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Executive Summary
This dissertation introduces a novel approach to extending congestion definition and detection
strategies in the context of traffic flow optimization on freeways. The aim is to represent
congestion adequately and to provide a tool box to aid traffic planners and controllers in
achieving optimized traffic flow. The thesis contributes data fusion approaches, congestion
detection methodologies, and performance measures while comparing multiple traffic sensor
technologies.
Traffic data are represented in a space-time speed field along a road stretch over a time

period. In this speed distribution, congestion clusters are identified, where congestion is
defined as occurring when the speed falls below a certain threshold. A cluster is defined as
a spatially and temporally coherent congested area both in time and space that is isolated by
free-flow conditions. Each cluster has a certain shape of convex hull and a certain area. A
4+1 congestion classification is developed, with four of these congestion types defined based
on the mainline speed distribution: Jam Wave, Stop and Go, Wide Jam, and Mega Jam,
ranging from a short speed breakdown to a widely congested area. Congestion type Lane Jam
is identified based on the lane-by-lane speed distribution. It indicates congestion which does
not affect all lanes equally.
Virtual vehicles that traverse the space-time domain are simulated, resulting in virtual tra-

jectories. The speed profile of each trajectory is analyzed and categorized according to certain
parameters, and the shape of this profile determines the congestion type of the trajectory. Sev-
eral trajectories traversing a particular cluster with an equidistant offset determine an overall
congestion type. The result is a set of congestion events in the space-time domain with each
cluster having a shape, a size, and a congestion type.
All developed methodologies are examined on data collected using four different sensor

technologies: local speed measurements (1) from induction loops and (2) from infrastructure
radars, (3) travel time measurements from repeated Bluetooth device re-identification, and (4)
floating-car trajectories from probe vehicles. All of them are gathered on a three-lane freeway
in Germany with a stretch length of approximately 160 km.
To obtain a speed distribution from sparse space-time travel times such as those derived

from Bluetooth device re-identification, a section-based low-resolution travel time smoothing
method is developed. It aims at fusing noisy raw travel times into a consistent speed distri-
bution. Moreover, a fusion approach of all four data sources is given. Taking the strengths
of each sensor technology into account while overcoming their respective weaknesses, this
multi-sensor data fusion yields an improved speed distribution over time and space with regard
to a symmetric square inverse mean percentage error.
The four data sets are compared against three mainline congestion metrics. The first metric

measures which sensor technology is able to detect emerging congestion earliest and how
much delay is present in the others. The results show that data from floating cars show an
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average delay of 2-3min compared to induction loop data in areas where the sensor spacing is
small. The second metric assesses the suitability of each detection technology for recognizing
each congestion type. Among the findings is that Stop and Go traffic is best detected by
floating car data, while Jam Wave events cannot be reliably recognized by Bluetooth sensors.
In addition, data from Bluetooth detections overestimate the congestion type Stop and Go
compared to induction loops. The third metric investigates locations and times of spatio-
temporal congestion pattern hot spots for each of the data sources. The results include that
congestion frequently emerges upstream of interchanges, specifically upstream of off-ramps.
The lane-based analyses assess the performance in identifying Lane Jam clusters. The

methods consider spatio-temporal hot spots of said cluster occurrences and average travel
times per lane. Moreover, the share of each lane, the first occurrence of congestion in space
and time per lane, and the temporal and spatial offsets of all lanes are investigated using the
introduced congestion clusters. The results demonstrate a high share of congestion on the
right lane, restricted to particular localities, and indicate that congestion often starts on the
right lane, spreading to the middle and left lanes with a delay of few minutes. The middle
lane shows the longest average travel times over the entire duration of an incident.
The methodology of congestion type definition and congestion quantification has proven to

effectively operate on multiple data sources and to provide quantitative, machine-interpretable
insights and statistics on freeway traffic incidents.
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Chapter 1

Motivation
Congestion both on freeways and in urban areas is rapidly increasing. The commercial traffic
service providers INRIX and TomTom state in their yearly published reports (INRIX Global
Scorecard [INRIX, 2021] and TomTom Traffic Index [TomTom, 2021]) the heavy growth of
amount of congestion. Metropolitan areas are especially affected by congestion, which means
increased travel times, higher greenhouse gas emissions, and more fuel costs, among other
negative effects. In Germany, the costs related to congestion amounted to EUR 2.8 billion in
2019 [INRIX, 2021].

1.1 Research Context
Incidents and congestion are caused by various triggers. The main reasons are construction
sites, accidents, and high density, which yield a bottleneck activation, negatively influencing
traffic flow and speed. So far, both in literature and in practice, several approaches have been
investigated to detect and to describe congestion events. Here, it is of great importance to
apply congestion detection approaches which act automatically and computationally efficiently,
as it is crucial to detect congestion as early and as precisely as possible. However, the sensor
equipment along a road stretch also influences the detection quality.
Historically, traffic information was broadcast via radio and mainly consisted of the existence

of an incident together with its approximate locality. Information messages such as Traffic
Message Channel (TMC) feeds were likely to include freeways only. Some years ago, the road
network covered by traffic information messages extended to highways but the transmitted
information still focused on the existence, location, and sometimes an additional travel time
of each congestion, instead of their exact properties.
Applying powerful detection strategies enables the determination of exact travel times by

simulating vehicles moving through the considered space-time domain. Also, the opportunity
to propose alternative routes helps in traffic control and prediction. Furthermore, special re-
quirements such as the estimated energy consumption of Electric Vehicles (EVs) can be derived
if all congestion properties are recognized reliably. An accurate traffic state reconstruction is
used to calibrate traffic flow simulation models, to predict traffic states, and to improve the
back-end of single probe vehicle fusion approaches. The identification of congestion hot spots
supports the redesign and planning of roads.
To identify congested regimes, an exact definition of congestion is required. In literature,

several approaches exist to separate congested from free-flow traffic, including studies with a
fixed or variable velocity, or with a travel time threshold. Other possibilities include a certain
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1 Motivation

minimum spatial or temporal extent threshold for a congested region. This dissertation involves
a 4+1 congestion pattern definition, ranging from a single jam wave to an extended broad
congested area.
Every congestion event involves a varying number of vehicles and yields specific charac-

teristics. Several patterns of congestion can be identified, each of which needs a different
treatment to optimize the effects on individuals and the entire traffic system, for example
minimizing the increase in travel time. To this end, it is necessary to know the particular type
of congestion precisely and to recognize, describe, and predict occurring congestion as exactly
as possible. This dissertation deals with various properties of congestion events on freeways
and with strategies to detect congestion patterns.
One major research topic is the identification of congestion type hot spots. The concen-

trated occurrence of each congestion pattern is investigated spatio-temporally. For example,
considering stop and go waves, the waves are separated by free-flow sections. In these, the
speed is higher than in a widely congested area. When investigating congestion hot spots
without a particular differentiation into patterns, the average speeds are overestimated and
the average travel times underestimated. This provides motivation for the consideration of
congestion type hot spots instead.
A precise and complete estimate of traffic states on major roads is essential for various appli-

cations in traffic engineering such as traffic control or road planning. Congestion, and traffic in
general, is detected by sensor measurements. Data can be collected using different detection
technologies [Bickel et al., 2007; Listl, 2003]. On the one hand, stationary sensors exist,
such as induction loops that detect local speeds and flows. These conventional traffic data
measurements from stationary devices have played a dominant role in traffic observations over
the last decades. This data source has the advantage of registering every passing vehicle,
however installation and maintenance costs are relatively high and require construction sites in
the street which results in temporary road closures. Another infrastructure-based approach for
traffic monitoring is radar sensors, often located outside of the road next to the shoulder lane.
These are not as cost-intensive as loop detectors, however their data quality is outperformed
by conventional sensors (see section 3.1).
On the other hand, there are section sensors. For instance, using Bluetooth (BT) technology,

the unique hardware address of a device that passes a sensor located next to the road is
registered. Once the device is re-identified by a second sensor located downstream, the travel
time and therefore also the average speed can be derived. This is a quite effective approach to
collecting data since most vehicles are equipped with or transport devices which are equipped
with WIFI or BT antennas. Installation and maintenance costs are moderate, however the
sensors capture only a subset of the vehicle fleet. Also, effects such as a non-representative
vehicle sample need to be treated. Additionally, the sensor spacing influences the data quality,
leading to a less exact average speed if the sensor distance is large.
Another travel time data collection method is speed measurements gathered from probe

vehicles or smartphones – so-called Floating Car Data (FCD). In this approach, probe vehicles
determine their position via Global Navigation Satellite System (GNSS) and continuously
report these positions to a central server. Again, this is a rather convenient method of data
collection, but only a sub-sample of all vehicles is observed. The representativeness of FCD is
influenced by the data provider. For example with a car manufacturer, trucks would not be
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1.2 Research Gap

included, which would artificially raise the average speed in uncongested conditions.
In either data collection method, the result is a traffic state comprising speed, flow, and

density. This reconstruction is the basis for traffic planning. In terms of traffic control,
the online traffic state would be taken into account, basically derived from the same sensor
technologies but using different interpolation and especially extrapolation approaches. This
dissertation considers retrospective offline data, however in general, all algorithms proposed
are also applicable to online data. This has however not yet been tested, and is left for future
research as described in section 6.2.
Both individual data sets and a data fusion of all available data sources support an under-

standing of where and when congestion occurs frequently and which congestion type is most
likely to be assigned to an identified congestion cluster. Thus, it provides traffic controllers
with a valuable tool for traffic planning, e.g., for optimizing sensor placement of stationary
detectors. Also, they might estimate and categorize the space-time extensions of occurring
congestion more appropriately, resulting in reliable incident warnings, alternative route recom-
mendations, and online traffic control. Furthermore, these results enable a fast and real-time
capable prediction of emerging congestion based merely on a small online data set because
the set of historical information is large and can be processed once with machine learning
approaches.
Various types of road require different congestion definitions. In Germany – where a general

speed limit does not hold on freeways – it might be different from situations where speeds
between individual lanes do not differ much in general. In this dissertation, congestion is
treated as speed below a fixed velocity threshold. Specifically, congestion is identified if and
only if a vehicle’s speed profile reaches a velocity below 40 km/h on a one-minute average. As
a matter of course, these values can be parameterized, but have been identified to be realistic
in practice.

1.2 Research Gap
In literature, comprehensive smoothing algorithms to interpolate collected data from Station-
ary Detector Data (SDD) and from FCD are described. The former can be interpolated using
the Adaptive Smoothing Method (ASM) [Treiber and Helbing, 2002], the latter using the
Phase-Based Smoothing Method (PSM) [Rempe, Franeck, et al., 2017] (section 2.1.3).
To the best of the author’s knowledge, an algorithm to fuse low-resolution travel time mea-
surements such as those gathered by BT sensors into a consistent speed distribution has not
yet been published.
Multi-sensor data fusion approaches have been widely developed. However, a computa-

tionally efficient algorithm regarding the fusion of 4+ vehicle detection methods along a road
stretch of 150+km validated on real traffic data has not been proposed so far.
Automatic Incident Detection (AID) methodologies mostly involve significant speed drops

in data from stationary measurements or travel time increases in section-based measure-
ments (section 2.2.4). The concept of simulating vehicles by virtual trajectories corresponding
to probe vehicles is a rather novel approach, which has been tested so far mainly on FCD.
Travel times are typically given as time losses or additional amounts of time needed to pass a
congested region. However, a speed profile, or more precisely an acceleration profile, is often

3
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omitted. Providing specific traffic information such as an acceleration profile might be helpful
for non-conventional vehicles such as EVs [Kessler and Bogenberger, 2015; Kessler
and Bogenberger, 2016; Kessler and Bogenberger, 2019]. Virtual vehicles provide
such speed or acceleration profiles, however real-world data are too sparse to serve as input
data for their simulation, therefore any model requires an extensive calibration. The derivation
of congestion clusters as common unit of a congested space-time area by virtual trajectories
has not been investigated.
Various classifications of congestion have already been described. Kerner et al. [Kerner

and Rehborn, 1996; Kerner, 1999] proposed a three-phase traffic theory whereof two
phases indicate congestion. Treiber and Helbing suggested six states of congestion [Treiber,
Kesting, and Helbing, 2010]. In a project report [Transver GmbH, 2010], four types
are introduced. Depending on causes, exact locations, and further impacts, different patterns
of congestion emerge and appear on freeways (see section 2.2.1). Definitions are mainly
described using the spatial or the temporal extensions (length or duration) but combinations
of both towards a spatio-temporal extent introducing a size of a congested area have not been
studied so far.
The common standard is to investigate mainline congestion. Lane-specific jam analyses

are just described at particular locations or in special situations. The phenomenon of Lane
Jam independently from off-ramp spillback is omitted in most works considering congestion
patterns so far. Mainline in this work refers to the entirety of all lanes of the cross-section,
independently from ramps, shoulders, and other auxiliary lanes, that allow for traveling on a
roadway to the same target direction. In contrast to mainline congestion detection, lane-by-
lane patterns are investigated.

1.3 Research Objective and Methodology
This dissertation aims at providing six novel methodologies: two fusion methods, two conges-
tion detection contributions, and two comparison metrics.
The two fusion approaches include one for low-resolution section-based travel time measure-

ments, and one as a multi-sensor data fusion approach to derive a consistent speed distribution
out of several individual data sets.
Further, it investigates congestion detection and classification approaches. To this end,

virtual trajectories are introduced that start at an arbitrary location and time. These aim
at identifying and isolating congested areas with certain properties. These trajectories can be
interpreted as virtual vehicles following the speed profiles recorded from real data sources. The
approach is model-free, and hence, calibration is not necessary. A special focus is set to the
shape of the resulting area. Grouping similar shapes leads to a cluster classification of 4+1
congestion types, consisting of four mainline and one lane-by-lane congestion pattern.
The metrics compare the performances of both congestion and congestion type detection

across multiple sensor technologies. Here, loop speeds, radar speeds, BT travel times, and
FCD are investigated. One metric measures which sensor technology is able to detect emerging
congestion earliest and how much delay is present in the others. The other metric deals with
congestion pattern detection and is divided into two research objectives: (i) the assessment of
the suitability of each detection technology for recognizing each congestion type, and (ii) the
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investigation of locations and times of spatio-temporal congestion pattern hot spots for each
of the data sources.
The evaluation of all proposed methodologies is executed based on data from the German

freeway A9 between Munich and Nuremberg. Figure 1.1 shows a map of Germany with the
considered test stretch of 157 km in magenta.

Figure 1.1: Location of autobahn A9 stretch inside Germany
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Briefly, this study separates single congestion events and quantifies them precisely by pro-
viding the following characteristics:

• Shape of a congested area as convex hull, including its start and end points in
space and time

• Size of a congested area for quantitative comparisons

• One of 4+1 congestion types

Furthermore, common features of several congestion events are characterized, such as:

• Temporal and/or spatial hot spots

• Proneness for congestion at certain road stretches

• Suitability of congestion detection by various sensor technologies

Research Objectives of this Dissertation

• Development of an interpolation method for low-resolution travel time measure-
ments yielding a speed distribution

• Concept and prototype approaches to fuse multiple traffic detection data sources

• Implementation of an automatic congestion detection methodology using virtual
trajectories

• Comprehensive congestion definition of congestion types including lane-by-lane
traffic analysis

• Analysis of the suitability of various detection technologies and combinations to
recognizing congestion types

• Analysis of speed propagation on individual lanes and general recommendation of
lane selection when approaching congestion

Figure 1.2 outlines the methodological approach of the thesis. Starting from raw data of
one of four detection technologies, the speed or the travel time data are interpolated using
an appropriate smoothing method. A multi-sensor data fusion approach creates a fifth speed
distribution.
Virtual trajectories then pass through the speed contours, identifying coherent congestion

clusters, each with a certain shape and size. Again, virtual trajectories are utilized to classify
the cluster into one of the congestion types.
Based on these recognized congestion clusters, the data sets are compared. Spatial and

temporal hot spots are investigated in a congestion proneness analysis. Lane-specific traffic
analysis provides lane-by-lane speed information and answers the question of which lane is
best for ensuring minimum time loss in congestion. The congestion type recognition method

6
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computes which detection technologies are able to detect which congestion types, and vice
versa. Congestion recognition gives a hint as to which data source is able to detect congestion
earliest and computes an average delay of the other sources in various situations.
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Figure 1.2: Structure of dissertation
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1.4 Outline of the Dissertation
This dissertation is structured as follows. Chapter 2 discusses the state of the art of research
on traffic state reconstruction based on several sensor technologies, and congestion detection
strategies.
In chapter 3, all utilized data are presented. It starts with a description of the freeway

stretch and the relevant vehicle detection sensors. It then compares the data quality resulting
from each sensor technology. The last section gives insights into the comprehensive software
implementation of all data processing.
Chapter 4 describes the theory of all proposed methodologies. It introduces the fusion

method for low-resolution travel times and multi-sensor data fusion approaches. Then, method-
ologies are investigated to recognize congestion clusters and to identify congestion types. At
the end, several data sets are compared with regard to (i) which data source is able to detect
emerging congestion earliest and (ii) where congestion type hot spots can be found.
In chapter 5, the presented methodologies are applied to real-world data from four vehicle

detection approaches. Many examples show the results of the fusion methods, the congestion
detections, and the detection rate of congestion types per data set qualitatively. The com-
parison metrics are analyzed quantitatively and the results are discussed, such as the general
suitability of the detection technologies to recognize different congestion types.
In the last chapter, chapter 6, the conducted research is summarized and a conclusion is

drawn. Also, an outlook is given on further open research questions that were raised by this
thesis. Furthermore, a vision of the future with a high penetration rate of automatically driven
vehicles is discussed.
At the end of each chapter, the key findings and takeaways are indicated in a colored box.
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Chapter 2

State of the Art
This chapter describes the state of the art of traffic state estimation and congestion detection.
Section 2.1 reviews traffic state reconstruction approaches. It is divided into four parts. First,
a theoretical description of traffic using the fundamental diagram and its representation as
contour plots is explained. In section 2.1.2, in-use traffic detection systems such as local
speed measurements and section-based travel time measurements are described. Section 2.1.3
presents current interpolation methods such as the Adaptive Smoothing Method (ASM) and
Phase-Based Smoothing Method (PSM). In section 2.1.4, comparison and fusion approaches
of multiple data sources are reviewed.
Section 2.2 investigates the state of the art of congestion detection. It is also divided

into four parts. Section 2.2.1 summarizes several congestion definitions. In section 2.2.2,
approaches to classification into different traffic states are treated, such as Kerner’s Three-
Phase Theory. Section 2.2.3 discusses lane-by-lane traffic and congestion detection. The
chapter concludes with section 2.2.4, where congestion detection strategies are reviewed.

2.1 Traffic State Estimation and Reconstruction
The traffic state is reconstructed based on sparse observations. In a space-time domain, the
three parameters flow, speed, and density are detected. To this end, traffic detection systems
(section 2.1.2) measure traffic data, and smoothing methods (section 2.1.3) interpolate these
observations to a consistent traffic state. A fusion of data sources may improve the space-time
reconstruction (section 2.1.4).

2.1.1 Traffic Flow Theory
Flow, speed, and density distributions describe the macroscopic traffic state entirely. The traffic
flow q measures the number of vehicles per time unit (in [veh/h]), speeds v are measured
per vehicle (in [km/h]), and the traffic density k measures the number of vehicles per road
section (in [veh/km]). These three parameters are connected via the fundamental equation
q = v · k, the basis of the fundamental diagram.

Fundamental Diagram

A macroscopic traffic model considering these three parameters is based on the fundamental
diagram, originally introduced by [Greenshields et al., 1935]. It models reliable traffic states
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2 State of the Art

and transitions, and distinguishes between two states: stable and unstable. The transition from
stable to unstable marks a traffic breakdown which happens at a critical traffic density and its
corresponding critical speed. The fundamental diagram (Figure 2.1) is used to determine the
capacity of the road or to control inflow/outflow of sections along a road stretch.
The relationship between speed and density is linear with a negative slope. As the density

increases, the speed of a freeway decreases. The relationship between q and k is parabolic,
where small q values correspond to either small or large k values. Large q values correspond
to medium k values. The flow-density diagram yields a time-space diagram from which travel
times, delays, and queue lengths of a road section can be estimated.
The q − v curve is not a function. This allows q to exist at two different speeds v1 and

v2. This occurs when either v is higher and k is lower or when v is lower and k is higher.
Both cases yield the same q. The speed-flow diagram consists of two branches. The free-flow
branch corresponds to high v values while increasing q until the optimum flow is reached. After
the optimum flow, the diagram switches to the congested branch. With decreasing q, v also
decreases. The Level of Service (LOS) for a freeway is based on the speed–flow fundamental
diagram [J. Li and H. M. Zhang, 2011].

k

v

(a) k − v diagram

k

q

(b) k − q diagram

q

v

(c) q − v diagram

Figure 2.1: Fundamental diagrams

Antoniou et al. [2013] developed a dynamic data-driven framework which is able to
estimate and to predict the traffic state. The framework clusters speed observations according
to the properties of the fundamental diagram and applies a Markov process training. The
authors validate their model using freeway data from California and Israel and show that their
approach outperforms other existing models.

Representation Using Speed Contour Plots

A spatio-temporal representation of speeds or flows is the so-called speed contour plot. It
depicts a space-time domain where the horizontal axis represents the time line (increasing
time from left to right) and the vertical axis represents the space (direction of travel from
bottom to top). Figure 2.2 shows an example.
Speeds are colored as indicated on the color bar on the right. Here, a cell-based speed

distribution is plotted with segments of uniform lengths. Each cell has a spatial extent of
500m and a temporal extent of 1min. The speed in a cell is constant. The segments are
clearly visible and appear as pixels.
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2.1 Traffic State Estimation and Reconstruction

Figure 2.2: Example of a speed contour plot

This diagram indicates free-flow areas in green and yellow, and congestion in red. Stationary
bottlenecks appear as red areas with a horizontal border at the top (downstream congestion
front), whereas moving congestion appears as red stripe moving upstream in time (towards
the lower right). A speed contour plot is a simple way of graphically visualizing the speed
distribution, which is one of the main focuses of this thesis.
Observations measured on the road, specifically on a freeway, such as speed fill the space-

time diagram sparsely. The methodology to derive a speed contour plot varies depending on
the detection system. In the following, multiple traffic detection systems are introduced and
the derivation of their respective space-time diagram is explained.

2.1.2 Traffic Detection Systems
Several sensor technologies are in place that gather data on how vehicles travel on freeways.
Each comes with advantages and disadvantages. The following sections introduce relevant
technologies utilized in this dissertation.

Local Measurements (Speeds)

A well-established option is to measure local velocities at a fixed point of the road. Induction
loops that are buried in the road surface provide very exact and reliable speed and flow
information. A recent extension is the combination of stationary ultrasonic, radar, and infrared
camera detection. These combined detectors are usually installed on gantries and are therefore
referred to as gantry detection in this dissertation. Like induction loops, they detect very exact
and reliable speed and flow information. The main disadvantages are the high installation and
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2 State of the Art

maintenance costs, which limits the use of this and other infrastructure-based measurement
technologies to just a few corridors.
Another local speed detection mechanism is radar sensors mounted on poles beside the

freeway facing a certain segment of the road. Like gantries and loops, they gather speed and
flow information, but are less cost-intensive. Depending on their exact installation position,
not all lanes can be detected equally and some vehicles are hidden when passing the sensor.
An overview of lane-by-lane radar usage as a basis for a simulation model can be found in
[Schöpplein, 2013].

T

X

l3

l2

l1

Speed

Figure 2.3: Local speed measurements

Figure 2.3 illustrates the method of data collection by local detectors. Let X × T be
a space-time domain. Every detector (at locations l1, l2, l3, respectively) observes passing
vehicles continuously. Their speed values are indicated using the color bar on the right.
Spatially between sensors and temporally between single measurements, no speed information
is available.

Section Measurements (Travel Times)

Using WiFi or Bluetooth (BT) sensor technology, the hardware address, specifically a media
access control (MAC) address, as a unique identifier of a device that passes the sensor is regis-
tered. If re-identified at a further sensor downstream, the matching of both hardware addresses
allows the derivation of a travel time and therefore the average speed of the device [Haghani
et al., 2010; Barcelo et al., 2010; Martchouk et al., 2011; Margreiter, Spangler,
et al., 2015; Margreiter, 2016b; Lesani et al., 2016]. Figure 2.4 illustrates the space-time
domain of resulting speeds. Each line corresponds to one vehicle or device re-identified at two
or more locations l1, l2, l3. The slope and the color of the line corresponds to the average
segment speed of the vehicle.
BT installation is cost-efficient, as no exposed sensor position is needed and both driving

directions can be covered by one sensor solely. Moreover, origin-destination relations can be
derived while tracking a device over a long distance. However, the receivers collect information
from a sub-sample of the vehicle collective only, and additionally, since they are conceivably
placed several kilometers apart from each other, the average speed can be less granular. BT
sensors detect in a certain range in their surrounding, which involves a fuzzy location of the
detected device. Furthermore, no lane-by-lane information is available, and traffic flow values
cannot be detected. Also, the method is dependent on the penetration rate and only measures
a travel time at the end of a section. This results in delayed detection of increasing travel

12



2.1 Traffic State Estimation and Reconstruction
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Speed

Figure 2.4: Travel time measurements

times during congestion, which is a major drawback for accurate real-time information [Jong,
2012].
Margreiter et al. [Margreiter, Spangler, et al., 2015; Margreiter, 2016b; Mar-

greiter, Busch, et al., 2019] show that the penetration rate of BT devices on the autobahn
considered in section 3.1 amounts to 20-40 % compared to the total traffic flow determined
by induction loop detectors. Also, the authors investigate the share of heavy-duty vehicles
which is approximately five times higher than that of cars. Furthermore, they identify a higher
equipment rate for commuters, leading to both time-of-day- and day-of-week-dependent us-
age. Moreover, the authors introduce data filtering approaches. For example, one device can
be detected multiple times at one detector due to the sender’s range, or multiple devices on
board of the same vehicle could be detected. Both cases involve data to be ignored, and
hence, to be filtered. Additionally, stopping or detours of vehicles distort the data.
The work published by [Dion and Rakha, 2006] presents a low-pass adaptive filtering

algorithm for predicting mean travel times using automatic vehicle identification data. The
authors of [Martchouk et al., 2011] describe travel time variability derived from BT data. In
[Barcelo et al., 2010], the reliability of travel time predictions and dynamic origin-destination
estimations on freeways are analyzed based on BT traffic monitoring. Yildirimoglu [2019]
use BT data to simultaneously estimate vehicle paths and travel times but deal in an urban
context. Cotten et al. [2020] investigate novel BT devices and assess the data quality in
comparison to video, radar, and Floating Car Data (FCD).

Floating-Car Based Speed Values

FCD, also called probe data, are gathered from vehicles or smartphones that determine their
current position via the Global Navigation Satellite System (GNSS) and report it on a regular
basis to a central server. Time and space differences allow for reconstructing the probe’s
speed profile on its route. Basically, FCD are also travel time measurements but due to the
small segment spacing, average velocities of measured travel times can be assumed to be
local speeds. Figure 2.5 illustrates the space-time domain resulting from FCD. Each trace
corresponds to an FCD trajectory. Its color is smooth due to the frequent location updates
every few seconds, depending on the fleet.
FCD are available wherever traffic is flowing, which allows for new applications in network-

wide traffic monitoring and management. Several approaches focus on traffic state estimation
and prediction with (mainly) FCD [Bekiaris-Liberis et al., 2016; Work et al., 2010;
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X

Speed

Figure 2.5: FCD measurements

Palmer et al., 2011]. Another advantage is that floating-car based technology does not
require any measurement infrastructure except the telecommunication network.
However, the amount of FCD observations depends on the number of passing vehicles,

since FCD represent only a sub-sample of the whole fleet. This limitation becomes less and
less relevant with sample rates of some percent of the total traffic volume, in particular on
highways during peak hours.
Another aspect is the time delay. FCD-based traffic state estimation is quite convoluted

with many influences such as update frequencies from vehicles to the back-end server, the
fleet size of floating cars, the current traffic flow, and the provider treatment. A drawback of
FCD is that GNSS position and map matching errors cause a great impact [Y. Li and Q. Li,
2010]. FCD are not gathered lane-by-lane.
In [Day and Niloy, 2021], the reliability of FCD-based speeds on highways as a ground

truth is assessed. The authors conclude that estimated distributions have substantial differ-
ences compared to the ground truth distribution, with congested conditions exhibiting less
deviations than in uncongested traffic. The authors of [Sunderrajan et al., 2016] estimate
the traffic state – including density and flow – based on FCD.

Further Traffic State Detection Technologies

Besides the already discussed detection technologies, on which the evaluations in this thesis
are based, there are a few more worth to mention. An overview of in-use sensors can be
found in [Listl et al., 2019]. Specifically, cameras such as the Automatic Number Plate
Recognition (ANPR) and Light detection and ranging (LiDAR) should be mentioned. Both
measure local speeds, and ANPR cameras additionally measure travel times. LiDAR sensors
generally produce high quality data. The reconstruction of the traffic state works reliably if
well calibrated [Nedoma et al., 2018; Tsogas et al., 2011].
Most public data sets found in the literature discuss either fewer data sources or shorter

road stretches. This thesis chose to investigate the autobahn A9 test field with measurement
equipment as previously mentioned. Considering a short freeway stretch of several kilometers
does not allow the identification of congestion patterns, hot spots, and propagation reliably.
Comparing fewer than three data sources does not make sense with regard to both assessments
of congestion detection and fusing strategies. Therefore, the main focus of this work is set to
the previously described technologies along the mentioned experimental site.
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2.1 Traffic State Estimation and Reconstruction

2.1.3 Methods of Reconstruction
Traffic data derived from one of the described detection technologies have to be interpolated
to derive an entire space-time speed reconstruction. Smoothing methods interpolate between
known mesh points of the speed distribution. This dissertation mainly utilizes two interpolation
methods, one smooths speed and flow measurements from local sensors, the other one speeds
from probe vehicles. Hence, a short synopsis of both follows.

ASM

The ASM approach is an anisotropic interpolation method introduced by Treiber and Helbing in
2002 [Treiber and Helbing, 2002; Treiber and Helbing, 2003; Treiber, Kesting,
and Wilson, 2011]. The basic idea is that raw data of a sparse input source are smoothed
in two traffic-characteristic directions: vcong denominating the wave speed in congested traffic
conditions, and vfree denominating the wave speed in free-flow conditions. In a discrete time-
space domain with t and x representing time and space, respectively, the resulting complete
speed matrices Vcong(t, x) and Vfree(t, x) are combined cell-wise:

VASM(t, x) = w(t, x)Vcong(t, x) + (1− w(t, x))Vfree(t, x) (2.1)

The weight w(t, x) is adaptive and favors low speeds:

w(t, x) = 1
2

(
1 + tanh

(Vthr −min(Vcong(t, x), Vfree(t, x))
∆V

))
(2.2)

with Vthr a threshold where weight w(t, x) equals to 0.5 and ∆V is a parameter to control
the steepness of the weight function.
The spatio-temporal smoothing approach interpolates the time-series data spatially between

detector positions but also in time at a fixed sensor location. Additionally, it allows for
considering speeds and flows at virtual detector positions. Several studies assess the accuracy
of the method with positive results, e.g. [Lint, 2010; Huber and Bogenberger, 2013;
Rempe, Franeck, et al., 2016]. The approach was proven to be accurate, efficient, robust,
and flexible with respect to the input data, e.g. [Treiber and Helbing, 2003; Lint and
Hoogendoorn, 2010; Schreiter et al., 2010; Treiber, Kesting, and Wilson, 2011;
Kessler, Huber, et al., 2018a].

PSM

Speed data from probe vehicle trajectories, so-called FCD, can be interpolated using the
PSM introduced by [Rempe, Franeck, et al., 2017]. The PSM is an approach that is
based on concepts of the ASM. It was developed to reconstruct space-time traffic speeds with
higher accuracy given only FCD. It utilizes findings summarized by the Three-Phase traffic
theory [Kerner, 1999; Kerner, 2008] in order to distinguish between localized and moving
congestion. The method outperformed the ASM in recent studies [Rempe, Franeck, et al.,
2017; Kessler, Rempe, et al., 2021].
The basic idea is that in the first step of the PSM, raw data are smoothed in the direction of

typical speed propagation of each traffic phase. vcong is assumed to be the propagation speed
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of moving congestion with low vehicle speeds (also called Wide Moving Jam in the Three-
Phase traffic theory). Congestion that is caused by a bottleneck, e.g., a construction site or
an on-ramp, is often localized and its downstream front is attached to the bottleneck location.
In order to account for the locality, data are smoothed in only the temporal direction for the
so-called synchronized traffic flow phase. Based on the speeds and the amount of available
data, each cell (t, x) is classified into one of the three phases: Free flow, synchronized flow,
or wide moving jam using methods from probability theory.
In the second step, phase-specific speed estimates are computed. Raw speed data that are

assigned to a specific phase are smoothed using either a free-flow kernel parameterized with
vfree or a congested kernel parameterized with vcong. The phase-specific speed estimates are
aggregated into a final speed estimate using a weighted average. This method was shown to
be efficient and accurate [Rempe, Kessler, et al., 2017; Kessler, Rempe, et al., 2021].

Further Traffic State Reconstruction Methods

Besides the mentioned interpolation methods, several further approaches are known in litera-
ture. The so-called ASDA/FOTO approach identifies three traffic phases in space and time and
subsequently forecasts congestion fronts using the shock-wave equation of traffic [Kerner,
Rehborn, et al., 2004]. The traffic speed reconstruction method TravRes uses GNSS-based
travel times and was introduced by Ou et al. [2010b]. A recent traffic state reconstruction
based on moving probe vehicles is presented in [Barreau et al., 2020]. Z. He et al. [2017]
propose a space-time grid of speed distributions composed not of rectangular cells, but rather
parallelograms inclined in the direction of a backward-moving wave, which yields promising
results, especially in congestion.
In summary, Table 2.1 gives an overview of recent interpolation methods. As can be seen, a

gap exists for low-resolution travel time measurements. An appropriate interpolation method
deriving a consistent speed distribution out of section-based travel times is developed in sec-
tion 4.1.

Detection Strategy Suitable Reconstruction Methods
Local measurements ASM, ASDA/FOTO
Section measurements —
FCD PSM, TravRes

Table 2.1: Overview of interpolation methods

2.1.4 Comparisons and Fusion Approaches of Multiple Data Sources
This section presents an overview of research conducted if two or more data sets are avail-
able. It first describes comparison approaches where different data sources are compared with
regard to varying aspects, such as the quality of traffic information. Later on, current fusion
approaches are presented where data sets from multiple sources are superimposed.
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Comparison of Data Sources and Quality of Traffic Information

Comparisons of different traffic detection technologies have been widely studied. The authors
of [Bachmann, Roorda, et al., 2013] compared BT measurements and loop detector data in
the Greater Toronto Area on a stretch of several kilometers. The authors of [Yuan et al., 2014]
describe a network-wide traffic state estimation while they combine loop detector and FCD.
The authors of [Leonhardt and Steiner, 2012] describe an instance-based learning method
for the estimation and prediction of traffic state variables using spatio-temporal traffic patterns
while they conjointly use FCD and local sensor data. In [Cohen and Christoforou, 2015],
the authors statistically analyze the differences between loop detectors and FCD in the area of
Lille, France. In [Wang et al., 2011], a comparison of BT with vehicle license plate recognition
is conducted and errors are estimated statistically.
In literature, data sources are mainly compared to assess the quality of traffic information.

Regarding the time delay of speed information, Rainer and Müllner [2011] state that for
traffic messages broadcast in Austria in 2011 via the Traffic Message Channel (TMC), the
average time of delay was about 10min. In [Kim and Coifman, 2014], traffic information
provided by INRIX is assessed. The results indicate that the reported INRIX speeds tended
to lag stationary detector data by almost 6min on average. The authors of [Rakha et al.,
2013] also assess INRIX data and compare them to stationary sensor data while focusing on
travel time and travel time reliability.
Other studies such as [Bogenberger, 2003; Bogenberger and Hauschild, 2009;

Lux, 2011; Rehborn et al., 2011] discuss quality of traffic information services via indices
(see [Bogenberger and Weikl, 2012; Huber, Bogenberger, and Bertini, 2014] for
an overview of these studies). The fundamental idea of all these approaches is to interpret
quality as the level of similarity between the broadcast traffic information and a ground truth
representing the real traffic situation adequately. This ground truth data are either generated by
tracking test vehicles ([Bogenberger and Hauschild, 2009; Lux, 2011]) or by applying
traffic state reconstruction methods based on stationary detector data ([Bogenberger,
2003; Rehborn et al., 2011; Huber, Bogenberger, and Bertini, 2014]).

Fusion of Data Sources

Differences and characteristics of each technology challenges the fusion of the sources. The
aim of fusion approaches is to develop methods that make use of all information hidden in the
data and compute a combined result that outperforms estimates based on a single source.
The authors of [Faouzi and Klein, 2016] give a detailed overview of the state-of-the-art

in fusion of data in Intelligent Transportation Systems (ITS) and its advantages. A review of
multi-sensor data fusion for traffic is described in [Zhao and D. Zhang, 2018]. In [Klein,
2020], a comprehensive summary of available sensors and fusion techniques is given. Bach-
mann [2011] and [Bachmann, Abdulhai, et al., 2013] compared seven fusion methods for
traffic speeds and travel time estimations. One key finding is that a simple convex combination
of loop detectors and BT measurements is one of the best fusion strategies.
Data are usually noisy, sensors are sparse in space and time, and prone to outages. All of this

limits the applicability of many published approaches in practice. The article by Klein [2019]
presents three widely applied data fusion techniques and describes their relevance to ITS:
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Bayesian inference, Dempster–Shafer evidential reasoning, and Kalman filtering. In [Zeng
et al., 2008], an evidence-theory-based data fusion approach for traffic incident detection is
described. Data from loop detectors, camera observation and FCD are fused on a rather short
stretch of few hundred meters on an urban highway.

Corsi and Capitanelli [2011] applied data fusion techniques for traffic planning and
control in a setting with satellite images, acoustic, and GNSS data. In [Ou et al., 2010a], a
method fusing loop data consisting of both speed and flow, and in-car travel times is presented.
In [Zhou and Mirchandani, 2015], a framework for the fusion of loop detector and GNSS
data is described. This framework is able to distinguish between lane-based traffic states.
The authors of [Faouzi, Klein, and Mouzon, 2009] study the fusion of loop data and toll
collection data using a Dempster-Shafer approach to get an improved travel time estimate.

Leonhardt [2008b] describes a method to estimate and predict travel times based on
probe vehicles and local detector data using regression techniques. Yuan et al. [2014] present
an approach to network-wide traffic state estimation combining loop detector and FCD. The
article [T.-H. Chang et al., 2016] describes a data fusion from travel time measurements
from toll collection stations and stationary vehicle detectors in Taiwan. S. He et al. [2016]
discuss a data fusion approach for mobile phone probes and microwave sensors, and give
a sensitivity analysis on impact factors. The authors of [Rempe, Kessler, et al., 2017]
developed a model to fuse FCD and loop detector data to forecast upstream congestion fronts
on a freeway. A comparison of two model-based approaches on filtering methods is conducted
in [Trinh et al., 2019]. The results are approved using synthetic data from a simulation.
Liu et al. [2018] describe a Kalman filter method for freeway traffic state estimation fusing
two data sources: wireless communication records combined with microwave sensor detection.
Another Kalman filter based approach is given in [Fulari et al., 2015].

Rostami-Shahrbabaki et al. [2018] propose a fusion of loop data and FCD at urban
intersections to estimate queue lengths and outflows. In [Ambühl and Menendez, 2016]
and [Dakic and Menendez, 2018], a fusion of loop data and FCD is described with the goal
to approximate the macroscopic fundamental diagram of urban networks. However, data stem
from micro-simulations which tend to idealize real data. The authors of [Hegyi et al., 2013]
fuse loops, FCD, and camera data using the ASM to improve the speed of jam detection and
respective control measures. An evaluation is performed again using simulated data.
A recent study by [Kessler, Rempe, et al., 2021] proposes a conjoint optimization of

accurate traffic speed and travel time reconstruction using multi-sensor data fusion. The
authors compare different fusion approaches such as a section-average, ASM, PSM, and a
novel approach, the so-called PSM-W, a weighted integration of BT measurements into a
harmonic mean fusion of loop detectors and FCD. The weighting factor corresponds to the
travel time of a BT device. If it is short, the speed is likely to be high. Analogously, if the
travel time is long, the speed is supposed to be low. In both cases, the speed value is reliable
and the weighting factor in the data fusion is high. In case that the travel time is something
in between, several realizations of the segment speed profile are possible. This leads to an
unreliable average speed estimation and therefore, the weighting factor in the fusion is low.
The authors conclude that a data fusion with all sources will not necessarily improve the overall
traffic reconstruction. They recommend a speed retrieving based on FCD only or on FCD plus
local speed measurements which yields best results.
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2.2 Congestion Definition and Detection

This section describes existing approaches of congestion definitions and classification possibil-
ities. Both are used as a basis to categorize several congestion patterns. Further, the section
discusses strategies for the detection of congestion including both mainline and lane-by-lane
traffic information.

2.2.1 Congestion Definition

In literature, several approaches exist to define emerging congestion patterns and congested
areas. Most studies utilize either a fixed or a variable velocity threshold or a certain amount
of travel time increase.
Traffic jams in Switzerland are defined below a threshold of 10 km/h [ASTRA, 2021].

INRIX [2021] define congestion if the speed in one of their segment-based intervals falls
below a certain percentage of the average free-flow velocity at normal traffic. The online
information service of Bavaria named BayernInfo [2021] proposes traffic jams below 32 %
of the free-flow velocity which is at most 130 km/h. TomTom [2021] define congestion as
certain amount of additional travel time during peak hours compared to one hour of driving
in free-flow conditions.
The German Federal Highway Research Institute BASt recommends to treat congestion if

the traffic state fulfills one of the following three conditions: (1) measured speeds are below
30 km/h and measured density is above 70 veh/km, (2) lane occupation is larger than 50 %
and measured speeds are below 45 km/h, (3) the moving average of measured speeds reaches
a threshold of 35 km/h at most, measured flow is at least 1800 veh/h, both car and truck
lanes have a flow unequal to zero, and the speed difference of both lane groups amounts to
25 km/h maximum [BASt, 2018].
The online control algorithm INCA was developed to control variable speed limits and

message signs. It identifies the time when a congestion warning should be shown on gantries.
It uses three parameters to define congestion: A threshold of the traffic flow q depending on
the number of lanes, the speed differences between the speed shown as a warning and the
driven speed at the gantry, and a threshold of the standard deviation of speeds [Vukanovic,
2006; Denaes et al., 2009a; Denaes et al., 2009b].
In this dissertation, congestion prevails if the speed of a cell in a discretized space-time

domain is set to a value less than a critical velocity vcrit = 40 km/h, combined with some
additional requirements to the neighbored cells. The threshold of 40 km/h is chosen to cover
both halting/stopped vehicles and slow moving traffic. A sensitivity analysis was conducted
and showed that if the speed value is set too low, fewer congestion events are recognized
appearing as single artifacts, specifically just a few are detected by section-based travel times.
If the speed value is set too high, many widely congested areas are detected while the occurring
congestion patterns do not allow for a fine classification of several types. Stop and Go waves
usually oscillate around low speeds. The number of 40 km/h has proven to be appropriate in
practice [Kessler and Bogenberger, 2021]. This value ensures to detect a sufficiently
large number of congestion events to test the algorithms proposed in this thesis.
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2.2.2 Congestion Classification

A basic and well-known traffic state classification is the three-phase traffic theory developed
by Kerner et al. [Kerner, 2004; Kerner, 2009]. This theory distinguishes three phases of
traffic: free-flow, synchronized flow and wide moving jam. Hence, two of these phases indicate
congestion. The evaluation is based on the analysis of extensive data sets of congestion
patterns on German and international freeways [Kerner and Rehborn, 1996; Kerner,
1999; Kerner, 2002; Kerner, 2004; Kerner, 2008]. The wide moving jam phase is a
congested stretch that propagates upstream with a constant mean velocity as one coherent
structure through all other traffic states or bottlenecks. In synchronized flow, the downstream
front is usually fixed to a certain location as for example bottlenecks.
Helbing et al. extended the prevailing traffic conditions in congestion to five phases. In

[Helbing et al., 2009; Schönhof and Helbing, 2007; Treiber and Kesting, 2011],
the authors derive conditions for congested traffic states, starting from the instability diagram
of a traffic flow model. They analyze the occurrence, appearance, spreading in space and time,
and the related increase in travel time. The terminology of traffic phases is discussed and an
empirical evidence of the existence of a phase diagram of traffic states is given. In contrast to
other presented phase diagrams, it is shown that widening synchronized patterns are possible
if the maximum flow is located inside of a metastable density regime. Apart from different
discussions and investigations, it is pointed out that combinations of on- and off-ramps create
different patterns than a single isolated on-ramp.

Leonhardt [2008a] investigates traffic prediction using spatio-temporal traffic patterns.
The author compares recently measured traffic states with entries in a historical database and
matches the most similar pattern to predict the traffic situation.
Four of the congestion types used in this thesis were first developed in [Transver GmbH,

2010]: Jam Wave, Stop and Go, Wide Jam, and Mega Jam. The single congestion wave is
a thin stripe within the space-time diagram implying a temporarily low velocity. Stop and Go
describes several narrow stripes representing congestion waves separated by free-flow sections.
Wide Jam is a broad area with predominant congestion velocity. An extensive area with
the domination of congestion speed values is Mega Jam. It represents a wide-spread traffic
breakdown and mainly happens during severe vacation traffic or major incidents. In this report,
traffic jams are analyzed based on GNSS traces of individual vehicles and stationary detectors.
Different characteristics have been investigated and typical congestion formations have been
identified. The driven velocity and the duration of each vehicle driving this velocity are two
significant parameters for their classification. In [Bursa et al., 2018], a similar congestion
classification on alpine freeways is described.

2.2.3 Lane-Specific Traffic Information

Bursa et al. [2019] analyze congestion patterns on alpine motorways. The authors compare
lane-specific and aggregated lane traffic parameters. They conclude that congestion patterns
vary across the lanes and that in regions with severe uphill slopes such as the alps congestion
should be detected lane-by-lane. The study by Coifman and Ponnu [2020] analyzes the
influence of a lane-by-lane congestion on adjacent lanes in the fundamental diagram.
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2.2 Congestion Definition and Detection

The authors of [Sasahara and Elefteriadou, 2018] investigate lane-based speed dif-
ferences upstream of an off-ramp causing spillback. They conclude that congestion from an
off-ramp queue does not affect all lanes similarly, and breakdown does not necessarily occur
on all freeway lanes. Their work is continued in [Sasahara, Carvalho, et al., 2020] where
they predict lane-by-lane flows and speeds for freeway segments and estimate capacities per
lane.

Xie et al. [2021] analyze lane capacities with a focus on freeway diverge sections in a
semi-congestion environment. Traffic control strategies specifically for a lane-based online
control are developed in [G.-L. Chang et al., 2020], especially ramp metering at off-ramps.
A dynamic queue length estimation for long freeway off-ramps is simulated in [Heshami and
Kattan, 2021]. The authors discuss control strategies for spillback on the off-ramp queue.

2.2.4 Congestion Detection Strategies
Incident detection algorithms in online traffic control have been researched since decades. An
early system is the COMPASS system [Masters et al., 1991], installed in the Metropolitan
Toronto area. It combines two algorithms, the All Purpose Incident Detection and the Dou-
ble Exponential Smoothing algorithms which are able to make use of short-term forecasting
techniques to detect irregularities of traffic variables such as volume, occupancy, or speed.

Karantanos and Chow [2015] discuss an advanced incident detection algorithm with
filters and extracts non-recurrent traffic features from recurrent congestion. In [C. Chen
et al., 2004], freeway bottlenecks are identified. The authors use a speed difference threshold
as an indicator of bottleneck identification. Chiabaut and Faitout [2021] predict traffic
congestion and travel times based on a clustering of historical congestion maps and identify
consensual days based on 10 months of data on a French freeway. Y. Chen et al. [2020]
examine spatio-temporal congestion patterns identification on urban freeways based on FCD.

Blumthaler et al. [2020] compared FCD and Stationary Detector Data (SDD) on con-
gestion recognition using the congestion types from [Transver GmbH, 2010]. They state
that on an alpine freeway with a high share of heavy-duty vehicles and low sampling rates of
FCD trajectories, FCD do not allow for identifying short-term congestion patterns. The paper
by [Sheikh et al., 2020] investigates the estimation of traffic incidents from a hybrid observer
method. Traffic incidents are detected by using an improved Automatic Incident Detection
(AID) technique based on lane-changing speed.
In [Margreiter, 2016a], the author suggests an AID algorithm based on a comparison

of BT travel times. It first filters out too low and too high travel speed values and, second,
executes a time-dependent comparison to neighbor values on the same road stretch. This
algorithm determines the start and end time of congestion or incident and hence provides
the times when a warning should be shown to passing drivers on variable message signs.
Their algorithm works fast and reliable in terms of incident detection, still the authors do not
conduct a general traffic state reconstruction. Mercader and Haddad [2020] describe a
novel AID method for freeways, based on the use of data provided by BT sensors and an
unsupervised anomaly detection approach. The authors validate their proposal using real data
from a highway in Tel Aviv, Israel. Their method is based on characterizing anomalous traffic
conditions by exploiting the fact that anomalies tend to be isolated.
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2 State of the Art

Takeaways from Chapter 2: State of the Art

• Speed contour plots are an appropriate representation of speed distribution

• Congestion speed threshold of 40 km/h per cell in a space-time domain

• Usage of four mainline congestion patterns as a basis for classification

• Application of ASM and PSM as suitable interpolation methods for SDD and FCD

Identified research gaps:

• Fusion method for section-based travel times to consistent speed distribution

• Fusion method for traffic sensor data with multiple sources on a long road stretch

• Consideration of lane-by-lane congestion as part of a comprehensive congestion
pattern classification

• Coupling of congestion patterns and data sources to determine detection suitability

22



Chapter 3

Traffic Data Collection
This chapter presents all the data sources used in this thesis with a discussion on their re-
spective measurement principles along with their strengths and weaknesses. The experimental
site is a German freeway stretch of 157 km, situated in central Bavaria. As time range, two
periods of data are analyzed, from 2015 and from 2019. Data are gathered using four detec-
tion methodologies: gantries, radars, Bluetooth (BT) sensors, and Floating Car Data (FCD).
Gantries and stationary radar sensors measure local speeds. BT sensors re-identify a passing
vehicle at two or more locations and therefore yield travel times in between. FCD contain
trajectories of single vehicles aggregated to space-time speeds.
The chapter is organized as follows. In section 3.1, the freeway stretch and each of the data

sets are introduced. Section 3.2 discusses the strengths and weaknesses of each data set to
point out the base line for all comparisons. In the last section 3.3, the software implementation
and data processing are explained. In the end, every set of traffic data is represented as spatio-
temporally discretized speed matrix with a constant velocity v per cell.

3.1 Data
This section gives an overview of all provided data and the considered road stretch along
the German freeway A9 between Munich and Nuremberg. Data are available from the four
detection technologies (1) gantry, (2) side radar, (3) BT, and (4) FCD.
In the following, each detection technology is presented and the available data are in-

troduced. Where necessary, steps of preprocessing are discussed, such as outlier detection,
filtering, and smoothing. Additionally, for all hardware installation (that is gantry, radar, and
BT sensors), the exact positions along the road stretch are given. FCD are available through
– moving – probe vehicles without fixed locations.

3.1.1 Experimental Site: Autobahn A9 in Germany
As a test site, the German autobahn A9 between Munich and Nuremberg was chosen. It is a
157 km stretch of freeway and one of Germany’s most used roads. In 2019, more than 150, 000
vehicles per day were counted on average at interchange Munich-Nord in both directions [Au-
tobahndirektion Südbayern, 2021]. This high traffic volume ensures the emergence of
congestion, the basis of all conducted analyses. Munich is located at km 529, Nuremberg at
km 372. A larger city in between is Ingolstadt situated around km 460. Data are available for
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3 Traffic Data Collection

both driving directions, in Northbound direction (NB) (Munich towards Nuremberg, decreas-
ing kilometers) and in Southbound direction (SB) (Nuremberg towards Munich, increasing
kilometers). The direction of travel in the contour plots is always illustrated ’from bottom to
top’, therefore NB direction plots are depicted with a reversed vertical axis.
Figure 3.1 shows the localization of the considered road stretch in magenta. The Bavarian

road network is depicted with bold orange lines (highest functional road class). The stretch
extends between the interchange freeway A3 in the north and the Munich city highway B2R
in the south. In between, the road network shows five interchanges with other Bavarian
freeways. The freeways A99, A92, and A6 affect both Westbound and Eastbound direction.
The interchange A93 leads only to the East, whereas the interchange A73 leads only to the
West.

Figure 3.1: Bavarian road map with considered freeway stretch

Several areas of this freeway are equipped with variable message signs and variable speed
limits, and the shoulder lane is in part-time use when the traffic flow is high. Figure 3.2
sketches the 157 km long road stretch with its varying lane configurations. On the bottom
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3.1 Data

and top, Munich and Nuremberg are indicated, respectively. In cyan, the interchanges are
illustrated. All entrance and exit ramps are depicted in magenta in the middle of the road,
always affecting both driving directions. Except from the very end of the freeway towards
Munich, the street consists of at least three continuous lanes. The part-time use of the hard
shoulder lane is hatched. It temporarily increases the number of available lanes from 3 to 4.
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Figure 3.2: Sketch of autobahn A9 stretch with separate lanes: interchanges (cyan), ramps
(magenta), part-time hard shoulder (hatched)

3.1.2 Traffic Data from Gantries
One traffic detection technology is sensors installed on gantries over-head of the road (see
Figure 2.3). Their detection works locally and consists of three parts: a radar, an ultrasonic,
and an infrared part. The number of vehicles passing the detector (flow) and their corre-
sponding speeds are measured lane-specifically. Usually, flow and speed values are aggregated
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3 Traffic Data Collection

to intervals of 1min. Flows are summed up during the interval over all vehicles per lane,
while speeds are averaged (arithmetic mean) during the considered minute over the number
of vehicles (v = ∑

i vi/nveh). Minute-by-minute speed values are available both per lane and
as an averaged speed value over all lanes.
Gantry measurement data are provided for two separate sections of the road, one coming

from the road authority of Northern Bavaria in the range of km 372 to km 400, the other
from Southern Bavaria in the range of km 480 to km 529 (green in Figure 3.3). In NB
direction, 15 locations (in Northern Bavaria) and 38 locations (in Southern Bavaria) measure
flows and speeds with average spacings of 1.9 km and 1.3 km, respectively. In SB direction,
20 locations (in Northern Bavaria) and 44 locations (in Southern Bavaria) measure data with
average spacings of 0.8 km and 1.2 km, respectively. Speed and flow data were recorded during
two periods, in spring 2015 and in spring and summer 2019.
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Figure 3.3: Sketch of autobahn A9 stretch with gantry locations: interchanges (cyan), ramps
(magenta), gantries (dashed green)
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3.1 Data

3.1.3 Traffic Data from Radars

Radar sensors on this freeway are devices located nearside the road, installed on top of an
approximately 4m tall mast to monitor all lanes of one driving direction. Like gantry measure-
ments, radars provide flow and speed values lane-specifically, also aggregated to one minute
intervals (see also Figure 2.3). Six sensors in NB direction at km 411 and in the area between
km 453 and km 463 as well as six locations in SB direction between km 452 and km 469
detect three lanes each. The locations of the radars are sketched in Figure 3.4 (orange).
Minute-by-minute data from spring and summer 2019 are available.
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Figure 3.4: Sketch of autobahn A9 stretch with radar locations: interchanges (cyan), ramps
(magenta), radars (dashed orange)

27



3 Traffic Data Collection

3.1.4 Traffic Data from Bluetooth

A section-based detection technology is BT sensors (see Figure 2.4). At various locations,
BT sensors are placed nearside the shoulder lane and register the unique hardware address of
passing BT devices. If a device is re-identified at a downstream sensor, the in-between travel
time is calculated. Data are captured second-by-second at these locations. On the considered
road stretch of autobahn A9, 35 BT sensors are installed with an average spacing of 4.6 km,
each recognizing vehicles on both driving directions. Figure 3.5 shows the BT sensor locations
in blue.
Data are available from spring 2019 along the entire road stretch. Note that the driving

direction cannot be determined based on a single BT measurement solely. By matching a
corresponding entry in the database for an individual hardware address hash value, the direction
of travel is known. Traffic statistics derived from BT along this autobahn stretch can be found
in [Kessler, Karl, et al., 2019].
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Figure 3.5: Sketch of autobahn A9 stretch with BT locations: interchanges (cyan), ramps
(magenta), BT (dotted blue)
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3.1 Data

3.1.5 Traffic Data from Floating Cars

Floating Car Data (FCD) are derived by observing probe vehicles (see Figure 2.5). The
probe speed measurements are gathered from map-matched Global Navigation Satellite System
(GNSS) positions. Vehicles traveling along a road stretch send their GNSS positions second-
by-second to a server and an algorithm fuses these data to consistent travel times or speeds
per link. Usually, this service is not free of charge and data providers sell their fused data
as dynamic traffic information. In this study, two FCD sets are available. One comes from
the traffic information provider TomTom and comprises three months of data in 2015. The
other one comes from measurements by the car manufacturer BMW fleet and comprises two
months of data in 2019, both explained in detail in the following.

TomTom Data Set

TomTom offers a live data feed reporting current speeds for link segments in a road network
with a time update of 1min. The spatial resolution of the FCD are segments with an average
link length of about 100m and a maximum length of 198m. The reported speed is calculated
in a fusion engine, which determines a consistent speed for each link in each update cycle
from various input sources. Consistency has to be ensured both spatially and temporally and
cannot be assessed by the end user. The speed estimation is driven by a weighted average
over the last observations from individual probes plus some black box refinements under the
control of the proprietary provider. The general workflow is depicted in Figure 3.6.

Probes providing
GNSS data

Asynchronous upload (typ-
ical frequencies of 1-3min)

Other sources
than GNSS,
e.g., historical
information

Fusion Engine:
Periodic updates of 30 sec

Map matching

Output: network-wide
speeds, jams, road closures,

and other incidents

Figure 3.6: Processing chain of TomTom FCD

The provided data set comprises speed data from spring 2015 for the road stretch between
Munich and interchange A93 in both driving directions. Data are available as minute-by-minute
speed values. Streamed FCD are not smoothed spatially or temporarily but are calculated by
the fusion engine per segment per time update interval. The timestamp corresponds to the
output time of the fusion engine.
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3 Traffic Data Collection

BMW Data Set

The second FCD set is provided by BMW. Trajectories from individual BMW cars are collected
as a list of (x, t) tuples for each vehicle that reports data along the road based on their sent
GNSS positions. First, travel times between subsequent tuples are computed. Second, both
the road network and the time range are segmented. Third, for this given segmentation and
cell discretization, average velocities are assigned to all grid cells which the vehicle passes
through. If several vehicles cross the same spatio-temporal cell, the harmonic mean velocity
is considered [Rempe, Kessler, et al., 2017].
Data provided for this study are discretized speed cells with a size of 1min × 100m. They

were recorded on several days between April and December 2019 on the entire road stretch
between Munich and Nuremberg, in total 41 and 45 days in NB and SB direction, respectively.

3.2 Quality of all Data Sets
This section compares all available data sets with regard to the data quality that was experi-
enced during the analysis. Also, it gives an overview of the strengths and weaknesses to define
the base line, refer to Table 3.1.

3.2.1 Gantry Data Set
The strength of gantry measurements is to detect exact and reliable local speeds. In general,
gantry data require no filtering to exclude certain locations or times from the analyses. Just
few outages occurred during the data recordings due to data server breakdowns. One location
was on a construction site, which led to either no traffic or congestion (if – slow – construction
site vehicles passed the sensors). Therefore, either a subset of or all lanes were omitted for
some periods. These data have a high and easy availability for any period of the analyses.

3.2.2 Radar Data Set
If well calibrated, radar speed measurements generally provide accurate data. Yet, in the
investigated data set, there are some locations where speed detections are less plausible.
These locations are not as easy to detect as gantry construction sites, for example because
their speeds do not decrease much such that congestion is measured. During the analyses,
data were filtered and cleaned continuously. Most work had to be done manually, for example
identifying a side radar rotated to an exit ramp instead of to the mainline.
A weakness of this radar data set is the small number of available sensors. Six sensors per

driving direction is not sufficient to detect congestion reliably on the majority of locations
along the road stretch. Smoothing methods such as the Adaptive Smoothing Method (ASM)
require a certain number of mesh points for the interpolation to obtain realistic resulting
speeds. Additionally, some sensors are so far apart from others such that interpolation over
all locations is not feasibly possible.
Like gantry data, the radar data set has a high and easy availability for any period of

analyses.
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3.2 Quality of all Data Sets

3.2.3 Bluetooth Data Set
Travel time measurements using BT are mainly plausible compared to the other data sources.
The strength of this detection technology is its cheapness meaning that the number of sensors
may increase continuously where hardware equipment requires concentration. Most of the
sensors operate energy self-sufficiently by solar photovoltaics. This enables that a sensor may
be moved to an optimized place, e.g., if it recognizes devices on a road nearby.
A disadvantage is a relatively large time delay when reconstructing the traffic state. Each BT

recognition has to await its pairing in the data base at the end of each section. If congestion
emerges within a section, it is supposed to be detected later than by other technologies because
a sufficiently high number of vehicles has to pass the congested area first.
Also, a weakness is that high travel times, indicating a slow segment speed, occur from time

to time, that originally come from trip interruptions or detours. These trips are challenging
to filter since they do not necessarily imply congestion. During the day, most of these trips
get averaged by higher speeds and are therefore not relevant to be filtered in advance. During
night hours, when flow is little, slow speeds do not get averaged. Hence, it may happen that
congestion is detected because two ’slow’ vehicles followed after another and no ’fast’ vehicle
(indicating free-flow) drives in between. Then, any data smoothing algorithm will assume
congestion between these two vehicles which challenges the implementation.
The minimum number of vehicles to be detected to compute a reliable speed reconstruction

and to determine congestion from this is not addressed here. Before traffic is controlled online
on a BT basis only, a reliable algorithm with a low false-positive rate of congestion detection
has to be proven (section 6.2), which is out of the scope of this work.
Like gantry and radar data, BT data are easily accessible.

3.2.4 Floating Car Data Set
Both data sets, the TomTom and the BMW data set, consist of exact speeds. The TomTom
data set is prepared for customers. It therefore provides reliable speed values, also when
flow is little (see section 5.3). In such a case, the data set is enriched with historical speed
information. The BMW data set is not thought for a broad set of customers, hence, it is a
raw data set without preprocessing. This leads to many empty and undefined speed values in
the sparse velocity matrix. Depending on the purpose of the analyses, these gaps are assumed
to be either Not-a-Number or free-flow velocity (indicating uncongested areas).
Both data sets are not easily accessible. Since these data are neither public nor maintained

by a public authority, the period of data collection and provision is barely extendable.

3.2.5 Summary
Table 3.1 shows an overview of the type of measurements and the provided information per
data source. The first three detection technologies are collected by the public road authority
and available as raw data while FCD are provided by private companies which generally do not
publish any single vehicle information.
Measurements by gantry and radar sensors result in a similar type of data structure. Both

technologies detect locally (in contrast to section-based traffic data) and measure aggregated
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3 Traffic Data Collection

Gantries Radars Bluetooth FCD
Speed measurement 3 3 7 3

Flow measurement 3 3 7 7

Travel time measurement 7 7 3 3

Location-based information 3 3 7 7

Segment-based information 7 7 3 3

Lane-based information 3 3 7 7

Single vehicle information 7 7 3 7

Table 3.1: Overview of all available data sets used in this thesis

flows and averaged speeds minute-by-minute per lane. Spatially, they do not intersect in
their detection areas. Gantry data are available in the Greater Munich Area and the Greater
Nuremberg Area, radar data in the region of Ingolstadt. This motivates to combine both data
sets. In the following, the combination is referred to as Stationary Detector Data (SDD).
Figure 3.7 shows the consolidation: gantry locations in green and radar locations in orange.
SDD are available from February, April, May, June, and July 2019.
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Figure 3.7: Sketch of autobahn A9 stretch with stationary detector locations: interchanges
(cyan), ramps (magenta), gantries (dashed green), radars (dashed orange)
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3.2 Quality of all Data Sets

Summarizing, Figure 3.8 shows the locations of all detection technologies along the experi-
mental site, SDD (green and orange) and BT (blue). FCD are available throughout the entire
freeway section.
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Figure 3.8: Sketch of autobahn A9 stretch with all detection locations: interchanges (cyan),
ramps (magenta), gantries (dashed green), radars (dashed orange), BT (dotted
blue); FCD available throughout the entire stretch
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3.3 Software Implementation
This section describes the software implementation. It starts with the representation of traffic
data as a space-time speed matrix, followed by the data processing steps of each data set.
Furthermore, common data collection time periods are given. The general workflow of data
processing is implemented as shown in the following diagram (Figure 3.9).

Input Implementation Output

Raw text data Consistency checks

Plausibility checks Filtered raw data set

Interpolation Smoothed data set

Figure 3.9: Workflow of data set processing

3.3.1 Traffic Data Representation
All analyses in this thesis are centered around a spatio-temporally discretized speed matrix.
Sensors (either by direct local speed measurements or by deriving speeds from travel time
measurements) generate a speed distribution over time for certain locations or sections on the
road. Let speed measurements be available for a road stretch X and a time period T . A
spatio-temporal speed function v = v(x, t) returns the speed value for any location x ∈ X
and any time t ∈ T . Furthermore, let X be separated into a set of sections x1, . . . , xn, the
spatial resolution of the speed data. Similarly, let T be separated into a set of time intervals
t1, . . . , tm. The sets {xi}i=1,...,n and {tj}j=1,...,m separate the spatio-temporal area X×T into
a grid, and the function v is constant inside each cell xi × tj of this grid.
Cells of interest for this study are only those that contain a speed value below a predefined

threshold since they denote congestion. There exist other definitions of congestion apart from
a velocity threshold (confer section 2.2). In this thesis, congestion prevails if any spatio-
temporally discretized cell is assigned a speed value below the critical velocity vcrit. Table 3.2
gives an overview of the introduced parameters.

3.3.2 Gantry Data Set
Speed and flow measurements by gantry sensors come from two data hubs, analogously to the
responsibilities in northern and southern Bavaria.
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3.3 Software Implementation

Name Description
X Road corridor
x ∈ X Location in X
{xi} = {x1, . . . , xn} Set of sections (spatial resolution)
T Time period
t ∈ T Time in T
{tj} = {t1, . . . , tm} Set of time intervals (temporal resolution)
xi × tj Spatio-temporal speed cell
vij Speed in cell xi × tj
vcrit Speed threshold to distinguish free-flow vs. congested traffic

Table 3.2: Parameters and variables

Input In the north, the traffic management center Fischbach collects data and provides them
as text files, one .csv-file per day per driving direction containing all sensors, hence, two files
per day. In the southern center Freimann, speeds and flows are stored in .xml-files, one file per
lane per location per day per driving direction. In sum, 372 files per day need to be processed.
As a first step, all text files are imported into a software environment. There, the relevant
information such as speeds of each lane, locations, and timestamps are extracted.

Consistency Checks The gantry data consistency check eliminates negative speed values,
for example coming from construction site vehicles driving in the opposite direction. Further,
it excludes data, that do not obey the conditions of the test field, for example values from a
ramp lane sensor. Missing time stamps (e.g., due to a system breakdown or a detector outage)
are added to the time vector and corresponding speeds are set to Not-a-Number values.

Plausibility Checks The plausibility check detects and eliminates data lacks such as con-
struction sites. In such a case, speed data measured by gantries are not desired though feasible,
e.g. observed construction site vehicles driving very slow. Considering a construction site as a
congested region would yield a hot spot although it exists only temporarily.
The considered road stretch comprises sections with a varying number of lanes (between

2 and 5 per driving direction, Figure 3.2). For comparisons with other data sets, the data
processor sets up all cross-sections as three-lane traffic. Two parallel lanes are equipped only
at a negligibly small number of locations, therefore, a separate treatment is not necessary.
Wherever more than three lanes are equipped with sensors, the lanes are aggregated to exactly
three. Without this aggregation, comparisons with data from other detection technologies
would be less tractable. Furthermore, no stringent consideration of one lane would be possible
(e.g., shoulder lane).
The plausibility checker captures additional lanes by combining two existing lanes to one

lane, making use of local knowledge. Generally, wherever part-time shoulder usage is allowed
(which is in regions with 3 regular lanes), the shoulder lane and the right lane are combined;
the middle and left lanes are kept individually. It is verified in the data set that the speeds
between the shoulder lane and the right lane do not differ much. In sections with 4 regular
lanes without shoulder usage, the two left lanes are combined while the two right lanes are kept
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separately. Again, the speeds of the two left lanes are seen to be relatively similar. Locations
with 5 lanes are treated individually since they appear rarely, and lanes are grouped according
to their target directions. Especially regarding the consideration of the novel congestion type
Lane Jam, a careful proceeding is essential.
The combination is executed as follows. Let l1 and l2 be two lanes at one sensor location

for which an aggregation should be executed. Let n(l1) and n(l2) the corresponding number
of vehicles per lane within a time interval δt of one minute of detection. Furthermore, let
v(l1) and v(l2) be their average speeds measured on each lane per minute, respectively. The
flow q(l) = n(l)/δt of the combined lane l is given as

q(l) = q(l1) + q(l2) = n(l1) + n(l2)
δt

(3.1)

which is the sum of all vehicles passing either lane l1 or lane l2. The speed v(l) amounts to

v(l) = v(l1) · q(l1) + v(l2) · q(l2)
q(l) (3.2)

which is the flow-weighted average speed of both lanes.
All information is represented as a speed matrix together with space and time vectors. The

cell-based speed information is ordered according to location and timestamps.

Interpolation Additionally to these 3+1 measured data, 3+1 interpolated speed matrices
are computed (3 lane-based, 1 mainline) using the ASM approach.

Output As a last step, all information from Fischbach and Freimann is merged and stored
in one common file consisting of eight speed matrices per direction and day.

3.3.3 Radar Data Set
Though the input speeds are represented differently, the radar data set is processed similarly.

Input Radar data are available as .kuz-files where all information such as timestamp, lane,
speed, and flow is stored in one file per sensor per month. First, each file is imported into the
software environment and broken into smaller parts comprising one day.

Consistency Checks Consistency checks identify negative speed values and set them to
plausible numbers. They may appear depending on the range of byte storage, either from 0
to 255 km/h or from −128 to +127 km/h.

Plausibility Checks The lane numbering is validated and only data coming from one of
the three main lanes per direction are included. Since radar measurements are gathered in a
3-lanes region only, a lane reduction is not necessary. The result is a set of speed vectors per
sensor per day per driving direction.
A location sorter fills these speed vectors into a space-time matrix per day per driving

direction, where it orders all sensors by location according to the direction of travel. Moreover,
the software creates sorted location and time vectors.
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Interpolation Again, in addition to the filtered raw data, also an ASM-smoothed data set
is created per day per driving direction.

Output Analogously to the gantry data set, eight speed matrices are stored in one output
file per direction and day: 3 lane-based and one mainline, each real and interpolated.

3.3.4 Bluetooth Data Set
BT data are stored in a MySQL data base containing relevant information of each BT recog-
nition (timestamp, location, hash value of hardware address, predecessor and successor recog-
nitions, among others).

Input Applying a MySQL dump from the productive operating system writes the BT de-
tections within the test field into one .dsv-file per month (16+ million lines), not separated
into driving directions. A local MySQL file processor splits the monthly .dsv-file into daily
.csv-files. Each .csv-file is then imported in the software environment.

Consistency Checks As a first step, average speeds out of the measured travel times are
computed between the previous and the current detection, taking into account the difference
of both detection locations. If no predecessor is available, the speed is set to Not-a-Number.
The consistency checker investigates if all resulting speeds are positive (note that v = 0 cannot
happen for travel time measurements). Additionally, it checks if the previous and succeeding
registrations of the BT devices are filled consistently in the data base, that is, if the given
timestamp and location of a supposedly preceding/following recognition is equal to timestamp
and location of the data base entry indicating the previous/next recognition at the sensors.

Plausibility Checks The plausibility checker filters all BT detections to exclude measure-
ments of the following types ([Margreiter, 2016a]):

• Several devices carried in the same vehicle (temporal offset between detections ≤ 1 sec
at each location)

• Multiple detections of the same device in the range of a single BT sensor

• Implausible detections of the same hardware address in the network due to wrong hash
value matchings

• Travel times leading to speed values > 250 km/h for the segment (high speed)

• Travel times leading to speed values < 5 km/h for the segment (low speed)

• Hopping devices at several locations indicating different travel directions due to missing
detections or detours
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The data processor runs through all measurements, which is a single device detection. It
creates trips from the detections which means that it identifies two measurements having the
same hash value of a hardware address and belonging to the same travel. If more than two
measurements describe the same trip, the travel is split into a sequence of trips, each with a
dedicated start and end point both in time and space. Hence, the direction of travel can be
determined. If a measurement is a single detection without any predecessor or successor, it is
excluded from the analyses because the driving direction of this measurement is not known.
Further, a list of all timestamps and all locations is created where each row corresponds to
one trip.

Interpolation The fusion of these individual travel times and their determined speeds to an
overall space-time speed reconstruction is described in section 4.1.

Output In total, one file per direction and day is created, each consisting of a list as (loca-
tion1, location2, time1, time2, speed).

3.3.5 Floating Car Data Set
The TomTom and the BMW data set are set up similarly. Therefore, also their processing
workflow is nearly equal except from the interpolation.

Input FCD based speed values are stored as .csv-files, one file per day and driving direction.
Data are organized in (x, t) cells with a cell size of 100m and 1min. For each cell containing
a speed value, the x and t cell indices and the corresponding speed are indicated. First, a data
importer converts the raw data into the software environment.

Consistency Checks The consistency checker filters for nonnegative speeds. Note, that in
contrast to BT speeds, v = 0 may occur in these high-resolution travel time measurements
because each device sends its updated GNSS position every few seconds and is not re-identified
at certain locations only.

Plausibility Checks The plausibility checker filters realistic speed values which are not too
low or too high. Moreover, the space and time grid vectors are created.

Interpolation The TomTom data set contains speed values for every minute and segment.
An interpolation is not necessary. In contrast, the BMW data set contains several undefined
values. In addition to the raw data set, an interpolated speed matrix per day and per direction
is created for BMW data using the Phase-Based Smoothing Method (PSM) approach.

Output For each direction and day, a file is stored containing one and two speed distributions,
a raw and an interpolated one, in case of TomTom and BMW, respectively.
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3.3.6 General Processing
In general, each data set is stored in the scheme of one file per day and per driving direction.
If any speed data are implausible or need to be excluded for some reason, this value is omitted
from the raw data set, that is, it is set to either Not-a-Number or zero or free-flow, depending
on the application specification. Only afterwards, raw data are interpolated to smoothed speed
data such that data errors are not propagated.
Every data set contains all kinds of days such as normal working days, weekends, vacation

days, public holidays, etc. in order to enable congestion emergence analyses on a broad data
basis.
These data sets consist of different days per data source. Gantry sensors have been set up a

long while ago whereas radar and BT sensors were recently installed on this road stretch. The
calibration of both led to several sensor outages and maintenance phases. The time periods of
data collection are chosen as depicted in Table 3.3. Unfortunately, the recorded time periods
coincide only little. The set of FCD could not be enlarged due to the proprietary ownership.
When it comes to data fusion, several days have to be excluded from the analyses due to
different reasons, such as data lacks of any data source. In total, only 10 days exist where fine
speed data from all sources are available. Hence, a fusion approach cannot be realized on a
large-scale data base.

Detection Technology Available Time Periods

Gantry data set April, May, June, 2015;
February, April, May, June, July, 2019

Radar data set February, April, May, June, July, 2019
BT April and May, 2019
TomTom FCD April, May, June, 2015

BMW FCD Single days in April and May, 2019;
November and December, 2019

Table 3.3: Available time ranges
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Takeaways from Chapter 3: Traffic Data Collection

• Large data sets from gantry, radar, BT, and FCD measurements available for
evaluations

• 157 km long freeway stretch on the German autobahn A9 equipped with various
detection technologies, see Figure 3.8

• Speed distributions from 2 to 5 consecutive months available, varying time ranges
per data source

• Specific properties of each data source yield different strengths and weaknesses,
see Table 3.1

• Enormous processing of raw data necessary to generate comparable, comprehen-
sive, and plausible data sets for scientific evaluations

• Raw and interpolated speed matrices created by an integrated toolchain
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Chapter 4

Extended Congestion Definition and
Detection Strategies
This chapter contains all methodologies of the thesis. It discusses automatic congestion
identification, differentiating various traffic detection technologies. Each detection technology
has advantages and disadvantages making them suitable for different use cases. The chapter
is structured in three major parts: Fusion, congestion detection, and comparison approaches
of data sources. Each part consists of two sections.
The fusion part consists of two algorithms. First, a novel interpolation method, the Low-

Resolution Travel Time Smoothing Method (LTSM), fuses section-based travel times such as
Bluetooth (BT) data to a consistent space-time speed field and is described in section 4.1.
Second, multi-sensor data fusion approaches fuse speed data from all available detection tech-
nologies to a combined speed distribution and are described in section 4.2.
The congestion detection part explains congestion identification and classification. It first

introduces virtual trajectories that simulate vehicles in the space-time domain, and a clustering
approach to find coherent congested areas (section 4.3). Then, a 4+1 congestion classification
is explained in section 4.4. It consists of four mainline congestion patterns and one lane-specific
type. The result is a set of congested areas, so-called congestion clusters, where each cluster
has three properties: a shape (convex hull), a size (area of the convex hull), and a congestion
type.
The last part is comparison metrics of the data sources. Section 4.5 presents an analysis

which data source is able to recognize an incident earliest ex-post and which delay the other
data sources show. In section 4.6, congestion hot spots are investigated using automated
pattern recognition. For every combination of detection technology and congestion type,
spatio-temporal hot spots are identified.

4.1 Low-Resolution Travel Time Smoothing Method
All data derived from local speed measurements, i.e., gantry sensors and radars, can be inter-
polated applying the Adaptive Smoothing Method (ASM) (section 2.1). The input is speeds at
certain locations which the methodology extends to hold at intervals. A spatio-temporal speed
matrix out of high-resolution travel time measurements such as Floating Car Data (FCD) can
be obtained using the Phase-Based Smoothing Method (PSM) (section 2.1). Hereby, speeds
are reported for segments on the road stretch.
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Low-resolution travel time measurements derived BT or WIFI sensors (section 2.1.2), where
the detectors are placed several kilometers apart from each other, can be transferred into
speed data deploying the methodology explained in the following. If an equipped device was
re-identified at a first location l1 and later at a second location l2, the average speed v between
l1 and l2 can be computed as

v = l2 − l1
t(l2)− t(l1) . (4.1)

Equation 4.1 is only a rough estimation in case that l1 and l2 are far apart. In the following,
an approach is described to derive a spatio-temporally discretized speed matrix from segment-
wise travel time measurements.

4.1.1 Preliminaries
Let a measurement be defined as a single device (or vehicle) detection at one sensor. This
device does not need to be re-identified at a downstream detector. A single measurement
does not inform about the direction of travel. A trip is the travel between exactly two sensors.
From a trip, the average vehicle speed can be calculated as the difference of both detector
locations divided by the corresponding travel time (equation 4.1). This refers to the linear
speed interpolation of both placements. If a vehicle passes by several sensors, it is said to be
a sequence of trips since the speed may vary along the detections. The velocity of a trip is
constant.

Figure 4.1: Travel times (lines); color corresponds to averaged speed (in [km/h])

Figure 4.1 illustrates a speed contour plot with the horizontal axis being the time line
(increasing time from left to right) and the vertical axis representing the space (direction of
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4.1 Low-Resolution Travel Time Smoothing Method

travel from bottom to top). Here, raw data of BT travel times from one day in July 2018 in
Northbound direction (NB) are depicted. The vehicles travel starting on the lower left corner
going towards the upper right (decreasing kilometers while increasing time). Each linear line
corresponds to a single trip. The color depicts the speed of the trip.
The speed distribution can be approximately recognized showing phases with both free-flow

and congested regimes. Red lines in an area of mainly green lines correspond to trips with a
very low speed compared to neighbored vehicles (e.g., travel interruptions). These raw data
are not yet filtered according to the plausibility checks described in section 3.3.4.
The algorithm follows a three-step approach. First, measured travel times are discretized

into a spatio-temporal grid. Each trip corresponds to a linear line with a dedicated start and
end point both in space and time. Second, for each trip, the algorithm identifies all affected
grid cells and matches trips and cells, respectively. Third, all trip segments inside a grid cell
are utilized to compute the average speed of this cell.

4.1.2 Spatio-Temporal Discretization
Let travel time measurements be available for a road corridor X and a time period T . Fur-
thermore, let X be separated into a set of location intervals x1, . . . , xn and let T be separated
into time intervals t1, . . . , tm. Figure 4.2 illustrates an equidistant discretization of X×T into
a grid with cells xi × tj.

𝑡! 𝑡!"#𝑡!$#

Figure 4.2: Travel times in a spatio-temporally discretized grid

4.1.3 Matching Between Trips and Cells
Each cell c = c(xi, tj), abbreviated by cij, is crossed by several trips and each trip p traverses
a certain number of (neighbored) cells. In order to obtain an average speed value vc per
cell c, the algorithm considers the share of each trip which lies inside c (trip segment pc). It
distinguishes five cases:
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(a) Trip starts before and ends behind the cell

(b) Trip starts before and ends inside the cell

(c) Trip starts inside and ends behind the cell

(d) Trip starts inside and ends inside the cell

(e) No intersection between trip and cell

The distinctions are necessary to determine the exact start and end points of the spatio-
temporal trip segment. Figure 4.3 shows how cij is traversed by trips from cases (a) – (d).

Figure 4.3: Cell with intersecting trips for cases (a) – (d)

4.1.4 Average Speed in Cells
To compute the average speed value vc for c, the speeds of all k affected trips pc,k = pc,k(xi, tj)
are weighted combined with a weighting factor αk.

vc =
∑

k αk · v(pc,k)∑
k αk

(4.2)

The proposed method distinguishes three variants of setting αk (see Figure 4.4):

(1) distance-weighted average, αk = distp,c (distance of the trip segment)

(2) duration-weighted average, αk = durp,c (duration of the trip segment)

(3) distance-duration-weighted average, αk = distp,c · durp,c

The spatio-temporally discretized cell grid of X×T contains the average speed value vc for
each cell c.
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Figure 4.4: Possible settings for α: distance and/or duration weights per trip segment pc

4.2 Multi-Sensor Data Fusion
In this section, a multi-sensor data fusion strategy is developed to mitigate the shortcomings
of individual detection technologies. Let at least one data set from each detection technol-
ogy explained in section 3.1 be available. Some data sets provide speed, others travel time
information. An information fusion of available data sets enables the obtainment of a more
detailed insight into the prevailing traffic state.
This section describes several approaches to fuse data from various sensors such as gantry

detectors, radars, BT, and FCD. The assessment of the fused data set is executed using the
novel comparison measure Symmetric Square Inverse Mean Percentage Error (SSIMPE).

4.2.1 Preliminaries
Again, let X × T span the space-time domain with intervals xi, i = 1, . . . , n and tj, j =
1, . . . ,m. Data of all detection technologies are represented as smoothed speed values in a
uniform grid with step size |xi| = 500m and |tj| = 1min. Each matrix consists of cells cij

having a constant velocity vij. Given a number of S sensor technologies on the considered
road stretch, vs, s = 1, . . . , S denote the speed matrices, respectively.
Since all data are sparse in time and space, there are cells in each velocity matrix vs

ij, that do
not contain a velocity value. These entries are treated as undefined values. Let ∃vs

ij denote
that the speed value at (xi, tj) of data set s is defined, and ¬∃vs

ij denote the value being
undefined.

4.2.2 Fusion Methods
This section presents three fusion approaches. First, a simple weighted average is described,
followed by a hierarchical ordering of all data sources. The third method applies a standard
fusion strategy involving neighborhood information to the fused matrices derived from the first
two methods.
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Method 1: Weighted Average Speed per Cell

The first approach is the simple convex combination. Essentially, this is the average speed per
cell per data source weighted with a reliability factor αs:

vfusedij =
S∑

s=1
αsv

s
ij (4.3)

with ∑s αs = 1. If αs is set to 1/S ∀s, all data sets are weighted equally and the fused speed
corresponds to the arithmetic mean of all speed matrices.

Method 2: Fill-up of Gaps Ordered by Reliability

The second method processes data according to their estimated reliability. Without loss of
generality, let sensor technology 1 be the most reliable and technology S the least reliable
data source. The most reliable data in a cell cij dominates over any other data source and
defines the speed vfusedij . If not available (i.e. ¬∃v1

ij), the second most reliable data source is
dominant and so forth. The method is given as:

vfusedij =



v1
ij if ∃v1

ij

v2
ij if ¬∃v1

ij and ∃v2
ij

v3
ij if ¬∃v1

ij,¬∃v2
ij and ∃v3

ij

. . .

vS
ij if ¬∃v1

ij, . . . ,¬∃vS−1
ij and ∃vS

ij

undefined if ¬∃v1
ij, . . . ,¬∃vS

ij

(4.4)

The reliability of all detection technologies may vary in time and/or space. For example,
BT data are less sound during night, or direct gantry measurements are more trustworthy than
interpolated speeds between gantries. Therefore, the reliability can be assigned more complex,
depending on the purpose. With the data sets treated in this dissertation, the simple approach
of a constant reliability is sufficient, for example, because of a small gantry spacing or no other
data than BT available nightly.

Method 3: Fused Speeds with Neighbor Speed Information

The third methodology is an ASM-based approach to find average speeds per cell. First, all
speed data are calculated according to one of the other two fusion approaches (equations 4.3
or 4.4). Thereafter, all speed values inside the cells are optimized using the ASM approach.
To this end, additional speed information from the neighborhood of each cell is taken into

account, analogously to both smoothing kernels of the ASM [Treiber and Helbing, 2003].
This enables an interpolation in both spatial and temporal directions and favors to also fill
undefined cells from the previous fusion methods.
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4.2.3 Assessment of Approaches
The average deviation between any two spatio-temporally discretized data sets, both individual
and fused data, is compared using the SSIMPE. For two equally sized matrices y and z, each
with cells cij ∈ X × T , SSIMPE is defined as:

SSIMPE(y, z) = 1
n ·m

·
∑

xi∈X

∑
tj∈T

(
y−1

ij − z−1
ij

0.5(y−1
ij + z−1

ij )

)2

(4.5)

The symmetry does not prioritize one of the matrices over the other. The square ensures to
only sum nonnegative values while higher deviations receive a larger weight than smaller ones.
The inverse mean indicates that a deviation in the range of smaller speeds is more harmful
than any deviation in the range of higher speeds. The optimum would be SSIMPE = 0. Only
cells with defined speed can be compared, otherwise (¬∃yij ∨¬∃zij) the addend representing
the deviation of that cell (xi, tj) is set to 0 and the denominator n ·m representing the amount
of summed cells is reduced.
In order to assess the reconstruction accuracy, two aspects need to be considered. One is

the Ground Truth (GT) that is used to assess the accuracy of a fusion result. Second is the
methodology to determine an accuracy, given the wish to use all sensor data without sparing
one as the GT. In order to select a GT, the following considerations are done:

• As visible in speed contour plots, the measurements of each data source are sparse in
time and space.

• Gantry and radar sensors provide accurate speed measurements but are limited to certain
locations.

• FCD have a low number of samples at nightly hours, but provide relatively accurate
speed estimates for varying times and spaces.

• BT-based travel times measurements are abundant, though, especially when averaged
over congested segments, the cell-based velocities are inaccurate due to large distances
between neighboring sensors.

Albeit, BT data are a valuable source to assess travel times over sections, they are less suited
for accurate time-space velocity estimates. Although FCD do not resemble macroscopic but
microscopic speeds, the vehicle’s velocities are sufficiently good representatives, specifically
in congested traffic where vehicle speeds are synchronized [Kerner, 1999]. In this study, a
combination of gantry, radar and FCD speeds is used as approximation of the GT, using fusion
method 1 (equation 4.3) to combine the sources into a sparse matrix vGT .
A commonly used approach in model training and evaluation is to divide available data into

a training and a test data set. Figure 4.5 depicts the methodology applied: First, all data in
sparse matrices of gantry detectors, radars, and FCD are randomly separated into one of both
sets with probability of 50 % each. Next, the mentioned fusion techniques are applied to the
training matrices (green) of different combinations of sensors. The test matrix (blue) consists
of the combined gantry, radar and FCD data. The quality assessment applies the SSIMPE
error measure (equation 4.5). For robustness of the results, this random procedure is repeated
for 50 times and average errors are considered.
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vGantry

vRadar

vBT

vF CD

Fusion

vGT

SSIMPE

Figure 4.5: Information flow of sensor data velocity matrices to fusion and quality assessment

4.3 Congestion Detection Methods
This section describes a strategy to detect occurring congestion on a given spatio-temporal
speed distribution. First, the concept of virtual trajectories is introduced. Second, the identi-
fication of congestion clusters is explained.

4.3.1 Virtual Trajectories
Virtual trajectories aim at simulating vehicles crossing the speed matrix. The foundation is
again a spatio-temporally discretized speed matrix v along the considered road stretch X and
the time frame T with cells xi × tj.
A virtual trajectory corresponds to a trace throughout the speed matrix which a vehicle

would take if starting at an arbitrary point in the matrix.

T

X

(xS, tS)

Speed

Figure 4.6: Sketch of the functionality of virtual trajectories
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This can be done for some starting point (xS, tS) ∈ X×T by solving the ordinary differential
equation

dx

dt
= v(x(t), t) (4.6)

with initial condition x(tS) = xS (x as function returning a location in dependency of time).
Whenever the trajectory reaches the bounds of a cell, it continues to the neighbored cell with
the prevailing speed there. Figure 4.6 sketches the methodology for one virtual trajectory.
This way, from each trajectory, a velocity profile, the traveled time, and the traveled distance

can easily be extracted given any starting point (xS, tS).

4.3.2 Congestion Clusters
This section introduces a novel congestion detection strategy. Each congestion event is deter-
mined as a cluster on a spatio-temporally discretized speed matrix. A cluster is defined as the
convex hull of congested cells. In the following, a methodology is described to automatically
detect congestion patterns. Figure 4.7 illustrates an example of an arbitrary speed function.

T

X

vcrit

Speed

Figure 4.7: Computation of congestion clusters, part 1: Speed function v

Since only cells defined with a speed value below vcrit are relevant, the spatio-temporal speed
is divided into cells with speed v ≥ vcrit and cells fulfilling the condition v < vcrit (marked
in red in Figure 4.8). Two such cells xi1 × tj1 and xi2 × tj2 are denoted as connected if the
following two conditions hold simultaneously:

i1 ∈ {i2 − 1, i2, i2 + 1}
j1 ∈ {j2 − 1, j2, j2 + 1}

(4.7)

Let this one-hop neighborhood be suitably defined at the boundaries. By applying the speed
threshold vcrit to the spatio-temporal speed area, non-congested regimes are dropped from the
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T

X

vcrit

Jam

Figure 4.8: Computation of congestion clusters, part 2: Identification of congested cells

Cluster A

Cluster B

Cluster C

T

X

Figure 4.9: Computation of congestion clusters, part 3: Detection of congested areas

grid. In the example of Figure 4.7, seven cells remain as congested (Figure 4.8). Applying the
connection relation of equations 4.7, three separate clusters remain, see Figure 4.9.
This definition of connected congestion clusters leads to many very small clusters. Further-

more, it can be observed that these clusters are frequently located close to each other, for
example, if during a congested phase single cells exceed vcrit. In order to achieve a smoothing
effect, clusters which are located close to each other are merged into one common cluster.
Close to means that the travel time of a virtual trajectory is not larger than tmerge ∈ R≥0
between one cluster and the other.
To this end, all of the clusters located in X × T are iterated over, and a set of simulated

trajectories is computed for each, with each trajectory starting from a different corner of a cell
belonging to the current cluster using equation 4.6. This strategy is visualized in Figure 4.10
for cluster A.
The calculation of virtual trajectories is terminated as soon as time tS + tmerge is reached for
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T

X

tmerge

Figure 4.10: Computation of congestion clusters, part 4: Generation of trajectories (illustrated
for cluster A)

any starting point tS. All clusters touched by one of the generated trajectories are assigned
to the original cluster. This means that all congested cells belonging to one of these clusters
are considered to be a member of the same cluster. Figure 4.11 sketches the resulting two
clusters A and C where A and B merged to A solely.

T

X
Cluster A

Cluster C

Figure 4.11: Computation of congestion clusters, part 5: Merging of clusters

The shape of the final cluster k is defined as the convex hull of all congested cells cij

belonging to the identified congestion cluster (Figure 4.12). A convex hull makes the cluster’s
shape and moreover the cluster identification unique.
Each so computed cluster has a certain area Ak in a space-time unit. Very small clusters,

that do not satisfy a minimum size of Amin, are eliminated. If these single cells were not
merged into a more extended cluster, they are likely to be data inaccuracies, outliers, or
correspond to single slow vehicles not implying congestion.
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T

X
Cluster A

Cluster C

Figure 4.12: Computation of congestion clusters, part 6: Convex hull of identified cluster

4.4 Congestion Types
Considering resulting patterns of congestion clusters, different shapes, forms, and characteris-
tics occur. This motivates to group similarly shaped clusters and to define congestion types.
To optimize traffic planning and control, each type of congestion needs a different treatment
to receive a more accurate GT and to predict traffic states precisely. In the following, a 4+1
congestion classification is introduced. Four of them relate to mainline, one to lane-specific
traffic. Their automated assignment to a given congestion cluster is presented.

4.4.1 Mainline Congestion Types
In the following, these four mainline congestion types are defined formally. Then, two method-
ologies are explained, first how a particular congestion type is assigned to a virtual trajectory,
thereafter, how an appropriate congestion type is assigned to a cluster. Both are discussed by
an example.

Definition of Four Congestion Types

A project report [Transver GmbH, 2010] introduced four congestion types which were also
critically reviewed in [Bursa et al., 2018; Bursa et al., 2019]: Jam Wave, Stop and Go,
Wide Jam, and Mega Jam. This definition is also used in this thesis. Table 4.1 briefly explains
how the jam types are distinguished and Figure 4.13 shows examples as speed contour plots.

Congestion Type Description
(a) Jam Wave Single speed breakdown, thin stripe
(b) Stop and Go Several narrow stripes separated by free-flow sections
(c) Wide Jam Broad area with predominant congestion velocity
(d) Mega Jam Widely spread traffic breakdown, extensive congested area

Table 4.1: Definition of four congestion types
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(a) Example of congestion type Jam Wave (b) Example of congestion type Stop and Go

(c) Example of congestion type Wide Jam (d) Example of congestion type Mega Jam

Figure 4.13: Examples of four congestion types

Each cluster found by the algorithm in section 4.3.2 is assigned one congestion type according
to several conditions. To this end, virtual trajectories traverse the entire space-time area
starting from the spatial beginning of the considered road stretch and continue with the
prevailing speed in each discretized cell (equation 4.6). In contrast to the previous section, the
simulated vehicles do not stop after a travel time of tmerge but continue until the end of the
space-time domain to traverse the entire area. The resulting speed profile of each individual
trajectory is analyzed according to certain parameters explained in the following.

Assignment of a Congestion Type to a Virtual Trajectory

Let tmerge ∈ R≥0 – analogously to section 4.3.2 – be defined as the minimum time spent in
free-flow conditions by a trajectory (meaning that its speed is at least vcrit). This parameter
distinguishes between several individual congestion clusters and separates them. Let t0 be the
first point in time at which a trajectory turns its speed v below vcrit before which v was at
least vcrit for longer than tmerge (t0 as beginning of first speed breakdown). Let similarly t1 be
the last point in time at which the speed of this trajectory is below vcrit and directly afterwards
turns to v ≥ vcrit for a duration of more than tmerge (t1 as end of last speed breakdown).
Summarizing, this trajectory experiences congestion between t0 and t1.

t0 = min{t | v(t) < vcrit & v([t− tmerge, t[) ≥ vcrit} (4.8)
t1 = max{t| v(t) < vcrit & v(]t, t+ tmerge]) ≥ vcrit} (4.9)
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Additionally, the following parameters need to be introduced:

Parameter Description
vcrit Velocity threshold indicating congestion

tmerge
Minimum time break indicating new congestion if
speed in between is at least vcrit

tJamW ave Maximum duration of a Jam Wave
tMegaJam Minimum duration of a Mega Jam
nStopandGo Minimum number of speed drop downs

Table 4.2: Parameter values to define congestion types of a trajectory

If the trajectory experiences a short incident (t1− t0 ≤ tJamW ave), the congestion type is set
to Jam Wave. If t1− t0 is greater than tMegaJam, it is a Mega Jam. Otherwise, the number of
speed drops below vcrit between t0 and t1 is calculated. If there are fewer than nStopandGo speed
breakdowns, the congestion type is a Wide Jam otherwise Stop and Go traffic. Figure 4.14
illustrates the differentiation for one virtual trajectory experiencing congestion.

t1 − t0 ≤ tJamW ave

t1 − t0 ≤ tMegaJam

n(v < vcrit) ≥
nStopandGo

Jam Wave

Mega Jam

Wide Jam Stop and Go

yes

no

no

yes

yesno

Figure 4.14: Distinction of congestion types for individual trajectories

Assignment of a Congestion Type to a Cluster

A congestion type is not only determined per trajectory but also per cluster. To this end,
the clusters defined in section 4.3.2 are isolated and embedded in an environment of free-flow
conditions (Figure 4.15).
Several trajectories cross the congested region one after another. The first trajectory starts

at time tS where tS is the temporal start point of the considered space-time domain. The
other trajectories start uniformly distributed with a time offset tr. The f -th trajectory (f ≥ 0)
starts at time tS + f · tr. Each trajectory undergoing the critical speed vcrit is analyzed, all
others are ignored. The speed profile of each analyzed trajectory determines its congestion
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T

X
Cluster A

Figure 4.15: Computation of congestion types, part 1: Isolation of congestion cluster

type according to the flow chart in Figure 4.14. Figure 4.16 shows the virtual trajectories
inside the cluster: those which undergo vcrit (i.e., intersect the congestion cluster) in solid
lines, all others dotted. Each trajectory experiences a different speed profile. The profile of
the bold trajectory (f = 2) is sketched in Figure 4.17.

T

X

tr
tS

Figure 4.16: Computation of congestion types, part 2: Creation of virtual trajectories inside
the cluster

T

v

vcrit

Figure 4.17: Computation of congestion types, part 3: Analysis of the trajectory’s speed profile
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The congestion type of a cluster is determined basically driven by a frequency-based assign-
ment. Let B = {b | v(b) < vcrit} be the set of all trajectories b for cluster k undergoing vcrit
and therefore to be considered. One congestion type ct is assigned to each b ∈ B, denoted
as ct(b). Let further n2types > 0.5 and n3types > 0.33 denote the minimum percentage of
assigned congestion types if two or three different types are classified among all trajectories in
B, respectively (see Table 4.3).

Parameter Description
tr Temporal offset of starting trajectories
n2types Minimum share of congestion types if two different types occur in k
n3types Minimum share of congestion types if three different types occur in k

Table 4.3: Parameter values to define the congestion type of a cluster k

Let a function unique(x) for any array x return the same values without repetitions. Let
|x| denote the cardinality of an array x. The methodology of the congestion type assignment
works with the differentiation as shown in Figure 4.18.

∃ b ∈ B s.t.
ct(b) = Mega Jam

ct(k) :=
Mega Jam

|unique(ct(B))| = 1 ct(k) :=
unique(ct(B))

|unique(ct(B))| = 2 ∧
|ct(B) = a|/|B| ≥ n2types
for any congestion type a

ct(k) := a

|unique(ct(B))| = 3 ∧
|ct(B) = a|/|B| ≥ n3types
for any congestion type a

ct(k) := act(k) := Mixed

yes

no

yes

no

yes

no

yesno

Figure 4.18: Distinction of congestion types for clusters

Example

The following figures discuss an example. The explained procedure is applied to data derived
from gantry sensors on the Southbound direction (SB) from April 13, 2019 with an appropriate
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parameter set (confer chapter 5 for application and evaluations). The speed values are inter-
polated using the ASM. Figure 4.19 shows the spatio-temporal area with congested regions
and the identified separated clusters in blue. In each cluster, the top most cells appear as to
be not part of the cluster. This is due to the graphical data representation structure. Indeed,
the computation considers all congested cells.

Figure 4.19: Identification of clusters; speeds in [km/h]

(a) One cluster with 2 types: Stop and Go (ma-
genta), Jam Wave (black)

(b) One cluster with 3 types: Wide Jam (cyan),
Stop and Go (magenta), Jam Wave (black)

Figure 4.20: Virtual trajectories crossing identified clusters; speeds in [km/h]

Virtual trajectories cross the congestion clusters. In total, 13 trajectories pass the cluster
in Figure 4.20a whereof 8 are assigned to Stop and Go (magenta), 5 assigned to Jam Wave
(black). The share of Stop and Go trajectories amounts to 62 %, therefore, the overall
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cluster type is set to Stop and Go. In Figure 4.20b, another congestion cluster is crossed by
several Wide Jam trajectories (cyan). Just at the boundaries, two trajectories are classified as
Jam Wave (black). They touch the congested regime barely. Six trajectories (magenta) are
assigned to the type Stop and Go since their speed trends drop below vcrit several times. In
total, this cluster’s congestion type is set to Wide Jam.
The overall congestion type classification of all clusters is depicted in Figure 4.21. It results

in three Jam Wave, two Stop and Go, and one Wide Jam clusters.

Figure 4.21: Assignment of congestion types

4.4.2 Lane-Specific Congestion
Besides the identified four congestion types, jams in which speed propagation behaves differ-
ently on each lane can be experienced. This lane-dependent congestion propagation can affect
only a subset of all lanes. For example, upstream of a congested interchange or exit ramp,
vehicles could be changing their lanes to exit respectively to continue on the freeway. If the
spillback from congestion on the crossing freeway reaches approaching vehicles on the main
freeway, the speeds of the lanes can oscillate individually. Besides spillback, another cause of
this congestion type is heavy road grades. Significantly different speeds prevail on truck and
car lanes while driving uphill with a high share of heavy-duty vehicles [Bursa et al., 2018;
Bursa et al., 2019].
Naturally, this lane-specific congestion Lane Jam can only be detected if the sensor technol-

ogy on a road stretch is capable of measuring speeds on each lane individually (e.g. induction
loops, radars, cameras). A systematic derivation of other causes than those previously men-
tioned and the determination of Lane Jam by non-lane-based detection are left for future
research.
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Definition of Lane Jam

On a spatio-temporal field X × T let speed matrices of lanes l1, . . . , lu, u ≥ 2 exist. For each
lane, the congestion cluster algorithm (section 4.3.2) identifies congested regimes. Let K1
be the set of found clusters on lane 1, K2 the set of clusters on lane 2, and so forth. |Ki|
denotes the number of clusters on lane i ∈ {1, . . . , u}. To find matching pairs of congestion
over lanes, the proposed methodology simultaneously iterates over all clusters k1 ∈ K1, all
clusters k2 ∈ K2, and so on. For each of these combinations k1, k2, . . . , ku, the algorithm
differentiates between the following cases:

(a) Clusters of all lanes have a nonempty intersection, i.e. k1 ∩ k2 ∩ · · · ∩ ku 6= ∅,
indicating occurrence of congestion on all lanes simultaneously

(b) Clusters of a subset of all lanes have a nonempty intersection while the remaining
lanes do not have congested cells, i.e. ∃z ∈ {2, . . . , u− 1} : k1 ∩ · · · ∩ kz 6= ∅ ∧⋃z

i=1 ki ∩
⋃u

i=z+1 ki = ∅

(c) The intersection between each two sources is empty, i.e. ki ∩ kj = ∅ ∀i, j ∈
{1, . . . , u}, i 6= j

Let a region R be defined as the union of all intersecting clusters over the lanes. In case (a),
R = k1 ∪ · · · ∪ ku; in case (b), R = k1 ∪ · · · ∪ kz. It may happen that more than one cluster
from a lane is included in R if a cluster k1 ∈ K1 intersects both k2a and k2b ∈ K2. Then,
R = k1 ∪ k2a ∪ k2b ∪ . . . .
In case (c), if none of the identified clusters have any intersection, the algorithm checks if

any of K2\{k2} or . . . or any of Ku\{ku} has a nonempty intersection with k1 (such that
k1 matches any other cluster to be in cases (a) or (b)). If not, k1 solely is a region itself
affecting only one lane. Analogously, the algorithm proceeds with all other lanes 2, . . . , u and
their clusters.
The result is a set of regions, each affecting a (sub)set of lanes 1, . . . , u. Each region R has

a particular shape (not necessarily a convex hull since it is the union of several convex hulls)
and a size A(R) of its area. The percentage of lane i on region R is denoted by pi(R) ∈ [0, 1].

pi(R) =
A
(⋃

j∈Ki,kj∩R 6=∅ kj

)
A(R) (4.10)

Regions of which the size is smaller than Amin are omitted from the analyses. These clusters
correspond to very short breakdowns on a subset of the lanes and therefore are not relevant.
To detect congestion on a subset of all lanes only, each found region needs to fulfill the

following requirement:

∃i ∈ {1, . . . , u} : pi(R) ≤ pmax (4.11)

where i runs through the subset of all lanes (not only affected ones). If congestion was not
detected on lane i, then pi(R) = 0 and condition 4.11 is fulfilled. pmax corresponds to a
maximum share of the region per lane. If the intersection and the union of all affected clusters
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in R are relatively equal (i.e. pi(R) > pmax ∀i), this region describes congestion but no Lane
Jam. If the intersection and the union across the lanes differ, which means that at least one
lane i exists that has a share pi(R) of at most pmax, then it is said to be a Lane Jam.
The analyses over all days, all lanes, and all clusters include an average share of congestion

per lane indicating which lane is frequently concerned by Lane Jam and by congestion at all.

Example

Figure 4.22 shows an example of Lane Jam from June 27, 2019 in SB direction. In Figure 4.22a,
the identified convex hulls per lane are illustrated: On the right lane (magenta), one congestion
cluster is found. On the middle lane (cyan), three separated clusters are found. On the left
lane (black), two clusters are identified. The union of all these congestion clusters is a region.
Figure 4.22b shows cells with speeds below vcrit. Stop and Go waves are clearly recognizable
on the right lane over a period of more than four hours. Most of the time, the right lane only
is affected. In the second half of the congestion, phases exist where only the middle and the
left lane (green) are affected.

Least Travel Time

Average travel times in the regions per lanes are evaluated. Using the concept of virtual
trajectories (section 4.3.1), each region R is embedded in a free-flow environment, similarly
to the identification of mainline congestion types in section 4.4.1. Virtual trajectories starting
at the same time and place traverse the speed matrix per lane and then, their travel times
are compared. Free-flow is assumed to be driven in two areas: (i) everywhere outside of R,
and (ii) inside R but outside of any cluster belonging to lane i. Inside R intersected with any
cluster of lane i, the trajectory experiences real speeds of lane i.
The analyses over all days, all lanes, and all clusters include which lane is most efficient

when traveling through congestion in general.

Primary Lane Congestion Detection

Each region R is assigned a first temporal and a first spatial occurrence. This corresponds
to the time and the location of the earliest and the farthest downstream point, respectively.
These points must always be vertices of one lane-specific cluster k1, . . . , kz with z ∈ {1, . . . , u}
due to the principle of optimality. Hence, without loss of generality, a region can be restricted
to all vertices of affected clusters to determine lane, time, and location where congestion is
detected earliest.
When lane j detected congestion first, the algorithm determines the temporal delay of the

other lanes by simply computing the time difference

tdiff = tmin(ki)− tmin(kj) (4.12)

for all lanes i affected by the identical congestion, hence, in the same region.
Analogously, the spatial offset between the recognizing lane j and all affected lanes i can

be computed as difference

xdiff = xmax(ki)− xmax(kj) (4.13)
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(a) Convex hulls in a region

(b) Congested cells in a region

Figure 4.22: Example of Lane Jam, detected on June 27, 2019 in SB direction
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where xmax is the farthest location affected by congestion of region R.
The analyses over all days, all lanes, and all clusters include statistics which lane is able to

detect Lane Jam first and which delay and which offset the other lanes experience on average.

Hot Spots

Lastly, Lane Jam hot spots are investigated. Each Lane Jam event is restricted to its first
spatial and temporal occurrence, independently of its overall extensions, such that it can be
interpreted as single dot in the space-time domain. By analyzing several days, all occurrences
of Lane Jam types can be compared and lead to lane-specific congestion hot spots. All regions
identified as congestion type Lane Jam are considered, independently if a Lane Jam varies its
state and transforms to a mainline congestion type. Each region with its dedicated start and
end points both in time and space, together with its size of the area are computed. The
methodology then shows the spatio-temporal hot spots of Lane Jam occurrences, together
with the size of the regions. Additionally, it gives a distribution of hot spots over the days of
week.

4.5 Primary Congestion Detection
This section describes an approach to identify which detection technology is able to recog-
nize congestion earliest. Speed data derived from local measurements are available at sparse
positions. However, they usually have a high temporal accuracy since no data processing is
necessary as it is for travel time measurements.
FCD have a higher spatial resolution with very short segment lengths but need to be ag-

gregated online to obtain the full speed knowledge. BT measurements have to await their
respective pairing before a travel time value can be inverted into a speed value. From the
spatially low-resolution sections, any congestion cannot be localized uniquely (both in space
and time).
This motivates the question which advantages are more dominant, temporally or spatially

high accuracy. The ability to detect emerging traffic congestion promptly is essential for the
provision of advanced congestion warnings to drivers. In the following, an approach is presented
which identifies clusters per data source, matches them and determines the first occurrence
of congestion. Additionally, it computes the delay of the other sources after congestion was
detected by the first data set.
The algorithm works in three steps (Figure 4.23). First, single congestion clusters are

identified, separately for each data source to be compared, based on the methodology presented
in section 4.3.2. In a second step, all computed congestion clusters across different data sources
are associated with each other. The third step comprises the comparison between the temporal
starts of the resulting pairs of congestion clusters. Hence, it can be decided based on which
data source a congestion warning could have been provided earlier in the respective situation.
As in previous sections, let speed data from different sources be available for a road corridor

X and a time period T . Again, let X×T be separated into cells xi× tj. v(cij) = vij denotes
the speed in cell cij = xi× tj. Cells of interest are only those that contain a speed value below
the speed threshold vcrit.
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Association of congestion clusters

Identification of congestion
clusters from source 1

Identification of congestion
clusters from source 2

Comparison of temporal starts

Figure 4.23: Methodological concept of primary congestion detection

One aspect in this context is that local speed measurements should not be restricted to de-
tector positions. If one of the data sets contains data derived from fixed local sensors, instead,
interpolated speed distributions (section 2.1) enables finding coherent congestion clusters.
For the analysis of the first temporal occurrence of congestion (step 3 of the algorithm), the
original speed measurements from the detection positions solely are taken.
If the grids {xi} or {tj} differ between the data sources, a preprocessing algorithm sets the

respective grid to the union of the grid of the separate data sets. For example, if the spatial
grid of source 1 comprises segments of lengths 113m and 98m and the spatial grid of source 2
comprises equidistant segments with lengths 100m, then the union contains segment lengths
of 100m, 13m, 87m, and 11m. The first speed value of source 1 holds in x1 and x2, the
second one in x3 and x4. The first speed value of source 2 is valid in x1 only and the second
speed value keeps constant in segments x2 and x3 before it changes for x4. The common
grids are denoted as {xi} and {tj} after the preprocessing union.

4.5.1 Identification of Congestion Clusters
As a first step, the algorithm presented in section 4.3.2 – identifying congestion clusters – is
applied to each data set separately. The input is spatio-temporally discretized speed matrices,
the output is sets of congestion clusters per data source, respectively. Each congestion cluster
k has defined spatial and temporal start and end points. In the following, the approach is
formulated to compare two data sources for the ease of reading. Similarly, more data sets can
be compared.

4.5.2 Association of Congestion Clusters
In order to match congestion clusters from source 1 and source 2, the algorithm iterates over
the set of all congestion clusters derived from source 1. All source 2 congestion clusters, which
show any intersection with a certain source 1 congestion cluster, are assigned to the source 1
cluster. The source 2 cluster with the earliest beginning is chosen for the match. However, to
reduce the risk of incorrectly matched congestion clusters, the identified pairs of clusters need
to fulfill additional conditions. Let C1 ⊆ X×T denote the spatio-temporal area of a source 1
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cluster, C2 ⊆ X × T of a source 2 cluster. Furthermore, let |A| denote the size of an area
A ⊆ X × T .
Two clusters C1 and C2 can only be assigned to each other if they fulfill the following three

conditions:

| C1 ∩ C2 |
| C1 |

≥ Pmin (4.14)

| C1 ∩ C2 |
| C2 |

≥ Pmin (4.15)

| C1 ∩ C2 | ≥ Amin (4.16)

Hereby, Pmin ∈ [0, 1] denotes the minimum percentage of the area of both C1 and C2 that
has to be covered by both clusters. Amin ∈ R≥0 denotes the minimum area that needs to
be covered by the intersection of both clusters. For appropriately chosen parameters, condi-
tions (4.14) and (4.15) ensure that significant parts of the clusters are congested according
to both data sources, condition (4.16) ensures that small clusters are ignored. The result is a
set of isolated and coherent associated clusters throughout the entire speed matrix.
Different data sources yield jam areas with a different level of detail. For example, in-

terpolated speed data result in more coherent clusters due to the smoothing (fewer clusters
in total), FCD in more separate small clusters due to direct measurements (more clusters
in total). Therefore, it can happen that one congestion cluster of source 1 is matched to
several separate (not connected or merged) congestion clusters of source 2. The algorithm
preserves the different number of jam clusters in an 1 : m matching, since otherwise the con-
ditions (4.14) – (4.16) would not hold, specifically conditions (4.14) and (4.15) would yield
wrong first timestamps.
Each association a1,2 = {C1, C2} is defined as set of two matched congestion clusters

C1 and C2 from data sources 1 and 2, respectively. In case of the 1 : m matching, C2 itself
consists of a set of separate clusters. If data sets from more than two detection technologies are
compared, the association of congestion clusters is repeated for another pair of data sources.

4.5.3 Comparison of Temporal Starts
As third step of the algorithm, the temporal starts of the resulting pairs of congestion clusters
are compared. In case that one data set was interpolated out of local speed measurements,
the congested times from the original detector positions x1, . . . , xD are taken to compare the
first congested timestamps instead of the smoothed speed values, again with the threshold
vcrit.
To this end, all touched detector positions xi1 , . . . , xi2 in the spatial area of one found

interpolated congestion cluster are considered and from those, the first timestamp is taken
which fulfills v(x) < vcrit for x = xi1 , . . . , xi2 and lies in the spatio-temporal area of cluster C.
The detector position xk ∈ {xi1 , . . . , xi2} with the least first congested time is taken as
location for the primary congestion analysis with the corresponding first temporal occurrence
tmin(xk). This represents the spatio-temporal start of the found congestion cluster in case of
Stationary Detector Data (SDD).
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Let tmin be the earliest time at which congestion occurred and a warning could have been
sent.

tmin(C1) := min{t ∈ T | t ∈ C1} (4.17)
tmin(C2) := min{t ∈ T | t ∈ C2} (4.18)

Let furthermore be
tdiff := tmin(C1)− tmin(C2) (4.19)

the difference measure between the first congestion occurrences of both detected clusters.
In case tdiff = 0, both sources detected the associated congested regions at the same time,
tdiff < 0 means that source 1 detected congestion earlier. Analogously, tdiff > 0 implies that
source 2 registered congestion first where source 1 shows a delay of tdiff.
The described approach presents one strategy to determine the data source based on which a

congestion warning could have been triggered earliest. The result also depends on the choice
of parameters. However, the findings of the computational analysis indicate that different
parameter sets only have little influence on the conducted comparison, see section 5.3.

4.6 Congestion Type Hot Spots
This section describes the determination of congestion type hot spots. Locations and times
with an accumulated occurrence of individual congestion types are identified and analyzed.
The existence of different types of congestion prompts a need for a methodology for their

differentiation, as traffic information and control measures should be adjusted based on the
type of congestion. This research focuses on the differentiation of several congestion types and
proposes a methodology to automatically determine their respective accumulated occurrences.
An algorithm is presented which determines – again for identified coherent congestion clusters
with their assigned congestion types – the temporal and spatial occurrences of the respective
congestion start and end points. While considering spatio-temporal areas of several similar
time frames (e.g. days), congestion hot spots can be investigated.

Identification of
congestion clusters

Assignment of
congestion types

Determination of con-
gestion type hot spots

Figure 4.24: Methodological concept of hot spot detection

The algorithm works in three steps (Figure 4.24). First, coherent congested clusters are
isolated in a space-time speed distribution. Thereafter, one congestion type is assigned to
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each cluster. As a third step, the location and time of the emerged congestion with its
assigned congestion type and its size are determined. Hence, it can be decided for example
at which locations detectors should be condensed or at which times traffic control should be
intensified.
Again, the basis is a spatio-temporally discretized speed matrix v with cells cij ∈ X × T .

Similarly to the previous sections, only cells with speeds below vcrit are interesting. Unlike the
algorithm presented in section 4.5, different data sources are not compared directly. Therefore,
it is not necessary to union the grids {xi} and {tj} to consistent grids. Each data set is
considered separately, and the congestion type hot spots are identified individually.

4.6.1 Identification of Congestion Clusters and Assignment of
Congestion Types

The first step is again the application of the congestion cluster identification and isolation
algorithm presented in section 4.3.2.
As a second step, to each of the found clusters, a congestion type is assigned (section 4.4.1).

It is also possible to consider locations with non-continuously available data, for example, if
several segments on a road are not equipped with traffic sensors. Clusters can be identified
reliably if locations without any speed information are filled up with a free-flow speed value
because also the convex hull of the identified cluster is embedded in a neighborhood of free-flow
conditions. The described algorithm can then find clusters in separate location sets.

4.6.2 Determination of Congestion Type Hot Spots
In the third step, the algorithm calculates the congestion type ctk and the size Ak as well as the
locations and the timestamps of the start (xkS

, tkS
) and the end (xkE

, tkE
) of each congestion

cluster k. An analysis of several similar spatio-temporal areas leads to the identification of hot
spots. For example, the evaluation of several days of a month can be conducted and results
in spatial and temporal congestion type accumulations in a certain time period. The result is
a distribution of the congestion types over the considered road stretch throughout the given
times.

66



4.6 Congestion Type Hot Spots

Takeaways from Chapter 4: Extended Congestion Definition and Detection Strategies

Developed Fusion Approaches

Low-Resolution Travel Time
Smoothing Method (LTSM)

Fusion method to consistently reconstruct
section-based travel time measurements to
speed distribution

Multi-sensor data fusion Superimposition of multiple data sources,
each discretized in a space-time domain, to
reconstruct a common speed distribution

Basic Strategies for Congestion Detection and Classification

Virtual trajectories Simulation of vehicles through a
spatio-temporally discretized speed matrix to
obtain speed profiles and travel times

Congestion clusters Identification of coherent regions of congested
cells as convex hulls with certain areas

Mainline congestion types Classification of congestion patterns: Jam
Wave, Stop and Go, Wide Jam, Mega Jam

Lane-by-lane congestion Assessment of lane-specific congestion
proneness and travel times

Algorithms and Metrics for Comparisons

Earliest congestion detection (1) Identification of clusters per data source
(2) Association of clusters across data sets
(3) Determination of first occurrences

Congestion pattern hot spots (1) Identification of congestion clusters
(2) Computation of congestion types
(3) Determination of accumulated occurrences
per congestion type per data source
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Chapter 5

Application to Various Traffic Detection
Technologies
This chapter describes the evaluation of the proposed methodologies. All developed algorithms
from chapter 4 are applied to data sets described in chapter 3. Each section is organized in
two parts, evaluation and conclusion.
First, the fusion algorithms are evaluated. Section 5.1 describes the qualitative results of the

Low-Resolution Travel Time Smoothing Method (LTSM), a fusion method for section-based
travel time measurements. It compares different parameter sets when the method is applied to
data from one day and assesses the results. Multi-sensor data fusion approaches are evaluated
in section 5.2. Based on a qualitative analysis involving the error measure Symmetric Square
Inverse Mean Percentage Error (SSIMPE), a recommendation of a parameter set is given.
Then, in section 5.3, the results of the primary congestion detection are explained. Data

sources are compared with regard to their earliest incident detection. Section 5.4 contains a
discussion of the recognition ability of congestion types per detection technology. Data from
the same day are evaluated per source. Section 5.5 presents the congestion type hot spot
results. Per data source, focus areas with accumulated occurrences of each congestion type
exist both spatially and temporally. After the consideration of mainline congestion types, lane-
by-lane traffic is analyzed. Section 5.6 describes the evaluation of lane-specific congestion
proneness, travel times, earliest congestion detection, and spatio-temporal hot spots. The
chapter is concluded by a discussion in section 5.7. It summarizes the suitability of each
detection technology to detect each congestion type.

5.1 Low-Resolution Travel Time Smoothing Method
Section 4.1 introduced an interpolation method called LTSM, which computes consistent
fused speeds out of low-resolution travel time measurements. In this thesis, the methodology
is approved using data gathered by Bluetooth (BT) sensors on the autobahn A9 between
Munich and Nuremberg.

5.1.1 Evaluation
The proposed method is applied to data from July 26, 2018 in Northbound direction (NB).
Raw travel time data are shown in Figure 4.1. In total, approximately 145,200 trips were
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recorded on that day and direction after data filtering. The application involves two degrees
of freedom. One is the cell size (grid discretization) of the space-time domain, the other the
weighting factor α which can be chosen as distance, duration, or distance-duration weight for
each trip.
For sensitivity, the evaluation is executed with three configurations of each, the cell size and

weighting factor. As spatio-temporal grid discretization, two uniform (equidistant) parameter
sets are chosen, a larger one and a smaller one, both in time and space. As a third variant,
the cell distances are set to the non-equidistant BT sensor locations together with a uniformly
distributed temporal grid. For each of the mentioned three cases, three possibilities of setting
α are tested and presented in the following.

Equidistant Speed Reconstruction with Cell Size 2 km × 5min

First, a traffic speed reconstruction with parameters (space(cij), time(cij)) = (2 km, 5min) is
conducted. This yields 80 spatial intervals xi and 289 temporal intervals tj, in total 23,120
cells cij. The distance-weighted, the duration-weighted, and the distance-duration-weighted
speed interpolations are as illustrated in Figures 5.1a – c. All three figures show a similar
picture: while the duration-weighted speeds do not exceed the distance-weighted velocities,
the distance-duration-weighted speed distribution averages both values and therefore gives a
more exact reconstruction compared to the raw data.
Figure 5.1d plots the difference between the distance-weighted and the duration-weighted

speed interpolation per cell with the speed color bar limited to 40 km/h. The mean deviation
for all cells amounts to 12.0 km/h with a median of 9.4 km/h. The deviation is only positive,
which means that the distance-weighted interpolated speeds are always greater than or equal to
the duration-weighted speeds (instantaneous velocity in contrast to local speed). In congested
regimes, the resulting speeds of both weighting factors are very similar, the difference amounts
to nearly zero. In free-flow speed situations, mainly slow velocities are illustrated, there are
fewer speed deviations for higher speeds. This is due to the fact that if a slow trip traverses a
cell, the distance is equivalent to other trips crossing this cell but its duration is significantly
increased.

Equidistant Speed Reconstruction with Cell Size 500m × 1min

Second, the speed distribution is reconstructed with a smaller cell size of (space(cij), time(cij))
= (500m, 1min). This results in 315 spatial intervals xi and 1441 temporal intervals tj.
In total, 453,915 cells cij are processed. Due to the smaller cell size, the speed contour
reconstruction is more precise. Slow vehicles that were not properly filtered in advance, have
only little influence. Again, the distance-weighted interpolation computes larger speed values
than the duration-weighted interpolation. The distance-duration-weighted smoothing averages
both results.
Compared to the larger cell size parameter set, some differences exist. For instance, in this

setting, the freeway capacity decreases downstream of the bottleneck at 20:00 at km 480-490.
Therefore, no probe vehicles pass this section at this point in time resulting in a white patch
where no data are available. This white stretch is not recognizable in the first setting. The
interpolated speeds applying the three variants of weighting factors as well as the difference
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between distance-weighted and duration-weighted speeds are as illustrated in Figure 5.2. The
average deviation amounts to 8.8 km/h per cell with a median of 3.6 km/h.

Non-Equidistant Speed Reconstruction with Cell Sizes Equal to Bluetooth Sensor
Locations × 3min

As a third variant, the speed reconstruction is executed with cells whose spatial cell discretiza-
tion matches the locations of the BT sensors. This corresponds to a non-equidistant interval
definition for X (referred to as BT spacing). Due to the average sensor distance of 4.9 km, the
temporal cell discretization is set to 3min which is in turn chosen to be uniformly distributed
since the BT measurements detect in steps of one second. This results in an average speed of
100-120 km/h to traverse a cell cij. This discretization yields 33 spatial intervals xi and 481
temporal intervals tj, in sum 15,873 cells cij.
The resulting speed reconstruction is as illustrated in Figure 5.3. Single trips are not

recognizable as they are in variants 1 and 2. The entire cell always appears colored constantly
without any gradient of lines because the cell size is relatively rough. However, Stop and Go
waves coming across between 13:00 and 15:00 around km 520-530 are of contrasting color,
even though they move to upstream sections. The BT sensor locations are compact in these
segments.
The mean deviation in Figure 5.3d amounts to 13.2 km/h per cell with a median of 10.8 km/h

which makes this simple approach of a smoothing parameterization rather unlikely to be applied
in practice.

5.1.2 Conclusion
The duration-weighted speed interpolation underestimates the measured raw speed data while
a distance-weighted interpolation overestimates them. Therefore, it is recommended to set
the interpolation weights α (equation 4.2) to the combined distance-duration measure. This
corresponds to the basic understanding that the average speed of a cell in the grid can be
computed by the sum of all trip (or trip share) distances divided by the sum of all trip (or
trip share) times in traffic theory. In the following, specifically for the fusion of data sets in
section 5.2, the distance-duration-weighted speed interpolation is used to smooth BT data.
The cell size for interpolation is set to an equidistant measure since the other data sources,

especially all Floating Car Data (FCD) and gantry measurement interpolations are also dis-
cretized uniformly. Furthermore, the application of variant 3 (BT spacing) as parameter
setting results in a more inexact speed reconstruction since the cell sizes are quite large. The
deviations of the difference plot shows the highest variance for the third parameter set. In the
following, the second approach, an equidistant cell discretization with cells of size 500m ×
1min is chosen (resulting in Figure 5.2c).
Still, some red stripes occur in the smoothed speed matrix. The filter algorithm is optimized

for considerations in the scope of this dissertation. For an operational use in real-time traffic
control, the filtering should be adapted towards its purpose in freeway operation. This is left
for future research.
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(a) Distance-weighted speed interpolation (b) Duration-weighted speed interpolation

(c) Distance-duration-weighted speed interpolation (d) Difference plot of Figures (a) and (b)

Figure 5.1: Average speeds for cells 2 km× 5 min, color corresponds to speed (in [km/h])
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(a) Distance-weighted speed interpolation (b) Duration-weighted speed interpolation

(c) Distance-duration-weighted speed interpolation (d) Difference plot of Figures (a) and (b)

Figure 5.2: Average speeds for cells 500 m× 1 min, color corresponds to speed (in [km/h])
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(a) Distance-weighted speed interpolation (b) Duration-weighted speed interpolation

(c) Distance-duration-weighted speed interpolation (d) Difference plot of Figures (a) and (b)

Figure 5.3: Average speeds for cells BT spacing×3 min, color corresponds to speed (in [km/h])
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5.2 Multi-Sensor Data Fusion
Section 4.2 introduced several fusion methods for multiple data sources to obtain a super-
imposed optimized speed distribution. Three different fusion approaches were presented, a
weighted average, a reliability-sorted cell fill-up, and an Adaptive Smoothing Method (ASM)-
based interpolation. Here, these fusion approaches are applied using the data sets from gantry,
radar, BT and FCD presented in section 3.1. As an example, the methodology is evaluated
using data recorded on May 29, 2019 in NB direction.
First, each speed distribution is reconstructed per data set solely, which results in three

spatio-temporally discretized matrices for Stationary Detector Data (SDD), BT, and FCD,
respectively. These are the input to the fusion approaches. Thereafter, the ground truth
is given to which resulting speed reconstructions are compared. As a comparison measure,
SSIMPE is applied.
SDD, that is local speed measurements from gantry and radar sensors, are interpolated by

applying the ASM approach. The parameters used are given in Table 5.1. The result is the
speed matrix vSDD, illustrated in Figure 5.4.

Parameter Value
Spatial grid distance 500m
Temporal grid distance 1min
Speed in congestion -18 km/h
Free-flow speed 80 km/h
Crossover from free to congested traffic 80 km/h
Width of the transition region 10 km/h

Table 5.1: ASM parameter values used for smoothing local speed data

BT travel times are interpolated to a speed distribution using the LTSM (section 4.1).
The weighting measure is set to the distance-duration-weighted average (section 5.1). The
parameters used are as shown in Table 5.2.

Parameter Value
Spatial grid distance 500m
Temporal grid distance 1min
Weighting factor distp · durp

Table 5.2: LTSM parameter values used for smoothing BT travel times

The resulting speed plot is given in Figure 5.5. The jam waves around km 510-530 – easily
visible in Figure 5.4 – can hardly be recognized in Figure 5.5. Due to the travel times instead
of speed measurements, they cannot clearly be captured. Congestion appearing in Figure 5.4
as fragments (due to the detection location lacks) have a complete spatio-temporal extension
in Figure 5.5.
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Figure 5.4: vSDD derived from gantry and radar sensor data, interpolated using ASM
[Schreiter et al., 2010]

Figure 5.5: vBT derived from BT measurements, interpolated using LTSM

The FCD contour is illustrated in Figure 5.6. For this data set, represented in cells with
|xi| = 500m and |tj| = 1min, interpolation is not necessary because segment-based speed
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information is available. Since FCD correspond to a relatively small share of the vehicle
collective, many gaps without any measurement exist (undefined cells). Wherever congestion
occurs, it can be clearly captured.

Figure 5.6: vF CD derived from FCD, trajectories averaged in spatio-temporal cells

5.2.1 Evaluation
In general, all three detection technologies recognize similar traffic situations which allows
for multi-sensor data fusion for an optimized traffic state reconstruction. In this study, a
combination of gantry, radar and FCD speeds are used as approximation of the Ground Truth
(GT), using fusion method 1, the weighted average (equation 4.3), to combine the sources
into a sparse matrix vGT . This matrix is used as test set against which the training set is
compared (section 4.2.3). Figure 5.7 shows the GT if all available information is included in
the test set (optimal GT data set).
The results applying fusion method 1, the weighted convex combination of all data sources,

are illustrated in Figure 5.8. The algorithm computes the minimum error for all weights in
the range from 0.05 to 0.95 in steps of 0.05 for each data set. In each of the 50 runs from
the training and test set divisions, the minimum SSIMPE value is considered. Over all, the
reconstructed speed returns an average deviation of SSIMPE1 = 0.170.
The speed reconstruction using method 2, the hierarchical ordering of reliability per data

source, results in the contour depicted in Figure 5.9. Each combination of the three sources
being the most, the second most and the least reliable data set, is considered and again,
minimum SSIMPEs per run are computed. The fused matrix shows an average SSIMPE2
value of 0.156.
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Figure 5.7: vGT , GT derived from non-interpolated SDD and FCD

Figure 5.8: Fusion of all data sources according to method 1

Method 3, the interpolation of a fused matrix (both from methods 1 and 2) according to
the ASM interpolation method, results in a speed distribution as illustrated in Figure 5.10,
applying ASM parameters from Table 5.1. The interpolation of method 1 shows a SSIMPE3a
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Figure 5.9: Fusion of all data sources according to method 2

Figure 5.10: Fusion of all data sources according to method 3

value of 0.148; interpolating the fused matrix derived using method 2 with the identical ASM
parameters, the resulting SSIMPE3b value amounts to 0.145. Both values are equivalent as
they are in the same order of magnitude. Therefore, method 3 does not need a subdivision
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and as a whole outperforms both other approaches without ASM-interpolation.
Figure 5.11 shows a synopsis of the resulting average SSIMPEs. Generally, the median error

of all methods converges after around 10 iterations to a stable solution. To overcome unsuitable
random partitions between training and test data selections, 50 runs are simulated. Using this
conservative number of runs, potential outliers do not have an effect on the solutions. With
50 iterations, all variances decrease as expected compared to 10 runs. The variance between
the 50 runs is small which indicates that the methodology is not sensitive to the selection of
training and test data sets. Methods 1 and 2 have significantly higher median SSIMPE values
than method 3 which in turn has a higher variance. Method 3 outperforms methods 1 and 2
as even the worst case results show a better performance.

Figure 5.11: Resulting average SSIMPEs (median values in red, 25 and 75 % quartiles in blue)

5.2.2 Conclusion
The results show that each sensor technology is a valuable source of information: While gantry
and radar sensors are not available along the complete road stretch, they provide relatively
accurate speed information in space and time. FCD have a varying data rate; especially at
night, the amount of data is limited. Though, the high spatial and temporal accuracy reveals
the structure of congestion with high precision. BT data are available in large quantities
allowing to get speed estimates for nearly each cell in time and space. However, the relatively
large spacing between the sensors does not allow to detect exact congestion fronts and detailed
speed information.
All approaches of information fusion allow for reconstructing the traffic speed using multiple

data sources. Compared to each data set solely, the overall accuracy and data completeness
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increases. The comparison of the fusion methods shows that method 2 outperforms method 1.
Applying method 3 to the fused data sets, both methods 1 and 2 are outperformed according
to the resulting SSIMPE values. The main advantage of method 3 is that also undefined cells
are filled-up. In this example, 9.5 % of all cells do not have set any speed value, neither in SDD
nor in BT nor in FCD data sets. Using neighbored cells and their speed information, these
gaps in the grid can be filled and the corresponding cells become defined. The resulting speed
contour plot shows fewer noise due to the data interpolation. Specifically, the interpolation of
the reliability ordered filling method might return a discontinuous speed distribution. The most
accurate result is obtained when using all data sources for reconstruction. The computational
complexity of all approaches is similarly low and all fusion methods can be run in real-time.
Concluding, in the following sections, the data fusion according to method 3 is taken as the

standard fused data set when comparing data sets from multiple detection technologies.

5.3 Primary Congestion Detection
Section 4.5 introduced an algorithm to identify which data source detects congestion earliest
and which delay all others show. This way, it answers the question, on which data source a
speed estimation should be based on to detect congestion early. On the one hand, there are
temporally accurate data derived from stationary sensors such as gantry or radar measurements
but limited available in space. These raw data need interpolation first. On the other hand,
there exist spatially exact data such as Floating Car Data (FCD) which mirror the traffic state
with certain time lags because single Global Navigation Satellite System (GNSS) updates need
to be fused by the data provider. BT data need to await their corresponding second signal
in order to match both timestamps to a travel time (time consuming, therefore temporally
inaccurate) and are spatially inexact due to segment speeds. Both FCD and BT represent
only a subset of the traffic collective. In this section, this algorithm is quantitatively applied
to data sets from SDD and FCD comprising three months in 2015.

5.3.1 Evaluation
As an example, Figure 5.12 shows the speed distributions from SDD and FCD, respectively,
from April 30, 2015 in NB direction. SDD are interpolated using the ASM approach with
parameters given in Table 5.3.

Parameter Value
Spatial grid distance 100m
Temporal grid distance 30 s
Speed in congestion -18 km/h
Free-flow speed 80 km/h
Crossover from free to congested traffic 70 km/h
Width of the transition region 10 km/h

Table 5.3: ASM parameter values used for smoothing SDD
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(a) Speed distribution from interpolated SDD

(b) Speed distribution from FCD

Figure 5.12: Speed distributions from April 30, 2015 in NB direction (in [km/h])
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TomTom FCD are available as spatio-temporally discretized speed cells (temporal resolu-
tion of 1min, irregular spatial grid). There is no need for interpolation since the matrices are
abundant. The light green horizontal bars denote general speed limits. Due to the interpola-
tion, congestion starting around 15:00 at km 490 cannot clearly be captured by the SDD and
appears as one coherent jam in contrast to FCD where two separate jams occur. Besides that,
both contours show a similar speed distribution and no general bias.
Figure 5.13 depicts the comparison of congested areas during the afternoon of the same day

where the speed threshold vcrit amounts to 40 km/h. Black horizontal lines denote stationary
sensor locations. Various phases are illustrated: in green, where only interpolated SDD detect
congestion; in blue, where only FCD detect congestion. Red areas denote phases where both
SDD and FCD detect congestion. The downstream congestion front of the incident starting
around 17:00 at km 487 is located farther downstream in FCD compared to SDD since due to
the ASM interpolation of SDD, the bottleneck cannot be localized exactly between the two
sensors.
SDD recognize the first and the second congestion regime slightly earlier (green stripe on

the left of both jams), FCD show a delay of some minutes (red area surrounded by a green
stripe on the left and a blue stripe on the right). FCD determine congestion on the third event
earlier both temporally and spatially, and overall show a detailed spatial resolution.

Figure 5.13: Matching of both data sources with a speed threshold of vcrit = 40 km/h

Congestion clusters are determined for either data source and these clusters are matched
between data sets with the parameter set as follows in Table 5.4.
For each match, the deviation tdiff (equation 4.19) between the starting times is calculated.

Figure 5.14 shows the distributions of tdiff for all matchable congestion events in the 80 days
period in both driving directions with vcrit = 40 km/h and 60 km/h, respectively. In case
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(a) Deviation of primary congestion detection with vcrit = 40 km/h

(b) Deviation of primary congestion detection with vcrit = 60 km/h

Figure 5.14: Minutes of deviation for different values of vcrit and Pmin
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Parameter Value Set
Velocity threshold vcrit {40, 60} km/h
Minimum coverage of associated clusters’ intersection Pmin {0.1, 0.3, 0.5}
Minimum free-flow time between congested areas tmerge 4min
Minimum cluster size Amin 2 km·min

Table 5.4: Parameter values to identify and match clusters

tdiff = 0, both sources detected the associated congested regions at the same time, tdiff < 0
means that FCD detected congestion earlier by the indicated minute. Analogously, tdiff > 0
implies that SDD registered congestion first. Due to the uniform grid spacing of 1min, the
deviation can only take integer numbers. The minutes of deviation in the plots are limited to
± 20min. Matched clusters with Pmin = 0.5 are also included in Pmin = 0.3 bars, clusters
with Pmin = 0.3 also in Pmin = 0.1 bars. Average, quartile, and extreme values are given in
Table 5.5.

Matchable Deviations [min]
vcrit Pmin Jams Mean/Median q25/q75 Quartiles Min/Max

40 km/h 0.1 152 0.2/2 −3/5 −31/21
40 km/h 0.3 116 0.5/2 −2/5 −31/15
40 km/h 0.5 75 0.3/2 −2.8/4.8 −20/12
60 km/h 0.1 244 −0.2/1 −3/4 −31/13
60 km/h 0.3 211 −0.2/1 −3/4 −31/11
60 km/h 0.5 168 0.4/2 −3/4 −20/11

Table 5.5: Deviations for vcrit ∈ {40, 60} km/h and Pmin ∈ {0.1, 0.3, 0.5}

A throughout positive median value indicates that congestion is generally detected earlier
by interpolated SDD than by FCD (height of the bars in Figure 5.14). Nevertheless, there
are more matchings where FCD recognize a congested situation significantly earlier than SDD
(positive skew). The balanced statistical results show that both approaches are equally good in
detecting matchable traffic jams, hence, congestion detected by both approaches. The larger
the speed limit parameter is chosen, the smaller is the deviation. However, FCD are able to find
more relevant congestion clusters: for vcrit = 40 km/h, FCD identify 394, SDD 372 clusters;
for vcrit = 60 km/h, FCD find 472, SDD 407 clusters. Others do not obey equations 4.14
– 4.16 on Pmin (minimum percentage of congestion regarding both associated clusters) and
Amin (minimum size of congested area).
This algorithm finds reliable matchings. However, there are examples where the first con-

gestion recognition time differs a lot. In Figure 5.15, a spatio-temporal area from April 21,
2015 in NB direction with a speed threshold of vcrit = 60 km/h is depicted. Again, horizontal
lines denote the detector positions. The congested region detected by FCD is marked in red,
that one identified by SDD is marked in bold on the detector position lines. FCD detected
congestion beginning at 16:12, SDD at 16:42. Hence, the difference tdiff amounts to −30min.
Obviously, the detector positions are disadvantageous to detect this congestion early due to
the large spacing.
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Figure 5.15: Congestion cluster where FCD detected congestion 30min earlier than SDD

5.3.2 Conclusion
To conclude, neither data set clearly outperforms the other one. The results show that for
congestion having its downstream front on a detector position or not far downstream, SDD
recognize the it by 2-3min earlier on average compared to FCD. If a congestion front starts
between detector positions or slightly upstream of one, stationary detectors naturally are not
suited best to identify congestion early. In these cases, floating cars detect congestion signif-
icantly earlier than detectors. Hence, a congestion hot spot analysis (see section 5.5) might
help to find optimized locations for stationary sensors. In general, FCD find more (smaller)
congestion clusters compared to the smoothed detector data. A slight time lag of few minutes
regarding floating cars appears because FCD are processed and fused whereas detector data
are derived by direct measurements.

5.4 Detection Rate of Congestion Types Per Data
Source

Section 4.4 introduced a 4+1 congestion classification. Four mainline congestion types are
Jam Wave, Stop and Go, Wide Jam, and Mega Jam. The sensor technologies presented in
section 3.1 do not detect each congestion type equally. In the following, the detection rate
of these congestion patterns is assessed both per data source individually and on the fused
data set. As an example, the same setting as presented in section 5.2 is analyzed, from May
29, 2019 in NB direction. It is investigated which congestion types can be identified by which
data set reliably. The speed contour plots of the data sets are shown in Figure 5.4 (gantry
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and radar speeds), Figure 5.5 (BT travel times), Figure 5.6 (FCD speeds), and Figure 5.10
(fused speeds).
If a road segment is not equipped with traffic detectors, the speed reconstruction leads to

undefined cells. As remarked in section 4.6, these locations without data can be accepted as
part of the input speed matrix. To apply the algorithm, all cells representing an unavailable
location over the entire time line as well as unavailable times (e.g., time zone offsets because
some data sets are in UTC time, others in local time) are set to a free-flow speed vfreeflow.
During the assignment of a congestion type to an identified congestion cluster, all other
areas except the cluster are set to free-flow conditions. Similarly, these locations or times of
undefined speed values can be filled with free-flow defaults. Note that assigning a free-flow
value is not valid for single undefined speed value cells surrounded by defined speed value
cells. This interpolation of particular cells is done using the smoothing algorithms described
in section 2.1 and section 4.1.
Speed data are available as a flow-weighted mainline mean. The identification of congestion

clusters utilizes the algorithm described in section 4.3.2. The parameter values used to create
the clusters are as given in Table 5.6.

Parameter Value
Velocity threshold vcrit 40 km/h
Free-flow speed vfreeflow 120 km/h
Minimum free-flow time between congested areas tmerge 4min
Minimum size of congested areas Amin 12 km·min

Table 5.6: Parameter values to identify separate congestion clusters

Thereafter, a congestion type is assigned to each individual cluster according to the algorithm
described in section 4.4.1. Virtual trajectories traverse through the entire congested area and
whenever they hit a certain cluster, they change their speeds from free-flow to the speeds
defined inside the cluster. The parameter values used for the assignments are given in Table 5.7.
In order to minimize the number of assignments to Mixed – the undefined congestion type –
n2types and n3types are set relatively low in an empirical way. As assessment method, number
and size of each recognized congestion type is considered per data source. The size of a
congestion cluster is defined as the area of its convex hull.

Parameter Value
Maximum duration of Jam Wave tJamW ave 3min
Minimum duration of Mega Jam tMegaJam 30min
Minimum number of speed drops nStopandGo 2
Temporal offset of starting trajectories tr 5min
Minimum share of congestion types (2 types) n2types 0.51
Minimum share of congestion types (3 types) n3types 0.41

Table 5.7: Parameter values to assign congestion types
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5.4.1 Gantry Data Set

Applied to interpolated gantry speed measurements, the results of the congestion type assign-
ment show four congested areas on this day. Either type Stop and Go, Wide Jam, and Mega
Jam is assigned to one cluster each (Figure 5.16). The Mixed cluster at km 380 in the late
evening is traversed by four trajectories if the temporal offset tr is set to 5min. Thereof, two
Jam Wave and two Wide Jam trajectories are identified. Therefore, the Mixed cluster re-
mains unclassified. The area without detectors between km 480 and km 400 is set to free-flow
conditions such that congestion detection is not false positive.

Figure 5.16: Congestion type identification from gantry speed measurements: 1 Stop and Go,
1 Wide Jam, 1 Mega Jam, 1 Mixed clusters

5.4.2 Radar Data Set

In contrast to gantry speed measurements, only few radar sensor locations are available, in
this example one at km 411 and five around km 460. The identification of congestion types
returns one Jam Wave, oneWide Jam, and oneMixed cluster (Figure 5.17). TheMixed cluster
is crossed by three trajectories, Stop and Go, Wide Jam, and Jam Wave types, respectively.
Again, all unequipped road stretches are set to free-flow speeds. The tails of the jam occurring
downstream (in the unequipped region) appear as small single jam events instead of one merged
cluster. From these sparse radars only, the algorithm cannot assign a reliable congestion type
in this case.
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Figure 5.17: Congestion type identification from radar speed measurements: 1 Jam Wave, 1
Wide Jam, 1 Mixed clusters

5.4.3 Bluetooth Data Set
Interpolated travel times derived from BT measurements detect many congestion clusters more
than local speed detectors because single slow vehicles which were not eliminated beforehand
have a greater influence. Therefore and because the sensors are installed on a longer road
stretch than both previously mentioned detection technologies, the results with the same
parameterization show 21 congestion clusters whereof Jam Wave is assigned to 2, Stop and
Go to 13, Wide Jam to 2, and Mega Jam to 2 clusters (Figure 5.18a). Two clusters cannot
be assigned to a unique congestion type and are set to the undefined congestion type Mixed.
Both of them are touched by one Jam Wave and one Stop and Go trajectory each.
This prompts a need for a sensitivity analysis and some parameter adjustments, specifically

the increase of Amin and the decrease of tmerge. With an average spacing of approximately
5 km between the BT sensors, it is suggested to set Amin = 30 km·min. This value corresponds
to (spatially short) congestion of at least 6min or spatially more extended congestion which
both is reasonable for a congestion definition measured by BT. tmerge separates congestion
occurrences. Especially during night hours when – supposedly – slow vehicles are moving
around, the differentiation should be set sharp. Therefore, tmerge = 1min is recommended.
Both parameter changes lead to more precise convex hulls of the clusters and reduce high
speeds inside the congested clusters.
After these adjustments, the results for actual congestion (not derived from single vehicles)

return 10 clusters whereof 1 Jam Wave, 5 Stop and Go, 2 Wide Jam, and 2 Mega Jam clusters
are assigned (Figure 5.18b). The parameter adjustments lead to an underestimation of the
congestion type Jam Wave. However, larger jam events can be detected reliably. One main
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(a) Without parameter adjustments: 2 Jam Wave, 13 Stop and Go, 2 Wide Jam, 2 Mega Jam, 2
Mixed clusters

(b) With parameter adjustments: 1 Jam Wave, 5 Stop and Go, 2 Wide Jam, 2 Mega Jam clusters

Figure 5.18: Congestion type identification from BT measurements
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finding is that Jam Wave is a pattern detectable worst through travel time measurements
with large sensor spacings due to an upstream propagation of congestion waves in contrast to
downstream travel time measurements.

5.4.4 Floating Car Data Set
FCD travel times are interpolated using the Phase-Based Smoothing Method (PSM) described
in section 2.1 with the parameter values as proposed in [Rempe, Franeck, et al., 2017] and
given in Table 5.8.

Parameter/Phase Wide Moving Jam Synchronized Flow Free-flow Traffic
vthres

p 30 km/h 65 km/h 55 km/h
λp 0.5 h/km
vdir

p -18 km/h 0 km/h
τp 30 s 250 s
σp 500m 150m
vdir,H

p -18 km/h 70 km/h
τH

p 30 s 100 s
σH

p 200m 100m

Table 5.8: PSM parameter values used for smoothing FCD

Figure 5.19 depicts the reconstructed traffic speeds with identified 3 Jam Wave, 5 Stop and
Go, 1 Wide Jam, 2 Mega Jam, and 2 Mixed clusters. The Mixed cluster at 20:00 at km 400 is
traversed by two Jam Wave and two Wide Jam trajectories. The larger cluster at 9:30 around
km 372 is passed by 3 Jam Wave, 3 Stop and Go, and 2 Wide Jam trajectories. In both cases,
n2types and n3types are not fulfilled, respectively.

5.4.5 Fused Data Set
The data set fused from SDD, BT, and FCD computes 10 congestion clusters. The result is
depicted in Figure 5.20. It shows one Jam Wave cluster, 6 clusters of congestion type Stop
and Go, 1 Wide Jam cluster, and 2 clusters of Mega Jam.

5.4.6 Findings
Figure 5.21 conjointly shows all recognized congestion clusters and their corresponding convex
hulls. In general, clusters are detected similarly. The recognized Mega Jam at km 480 at
20:00 is classified as a Wide Jam by SDD because the downstream sensor equipment ends at
km 480. Analogously, the radar-equipped area starts around km 462 and therefore, congestion
can only be detected in a narrow stripe. Therefore, SDD do not detect the whole congestion
area.
Summarizing, all considered detection technologies are able to identify congested areas with

a different level of detail. The basic requirement is a sufficiently small detector spacing.
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Figure 5.19: Congestion type identification from FCD measurements: 3 Jam Wave, 5 Stop
and Go, 1 Wide Jam, 2 Mega Jam, 2 Mixed clusters

Figure 5.20: Congestion type identification from fused data set: 1 Jam Wave, 6 Stop and Go,
1 Wide Jam, 2 Mega Jam clusters
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Figure 5.21: Convex hulls of congested areas per data source

Reconstructed BT speeds are rarely suited to detect Jam Wave due to their downstream
travel time propagation in contrast to upstream congestion propagation. ASM-smoothed
gantry speed measurements detect congestion reliably and are able to assign an appropriate
type reasonably. FCD prefer congestion type Stop and Go over the other types, especially in
comparison with BT which is the detection technology with most overlapping locations.
The quality assessment of the recognition strategy also utilizes the area of the convex hull

defined by a cluster. Let analogously to section 4.3.2 a cluster k have two properties: a
congestion type ctk and an area Ak. The size of a cluster’s area corresponds to the sum of
temporal times spatial sizes of all affected cells in the cluster. For example, a congested area
of size 150 km·min corresponds to congestion with extensions of 15min and 10 km or 30min
and 5 km. The size of all identified clusters is summarized in Table 5.9. Additionally, the
related region according to Figure 5.21 is indicated.
In regions where data from all detection technologies are available, one Mega Jam is identi-

fied (region 1 ). Its size varies between 3,900 (both gantry and BT), 4,600 (FCD), and 4,000
(fusion) km·min. Hence, it is comparable and no systematic bias exists. BT prefers Wide
Jam over Stop and Go, especially visible in the area where neither gantry nor radar sensors are
installed. In region 6 , the BT Wide Jam, conjoint with the small Stop and Go cluster directly
connected, sums up to an area of size 1528.25 + 141 = 1669.25, the corresponding FCD Stop
and Go cluster amounts to 1770.3 km·min. The two jam waves (region 8 ), recognized as
one Stop and Go pattern in FCD at 17:00 at km 400, are not detected by gantry sensors (out
of their region) and cannot clearly be captured by BT.
To conclude, data sources recognize congestion events in a similar way and therefore are

suited to be fused. Detected clusters have a comparable size, however, some sources prefer
more and smaller clusters whereas others prefer fewer and larger clusters.
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Data Source Congestion Type Size [km·min] Related Region
Gantry Stop and Go 226.75 11

Gantry Wide Jam 158.25 3

Gantry Mega Jam 3933.75 1

Gantry Mixed 23 12

Radar Jam Wave 24.5 6

Radar Wide Jam 85.75 5

Radar Mixed 13.75 6

Bluetooth Jam Wave 30.5 13

Bluetooth Stop and Go 53 2

Bluetooth Stop and Go 960.25 5

Bluetooth Stop and Go 141 6

Bluetooth Stop and Go 317.75 11

Bluetooth Stop and Go 273.25 12

Bluetooth Wide Jam 1528.25 6

Bluetooth Wide Jam 422 7

Bluetooth Mega Jam 3917.25 1

Bluetooth Mega Jam 1001 3

FCD Jam Wave 34.85 4

FCD Jam Wave 31.35 10

FCD Jam Wave 28.6 11

FCD Stop and Go 652.25 5

FCD Stop and Go 1770.3 6

FCD Stop and Go 1462.3 7

FCD Stop and Go 293.2 8

FCD Stop and Go 631.05 11

FCD Wide Jam 150.2 12

FCD Mega Jam 4609.8 1

FCD Mega Jam 1071.65 3

FCD Mixed 34.45 9

FCD Mixed 67.15 13

Fusion Jam Wave 33.3 12

Fusion Stop and Go 824.15 5

Fusion Stop and Go 2007.3 6

Fusion Stop and Go 591.75 7

Fusion Stop and Go 82.35 7

Fusion Stop and Go 40.8 7

Fusion Stop and Go 49.6 8

Fusion Wide Jam 288.2 11

Fusion Mega Jam 4044.95 1

Fusion Mega Jam 818.75 3

Table 5.9: Results of assignment of congestion types and respective cluster sizes, sorted by
decreasing location per congestion type, respectively
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5.5 Congestion Type Hot Spots
This section describes spatial, temporal, and spatio-temporal hot spots of each particular
congestion type. The algorithm explained in section 4.6 is applied quantitatively to the various
data sets along the road stretch of autobahn A9. In contrast to section 5.4, gantry and radar
measurements are combined and referred to as SDD in the following. All parameter values are
identical to those used for the qualitative analysis in the previous section.

5.5.1 Evaluation
Analyzing data from several months in 2019 (see Table 3.3 for an overview), numerous con-
gestion events are identified and classified on NB and Southbound direction (SB). Table 5.10
gives a statistical overview of all identified clusters.

Detection Driving Stretch Considered Number of Identified
Technology Direction Length (approx.) Days Congestion Events
SDD NB 90 km 150 days 508
BT NB 160 km 60 days 346
FCD NB 160 km 41 days 133
Fusion NB 160 km 3 days 30
SDD SB 90 km 150 days 841
BT SB 160 km 60 days 520
FCD SB 160 km 45 days 271
Fusion SB 160 km 7 days 61

Table 5.10: Number of identified congestion events

Normalizing the results as a congestion probability (number of congestion events divided
by the number of considered days and the stretch length) yields a congestion proneness per
day per 10 km (Table 5.11). These values can be interpreted as the probability to experience
congestion when driving through a sub-segment stretch of 10 km any time of a day.

Detection Driving Normalized Proportion of
Technology Direction Congestion Events
SDD NB 38 %
BT NB 36 %
FCD NB 20 %
SDD SB 62 %
BT SB 54 %
FCD SB 38 %

Table 5.11: Congestion proneness per day per 10 km
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The SDD values are larger which indicates that gantries are installed in congestion-prone
regions of metropolitan areas. Table 5.12 shows the share of each congestion type per data
source. Fusion results are not representative because of their collection on too few but
congestion-related days.

Detection Driving Jam Stop Wide Mega MixedTechnology Direction Wave and Go Jam Jam
SDD NB 34.8 % 38.8 % 16.9 % 1.0 % 8.5 %
BT NB 1.7 % 70.2 % 16.2 % 6.1 % 5.8 %
FCD NB 14.3 % 57.9 % 12.0 % 6.8 % 9.0 %
Fusion NB 20.0 % 50.0 % 10.0 % 13.3 % 6.7 %
SDD SB 41.7 % 32.7 % 17.5 % 1.2 % 6.9 %
BT SB 2.1 % 76.2 % 8.8 % 5.6 % 7.3 %
FCD SB 22.9 % 57.9 % 7.0 % 3.3 % 8.9 %
Fusion SB 19.7 % 49.2 % 14.8 % 6.6 % 9.8 %

Table 5.12: Share of classified events per congestion type

The results show that incident detection via BT systematically underestimates the conges-
tion type Jam Wave. The propagation of a jam wave is upstream while in contrast the BT
measurement is re-identified downstream because the travel time computation must await its
corresponding second scan. False positive slow vehicles (especially due to a parking stop be-
tween two sensors) create a virtual congestion. During night hours, when flow is little, these
vehicles falsify the congestion identification because they cannot be averaged by a high share
of real-time driving vehicles. Depending on the parameters, two slow vehicles following each
other with a certain offset could also cause Stop and Go traffic. Hence, the share of Stop and
Go does not always mirror the real situation. BT data are well suited to recognize Wide Jam
and Mega Jam because of their synchronized speed over all lanes and large extensions of the
congested area.
SDD recognize a higher share of Wide Jam than the other detection technologies because

they are installed in the Greater Munich Area and the Greater Nuremberg Area and thus focus
on regions with a large potential of congestion at all. The stretch between the metropolitan
areas is less congestion-prone. In case, congestion emerges there, it is more likely to be a larger
event such as Mega Jam. Therefore, BT and FCD, which both detect along the entire stretch,
average the share of their detected Jam Wave events over all congestion types. The method
ASM, that smoothed SDD, interpolates in its congestion kernel direction and thus prefers Jam
Wave over the other types. PSM and LTSM-interpolation do not utilize any neighbored cells’
speed information which more likely yields either no jam or Wide Jam and Mega Jam events.
In SB direction, congestion types Jam Wave and Stop and Go occur more frequently than

in the opposite direction. Larger congestion events such as Wide Jam and Mega Jam are often
detected in NB direction. Reasons are the impact of vacation traffic along the main route of
the Bavarian highway network and large-scale events such as soccer games. The relationship
of a computed congestion type and the cause of the respective congestion is left for future
research (section 6.2). Unclassified congestion clusters (with type Mixed) have a share of
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approximately 6 to 9 % of each data source.
The following Figures 5.22 – 5.27 show the spatial, the temporal, and the spatio-temporal

pattern accumulations in NB and SB driving direction, respectively. Each figure is divided into
four single plots for SDD, BT, FCD, and the fused data set, respectively. The fusion plot is
not taken as a reference because the amount of available data is very low. But at least all
identified congestion events are illustrated to discuss the results qualitatively.
Figures 5.22 and 5.23 depict the spatial congestion type hot spots in NB and SB direction,

respectively. For a better illustration, all spatial starts are categorized into discrete bins of
2 km. Upstream of large interchanges, congestion occurs frequently. In NB direction, FCD
(Figure 5.22c) recognize congestion fronts at particular locations only, focused on stretches in
metropolitan areas. In SB direction, spillback caused by both the autobahn A99 (SDD) and
the Munich city highway (at km 529, FCD) are often reasons for congestion emergence. In SB
direction, the test field starts at slightly different positions over all data sources, therefore SDD
recognize another congestion hot spot between km 370 and km 375 (Figure 5.23a), which is
not represented in BT and FCD data sets.
BT data recognize a large share of Stop and Go upstream of the interchange of autobahn

A99 in SB direction with varying starting locations of congestion. Indeed, this is a hidden
Lane Jam because two lanes turn to A99 (tend to be congested) whereas three lanes continue
on A9 (tend to be uncongested). Depending on vehicles on either lanes, which influence the
averaged speed of the discretized cell, the velocity is below the threshold vcrit or not, yielding
Stop and Go. The start locations of congestion slightly deviate between SDD, BT, and FCD
due to different sensor positions and different data processing techniques such as another
spatial grid structure during the interpolations. Moreover, BT sensors are influenced by their
entire environment. If placed between a ramp and the main lanes, congestion is registered
earlier or later than that measured by induction loops or sensors at gantries.
The temporal hot spots are illustrated in Figures 5.24 and 5.25, again in NB and SB

direction, respectively. Similarly, for a better visualization, data are discretized in intervals of
30min. Two typical peaks occur in SB in all data sets, essentially due to the detected Stop
and Go traffic. In the opposite direction, mainly one peak is recognizable in SDD and BT
data, FCD result in a late morning peak hour. This comes from the fact that the FCD data set
detected fewer congestion events at all (due to the smaller time period; note the value range
of the vertical axis) and that fleet drivers are supposed to typically drive at certain times only.
A more detailed analysis of the temporal distribution of congestion including holidays, days of
week, or monthly/quarterly oscillations would help to interpret the results more qualitatively.
The share of Stop and Go traffic is significantly increased in the morning between 6:00

and 8:00 in SB while in NB congestion formation generally starts later than 8:00. Wide Jam
events are evenly distributed throughout the day, only during the rush hours (9:00-10:00 and
16:00-18:00), they are more distinctive in both driving directions. During night hours (late
evening and early morning), BT data detect more jams than the others because of fewer
flow and greater impact of long travel times than during the day, as already discussed earlier.
Additionally, BT data lack of an more advanced data preprocessing step reducing congestion
occurring during night hours, especially in the early morning hours before 6:00. Since these
times are not relevant for traffic planning or control, the data filtering is skipped in this analysis.
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(a) Spatial hot spot distribution from SDD (b) Spatial hot spot distribution from BT

(c) Spatial hot spot distribution from FCD (d) Spatial hot spot distribution from fusion

Figure 5.22: Spatial congestion type hot spots in NB direction
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(a) Spatial hot spot distribution from SDD (b) Spatial hot spot distribution from BT

(c) Spatial hot spot distribution from FCD (d) Spatial hot spot distribution from fusion

Figure 5.23: Spatial congestion type hot spots in SB direction99
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(a) Temporal hot spot distribution from SDD (b) Temporal hot spot distribution from BT

(c) Temporal hot spot distribution from FCD (d) Temporal hot spot distribution from fusion

Figure 5.24: Temporal congestion type hot spots in NB direction
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(a) Temporal hot spot distribution from SDD (b) Temporal hot spot distribution from BT

(c) Temporal hot spot distribution from FCD (d) Temporal hot spot distribution from fusion

Figure 5.25: Temporal congestion type hot spots in SB direction
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(a) Spatio-temporal hot spot distribution from SDD (b) Spatio-temporal hot spot distribution from BT

(c) Spatio-temporal hot spot distribution from FCD (d) Spatio-temporal hot spot distribution from fusion

Figure 5.26: Spatio-temporal congestion type hot spots in NB direction
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(a) Spatio-temporal hot spot distribution from SDD (b) Spatio-temporal hot spot distribution from BT

(c) Spatio-temporal hot spot distribution from FCD (d) Spatio-temporal hot spot distribution from fusion

Figure 5.27: Spatio-temporal congestion type hot spots in SB direction
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Both information, spatial and temporal, is united to spatio-temporal hot spots which are
illustrated in Figures 5.26 and 5.27 for NB and SB direction, respectively. Hereby, all locations
and starting times of occurring congestion events are not rounded but instead taken from the
original grid. The plots in NB direction are shown bottom-top, identical to the time-space
orientation of the speed contour plots shown before. This way, all congestion events are
marked at their temporal and spatial beginning, the upper left corner of the corresponding
convex hull. As marker sizes, each congestion size averaged by the median of the respective
congestion type sizes is given. It helps to understand where heavy hot spots are located to
support local traffic operators.
Stop and Go traffic in the BT data set appears very dominant between km 500 and km 520

in both directions, especially in SB direction. As explained earlier, this comes from the hidden
Lane Jam and spillback both from A92 and A99, respectively. In NB direction, a Stop and
Go traffic hot spot exists around km 380 throughout all data sets. Some deviations of the
exact location implies either a data calibration inaccuracy or an unequal density of the traffic
detection. Furthermore, it is visible that SDD, although not detecting the entire stretch, catch
most of occurring congestion because the unequipped region is not congestion-prone. In SB
direction, several Stop and Go occurrences are detected between 6:00 and 8:00 and later on
during the afternoon around km 520. Again, it comes from the spillback of autobahn A99,
onto which two out of five lanes exit from autobahn A9.
In SB direction, congestion type Jam Wave is not distributed all throughout the grid, but

restricted to a few locations (km 375-380 (SDD), km 520 (SDD), and km 525 (SDD and
FCD)). In particular, Jam Wave clusters detected by SDD and FCD in the afternoon in NB
direction at km 525 correspond to a Wide Jam hot spot recorded by BT data. Especially in
the Nuremberg area (km 375-380), Jam Wave events are not limited to peak hours, but occur
during all times of day. In contrast to NB direction, the data set of SDD misses several heavy
congestion events in SB direction due to the unequipped regions compared to FCD. BT data
and FCD recognize a Mega Jam accumulation in the Greater Nuremberg Area.

5.5.2 Conclusion
To conclude, congestion hot spots are mainly identified upstream of interchanges and larger
exit ramps. SDD recognize Jam Wave events most frequently, BT and FCD Stop and Go
traffic. BT detection underestimates type Jam Wave and overestimates Mega Jam. Hot spots
identified by FCD as Stop and Go are frequently matched to a cluster of Wide Jam in the BT
data set. Especially in SB direction, both SDD and FCD detect more congestion events than
BT in the area between Ingolstadt and Munich (km 460 to 500).

5.6 Lane-Specific Congestion
Section 4.4.2 introduced a novel congestion type called Lane Jam. It describes situations
where congestion does not affect all lanes equally. The novelty in this thesis is to perceive it as
congestion clusters per lane. The union of intersecting clusters is called a region. Lane Jam is
defined as region where the share of at least one lane is at most a maximum percentage pmax.
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This indicates that the union and the intersection of clusters in the region differs. Otherwise,
it is said to be mainline congestion.
In this evaluation, Lane Jam is detected on lane-by-lane speeds coming from SDD solely,

that is gantry and radar measurements. Both BT and FCD do not detect lane-specifically and
are therefore not able to generate lane-by-lane speed information. The detection of Lane Jam
based on non-lane-specific velocities is not tackled within the scope of the dissertation. Thus,
comparisons with other data sources or the fusion are not treated here.
In the following, the results from the Lane Jam analysis are presented based on data from

five months. The parameters are set as given in Table 5.13.

Parameter Value
Velocity threshold vcrit 40 km/h
Free-flow speed vfreeflow 120 km/h
Minimum free-flow time between congested areas tmerge 4min
Temporal offset of starting trajectories tr 5min
Minimum size of regions Amin 12 km·min
Maximum percentage of lanes in region pmax 0.7

Table 5.13: Parameter values to identify Lane Jam

5.6.1 Evaluation
Figure 5.28 depicts three examples of congested regions. In Figure 5.28a, congestion emerges
from the middle lane with a stationary bottleneck. It influences the right lane, which then in
turn is affected by congestion. Several hours later, congestion moves upstream to the right
lane only. The left lane is not affected by congestion in this region except from a few minutes.
Figure 5.28b depicts congestion mainly on the middle and left lanes with whiskers on the left
lane only. The middle lane is affected upstream one kilometer more (2 segments) than the
other lanes. The third example (Figure 5.28c) shows a region starting with congestion on the
right lane, extending it to the middle lane and ending up with congestion on all three lanes.
On the left lane, the first spatial occurrence is one kilometer upstream than that of the other
lanes.

Share of Congestion per Lane

In total, 480 and 842 regions were found in NB and SB direction, respectively. The average
share per lane over all regions is computed as given in Table 5.14. The mean and median
values indicate the percentage of the area per lane over all regions. Additionally, the share of
lane-X-only congestion events is given.
The right lane has a significant proportion on each resulting region. With a median of more

than 80 % in each driving direction, it shows that the right lane is frequently concerned by
Lane Jam and by congestion at all. In NB direction, both other lanes are also often affected
by congestion. In SB direction, the emergence of congestion on the right lane dominates over
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(a) Congested cells on April 16 in NB direction

(b) Congested cells on May 10 in NB direction

(c) Congested cells on July 14 in SB direction

Figure 5.28: Three examples of Lane Jam regions
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Left Lane Middle Lane Right Lane
Mean share (NB) 54 % 50 % 63 %
Median share (NB) 57 % 55 % 81 %
Share of lane-X-only congestion events (NB) 10 % 1 % 8 %
Mean share (SB) 39 % 41 % 74 %
Median share (SB) 30 % 38 % 95 %
Share of lane-X-only congestion events (SB) 6 % 1 % 14 %

Table 5.14: Average share per lane in Lane Jam regions

the middle and left lanes. The average share of 40 % implies that a SB region describes
congestion on mainly the right lane. In contrast, 10 % and 6 % of all congestion events in NB
and SB direction, respectively, are left-lane-only congestion occurrences. In total, one fifth of
all congestion events (19 % and 21 % in NB and SB driving direction, respectively) concern
exactly one lane. Figure 5.29 depicts the detailed statistical distribution as a box plot per lane.

(a) NB direction (b) SB direction

Figure 5.29: Average share per lane in Lane Jam regions (median values in red, 25 and 75 %
quartiles in blue)

Primary Lane Congestion Detection

In each region, the clusters from either lane have a first temporal and a first spatial occurrence.
In order to compare the starting points on each lane, the union of all clusters within the region
per lane are taken. Also, only congestion events are considered where at least two lanes are
affected. This means that the identified lane-X-only jams – 19 % and 21 % (Table 5.14) of all
regions in NB and SB direction, respectively – are not included in the average considerations.
The basis form 390 and 665 regions in NB and SB direction, respectively.
The temporal delay tdiff (equation 4.12) and the spatial offset xdiff (equation 4.13) denote

the difference between the lane detecting congestion earliest and all other lanes. Table 5.15
presents an overview of all mean and median values for tdiff and xdiff per direction. The results
show that mostly the right lane detects congestion first. The middle lane experiences a speed
breakdown mainly at the same congestion front (kilometer) but few minutes later than the
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right lane. On the left lane, congestion also starts at the same location but some more minutes
later than on the middle lane. During the emergence of congestion, it appears to be best to
drive on the middle or left lane where speeds are supposed to be slightly higher than on the
left lane (at least above vcrit). In SB direction, the delay times are even larger for the middle
and the left lanes than in NB direction. The spatial offset median amounts to zero kilometer
in both directions for each lane.

Left Lane Middle Lane Right Lane
Mean delay (NB) 5.6min 3.7min 1.6min
Median delay (NB) 2min 1min 0min
Mean offset (NB) 0.4 km 0.5 km 0.5 km
Median offset (NB) 0 km 0 km 0 km
Mean delay (SB) 9.3min 6.0min 1.7min
Median delay (SB) 3min 2min 0min
Mean offset (SB) 0.9 km 0.7 km 0.3 km
Median offset (SB) 0 km 0 km 0 km

Table 5.15: Average delay and offset per lane in Lane Jam regions

Least Travel Time

The average travel times in each region are determined per lane. This means, each region R is
embedded in a free-flow environment and virtual trajectories pass the entire region with their
dedicated speeds per lane. To this end, virtual trajectories start with an offset of tr = 5min
(Table 5.13). The average travel time over all trajectories of one lane through the region is
computed. The average travel times per lanes over all regions are given in Table 5.16. To
compare travel times from different regions with varying sizes, the considerations always include
the entire road stretch. The uncongested travel times amount to 78.83min and 79.84min in
NB and SB direction, respectively. The deviation comes from different detector locations per
direction, in total 2 km.

Left Lane Middle Lane Right Lane
Mean travel time (NB) 80.6min 80.7min 81.2min
Median travel time (NB) 80.0min 80.2min 80.6min
Mean travel time (SB) 81.5min 81.7min 82.7min
Median travel time (SB) 80.8min 80.9min 81.9min

Table 5.16: Average travel time per lane in Lane Jam regions

The results show that the right lane is usually the slowest lane. Compared to the uncongested
situation, the average travel times are only slightly increased. The reason for this is that virtual
trajectories are created for every region. These trajectories cross the congestion cluster(s) of
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each lane at congested speed but also areas where only the other lanes are congested and
the currently considered lane is not in congestion. For these trajectories, free-flow speeds are
assumed, which causes a high share of uncongested travel times influencing the averages in
Table 5.16. Still, the tendency of travel time increase compared to the free-flow situation is
recognizable.

Figure 5.30: Typical travel time increase per lane during emergence of congestion

A typical process of a congestion propagation behaves like illustrated in Figure 5.30, an
example from June 23, 2019 in SB direction. This plot shows the travel times of each trajectory
starting on that day. The velocity threshold vcrit is first reached on the right lane, some minutes
later also on the middle lane and again some minutes later on the left lane. When all lanes
are congested, the travel times are highest on the middle lane. On the right lane, congestion
resolves relatively fast after its emergence and the travel time increase keeps a low level. Middle
and left lane are more likely affected by congestion after the first third. When it resolves, all
lanes are affected equally in a relatively short time period. In this example, the middle lane is
mostly affected by congestion at all, considering the integral over the line curve. It appears
that if known in which phase of congestion one is, it was most efficient to take the left lane for
the first third of congestion and then to move to the right lane to lose minimum travel time.
Surely, the congestion phase is not known a priori, each congestion behaves differently, and lane
hopping involves other challenges than just a consideration of travel time loss minimization
ex-post, e.g. traffic safety issues. Also, negative effects for the other users with regard to the
system optimum should be taken into account.

Hot Spots

All starting points of regions are compared in a spatio-temporal area. Again, the symbol size
is correlated to the size of the region. Lane Jam hot spots are illustrated in Figure 5.31. The
results in NB direction show an accumulation at the exit ramps of interchange A99 (km 522)
during the afternoon. In the remaining Munich area, no special concentration can be found
except from a higher share during late morning and afternoon.
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(a) NB direction

(b) SB direction

Figure 5.31: Spatio-temporal hot spots of Lane Jam regions
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In the Ingolstadt area (around km 460), predominantly smaller sizes of region areas occur,
spatially due to the smaller equipment area but temporally not limited. In the Nuremberg area
(km < 400), a hot spot occurs at the interchange of A6 (km 380) and further on towards the
interchange of A3 (end of the test field at km 372). There, the right lanes continue the A9
whereas the left lanes merge onto the A3 causing heavy lane changes. Both hot spots, at A99
and A6, appear also on mainline congestion detection, see Figure 5.22.
In SB direction, data from the Nuremberg area show the identical hot spot at km 380

(interchange of A6). Albeit the equipped area is smaller compared to NB, more congestion
regions are found. In the Ingolstadt and the Munich area, some Lane Jam events occur during
night hours. These come from a construction site and their preparations such as road markings
or the installation of traffic cones, executed while traffic flow is little.
In the Munich area, two significant hot spots occur. One is again the interchange of A99 at

km 522. There, two out of five lanes leave the A9 and merge onto the A99. During the data
collection period, a large construction site was installed on this exit ramp. The lane number on
the ramp decreased from two to one and caused a wide spillback. This causes different speeds
on the left/middle and the right lane and the emergence of Lane Jam. The condensation
occurs between 6:00 and 15:00, and hence, does not arise on late afternoon and evening. This
hot spot was also discussed in the mainline hot spot section 5.5 where BT data interpreted
these congestion events as Stop and Go traffic which was said to be indeed a hidden Lane
Jam.
The second hot spot is located at the end of the autobahn, at km 529. At the very end

of the freeway stretch, two lanes are split up onto the Munich city highway: one goes to the
Westbound, the other to the Eastbound direction. Depending on the traffic volume on that
highway, either the Westbound or the Eastbound lane of A9 are congested and cause a Lane
Jam. This hot spot is divided into two phases: one during the morning peak between 6:00 and
10:00, the other one during the afternoon peak between 14:00 and 19:00. In SB direction,
Lane Jam events occur on different locations than mainline congestion (see Figure 5.23). The
hot spot times are similar, showing a morning and an afternoon peak.

(a) NB direction (b) SB direction

Figure 5.32: Day of week distribution of Lane Jam occurrences

The distribution of Lane Jam occurrences on the days of week is depicted in Figure 5.32.
In NB direction, the most concerned day is Friday whereas during the weekend, fewer Lane
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Jam events occur. In the opposite direction, mainly weekdays are affected. Both is aligned
with mainline congestion, which mostly occurs on Wednesdays and Thursdays [Karl and
Bogenberger, 2019]. A reason for that might lie in the causes of Lane Jam. While
construction sites are preferably prepared during off-times, spillback emergence at ramps due
to overload occurs surrounding the weekend.

5.6.2 Conclusion
Summarizing the key findings of this section, Lane Jam frequently occurs starting from the
right lane spreading out to the middle and left lanes. Congestion starts at the same location for
all lanes. However, the middle and left lane have an average delay of few minutes to recognize
it. In total, the middle lane is most affected by low travel times seen over an entire emerging
incident. Like hot spots of the other congestion types, also Lane Jam often occurs upstream
of interchanges and exit ramps, basically due to spillback. Correspondingly, it mainly appears
during weekdays, especially before and after the weekend in NB and SB direction, respectively.

5.7 Discussion
This section gives a short overview of all congestion types and their detection rate, and
discusses the suitability of the detection technologies. The recognition of 4+1 congestion
types Jam Wave, Stop and Go, Wide Jam, Mega Jam, and Lane Jam are compared using
data from four detection technologies gantry, radar, BT, and FCD on a freeway stretch. The
evaluation shows that each congestion type has a different level of recognition and results in
different hot spots. Table 5.17 gives an overview of the suitability.

Gantries Radars Bluetooth FCD
Jam Wave 3 3 7 3

Stop and Go 3 3 7 3

Wide Jam 3 3 3 3

Mega Jam 3 71 3 3

Lane Jam 3 3 72 72

1due to the short detection area here
2left for future research

Table 5.17: Suitability of detection technologies and congestion types

In general, gantry sensors are able to detect all kinds of congestion both mainline and lane-
by-lane. Their temporally high accuracy and their small spacings in this study lead to an exact
traffic state. Radars are basically also suited to detect all kinds of congestion. However, in this
data set, only a short stretch of the road is equipped (approximately 10 km). Generally, a Mega
Jam has greater extensions, which challenges the detection evidence based on radars. Only if
a Mega Jam lies ideally in this spatio-temporal area, it can be detected reliably. Therefore,
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based on the data set in this study, it is not recommended to equip radars to detect Mega
Jam.
BT measurements are not suited to detect a single or several jam waves (Stop and Go).

The propagation direction of jam waves is upstream with a constant velocity of approxi-
mately 15 km/h, in contrast to the travel time measurements, which are downstream awaiting
the second detection at the end of the segment. Especially, when the speed falls below vcrit
for a short period in a segment, BT speeds result in two options: Either congestion is not
detected at all because the segment speed averages to a value greater than vcrit. Or a con-
gestion event supposed to be Jam Wave decreases the segment speed to a value below vcrit
which then increases the probability of detecting Wide Jam because of the large spacing of
several kilometers. The same holds for Stop and Go traffic. Multiple jam waves after another
are not to be determined reliably by travel time measurements. Wide Jam and Mega Jam are
suited best to be detected by BT.
FCD are able to detect all mainline congestion types well as long as the penetration rate

of probe vehicles is sufficiently high. During night hours, no or little speed information can
be gathered. If the penetration rate is low, few vehicles cause the speed information and
false velocities such as a wrong map-matching cannot be averaged. If the vehicle fleet is
large enough, a reliable speed reconstruction along with the determination of congestion types
is possible. A drawback here is that the data set comes from a car manufacturer which
provides its customers with in-car traffic information. In advance of congestion, drivers receive
an incident warning and are more likely to leave the freeway or use an alternative route.
Therefore, the fleet size decreases upstream of congestion and increases again downstream of
it, which reduces the number of vehicles driving through the congested area.
Lane-specific traffic information based on both BT and FCD are left for future research. Stop

and Go traffic is characterized by oscillating speeds. Its recognition requires dense detection
and harmonization. If a section-based travel time detection system uses small sensor spaces,
it is likely to reliably recognize Jam Wave and Stop and Go events though it could not be
proven with this data set.

113



5 Application to Various Traffic Detection Technologies

Takeaways from Chapter 5: Application to Various Traffic Detection Technologies

Evaluation of Fusion Approaches

Low-Resolution Travel Time
Smoothing Method (LTSM)

Fusion method that is generally applicable, easy to
implement, and ready for practice

Multi-sensor data fusion Computationally efficient superimposition of
multiple data sources for an accurate speed
reconstruction

Congestion Detection and Classification

General findings All data sources comparable, no systematic bias;
smoothed data sets detect fewer and larger
congestion clusters, raw data more and smaller; size
of cluster for estimating and assessing congestion
severity appropriately

Earliest congestion detection Appropriate methodology to identify first congestion
occurrences ex-post; SDD faster than FCD by
2-3min if sensor spacing is small, otherwise FCD
significantly earlier

Detection rate per data
source

Small differences in resulting clusters regarding
types and numbers; FCD and BT data overestimate
Stop and Go, BT data underestimate Jam Wave

Mainline congestion type hot
spots

Comprehensive big data analysis, ready for traffic
planning; hot spots mainly upstream of
interchanges, Jam Wave occurrences restricted to
few locations only

Lane-by-lane congestion Novel congestion type derived via congestion
clusters; right lane affected most by emerging
congestion, middle lane highest travel times on
average; hot spots at interchanges of A6 and A99

Suitability of detection
technologies

Gantry and radar sensors suitable for all congestion
patterns, FCD and BT data for mainline types only;
BT data not suited to Jam Wave and Stop and Go
detection if sensor spacing is large
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Chapter 6

Conclusion and Future Research
This chapter concludes the dissertation. It first summarizes all findings and discusses the
results. Second, topics for further research are given. In the end, a vision is laid out for
handling congestion in future transportation systems.

6.1 Summary
This dissertation deals with strategies and comparisons of the performance of sensor tech-
nologies while identifying congestion patterns on freeways. A formal 4+1 congestion pattern
definition is given, involving four mainline types and one lane-based type: Jam Wave, Stop
and Go, Wide Jam, Mega Jam, and Lane Jam. Each congestion pattern is detected based on
an assessment of trajectories resulting from the simulation of virtual vehicles. The proposed
algorithm classifies occurring congestion into one of these categories. For each congestion
type, metrics are computed such as a hot spot distribution, a primary congestion detection,
and – on lane-specific speed information – an estimation of the least travel time per lane.
Each of these congestion detection and comparison metrics is applied to data sets from

various detection technologies: gantry speed measurements, radar speed measurements, Blue-
tooth (BT) travel time measurements, and Floating Car Data (FCD), and the results are
compared. The comparison is based on a spatio-temporally discretized speed distribution per
data source. For section-based data measurement approaches that deliver travel times, such
as BT, a novel algorithm called Low-Resolution Travel Time Smoothing Method (LTSM) is
introduced. As a second step, a data fusion approach is presented, which leads to a fused speed
distribution based on all data sources. For each of the speed distributions, a methodology is
invented, which extracts congested regimes. Each so-called congestion cluster is assigned a
particular shape – a convex hull of relevant congested cells of the discretized speed matrix
–, a particular congestion type, and a size as the area of the congested region. This enables
quantitative, machine-interpretable insights and statistics on freeway traffic incidents.
In a comparison of all data sources, the suitability of each detection technology with each

congestion type is discussed. Among other findings, it could be observed that BT travel times
are not suited to detect short congestion or highly oscillating speeds such as Jam Wave or
Stop and Go traffic. Gantry and radar speed measurements are able to detect each congestion
type well. However, radars are installed only on a short stretch of the considered freeway,
which challenges the identification of a Mega Jam. FCD are likely to detect Stop and Go
clusters compared to the other congestion types and yield reliable results with an appropriate
penetration rate of some percent of probe vehicles.
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Considering the autobahn stretch of A9 between Munich and Nuremberg, congestion hot
spots are mainly detected upstream of interchanges or exit ramps. The result shows a signif-
icantly high share of Stop and Go traffic in the Greater Munich Area in the morning hours.
In particular, spillback caused by the autobahn A99 and by the Munich city highway are often
reasons for congestion emergence. Also, the analysis determined that Jam Wave events are
not distributed all over the space-time domain, but instead restricted to a few locations. In
the Nuremberg area, these Jam Wave events occur throughout the day, as opposed to other
areas, in which they are limited to only certain times of day. BT data and FCD recognize
a Mega Jam accumulation in the Greater Nuremberg Area. The reasons for these hot spot
distributions are left for future research. Lane-specific congestion is mainly detected upstream
of a large construction site together with a lane reduction on an exit ramp during the data
collection phase.
This dissertation aims at providing a set of practical tools which are ready to use and are

implemented in a computationally efficient way. With these results, traffic authorities have the
necessary tools to specifically optimize traffic flow at particular critical locations or times. The
comprehensible approaches give support to every road planner, traffic controller, and freeway
operator.

6.2 Further Research Topics
Some aspects touched upon in this dissertation are left for future research. Due to limitations
of the data collection phase, the amount of common dates from all data sets is small. When
gathering traffic measurements during a longer, less error-prone time period, the multi-sensor
data fusion should be executed on a large-scale data basis so that results are more compa-
rable, especially regarding the mainline congestion type hot spot analysis and the equipment
recommendation with regard to the detection capability for each congestion pattern.
A second point is the investigation of the reasons for the emergence of a particular conges-

tion type, as there are many different possible causes, such as construction sites, accidents,
slow heavy-duty vehicles, etc. In a comparison, a matching between congestion causes and
occurring patterns should be conducted. This will be helpful to forecast congestion behavior
and congestion fronts based on their causes.
A third topic is the detection of Lane Jam based on non-lane-specific traffic information

such as BT or FCD speeds. During the discretization into spatio-temporal cells, the trajectory
speeds of individual vehicles could be clustered into two or more groups. If the speeds between
these clusters differ distinctly – indicating a slow and a fast subset of speeds –, it may be
an indicator of lane-specifically varying congestion. Possibly, a new definition of Lane Jam is
needed, not derived via the share of each lane’s cluster in the united region, but instead using
different segment travel times. Also, for Lane Jam, a thorough derivation of possible causes
should be conducted.
A further research question is the separation of two conjoint congestion clusters. If the

algorithm to identify isolated congestion clusters combines what is actually two bottlenecks
into one cluster, in general, one of them gets lost. In a study, the impact of this phenomenon,
the misidentifying of the lost congestion, should be investigated. To this end, the share of
congested versus uncongested cells in the cluster could be analyzed since it is likely that the
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cluster contains many free-flow speed cells.
As a last point, the online applicability of the currently offline available methodology should

be investigated. All algorithms can handle live data and act in an online context, however this
has not been tested. It is challenging to determine the appropriate congestion type based on
the first few trajectories solely. Depending on the congestion type, traffic managers can then
take action in real-time leading to an optimized traffic management. Still, the feedback time
to inform travelers before the last exit needs consideration.
The online handling of congestion types could be implemented in a macroscopic traffic flow

simulation to test various traffic control scenarios. One example of a small adjustment that
could be made to the methodologies is a filtering of slow BT section-based speeds during night
hours. Also, a detailed consideration of the congestion type of each crossing trajectory should
be examined. For example, if the first and the last trajectory traversing the cluster result in a
different congestion type than the rest (mainly Jam Wave because the intersection with the
cluster is only short), these trajectories should get a smaller weight in the frequency-based
determination of a cluster’s congestion type. With the help of traffic control optimization,
if the upstream congestion front can be predicted, alternative routes or bypasses can be
recommended for safety reasons.

6.3 Outlook
The results of this thesis help to optimize traffic sensor placement on freeways. Stop and Go
traffic needs more dense detection in order that free-flow sections, which should be considered
part of the Stop and Go congestion, are not misidentified. Jam Wave events require small-scale
detection, for example via local measurements, otherwise the averaged speeds (along a larger
road section) could be above the velocity threshold, in which case congestion is not recognized
at all. Traffic flow with Lane Jam can be optimized if the lanes are handled dynamically and
controlled individually. The detection of hot spots leads to more detailed traffic information
in advance or even to the ability to make predictions, in which case warnings can be sent, for
example that drivers should change their current lanes earlier to increase traffic safety.
In the future, an economical traffic state reconstruction will mainly utilize FCD, that is probe

vehicle and mobile device data. The installation and maintenance costs of both induction loops
and gantries are generally high. BT measurements are a cost-effective alternative, but they
miss traffic flow since they detect a sub-sample of the traffic collective. Radar measurements
detect flow and are often suited for an energy self-sufficient operation. In addition to mobile
device detection, which also lacks traffic flow information, radars are recommended as mesh
points to count the traffic volume. Still, a large amount of traffic detection will be gathered
via mobile apps or probe vehicles.
This moves the focus of traffic state reconstruction and specifically congestion detection

from a macroscopic view towards a mesoscopic view, as a combination of macroscopic flows
and microscopic vehicle speeds. To this end, in the future, congestion could be represented in
an event-based way. A speed breakdown then corresponds to an event at a certain time, at
a certain place, and on a certain lane, instead of a cell-based spatio-temporal grid. In such a
scenario, congestion can be detected by single vehicles. The precondition of a real-time traffic
state estimation is a high penetration rate of probe vehicles and a dense mobile net coverage,
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which might improve with 5G and beyond.
In a world with 100% automated vehicles, traffic will change from lane-based to lane-free.

In such a world, Lane Jam events are obsolete. Detailed congestion type information is even
easier to gather because the vehicles are connected. Each vehicle can experience a congestion
type individually and determine spatial and temporal extents of the current congestion. An
information fusion of all connected vehicles then gives the opportunity to estimate the cluster
with its congestion type appropriately. There is no need to reconstruct the entire space-
time domain. Also, destinations are known, and therefore, micro-routing can be optimized
in real-time for a larger subset of traffic participants. In this way, emerging congestion can
be nipped in the bud. Until such a world is realized, however, in mixed traffic conditions
with automated and human-driven vehicles, lane-by-lane speed information combined with the
approaches introduced in this work, allows traffic planners to improve traffic flow.
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6.3 Outlook

Use Cases of the Developed Methodologies

• Traffic planning: By deriving congestion type hot spots and by matching detection
technologies to congestion types, the ideal locations of sensors can be determined.
For example, atWide Jam hot spots, BT equipment as a cheap alternative suffices,
whereas Jam Wave hot spots should be equipped with other technologies.

• Traffic control: An online control which knows about the actual congestion pattern
can act in an optimized way. Further, it can estimate which sensor technology
is applied in which cases to receive a most accurate traffic state. The provided
tools support the controllers in Intelligent Transportation Systems (ITS) in making
decisions, such as:

– where and when to use the shoulder lane
– where and when to employ bi-directional usage of lanes
– recommendations on lane changes
– recommendations of alternative routes

• Traffic prediction: Knowing the type of the currently occurring congestion, the
upstream and downstream congestion fronts can be predicted. The behavior (e.g.
speed profiles) in the interior of this congestion are estimated reliably.
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