In solid blue we show the rates achieved with par-
asitic elements at the receiver, i.e., we are using 5x(3+2) MIMO where the matching
network connects 3 antenna elements to low noise amplifiers. The difference from self
matching is that we use a genetic algorithm to jointly optimize the diagonal match-
ing elements and the impedances that terminate the parasitic antenna elements. As
shown in the Figure, this procedure achieves information rates as good as the optimal
system without parasitic elements. We conclude that a joint design of the antenna
array and the matching network is an interesting approach to simplify matching net-
works without sacrificing performance.
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A
Mismatched Decoding and
Information Rates

This appendix reviews information theoretic arguments that show that the GMI is
a lower bound to the information rate. The GMI thus has an operational meaning
as an achievable rate: there exist codes approaching this rate and decoders for which
the error probability approaches zero as the block length increases.

Capacity

Shannon’s coding theorem [108] provides conditions under which reliable communi-
cation is possible over noisy channels. Central to the achievability proof is knowing
the channel law at both ends of the communication chain. However, in practice the
channel law may not be known, or may be available only partially. We focus on the
point-to-point coding problem with a mismatched decoder.
The input and output alphabets are finite and denoted as X and Y , respectively.

The probability density of the channel output sequence y = [y1, y2, . . . , yn] given the
input sequence x = [x1, x2, . . . , xn] is pY |X(y|x) = ∏n

i=1 pY |X(yi|xi).
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Figure A.1.: Information theoretic model of a digital communication system with mis-
matched decoders

The encoder is a mapping f(·) from a set {1, . . . ,M} of equal probability messages.
The codeword xm for message m is chosen from the codebook C = {x1, · · · ,xM}.
The receiver estimates the transmitted message m′ from the received sequence y:

m′ = arg max
j∈{1,...,M}

q(y|xj), with q(y|xj) =
n∏
i=1

q(yi|xj,i) (A.1)

where q(y|x) is a non-negative mismatched decoding metric, i.e. a function q : X ×
Y → R+. We note that the metric q(y|x) need not be a probability density function,
i.e. we do not require ∑y q(y|x) = 1. However, we require q(y|x) ≥ 0 for all x, y.
We define an average error probability associated with the codebook C: P̄e(C) =

Pr(m 6= m′). A rate R = 1
n

logM is said to be achievable if, for all ε > 0, there is
a codebook Cn of length n with M ≥ en(R−ε) codewords under the decoding criteria
given in A.1.
When q(y|x) = pY |X(y|x), we obtain the maximum likelihood decoder which is

analyzed in Chapter 5 of [109] and shown to achieve the Shannon capacity:

C = max
PX

I(X;Y )

I(X;Y ) =
∑
x,y

PX(x) pY |X(y|x) log pY |X(y|x)
pY (y) (A.2)

where pY (y) = ∑
a∈X PX(a) pY |X(y|a) for all y ∈ Y .

Mismatched Decoding Rates

We follow the techniques from [109, Ch. 5] to derive an error exponent for the mis-
matched DMC,that recovers the GMI [62].
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Theorem A.1. (see [109, Problem 5.22]) For a DMC pY |X(y|x), the decoder metric
q(y|x), an input distribution PX(x) and s ≥ 0, the following rate is achievable with
the i.i.d. random coding ensemble:

CGMI(pY |X , q, PX) = max
PX

IGMI(X;Y )

IGMI(X;Y ) = sup
s≥0

∑
x,y

PX(x)pY |X(y|x) log q(y|x)s
q(y)

where q(y) = ∑
a∈X PX(a)q(y|a)s for all y ∈ Y .

We first show that IGMI is a lower bound to A.2 [110]:

I(X;Y )− E
[
log2

(
qY |X(Y |X)s

q(Y )

)]

=
∑
x

∑
y

PX(x)pY |X(y|x)
[
log PX(x)pY |X(y|x)

PX(x)pY (y) − log qY |X(y|x)s
q(y)

]
dy

(a)= D
(
PXpY |X

∥∥∥ PXqsY |X
q︸ ︷︷ ︸

tX|Y

pY
)

≥ 0 (A.3)

where (a) follows because tX|Y (·|y) is a distribution: ∑x∈X tX|Y (x|y) = 1 and where
the inequality follows from the non-negativity of the KL divergence, and becomes
equality if qsY |X = c pY |X , where c is a constant. An alternative derivation with error
exponents can be found in [62].
The i.i.d. ensemble is defined in the literature [109] as the set of codebooks where

each symbol in each codeword is generated independently according to QX(x) =∏n
i=1 PX(xi). We start from the average error probability:

Pr(m 6= m′) =
∑

m∈{1,...,M}
Pr(m 6= m′|m)Pr(m) (A.4)

=
∑
xm

∑
y

QX(xm)pY |X(y|xm)Pr(m′ 6= m|m,xm,y) (A.5)

where we are abusing notation by considering m and m′ as both random variables and
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realizations of random variables, the meaning being clear from the context. The prob-
ability or error is summed over all possible selections of the message xm corresponding
to a message m, and all the sequences y at the output of the channel.

We take a closer look at how to determine a decoding error event. Given m,xm

and y then the decoder will decide for the wrong message m̃ if q(y|xm̃) ≥ q(y|xm).
Thus:

Pr(m′ 6= m|m,xm,y) = Pr
 ⋃
m 6=m′

q(y|Xm̃)
q(y|xm) ≥ 1

 (A.6)

≤
∑
m 6=m′

Pr
(
q(y|Xm̃)
q(y|xm) ≥ 1

)
(A.7)

≤
∑
m 6=m′

(
Pr
(
q(y|Xm̃)s
q(y|xm)s ≥ 1

))ρ
, 0 < ρ ≤ 1, s ≥ 0 (A.8)

≤

 ∑
m6=m′

E [q(y|Xm̃)s]
q(y,xm)s

ρ , 0 < ρ ≤ 1, s ≥ 0 (A.9)

where the last inequality follows by the Markov inequality.

Substituting back and considering that m 6= m′ can happen in M − 1 ways:

Pr(m′ 6= m|m,xm,y) ≤
(

(M − 1)E [q(y|Xm̃)s]
q(y|xm)s

)ρ
. (A.10)

For a DMC we have q(y|xm) = ∏n
i=1 q(yi|xm,i) and pY |X(y|xm) = ∏n

i=1 pY |X(yi|xm,i)
and the right hand side of equation A.10 is:

(
(M − 1)E [q(y|Xm̃)s]

q(y|xm)s

)ρ
= (M − 1)ρ

n∏
i=1

(
E [q(yi|Xm̃,i)s]
q(yi|xm,i)s

)ρ
. (A.11)

Finally, the average error probability is:

Pr(m 6= m′) ≤ (M − 1)ρ
n∏
i=1

∑
x

∑
y

PX(xi)pY |X(yi|xi)
(

q(yi)
q(yi|xi)s

)ρ
(A.12)

≤ 2nRρ
(∑

x

∑
y

PX(x)pY |X(y|x)
(

q(y)
q(y|x)s

)ρ)n
(A.13)
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= 2−n(f(q,pY |X ,ρ,s)−Rρ) (A.14)

where

f(q, pY |X , ρ, s) = − log2

(∑
x

∑
y

PX(x)pY |X(y|x)
(

q(y)
q(y|x)s

)ρ)
. (A.15)

Any rate that leads to a non negative f(q, pY |X , ρ, s) − Rρ is achievable, i.e. the
average error probability for these rates vanishes exponentially fast as n → ∞. We
find the tightest bound by optimizing over ρ and s. According to [109] a stationary
point of f(q, pY |X , ρ, s)−Rρ is also a maximizer of the exponent. We thus have

R = ∂f(q, pY |X , ρ, s)
∂ρ

∣∣∣∣∣
ρ=0

= E
[
log2

(
q(Y |X)s
q(Y )

)]
(A.16)

and obtain the GMI capacity as

CGMI = max
PX

sup
s≥0

E
[
log2

(
q(Y |X)s
q(Y )

)]
. (A.17)

This concludes the achievability proof for the GMI. Although presented for finite
alphabet DMCs, the results can be extended to infinite output alphabets and share
almost identical proofs.

Finally, note that q(y|x) is a symbol-wise metric operating on symbols from X .
When binary codes are combined with high order modulation a common choice is a bit-
wise metric q(y|x) = ∏m

j=1 q(y|bj), where the labeling function Π : X → {0, 1}m maps
symbols from X onto their m-dimensional binary labels Π(x) = b1, . . . , bm. Suppose in
addition that the random experiment samples codewords from PX(x) = ∏m

j=1 PBj(bj).
Note that the individual bit levels Bj can be individually probabilistically shaped.
Similar to (A.4-A.18) we obtain:

CGMI = CBICM =
m∑
j=1

I(Bj;Y ) (A.18)
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which is the bit interleaved coded modulation capacity (BICM) [63]. The opera-
tional meaning of the GMI, the existence of a (random) code that is capacity achieving,
and its connection to BICM motivated our approach to cast the quantized precoding
problem into the GMI framework.



B
SDP and Combinatorial
Optimization

Semidefinite Programming (SDP) includes a large family of convex programming
problems. Applications of SDPs include and are not limited to: control, combina-
torial optimization, precoder design in communications, options pricing in finance,
circuit synthesis and modeling in analog hardware design, robust and stochastic opti-
mization, phase retrieval and matrix completion in machine learning, graph coloring
and satisfiability problems in computer science. We are interested in the combinatorial
problem presented in Sec. 3.2.1.
One paper that sparked a renewed interest in SDP for discrete problems is [111].

The authors propose an algorithm for the MAX-CUT problem (the task of finding
an edge cut in a graph that contains the maximum number of edges). This is the
first approximation algorithm based on a SDP relaxation of the original combinatorial
problem. An approximation algorithm for the NP-hard MAX-CUT is a polynomial-
time algorithm that computes a solution with some guaranteed quality for every
instance of the problem. The guarantee in this case is in the form of an approximation
ratio (for a graph G where Algo(G) is the value of the proposed solution and OPT(G)
is the value of the optimal solution, the approx. ratio is αGW = infG Algo(G)

OPT(G) = 0.878).
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Note that if the approximation factor is equal to 1 then there is no gap and the
relaxation can recover the solution to the initial problem.
We illustrate the concepts with a problem that is both NP-hard to solve exactly

and also to approximate [112]:

min
x

xTQx + 2qTx

s.t. x ∈ Zn
(B.1)

where Q is a symmetric positive semidefinite matrix and q ∈ Rn.
A number of relevant practical problems can be reduced to (B.1), including integer

least squares, the closest vector and shortest vector problems. Note that every entry
xi in x is an integer and therefore satisfies xi ≤ 0 or xi ≥ 1, which can be equivalently
written as quadratic constraint xi(xi − 1) ≥ 0. As a result, (B.1) can relaxed as

min
x

xTQx + 2qTx

s.t. xi(xi − 1) ≥ 0, i = 1, 2, . . . , n.
(B.2)

We now introduce a new variable X = xxT and a new constraint diag(X) ≥ x.
These constraints can be seen as a reformulation of xi(xi − 1) ≥ 0. We can thus
re-write (B.1) as

min
X,x

Trace (QX) + 2qTx

s.t. diag(X) ≥ x

X = xxT.

(B.3)

The problem is still not convex because of the constraint X = xxT, which can be
further relaxed to a convex form X � xxT. Finally we obtain the desired SDP
relaxation of our initial problem:

min
X,x

Trace (QX) + 2qTx

s.t. diag(X) ≥ x

X � xxT.

(B.4)

We now introduce the randomization procedure for semidefinite relaxations. Sup-
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pose we instead solve (B.2) on average:

min
X̃∼N (ν,Σ)

E
[
X̃TQX̃ + 2qTX̃

]
s.t. E

[
X̃i(X̃i − 1)

]
≥ 0, i = 1, 2, . . . , n.

(B.5)

which is equivalent to [113]:

min
ν,Σ

Trace(ΣQ + ννTQ) + 2qTν

s.t. Σi,i + ν2
i − νi ≥ 0, i = 1, 2, . . . , n

(B.6)

Problem (B.6) is in the form of (B.3) with X = Σ + ννT and x = ν.
Intuitively, the distribution N (ν,Σ) has a mean close to the least squares solution

of (B.1) where the integer constraint is relaxed to the set of real numbers. In addition,
the diagonal values of Σ are large enough such that xi(xi − 1) ≥ 0 holds on average.
Of course, samples from N (ν,Σ) are not always feasible for (B.2), but that can be
resolved by projecting on the constraint space. The SDP thus provides a lower bound
solution to the integer least squares problem, while the randomization procedure with
projection gives an upper bound. In practice it was observed that the bounds are often
tight and can be further tightened with additional constraints.
In this Appendix we followed the examples and exposition given in [113]. Although

not explored here, SDP relaxation is an important foundation to building powerful
algorithms such as branch-and-bound or cut-and-bound that can find good solutions
to several classes of nonlinear integer and mixed-integer problems [114].
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