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Abstract

The presented thesis discusses two concepts which show potentials for future lightweight
solutions with improved vibroacoustic properties. The first concept is based on the idea to
capture bending waves at predefined locations to reduce structure borne noise. The advan-
tage of this concept is the improvement of the vibroacoustic properties on a broad frequency
range while the mass of the overall structure also decreases. Various studies suggest smooth
thickness profiles based on the idea of so called "acoustic black holes". This work confirms
the benefit of local thickness reduction. Beyond that the presented numerical studies show
that an abrupt thickness profile with localized damping measures can outperform smooth
profiles with similar damping measures. Comparisons between beams with and without lo-
cal thickness reductions demonstrate the increased energy dissipation at localized damping
treatments and explain the resulting lower amplitudes of the vibration and the reduction
of the radiated sound power. The second concept are periodically distributed resonators
attached or incorporated in the main structure. So called locally resonant materials show
beneficial vibroacoustic properties at specific target frequencies. This work focuses on the
design of beam-like resonators and how to adjust their geometry to maximize the perfor-
mance. The thesis proposes the computation of the spatially decaying characteristics to
assess the performance of the resonant material by means of the wave solutions using the
Wave Finite Element Method. Based on the spatial decaying characteristics, different con-
figurations of beam-like resonators are evaluated to assess design criteria. The benefit of
this approach is that the boundary conditions of the host structure are not necessary, which
offers the opportunity to evaluate different resonator configurations at an early stage of
development.
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1 Introduction

1.1 Motivation

Lightweight structures are commonly used in various parts of planes or other type of ve-
hicles. A high strength is crucial for meeting the requirements for a robust vehicle design.
Additionally, low mass increases the cost efficiency and therefore is a driving factor for de-
signing aircraft components. The economic benefit of a lower mass while the stiffness of
the structure remains constant implicates poor acoustic properties. This trade-off between
reduced mass and reduced acoustic performance is crucial. Recent advances in the devel-
opment of highly efficient and low-emission propulsion intensify this trade-off. While the
energy consumption of open rotors or concepts with larger bypass ratio is lower compared
to conventional turbines, it is expected that these propulsions increase air borne noise and
structure borne noise [Angrand 2019]. Conventional measures that enhance the vibrational
behavior are only effective for higher frequencies and implicate an increase of the mass of the
overall structure. Such measures are not suitable as they exhaust the benefit of improved
energy consumption. Consequently, there is a need for novel solutions that enables engineers
to design lightweight structures with improved vibroacoustic properties.

In aircrafts, there exist several excitation scenarios which occur in a broad frequency range.
Besides broadband white noise excitations from the pressure fluctuations of the turbulent
boundary layer, there also exist narrow-band excitations. These phenomena result from the
blade passing frequency of aircraft propellers, the gear mechanism of helicopters or other
narrow-band noise induced by the engines. Consequently, novel lightweight solutions should
be able to tackle broadband noise as well as specific excitation frequencies.

In the last decades, the term "metamaterial" appeared in various research fields of physics.
Scientists use the term "metamaterial" for a material that has properties which are "beyond"
the limits that we observe in nature. In many examples, metamaterials have dynamically
modified properties as negative density, negative compressibility, or negative refraction. The
main concept for the creation of such unconventional material properties is the arrangement
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of repeating sub elements made of conventional material. These sub elements are dimen-
sioned on a scale smaller than the sub wavelength of the media it should interfere with.
The macroscopic material behavior of the periodic alignment of such sub elements can be
completely different than the material or the individual element it is made of. The idea is to
tailor the macroscopic material properties to improve the acoustic performance of the struc-
ture. Extending the borders of possible mechanical properties augments the design space for
lightweight solutions with enhanced acoustic performance that resolve the trade-off between
reduced mass and poor vibroacoustic properties. In general, the design of an acoustic meta-
material has different scales. On the one hand, there is the host structure whose dynamic
behavior can be modeled using homogenized mechanical properties. The scale of the host
structure is defined as the macro scale. On the other hand, metamaterials introduce local
modifications on a much smaller scale, the micro scale. To evaluate the overall behavior
the micro scale should be incorporated in the macro scale. Therefore, the models require a
detailed description of both scales.

1.2 Discussion about the term "metamaterial"

The recent popularity of the term metamaterial is strongly linked to the advances in additive
layer manufacturing (ALM) technology. Due to the increased scale of manufacturing of ALM
processes, it is possible to manufacture complex small scale components integrated in a larger
scale host structure. This encourages scientists to develop various types of metamaterials.
For some of the concepts, one can argue that the fundamental theory is not a new invention.
For example tuned mass dampers (TMD) as they are used in building construction ([Pavic
et al 2002; Poon et al 2004]) can be interpreted as locally resonant materials. In this work, the
author shows that the difference lies in the scale in which the engineers apply the concepts.
Instead of applying TMD e.g. to pedestrian bridges where the macro scale is in the range
of several meters [Pavic et al 2002], it is now possible to design local resonances that are
small enough to be integrated in composite structures such as honeycomb panels [Claeys
et al 2016b].

The physics behind metamaterials is not "beyond" the limits that we observe in nature. State
of the art mechanics explains all the behavior of the structures. The "unnatural" behavior
appears only if the structure is analyzed on the macro scale, which for metamaterials is in
the range of a wavelength that is present in the structure. On the macro scale the material
seems to behave strange. Investigating the micro structure in detail, the material behavior
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of course follows the established laws of Newton’s mechanics. Consequently, depending on
the point of view the material can be denoted as "metamaterial" or not.

1.3 Research project "Additive Layer Manufacturing for

Acoustic metamaterials (ALMA)"

The author issues this thesis in the scope of a cooperation in a joint research project. This
project aims to reveal the potentials of additive layer manufacturing (ALM) for the design
of acoustic metamaterials with future application in the aircraft industry. ALM offers the
possibility to design complex small scale structures incorporated in a large scale macro
structure. Due to the enhanced spatial design opportunities of the ALM process compared
to conventional manufacturing techniques, it is possible to enlarge the design space of the
vibroacoustic properties of such structures. The focus of the project was the design of
materials that are able to modify and/or damp acoustic waves in such a way that the
structure borne sound is reduced.

The three partners Airbus, APworks and the Technical University of Munich cooperated to
unit their expertise. Airbus defined the applications scenarios for the acoustic metamaterials.
APworks focused on improving the manufacturing process to optimize the quality of the ALM
designs in terms of minimum printing thickness and accuracy. The Technical University of
Munich, more specific the Chair of Structural Mechanics, developed the numerical models
and computational procedures to predict the performance of the metamaterials and to define
design criteria.

The author of this thesis was responsible for the sub project "Modeling and Simulation",
which the chair of structural mechanics conducted in coordination with the project part-
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ners. Therefore, this thesis focus on the modeling aspects of different concepts of acoustic
metamaterials and the conducted numerical studies.

1.4 Outline of the thesis

This work introduces different concepts for the design of acoustic metamaterials and explains
the underlying theory. Furthermore, several numerical studies evaluate the acoustic perfor-
mance of the different concepts to reveal their potential for novel lightweight structures with
improved vibroacoustic properties.

Chapter 2 starts with the introduction of the fundamental theory of structural dynamics. Be-
sides the introduction of the basic equations, this chapter also includes the basic mechanisms
for modeling mechanical systems and evaluate the vibroacoustic performance.

Chapter 3 elaborates on different concepts for designing structural components with tailored
vibroacoustic properties. Concepts as acoustic black holes, locally resonant materials and
how to design wave guides for acoustic waves are addressed. This chapter includes detailed
descriptions and derivations of the underlying theory as well as a summary about the current
state of the art of the different concepts.

Subsequently, chapter 4 focus on the modeling aspects. The author addresses specific mod-
eling aspects that form the basis for modeling locally resonant materials and periodic struc-
tures.

Chapter 5 focuses on numerical studies to demonstrate the working principles of acoustic
black holes and locally resonant materials. In this chapter detailed studies on various con-
figurations demonstrate the potential of the concepts and discuss various design parameters
to maximize the performance of the metamaterials.

Finally, chapter 6 summarizes the results of the numerical studies and gives an overview on
the developed design criteria.
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2 Fundamental theory

This chapter covers the fundamental theory for modeling the dynamic behavior of structural
components. Section 2.1 introduces the equation of motion for harmonic excitations. Follow-
ing this, section 2.2 employs the principal of virtual work to the equation of motion. Based
on the principle of virtual work, section 2.3 explains how one can generate a discretized
model using finite elements. Section 2.4 introduces the different wave types that define the
motion of the structure. Finally, section 2.5 demonstrates mechanisms for the evaluation of
the radiated sound.

2.1 Equation of motion for harmonic excitations

The general equation of motion for elasto-dynamics is given by

ρü− LTσ − b = 0 . (2.1)

u denotes the deformation of the structure in the three spatial directions. ρ is the density of
the material. σ describes the stress tensor and b the body force. L is a differential operator
in the spatial domain. Damping can be included in the stress tensor or as an additional
term. In general, σ is a second order tensor, but it is also possible to write it as a vector
[Zienkiewicz et al 2005]

σ =
[
σxx σyy σzz σxy σyz σzx

]T
. (2.2)



6 2 Fundamental theory

Arranging the stresses in a vector, the differential operator in x, y and z reads

L =



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
0 ∂

∂z
∂
∂y

∂
∂z

0 ∂
∂x


. (2.3)

In structural dynamics, one solves the equation of motion for a harmonic excitation of the
form [Müller 2019b]

f(x,t) =
¯
f+(x)e iΩt +

¯
f−(x)e−iΩt . (2.4)

The under bar
¯
� marks a complex amplitude.

¯
f− is the complex conjugate of

¯
f+. The

complex conjugate is marked with a superscript �∗ (thus
¯
f− =

¯
f∗+). In general, the solution

of the displacements u consists of a homogenous part uh which describes the free vibration
and the particular part up which describes the steady state solution

u = uh + up . (2.5)

The homogenous solution usually decays after a short amount of time. Therefore, it is often
neglected in structural dynamics. For practical applications in vibroacoustics, this is a valid
assumption as long as there are no large deformations that might result in material failure
or plastic deformations while the homogenous solution decays. The steady state solution
oscillates with the same frequency as the excitation frequency. Therefore, for the particular
solution, the following approach is applied [Petersen 1996]

¯
up =

¯
up+e iΩt +

¯
up−e−iΩt . (2.6)

The terms related to e iΩt and e−iΩt can be considered separately and due to the fact that

¯
up− =

¯
u∗p+, it is sufficient to solve for

¯
u+. Therefore, the steady-state solution simplifies
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to

u =
¯
ue iΩt ,

u̇ = iΩ
¯
ue iΩt , (2.7)

ü = −Ω2

¯
ue iΩt .

Inserting (2.7) in the equation of motion results in

−Ω2ρ
¯
u− LT

¯
σ −

¯
b = 0 . (2.8)

2.2 Principle of virtual work

In the following, the equation of motion (2.8) is formulated in a weak sense. The presented
procedure follows the derivation of Zienkiewicz and Taylor [2005] and Hughes [2002]. The
governing equation (here the equation of motion) is multiplied with an arbitrary function
δ
¯
u and than integrated over the domain of interest

δΠ =
∫
V
δ
¯
uT

(
−ρΩ2

¯
u− LT

¯
σ −

¯
b
)
dV = 0 . (2.9)

From the mathematical point of view, δu is a test function. The expression in the brackets
which is the equation of motion (2.8) should vanish. The integral describes a residuum. By
choosing a specific test function, the residuum of the equation of motion (2.8) is weighted.
If a solution

¯
u of (2.8) is inserted the integral of the arbitrarily weighted residual vanishes.

From the mechanical point of view, δu is felt as a virtual displacement that generates an
amount of virtual work δΠ. First, the second term in (2.9) is integrated by parts

∫
V
δ
¯
uTLT

¯
σ dV = −

∫
V

(Lδ
¯
u)T

¯
σ dV +

∫
S
δ
¯
uTLT

¯
σ · n dS . (2.10)

The external forces
¯
t balance the stresses (

¯
t = LT

¯
σ · n) at the boundary S. Thus, the first

integral describes the internal virtual work and the second term is related to the work done
by the forces t acting on the boundary of the domain.

In the last step, one inserts the constitutive equation
¯
σ = C

¯
ε describing Hooke’s law for the

linear case. In general, C is the forth order elasticity tensor. Due to the vector notation of the
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stresses introduced in (2.2), C is written as a second order matrix [Link 1984]. Furthermore,
the kinematic relation is

¯
ε = L

¯
u [Klausner 1991]. Summarizing, the virtual work reads

δΠ = −
∫
V
δ
¯
uTρΩ2

¯
u dV

+
∫
V

(Lδ
¯
u)TCL

¯
u dV

−
∫
S
δ
¯
uT

¯
t dS (2.11)

−
∫
V
δ
¯
uT

¯
b dV

= 0 .

2.3 Finite element discretization

The weak formulation of the equation of motion (2.11) is the basis for finding an approx-
imated solution for the equation of motion using the finite element method. Applying the
Galerkin method which is based on the work of Ritz [1909] and Galerkin [1915], one approx-
imates the domain V with n non-overlapping domains Ve such that

V ≈ ∪ni Ve,i with Ve,i ∩ Ve,j = ∅ for i 6= j , (2.12)
S ≈ ∪ni Se,i with Se,i ∩ Se,j = ∅ for i 6= j . (2.13)

In addition, the displacements
¯
u and the virtual displacements δ

¯
u are discretized using a

discrete set of nodal values
¯
ui and δ¯

ui that are multiplied with different shape functions Ni.
A fundamental property of the basis is that they only have local support. This means that
the basis function Ni of node i is zero at all the other nodes. Figure 2.1 illustrates the finite
element discretization for a one dimensional domain.

For each element, we map the shape functions and coordinates to local element coordinates
ξ. The advantage of the global to local mapping is that the element shape functions in local
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x

Ni(x)Ni−1(x) Ni+1(x)

0 1 i− 1 i i+1 n−1 n

V

Ve,nVe,i+1Ve,iVe,1

Figure 2.1: Finite element discretization of a one dimensional domain with shape functions that only have
local support.

N2(ξ)N1(ξ)

−1 +1

Ωe,local

xi−1 xi

Ωe,i

Ni(x)Ni−1(x)

x ξ

Figure 2.2: Global to local mapping of the shape functions and the coordinates for a one dimensional
element.

coordinates are identical for each element

¯
ue ≈



N1(ξ) 0 0
0 N1(ξ) 0
0 0 N1(ξ)
... ... ...

Nr(ξ) 0 0
0 Nr(ξ) 0
0 0 Nr(ξ)





¯
ux,1

¯
uy,1

¯
uz,1
...

¯
ux,r

¯
uy,r

¯
uz,r


= N(ξ)˜

¯
ue . (2.14)

r are the number of nodes per element and ˜
¯
ue contains the nodal deformations. This dis-

cretization leads to an approximation of the virtual work, where the integration is performed
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for each element e in local coordinates ξ

δΠ ≈
∑
e

δ˜
¯
uTe
[ ∫

Ve,local

N(ξ)TρN(ξ)|Je| dVe,local(−Ω2˜
¯
ue)∫

Ve,local

(LN(ξ))TCLN(ξ)|Je| dVe,local˜¯
ue

−
∫
Se,local

N(ξ)T˜
¯
t|Je| dSe,local (2.15)

−
∫
Ve,local

N(ξ)T ˜
¯
b|Je| dVe,local

]
= 0 .

Je is the Jacobian that describes the mapping. Using the isoparametric approach, the same
shape functions that approximate the deformation also approximate the geometry

x(ξ) = N(ξ)xi . (2.16)

xi are the nodal locations. This results in the following expression for the Jacobian

Je = ∂x
∂ξ

= N(ξ)
∂ξ

xe,i . (2.17)

xe,i are the nodal coordinates of element e. Finally, for the integration over the element
coordinates ξ, one applies the Gaussian quadrature [Gauß 1815; Jacobi 1826]. The evaluation
yields the element mass matrix Me and stiffness matrix Ke as well as the element load vector

¯
fe

Me =
∫
Ve,local

N(ξ)TρN(ξ)|Je| dVe,local , (2.18)

Ke =
∫
Ve,local

(LN(ξ))TCLN(ξ)|Je| dVe,local , (2.19)

¯
fe =

∫
Se,local

N(ξ)T˜
¯
t|Je| dSe,local +

∫
Ve,local

N(ξ)T ˜
¯
b|Je| dVe,local . (2.20)

As several nodes contribute to multiple elements, the summation over the elements (see
(2.15)) corresponds to an assembling of the contribution of each element in the global ma-
trices (M and K) and the global load vector

¯
f . As the virtual work of the discretized virtual

displacement should vanish, the finite element discretization yields

(
K− Ω2M

)
˜
¯
u =

¯
f . (2.21)
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This equation is the discretized equation of motion for a harmonic excitation. The matrix
(K− Ω2M) is called dynamic stiffness matrix.

2.4 Acoustic waves

In a linear case, the motion of a structure can be described as a superposition of various
waves. A wave is a disturbance that propagates through a media. Depending on the defor-
mation pattern, one can distinguish different wave types which have different characteristics.
One of the basic properties of a wave is the propagation speed cp

cp = λf = Ω
k
. (2.22)

λ is the wavelength and f the frequency of oscillation in Hertz (1/s). Ω describes the
angular frequency (2π/s). Correspondingly to the oscillations per second, there exists the
spatial wavenumber k that describes the number of oscillations per meter

k = 2π
λ
. (2.23)

2.4.1 Longitudinal waves

For longitudinal waves, the particle motion of the structures aligns with the direction of
propagation of the waves (see figure 2.3a). Longitudinal waves are also called compressional
waves or P-waves. The propagation speed of longitudinal waves is

cL =
√
DL/ρ . (2.24)

DL is the longitudinal stiffness and ρ the density of the material. Pure longitudinal waves
do only occur in infinitely extended structures.

2.4.2 Quasi-longitudinal waves

In general, structural components are spatially limited and therefore, instead of longitudinal
waves quasi-longitudinal waves occur. Besides compression or elongation in the direction
of propagation, the structure experiences extension and compression in vertical direction,
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respectively (see figure 2.3b). Depending on the geometry, the longitudinal stiffness varies.
Therefore, the propagation speed of quasi-longitudinal waves in beams and plates is different
[Cremer and Heckl 1967]

cL,beam =
√
E/ρ , (2.25)

cL,plate =
√

E

ρ(1− ν2) . (2.26)

E is the Young’s modulus and ν the Poisson’s ratio of the material.

(a) Longitudinal wave

(b) Quasi-longitudinal wave

Figure 2.3: Difference of the deformation pattern of longitudinal waves and quasi longitudinal waves.

2.4.3 Shear waves

For shear waves, the particles of the structure oscillate perpendicular to the propagation
direction of the wave (see figure 2.4). Shear waves propagate due to the resistance against
shear deformation. Thus, such waves do not appear in ideal fluids [Möser and Kropp 2010].
The wave speed depends on the shear modulus G

cT =
√
G/ρ . (2.27)

G is related to the Young’s modulus [Cremer and Heckl 1967]

G = E

2(1 + ν) . (2.28)
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Figure 2.4: Deformation pattern of a shear wave.

2.4.4 Bending waves

For bending waves, the particles in the structure move parallel and perpendicular to the
direction of propagation (see figure 2.5). Bending waves occur in thin structures where the
assumptions of the Euler-Bernoulli theory are fulfilled:

• The length of the beam is much larger then the cross section

• Cross sections that are perpendicular to the neutral axis of the beam remain perpen-
dicular after deformation of the beam

• The cross section of the beam remains plane after deformation

If the assumptions are fulfilled, the rotational inertia and the shear deformation can be
neglected. Consequently, the force equilibrium in vertical direction yields the differential
equation of the Euler-Bernoulli beam [Cremer and Heckl 1967]

EI
∂4w

∂x4 + ρA
∂2w

∂t2
= 0 . (2.29)

E is the Young’s modulus, A is the cross section of the beam and I the area moment of
inertia.

The differential equation (2.29) describes a dispersive wave motion. The reason is the differ-
ent orders of derivation with respect to time and space [Cremer and Heckl 1967]. Inserting
a wave of the form

w =
¯
w sin (Ωt− kx+ θ) , (2.30)

one observes that any wave with arbitrary amplitude
¯
w and phase θ that satisfies

EIk4 = ρAΩ2 (2.31)
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is a solution of the differential equation. Knowing that the wave speed is the ratio of the
angular frequency and the angular wavenumber, the propagation speed of bending waves
is

cB,beam =
(
EI

ρA
Ω2
)1/4

. (2.32)

For plates, the propagation speeds is given by

cB,plate =
(

Eh2

12ρ(1− ν2)Ω2
)1/4

. (2.33)

Figure 2.5: Deformation pattern of a bending wave.

In thin walled structures, bending waves dominate the motion of the structure. For reducing
structure borne noise, it is crucial to control the motion of bending waves as they typically
are easily excited and are linked with a radiation of noise into the surrounding fluid.

2.5 Sound radiation using the Rayleigh integral

The following section presents the fundamental theory for the computation of the radiated
sound of a vibrating structure. The structure is finite and radiates in an infinite baffle. The
fundamental theory presented here are based on the published work of Cremer and Heckl
[1967], Fahy and Gardonio [2007] and Hambric et al [2016].

The radiated power from a structure into the adjacent fluid depends on the velocity distri-
bution of the structure. In general, only the vertical displacements significantly contribute
to the sound power radiated into the far-field. Therefore, one only considers the velocity
vz perpendicular to the surface. Knowing the surface velocity vz of the structure and the
pressure p in the air the radiated sound power can be computed. Transforming the surface
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velocity into the Fourier domain, it is possible to consider the sound radiation of each wave
component separately [Cremer and Heckl 1967]

¯
v(x,y,z = 0)

F

¯
v̂(kx,ky) . (2.34)

The pressure and the surface velocity determine the sound intensity Ip [Müller and Möser
2013]

Ip = 1
2R{¯

p̂
¯
v̂∗z}. (2.35)

¯
p̂ is the Fourier transform of the pressure and

¯
v̂∗z denotes the complex conjugate veloc-

ity spectra. Integrating the sound intensity over the radiating surface yields the radiated
power

P =
∫
A
IpdA . (2.36)

2.5.1 Wavenumber approach

The pressure in the air results from the surface velocity and the impedance of the air [Cremer
and Heckl 1967]

¯
p̂(kx,ky,z = 0) = Ẑair(kx,ky)¯

v̂(kx,ky) (2.37)

= ρaircair
kair√

k2
air − (k2

x + k2
y)¯
v̂(kx,ky) . (2.38)

The pressure depends on the wavenumber in the structure (k =
√
k2
x + k2

y). For k < kair,
the pressure is real and sound waves radiate in the air. In contrast, for k > kair the pressure
is imaginary. The pressure in the near field decays exponentially with increasing distance
from the radiating plate (see figure 2.6).
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α

k2
x + k2

y < kair k2
x + k2

y > kair

Figure 2.6: Pressure field in front of a vibrating structure.

An integration of the sound intensity gives the radiated sound power

P = ρaircair
2

1
(2π)2

∫ ∞
−∞

∫ ∞
−∞

R

 kair√
k2
air − (k2

x + k2
y)

 ‖¯v̂(kx,ky)‖2dkxdky. (2.39)

Only the real part of the product of the surface velocity and the pressure of the air contributes
to the radiated sound power. The angle α depends on the relation of the wavenumber in the
structure and the wavenumber in the air

α(kx,ky) = tan−1

 kair√
k2
air − (k2

x + k2
y)

 . (2.40)

For the limit case k = kair, the angle of radiation α is 90◦ and the impedance of the air is
infinite. For a vibrating structure (v̂(k2

x + k2
y = k2

air) 6= 0), this would result in a infinite
radiated sound power.

k2
x + k2

y = kair

Figure 2.7: Pressure field for a angle of radiation of 90◦.

Obviously, the limit case is not realistic. The reason is that in this approach, the interaction
of the structure and the air is not bidirectional. The velocity in the structure is computed
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neglecting the impedance of the air. This is only valid as long as the impedance of the
air is small compared to the impedance of the structure. For the limit case k = kair, the
impedance of the air can not be neglected.

The following paragraph demonstrates how the influence of the impedance of the air can be
included. Depending on the ratio of the impedances, there is a relative velocity

¯
v̂rel between

the velocity of the structure and the air

¯
v̂rel =

¯
v̂unidirectional(k) Zair(k)

Zair(k) + Zstructure(k) . (2.41)

For Zair << Zstructure the relative velocity is zero and for Zair >> Zstructure the relative ve-
locity equals the velocity of the structure. The resulting velocity that includes the impedance
of the air is respectively

¯
v̂bidirecctional =

¯
v̂unidirectional − ¯

v̂rel . (2.42)

For bending waves in thin structures the impedance is given by

Zstructure = B

iΩ
(
k4 − Ω2ρh

)
, (2.43)

where B is the bending stiffness and h is the thickness. For most cases, the impedance of
the structure is larger compared to the impedance of the air. Therefore, the impedance of
the air is typically neglected for the computation of the motion of the structure.

2.5.2 Discrete solution of the Rayleigh integral

An alternative approach considers the structure as a combination of elementary radiators
(see figure 2.8). The presented approach is taken from Mollo and J. [1989] and Vitiello et al
[1989].

One discretizes the structure in small elements, whose size is significantly smaller than the
acoustic wavelength of the surrounding air [Fahy and Gardonio 2007]. The radiated power
is computed considering each radiator as a monopole

P =
¯
v∗Te R

¯
ve. (2.44)
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¯
v(x,y)→ ∑

¯
ve

Figure 2.8: Sound radiation of the overall structure is estimated by a sum of elementary radiators that
behave as monopoles.

¯
ve is the vector of velocities of the radiators. The matrix R describes the interaction between
the monopoles. It contains the impedance of the air and weighting functions that depends
on the distance between the different elements

R = ω2ρairA
2
e

4πcair


1 sin(kairD12)

kairD12
. . .

sin(kairD21)
kairD21

1
... . . .

 . (2.45)

Ae is the surface area of an elementary radiator. Dij is the distance between radiator i and
j

Dij = ‖xi − xj‖ . (2.46)

Depending on the distance, each individual radiator affects all other radiators. Summing up
all the contributions yields the radiated sound power.
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3 Different concepts for the design of

acoustic metamaterials

This chapter introduces conceptual ideas that offer potentials for the design of materials that
demonstrate beneficial vibroacoustic properties. The author presents three different concepts
including the fundamental theory as well as a literature review presenting the state of the
art of the concepts. Section 3.1 explains the idea of acoustic black holes for bending waves.
Section 3.2 elaborates on locally resonant materials and their potential to reduce structure
borne noise for specific frequency ranges. Finally, section 3.3 elaborates on the design of
wave guides that create desired acoustic fields using spatially varying material properties.

3.1 Acoustic black holes (ABH)

An acoustic black holes is a local thickness reduction that modulates the wave propagation
of bending waves in thin walled structures. The main idea is to reduce the propagation
speed. A decrease of the thickness of the structure results in a decrease of the propagation
speed of bending waves.

x

h(x)

z

Figure 3.1: Characteristic thickness profile of an ABH.

kB is the wavenumber of the bending wave. This wavenumber depends on the thickness
variation h(x)

kB(x) =
(

12ρ(1− ν2)Ω2

Eh2(x)

) 1
4

. (3.1)
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Using (3.1), the phase velocity cp and the group velocity cg of bending waves are

cp(x) = Ω
kB

=
(
Eh2(x)Ω2

12ρ(1− ν2)

) 1
4

, (3.2)

cg(x) = ∂Ω
∂kB

=
(

64Eh2(x)Ω2

3ρ(1− ν2)

) 1
4

. (3.3)

The phase velocity cp is the speed at which the part of the wave with a fixed phase and
frequency will propagate through space. In contrast, the group velocity cg describes the
speed at which the envelope of a wave packages travels through space [Cremer and Heckl
1967]. From (3.2) and (3.3), it is obviously that with vanishing thickness h the phase and
group velocities vanish, too.

The thickness profile that creates an ABH effect needs a sufficiently smooth form. Otherwise,
the thickness profile generates a reflection of the bending wave. This deteriorates the ABH
effect. According to Mironov [1988], the ABH effect occurs for thickness profiles that fulfill
the smoothness condition

dkB
dx

1
kB
� kB . (3.4)

This condition is fulfilled using a thickness profile of the form

h(x) = εxβ with β > 2 and ε� (3ρΩ2/E)1/2 . (3.5)

Mironov [1988] shows that theoretically, it is possible to capture bending waves using such a
local thickness reduction. The reason is that with decreasing thickness the bending stiffness
reduces and the bending wave speed decreases while, due to the conservation of energy,
the amplitude of the bending wave increases. To the authors knowledge, Krylov [2001]
established herefore the term "acoustic black holes". This term is based on the theoretical
limit case of a smoothly vanishing thickness of the structure. In that case, the bending wave
speed decreases to zero and the wave basically stops propagating without any reflection. The
wave is "trapped" inside the ABH. In practice, this limit case is unfeasible since a perfectly
vanishing thickness profile can not be manufactured. Furthermore, a vanishing wave speed
would implicate a infinite wave amplitude which would result in material failure. Therefore,
it is not possible that the bending wave "disappears" at the ABH.
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3.1.1 State of the art

Mironov [1988] introduced the basic idea of an ABH. Although, the term "acoustic black
holes" might be misleading, it has been used for smooth profile reductions with and without
attached damping layers [Krylov 2001; Krylov and Tilman 2004; O’Boy et al 2010; Conlon
and Fahnline 2015; Huang et al 2018]. Smooth thickness proflies combined with damping
material show high potentials for reducing structure borne noise. Based on a simple numer-
ical model, Krylov [2001]; Krylov and Tilman [2004]; Krylov [2004] illustrate that a small
amount of local damping material at the ABH can dissipate a large amount of vibrational
energy. The amount of energy that "escapes" the ABH is determined using a reflection coef-
ficient [Krylov 2001]. This reflection coefficient is frequency dependent: for lower frequency
the reflection coefficient is relatively large and it decreases with increasing frequency [Krylov
2004].

Douter

Dinner

Figure 3.2: Geometric features of an ABH.

According to various studies, there are several geometrical features of an ABH profile that
influence the ABH effect [Krylov and Tilman 2004; Conlon and Fahnline 2015; Tang et al
2016; Krylov 2019]. Depending on the outer diameter of the ABH, there exists a cut-on
frequency at which the ABH acts as broadband absorber. Conlon and Fahnline [2015]
compute this frequency with f = cB/Douter, where Douter is the outer diameter and cB the
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wave speed of the bending waves outside of the ABH. Zhao et al [2015]; Tang et al [2016];
Mironov and Gladilin [2016]; Miksch [2017] confirm the correlation of the outer diameter
and the cut-on frequency. A lower cut-on frequency requires a larger ABH profile. Jeon
[2016] demonstrates the ABH effect for a one dimensional coiled ABH. This results in a
more compact ABH design. At frequencies below the cut-on frequency, the absorption
characteristic of the ABH depends on the local mode inside of the ABH [Conlon and Fahnline
2015]. Krylov [2019] investigates the role of the localized modes at the ABH feature and the
impact on the reflection of bending waves.

Figure 3.3: Conventional ABH (top), coiled ABH (bottom).

Krylov and Winward [2007] publish a first experimental verification of the ABH effect.
Measurements of the deflection at the point of excitation for a plate with a one dimensional
ABH show a reduced deflection in the resonance peaks. O’Boy et al [2010] investigate plates
with embedded two dimensional ABH. At low frequencies, the admittance increases using
ABH features. Whereas for higher frequencies, an ABH reduces the admittance compared
to a uniform plate with similar damping mechanism. Besides studies on single ABH, also
investigations on plates with multiple ABH are conducted. Conlon and Fahnline [2015] show
that using multiple ABH features does not necessarily increase the vibration reduction in
plate-like structures. However, for an optimal ABH configuration the input-output response
of an ABH plate with damping treatment can reach the characteristic phase accumulation
of an infinite plate [Conlon and Feurtado 2018].

Feurtado and Conlon [2016]; Prill et al [2016] argue that the robustness of the ABH effect
with respect to deviation from the idealized ABH profile from Mironov [1988] results from
the additional damping layer. Therefore, small defects that might occur during the man-
ufacturing of the ABH profile, deteriorate the performance but do not ruin the operating
principle of the ABH [Bowyer and Krylov 2016]. Additionally, numerical studies reveal po-
tentials for noise reduction using linear, quadratic, or cubic power law profiles with circular
or elliptical circumferences [Prill et al 2016]. Huang et al [2016] confirm that the general
focalization of the energy of bending waves even works for power law profiles h(x) = xβ with
exponent β < 2.
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Conlon et al [2015] cover the numerical evaluation of the sound radiation of plates with
embedded ABH and show that an ABH reduces the radiated sound power of a thin plate.
Prill et al [2016] demonstrate that applying ABH (with damping layers) to the underfloor
of a car decreases the sound level inside the car. There are two reasons for the reduced
radiated sound power [Feurtado and Conlon 2016]. First, the reduction of the vibration
amplitudes due to the increased dissipation of energy. Second, the radiation efficiency is
reduced, because the ABH transforms some of the supersonic bending waves into subsonic
bending waves. Besides the amount of radiated sound, ABH also show potentials for sound
insulation as it increases the sound transmission loss of plate-like structures [Feurtado and
Conlon 2017].

Besides the modulation of wave amplitude and wave speed, a two dimensional ABH also
influences the propagation direction. Krylov [2007] covers this topic and shows that the
propagation direction of a bending waves bends towards the middle of the acoustic black
hole. Huang et al [2018] show that linked to the change of the wave speed the refraction
index for bending waves gradually decreases in an ABH. Besides the dissipation of energy at
the ABH, it is also possible to harvest the energy [Zhao et al 2014]. Zhao et al [2015] verify
this concepts by experimental evaluations and show that the harvested energy increases for
frequencies above the cut-on frequency. For a device that harvests energy using an ABH
combined with a electric-mechanical transducer, there exist a patent by Unruh et al [2016].

3.1.2 Fundamentals of the ABH effect for bending waves

The following section summarizes the fundamental theory of the ABH effect for bending
waves. Mironov and Gladilin [2016] derive the differential equation for bending waves in
beams of varying thickness. Figure 3.4 shows a beam with initial thickness h0 and initial
width d0.

d(x)

h(x)

x

z

h0

d0

Figure 3.4: Beam with reduced cross section at the end.

The cross section at the end of the beam decreases. Therefore, the cross section A and the



24 3 Different concepts for the design of acoustic metamaterials

area moment of inertia I varies with x

A(x) = h(x) · d(x) , (3.6)

I(x) = h3(x) · d(x)
12 . (3.7)

h(x) and d(x) describe the thickness and width of the beam, respectively. Due to the spatially
varying cross section the differential equation based on Euler-Bernoulli theory is

∂2

∂x2

(
EI(x)∂

2w

∂x2

)
+ ρA(x)∂

2w

∂t2
= q . (3.8)

E is the Young’s modulus and ρ the density of the material. q denotes the external loading.
Mironov and Gladilin [2016] introduce the following cross section

h(x) = h0(x/x0)2 , (3.9)
d(x) = d0(x/x0)α . (3.10)

Usually, α equals to zero. For a cross section described by the above defined height and
width, the solution of the harmonic equation for the beam has the following form [Mironov
and Gladilin 2016]

¯
w(x) = xγ . (3.11)

A.1 shows the detailed derivation of the homogenous solution of the harmonic equation for
the beam with varying cross section (3.8). There exist four solution for γ

γ1,2,3,4 = −α + 3
2 ±

1
2

((
α + 3

2

)2
+
(
α + 5

2

)2)
(3.12)

±

√√√√√1
4

((α + 3
2

)2
+
(
α + 5

2

)2)2

−
(
α + 5

2

)2 (α + 3
2

)2 12ρΩ2

E

(
x2

0
h0

)2
  1

2

. (3.13)

In the case that all solutions γ are real, no oscillation appears. Therefore, the ABH effect is
only observable for

((
α + 3

2

)2
−
(
α + 5

2

)2 )2

<
(
α + 5

2

)2 (α + 3
2

)2 12ρΩ2

E

(
x2

0
h0

)2

. (3.14)
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Resolving the square of the left-hand side and dividing both sides by
(
α+5

2

)2 (
α+3

2

)2
yields

(
α + 3
α + 5

)2
− 2 +

(
α + 5
α + 3

)2
<

12ρΩ2

E

(
x2

0
h0

)2

. (3.15)

This results in a lower limit for the frequency Ω, which is necessary to ensure the ABH effect

√√√√ E

12ρ

(
h0

x2
0

)2 ((
α + 3
α + 5

)2
− 2 +

(
α + 5
α + 3

)2)
< Ω . (3.16)

For lower frequencies the waves do not propagate in the ABH, because all solutions of γ are
purely real.

The ABH effect occurs also in plate-like structures, as shown in figure 3.5.

Figure 3.5: Different ABH in plate-like structures.

The differential equation for plates in bending, neglecting shear deformations and rota-
tional inertia, results from the force equilibrium in the vertical direction [Timoshenko and
Woinowsky-Krieger 1959]

∂2

∂x2Mxx + ∂2

∂x∂y
Mxy −

∂2

∂y∂x
Myx + ∂2

∂y2Myy − ρh
∂2w

∂t2
+ q = 0 . (3.17)

ρ is the density of the plate and h the thickness. The plate is loaded with the external force
q. Due to the bending deformation in two dimensions there exists four bending moments.
Bending around the y-axis yields a stress distribution σxx and σyx. The respective bending
moments are named Mxx and Myx. Accordingly, bending around the x-axis generates the
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bending moments Myy and Mxy, respectively.

Mxx = −B
(
∂2w

∂x2 + ν
∂2w

∂y2

)
(3.18)

Myx = −Mxy = −B (1− ν) ∂2w

∂x∂y
(3.19)

Myy = −B
(
∂2w

∂y2 + ν
∂2w

∂x2

)
(3.20)

B is the bending stiffness of the plate and ν denotes the Poisson’s ratio.

B = Eh3

12(1− ν2) . (3.21)

For the plate with constant thickness h the differential equation is given by [Timoshenko
and Woinowsky-Krieger 1959]

−B
(
∂4w

∂x4 + 2 ∂4w

∂x2∂y2 + ∂4w

∂y4

)
− ρh∂

2w

∂t2
+ q = 0 . (3.22)

For a plate with spatially varying thickness h(x,y) the bending stiffness also depends on the
spatial location

B(x,y) = Eh3(x,y)
12(1− ν2) . (3.23)

E denotes the Young’s modulus of the material. Accordingly, the differential equation for
the plate with varying thickness contains additional terms that contain the derivatives of
the bending stiffness

∂2

∂x2

(
−B(x,y)

(
∂2w

∂x2 + ν
∂2w

∂y2

))
+ 2 ∂2

∂x∂y

(
−B(x,y) (1− ν) ∂2w

∂x∂y

)

+ ∂2

∂y2

(
−B(x,y)

(
∂2w

∂y2 + ν
∂2w

∂x2

))
− ρh∂

2w

∂t2
+ q = 0 .

(3.24)

For thickness profiles h(x,y) that follow a parabolic profile as described in (3.5), it is not
possible to find an analytically solution. However, Krylov [1990] describes the derivation for
an approximated solution based on an approximation that reduces the wave propagation of
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bending waves to a differential equation with a single variable [Krylov 1989]. To demonstrate
the effect of parabolic profiles, the propagation time tABH of a wave traveling through the
thickness reduction h(s) = εsβ is computed. Therefore, one integrates the inverse of the
group velocity (3.3) along the direction of the thickness reduction

tABH =
∫ s1

s0

ds

cg
=
∫ s1

s0

(
3ρ(1− ν2)
64Eε2Ω2

) 1
4

s−β/2ds =
(

3ρ(1− ν2)
64Eε2Ω2

) 1
4 2

2− β

(
s

1−β/2
1 − s1−β/2

0

)
.

(3.25)

s

z

h(s)
s1s0

s

z

Figure 3.6: Computation of the propagation time along the direction s for a profile of the form h(s) = εsβ .

For β > 2 and s1 → 0 the propagation time in the ABH is infinite Zhao et al [2014]. Due
to the fact that the profile reduction occurs on a finite interval, the wave propagating in the
ABH can not "escape" because it never reaches the center of the ABH.

3.1.3 Application of ABH in practice

In practice, it is not feasible to manufacture ideally vanishing thickness profiles. Further-
more, a vanishing thickness would generate infinite amplitudes of the oscillation which cause
material failure. As a consequence, the waves entering the ABH are able to "escape" the
ABH. Therefore, the naming "acoustic black holes" might be misleading. Nevertheless, the
large amplitudes and the focalization of the vibrational energy in the vicinity of the thickness
reduction show potentials for vibration reduction for lightweight structures.

Figure 3.7 shows a one dimensional ABH with local damping layers. In the case of a simply
attached layer, the offset from the neutral axis predominates the dissipation in the damping
layer. The shear deformation is negligible and the loss factor of such a damping treatment
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Figure 3.7: Truncated thickness profile with attached damping layers.

is driven by an extension of the damping layer [Cremer and Heckl 1967]

ξ = βdmid . (3.26)

δ denotes the thickness of the damping layer. The distance dmid is the distance from the
neutral axis of the beam with attached damping layer. It can be approximated with [Cremer
and Heckl 1967]

dmid ≈ δ/2 + h1/2 , (3.27)

where h1 is the thickness of the structure.

Figure 3.8: Deformation of a simple damping layer attached to a host structure which is subjected to pure
bending.

The approximation of the elongation of the damping layer (3.26) is valid under the as-
sumption that the thickness of the damping layer is small compared to the thickness of the
structure. Based on the elongation of the damping layer, the dissipated energy per unit area
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at the damping layer is

Wdiss = πη2E2δ

∣∣∣∣∣∂ξ∂x
∣∣∣∣∣
2

. (3.28)

E2 and η2 are the Young’s modulus and the loss factor of the damping layer. The corre-
sponding stored potential energy is approximated by

Wpot = πB

∣∣∣∣∣∂β∂x
∣∣∣∣∣
2

. (3.29)

The bending stiffness B contains the stiffness contributions of the structure and the damping
layer. The ratio of the dissipated and stored energy yields the additional loss factor due to
the attached damping layer.

ηadd = Wdiss

Wpot

= η2
E2δd

2
mid

B
. (3.30)

It is possible to approximate the bending stiffness of the compound structure [Cremer and
Heckl 1967]

B ≈ E1h
3
1

12 . (3.31)

E1 is the Young’s modulus of the material of the plate. Summarizing, the additional loss
factor simplifies to [Krylov 2004]

ηadd = 3 δ
h1

E2

E1
η2 . (3.32)

For thick damping layers, the above mentioned approximation is not accurate. Ross et al
[1960] explain how damping layers affects the overall damping of viscoelastic laminae. As-
suming that δ

h1
E2
E1
� 1 [Oberst 1952] the additional loss factor can be approximated

ηadd =
η2

E2
E1

δ
h1

(
3 + 6 δ

h1
+ 4

(
δ
h1

)2
)

1 + E2
E1

δ
h1

(
3 + 6

(
δ
h1

)2
+ 4

(
δ
h1

)2
) . (3.33)
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For spatially varying thickness profile h(s) with an attached damping layer the additional
loss factor modifies the imaginary part of the wavenumber [Krylov 2004]. The spatially
varying imaginary part of the wavenumber for a thin damping layer ( δ

h1
� 1) is

Im{k(s)} =
(

12Ω2

c2
ph

2(s)

) 1
4(η1

4 + 3
2

δ

h(s)
E2

E1
η2

)
. (3.34)

η1 is the loss factor of the plate material. To measure the efficiency of an ABH, Mironov [1988]
introduces a reflection coefficient R that determines the amount of energy that "escapes" the
ABH feature

R = exp
(
−2

∫ s1

s0
Im{k(s)}ds

)
. (3.35)

As previously mentioned, several studies show that the reflection coefficient of a truncated
thickness profile with locally attached damping layers in the vicinity of the ABH can strongly
decrease the amount of energy that escapes the ABH [Krylov 2001; Conlon and Fahnline
2015; Tang et al 2016]. Assuming an ABH profile of the form h(s) = εs2 results in the
following reflection coefficient [Krylov 2004]

R = exp
(
− 2µ1 − 2µ2

)
, (3.36)

with

µ1 = 121/4 η1

4

( Ω
ε cp

)1/2
ln
(
s0

s1

)
, (3.37)

µ2 = 3 · 121/4 η2δ

8

( Ω
ε3 cp

)1/2E2

E1

( 1
s2

1
− 1
s2

0

)
(for single-sided damping layer) , (3.38)

µ2 = 3 · 121/4 η2δ

4

( Ω
ε3 cp

)1/2E2

E1

( 1
s2

1
− 1
s2

0

)
(for the double-sided damping layer).

(3.39)

For thick damping layers, there is no closed form expression for the reflection coefficient R.
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In this case, the integral in (3.35) has to be solved numerically

R = exp
− ∫ s1

s0

121/4

2

(
Ω

cp h(x)

)1/2

·

(
1 + ρ2

ρ1
δ

h(x)

)1/4
(
η1 + η2

E2
E1

δ
h(x)

(
3 + 6 δ

h(x) + 4
(

δ
h(x)

)2
))

(
1 + E2

E1
δ

h(x)

(
3 + 6 δ

h(x) + 4
(

δ
h(x)

)2
))5/4 dx

 . (3.40)

In general, constrained layer damping (CLD) is recommended as state of the art damping
treatment for thin walled structures where bending waves dominate the vibrations. The
reason is the activation of shear stress and strains that increase the dissipation compared
to single layer damping. For constrained layers, shear deformation in the damping layer
predominates the dissipation of energy

Wdiss = πη2G2δ |γ|2 . (3.41)

G2 and η2 are the shear modulus and the loss factor of the damping layer. The shear γ
occurs due to differences in the extension at the top of the base structure and the bottom
of the cover layer. Due to the cover sheet, the shear angle γ is related the elongation in the
cover layer

γδ = dcovβ − ξ (3.42)

Figure 3.9: Deformation of a constrained damping layer attached to a host structure which is subjected to
pure bending.

Assuming that the cover layer dominantly deforms in extension, the shear forces of the
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damping layer balances the normal forces of the cover layer [Cremer and Heckl 1967]

E3h3
∂2ξ

∂x2 +G2γ = 0 . (3.43)

E3 is the Young’s modulus and h3 is the thickness of the cover layer. According to Cremer
and Heckl [1967], the maximal loss factor for the CLD is

ηmax = η2
E3h3d

2
mid

B

1

2
(

1 +
√

1 + η2
2

) , (3.44)

The loss factor of CLD does not depend on the Young’s modulus or the shear modulus of
the attached damping layer and therefore, it is possible to use damping materials with larger
loss factors which are usually very soft. Consequently, the maximum loss factor of a CLD is
tremendously larger than the maximum loss factor of a simple damping layer.
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3.2 Locally resonant material

The basic idea of locally resonant material is that locally resonant modes that oscillate
out of phase reduce the vibration of the main structure. In this case, the vibration of the
main structure is reduced because vibrational energy is transferred to the relative motion
between the local resonator and the main structure. The working principle of a resonating
sub structures is well established in several applications, e.g. the Taipei 101 tower [Poon
et al 2004] or the Millennial Bridge in London [Pavic et al 2002]. In this context, the local
resonator is termed "tuned mass damper (TMD)". To the author’s knowledge, the term
"locally resonant material" appeared after Liu et al [2000] demonstrated the formation of
frequency ranges where the propagation of waves are suppressed.

3.2.1 State of the art

Ormondroyd and Den Hartog [1928] introduce the basic idea of a single local resonance that
reduce the vibration of the main structure. They formulate an optimization problem of a
single TMD that minimize the maximal amplitude of the system. [Hartog 1956] summarizes
the optimal parameters for the tuning and the damping of the TMD for an undamped main
structure. The optimal tuning frequency of the TMD is based on the work of Hahnkamm
[1933] and the optimal damping of the TMD is from Brock [1945]. Inglis [1951] and Bishop
andWelbourn [1952] derive optimal parameters for a damped host structure. For an overview
of optimal TMD parameters for different optimization objectives, the author refers to Asami
et al [2002].

Besides single resonators, there also exist several studies on host structures modified by
multiple resonators [Igusa and Xu 1993; Rade and Steffen 2000; Gündel 2008; Mohtat and
Dehghan-Niri 2011]. Igusa and Xu [1993] use an impedance model to find optimal parameters
for multiple resonators attached to the host structure. They show that multiple resonators
with slightly varying resonance frequencies around the target frequency yield a broadband
vibration reduction of the host structure. Claeys et al [2016a] verify this effect for two
different sets of resonators with similar resonance frequencies. Rade and Steffen [2000]
determine the frequency response function (FRF) of the overall structure by coupling the
FRF of the host structure and the FRF of the resonators. The advantage of this methodology
is that the FRF from measurements, numerical simulations or analytical expressions can be
combined. Gündel [2008] describes three different methods to include the resonators into
the model of the host structure: First, applying the resonators as additional degrees of
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freedoms. Second, adding them as a frequency dependent dynamic inertia term into the
frequency dependent dynamic stiffness matrix of the host structure. Or third, modeling
the resonators as external attenuation forces. A more detailed explanation of the different
methods follows in section 4.1.3. Mohtat and Dehghan-Niri [2011] develop a methodology
to include uncertainties of the host structure into the design process of the resonators.

For periodic structures, the Wave Finite Element method (WFEM) computes the waves
that propagate through the structure. Claeys et al [2011, 2013]; Xiao et al [2012, 2013] apply
the WFEM to demonstrate the band gap formation resulting from a periodic alignment of
resonators. The investigation of infinite repetitions of identical unit cells shows that there
exists a frequency range around the target frequency of the resonator, where no free wave
propagation is possible. This frequency range is called resonance stop band. Periodically
attached resonators can generate stop bands in beams and plates [Claeys et al 2011, 2013].
Miranda and Dos Santos [2016] compare different computational models for the band gap
formation of locally resonant beam structures. In general, the stop band size increases with
increasing mass of the resonators [Claeys et al 2013]. Likewise, the vibration reduction at
resonance increases with increasing mass [Claeys et al 2016a]. In addition, Claeys et al [2013]
show that damped resonators increase the frequency range of vibration reduction, while also
decreasing the peak vibration reduction at the target frequency of the resonators. For an
effective vibration reduction of the host structure, a resonator spacing smaller than half
of the wavelength of the wave that the resonator interferes with is beneficial [Claeys et al
2013].

Besides a vibration reduction, distributed resonators also affect the radiation efficiency of
planar structures [Nateghi et al 2019]. For resonators tuned below the coincidence frequency,
there appears a frequency range slightly above the resonance band gap where the radiation
efficiency increases [Claeys et al 2014b]. For resonators tuned above the coincidence frequency
of the host structure, such an increased radiation efficiency is not observed. Besides the sound
radiation, resonant materials show potential for increasing the sound transmission loss at
the target frequency of the resonators [Claeys et al 2016b; Egashira et al 2016; Van Belle et al
2019].

Xiao et al [2012, 2013] investigate the combination of the resonance effect and the interference
effect due to the spacing of the resonators. According to Xiao et al [2013]; Sharma and Sun
[2016], it is not possible to combine the resonance band gap and the interference band gap to
form one large band gap. Using a numerical model of a Timoshenko beam, Sharma and Sun
[2016] demonstrate that there exists a pass band between the resonance and the interference
band gaps. The size of this pass band depends on the resonator spacing [Xiao et al 2013].
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For the realization of locally resonant materials, there exist different design proposals. Claeys
et al [2016a]; Egashira et al [2016] include beam-like resonators into the cells of a honeycomb
panel. In contrast, Spadoni et al [2009b] and Ruzzene [2015] introduce a periodic chiral lattice
structure that generates local resonances in the low frequency range. Liu et al [2000] present a
three dimensional lattice structure that generates a stop band. The lattice structure consists
of a sphere made of lead which is covered in silicone. Chen and Wang [2014] introduce a three
dimensional crystal made of ceramic and glass polymer. Such resonant lattice structures are
also called phononic crystals [Deymier 2013].

3.2.2 Fundamentals of locally resonant materials

This section explains the underlying theory of locally resonant materials. The first part
demonstrates the principle of local resonances for vibration suppression. The second part
elaborates on the occurrence of band gaps for periodic resonant materials.

Effect of local resonances

A simple two degree of freedom oscillator explains the working principle of a local resonance.
Figure 3.10 shows a discrete model of a two-DOF-oscillator.

k

m

creskres

mres

c

wres

w

f(t)

Figure 3.10: Simple model for a locally resonant material: the two-DOF-oscillator.

m, ks, and c are the mass, stiffness, and damping constants of the main structure. A discrete
resonator connected to the main structure introduces a local resonance. The subscript "res"
denotes the parameters of the resonator. Accordingly, w is the displacements of the main
structure and wres the displacements of the resonator. �̇ and �̈mark the respective velocities
and accelerations. The external force f(t) excites the main structure. Without the resonator
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mass mres, the main structure experiences large deflection for excitation frequencies close to
the resonance frequency of the main structure. A resonator tuned to the resonance frequency
of the main structure absorbs the vibration of the main structure at the target frequency. The
two-DOF-oscillator has two vibrational modes. In the first resonance mode, the masses move
in phase. For the second resonance, the two masses oscillates out of phase (see figure 3.11).

wres

−w

First mode

wres

w

Second mode

Figure 3.11: Vibrational modes of the two-DOF-oscillator.

The following paragraph derives the differential equation for the two-DOF-oscillator. Fig-
ure 3.12 shows the internal and external forces acting on the main structure and the res-
onator. Balancing the forces acting on the masses m and mres yields the differential equation
of the two-DOF-oscillator

f(t)−mẅ − cẇ − ksw + cres(ẇres − ẇ) + kres(wres − w) = 0 , (3.45)
−mresẅres − cres(ẇres − ẇ)− kres(wres − w) = 0 . (3.46)

ksw

mẅ

cres(ẇres − ẇ)kres(wres − w)

mresẅres

cẇ

f(t)

Figure 3.12: Visualization of the forces acting on the structure and the resonator.
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The tuned mass damper absorbs the vibration of the main structure by a relative displace-
ments. Therefore, it is beneficial to introduce the relative displacement wrel = wres − w

f(t)−mẅ − cẇ − ksw + cresẇrel + kreswrel = 0 , (3.47)
−mres(ẅrel + ẅ)− cresẇrel − kreswrel = 0 . (3.48)

Consider the steady state solution for a harmonic excitation f(t) =
¯
fe iΩt, the displacements

have the form

w =
¯
we iΩt , (3.49)

wrel =
¯
wrele iΩt . (3.50)

¯
f and

¯
w describe complex amplitudes and Ω is the excitation frequency. A characteristic

quantity to evaluate the dynamic behavior of the system is the amplification function V .
It is the absolute value of the particular solution normalized with the static displacements
wstat = |

¯
f |
ks

V = |
¯
w|
wstat

. (3.51)

The author attaches a detailed derivation of the amplification functions V and Vrel in the
appendix (A.2)

V = |
¯
w|
wstat

=
√
e2 + f 2

g2 + h2 , (3.52)

Vrel = |¯
wrel|
wstat

=
√

α4

g2 + h2 , (3.53)

with

e = β2 − α2 , (3.54)
f = 2αβDres , (3.55)
g = α4 − α2(1 + β2 + µβ2 + 4βDDres) + β2 , (3.56)
h = α[2D(β2 − α2) + 2βDres(1− α2 − µα2)] . (3.57)

The amplification function describe the amplification of the displacements based on the
dimensionless parameters α, β, µ, D and Dres:
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• α = Ω
ω
describes the ratio between the excitation frequency and the eigenfrequency of

the main structure

• β = ωres
ω

describes the ratio between the eigenfrequency of the resonator and the
eigenfrequency of the main structure

• µ = mres
m

describes the ratio between the mass of the resonator and the mass of the
main structure

• D = c
ccrit

describes the amount of critical damping that is applied to the main structure

• Dres = cres
cres,crit

describes the amount of critical damping that is applied to the resonator

Figure 3.13: Influence of the mass of the resonator on the amplification functions; damping ratio of the
main structure D = 0, damping ratio of the resonator Dres = 0.01 and frequency tuning of
the resonator β = 1.

Figure 3.13 shows the amplification functions of the main system and the relative motion
for three different mass ratios µ. The main structure is undamped and the damping ratio of
the resonator is fixed to 0.01. The eigenfrequency of the resonator is the same as the eigen-
frequency of the main structure (β = 1). From figure 3.13, it is obvious that the resonator
strongly reduces the vibration of the main mass in the vicinity of the target frequency. A
larger resonator mass mres results in a smaller deflections of the main structure at the res-
onance frequency. Furthermore, the frequency range of vibration reduction increases with
increasing mass. The resonator introduces an additional resonance into the system. The
new system has two resonances that split up around the original resonance.

The amplification function of the relative motion Vrel implicates that a lower resonator mass
yields higher relative motion. For practical application, the relative motion is important to
consider, because it defines the installation space that is needed. For a detailed discussion
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about the influences of the different parameters (β and Dres) of the two-DOF-oscillators, the
author refers to the appendix A.3.

Bandgap formation of locally resonant materials

This section investigates the impact of multiple local resonators and how they can create
band gaps where no free wave propagation occurs. A one dimensional chain of discrete
masses demonstrates the band gap formation of a locally resonant material.

un un+1 un+2un−1

ks ks ks
m2 m1 m2 m1

L

ks
m1

un−2

Figure 3.14: Simple model of a resonant crystal consisting of a periodic repetition of two concentrated
masses that are linked via discrete springs.

Figure 3.14 shows a one dimensional infinite lattice that consists of a periodically alignment
of two different masses m1 and m2. Discrete springs with spring stiffness ks link the masses.
The length L defines the distance between the masses.

un un+1

ks(un−1 − un) ks(un+1 − un+2)m2ün+1ks(un − un+1)ks(un − un+1)m1ün

Figure 3.15: Visualization of the forces acting in a unit cell of the diatomic crystal.

The equilibrium of the forces yields the equation of motion for the one dimensional lattice

m1ün = ks(un−1 − un)− ks(un − un+1) = ks(un−1 − 2un + un+1) , (3.58)
m2ün+1 = ks(un − un+1)− ks(un+1 − un+2) = ks(un − 2un+1 + un+2) . (3.59)

Thus, the steady state solution of a time harmonic free oscillation has the form

u =
¯
ue iΩt . (3.60)
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Inserting that into the force equilibrium yields

−Ω2m1¯
un = ks(¯

un−1 − 2
¯
un +

¯
un+1) ,

−Ω2m2¯
un+1 = ks(¯

un − 2
¯
un+1 +

¯
un+2) .

(3.61)

The Bloch’s theorem, which for one dimension corresponds to the Floquet Theorem, links the
displacements of the masses m1 and m2 of two neighboring unit cells [Bloch 1929; Floquet
1883]

¯
un−1 =

¯
uref,m2e−iκ2aL ,

¯
un =

¯
uref,m1e−iκ2aL ,

¯
un+1 =

¯
uref,m2e−iκ(2a+2)L ,

¯
un+2 =

¯
uref,m1e−iκ(2a+2)L .

(3.62)

κ is a the phase change per unit meter which in general can be complex κ = κRe + iκIm.

¯
uref,m1 and ¯

uref,m2 are the solutions in the reference cell. a is an arbitrary integer that defines
any of the masses m1 and m2 as reference mass. L is the distance between the masses. First,
it is assumed that the wavenumber is purely real κ = κRe. Inserting (3.62) into the equation
of motion of the unit cell (3.61) yields

−Ω2m1¯
uref,m1e−iκRe2aL

= ks
(
¯
uref,m2e−iκRe2aL − 2

¯
uref,m1e−iκRe2aL +

¯
uref,m2e−iκRe(2a+2)L

)
,

(3.63)

−Ω2m2¯
uref,m2e−iκRe(2a+2)L

= ks
(
¯
uref,m1e−iκRe2aL − 2

¯
uref,m2e−iκRe(2a+2)L +

¯
uref,m1e−iκRe(2a+2)L

)
.

(3.64)

Further simplifications result in

(2ks − Ω2m1)
¯
uref,m1e−iκRe2aL − ks

(
1 + e−iκRe2L

)
¯
uref,m2e−iκRe2aL = 0 , (3.65)

(2ks − Ω2m2)
¯
uref,m2e−iκRe(2a+2)L − ks

(
e iκRe2L + 1

)
¯
uref,m1e−iκRe(2a+2)L = 0 . (3.66)

The exponential terms depending on a cancel out and (3.65) and (3.66) simplifies to
 2ks − Ω2m1 −ks

(
1 + e−iκRe2L

)
−ks

(
e iκRe2L + 1

)
2ks − Ω2m2

¯
uref,m1

¯
uref,m2

 =
0

0

 . (3.67)



3.2 Locally resonant material 41

Looking for a non-trivial solution with
¯
uref,m1 6= 0 and

¯
uref,m2 6= 0, the determinant needs

to vanish∣∣∣∣∣∣ 2ks − Ω2m1 −ks
(
1 + e−iκRe2L

)
−ks

(
e iκRe2L + 1

)
2ks − Ω2m2

∣∣∣∣∣∣ = 0 . (3.68)

Introducing the cosine as a combination of exponential terms (2cos(x) = eix + e−ix) defines
the eigenvalue problem with λ = Ω2

λ2 − 2ks
( 1
m1

+ 1
m2

)
λ+ 2k2

s

m1m2
(1− cos(2κReL)) = 0 . (3.69)

Consequently, there exist two solutions for λ

λ1,2 = ks

( 1
m1

+ 1
m2

)
±
√
k2
s

( 1
m1

+ 1
m2

)2
− 2k2

s

m1m2
(1− cos(2κReL)) . (3.70)

For the circular frequency Ω, there exist four solutions

Ω1(κRe) =
√
λ1 , (3.71)

Ω2(κRe) = −
√
λ1 , (3.72)

Ω3(κRe) =
√
λ2 , (3.73)

Ω4(κRe) = −
√
λ2 . (3.74)

These solutions show for which combination of frequency and phase a wave can propagate
through the lattice.

Figure 3.16 shows the four solutions of Ω. The negative frequencies (Ω2(κ) and Ω4(κ)) do
not yield any new information about the band formation. To identify the frequency range
where wave can propagate, it is sufficient to compute the phase change along a single unit
cell (dashed rectangle). There are three frequencies that mark the starting and ending of
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Figure 3.16: Dispersion of the phase per unit length
for the diatomic crystal, the phase κRe is
multiplied with an integer n.

Figure 3.17: Dispersion rela-
tion along a single
unit cell.

the ranges where no wave propagation is possible.

ωa = Ω3(π/2L) =
√

2ks
m2

for m2 > m1 , (3.75)

ωb = Ω1(π/2L) =
√

2ks
m1

for m2 > m1 , (3.76)

ωc = Ω1(0) =
√

2ks
( 1
m1

+ 1
m2

)
. (3.77)

Only for pairs of real κ and real frequency Ω the wave motion describes an harmonic oscilla-
tion [Doyle 1997]. For the first band gap which appears from ωa < Ω < ωb such a pair is not
found. This gap is formed by the local resonance. A mono-atomic crystal (m1 = m2) has no
frequency gap between ωa and ωb. For frequencies above ωc, the model does not reveal pairs
of real κ and real Ω. The reason is that the model of the diatomic crystal maps the higher
oscillating solutions onto the respective lower order motion that have the same phase (see
figure 3.18). The model is not able to distinguish the different waves.

Applying a imaginary phase (κIm 6= 0), it is possible to find a solution for the frequency
range where no free waves propagate. Setting κRe = 0 in (3.62) yields the following approach
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Figure 3.18: Two wave motion with different wavelength but identical phase.

for the motion of the crystal

¯
un−1 =

¯
uref,m2e+κIm2aL ,

¯
un =

¯
uref,m1e+κIm2aL ,

¯
un+1 =

¯
uref,m2e+κIm(2a+2)L ,

¯
un+2 =

¯
uref,m1e+κIm(2a+2)L .

(3.78)

This yields the following equation of motion

−Ω2m1¯
uref,m1e+κIm2aL = ks

(
¯
uref,m2 − 2

¯
uref,m1 +

¯
uref,m2eκIm2L

)
e+κIm2aL , (3.79)

−Ω2m2¯
uref,m2e+κIm(2a+2)L = ks

(
¯
uref,m1e−κIm2L − 2

¯
uref,m2 +

¯
uref,m1

)
e+κIm(2a+2)L .

(3.80)

The equation of motion simplifies to
 2ks − Ω2m1 −ks

(
1 + eκIm2L

)
−ks

(
e−κIm2L + 1

)
2ks − Ω2m2

¯
uref,m1

¯
uref,m2

 =
0

0

 . (3.81)

As previously, for a non-trivial solution, the determinant vanishes. Using the relation
2 cosh(x) = ex + e−x, the determinant results in

λ̄2 − 2ks
( 1
m1

+ 1
m2

)
λ̄+ 2k2

s

m1m2
(1− cosh(2κL)) = 0 . (3.82)
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Figure 3.19: Dispersion relation of
the imaginary phase per
unit length with κRe = 0.

Figure 3.20: Dispersion relation of
the imaginary phase per
unit length with κRe =
π

2L .

The solution for the evanescent waves in the frequency range above ωc are

λ̄1,2 = ks

( 1
m1

+ 1
m2

)
±
√
k2
s

( 1
m1

+ 1
m2

)2
− 2k2

s

m1m2
(1− cosh(2κL)) . (3.83)

Calculating the corresponding four solutions for ω̄ yields one solution that is physically
relevant (Ω real and positive)

Ω̄1 =
√
λ̄1 . (3.84)

Figure 3.19 shows the non negativ solution Ω̄ of the evanescent waves for κRe = 0. One
can observe that we have found a solution for the frequency range ωc < Ω. This solution is
not physical and occurs due to modeling of the diatomic crystal (see figure 3.18). To find a
solution for the frequency range ωa < Ω < ωb, one defines κRe as π

2L . Thus, the approach for
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the motion of the crystal is

¯
un−1 =

¯
uref,m2e−iπae+κIm2aL ,

¯
un =

¯
uref,m1e−iπae+κIm2aL ,

¯
un+1 =

¯
uref,m2e−iπ(a+1)e+κIm(2a+2)L ,

¯
un+2 =

¯
uref,m1e−iπ(a+1)e+κIm(2a+2)L .

(3.85)

In that case the equation of motion of the diatomic crystal is

−Ω2m1¯
uref,m1e−iπae+κIm2aL ,

= ks
(
¯
uref,m2 − 2

¯
uref,m1 +

¯
uref,m2e−iπeκIm2L

)
e−iπae+κIm2aL , (3.86)

−Ω2m2¯
uref,m2e−iπ(a+1)e+κIm(2a+2)L ,

= ks
(
¯
uref,m1e iπe−κIm2L − 2

¯
uref,m2 +

¯
uref,m1

)
e−iπ(a+1)e+κIm(2a+2)L . (3.87)

The exponential terms depending on a cancel out and the exponential term e±iπ equals −1

−Ω2m1¯
uref,m1 = ks

(
¯
uref,m2 − 2

¯
uref,m1 − ¯

uref,m2e−κIm2L
)
, (3.88)

−Ω2m2¯
uref,m2 = ks

(
−

¯
uref,m1eκIm2L − 2

¯
uref,m2 +

¯
uref,m1

)
. (3.89)

As previously, the determinant should vanish
 2ks − Ω2m1 −ks

(
1− e−κIm2L

)
−ks

(
−eκIm2L + 1

)
2ks − Ω2m2

¯
uref,m1

¯
uref,m2

 =
0

0

 . (3.90)

Searching for a vanishing determinant yields the corresponding quadratic equation

λ̃2 − 2ks
( 1
m1

+ 1
m2

)
λ̃+ 2k2

s

m1m2
(1 + cosh(2κL)) = 0 . (3.91)

Finally, there is another set of solutions for the frequency range ωa < Ω < ωb

λ̃1,2 = ks

( 1
m1

+ 1
m2

)
±
√
k2
s

( 1
m1

+ 1
m2

)2
− 2k2

s

m1m2
(1 + cosh(2κL)) . (3.92)

Figure 3.20 shows the physical relevant solution Ω̃ for κRe = π
2L . One can observe that the

solution Ω̃ is defined for the frequency range ωa < Ω < ωb.
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Combining the solutions of the propagating and the evanescent waves, the dispersion can be
plotted in a three dimensional plot.

Figure 3.21: Dispersion relation of the unit cell of the diatomic crystal including the evanescent waves.

The horizontal plane show the real and imaginary part of the phase κ and the vertical axis
shows the circular frequency Ω. For Ω < ωa the masses m1 and m2 oscillate in phase. This
frequency branch is named acoustical branch. In contrast, the frequency range ωb < Ω < ωc

is called optical branch as the masses moves out of phase [Deymier 2013]. The frequency
gap ωa < Ω < ωb occurs due to the local resonance. The motion of the local resonance
compensates the vibrational energy and no free waves can propagate through the diatomic
crystal as the phase is imaginary.
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3.3 Wave guides for acoustic waves

In general, the motion in structural components is a superposition of different waves that
propagate in the structure. The examples in the previous chapter only consider one dimen-
sional wave propagation, where refraction of acoustic waves does not exist. In two dimen-
sions, refraction of waves becomes relevant as the transmitted waves change their direction
of propagation in the case of a change in the transmitting medium.

n1 n2

incident wave

reflected wave
n2 > 0
transmitted wave

n2 < 0
transmitted wave

αin

αout

Figure 3.22: Impact of the refraction index n on transmitted waves.

According to Snell’s Law, the angle of the refracted wave depends on the refraction index ni

n1 sin(αin) = n2 sin(αout). (3.93)

In general, the refraction index is positive. This limits the possible directions of the trans-
mitted waves. In electromagnetism, Veselago [1968] shows that a material with negative
dielectric constant and negative magnetic permeability has a negative refraction index for
electromagnetic waves. That means the material refracts waves with an negative angle of
refraction αout (see figure 3.22). This unconventional behavior offers the possibility to guide
waves in arbitrary directions. Pendry et al [1999] introduce a specific design of a material
with negative refraction index and Shelby et al [2001] prove the existence of such a material
by experiments.
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The basic concept of wave guides for acoustic waves is similar to the wave guides for electro-
magnetic waves. Due to analogy of the fundamentals of acoustic waves and electromagnetic
waves, the material parameters influence the refraction of acoustic waves similar to the
refraction of electromagnetic waves. A negative density and negative stiffness generates a
negative refraction index for acoustic waves [Li and Chan 2004]. In general, it is only possible
to generate such negative effective material properties in a limited frequency range. Locally
resonant materials show such material behavior in the vicinity of the local resonance. Thus,
there is a link between the design of wave guides and locally resonant materials.

3.3.1 State of the art

A major application of wave guides for acoustic waves is the prevention of the interference of
the waves with specific objects. Such material behavior is called "acoustic cloaking". Several
authors demonstrate acoustic cloaking. Cummer and Schurig [2007] show that it is possible
to generate a two dimensional circular acoustic cloaking for compressional waves using a
coordinate transformation. Based on this work, Huanyang and Chan [2009] demonstrate a
three dimensional transformation for acoustic cloaking. Zhang [2010] experimentally verifies
the two dimensional cloaking in water for frequencies from 52 to 64 kHz. Popa et al [2011]
derive a two dimensional transformation that hides an object located in front of an rigid wall
(ground cloaking). Experiments show an almost ideal reflection for two bell-shaped incident
waves with center frequency of 1.5 and 3 kHz. Zigoneanu et al [2014] extend this concept to
three dimensions. Numerical and experimental measurements reveal omnidirectional ground
cloaking.

Farhat et al [2009] numerically demonstrate a circular acoustic cloak for bending waves in
thin plates. Their design consists of multiple layers of different materials. Stenger et al
[2012] manufacture this design and show the cloaking effect for bending waves between 200
and 400 Hz. The cloaking device is made of a combination of polyvinyl chloride (PVC)
and polydimethylsiloxane (PDMS). Ruzzene and Scarpa [2003] present a two dimensional
lattice structure that suppresses the propagation of bending waves in specific direction. The
lattice structure consists of hour glass shaped cells arranged similar to the hexagonal cells
of a honeycomb lattice. The hour class shaped cells cause a negative Poisson’s ratio. The
inner angles of the cells adjust the angle in which bending waves can propagate.

Besides acoustic cloaking, there also exist other examples of wave guides. Cummer et al
[2008] derive a transformation that shifts a wave beam. Wei et al [2014] experimentally
verify the beam shifting phenomena in air at around 2.8 to 4.6 kHz. The shifter consists of
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a parallel alignment of acrylic glass. Assouar et al [2012] present a wave guide that directs
bending waves in a thin plate along a specific path. The design is based on a dense periodic
grid of local resonators. By removing some of the resonators, it is possible to guide the
bending waves along the path of missing pillows for frequencies around 1.75 kHz. Sun and
Wu [2006] demonstrate wave guiding in air at frequencies from 90 to 143 kHz and 154 to
199 kHz using rigid pillows.

Other authors use piezoelectric crystals to block bending waves in thin walled structures
[Airoldi and Ruzzene 2011; Casadei et al 2009; Spadoni et al 2009a]. Airoldi and Ruzzene
[2011] use periodic piezoelectric patches connected to a shunt circuit to dissipate vibrational
energy. This results in tunable stop bands at frequencies of 5 kHz and 11 kHz for a can-
tilever beam. Casadei et al [2009]; Spadoni et al [2009a] present similar results using a two
dimensional grid of periodic piezoelectric patches on an aluminum plate. Measurements
demonstrates the appearance of a stop band from 1.6 kHz to 1.9 kHz [Casadei et al 2009].

There are many designs for wave guides in fluids. Most of the wave guides in solid materials
only tackle one type of wave. The reason is the dependency of the shear and the bulk modulus
in conventional materials. It is very difficult to find a transformation that simultaneously
guides waves based on bulk and shear deformation. In many fluids, there only exist one wave
type because the rotational part of the strain does not cause stresses due to the zero shear
resistance. To generate similar effects in solids, pentamode material might be a solution.
Milton and Cherkaev [1995] present a lattice structure that behaves as an isotropic fluid.
According to Milton and Cherkaev [1995], it is possible to generate any elasticity tensor using
pentamode metamaterial. A realization of such a material consists of a lattice structure of
double cones [Kadic et al 2012]. Bückmann et al [2014] apply the design of Kadic et al [2012]
to demonstrate the cloaking effect for structure borne noise. Spadoni et al [2014] provide a
different design that also exhibit pentamode mechanical behavior. Their design consists of
fluid filled cells assembled in a crystalline foam.

3.3.2 Fundamentals of wave guides

For designing metamaterials that guide acoustic waves in a prescribed manner the main idea
is that a spatially varying distribution of the material properties influences the wave field of
the acoustic waves. The desired acoustic wave field requires a transformation. This trans-
formation is necessary to find the required spatial material properties. In many cases, the
required material properties oppose the natural limits of positive material density and mate-
rial stiffness. There exists no conventional material which has negative material properties.
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Negative effective material properties of metamaterials appear due to a macroscopic point
of observation while the variation of geometry and material happens on the micro scale.

Effective material parameters

The following section explains the concept of effective material parameters. Effective material
parameters are derived on a macro scale where local wave scattering effects are smeared.
Based on the two-DOF-oscillator, one can derive an effective negative mass.

ks c
w

f(t)

meff

ks

m

creskres

mres

c

wres

w

f(t)

Figure 3.23: Transition from micro scale to macro scale for the two-DOF-oscillator.

Figure 3.23 shows to different observation scales of the two-DOF-oscillator. The micro scale
(left) describes the model in detail. The model on the right describes the larger macro
scale. The right model ignores the wave propagation between the local resonance and the
main structure. The effective mass meff of the model incorporates the effects of the local
resonance. The equation of motion of the model in the macro scale is

(ks + iΩc− Ωmeff ) ¯
we iΩt =

¯
fe iΩt . (3.94)

Section A.2 derives the solution for
¯
w depending on the dimensionless parameters α, β, µ,

D and Dres

¯
w = ¯

f

m

e+ if

g + ih
, (3.95)
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with

e = β2 − α2 , (3.96)
f = 2αβDres , (3.97)
g = α4 − α2(1 + β2 + µβ2 + 4βDDres) + β2 , (3.98)
h = α[2D(β2 − α2) + 2βDres(1− α2 − µα2)] . (3.99)

α, β, µ, D and Dres are the dimensionless parameters introduced in section 3.2.2. Assuming
that the main structure is undamped (c = 0), the effective mass meff is

meff = ¯
f − ks¯

w

−Ω2
¯
w

. (3.100)

Inserting the solution for
¯
w (3.95) yields

meff =
1− ks

m
e+if
g+ih

−Ω2 1
m
e+if
g+ih

, (3.101)

which simplifies to

meff = −mΩ2
g + ih

e+ if
+ m

α2 . (3.102)

Figure 3.24, shows the real part of the normalized effective mass for different mass ratios
µ = mres/m. If there is no resonator (µ = 0), the effective mass is greater than zero for all
frequencies. Introducing a resonator, there is a frequency range where the effective mass is
negative. The frequency range of negative effective mass depends on the target frequency of
the resonator.

Similar to negative density, it is possible to generate a negative effective elastic modulus.
Section 3.2.2 introduced the diatomic crystal. In the following, one considers a finite diatomic
crystal, as shown in figure 3.25, from the macroscopic perspective.

The displacement un+2 is fixed (un+2 = 0). Thus, the solution of the displacements un and
un+1 for the steady state solution of a harmonic forced vibration is

−Ω2 + ω2
1 −ω2

1

−ω2
2 −Ω2 + 2ω2

2

 ¯
un

¯
un+1

 =
 ¯

f

m1

0

 , (3.103)
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Figure 3.24: Real part of the normalized effective mass of the two-DOF-oscillator modeled with a single
degree of freedom.

un un+1 un+2

ks ks
m1 m2 m1

L

un+2un

f(t) f(t)
Eeff

L
Figure 3.25: Transition from micro scale to macro scale for a finite diatomic crystal.

with ω1 =
√
ks/m1 and ω2 =

√
ks/m2. The second line of (3.103) yields the relation between

the displacements
¯
un and

¯
un+1

¯
un+1 =

¯
un

ω2
2

−Ω2 + 2ω2
2
. (3.104)

Inserting this expression in the first line of (3.103) gives

¯
un = ¯

f

m1

2ω2
2 − Ω2

Ω4 − Ω2(ω2
1 + 2ω2

2)− ω2
1ω

2
2
. (3.105)

Applying Hooke’s law to the macroscopic model shown in figure 3.25, it is possible to deter-
mine the effective Young’s modulus Eeff based on the stress σ and the strain ε

Eeff = σ

ε
= ¯
f

A

L

¯
un

= Lm1

A

Ω4 − Ω2(ω2
1 + 2ω2

2)− ω2
1ω

2
2

2ω2
2 − Ω2 . (3.106)
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A is the cross section of the macroscopic bounding box. L is the length of a unit cell. The
frequency of the local resonance is ωres =

√
2ks
m2

.

Figure 3.26: Real part of the normalized effective Young’s modulus of the diatomic crystal modeled as
single degree of freedom.

Figure 3.26 shows the normalized effective Young’s modulus for the macroscopic model of
the diatomic crystal for different ratios of m1/m2. There are two frequency ranges where the
effective stiffness is negative. A negative stiffness occurs slightly before the local resonance.
The second frequency range of negative effective stiffness appears due to the limits of the
model. At higher frequencies, the mass m1 more and more blocks the excitation.

Transformation of acoustic wave fields

Spatially designed material properties offer the possibility to design acoustic wave fields. The
following paragraph introduces the transformation of an acoustic wave field using the wave
equation for compressional waves. In this case, the wave equation for the acoustic pressure p
summarizes the conservation of mass and momentum for time harmonic wave propagation.
The equation describes the wave propagation in an Cartesian coordinate system [Craster
and Guenneau 2013]

∇ρ−1∇
¯
p+ Ω2

K ¯
p = 0 . (3.107)
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∇ is the gradient in the Cartesian coordinate system. K is the bulk modulus and ρ is the
density of the media. Applying a general transformation of the coordinates from xi to x̄i,
one defines the transformation matrix T as [Arens et al 2012]

T =


∂x̄
∂x

∂x̄
∂y

∂x̄
∂z

∂ȳ
∂x

∂ȳ
∂y

∂ȳ
∂z

∂z̄
∂x

∂z̄
∂y

∂z̄
∂z

 (3.108)

Figure 3.27: Example of a coordinate transformation.

Using the transformation T, the pressure p can be expressed in the transformed domain

¯
p = ¯

¯
p/ det(T) . (3.109)

Furthermore, the gradient in the Cartesian coordinates system can be expressed in terms of
the gradient in the transformed coordinate system x̄i. This yields the following expressions
for the respective terms in (3.107)

∇ρ−1 = ∇̄Tρ−1 (3.110)
∇

¯
p = TT∇x̄ ¯

¯
p/ det(T) . (3.111)

Inserting the transformations (3.109), (3.110) and (3.111) into the wave equation (3.107)
results in the following equation

∇x̄
Tρ−1TT

det(T) ∇x̄¯
¯
p+ Ω2

K det(T) ¯
¯
p = 0 . (3.112)

Comparing (3.112) to (3.107), it is clear that the transformation does not change the general
form of the wave equation. Instead of considering the transformation T as a coordinate
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transformation, one can consider it as a transformation of the material parameters ρ and
K

ρ̄ =
(

Tρ−1TT

det(T)

)−1

, (3.113)

K̄ = K det(T) . (3.114)

Applying the transformation T to the density ρ and the bulk modulus K, the resulting
material tensors ρ̄ and K̄ contain the modified properties that are necessary to guide the
wave along the modified direction x̄i (see figure 3.28).

x

y

x

y

T ρ̄ρ

K K̄

Figure 3.28: Influence of the transformation of the material properties on the acoustic field.

Solving the wave equation in the original coordinate system xi using the transformed material
properties generates the desired acoustic field

∇ρ̄−1∇
¯
p+ Ω2

K̄ ¯
p = 0 . (3.115)

There are various transformations for different types of wave guides (e.g. acoustic cloaking or
lensing). The motion in solids is generally a superposition of multiple wave types. Neglecting
body forces, the equation of motion is

∇ ·
(
C∇u

)
= ρü . (3.116)

C is the elasticity tensor, which is a fourth order tensor describing the relation between
stresses σ and strains ε (σ = C : ε). Due to the symmetry of stresses and strains and the
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derivation of the elasticity tensor based on the strain energy density U (Cijkl = ∂2U
∂εijεkl

=
∂2U
∂εklεij

), the following symmetries hold for C

Cijkl = Cjikl ,

Cijkl = Cijlk , (3.117)
Cijkl = Cklij .

For isotropic material the elasticity tensor can be expressed with the Lamé paramters

Cijkl = λδijδkl + µ (δikδjl + δilδjk) . (3.118)

δij is the Kronecker delta. Inserting the (3.118) into (3.116) results in

(λ+ 2µ)∇ (∇ · u)− µ∇×∇× u = ρ
∂2u
∂t2

(3.119)

Applying the Helmholtz decomposition, the displacement
¯
u can be decomposed in a solenoidal

and a rotation free part [Arfken and Weber 1995]

u = ∇ψ︸︷︷︸
∇×(∇ψ)=0

+ ∇× υ︸ ︷︷ ︸
∇·(∇×υ)=0

. (3.120)

ψ is a scalar potential and υ a vector potential. Inserting this into (3.119) yields

(λ+ 2µ)∇ (∇ · (∇ψ))− µ∇×∇× (∇× υ) = ρ
∂2

∂t2
(∇ψ) + ρ

∂2

∂t2
(∇× υ) (3.121)

Using the relation ∇ × ∇ × � = ∇∇ · � − ∆� [Arens et al 2012] results in the following
expression

λ+ 2µ
ρ
∇ (∆ψ)− µ

ρ
∇∇ · (∇× υ) + µ

ρ
∆(∇× υ) = ∂2

∂t2
(∇ψ) + ∂2

∂t2
(∇× υ) (3.122)

Applying ∇ · ∇ ×� = 0 and further simplifications yield

∇
(
∂2

∂t2
ψ − λ+ 2µ

ρ
∆ψ

)
+∇×

(
∂2

∂t2
υ − µ

ρ
∆υ

)
= 0 . (3.123)
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This equation is fullfilled if each of the expression in the brackets is fulfilled.

∂2

∂t2
ψ − λ+ 2µ

ρ
∆ψ = 0 (3.124)

∂2

∂t2
υ − µ

ρ
∆υ = 0 . (3.125)

The terms in front of the Laplace operator ∆ are the square of the wave speed of the
compressional waves (3.124) and the shear waves (3.125). Consequently, there is one wave
equation for the compressional waves and three wave equations for the shear waves.

Deriving a transformation that guides different wave types in the same manner is not pos-
sible because the different waves have different propagation characteristics. Applying the
coordinate transformation to the equation of motion demonstrates the issue that arises. The
following derivations are extracted from Craster and Guenneau [2013] and refers to the orig-
inal publications from Willis [1981], Milton et al [2006] and Norris and Shuvalov [2011]. As
previously, the coordinate transformation Tij = ∂x̄i

∂xj
yields

¯
u(x) = T−1¯

¯
u(x̄) ,

∇ = ∇x̄T ,

∇
¯
u = ∇(T−1¯

¯
u) = TT ∇x̄¯¯

u(x̄) T +∇T−1 ¯
¯
u(x̄) .

(3.126)

Assuming that the material properties depend on the spatial location, the equation of motion
reads

∇ ·
(
C(x)∇u

)
= ρ(x)ü . (3.127)

Applying the transformations (3.126), there appear additional terms in the transformed
equation of motion

∇x̄ ·
(
C̄(x̄)∇x̄¯¯

u + A(x̄)¯
¯
u
)

+ B(x̄)∇x̄¯¯
u = −Ω2ρ̄(x̄)¯

¯
u . (3.128)

The tensors A and B depend on the transformation T, its spatial derivatives, and the
elasticity tensor C. Therefore, the equation of motion (3.116) is not invariant with respect
to an arbitrary coordinate transformation. An arbitrary transformation matrix T does
not necessarily conserve the form of the original equation. Further restriction emerge, if the
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transformed elasticity tensor C̄ needs to satisfy the same symmetries as the original elasticity
tensor C.
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4 Modeling aspects

In this chapter, the author addresses specific modeling aspects that form the basis for model-
ing locally resonant materials and periodic structures. The first section covers the modeling
of local resonances. Besides different models of beam-like resonators, it also explains the
modeling of beam-like resonators as discrete resonators and how the dynamic behavior is
integrated in the host structure. The second section introduces the Wave Finite Element
Method (WFEM) for modeling periodic structures. After the introduction of various formu-
lations of the WFEM, it follows a comparison of the different methods.

4.1 Modeling of resonators

In practical applications, beam-like resonators are widely used [Claeys et al 2016b; Egashira
et al 2016; Van Belle et al 2019]. The general design of such a resonator consists of a beam
segment connected to an end mass. The following sections focus on the modeling of such
beam-like resonators.

4.1.1 Models of beam-like resonators

There exist different models that derive the dependency between the geometry and the
dynamic behavior of the resonator. The following paragraph describes four different models.
The resonator consists of a beam-like structure that is connected to the host structure.

beam

tip mass

Figure 4.1: Example geometry of a beam-like resonator.



60 4 Modeling aspects

The target frequency of the local resonance determines the eigenfrequency of the beam-like
resonator. In general, the host structure behaves much stiffer than the resonator. Therefore,
one derives the eigenfrequency of the resonator assuming it is clamped at one side.

3D FE-Model: Using three dimensional finite elements, it is possible to achieve an accurate
representation of the geometry.

Figure 4.2: Three dimensional finite element model of a resonator.

Depending on the element formulation, such a representation also considers multidimensional
deformation patterns. However, the modeling and computational effort is higher compared
to other methods. There exist simplified models for such beam-like structures. Nevertheless,
such simplification can result in strong deviations.

Beam with concentrated mass: A very simple model for a beam-like resonator consists
of an Euler-Bernoulli beam with a concentrated end mass. For the first eigenfrequency,
there exist approximated solutions in literature. These approximation neglect the rotational
inertia of the end mass and approximate the inertia of the beam [Blevins 2016]

f1 = 1
2π

√
3EI

L3(mtip + 0.24ρAL) . (4.1)

mend

E and ρ denote the Young’s modulus and the density of the material. The variables A and
I name the cross sectional area and the respective second moment of area. The weight of
the concentrated mass is mtip.
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Beam with concentrated mass and additional rotational inertia Including the mass mo-
ment of inertia of the tip mass Itip results in a more accurate representation. The first
resonance frequency is

f1 = λ2
1

2πL2

√
EI

ρA
. (4.2)

mtip, Itip

The corresponding λ1 results from the smallest solution of the equation [Erturk and Inman
2011]

1 + cosλ cosh λ+ λ
mtip

mbeam

(cosλ sinh λ− sin λ cosh λ)

−λ3 Itip
mbeamL2 (coshλ sin λ+ sinh λ cosλ) + λ4 mtipItip

m2
beamL

2 (1− cosλ cosh λ) = 0 . (4.3)

Coupled beam finite elements: One could also model the tip mass using several coupled
beam elements.

Figure 4.3: Coupled Euler-Bernoulli beams with different cross sections.

The motion of the beam is approximated using Hermite polynomials [Zienkiewicz and Taylor
2005]

¯
w(ξ) =

¯
w1

1
4(2− 3ξ + ξ3) +

¯
w2

1
4(2 + 3ξ − ξ3) . (4.4)

ξ is the element coordinate. Based on the polynomials, the element stiffness and mass matrix
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can be generated

Kele = EI

L3
ele


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Mele = ρAeleLele
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156 22Lele 54 −13Lele
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ele −22Lele 4L2
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 . (4.6)

The coupling of several beam elements with different cross sections results in a more accurate
representation of the mass distribution along the beam axis and allows the deformation
of the end mass. Nevertheless, it makes several assumptions about the deformation as
it only considers pure bending deformation in a single direction and neglects shear and
torsional modes as well as rotational inertia. In general, the beam elements should be
significantly slender, which means that the length should be larger than the width and
the height. However, for the derivation of the first eigenfrequency. The coupled beam
model with beam elements shorter than the respective dimensions of the cross section also
generates accurate results. The reason is that the bending wavelength that occurs at the
first eigenfrequency is larger compared to the dimension of the cross sections. This ensures
that the motion in of the beam is dominated by bending.

Coupled spectral elements: Similar to coupling multiple finite beam elements, it is also
possible to couple spectral beam elements. The element formulation of spectral beam ele-
ments is based on the analytic solution of the Euler-Bernoulli beam theory [Kausel 2017]

¯
w(ξ) = C1 cos(kξ) +C2 sin(kξ) +C3 cosh(kξ) +C4 sinh(kξ) with k4 = Ω2ρAele

EIele
(4.7)

ξ is the element coordinate. Deriving the shear and bending moment, it is possible to cou-
ple the different beams segments [Stanton and Mann 2010]. The computation of the first
eigenfrequency is more complex than using finite elements, because the eigenvalue prob-
lem should be solved analytically. Using coupled spectral beam elements to represent the
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geometry accurately results in higher computational effort than using coupled finite beam
elements.

Table 4.1 shows the first eigenfrequencies for different beam-like resonators using different
models. Appendix A.4 lists the geometry parameters of the different designs.

1st eigenfrequency

Design 3D FE-model Beam with end
mass

Beam with end mass Coupled beamsand rotational inertia
1 59.6 Hz 85.0 Hz 70.5 Hz 59.5 Hz
2 72.6 Hz 72.7 Hz 110.0 Hz 85.3 Hz
3 95.8 Hz 160.0 Hz 109.3 Hz 95.6 Hz
4 98.0 Hz 160.0 Hz 112.7 Hz 97.9 Hz
5 99.2 Hz 160.0 Hz 114.2 Hz 98.9 Hz
6 141.8 Hz 263.4 Hz 154.9 Hz 141.3 Hz
7 169.5 Hz 295.7 Hz 193.3 Hz 169.1 Hz
8 183.4 Hz 331.9 Hz 206.4 Hz 182.9 Hz
9 190.7 Hz 351.6 Hz 213.0 Hz 190.2 Hz
10 217.2 Hz 394.7 Hz 245.7 Hz 216.5 Hz
11 251.3 Hz 443.0 Hz 290.9 Hz 250.5 Hz
12 271.6 Hz 497.3 Hz 310.6 Hz 270.9 Hz
13 318.9 Hz 526.8 Hz 376.4 Hz 318.4 Hz
14 449.1 Hz 770.0 Hz 472.3 Hz 446.5 Hz
15 1412.8 Hz 1540.0 Hz 1515.9 Hz 1340.0 Hz

Table 4.1: Comparison of the first eigenfrequency.

Comparing the results of the different models, one can see that the coupled beam model and
the three dimensional FE-model show similar results. The relative deviation is less than 1 %,
except for design 15. That means that the first mode of the presented designs is obviously a
pure bending mode and the modeling with Euler-Bernoulli beams with relatively short beam
length is able to capture the deformation.

In contrast, the model with the concentrated end mass is not able to estimate the first
eigenfrequency with an acceptable accuracy for the here presented designs. Including the
rotational inertia of the tip mass improves the accuracy. However, the deviations to the
other models are still relatively high. There are two reasons for the strong deviation: De-
pending on the design of the tip mass, suppressing the deformation of the tip mass can
result in an overestimation of the stiffness of the beam-like resonator. Furthermore, the
center of mass of the tip mass is not located at the end of the beam. Consequently, the
inertia term of the concentrated tip mass mtip does not only depend on the displacement at
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the end of the beam segment but also on the rotation and the lever arm to the center of mass.

ẅmtip =
(
ẅbeam(x = L) + φ̈beam(x = L)lc

)
mtip (4.8)

lc

As shown in table 4.1, using the mass moment of inertia around the center of gravity of the
tip mass results in significant deviations. Therefore, correct estimation of the eigenfrequency
requires the computation of the mass moment of inertia applying Steiner’s theorem.

4.1.2 Modeling beam-like resonators as discrete oscillators

In general, it is efficient to model a resonator as a discrete oscillators with a single degree of
freedom. The reason is that in many applications the resonator is tuned to a desired target
frequency. The following derivation shows how a beam-like resonator is linked to a discrete
oscillator. Therefore, the author shows the effect of a single mode of the beam-like resonator
on the host structure. Due to simplicity, the host structure is a simple discrete mass-spring
system.
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ks

m

kres

mres

wres
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ks

m

w
wb(x)
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Figure 4.4: Translation of the beam-like resonator to a discrete mass-spring system.

The general equation for the Euler-Bernoulli beam describes the relative motion wb of the
beam

∂4

∂x4 ¯
wb −

Ω2ρA

EI ¯
wb = 0 . (4.9)

The solution of the equation is a superposition of sine, cosine, hyperbolic sine, and hyperbolic
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cosine [Petersen 1996]

¯
wb(x) = C1 cosh λ

L
x+ C2 sinh λ

L
x+ C3 cos λ

L
x+ C4 sin λ

L
x . (4.10)

The parameter λ depends on the material, the geometry of the beam and the frequency of
excitation

λ = L

(
Ω2ρA

EI

)1/4

. (4.11)

The boundary conditions at x = 0 and x = L determine the constants Ci. The relative
motion of the beam is described by the superposition of the modes of the clamped beam, wb
reads

¯
wb(x) =

∞∑
j=1 ¯

w0,j

(
sin λj

L
x− sinh λj

L
x+ Yj

(
cosh λj

L
x− cos λj

L
x

))
, (4.12)

where the factor Yj is determined using

Yj = sinh λj + sin λj
cosh λj + cosλj

. (4.13)

There exists infinite mode shapes in which the beam oscillates. The corresponding eigenval-
ues λjfor these shapes are given by

cosh(λj) cos(λj) + 1 = 0 . (4.14)

Table 4.2 lists the solutions.

j λj
1 1.87510407
2 4.69409113
3 7.85475744
4 10.99554073
5 14.13716839

j>5 ≈(j-1/2)π
Table 4.2: Solutions for λ that satisfy (4.14); extracted from [Blevins 2016].
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Inserting the different solutions for λj in (4.11) yields the corresponding eigenfrequencies ωj.
The following derivation focuses on the solution of one single mode λj

¯
wb(x) =

¯
wj,0

(
sin λj

L
x− sinh λj

L
x+ Yj

(
cosh λj

L
x− cos λj

L
x

))
︸ ︷︷ ︸

Φj

. (4.15)

The generalized quantities for an Euler-Bernoulli beam excited by the base excitation wbase
are [Müller 2019b]

mj = ρA
∫ L

0
Φ2
jdx , (4.16)

kj = EI
∫ L

0
Φ′′2j dx = EI

λ4
j

L4

∫ L

0
Φ̃2
jdx , (4.17)

with Φ̃j = − sin λj
L
x− sinh λj

L
x+ Yj

(
cosh λj

L
x+ cos λj

L
x

)
(4.18)

pj =
∫ L

0
p(x)Φjdx = Ω2ρA

∫ L

0
Φjdx wbase . (4.19)

This reveals the equation of motion for the relative motion of the beam excited by the
movement w = wbase of the mass m(

−ΩρA
∫ L

0
Φ2
jdx+ EI

λ4
j

L4

∫ L

0
Φ̃2
jdx

)
¯
wj,0 − Ω2ρA

∫ L

0
Φjdx ¯

w = 0 . (4.20)

A division by ρA
∫ L

0 Φ2
j(x)dx yields

−Ω + EI

ρA

λ4
j

L4

∫ L
0 Φ̃2

jdx∫ L
0 Φ2

jdx︸ ︷︷ ︸
=1

 ¯
wj,0 − Ω2

∫ L
0 Φjdx∫ L
0 Φ2

jdx︸ ︷︷ ︸
γj

¯
w = 0 . (4.21)

The values γj are independent of the length of the beam L and decrease with increasing j

Inserting the link between λj and the first eigenfrequency of the beam ω2
j,beam = λ4

j

L4
EI
ρA

results
in

(
−Ω + ω2

j,beam

)
¯
wj,0 − Ω2γj ¯

w = 0 . (4.22)
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j γj
1 0.57479073
2 0.44194953
3 0.25422799
4 0.18190413
5 0.14147049
6 0.11574906
7 0.09794150
... ...

Table 4.3: Values of γj for the different modes.

In the following, one divides by the square of the eigenfrequency of the main structure ω2

and introduces the dimensionless frequency ratios α = Ω
ω
and βj = ωj,beam

ω(
β2
j − α2

)
¯
wj,0 − α2γj ¯

w = 0 . (4.23)

Now the derivation of the motion w of the mass m follows.

ksw

mẅ

f(t)
Q(x = 0)

x

Figure 4.5: Visualization of the forces acting on the structure and the resonator.

The force equilibrium from figure 4.5 yields

(
−Ω2m+ ks

)
¯
w −

¯
Q(x = 0) =

¯
f . (4.24)

The shear force in the beam is related to the third derivative of the displacement with respect
to the spatial coordinate and the bending stiffness Q(x) = −EI ∂3

∂x3wb. The relative motion
of the beam wb is defined by (4.12). Thus, the shear force at the connecting point with the
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beam is

¯
Q(x = 0) =

∞∑
k=1
−EI

¯
wk,0

λ3
k

L3

[
− cos λk

L
x− cosh λk

L
x+ Yk

(
sinh λk

L
x− sin λk

L
x

)]
x=0

= 2EI
L3

∞∑
k=1

λ3
k¯
wk,0 . (4.25)

Inserting the link between λ and the eigenfrequency of the beam (4.11), the shear force at
the connecting point results in

¯
Q(x = 0) = 2EI

L3

∞∑
k=1

λ3
k¯
wk,0 = 2ρAL

∞∑
k=1

ω2
k,beam¯

wk,0

λk
. (4.26)

Inserting (4.26) in (4.24) and dividing it by the mass of the host structure m results in
(
−Ω2 + ks

m

)
¯
w − 2ρAL

m

∞∑
k=1

ω2
k,beam¯

wk,0

λk
= ¯
f

m
(4.27)

As previously, the division by the square of the eigenfrequency of the main structure ω2 offers
the possibility to introduce the dimensionless frequency ratios α = Ω

ω
and βk = ωk,beam

ω

(
1− α2

)
¯
w − 2ρAL

m

∞∑
k=1

β2
k¯
wk,0
λk

= ¯
f

ks
. (4.28)

Consequently, the following two equations describe the motion of the host structure and the
beam-like resonator

(
1− α2

)
¯
w − 2ρAL

m

∞∑
k=1

β2
k¯
wk,0
λk

= ¯
f

k
, (4.29)(

β2
j − α2

)
¯
wj,0 − α2γj ¯

w = 0 . (4.30)

Reformulating (4.30) yields

¯
wj,0 = α2γj

β2
j − α2 ¯

w . (4.31)
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Inserting (4.31) in (4.29) results in

(
1− α2

)
¯
w − 2ρAL

m

∞∑
k=1

β2
k

λk

α2γk
β2
k − α2 ¯

w = ¯
f

ks
. (4.32)

Finally, one solves for the displacement of the host structure
¯
w

¯
w = ¯

f

ks

1
(1− α2)− 2ρAL

m

∑∞
k=1

β2
k

λk

α2γk
β2
k
−α2

. (4.33)

Plugging in (4.33) in (4.31) solves for the unknown beam deflection
¯
wj,0

¯
wj,0 = ¯

f

ks

α2γj
β2
j − α2

1
(1− α2)− 2ρAL

m

∑∞
k=1

β2
k

λk

α2γk
β2
k
−α2

. (4.34)

Similarly to the derivations in section 3.2.2, one can establish the amplification functions for
the host structure and the relative motion of the beam. Therefore, the absolute value of the
displacement is normalized by the static deflection wstat = |

¯
f |
ks

V = |
¯
w|
wstat

=
√√√√√√ 1(

(1− α2)− 2ρAL
m

∑∞
k=1

β2
k

λk

α2γk
β2
k
−α2

)2 , (4.35)

Vj,0 = |¯
wj,0|
wstat

=

√√√√√√ α4γ2
j(

(1− α2)− 2ρAL
m

∑∞
k=1

β2
k

λk

α2γk
β2
k
−α2

)2 . (4.36)

Figure 4.6 shows the amplification functions of the main structure for different summation
terms. The first eigenfrequency of the beam is tuned to the resonance frequency of the host
structure (β1 = 1). The summation is carried out including the first five terms. One can see
that including the terms for k 6= 1 does not strongly affect the amplification function in the
frequency range around β1. Therefore, the summation term can be simplified The effect of
the summation ( α2

1−α2/β2
k
) depends on the tuning ratio of the resonator βk and the excitation

frequency ratio α. The term tends to infinity when the excitation frequency matches the
resonance frequencies of the beam. Thus, the effect of a single mode k is limited to a specific
frequency (see figure 4.7).
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Figure 4.6: Influence of the different modes.

Around a resonance frequency of the beam (α ≈ βj), a single term dominates the summation.
Therefore, it is possible to simplify the summation in that frequency range

∞∑
k=1

γk
λk

β2
kα

2

β2
k − α2 ≈

γj
λj

β2
jα

2

β2
j − α2 . (4.37)

This simplification is possible because in beam structures the modes are well separated.
Using this it is possible to approximate the displacement for frequencies around the target
frequency of the resonator

¯
w ≈ ¯

f

ks

1
(1− α2)− 2ρAL

m

β2
j

λj

α2γj
β2
j−α2

= ¯
f

ks

β2
j − α2

(1− α2)
(
β2
j − α2

)
− 2ρAL

m

γj
λj
β2
jα

2
, (4.38)

¯
wj,0 ≈ ¯

f

ks

α2γj
β2
j − α2

1
(1− α2)− 2ρAL

m

γj
λj
β2
jα

2
= ¯

f

ks

α2γj

(1− α2)
(
β2
j − α2

)
− 2ρAL

m

γj
λj
β2
jα

2
.

(4.39)
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Figure 4.7: Influence of the first five terms of equation (4.37).

The corresponding amplification functions are

V ≈

√√√√√√
(
β2
j − α2

)2

(
(1− α2)

(
β2
j − α2

)
− 2ρAL

m

γj
λj
β2
jα

2
)2 , (4.40)

Vj,0 ≈

√√√√√ α4γ2
j(

(1− α2)
(
β2
j − α2

)
− 2ρAL

m

γj
λj
β2
jα

2
)2 . (4.41)

The solution is analogous to the solution of the undamped two-DOF-oscillator in (3.52) and
(3.53)

V =

√√√√ (β2
SDOF − α2)2

((1− α2) (β2
SDOF − α2)− µβ2

SDOFα
2)2 , (4.42)

Vrel =
√√√√ α4

((1− α2) (β2
SDOF − α2)− µSDOFβ2

SDOFα
2)2 , (4.43)

and reveals the link between the beam-like resonator and the discrete mass-spring resonator.
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First, the mass ratio and the frequency tuning of the discrete resonator needs to be adjusted
to generate the same amplification function for the main structure

µSDOF = 2γj
λj

ρAL

m
= 2
λj

∫ L
0 Φjdx∫ L
0 Φ2

jdx

ρAL

m
, (4.44)

βSDOF = βj . (4.45)

Second, γj additionally scales the amplification function of the relative motion

Vj,0 = γjVrel =
∫ L

0 Φjdx∫ L
0 Φ2

jdx
Vrel . (4.46)

The term in front of the mass ratio 2
λj

∫ L
0 Φjdx∫ L
0 Φ̃2

jdx
scales the over all mass of the resonator

according to the mode in which the beam-like resonator vibrates. Summing up all the
contribution of all modes yields the equivalent mass of the resonator.

∞∑
j=1

2
λj

∫ L
0 Φjdx∫ L

0 Φ̃2
j(x)dx

= 1

0 %

100 %
Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Mode 7

The contribution of higher modes decreases with increasing mode number. Therefore, the
first mode of the resonator has the largest influence on the dynamics of the host structure.

In many cases, beam-like resonators consist of a beam with a tip mass mtip. The first mode
shape of such resonators are similar to the first mode shape of a beam without tip mass,
whereas the eigenfrequencies differ consciously.
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Figure 4.8: Translation of the beam-like resonator with tip mass to a discrete mass-spring system.
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According to Erturk and Inman [2011], the mode shapes of a cantilever beam with tip mass
are

Φr = cos λr
L
x− cosh λr

L
x+ Yr

(
sin λr

L
x− sinh λr

L
x

)
, (4.47)

with

Yr =
sin λr − sinh λr + λr

mtip
mbeam

(cosλr − cosh λr)
cosλr + cosh λr − λr mtip

mbeam
(sin λr − sinh λr)

. (4.48)

The corresponding λr results from the solution of the equation

1 + cosλ cosh λ+ λ
mtip

mbeam

(cosλ sinh λ− sin λ cosh λ)

−λ3 Itip
mbeamL2 (coshλ sin λ+ sinh λ cosλ) + λ4 mtipItip

m2
beamL

2 (1− cosλ cosh λ) = 0 , (4.49)

where Itip is the mass moment of inertia of the tip mass at x = L. As mentioned in
section 4.1.1, Itip should be computed using Steiner’s theorem to accurately capture the
eigenfrequencies. Figure 4.9 shows the influence of the tip mass and the mass moment of
inertia on the mode shapes of the beam.

Figure 4.9: Influence of the tip mass and the mass moment of inertia on the mode shapes for a clamped
beam with additional tip mass.

The derivation of the motion of the beam resonator with tip mass follows the same scope as
the beam resonator without tip mass. Appendix A.5 illustrates a detailed derivation. The
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motion of the main structure
¯
w and the beam mode

¯
wr,0 are

¯
w ≈ ¯

f

ks

β2
r ξ3,r − α2(1 + ζξ1,r + τξ2,r)

(1− α2) (β2
r ξ3,r − α2(1 + ζξ1,r + τξ2,r))− 2 µ

1+ζ
Yr
λr
β2
rα

2 (ξ4,r + ζξ5,r)
,

¯
wr,0 ≈ ¯

f

ks

α2 (ξ4,r + ζξ5,r)
(1− α2) (β2

r ξ3,r − α2(1 + ζξ1,r + τξ2,r))− 2 µ
1+ζ

Yr
λr
β2
rα

2 (ξ4,r + ζξ5,r)
.

(4.50)

The respective amplification functions are

V ≈

√√√√√ (β2
r ξ3 − α2(1 + ζξ1,r + τξ2,r))2(

(1− α2) (β2
r ξ3,r − α2(1 + ζξ1,r + τξ2,r))− 2Yr

λr

µ
1+ζβ

2
rα

2 (ξ4,r + ζξ5,r)
)2 ,

Vr,0 ≈

√√√√√ α4 (ξ4,r + ζξ5,r)2(
(1− α2) (β2

r ξ3,r − α2(1 + ζξ1,r + τξ2,r))− 2Yr
λr

µ
1+ζβ

2α2 (ξ4,r + ζξ5,r)
)2 .

(4.51)

The parameters ζ = mtip
ρAL

describes the mass ratio between tip mass and mass of the beam.
Respectively, the ratio τ = Itip

mbeamL2 describes the relation between the mass moments of
inertia of the tip mass and the beam. The parameters ξi contain information about the
shapes of the deformation. These parameters are dimensionless and are independent of the
geometry of the beam-like resonator. They only depend on the mode shape Φr

ξ1,r = L
Φ2
r|x=L∫ L

0 Φ2
r(x)dx

, (4.52)

ξ2,r = Lλ2
r

Φ′2r |x=L∫ L
0 Φ2

r(x)dx
, (4.53)

ξ3,r =
∫ L

0 Φ̃2
rdx∫ L

0 Φ2
r(x)dx

, (4.54)

ξ4,r =
∫ L

0 Φrdx∫ L
0 Φ2

r(x)dx
, (4.55)

ξ5,r = L
Φr|x=L∫ L

0 Φ2
r(x)dx

. (4.56)

Figure 4.10 illustrates the amplification functions for different ratios ζ = mtip
mbeam

and τ =
Itip

mbeamL2 . The overall additional mass is constant (µ = mtip+mbeam
m

= 0.05).

Increasing the tip mass ratio ζ increases the frequency range in which the magnification
function is reduced, whereas an increased ratio of mass moment of inertia τ reduces the
frequency range in which the magnification function is reduced. For the evaluation of the
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Figure 4.10: Influence of the mass ratio ζ and mass moment of inertia ratio τ on amplification functions
for a fixed additional mass µ = 0.05.

maximal reduction of the amplification function at the resonance frequency of the host
structure, one determines the minimum value of the amplification functions (see figure 4.11).
The close up shows that a larger tip mass and a lower mass moment of inertia of the tip
mass is beneficial for a maximum reduction of the amplification function in the vicinity of
the resonance frequency of the host structure.

Figure 4.11: Influence of the mass ratio ζ and mass moment of inertia ratio τ on the minimum value of
the amplification functions for a fixed mass ratio µ = 0.05.

To relate the amplification functions of a mode r of the beam resonator to the solutions of
a discrete SDOF system additional reformulations are required . Therefore, one multiplies
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the nominator and denominator of the motion (4.50) with 1
1+ζξ1,r+τξ2,r

. This yields

¯
w ≈ ¯

f

ks

β2
rξ3,r

1+ζξ1,r+τξ2,r
− α2

(1− α2)
(
β2
r

ξ3,r
1+ζξ1,r+τξ2,r

− α2
)
− 2 µ

1+ζ
Yr
λr
β2
r

1
1+ζξ1,r+τξ2,r

α2 (ξ4,r + ζξ5,r)
,

¯
wr,0 ≈ ¯

f

ks

α2 ξ4,r+ζξ5,r
1+ζξ1+τξ2,r

(1− α2)
(
β2
r

ξ3,r
1+ζξ1,r+τξ2,r

− α2
)
− 2 µ

1+ζ
Yr
λr
β2
r

1
1+ζξ1,r+τξ2,r

α2 (ξ4,r + ζξ5,r)
.

(4.57)

The resulting amplification functions are

V ≈

√√√√√√
(
β2
r

ξ3,r
1+ζξ1,r+τξ2,r

− α2
)2

(
(1− α2) (β2

r
ξ3,r

1+ζξ1,r+τξ2,r
− α2)− 2Yr

λr

µ
1+ζβ

2
r

1
1+ζξ1,r+τξ2,r

α2 (ξ4,r + ζξ5,r)
)2 ,

Vr,0 ≈

√√√√√√ α4 (ξ4,r+ζξ5,r)2

(1+ζξ1,r+τξ2,r)2(
(1− α2) (β2

r
ξ3,r

1+ζξ1,r+τξ2,r
− α2)− 2Yr

λr

µ
1+ζβ

2
r

1
1+ζξ1,r+τξ2,r

α2 (ξ4,r + ζξ5,r)
)2 .

(4.58)

Comparing these solutions to the solution of the SDOF-resonator from (4.42) and (4.43),
the parameters for the discrete mass-spring resonator are

µSDOF = 2Yr
λr

µ

1 + ζ

ξ4 + ζξ5

ξ3
, (4.59)

βSDOF = β

√
ξ3

1 + ζξ1 + τξ2
. (4.60)

In addition, the amplification function for the relative motion of the beam needs a scaling

Vj,0 = ξ4 + ζξ5

1 + ζξ1 + τξ2
Vrel,SDOF . (4.61)

Summarizing, the dynamic behavior of a single mode of a beam-like resonator can be in-
corporated in the host structure using a SDOF system with parameters adjusted to the
properties of the beam-like resonator.
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4.1.3 Integrating the resonators into the host structure

This section describes different methods to incorporate the dynamic behavior of a discrete
resonator into a discretized model of the host structure.

c1k1

m1

c2k2

m2

Figure 4.12: Integrate beam-like resonators as discrete mass-spring systems.

Gündel [2008] proposes three different options:

1. discrete oscillator as additional degree of freedom (DOF)

2. discrete oscillator as dynamic inertia

3. discrete oscillator as external attenuation force

Discrete oscillator as additional degree of freedom: Modeling the oscillator as an addi-
tional degree of freedom (DOF) is straightforward. The corresponding contribution of the
mass m, spring stiffness ks and damping coefficient c of the resonator extend the dynamic
stiffness matrix S

Smod =



S1,1 S1,2 S1,3 . . . S1,n 0
S2,1 S2,2+ks + iΩc S2,3 . . . S2,n −ks − iΩc
S2,1 S2,2 S2,3 . . . S2,n 0
... ... ... . . . ... ...

Sn,1 Sn,2 Sn,3 . . . Sn,n 0
0 −ks − iΩc 0 . . . 0 +ks + iΩc− Ω2m


. (4.62)

Discrete oscillator as dynamic inertia: A second possibility is the implementation of the
oscillator as a dynamic inertia that modifies the inertia of the host structure. In that case,
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the diagonal entry of the system matrix S of the coupling DOF changes

Smod =



S1,1 s1,2 S1,3 . . . S1,n

S2,1 s2,2−Ω2mq(ω) S2,3 . . . S2,n

S2,1 s2,2 S2,3 . . . S2,n
... ... ... . . . ...
sn,1 sn,2 Sn,3 . . . Sn,n


. (4.63)

The dynamic mass mq is frequency dependent and depends on the ratio of the displacement
of the resonator

¯
ures and the displacement of the host structure at the coupling DOF

¯
u2

mq(Ω) = m¯
ures

¯
u2

. (4.64)

The parameters of the discrete oscillator determine the displacement ratio

¯
ures

¯
u2

= ks + iΩc
ks + iΩc− Ω2m

. (4.65)

Discrete oscillator as external attenuation force: Using this approach, the external force
vector f contains the influence of the resonator

¯
fmod =

¯
f +

¯
fres(Ω) =



¯
f1

¯
f2

¯
f3
...

¯
fn


+



0

¯
fres(Ω)

0
...
0


. (4.66)

The external attenuation force of an oscillator is equal to the dynamic inertia term multiplied
with the displacements at the coupling DOF.

¯
fres = Ω2mq(Ω)

¯
umod,2 (4.67)

The computation of the attenuation force requires the displacement at the coupling DOF.
Assuming that the overall structure behaves linearly, the displacements of the total structure

¯
umod (including the oscillator) can be computed based on the displacements of the host
structure without the oscillators

¯
u

¯
umod =

¯
u + S−1

¯
fres(Ω) =

¯
u + P

¯
fres(Ω) . (4.68)
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Sorting the DOF by those who are coupled to an oscillator (index C) and those who are
uncoupled (index F) yields

¯
umod,F

¯
umod,C

 =
¯
uF

¯
uC

+
PFF PFC

PCF PCC

 ·
 0

¯
fres(Ω)

 (4.69)

=
¯
uF

¯
uC

+
PFC ·¯

fres(Ω)
PCC ·¯

fres(Ω)

 . (4.70)

The second line of this equation defines the displacements at the coupling DOF

¯
umod,C =

¯
uC + PCC¯

fres(Ω) . (4.71)

Using (4.67), the displacements at the coupling DOF umod,C is

¯
umod,C =

[
1−PCC Ω2mq

]−1

¯
uC . (4.72)

For multiple oscillators, (4.72) reads

¯
umod,C =

I−PCC Ω2


mq,1 0

. . .
0 mq,N


−1

¯
uC . (4.73)

Inserting the displacements
¯
umod,C in (4.67) yields the attenuation force

¯
fres(Ω). Further-

more, the displacements umod,F result from the first line of (4.70).

The different approaches have different advantages and disadvantages. In general, modeling
the oscillators as additional DOF increases the system size. The advantage of this approach
is that an eigenvalue problem based on the system matrices yields the correct system char-
acteristics as eigenfrequencies and mode shapes. Thus, analysis methods that require the
system matrices (mass and stiffness) to be in the correct modal vector space only work with
this method. Examples of such methods are reduction methods based on modal truncation.
Applying the dynamic inertia of the oscillators directly into the system matrix does not
increase the system size but the mass and stiffness contributions of the system matrix S are
no longer separable. In addition, the dynamic inertia can affect the condition of the system
matrix which can generate problems for solving the matrix equation. In many cases, the
displacements of the host structure without the resonators are necessary to assess the impact
of the resonators. Applying the approach of external attenuation forces, the system response
of a modified structure can be computed very fast from the solution of the unmodified sys-
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tem. Therefore, this approach is very efficient for the evaluation of different configurations
of resonators or for the optimization of the parameters of the resonators.

4.2 Modeling periodic structures using the WFEM

The Wave Finite Element Method (WFEM) is a useful method to compute wave propagation
in repetitive structures. The benefit of this method is that it is based on the finite element
formulation of a small unit that is repeated several times to form the over all structure. In
many cases acoustic metamaterials consists of periodic repetitions of small unit cells.

Mead [1973]; Orris and Petyt [1974]; Mead [1996] formulate the basic theory of the Wave
Finite Element Method (WFEM). There are two different approaches to formulate an eigen-
value problem that describes the wave propagation in periodic structures [Mead 1973]. First,
the inverse approach assumes a purely real phase constant to solve for the frequencies of free
wave propagation. The inverse approach is commonly used to demonstrate the formation
of band gaps [Claeys et al 2011, 2014a, 2016b, 2017; Melo et al 2016]. Second, the direct
approach formulates the eigenvalue problem for every frequency, which yields complex phase
constants. Therefore, the direct approach computes all wave solutions and also determines
the decaying wave solutions. Using the direct approach, it is possible to compute the forced
response of periodic structures. This requires all wave solutions including the decaying wave
solutions. There are various formulations of the direct approach. Zhong and Williams [1995]
formulate an alternative eigenvalue problem exploiting the symplectic property. This for-
mulation overcomes issues with ill-conditioned formulations. Mace et al [2005] formulate a
transfer matrix approach using finite elements for one dimensional wave propagation and
Mace and Manconi [2008] extend this to two dimensional wave propagation. Zhou [2014]
develops a condensed WFEM which reduces the modal space and therefore reduces the
computational effort.

The following section derives the different approaches and formulations. The starting point
is a discretized model of the unit cell. The unit cell is the smallest unit that represents the
overall structure by repeating it several times in different directions. Due to the periodicity
of the structure, it is sufficient to consider the unit cell to compute the harmonic wave
propagation in the overall structure. Based on the Floquet theorem [Floquet 1883], the
solution of the state variables in a periodic structure is periodic itself and only varies by an
exponential term with respect to the length of the unit cell

u(x+ L) = u(x) e−iκL = u(x) µ . (4.74)
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κ is the Floquet wavenumber and L is the length of the unit cell. [Bloch 1929] derives a
similar relation for the motion of electrons in three dimensional lattices. According to the
derivation of [Floquet 1883] and [Bloch 1929], (4.74) is sometimes called Floquet theorem
for one dimensional periodicity and Bloch theorem for higher dimensional periodicity. (4.74)
relates the state vectors of two neighboring unit cells (see figure 4.13)

¯
qR = µ

¯
qL , (4.75)

¯
fR = −µ

¯
fL . (4.76)

¯
qnL ¯

qnR
¯
qn+1
L ¯

qn+1
R

¯
fnL ¯

fnR ¯
fn+1
L ¯

fn+1
R

x

Figure 4.13: Relation of the state variables between the boundaries of a unit cell of a one dimensional
periodic structure.

The indices L and R denote the left and right boundary of the unit cell, respectively. The
negative algebraic sign results from the force equilibrium between two neighboring unit cells:

¯
fnR = −

¯
fn+1
L .

|µ| κIm κRe propagation direction wave type
1 0 6= 0 positive/negative undamped

< 1 < 0 6= 0 positive damped
< 1 < 0 0 positive evanescent
> 1 > 0 6= 0 negative damped
> 1 > 0 0 negative evanescent

undamped

damped

evanescent

Figure 4.14: Relation between Floquet wavenumber and the different waves and their propagation direc-
tion.

The Floquet wavenumber κ of the respective wave solution determines the wave type. Fig-
ure 4.14 lists the different wave types. As previously mentioned, there are two different
approaches to formulate an eigenvalue problem that describes the wave propagation: an
inverse approach and a direct approach.
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4.2.1 Inverse approach

Using the inverse approach, an eigenvalue problem for a specific value of µ = e−iκL is defined.
Thereby, the imaginary part of the Floquet wavenumber κIm is commonly set to zero. The
time harmonic equation of motion of the unit cell is


KLL KLR KLI

KRL KRR KRI

KIL KIR KII

− Ω2


MLL MLR MLI

MRL MRR MRI

MIL MIR MII



¯
qL

¯
qR

¯
qI

 =

¯
fL

¯
fR

¯
fI

 . (4.77)

The indices L, R and I denote the left, right and interior DOF. K and M describe the
stiffness and mass matrix. A reduction matrix R enforces the relation between the right
displacements

¯
qR and the left displacements

¯
qL from (4.75)

q =

¯
qL

¯
qI

¯
qR

 =


1 0
0 1

1e−iκL 0


¯
qL

¯
qI

 = R
¯
qred . (4.78)

Inserting (4.78) and multiplying both sides of (4.77) with R∗T yields an eigenvalue problem

(
Kred − Ω2Mred

) ¯
qL

¯
qI

 = 0 (4.79)

with

Kred = R∗TKR ,

Mred = R∗TMR . (4.80)

The reduced force vector vanishes due to the Floquet theorem (4.76) and due to the assump-
tion that there is no external loading on the interior DOF

¯
f red =

1 0 1e iκL

0 1 0


︸ ︷︷ ︸

R∗

¯
fL

¯
fI

¯
fR

 =
0
0

 . (4.81)
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For purely real κ, the reduced matrices Kred and Mred are hermitian and the eigenvalues
Ω2 are real [Langley 1993].

Extension for two-dimensional and three dimensional periodic structures

Mead [1973] introduces the approach for two dimensional periodicity. The provided reduction
matrices generate the correct phase surfaces but the power flow at the corners is incorrect.
Langley [1993] correctes the periodicity conditions for the corners. Figure 4.15 visualizes the
periodicity condition for a two dimensional unit cell. Equations (4.82) to (4.86) describe the
relation between the displacements. The relations of the forces are similar except for the
switched algebraic sign (compare to (4.76)).

¯
qL

¯
qR

¯
qT

¯
qB

¯
qBR

¯
qBL

¯
qTL

¯
qTR

x

y

¯
qR = µx

¯
qL (4.82)

¯
qT = µy

¯
qB (4.83)

¯
qBR = µx

¯
qBL (4.84)

¯
qTL = µy

¯
qBL (4.85)

¯
qTR = (µxµy)

¯
qBL (4.86)

Figure 4.15: Relation of the state variables between the boundaries of a unit cell of a two dimensional
periodic structure.

This results in the following reduction matrix R for the eigenvalue problem (4.79)

¯
q =



¯
qL

¯
qR

¯
qB

¯
qT

¯
qI

¯
qBL

¯
qTL

¯
qBR

¯
qTR



=



1 0 0 0
1µx 0 0 0
0 1 0 0
0 1µy 0 0
0 0 1 0
0 0 0 1
0 0 0 1µy
0 0 0 1µx
0 0 0 1µxµy




¯
qL

¯
qB

¯
qI

¯
qBL

 = R
¯
qred . (4.87)

Accordingly, one defines the reduction matrix for three dimensions.
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¯
qc1

¯
qc4

x

y

¯
qc2

¯
qc3z

¯
qc5

¯
qc6

¯
qc7

¯
qc8

¯
qe1

¯
qe7

¯
qe3

¯
qe5

¯
qe4

¯
qe2

¯
qe6

¯
qe8

¯
qe9

¯
qe11

¯
qe10

¯
qe12

Figure 4.16: Boundaries of a three dimensional unit cell.
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¯
q =



¯
qK1

¯
qK2

¯
qK3

¯
qK4

¯
qK5

¯
qK6

¯
qK7

¯
qK8

¯
qE1

¯
qE2

¯
qE3

¯
qE4

¯
qE5

¯
qE6

¯
qE7

¯
qE8

¯
qE9

¯
qE10

¯
qE11

¯
qE12

¯
qF1

¯
qF2

¯
qF3

¯
qF4

¯
qF5

¯
qF6

¯
qI



=



1 0 0 0 0 0 0 0
1µx 0 0 0 0 0 0 0

1µxµz 0 0 0 0 0 0 0
1µz 0 0 0 0 0 0 0
1µy 0 0 0 0 0 0 0

1µxµy 0 0 0 0 0 0 0
1µxµyµz 0 0 0 0 0 0 0
1µyµz 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 1µy 0 0 0 0 0
0 1µx 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1µz 0 0 0 0 0 0
0 0 1µyµz 0 0 0 0 0
0 1µxµz 0 0 0 0 0 0
0 0 1µz 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1µx 0 0 0 0
0 0 0 1µy 0 0 0 0
0 0 0 1µxµy 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1µx 0 0
0 0 0 0 1µy 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1µz 0
0 0 0 0 0 0 0 1





¯
qK1

¯
qE1

¯
qE4

¯
qE9

¯
qF1

¯
qF4

¯
qF5

¯
qI



= R
¯
qred

(4.88)

4.2.2 Direct approach

The direct approach formulates the eigenvalue problem in terms of the wave solutions for
each frequency of interest. Similarly to the inverse approach, the starting point is the sorted
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dynamic stiffness S = K− Ω2M according to the left, interior and right DOF.

S =


SLL SLR SLI
SRL SRR SRI
SIL SIR SII

 . (4.89)

Thus the harmonic equation of motion is
SLL SLR SLI
SRL SRR SRI
SIL SIR SII


¯
qL

¯
qR

¯
qI

 =

¯
fL

¯
fR
0

 . (4.90)

Next, one condenses the interior degrees of freedom

¯
qI = −S−1

II (SIL
¯
qL + SIR

¯
qR) . (4.91)

This yields a reduced equation of motionS̃LL S̃LR
S̃RL S̃RR

¯
qL

¯
qR

 =
̄fL

¯
fR

 , (4.92)

with

S̃LL = SLL − SLIS−1
II SIL , (4.93)

S̃RL = SRL − SRIS−1
II SIL , (4.94)

S̃LR = SLR − SLIS−1
II SIR , (4.95)

S̃RR = SRR − SRIS−1
II SIR . (4.96)

Due to the symmetry of S, the condensed S̃ is symmetric as well. Rearranging the condensed
equation of motion (4.92) reveals a relation between the displacements and the forces of two
neighboring cells in terms of a transfermatrix T [Mace et al 2005]

¯
qL

¯
fL


n+1

= T(Ω)
¯
qL

¯
fL


n

=
 −S̃−1

LRS̃LL S̃−1
LR

−S̃RL + S̃RRS̃−1
LRS̃LL −S̃RRS̃−1

LR

¯
qL

¯
fL


n

. (4.97)
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The previous equation ensures the continuity of the displacements and the force equilibrium
between two neighboring cells

¯
qnR =

¯
qn+1
L , (4.98)

¯
fnR = −

¯
fn+1
L . (4.99)

The Floquet theorem (4.75) and (4.76) yields the same relation as described by the trans-
fermatrix T¯

qL

¯
fL


n+1

= µ

¯
qL

¯
fL


n

⇔

¯
qL

¯
fL


n+1

= T(Ω)
¯
qL

¯
fL


n

. (4.100)

Consequently, the wave solutions result from the eigenvalue problem

µ

¯
qL

¯
fL


n

= T(Ω)
¯
qL

¯
fL


n

. (4.101)

This eigenvalue problem reveals complex valued pairs of eigenvalues (µ, 1/µ) [Mace et al
2005]. These pairs correspond to waves propagating in opposite directions. Using the Floquet
theorem (4.74), the eigenvalue µ defines the complex wavenumber

µ = e−iκL = e−i(κRe+iκIm)L . (4.102)

Using (4.102), the reciprocal of µ is

1
µ

= e i(κRe+iκIm)L . (4.103)

Consequently, the pairs (µ, 1/µ) describe wave pairs with same absolute value of the phase
(κReL) and decay (κImL) but opposite sign.

4.2.3 Alternative formulations for the direct approach

The computational effort for the direct approach can be very high, because each frequency
of interest requires a matrix inversion and solving an eigenvalue problem. Furthermore, the
combination of deformations and forces in the eigenvalue problem results in small and very
large entries in the eigenvectors. This might decrease the accuracy as the condition number
of the transfer matrix T increases. Therefore, there are different reformulations of the
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eigenvalue problem (4.101) that improve the condition and/or decrease the computational
effort.

Duhamel’s LR method

Duhamel et al [2005] rearrange the eigenvalue problem to eliminate the force relation. The
force relation is eliminated using (4.92). Thus, the first line of (4.101) yields

µS̃RL
¯
qL = S̃RL

¯
qR . (4.104)

Similarly, the second line of (4.101) can be rearranged

µS̃LR
¯
qR = −S̃RL

¯
qL − S̃LL

¯
qR − S̃RR

¯
qR . (4.105)

Combining (4.104) and (4.104) yields the generalized eigenvalue problem

L

¯
qL

¯
qR

 = µR

¯
qL

¯
qR

 , (4.106)

with L and R having the form

L =
 0 S̃RL
−S̃RL −S̃LL − S̃RR

 , (4.107)

R =
S̃RL 0

0 S̃LR

 . (4.108)

Knowing the displacements at the boundaries, the reduced equation of motion (4.92) deter-
mines the interface forces.

Zhong’s method

The symplectic feature of the transfer matrix T offers the opportunity to define the eigen-
values as λ = µ + 1/µ [Zhong and Williams 1995]. Therefore, the following relations are
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valid

¯
qR = µ

¯
qL , (4.109)

¯
fR = −µ

¯
fL , (4.110)

and

¯
qL = 1

µ¯
qR , (4.111)

¯
fL = − 1

µ¯
fR . (4.112)

Eliminating the force relation using (4.92) and multiplying (4.109) with S̃RL and (4.111)
with −S̃LR yields four equations

S̃RL
¯
qR = µS̃RL

¯
qL , (4.113)

S̃RL
¯
qL + S̃RR

¯
qR = −µ

(
S̃LL

¯
qL + S̃LR

¯
qR
)
, (4.114)

−S̃LR
¯
qL = − 1

µ
− S̃LR

¯
qR , (4.115)

−S̃LL
¯
qL − S̃LR

¯
qR = 1

µ

(
S̃RL

¯
qL + S̃RR

¯
qR
)
. (4.116)

Summing up (4.113) and (4.116) and rearranging the terms results in

−
(
S̃LL + S̃RR

)
¯
qL +

(
S̃RL − S̃LR

)
¯
qR = µS̃RL

¯
qL + 1

µ
S̃RL

¯
qL . (4.117)

Similarly, (4.114) and (4.115) are summed up and reordered

(
S̃RL − S̃LR

)
¯
qL +

(
S̃LL + S̃RR

)
¯
qR = −µS̃LR

¯
qR −

1
µ

S̃LR
¯
qR . (4.118)

This allows the formulation of an eigenvalue problem with an improved condition S̃RL − S̃LR S̃LL + S̃RR
−(S̃LL + S̃RR) S̃RL − S̃LR

 ¯
qL

¯
qR

 = λ

 0 −S̃LR
S̃RL 0

¯
qL

¯
qR

 . (4.119)

The resulting double eigenvalue λk = (µk + 1/µk) define the original eigenvalue µk [Zhong
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and Williams 1995; Silva 2015]

µk = 1
2

(
λk ±

√
λ2
k − 4

)
. (4.120)

Condensed WFEM

Zhou [2014] proposes the condensed WFEM which reduces the computational effort by map-
ping the internal DOF on a reduced basis using component mode synthesis (CMS). The
mapping reduces the computational costs of the inversion of the matrix SII . In addition,
a rearrangement of the eigenvalue problem similar to the previous methods improve the
condition.

The mapping of the internal DOF demands a transformation Θ¯
qL

¯
qR

¯
qI

 = Θ

¯
qL

¯
qR

¯
qH

 . (4.121)

The transformation does not affect the boundaries of the cell

Θ =


1 0 0
0 1 0

ΨL ΨR ΨH

 . (4.122)

ΨL and ΨR are the static boundary modes derived from the stiffness matrix K

ΨL = −K−1
II KIL , (4.123)

ΨR = −K−1
II KIR . (4.124)

The following eigenvalue problem determines the internal modes ΨH[
KII − Ω2MII

]
ΨI = 0 . (4.125)

The basis ΨH consists of a reduced set of nH eigenvectors of the basis ΨI

ΨH =
[
ΨH,1 ΨH,2 · · ·ΨH,nH

]
. (4.126)

where the eigenvectors corresponds to the nH lowest eigenvalues. A convergence criteria
assesses the number of eigenvectors nH . According to Zhou [2014], the solution already
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converges for small nH and it is sufficient to choose nH such that

fnH =

√
ω2
nH

2π ≥ 3fmax , (4.127)

where fmax is the largest frequency for which the wave solutions are calculated. In the
following, the matrix Θ transforms the system matrix S

S∗LL S∗LR S∗LH
S∗RL S∗RR S∗RH
S∗HL S∗HR S∗HH

 = ΘT


SLL SLR SLI
SRL SRR SRI
SIL SIR SII

Θ . (4.128)

This results in a reduced effort for the matrix inversion for the condensation of the internal
degrees of freedoms (compare to (4.91)). The reason is the projection of the internal degrees
of freedom on a the reduced basis ΨH . The reduced equation of motion isS̃∗LL S̃∗LR

S̃∗RL S̃∗RR

¯
qL

¯
qR

 =
̄fL

¯
fR

 , (4.129)

with

S̃∗LL = S∗LL − S∗LHS∗−1
HHS∗HL , (4.130)

S̃∗RL = S∗RL − S∗RHS∗−1
HHS∗HL , (4.131)

S̃∗LR = S∗LR − S∗LHS∗−1
HHS∗HR , (4.132)

S̃∗RR = S∗RR − S∗RHS∗−1
HHS∗HR . (4.133)

The eigenvalue problem is than formulated

N∗
¯
qL

¯
qR

 = µL∗
¯
qL

¯
qR

 , (4.134)

with

N∗ =
 0 1
S̃∗RL S̃∗RR

 , (4.135)

L∗ =
 1 0
−S̃∗LL −S̃∗LR

 . (4.136)
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4.2.4 Comparison of the different methods of the WFEM

The following section compares the different methods in terms of accuracy and computation
time. The accuracy of the methods results from the computation of a simple beam geometry
for which an analytical expression is known. Subsequently, the comparison of the computa-
tion time is conducted on a more complex geometry. For both comparison, the author solves
the different eigenvalue problems using MATLAB®’s eigensolver.

Accuracy of the different methods

A comparison of the solutions of the different approaches to the analytic relation of the
Euler-Bernoulli beam theory assesses the accuracy of the different methods. The dispersion
relation of an Euler-Bernoulli beam is given by

f = 1
2π

√
ρA

EI
κ2
Re . (4.137)

For this comparison, the numerical model of the unit cell consists of ten equally sized Euler-
Bernoulli elements based on the element formulation of ANSYS®’s element BEAM3. The
total length of the unit cell is 10 cm. The cross section A is 1 cm2. I denotes the second
moment of area. The beam consists of titanium (E = 104 GPa, ρ = 4430 kg m−3). Table 4.4
lists the relative error of the wavenumber κRe. The different methods are labeled with the
following abbreviations:

• Inverse - Inverse formulation of the WFEM

• TW - Transfer matrix formulation (direct)

• LR - Duhamel’s LR method (direct)

• CW - Condensed WFEM (direct)

• ZW - Zhong’s method (direct)

For this simple example the accuracy of the dispersion relation (4.137) is similar for the
different methods. For a more detailed comparison, the following investigation compares
the accuracy of the pairs of eigenvalues and eigenvectors. For the exact eigenvectors and
eigenvalues the following expression vanishes

AleftΦ−ArightΦµ = 0 (4.138)
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Frequency Inverse TW LR CW ZW
200 Hz 187.14 187.14 187.14 187.14 187.14
400 Hz 374.26 374.26 374.26 374.25 374.26
600 Hz 561.36 561.36 561.36 561.33 561.36
800 Hz 748.44 748.44 748.44 748.39 748.44
1000 Hz 935.49 935.49 935.49 935.42 935.49

Table 4.4: Comparison of the relative error of the wavenumber in 10−6 radians per meter for different
frequencies.

Φ is the matrix of right eigenvectors and µ is the diagonal matrix of the respective eigen-
values. Aleft and Aright are the matrices that define the eigenvalue problem

det (Aleft − µAright) = 0 . (4.139)

To assess the error of an approximated solution, the maximum metric ‖�‖max = max∀i,∀j|�ij|
is applied

error = ‖AleftΦ−ArightΦµ‖max . (4.140)

Figure 4.17: Comparison of the accuracy of the eigenvectors for different frequencies.

Figure 4.17 shows the norm (4.140) for the different methods. For most of the frequencies,
the largest error occurs for the Inverse approach. The transfer matrix formulation yields the
most accurate eigenvectors. However, it is difficult to compare the results of the transfer
matrix formulation to the other solutions because the algorithm of MATLAB®’s eigensolver
changes. The reason is that the formulation of the transfer matrix yields a symmetric
matrix and therefore MATLAB®’s eigensolver uses the Cholesky factorization [Benoît 1924],
whereas for the other formulations the matrices are not symmetric and the eigensolver applies
the generalized Schur decomposition [Schur 1909]. The accuracy of the LR method and the
Condensed WFEM is similar, whereas Zhong’s method yields slightly better results.

Besides the accuracy of the eigenvectors, the condition numbers of the eigenvalue problem is
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also relevant for evaluating the solution of the problem. Solving an ill-conditioned eigenvalue
problem is numerically demanding and can yield to inaccurate results [Waki et al 2009].
Figure 4.18 shows the condition number of the matrices that are involved in the eigenvalue
problem. The plus signs indicate the left matrices and the circles mark the right matrices
of the respective eigenvalue problem. The transfer matrix formulation yields the largest
condition number and it increases with increasing frequency. The condition numbers of the
Condensed WFEM are slightly lower and also increase with increasing frequency, but with a
smaller slope. The condition number of both matrices involved in the eigenvalue problem are
similar. For 200 Hz, the left matrix of the inverse eigenvalue problem has similar condition
numbers as the CW and the TW formulation, but it decreases with increasing frequency.
In contrast, the condition number of the right matrix is almost constant and well below
the condition number of the left matrix. Zhong’s method generates the lowest condition
numbers for both of the matrices involved in the eigenvalue problem. Finally, Duhamel’s
method introduces a slightly higher condition number than Zhong’s method.

Figure 4.18: Comparison of the conditions of the eigenvalue problem for different frequencies.

In addition to the previously mentioned errors, discretization errors can occur. Due to the
common discretization requirements using finite elements, there exists a minimum number
of elements per wavelength to accurately describe the motion of the structure. According to
Silva [2015], the element size should be at least one tenth of the wavelength in the structure
and it is also possible to determine the required size of the element based on the phase
diagram

L

4n > lele . (4.141)

L is the length of the unit cell, lele the element size and n the number of crosses by π or zero
in the phase diagram.

Besides the upper limit from (4.141), the WFEM also requires a lower limit. The reason is
that using element size in the range of the machine accuracy results in errors in the wave
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Figure 4.19: Wave solutions of a one dimensional model of an Euler-Bernoulli beam (ANSYS®’s element
formulation BEAM3) with numerical errors due to a very small element size with respect to
the wavelength; from [Perez Ramirez 2017].

solutions [Mace et al 2005]. Figure 4.19 shows the wave solutions of a unit cell with numerical
errors due to an element size in the range of the machine accuracy. The small size of the
element deteriorates the phase and decay characteristics at lower frequencies. The reason is
the small change of the phase at low frequencies for wave traveling trough the unit cell. The
phase change is comparable to the machine accuracy. Consequently, at lower frequencies the
truncation error in the numerical computations disperse the phase.

Computation time

The following section presents the comparison of the computation time of the different meth-
ods using a more complex geometry. This comparison is conducted for a geometry with
different numbers of degrees of freedom (DOF). Table 4.5 lists the number of internal and
boundary DOF.

models DOF internal boundary
DOF DOF

2×2 cells 3270 3090 180
2×4 cells 6450 6270 180
2×6 cells 9630 9450 180

Table 4.5: Number of degrees of freedoms (DOF) of the different models.
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The models consists of an arrangement of honeycomb cells with integrated resonant sub-
structures. The three models with 2×2, 2×4 and 2×6 cells have a fixed number of boundary
DOF while the number of internal DOF increase. The boundary DOF lie on the red edges
marked in the model shown in figure 4.20.

Figure 4.20: Model of a honeycomb structure with integrated resonant substructures (2×2 cells) that
forms a infinite periodic structure; the red colored edges mark the boundaries which are
linked by the Bloch theorem.

The computation of the waves that travel through the periodic structure requires several
intermediate tasks. First, the model setup requires sorted system matrices according to
the interior and boundary DOF of the unit cell. Second, each phase step requires the
computation of an eigenvalue problem.

Figure 4.21: Computation time using the inverse approach of the WFEM applied to the different models.

Figure 4.21 shows the computation times for the different models using the inverse approach.
The computational costs for setting up the model are smaller than solving the eigenvalue
problem and are not of great relevance for the overall cost as it only arises once. The
computation of the eigenvalue problem requires the greatest computational effort. These
costs arise for each step (phase step) and therefore have a strong impact on the overall
computation time. The computation time exponentially increases with increasing number
of DOF.
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In contrast to the inverse approach, the direct approach needs additional tasks before and
after solving the eigenvalue problem. The computation time of these tasks depend on the
number of interior and boundary DOF. Besides setting up the model, the direct approach
condensates the interior DOF to generate the matrices for the eigenvalue problem (in each
frequency step). Figure 4.22 compares the computation time of the different tasks for the
models with varying internal DOF.

Figure 4.22: Computation time using the direct approach of the WFEM applied to different models with
increasing number of internal degrees of freedoms (DOF); number of boundary DOF are the
same for the models.

The transfer matrix formulation, Duhamel’s LR method, and Zhong’s method require a
similar amount of time for setting up the model. As the computation is relatively small
and it only arises once, it can be neglected. The costs for setting up the model for the
Condensed WFEM increases strongly with increasing number of interior DOF. The reason
is the computation of the static boundary and the internal modes. These computations
require a matrix inversion and solving an eigenvalue problem. Due to the mapping of the
interior DOF on a reduced space the evaluation of the matrices for the eigenvalue problem
is significantly reduced. In comparison to the other methods, the Condensed WFEM reduce
the time to find the matrices for the eigenvalue problem up to 80%. Zhong’s method needs
slightly more time than the transfer matrix formulation and Duhamel’s LR method because it
needs more matrix operations. The cost for solving the eigenvalue problem is similarly small
and does not depend on the number of internal DOF. Due to the form of the formulation of
the transfer matrix formulation, the eigenvalue problem is solved most rapidly. Due to the
symmetric transfer matrix, MATLAB®’s eigensolver uses the Cholesky factorization [Benoît
1924], whereas for the other formulations the matrices are not symmetric and the eigensolver
applies the generalized Schur decomposition [Schur 1909].
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Figure 4.23: Model of a honeycomb structure with integrated resonant substructures (2×3 cells) that
forms a infinite periodic structure; the red colored faces mark the boundaries which are
linked by the Bloch theorem.

The next section investigates another set of unit cells where the amount of internal DOF
are (almost) constant and the number of boundary DOF vary. The models consists of six
honeycomb cells with integrated resonator.

models DOF internal boundary
DOF DOF

1×6 cells 5790 5370 420
2×3 cells 6450 5610 840
3×2 cells 6810 5550 1260

Table 4.6: Number of degrees of freedoms (DOF) of the different models with increasing numbers of
boundary DOF.

Figure 4.23 shows an exemplary model. The 1×6 cells model has two boundary faces, the
2×3 cells model has four boundary faces and the 3×2 cells model has six boundary faces. As
mentioned in section 4.2.3, the transfer matrix formulation might generate ill-conditioned
eigenvalue problems.

Figure 4.24: Finite element mesh of the unit cell model with 1x6 cells.
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Figure 4.25: Exemplary visualization of an eigenvector that describes the wave motion in the unit cell of a
rapidly decreasing evanescent wave.

Figure 4.24 shows the finite element mesh for the 1×6 cells model. The eigenvalue formu-
lation (4.101) yields 2n eigenvalues where n is the number of DOF at the left and right
boundary of the cell. The 1×6 cells model has 420 boundary DOF, which results in 420
wave solutions for each frequency. For a fixed frequency, there exist only a limit amount of
propagating waves. The rest of the wave solutions represent evanescent waves that rapidly
decay.

Figure 4.25 shows the eigenvector for such a rapidly decreasing evanescent wave. These wave
solution are required when the wave motion is prescribed at the boundaries. Therefore, the
number of evanescent waves is linked to the number of boundary DOF. Increasing the number
of boundary DOF also increases the number of evanescent wave solutions. Multiple strongly
decreasing wave solutions result in multiple almost identical eigenvalues. The respective
matrix of eigenvectors can be poorly conditioned [Golub et al 1996]. For the transfer matrix
formulation (TW), the ill-conditioning of the eigenvectors leads to numerical problems that
makes the eigenvalue problem not solvable for the presented models in table 4.6. Therefore,
the following comparison excludes the TW formulation.

In figure 4.26, one observes that the time for setting up the model and the time for the
computation of the matrices for the eigenvalue problem do not strongly depend on the
number of boundary DOF. As previously, the Condensed WFEM needs most time for setting
up the model, however it strongly reduces the time to find the matrices for the eigenvalue
problem formulation. Zhong’s method needs slightly more time than Duhamel’s LR method
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Figure 4.26: Computation time using the direct approach of the WFEM applied to different models with
increasing number of boundary degrees of freedoms (DOF); number of internal DOF are
almost equal for the models.

because it requires more matrix operations. The cost for solving the eigenvalue problem
increases exponentially with the number of boundary DOF. The computation time for the
eigenvalue problem of Duhamel’s method is the smallest.

Regarding the total computation time, the Condensed WFEM is the best direct formulation
if a lot of frequency steps are evaluated. The reason is the low cost for the evaluation of
each frequency. Therefore, the additional costs for the model set up are usually well invested
as the benefit of the time reduction comes into effect each step. In terms of computation
time, the transfer matrix formulation and Duhamel’s LR method are better than Zhong’s
method. For very small models the transfer matrix formulation yields fast and accurate
results. However, the transfer matrix formulation shows problems solving the eigenvalue
problem when the unit cell model has large number of boundary DOFs. In terms of the
conditioning, Zhong’s method yields most beneficial conditioning of the eigenvalue problem.
Nevertheless, the Condensed WFEM and the Duhamel’s approach can also accurately solve
larger models.

4.2.5 Computation of the frequency response function (FRF) based on

the wave solutions

Using a direct formulation to solve for the wave solutions, it is possible to compute the
FRF. Each of the 2r eigenvalues µi computed with one of the previous mentioned direct
formulations has a corresponding right eigenvector Φi. Each eigenvector relates the wave
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amplitudes to the displacements
¯
q and the forces

¯
f at the boundary of the unit cell

Φi =
Φq

Φf


i

. (4.142)

For the computation of the forced response of a structure consisting of an alignment of
several unit cells, it is crucial to distinguish the positive and negative going waves. Mace
et al [2005] distinguish the propagation direction of the waves checking the absolute value
of the eigenvalues. Waves related to eigenvalues with ‖µi‖ < 1 propagate in the positive
direction and waves with ‖µi‖ > 1 propagate in the negative direction. For eigenvalues
with ‖µi‖ = 1, the sign of the power flow determines the propagation direction. For waves
traveling in the positive direction the power flow is positive. The power flow of each wave
is the real part of the dot product of the force contribution and the velocity contribution of
the eigenvector

P = Re{(Φf )T (iΩΦq)∗} . (4.143)

For symmetric unit cells, the positive and negative going waves are symmetric as well. That
means that the eigenvalues and -vectors of forward traveling waves also define the backward
traveling waves

µ−i = 1/µ+
i , (4.144)

Φ−q = WΦ+
q , (4.145)

Φ−f = −WΦ+
f . (4.146)

The minus sign for the force eigenvectors Φf results from the force relation (4.76). W is a
r × r matrix with

W =



1 0 . . . . . . . . . 0
0 . . . . . . . . . . . . ...
... . . . 1 . . . . . . ...
... . . . . . . −1 . . . ...
... . . . . . . . . . . . . 0
0 . . . . . . . . . 0 −1


. (4.147)
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Due to round off errors that occur during the numerical computation of the wave modes, Men-
cik [2014] recommends to enforce the relation (4.144)-(4.146) analytically to avoid numerical
dispersion. The following relations proof the symmetry of the wave shapes (eigenvectors)

S̃RR = WT S̃LLW , (4.148)
S̃RL = WT S̃LRW . (4.149)

These relations are also valid for non-symmetric finite element meshes, as long as the mesh
describing the unit cell is fine enough to accurately describe the wave shapes at the interfaces
[Mencik 2014].

The eigenvalues and the eigenvectors, representing the wave solutions of a unit cell, relate
the displacements and forces at the boundary of each unit cell to the wave amplitudes Q ¯

qL
−

¯
fL


n

=
¯
qR

¯
fR


n

=
Φ+

q Φ−q
Φ+
f Φ−f

¯
Q+

¯
Q−


n

. (4.150)

¯
Q are complex amplitudes that scales the eigenvectors related to the displacements and the
forces. Knowing all wave solutions that can propagate in the structure, it is possible to
compute the FRF of a periodic structure that consists of n unit cells in the wave domain.

Figure 4.27: Wave amplitudes of positive and negative going waves of a periodic structure consisting of n
unit cells.

According to the Bloch theorem, the eigenvalues describes the relation between the wave
amplitudes inside the periodic structures¯

Q+

¯
Q−


N+1

=
µµµ+ 0

0 µµµ−

 ¯
Q+

¯
Q−


N

. (4.151)

Using this equation, the wave amplitudes of the positive going waves at the right end of the



4.2 Modeling periodic structures using the WFEM 103

structure determine the wave amplitudes at the left end of the structure

¯
Q+
N+1 = [µµµ+]N

¯
Q+

1 . (4.152)

A similar expression holds for the negative going wave amplitudes

¯
Q−1 = [µµµ+]N

¯
Q−N+1 . (4.153)

Consequently, the wave amplitudes traveling from the left and right end into the structure
describe the motion of the structure [Mencik 2014].

Figure 4.28: Wave amplitudes of waves that travel into the structure.

In a further step, it is possible to fulfill different boundary conditions at the boundaries of
the structure. Equations (4.150), (4.152) and (4.153) formulate the boundary condition for
the left end of the structure ¯

q1

−
¯
f1

 =
Φ+

q Φ−q [µµµ+]N

Φ+
f Φ−f [µµµ+]N

  ¯
Q+

1

¯
Q−N+1

 . (4.154)

The minus sign in front of the applied force f1 comes from the fact that it is the left boundary
force of the first unit cell. Accordingly, the boundary conditions for the right end are¯

qN+1

¯
fN+1

 =
Φ+

q [µµµ+]N Φ−q
Φ+
f [µµµ+]N Φ−f

  ¯
Q+

1

¯
Q−N+1

 . (4.155)

At each DOF, there is either a prescribed displacement or a prescribed force. As a conse-
quence, at the left and right end of the structure there are r equations. Thus, solving the
2r equations yields the unknown wave amplitudes

¯
Q+

1 and
¯
Q−N+1. Applying a force

¯
f0 to the

left side of the structures and a displacement
¯
q0 to the right end of the structure, the system

of equations to solve isΦ+
q [µµµ+]N Φ−q
Φ+
f Φ−f [µµµ+]N

 ¯
Q+

1

¯
Q−N+1

 =
 ¯

q0

−
¯
f0

 . (4.156)
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The minus sign in front of the force
¯
f0 results from the fact that the force is applied to the

left side of a unit cell.

Coupling of multiple wave guides

In general, it is possible to couple multiple periodic structures with interfaces defined by
a change of the unit cell or by external loads. The following section explains the general
procedure using a pinned beam that is loaded in the center.

Figure 4.29: Model of a pinned beam that is loaded with a force.

To be able to define boundary conditions in the center of the beam, one divides the structure
into two separate wave guides.

Figure 4.30: Division of the pinned beam into two segments.

At each interface, it is possible to prescribe displacements or forces. In this example the
unit cell consists of two Euler-Bernoulli beams with a vertical and a rotational DOF at each
node.

¯
wL

¯
ϕL ¯

wR
¯
ϕR

¯
fR¯

MR¯
fL ¯
ML

Figure 4.31: Degrees of freedom (DOF) and forces at the boundaries of the unit cell consisting of two
Euler-Bernoulli beam.

Two degrees of freedom at each boundary result in four wave solutions: two positive and two
negative going waves. Thus, there are four unknown wave amplitudes in each segment. The
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eigenvectors (wave shapes) have the size 4 × 1, as they relate the wave amplitude of each
wave shape to two displacements and two forces.

For the system described in figure 4.30, there are eight equations in the wave domain. The
boundary conditions according to (4.154) at the left end of the structure are


¯
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1
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1

−
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f 1

1

−
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Φ+
f Φ−f [µµµ+]N1


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 ¯
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1
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Q1,−
N1+1

 =
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0
?
?
0

 . (4.157)

The rotation
¯
ϕ1

1 and the vertical force
¯
f 1

1 are unknown. Accordingly, the boundary conditions
for the right end of the structure are
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Further equations result from the continuity of the deformation and the force equilibrium at
the interface¯

w1
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¯
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The following expression summarizes the coupling conditions in the wave domain
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The minus sign in front of matrix A2
L comes from the fact that the displacement at the

interface should be equal and that the forces of the left and right of the interface have
opposite sign (see (4.150)).
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Summarizing the boundary conditions of the left end (4.154) and of the right end (4.155)
with the coupling conditions (4.161) yields the following system of equations
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. (4.162)

Figure 4.32 shows the frequency response function of the pinned beam evaluated at different
locations L of the beam. It illustrates the response of the structure from 0 to 1000 Hz in
discrete steps of 1 Hz. The length of the beam Ltot is 1 m and the load

¯
f0 equals 100 N.

The left and right segments both consist of 20 unit cells (n1 = n2 = 20) and each unit cell
comprises two Euler-Bernoulli beam elements. The cross section A of the beam is rectangular
and measures 10−4 m2. The material’s density ρ and Young’s modulus E are 7800 kg/m3

and 2 · 1011 N/m2, respectively.

Figure 4.32: Frequency response at different positions of the pinned beam loaded with a central force;
analytical solution and numerical solutions with FEM and WFEM.
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Figure 4.33: Error plot of the solution from FEM and WFEM.

Both the WFEM and the FEM solution converge to the analytical solution. The analytical
solution is extracted from [Blevins 2016]. The wave solutions are computed using Duhamel’s
formulation. Figure 4.33 shows the relative error between the analytical solution and the
numerical methods. Besides the frequency range from 0 to 50 Hz, the error of the WFEM
and FEM is almost identical for all frequencies. The relative error is computed using

error = ‖unumerical − uanalytical‖
‖uanalytical‖

(4.163)

The previous procedure also holds for more complex unit cells. The following example shows
the effect of a periodic resonator. Figure 4.34 illustrates the modified unit cell. The mass
of the resonator is 5% of the mass of the unit cell. The target frequency of the resonator
(207 Hz) determines the spring stiffness ks. The damping ratio of the resonator is 0.01.
Figure 4.35 compares the FRF function of the pinned beam with periodic resonators using
WFEM and FEM. Both methods capture the effect of the resonator. The resonator reduces
the vibration of the beam at 207 Hz and splits the resonance peak of the original structure
into two resonance peaks at 185 Hz and 231 Hz.

m

ks c

Figure 4.34: Modified unit cell.
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Figure 4.35: Frequency response at different positions of the pinned beam loaded with a central force and
applied resonators; numerical solutions with FEM and WFEM.
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5 Numerical studies

The following chapter discusses several numerical studies. The first part focuses on the acous-
tic black hole (ABH) effect. The author compares various ABH configurations and evaluates
their vibroacoustic performance in terms of vibration suppression and sound radiation. The
second part presents numerical studies for the design of locally resonant materials. The focus
of this part is the study of periodic resonators. Besides the dimensioning of the resonators
based on the wave solutions, additional studies explain the effect of the resonators on the
radiated sound power.

5.1 Studies on the acoustic black hole effect

The author published some preliminary results of the following section in various publications
[Miksch 2017; Miksch et al 2018a,b]. Section 5.1.1 demonstrates the focalization effect of
ABH. Section 5.1.2 investigates different thickness profiles in beams. This chapter focus
on the general effect of the different profiles on the vibration and the sound radiation.
Section 5.1.3 evaluates the energy levels of single and multiple ABH configurations in plates.
The studies presented in this chapter spawn design criteria for ABH in plate-like structures.
Section 5.1.4 summarizes the results of the numerical studies about the ABH effect.

5.1.1 The focalization property of acoustic black holes

This section demonstrates the focalization effect of a single ABH embedded in the middle
of a plate. To show the focalization characteristic of a smooth thickness profile the struc-
tural intensity (STI) is a suitable quantity to describe the response. It gives directional
information about the power flow and its magnitude. The STI is computed by a multipli-
cation of the stress tensor with the complex conjugate of the velocity vector [Pavic 1987]:
I = −1

2 Re{
¯
σ

¯
v∗}. In the appendix A.6, there is a detailed description how to evaluate the

STI using a discretized finite element model.
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(a) Numerical model of a plate with an embedded
ABH.

(b) Numerical model of a uniform plate.

Figure 5.1: Comparison of a ABH and uniform plate; the ABH region is marked yellow.

To demonstrate the focalization of an ABH, the following section compares the STI of an
ABH plate and a uniform plate of similar dimensions. The dimensions of the plates are
600 × 600 × 7 mm and the plates are clamped at all four corners. A harmonic point load
at one edge (200 mm shifted from the corner) excites the plate. Table 5.1 lists the material
properties of the plate. The thickness profile of the ABH is rotational symmetric and has
the form: h(r) = εx2.2 + hmin. ε is adjusted such that the diameter of the ABH is 140 mm
and the residual thickness hmin is 2 mm.

Density 2770 kg/m3

Young’s Modulus 7.1 · 1010 Pa
Poisson’s ratio 0.33
Damping coefficient 0.001
Table 5.1: Material properties of the plate.

Figure 5.2 visualizes the STI at 2881 Hz and 4301 Hz. The vector plots at the top of the
figure show the STI of the ABH plates and the plots on the bottom the STI of the uniform
plate, respectively. The vector plots on the left are related to the frequency of 2881 Hz and
the plots on the right correspond to the excitation frequency of 4301 Hz. The plot in the
middle shows the percentage of energy located in the middle region of the plate. This region
is marked with yellow color in figure 5.1.
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Figure 5.2: Structural intensities of the ABH plate (top) and the uniform plate (bottom) at 2881 Hz and
4301 Hz.
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At 2881 Hz, the ABH plate focuses more energy in the ABH region than the uniform plate
(see middle plot in figure 5.2). The ABH here works as a focusing lens for the energy. The
STI indicate that the power is guided towards the center of the ABH while the magnitude
of the STI increases. The boundary conditions of the plate explain the large intensities at
the edges of the plate. Due to the fixed supports at the four corners of the plate, a large
amount of the energy flows towards the corners of the plate. At 4301 Hz, the uniform plate
accumulates more energy in the center area of the plate. The amount of energy is comparable
to the amount of energy of the ABH plate at 2881 Hz, but the STI vector plot of the uniform
plate at 4301 Hz does not show any focalization characteristic in the power flow. The STI
of the ABH plate show a circulation of the power flow around the ABH.

Concluding, there exist frequencies where the ABH plate works as a focusing lens for the
energy. Nevertheless, it is difficult to identify spots for potential ABH placements. The
example shows that locations, where the uniform plate shows an increased energy accumula-
tion, are not generally beneficial placing locations for ABH. An ABH that strongly influences
the overall behavior of the structure can also result in a smaller energy accumulation at the
desired location. Consequently, it is difficult to derive the optimal locations of an ABH from
the original unmodified structures.

5.1.2 Beam-like structures with local thickness variations

The following section investigates different one dimensional ABH configurations and their in-
fluence on the vibrational behavior of the structure and the radiated sound power. Figure 5.3
shows the investigated thickness profiles.

uniform:
ABH step:
ABH 2.2:
uniform CLD:
ABH step CLD:
ABH 2.2 CLD:

Figure 5.3: Labeling of the different thickness profiles made of titanium (black) and a damping material
(green).

The beams have a length of 800 mm and a thickness of 3 mm. The beams consist of titanium.
The thickness profiles follow the mathematical expression h(x) = εxβ + hmin with hmin =
1 mm. The diameter of 200 mm defines the parameter ε. The following paragraph compares
the performance of a uniform beam, a beam modified by an abrupt thickness reduction
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with β = ∞ (ABH step) and a smooth thickness reduction with β = 2.2 (ABH 2.2). The
investigation includes the influence of an additional constrained layer damping (CLD) in the
vicinity of the thickness profiles. The CLD consists of a 1 mm layer of damping material
covered by an 1 mm layer of titanium. Table 5.2 lists the material properties of titanium and
the applied damping material. Damping is introduced using a structural loss factor. The
loss factor of titanium is 0.001 and the loss factor of the damping material is 0.1.

Table 5.2: Material properties of titanium and the damping material.

Titanium Damping material
E 104 GPa 0.01 GPa
ρ 4430 kg m−3 1000 kg m−3

ν 0.31 0.45
η 0.001 0.1

The beams are modeled using two dimensional plane stress elements. The FE-models have
ten elements through the thickness of the beam. The computation of the FRF follows the
approach of the modal superposition. This offers the opportunity to apply the load in
the modal space. A unit modal force for each mode (ΦT

¯
f = 1) excites all modes. The

eigenvectors are mass-normalized (ΦT
i MΦi = 1).

Figure 5.4: Surface integrated vertical veloc-
ity for beams with different thickness
profiles without CLD.

Figure 5.5: Surface integrated vertical veloc-
ity for beams with different thickness
profiles with CLD.

Figure 5.4 and figure 5.5 show the surface integrated root mean squared (RMS) velocity.

vRMS =
√

1
A

∫
A ¯
v(x,y)2dA . (5.1)
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Due to the fact that the structure is a one dimensional beam along the x-direction, the
vibroacoustic properties are evaluated per unit meter in the y-direction.

The beam with the abrupt thickness reduction (and without CLD) shows slightly higher
surface velocities at the resonance peaks than the smooth reduction and the uniform beam
(see figure 5.4). Especially in the low frequency region up to 500 Hz, the thickness reductions
yield an increase of the surface velocities. Besides the slight increase of the peak values, the
thickness reduction also increase the modal density. The reason is the reduced stiffness due
to the removal of material. Therefore, one observes that the thickness reductions reduce the
eigenfrequencies of the structure. Figure 5.6 shows the comparison of three exemplary modes.
With increasing mode number, the beams with a local thickness reduction evolve a locally
pronounced modeshape. At mode four, the deformation amplitudes at the indentations are
comparable to the deformation amplitudes in the rest of the structure. Comparing mode
eight of the different configuration, the local thickness reduction increase the deformation at
the indentation compared to the rest of the beam. For mode twelve both beams with thick-
ness reduction show a locally pronounced mode at the thickness reduction. Appendix A.7
shows the effect of the thickness reduction on the first twelve mode shapes. The localized
mode of the abrupt profile (ABH step) is more pronounced than the localized modes of the
smooth profile (ABH 2-2).

Figure 5.6: Modeshapes of Mode 4, 8 and 12 for the different thickness profiles (exemplarily shown
without CLD). Remark: The strongly varying thickness of the beams is an artifact that results
from squeezing the deformation pattern along the beam axis.

Figure 5.5 illustrates the respective surface velocity for the different thickness profiles with
additional CLD. Both thickness profiles combined with a CLD show a reduction of the surface
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velocities compared to the uniform beam with CLD. The abrupt profile with CLD yield a
lower surface velocity than the other measures. The reason is the larger deformation at the
location where the damping measure is applied. The eigenfrequencies of the abrupt thickness
profile are lower compared to the eigenfrequencies of the other configurations (see figure 5.6).
Therefore, the abrupt thickness profiles yield larger curvatures at lower frequencies than the
smooth thickness profile. This effect strongly increases the energy dissipation of the CLD
which results in stronger reduction of the peak amplitudes.

Besides the surface velocity, the radiated sound is also a relevant quantity to evaluate the
vibroacoustic performance of lightweight components. Therefore, the following section elab-
orates on the influence of local thickness reductions on the sound radiation. The radiated
power P is computed per unit meter using 100 × 100 elementary radiators (see 2.5.2). Fig-
ure 5.7 and figure 5.8 show the sound power level LW for the beams without and with CLD.

LW = 10 log10

(
P

P0

)
with P0 = 10−12W . (5.2)

Figure 5.7: Sound radiation for beams with
different thickness profiles without
CLD.

Figure 5.8: Sound radiation for beams with dif-
ferent thickness profiles with CLD.

From figure 5.7, one observes that the thickness reductions without CLD generally increase
the sound radiation of the beam. For frequencies below 1 kHz, the uniform beam radiates
significantly less power than the beams with thickness indentations. For frequencies above 1
kHz, the sound power level in the resonance peaks of the different beams decreases. Neverthe-
less, the peaks of the sound power level of the abrupt thickness reduction remains relatively
large compared to the uniform beam. Figure 5.8 shows the effect of an additional CLD. For
the uniform beam with attached CLD, the radiated sound power does not decrease for all
peaks. In the frequency range up to 700 Hz, the uniform beam with CLD radiates more
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power than the uniform beam without CLD. Responsible for this increase is the increased
mass of the structure. Above 700 Hz the CLD yields a slightly lower sound power level. In
general, the beams with reduced thickness and CLD yield a lower sound radiation for all
resonance peaks compared to the corresponding beam without CLD. For frequencies below
300 Hz the smooth thickness reduction radiates less power than the abrupt thickness reduc-
tion. With increasing frequency the power radiated by the beam with an abrupt thickness
reduction decreases. Comparing the radiation in the resonance peaks for frequencies above
300 Hz, the beam with the abrupt thickness profile radiates the least amount. Whereas,
the beam without thickness reduction shows the greatest sound radiation in the resonance
peaks.

For a better understanding, how the different thickness profiles influence the sound radiation,
the following paragraph evaluates the wavenumber spectra of the vertical surface velocities.
Figure 5.9 and 5.10 demonstrate the wavenumber spectra at three different frequencies. The
selected frequencies correspond to the eigenfrequency of mode four, eight and twelve. The
vertical lines indicate the wavenumber of the air. Consequently, the wavenumber components
smaller than the wavenumber of air contribute to the radiated sound power. The maximum
of the wavenumber spectra corresponds to the dominant structural wavenumber. The smaller
side lobes are linked to the fact that the host structure is finite, resulting in a multiplication
with a window function in the spatial domain. This is linked to a convolution with the
sinc function in the wavenumber domain. Appendix A.8 explains the computation of the
wavenumber spectra in detail and illustrates the spectra for the first twelve modes.

Figure 5.9 shows the impact of the thickness reduction. For the fourth mode, the thickness
profiles result in a scaling of the wavenumber spectra. The dominant structural wavenumber
does not change. Comparing the mode shapes of the fourth mode (see figure 5.6), one
can see that the wavenumber in the structure is almost unchanged. For higher modes, the
wavenumber spectra shows a distinct diversification. The reason is that for higher frequencies
the wavelength of the bending waves matches the dimension of the diameter of the thickness
reduction [Conlon and Fahnline 2015]. In that case, the locally reduced stiffness of the
structure locally modifies the wavenumber of the bending waves. This results in a distinct
broadening of the wavenumber spectra. Looking at the mode shapes (figure 5.6), one can see
that for mode eight and twelve, the wavenumber at the thickness reduction is different than
the wavenumber in the rest of the structure. The local wavenumber increases compared to
the wavenumber in the rest of the structure. In general, this could transfer some of the energy
of the vibration to subsonic wavenumbers that do not radiate to the far field [Zhao et al 2015].
However, figure 5.9 also illustrates that for higher modes the energy partition between lower
and higher wavenumbers is more balanced than for the uniform beam. Consequently, the
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Figure 5.9: Wavenumber spectra of the verti-
cal surface velocity for beams with
different thickness profiles (without
CLD) at different frequencies; the
vertical lines mark the correspond-
ing wavenumber of the air.

Figure 5.10: Wavenumber spectra of the verti-
cal surface velocity for beams with
different thickness profiles with
CLD at different frequencies; the
vertical lines mark the correspond-
ing wavenumber of the air.

increase of the level and the diversification of the spectra explains the increase of the radiated
sound power.

Figure 5.10 shows the respective wavenumber spectra for mode four, eight and twelve for the
structure modified with CLD. For the uniform beam with CLD, the level of the wavenumber
spectra of mode four increases compared to the respective spectra without CLD. Therefore,
the sound radiation of the uniform beam with CLD increases for lower frequencies. Compar-
ing the beams with indentations, the benefit of a CLD becomes clear. For the beams with
local thickness variations, the CLD reduces the vibrational level for all reasonance peaks.
The lower level of the wavenumber spectra explains the reduced radiated power. The abrupt
thickness reduction shows a lower level of the wavenumber spectra than the smooth thickness
and consequently yields a lower radiated sound level.

Summarizing, the combination of local thickness reduction with CLD show improved vi-
brational behavior in terms of vibration amplitudes as well as radiated sound power. The
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benefit of an ABH configuration with a smooth thickness profile does not show any benefit
compared to an ABH configuration with an abrupt profile.

5.1.3 Energetic evaluation of two dimensional acoustic black holes

The following section focuses on two dimensional ABH in plates. To evaluate the performance
of the ABH configurations, the author compares the different configurations to the uniform
plate. For the energetic evaluation, the energies are normalized with respect to the input
power. This is necessary to avoid an overlaying interpretation linked to a changes in the
input power due to a simple modal shift. The energetic insertion loss is

∆L = 10 log
(
Euni/Puni
E.../P...

)
[dB] . (5.3)

In this chapter, the thickness profiles are two dimensional circular indentations in a rectangu-
lar plate. The investigated profiles have the same form as previously (compare to figure 5.3).
However, in two dimensions the thickness profiles are rotational symmetric with respect to
the center of the indentation. As previously, the thickness profiles follow the expression
h(r) = εrβ + hmin. The minimum thickness at the center of the circular indentation is 1
mm and the diameter of 200 mm defines the parameter ε. Figure 5.11 illustrates an exem-
plary configuration. The plate’s dimension is 600× 500× 3 mm. The material of the plate
is titanium. Table 5.2 lists the material properties of titanium. A harmonic surface load
which covers the area of 20 × 20 mm excites the plates. The plates are modeled using the
commercial software package ANSYS®. Convergence studies ensuring a correct modeling of
the respective phenomena are covered in Miksch [2017].

Figure 5.11: Model of an exemplary plate with circular indentations excited by a harmonic distributed
load.
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The following section investigates various configurations of single and multiple ABH. The
numbering of the ABH in figure 5.11 determines the order in which the ABH are allocated.
The following labeling helps to distinguish the different configurations:

4︸︷︷︸
# of

indentation

ABH︸ ︷︷ ︸
ABH or
uniform

2.2︸︷︷︸
exponent

β

CLD︸ ︷︷ ︸
additional CLD
at indentation

The insertion loss is computed from 0 to 2 kHz in discrete steps of 1 Hz. Afterwards,
the insertion loss is averaged over third-octave bands. Appendix A.9 lists the unaveraged
insertion loss of the following comparisons.

Figure 5.12: Insertion loss of a plate with a single ABH profile with different exponents β (without CLD).

Figure 5.12 shows the insertion loss as defined in (5.3) for a single ABH with three different
thickness profiles. Below, 31.5 Hz, the insertion loss is driven be the appearance of the first
resonance frequency of the structure. Therefore, these bands are excluded in the following.
The profiles with β = 3 and β = ∞ do not provide a significant increase of the insertion
loss. However, a smooth thickness profile with β = 2.2 yields a positive insertion loss over
all bands. The depicted configuration increases the averaged insertion loss by 1.6 dB. In
addition, such a profile reduces the mass of the plate by 3.7 %.

Figure 5.13: Insertion loss of a plate with multiple ABH profiles (without CLD).

In general, increasing the number of ABH does not yield an increase in the insertion loss (see
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figure 5.13). Applying two or four identical profiles with an exponent m = 2.2, the insertion
loss decreases compared to the single ABH. In contrast, four ABH with an abrupt thickness
reduction result in a higher insertion loss compared to a single or two of such profiles. The
averaged insertion loss for the plate with four abrupt thickness profiles is slightly above 3
dB.

In the following, an additional CLD increases the energy dissipation. The CLD is located
at the indentations and consists of a 1 mm damping layer and an 1 mm cover layer made
of titanium. Table 5.2 lists the material properties of the plate and the damping material.
To distinguish the impact of the thickness reduction and the CLD, figure 5.14 compares
the configurations with and without CLD. The dashed curves indicate the configurations
without CLD and the continuous lines mark the corresponding results with additional CLD.
The additional CLD increases the insertion loss for all configurations. The strongest increase
experiences the ABH with the abrupt thickness reduction (β =∞). In the third octave bands
up to 125 Hz, both ABH with CLD behave similarly and oscillate around the insertion loss
of the uniform plate with CLD. Thus, in this frequency range, the increased insertion loss
mainly results from the CLD. With increasing frequency, the thickness reduction results in
an improved insertion loss compared to the uniform plate. For the octave bands above 125
Hz, the abrupt ABH outperforms the smooth ABH.

Figure 5.14: Insertion loss of a plate with two different ABH profile with and without additional CLD.

The previous investigation shows that using CLD, a smooth thickness reduction is not nec-
essary to maximize the performance. Following the theoretical derivation of Mironov [1988],
a CLD that introduce a non-smooth transition deteriorate the ABH effect. To investigate
the effect of a smooth CLD, the following paragraph compares two configurations of sand-
wich layer damping (SLD). Figure 5.15 shows the SLD configurations. The plate minimal
thickness at the top and the bottom is 1 mm. The damping pads are rotational symmetric
and follow the same power laws as previously.

Figure 5.16 compares the SLD configurations and the respective CLD configurations. In the
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ABH step SLD :
ABH 2.2 SLD :

Figure 5.15: Two different thickness profiles that follow an integrated sandwich layer damping (SLD).

Figure 5.16: Insertion loss of a plate with two different ABH profile with CLD and SLD.

low frequency range up to 250 Hz, the CLD configuration with the step profile has a larger
insertion loss than the respective SLD configurations. Above 250 Hz, the abrupt configura-
tions have almost the same insertion loss. Comparing the performance of the smooth ABH
with SLD and CLD, the SLD shows a slightly larger insertion loss for the bands above 400
Hz than the respective CLD configuration. Neither the smooth CLD, nor the smooth SLD
configuration outperforms the respective abrupt CLD or SLD configuration. In fact, the
abrupt SLD configuration is superior to the smooth SLD except for frequencies below 100
Hz. Concluding, also for the presented SLD configuration, there is no general benefit of a
smooth profile compared to an abrupt profile.

Finally, the impact of multiple ABH with CLD on the insertion loss is discussed. Increasing
the number of ABH increases the insertion loss (see figure 5.17). Using CLD, the insertion
loss is larger for the plates with indentations. The thickness profiles enhances the dissipation
effect of the CLD. The first ABH embedded in the plate has the strongest impact. With
increasing number of ABH the insertion loss increases. For third octave bands below 100
Hz, the smooth profiles generates the largest insertion loss for configurations with one, two,
and four ABH. For frequencies above 100 Hz, the abrupt thickness reduction yields a larger
insertion loss than the respective ABH with smooth profiles.

5.1.4 Summary

The previous investigations show how different thickness profiles influence the wavenumber
spectra of the surface velocity of beam-like structures. Based on the impact on the wavenum-
ber spectra the sound radiation varies for the different configurations. For low frequencies,
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Figure 5.17: Insertion loss of a plate with multiple ABH with different profiles and CLD; Comparison of one
(top), two (middle) and four (bottom) incorporated ABH.

a thickness reduction scales up the wavenumber spectra which results in an increase of the
radiated sound power level. For higher frequencies, the wavelength of the vibration patterns
fit in the thickness indentation. This results in a broadening of the wavenumber spectra
which transfers some of the vibrational energy towards higher and lower wavenumbers. Us-
ing additional CLD in the vicinity of the indentations result in a strong decrease of the level
of the wavenumber spectra which decreases the sound radiation. The abrupt profile outper-
forms the smooth profile in terms of surface velocities and radiated sound power, except for
very low frequencies where the wavelength is larger than the diameter of the profile.

The evaluation of the insertion loss of plate-like structures modified by ABH confirms the
results of the investigations of the beam-like structures. Various studies reinforce the propo-
sition that an abrupt thickness profile with damping treatment that enhance the energy
dissipation outperforms smooth profiles. The reason are the larger deformation that occur
due to the abrupt profiles. The larger deformation increase the shear deformation in the
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CLD. This proposition holds for multiple indentations as well as for sandwich composites
with integrated damping layers. The benefit of a smooth profile is only obvious for bending
waves whose wavelength are relatively large compared to the diameter of the profile.
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5.2 Studies on locally resonant materials

The following section focuses on the design of locally resonant materials based on periodic
resonators. The author published some preliminary results of the following section in var-
ious publications [Miksch et al 2018c; Miksch and Müller 2019; Miksch et al 2019]. First,
section 5.2.1 discusses the design of beam-like resonators. For an exemplary beam-like res-
onator, it elaborates on the influence of different design parameters on the performance of
the resonator. Second, section 5.2.2 demonstrates the influence of periodic resonators on
the wave solutions of beams. Subsequently, section 5.2.3 discusses the relation between the
wave solutions and the frequency response function (FRF) of a finite structure. Section 5.2.4
assesses the performance of the resonators based on the wave solutions. Finally, section 5.2.5
evaluates the vibroacoustic performance of locally resonant beams. The studies presented in
this chapter spawn design criteria for resonant structures. Finally, section 5.2.6 summarizes
the results of the numerical studies.

5.2.1 Designing beam-like resonators

In general, the manufacturing capabilities and the installation space in the host structure
restricts the design space of beam-like resonators. The following section investigates a po-
tential design of a beam-like resonator that could be manufactured using additive layer
manufacturing (ALM) and is than integrated in the cavities of a honeycomb panel. The
design is proposed by Müller and Faulhaber [2018]. Six independent parameters define the
geometry (see figure 5.18).

Figure 5.18: Geometric parameters of the beam-like resonator.
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The beam-like resonator consists of three segments: a beam segment of length l1, a transition
segment of length l2 and an end mass of length l3. The ALM process limits the overhang
thickness tm to 1 mm and the transition angle to 30◦. Additionally, the installation space is
restricted to

l1 + l2 + l3 ≤ 25 mm , (5.4)
tb + 2tm ≤ 5 mm , (5.5)

wm = wB + 2 tan(60◦)l2 ≤ 25 mm . (5.6)

The following investigation assesses the influence of the geometry on the eigenfrequency, the
mass of the resonator, and the amplification functions V . A coupled beam model (presented
in section 4.1.1) evaluates the eigenfrequency and the amplification function. The beam-like
resonator is coupled to a simple mass-spring system to compute the characteristics of the
amplification function (see figure 5.19). The displacement of the main mass w determines
the amplification function

V = w

wstat
with wstat =

|
¯
f |
ks

. (5.7)

Figure 5.19: Beam-like resonator
consisting of coupled
beams connected to a
discrete mass-spring
system.

Figure 5.20: Characteristics of the amplification function,
α = Ω

ω is the frequency ratio of the excitation
and β = ω1,beam

ω is the tuning frequency ratio
of the resonator.
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There are two relevant quantities of the amplification function V : the minimum value of
the amplification function Vmin which occurs in the vicinity of the local resonance of the
beam and the frequency range between the two resonance peaks ∆α (see figure 5.20). The
minimum value is important for the maximal reduction of the vibrations at the tuning
frequency (narrow band performance). The distance between the resonance peaks reveals
the broadband performance. The larger the distance the greater the frequency range in which
the vibration can be reduced. In general a larger mass improves both of these characteristics.
However, section 4.1.2 shows that besides the overall mass, other quantities as the ratio
of tip mass and beam mass as well as the ratio of the mass moment inertias influence
the amplification function. Therefore, this investigation directly focus on the geometric
parameters of the beam-like resonator. The resonator consists of Titanium, whose material
properties are listed in table 5.2.

Figure 5.21: Influence of l1 and tb on the first eigenfrequency, the mass and the distance of the resonance
peaks and the minimal value of the amplification function.

At first, the design of the beam segment (l1,tB) will be investigated. Figure 5.21 shows the
influence of the length l1 and the thickness tB of the beam segment on the characteristic
values of the resonator. The continuous curves mark the first eigenfrequency in Hertz, the
dashed curves mark the mass in grams. The dotted line indicates the dimensionless frequency
range of the resonance peaks ∆αpeaks and the dashed-dotted line the minimum value of the
amplification function Vmin. To find an optimal design for a specific beam-like resonator, one
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first defines the frequency of operation. Moving along the curve of a specific eigenfrequency,
the respective characteristics of the amplification function change. For an maximal ∆α and
a minimum Vmin, the beam length l1 should be as large as possible. The installation space
restricts the optimal length l1. The optimal designs for various target frequencies lay on the
dotted red line. The reason is that these designs maximize the total mass of the beam-like
resonators.

Figure 5.22: Influence of l2 and l3 on the first eigenfrequency, the mass and and the distance of the
resonance peaks and the minimal value of the amplification function.

Second, figure 5.22 investigates the design of the tip mass. Therefore, the length of the
transition segment l2 and the length of the end mass l3 is considered. Due to the fixed
transition angle of 30◦, the length l2 defines the width of the end mass (5.6). The optimal
designs that maximize ∆α and a minimize Vmin lie on the x-axis of the graph. That means,
choosing l3 as small as possible and adjust l2 to meet the required resonance frequency.
Increasing l2 or l3 increases the mass of the tip mass but it also moves the center of gravity
which shifts the resonance frequency. Therefore, the optimal design accumulates as much
mass as possible at the transition segment and minimizes l3.

Finally, Figure 5.23 shows the influence of the length of the beam segment l1 and the length
of the transition segment l2 on the performance of the resonator. As described l2 determines
the width of the tip mass (5.6). For the presented parameter configuration, moving to the top
left corner of the graph optimizes both the characteristics of the amplification function Vmin
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Figure 5.23: Influence of l1 and l2 on the first eigenfrequency, the mass and and the distance of the
resonance peaks and the minimal value of the amplification function.

and ∆αpeaks. This holds for all frequency curves. Thus, minimizing l1 and maximizing l2
until the limit of the design space yields the optimal performance of the beam-like resonator.
The same holds for the parameter dependency of l1 and l3 (see Appendix A.19). The reason
is that for a fixed eigenfrequency, a short beam section and a very large tip mass maximizes
the overall mass of the resonator.
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5.2.2 Wave solutions of Euler-Bernoulli beams with discrete resonators

The following section elaborates on the wave solutions of an Euler-Bernoulli beam. The wave
solutions are computed with Duhamel’s formulation of the Wave Finite Element Method
(WFEM) described in section 4.2.2. As shown in figure 5.24, the beam has two degrees of
freedom at each node (vertical deflection and rotation). Figure 5.24 also lists the material
parameters and the geometric parameters of the beam.

L

E 210 GPa
ρ 7800 kg/m3

ν 0.3
L 10 cm
A 1 cm2

Figure 5.24: Model of an Euler-Bernoulli beam with vertical and rotational degrees of freedom at each
node with corresponding material and geometric properties.

Figure 5.25: Solution of the eigenvalue problem for the Euler-Bernoulli beam and corresponding spatial
decay and phase information.

For an undamped Euler-Bernoulli beam, there are four fundamental wave solutions for each
frequency: two evanescent waves and two undamped waves [Cremer and Heckl 1967]. Each
wave solution has a decay characteristic and a phase that can be extracted from the complex
eigenvalue µ. The eigenvalue µ is an exponential function

µ = e−i(κRe+iκIm)L = e−iκReLeκImL . (5.8)
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As shown in figure 4.14, undamped waves do not show a decay characteristic (κRe 6= 0,κIm =
0) whereas evanescent wave have decay but no phase (κRe = 0,κIm 6= 0). In the following,
the decay characteristic is denoted κIm. This quantity describes the spatial decay in radians
per meter. The phase characteristic of the wave solution is expressed in radians and is
determined by κReL. Figure 5.25 shows the eigenvalues (left) and the wave characteristics
(right) of the Euler-Bernoulli beam computed from −100 Hz to 100 Hz in frequency steps of
0.1 Hz. The dashed line in the eigenvalue plot marks the unit circle which indicates possible
locations of eigenvalues representing undamped waves. The eigenvalues on the real axis
correspond to the evanescent waves. In general, eigenvalues located inside of the unit circle
represent waves traveling in the positive direction, whereas eigenvalues located outside of the
unit circle represent waves traveling in the negative direction. Eigenvalues located on the
unit circle are either waves traveling in positive or negative direction. The markers highlight
the wave solutions at ±100, ±50 and 0 Hz. The wave solutions for positive and negative
frequencies are the same. Figure 5.25 also illustrates the decay and phase information that
can be extracted from the eigenvalues µ (see (5.8)). These plots are preferably used to
show the information about the frequency dependency of the wave solutions. The red curves
indicate the undamped wave solutions (κRe 6= 0, κIm = 0), whereas the blue curves indicate
the evanescent wave solutions (κRe = 0, κIm 6= 0). For a later the comparison of various
configurations, the decay characteristic is normalized with the length of the unit cell.

The following paragraph shows the effect of a discrete resonator on the wave solutions of the
beam structure. Figure 5.26 illustrates the resonator and its parameters. The properties of
the beam are the same as in the previous model.

m

ks c

madd = m/mbeam 5 %
fres = 1

2π

√
ks/m 50 Hz

Dres = c/(2
√
ksm) 1 %

Figure 5.26: Euler-Bernoulli beam with attached resonator and corresponding properties of the resonator;
properties of the beam are the same as described in figure 5.24.

In this example, the mass m of the resonator amounts to 5 % of the mass of the beam.
Furthermore, the eigenfrequency of the resonator fres is 50 Hz. Additionally, a critical
damping ratio Dres of 1 % is introduced that defines the damping constant (c = Dres2

√
ksm.

As soon as energy dissipation occurs, in general undamped waves do not exist. To distinguish
strongly damped waves from nearly undamped waves, the author defines undamped waves
as waves having a spatial decay of less than 1% per meter.
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Figure 5.27: Eigenvalues describing the wave solutions of an Euler-Bernoulli beam with an attached
resonator and corresponding spatial decay and phase information.

Figure 5.27 illustrates the influence of the resonator on the four wave solutions of the beam.
In the frequency range of the target frequency of the resonator, there only occur damped
waves. This frequency range is identified as stop band. One can observe the stop band
in both the decay characteristics and the phase characteristics of the wave solutions. The
maximum spatial decay (5.82 rad/m) due to the resonator appears at a frequency slightly
below the resonance frequency (at 49.7 Hz). Additionally, the damped wave solutions (black
curves) that evolve from the originally undamped wave solutions only experience a maximum
attenuation of 2.10 rad/m at a frequency slightly higher than the target frequency of the
resonator.

Figure 5.28: Eigenvalues describing the wave
solutions of an Euler-Bernoulli
beam with an attached resonator
with complex spring stiffness k̂s =
ks(1 + i0.02).

Figure 5.29: Eigenvalues describing the wave
solutions of an Euler-Bernoulli
beam with an attached resonator
with complex spring stiffness k̂s =
ks(1− i0.02).



132 5 Numerical studies

The eigenvalue plots (left plot) in figure 5.25 show that for undamped structures, it is
sufficient to compute the wave solutions for positive frequencies. If the model includes energy
dissipation, damped waves having both a phase and a decay characteristic occur (κRe 6= 0,
κIm 6= 0). To incorporate all possible combinations of phase and decay, the wave solutions
computed for negative frequencies yield the complex conjugated wave solutions (see the
eigenvalue plot in figure 5.27). If energy dissipation occurs due to a frequency independent
structural loss factor η, the computation with positive frequencies and a positive structural
loss factor yields one set of wave solutions and the computation with negative frequencies
and a negative structural loss factor yields the complex conjugated wave solutions (compare
figures 5.28 and 5.29). In general, there exist wave pairs traveling in opposite direction.
These pairs have an opposite sign in the relative phase shift and the spatial decay. These
pairs correspond to the eigenvalues µ and 1/µ.

In practice, a resonator also introduces a rotational inertia, which yields an additional de-
caying effect. Therefore, the following paragraph presents the wave solutions for a rotational
resonator as described in figure 5.30.

m/2
r

m/2

madd = m/mbeam 5 %
fres = 1

2π

√
kΦ/(mr2) 50 Hz

Dres = cΦ/(2
√
kΦmr2) 1 %

r 20 cm

Figure 5.30: Euler-Bernoulli beam with attached rotational resonator and corresponding properties of the
resonator; properties of the beam are the same as described in figure 5.24.

Figure 5.31: Eigenvalues describing the wave solutions of an Euler-Bernoulli beam with an attached
rotational resonator and corresponding spatial decay and phase information.
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Figure 5.31 shows the wave solutions. The maximum spatial decay of the damped waves
appears slightly above the resonance frequency of the resonator (50.5 Hz). The maximum
spatial decay is 5.89 rad/m. Comparing the evolution of the damped waves solutions, the
rotational resonator modifies the wave solution of the beam differently than the vertical
resonator. The damped wave branches that evolve due to the rotational resonator show a
transitional behavior between undamped and evanescent wave solutions and vice versa. This
can be observed in the eigenvalue plot: The side loops of undamped and evanescent waves
overlap.

Figure 5.32: Eigenvalues describing the wave solutions of an Euler-Bernoulli beam with an attached
vertical resonator with increased mass (50 % of the mass of the beam) and corresponding
spatial decay and phase information.

The undamped wave branches of the vertical resonator remain separate. Figure 5.32 shows
the wave solutions of a vertical resonator with a mass equal to 50 % of the beam mass. The
side loops of damped waves that occur due to the resonator do not overlap because the cor-
responding wave solutions result from excitation frequencies with opposite sign. Comparing
figures 5.27 and 5.32, one observes that a larger mass enhance the stop band and increases
the maximum spatial decay at the target frequency. Furthermore, it increases the averaged
spatial decay in the stop band.

5.2.3 Relation between wave solutions and frequency response

function of a finite structure

The following section explains the link between the characteristics of the wave solutions and
the characteristics of the FRF of a finite structure. The main characteristic of the FRF
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are the resonance peaks. These peaks occur due to an interference of incident waves and
reflected waves. Depending on the phase change of the unit cell and the total length of the
structure, standing waves occur. Each reflection amplifies the standing wave which results
in the resonance peaks in the FRF. The phase change φ that a wave experience traveling to
the boundary and back depends on the phase change over the length of the beam structure
and the phase change φBC that the wave experiences due to the boundary condition

φ = NκReL+ φBC . (5.9)

N are the number of unit cells that built up the finite structure. A resonance peak occurs
if the phase change that a wave experiences when traveling to the boundary an back equals
(n + 1

2)π where n ∈ N. In the following, these phase changes are named critical phases.
Table 5.3 lists the critical phases for beams with different boundary conditions.

Table 5.3: Critical phase characteristics of the wave solutions for various boundary conditions; host struc-
ture consists of N unit cells of length L.

Boundary conditions Critical phase φcrit
free - free ±(n+ 1

2)π/N, n ∈ Nclamped - clamped
pinned - pinned ±nπ, n ∈ N
clamped - pinned ±(n+ 1

4)π/N, n ∈ Nfree - pinned

Figure 5.33 shows a free-free beam with a length of 1 m. A harmonic force in the vertical
direction excites the beam. The beam structure consists of N = 10 identical unit cells of
length L = 10 cm. The unit cell is discretized with five Euler-Bernoulli beam elements. The
beam’s material is aluminum (see table 5.4).

Figure 5.33: Model of a free-free beam that consists of ten identical unit cells of length L = 10 cm.

Figure 5.34 relates the FRF and the phase change of the unit cell. In the phase plot, there
are two branches of undamped waves. The upper branch with positive slope describes the
wave that propagate in positive direction. The lower branch describes similar waves traveling
in negative direction. The vertical lines in figure 5.34 mark the resonance peaks of the FRF
and the corresponding critical phase characteristics of the wave solutions.
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Young’s modulus 64 GPa
Density 2700 kg/m3

Poisson ratio 0.34
Loss factor 0.01

Table 5.4: Material properties of aluminum.

Figure 5.34: Averaged displacement of the beam (top) and the phase change (κReL) of the unit cell
(bottom); red curves identify undamped waves and the blue curves the evanescent waves.

Besides the phase characteristic, wave solutions also possess a decay characteristic. The
decay characteristic limits the amplitude in the resonance peaks. For undamped structures,
the propagating wave solutions do not decay. Therefore, the displacements at the resonance
frequencies go to infinite. Assuming that the response of the structure results from the
interference of the initial wave and an infinite number of reflections, there exists an upper
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bound

Q
∞∑
r=0

e rkILN . (5.10)

Q is the amplitudes of the initial wave and r counts the number of reflections of the initial
wave. The assumption for (5.10) is that the original wave (r = 0) ideally aligns with each
reflected wave. For waves that decay in the direction of propagation, (5.10) is limited

Q
∞∑
r=0

e rkILN = Q
e kILN

e kILN − 1 with kILN < 0 . (5.11)

Using local resonators, it is possible to manipulate the phase and the decay characteristics
of the wave solutions. This is linked with a change of the resonance frequencies as well as
the vibration amplitudes at the resonance frequencies. To demonstrate this, the unit cell of
the beam structure from figure 5.33 is modified. Each unit cell comprises a resonator with
the following characteristics:

mres = 5 % munit cell ,

fres = 138 Hz ,
Dres = 1 % .

m

ks c

Figure 5.35: Modified unit cell.

The mass is fixed such that the resonator adds 5 % mass to the structure. The resonance
frequency fres determines the stiffness constant ks. Finally, the damping constant c results
from the damping ratio Dres. The periodic resonators change the eigenfrequencies and
therefore the resonance peaks of the FRF. Table 5.5 compares the eigenfrequencies of the
beam structure with and without resonators. The resonators splits the resonance at 138 Hz
into multiple resonances between 124 and 154 Hz.

Eigenfrequencies of the beam structure in Hz
no resonator 50 138 270
ten resonators 49 124 137 138 138 138 138 138 141 141 141 154 273

Table 5.5: Eigenfrequencies of the beam structure with and without resonators.

Figure 5.36 shows the FRF of the beam structure with attached resonators. The dashed
vertical lines mark the eigenfrequencies of the beam structure. For each frequency there
exist a corresponding phase and decay characteristic of the wave solutions (see spherical
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markers). Due to the symmetry of the phase and decay plot, figure 5.36 contains only the
absolute values of the phase and decay information. The different colors mark the different
wave types. As previously illustrated, undamped waves are defined as having a spatial decay
of less than 1% per meter. The resonators modify the phase and the decay characteristics.
The dotted lines indicate the phase and decay curves of the unmodified unit cell.

Figure 5.36: Frequency response function of beam structure with periodically attached resontors (top) and
the phase κReL (middle) and decay κIm (bottom) characteristics from the wave solutions of
the unit cell.

The change in the phase plot due to the resonators explains the splitting of the resonance
frequencies. In contrast to the unit cell without resonator, the resonators generate five
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critical phase shifts in the vicinity of the tuning frequency. Depending on the respective
decay constant, the FRF emerges a resonance peak or not. A critical phase of 3

2π/N occurs
at three different frequencies (124, 138 and 154 Hz). At 124 and 154 Hz, the decay constants
are almost vanishing and therefore the FRF reveals resonance peaks at 124 and 154 Hz.
Around the tuning frequency of the resonators, the resonators increase the decay constant
from 0 to 3.6 rad/m. This results in a reduction of the FRF. Two additional critical phases
of 1

2π/N appear at 138 and 142 Hz. These resonances emerge from the transformation of
the originally evanescent waves. The corresponding decay constant (10.0 rad/m) at 138 Hz
is larger compared to the respective decay constant of the unmodified unit cell (7.8 rad/m).
At 138 Hz, there is no resonance peak observable in the FRF. However, at 142 Hz the
respective decay constant (6.0 rad/m) decreases compared to the unmodified unit cell (8.0
rad/m), which yields a small peak in the FRF.

The previous investigation demonstrates that modifications of the wave solutions by local
resonators directly effect the frequency dependent performance of the structure. The oc-
currence of resonance peaks is strongly influenced by the boundary conditions of the host
structure. Nevertheless, an increased decay constant is important to reduce the motion of
the host structure. Consequently, to optimize the design of a resonator without including the
effect of the boundary conditions of the host structure can be performed based on the wave
solutions of the unit cell. This approach is for example very useful to evaluate designs in
an early stage of development, where the exact boundary conditions are not defined yet. In
general a larger spatial decay at the target frequency reduces the vibration. Furthermore, a
larger stop band yields a larger separation of the critical phase characteristics. This leads to
an improvement of the broadband performance. Therefore, the maximal spatial decay and
the stop band size are relevant quantities that assess the performance of local resonators.

5.2.4 Influence of the resonator spacing on the wave solutions

The following section investigates different configurations of the unit cell to asses the effect of
the resonator spacing on the wave solutions. First, the influence of the length of the unit cell
is considered for a discrete resonator. The total mass added by the resonator is 5 % of the
beam mass. Thus, the overall mass added per unit length is constant. Varying the length L is
equivalent to compare different resonator spacings for a fixed percentage of additional mass.
The following section both investigates the spacing of vertical and rotational resonators as
described in figures 5.26 and 5.30, respectively.
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Figure 5.37: What is the optimal resonator spacing? Effect of doubling the beam length L on the mass of
each individual resonator while the percentage of added mass remains constant.

Figure 5.38: Influence of the resonator spacing on the stop band characteristics for a discrete vertical
resonator.

Figure 5.38 illustrates the dependency of the stop band characteristics on the resonator spac-
ing L for the beam with vertical resonators. The color of the curves indicate the frequency
of the resonator and the line style the damping ratios. The mass ratio of the resonators
madd is 5 %. The left graph shows the maximal spatial decay (max κIm) that occurs at the
target frequency of the resonator. The right graph illustrates the stop band size (frequency
range where only damped waves occur). To compare the different resonator configurations,
the length of the beam is normalized by the wavelength of the bending wave at the eigenfre-
quency of the resonator λres. The size of the stop band ∆f is normalized by the resonator
frequency fres. One observes that the spacing of the vertical resonators does not influence
the stop band characteristics. The spatial decay and the stop band size are almost constant
for all resonator configurations. A larger target frequency increases the maximal spatial
decay and the stop band size. Increasing the damping decreases the maximal spatial decay
of the resonator and increases the stop band size.



140 5 Numerical studies

Figure 5.39: Influence of the resonator spacing on the stop band characteristics for a discrete rotational
resonator.

Figure 5.39 shows the effect of rotational resonators. The parameters of the rotational res-
onators are listed in figure 5.30. In contrast to the vertical resonator, the maximal decay
of the rotational resonator depends on the resonator spacing, whereas the stop band size is
almost independent of the spacing. For larger frequencies and a lower damping ratios an op-
timal resonator spacing that maximizes the spatial decay evolves. A higher target frequency
yields a lower optimal resonator spacing. Likewise, a lower damping ratio reduces the opti-
mal resonator spacing. For low resonator frequencies and large damping ratio the maximal
spatial decay is almost independent of the resonator spacing. The general observation that
the spatial decay and the stop band size increase with increasing resonator frequency is also
valid for the rotational resonators. Accordingly, a larger damping ratio results in a decrease
of the maximal spatial decay and an increases of the stop band size.

In practice, locally resonant materials commonly consist of beam-like resonators integrated
into the host structures. Therefore, in the following section the discrete resonators are
replaced with beam-like resonators (see figure 5.40).

fres = 1.8752

2πL2
res

√
EIres
ρAres

200 Hz
madd = mres/mbeam 5 %

Figure 5.40: Model of an Euler-Bernoulli beam with attached Euler-Bernoulli beam that acts as a res-
onator; cross section A of the main beam is 1 cm2.

The material and geometric properties of the host beam and the beam resonator are the
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same as previously (compare to figure 5.24), except that the resonators Young’s modulus
is complex Ê = E(1 + iη), where η is the structural loss factor (for positive frequencies).
The desired (first) eigenfrequency and the mass of the resonator beam determine the length
and the cross section of the resonator. To derive the dependence between the geometry
and the resonance frequency, the resonator beam is assumed to behave as a clamped-free
Euler-Bernoulli beam [Blevins 2016].

Figure 5.41: Influence of the resonator spacing on the stop band characteristics for the beam resonator
with varying loss factor.

Figure 5.42: Influence of the resonator spacing on the geometry of the beam resonator.

Figure 5.41 shows the maximal decay and the size of the stop band for the beam resonator
shown in figure 5.40. The structural loss factor of the resonator material varies from 0.1%
to 0.3%. With increasing loss factor the maximal spatial decay decreases while the stop
band size increases. Increasing the damping results in a decrease of the maximal spatial
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decay. The reason is that with increasing damping, the evanescent waves disappear. For the
maximal decay, there exists an optimal resonator spacing that depends on the damping of the
resonator. The stop band size is slightly increasing with increasing resonator spacing. Due to
the fact that the amount of added mass by the beam resonator is fixed to 5 %, the geometry
of the beam resonators changes when the spacing of the resonator varies. This is necessary
to ensure that the eigenfrequency of the resonator remains the same. The resonator beam
has a rectangular cross section. Figure 5.42 illustrates the changes in the geometry of the
beam. The changes are independent of the damping. The length and the cross section of the
beam resonator increases with the spacing. The reason is that a single resonator beam has
a larger absolute mass for an increased spacing. Due to the change in geometry, the second
moment of area changes and therefore the energy dissipation might vary as well. The reason
is the direct link between the stiffness of the structure and the energy dissipation due to the
structural loss factor. Therefore, it is difficult to separately investigate the influence of the
spacing and the damping.

Figure 5.43: Influence of the resonator spacing on the stop band characteristics for the beam resonator
with varying resonator mass ratio.

The next paragraph investigates the impact of the resonator mass ratio madd = mres/mbeam

and resonator frequency fres for a fixed structural loss factor of 0.1 % of the resonator.
Figure 5.43 shows the stop band characteristics. It is obvious that a larger mass ratio result
in an increased maximal spatial decay and an increased stop band size. As previously, the
stop band size is slightly increasing with increasing resonator spacing. Furthermore, the
optimal spatial decay only depends on the mass ratio not on the resonator frequency. For
a mass ratio of 10 % the maximal spatial decay is maximized for a resonator spacing that
matches half the length of the bending wave at the resonator frequency. For 5 % additional
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Figure 5.44: Influence of the resonator spacing on the geometry of the beam resonator. The beam
geometry is defined by the rectangular cross section and the length of the beam resonator.

mass, the optimal spacing increases to three quarters of the bending wave at the resonator
frequency. For a mass ratio of 1 %, the maximal spatial decay is almost constant for all
resonator spacings. It slightly decreases with increasing spacing. The previous investigation
revealed that the optimal resonator spacing also depends on the energy dissipation in the
resonator beam. Figure 5.44 shows the variation of the length and the area moment of inertia
of the beam resonator for the different spacings. The area moment of inertia is the same
for all resonator frequencies. It only depends on the mass ratio. Thus, the cross section is
adjusted to match the required mass of the beam resonator, while the length of the beam
determines the resonator frequency.

fres = 1
2π

√
3EIres−beam

L3
res−beam(m+0.24mres−beam) 200 Hz

madd = (m+mres−beam)/mbeam 5 %

Figure 5.45: Euler-Bernoulli beam with attached resonator beam with additional end mass and corre-
sponding properties of the resonator beam.

For beam-like resonators tackling low frequency structure borne noise, the resulting resonator
beam is relatively long compared to the resonator spacing. This might be infeasible for
practical applications. An additional mass located at the end of the beam resonator can
avoid that: the larger the end mass, the shorter the resonator beam becomes (assuming
the resonance frequency remains unchanged). Following this, the same investigation are
performed on resonator beams with varying ratio of end mass to resonator beam mass
m/mres−beam (see figure 5.45). As previously, the structural loss factor of the resonator
beam is 0.1 %. The total added mass of the resonator is 5 % and the resonator frequency is
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200 Hz.

Figure 5.46: Influence of the resonator spacing on the stop band characteristics for the beam resonator
with varying end mass ratio.

Figure 5.47: Influence of the resonator spacing on the geometry of the beam resonator with end mass.

Figure 5.46 illustrates the stop band characteristics for beam resonators with various end
mass ratios. As shown in previous investigation, the beam without end mass shows a optimal
resonator spacing that maximizes the decay at three quarters of the bending wavelength of
at the resonators eigenfrequency. Increasing the end mass ratio the maximal spatial decay
for larger resonators spacings (L/λres > 0.3) decreases and for lower spacings (L/λres < 0.3)
it increases. This trend continues until the optimal resonator spacing shifts towards lower
spacings for an end mass ratio of 50 %. However, the maximal decay at the optimal spacing
is higher for the beam without end mass. In contrast to the spatial decay characteristics, the
stop band size increases with increasing end mass ratio for all resonator spacings. Figure 5.47
shows the resulting geometric parameters of the resonator beam.
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Concluding, both discrete and beam resonator show that with increasing target frequency of
the resonator the maximal spatial decay and the stop band size increases. For the vertical
discrete resonators, the wave characteristics are independent of the spacing. In contrast,
the rotational and beam-like resonators have an optimal resonator spacing that maximizes
the spatial decay at the target frequency of the resonator. The optimal resonator spacing
depends on the target frequency and the damping of the resonator. In contrast, the spacing
does not strongly influence the stop band size. It slightly increases with increasing resonator
spacing. Furthermore, beam-like resonators with additional end mass generate shorter beam
resonators. The more resonator mass is located at the end of the beam the larger the stop
band size. Depending on the resonator spacing, the maximal spatial decay increases or
decreases with increasing tip mass ratio. However, the maximal possible decay of a beam
resonator without end mass is larger than the maximal possible spatial decay of a resonator
beam with end mass.
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5.2.5 Sound radiation of finite beams with discrete resonators

The following section investigates the impact of resonators on the vibration of the structure
and the radiated sound power. The host structure is a beam made of aluminum and has a
length of 1 m and a thickness of 1 cm. Table 5.4 lists the material properties of aluminum.
The beam consists of 100 beam elements. 30 periodic resonators complement the beam.

Figure 5.48: Model of a beam with 30 periodically attached resonators.

The discrete resonators are added as additional DOF (see section 4.1.3). All vertical degrees
of freedom of the beam are loaded by a single load. Each single load has an amplitude of 1 N
and random phase drawn from the uniform distribution between −π and +π. This ensures
that all bending modes are excited.

Figure 5.49: Surface averaged vertical velocity for beams with 30 periodically attached resonators with
different parameters of the resonators.

Figure 5.49 compares the integrated vertical surface velocity of four different sets of res-
onators. The black curve indicates the velocity of the host structure without resonators. The
blue and red curves illustrate the impact of the resonators with tuning frequency fres = 138
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Hz and fres = 270 Hz, respectively. The overall mass of the resonators equals 10 % of the
mass of the host structure and each resonator has the same mass. The colored straight lines
mark resonators with a damping ratio D = 0.1% and the respective dashed lines indicate the
resonators with a damping ratio D = 1%. The resonators yield a significant reduction of the
averaged velocity curves at the target frequency. However, there occur multiple resonance
peaks around the target frequency. These peaks occur due to the additional modes that
the resonators cause. In fact, closed to the target frequency of the resonators there occur
n− 1 eigenfrequencies, where n is the number of resonators added to the structure. Some of
these modes are observable as peaks in the frequency spectrum of the surface velocity. For
the resonators with frequency fres = 138 Hz, these peaks occur at 118 Hz, 145 Hz and 161
Hz, for the resonators with frequency fres = 270 Hz at 231 Hz, 283 Hz and 316 Hz. The
resonators with the larger damping ratio (dashed curves) show a reduction of the resonance
peaks as well as a smaller dip at the target frequency of the resonators.

Figure 5.50: Sound power level of the radiated sound for beams with 30 periodically attached resonators
with different parameters of the resonators.

Figure 5.50 shows the sound power level for the different configurations. The sound power is
computed per unit meter along the width of the beam using 100 × 100 discrete elementary
radiators (see section 2.5.2). For the host structure without resonators, there are no strong
peaks in the observed frequency range. The main influence of the resonators is a strong
dip at the target frequency of the resonators followed by a peak. The resonators reduce the
sound radiation at the target frequency, however for frequencies slightly above the resonance
frequency, the sound radiation significantly increases. Increasing the damping ratio of the
resonators results in a smoothing of the dip and the peak. To explain the occurrence of the



148 5 Numerical studies

peaks and the dips, the following passage discusses the wavenumber spectra of the vertical
surface velocity at the respective excitation frequencies.

Figure 5.51: Wavenumber spectra of the lat-
eral surface velocity for beams
with 30 periodically attached res-
onators (fres = 138 Hz) at differ-
ent excitation frequencies; the ver-
tical line marks the corresponding
wavenumber of the air.

Figure 5.52: Wavenumber spectra of the lat-
eral surface velocity for beams
with 30 periodically attached res-
onators (fres =270 Hz) at differ-
ent excitation frequencies; the ver-
tical line marks the corresponding
wavenumber of the air.

Figure 5.51 and figure 5.52 compare the wavenumber spectra of the surface velocity at the
resonance peaks observed in the FRF of the averaged surface velocity. The vertical line
indicates the wavenumber of air at the respective frequency. Thus, wavenumbers smaller
than the vertical line contribute to the radiated sound. The maximum of the wavenumber
spectra corresponds to the dominant structural wavenumber. The smaller side lobes result
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from the Fourier transformation of the window function linked with the finite beam. Since
the multiplication with a window function in the spatial domain is equivalent to a convolution
with the sinc function in the wavenumber domain.

At the target frequencies (138 Hz and 270 Hz), the resonators strongly reduce the energy
of the wavenumber spectra which strongly reduce the radiated sound power. For the other
resonance peaks below and above the target frequencies, the resonators increase the level
of the spectra. For the resonance peaks below the target frequencies of the resonators (118
Hz and 231 Hz), the beams with resonators have a larger dominant structural wavenumber.
Therefore, the increased vibration level does not yield an increased radiated sound power
because most of the wavenumber components are above the wavenumber of the air (subsonic)
and do not contribute to the radiation. At the resonance peaks above the target frequen-
cies (145 Hz and 283 Hz), the resonators decrease the dominant structural wavenumber.
The increased power in the wavenumber spectra and the shift of the dominant structural
wavenumber towards the supersonic part of the spectra strongly increase the radiated sound
power. A larger damping ratio reduces this shift with respect to the wavenumber spectra
of the host structure without resonators. Therefore, increasing the damping is a effective
measure to reduce the sound radiation peak that occurs slightly above the target frequency
of the resonators. On the one hand, it reduces the power of the spectra. On the other
hand, it shifts the dominant structural wavenumber further away from the supersonic part
of the spectra. The second resonance peak that occurs in the averaged surface velocity (at
161 Hz and 316 Hz) does not appear in the sound radiation. The reason is the same as for
the resonance peak below the target frequency of the resonators: the dominant structural
wavenumber is shifted towards the subsonic part of the spectra.

The next section investigates the same data for other tuning frequencies of the resonators.
The setup for the host structure is the same as previously. The coincidence frequency of
the structure is 1323 Hz. The investigated resonator frequencies are 668 Hz, 1242 Hz and
1595 Hz. In the following plots, the color of the curves indicate the target frequency of the
resonators. The line style marks different configurations for the mass ratio and the damping
ratio of the resonator:

• straight line: madd = 10%, Dres = 0.1%

• dashed line: madd = 10%, Dres = 1%

• dotted line: madd = 5%, Dres = 1%

Figure 5.53 illustrates the surface velocities. As previously observed, the resonators split up
the peak of the unmodified host structure in several other resonance peaks, whereas at the
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target frequency a dip appears. For the configurations with the lower damping ratio (straight
lines), there appear multiple resonance peaks in the vicinity of the target frequency. With
increasing target frequency the width of the reduction dip increases. In general, the mass of
the resonators influence the width and the depth of the dip. A larger mass results in a more
broadband and deeper dip of vibration suppression, but the resonance peaks next to the dip
increase as well. In contrast, a larger damping ration reduces the depth of the dip and also
decreases the resonance peaks around the target frequency.

Figure 5.53: Surface averaged vertical velocity for beams with 30 periodically attached resonators with
different parameters of the resonators; straight lines indicates resonators with a total mass
of 10 % of the mass of the host structure and the dotted lines indicates the set of resonators
with a total mass of 5 % of the host structure.

Figure 5.54: Sound power level of the radiated sound for beams with 30 periodically attached resonators
with different parameters of the resonators.
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Figure 5.54 shows the sound power level for the respective configurations. Up to 500 Hz, there
are no peaks of increased sound radiation. The reason is that the structural wavenumber
is larger than the corresponding wavenumber of the air. Besides a very small decrease (<1
dB), the resonators have no significant effect on the sound radiation up to 500 Hz.

For the resonators with target frequency 668 Hz (green curves), there is a small peak in
front of the dip of reduced sound radiation. After the dip two larger peaks appear at 700 Hz
and 780 Hz. For the resonators with the lower damping ratio and the larger mass (straight
green line), these peaks are strongly developed and there exist additional side peaks at 639
Hz and 719 Hz. Decreasing the mass or increasing the damping ratio results in reduction of
the peaks that are adjacent to the dip of reduced sound radiation. The wavenumber spectra
gives information about the appearance of these peaks.

Figure 5.55: Wavenumber spectra of the vertical surface velocity for beams with 30 periodically attached
resonators (fres = 668 Hz) at different excitation frequencies; the vertical line marks the
corresponding wavenumber of the air.

Figure 5.55 shows the wavenumber spectra at the peaks observed in the sound power level.
In general, one observes two main aspects in the wavenumber spectra: First the resonators
change the over all power level of the wavenumber spectra and second, the resonators shift
the wavenumber spectra. Depending on the parameters of the resonators the power level of
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the wavenumber spectra increases or decreases for different frequencies of excitation. At 572
Hz, the wavenumber spectra increases, however, this merely results in a small increase of the
radiated sound power. The reason is that the main structural wavenumber is notably larger
than the wavenumber of the air (vertical line). At 639 Hz, the resonators shift the main
wavenumber of the structure towards a larger wavenumber (compared to the host structure
without resonators). Therefore, the sound radiation is smaller for the configurations with
resonators, even though the resonators with a damping ratio of D = 0.1% show a strongly
increased power level of the wavenumber spectra. Comparing the shift and the level of the
spectra of different resonators, a larger mass of the resonators yields a larger shift in the
wavenumber domain and an increased power level. Increasing the damping ratio reduces the
level but has no observable effect on the shift. If the excitation frequency matches the eigen-
frequency of the resonators, the level of the wavenumber spectra is strongly reduced which
results in the strong reduction of radiated sound power. The strong shift of the wavenumber
spectra towards lower wavenumber at 700 Hz explains the peak of sound radiation. Due to
the shift, the main structural wavenumber is below the wavenumber of air. As previously,
a higher mass yields a stronger shift as well as an increased power level of the wavenum-
ber spectra. The wavenumber spectra at 719 Hz show similar characteristics but the shift
towards lower wavenumbers is reduced. The resonators with large mass and low damping
ratio show a strong increase of the level, which results in an additional side peak in the
sound power level. At 780 Hz, there is no longer a shift in the spectra. One observes the
effect of the resonators in the increased level of the wavenumber spectra, which again yield a
peak in the sound radiation. The respective wavenumber spectra for the resonators targeting
1242 Hz agree with the above described observation. Figure A.20 in the appendix lists the
respective spectra.

Figure 5.56: Wavenumber spectra of the lat-
eral surface velocity for beams with
30 periodically attached resonators
(fres = 1242 Hz) at 1065 Hz; the
vertical line marks the correspond-
ing wavenumber of the air.

Figure 5.57: Wavenumber spectra of the lat-
eral surface velocity for beams with
30 periodically attached resonators
(fres =1595 Hz) at 1369 Hz; the
vertical line marks the correspond-
ing wavenumber of the air.
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Comparing the sound power levels, the beam with resonators tuned to 1595 Hz show a more
pronounced peak at frequencies slightly below the dip of radiation suppression compared
to the other resonator configurations. The reason is that the coincidence frequency of the
structure (1323 Hz) is close to the excitation frequency of 1369 Hz. Therefore, a large amount
of the wavenumber spectra at 1369 Hz contributes to the sound radiation. As the resonator
increase the level in the spectra, the radiated sound power increases for frequencies above
the coincidence frequency (compare figure 5.56 and 5.57).

Summarizing, resonators tuned to a fixed frequency generate multiple resonance peaks in
the averaged surface velocities. For low frequency resonators, the sound power level only
shows a characteristic dip of sound reduction followed by a peak in the sound radiation. The
reason for the increased sound radiation is the increase of the vibration level as well as a shift
of the wavenumber spectra towards the supersonic part of the spectra. For resonators tuned
to higher frequencies, the additional peaks in the surface velocity also appears in the sound
power level. The peaks increase with increasing resonator mass. Increasing the damping
helps to reduce these peaks, however, it also deteriorates the vibration reduction and sound
reduction at the target frequency of the resonator.

5.2.6 Summary

The previous investigations demonstrate how the Wave Finite Element Method (WFEM)
can be applied to design locally resonant materials. Besides the location of the stop band,
the spatial decay characteristics also provide information about the wave solutions that exist
in the frequency range of stop bands. This helps to design the frequency dependent perfor-
mance of locally resonant materials. The link between wave solutions and the motion of the
structure explains why the spatial decay reproduces well known characteristic properties of
resonant materials. Parameter studies performed on the wave solutions yield design rules for
locally resonant materials. The advantage of this approach is that the design of the resonant
material are related to the wave solutions which are independent of the boundary conditions
of the host structure. Consequently, optimizing the design based on the wave solution can
also be done in an early stage of development where the exact boundary conditions of the
structural components are unknown.

The presented work shows how the beam resonators can be dimensioned to generate mass
optimized acoustic metamaterial with beneficial vibroacoustic performance. There are two
quantities that determine the performance of the metamaterial. First, the broadband perfor-
mance which is determined by the frequency range in which the local resonance suppresses
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the propagation of undamped waves. The larger this frequency range, the better is the broad-
band performance. Second, the maximum spatial decay that occurs at the eigenfrequency
of the resonator. This is denoted as the narrowband performance. A larger spatial decay
at the target frequency of the resonator yields a better narrowband performance. Table 5.6
visualizes the influence of different parameters on the broad- and narrowband performance.
There are four different parameters:

• the total mass of the beam resonator

• the damping of the beam resonator

• the endmass ratio of the beam resonator

• the spacing of the beam resonator

The diagonal entries of the matrix (table 5.6) show the general influence of the parameter
on the performance. The following color show a beneficial or disadvantageous influence:

beneficial
disadvantageous

The off-diagonal entries demonstrate which of the parameters is more relevant for the re-
spective performance. For the comparison the following color scheme is used:

more beneficial
equally beneficial
equally disadvantageous
less beneficial

Each entry in the matrix contains two colors. The first is related to the broadband perfor-
mance, whereas the second is related to the narrowband performance.

broadband / narrowband ↑ total mass ↑ damping ↑ endmass ratio opt. spacing
↑ total mass / / / /
↑ damping / / / /
↑ endmass ratio / / / /
opt. spacing / / / /
Table 5.6: Influence of the different parameters of the local resonator on the broad- and narrowband per-

formance.

The following section explains the information that is summarized in table 5.6. The in-
formation about the influence of the effect of increasing the total mass of the resonator is
contained in the first row. The first entry indicates that increasing the total mass of the
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resonator is beneficial for the broad and narrowband performance. Comparing the influence
of the total mass to the influence of the damping (second entry in the first row), the effect on
the broadband performance is equally beneficial. However, for the narrowband performance
the total mass of the resonator is of greater importance than the damping. Looking at the
other entries of the first row, one can see that the effect of the total mass is more beneficial
for the broad- and narrowband performance than the endmass ratio or the optimal resonator
spacing. Concluding, increasing the total mass of the resonator has the strongest influence
on the broad- and narrowband performance. Therefore, the mass of the resonator should be
as large as possible.

The second row shows the impact of increasing the damping. An increased damping improves
the broadband performance and the benefit of an increased damping is larger then the
benefit of an increased endmass ratio or an optimal resonator spacing. For the narrowband
performance, the damping is disadvantageous. Similarly, the endmass ratio does not improve
the narrowband performance (row three). However, the impact of the endmass ratio is less
significant than the total mass or the damping. In contrast to that, the optimal resonator
spacing improves both the broad and the narrowband performance (row four). However,
for the broadband performance, it is less effective than the other parameters. If an increase
of the total mass of the resonator is impossible, the optimal resonator spacing is the only
alternative to improve the narrowband performance. Although, the benefit is smaller than
the benefit of an increased mass. The optimal resonator spacing depends on the target
frequency and the damping of the resonator.

Besides the investigation of the wave solution, further studies investigated the vibroacoustic
behavior of locally resonant materials. In general, resonant materials tuned to a single
frequency generate multiple resonance peaks in the vicinity of the target frequency. The
reason for that are the multiple eigenfrequencies due to the local resonators. These additional
resonances can increase the radiated sound power for some frequencies. Parameters as the
mass or the damping of the resonators can be adjusted to avoid spectral peaks of increased
sound radiation, however, this also deteriorates the vibration reduction and sound reduction
at the target frequency of the resonator. Therefore, one has to gauge the parameters of the
resonators.
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6 Conclusion

The trade-off between reduced mass and reduced acoustic performance of conventional
lightweight components is crucial for future aircraft and vehicle applications. Innovative
high-efficient propulsion might intensify this trade-off. Conventional measures are only ef-
fective for higher frequencies and implicate an increase of the mass of the overall structure.
Therefore, there is a need for novel lightweight metamaterials that improve the vibroacoustic
performance without a notable increase of the overall mass. Acoustic metamaterials show
great potentials for low mass lightweight structures with improved vibroacoustic properties.
In many examples, acoustic metamaterials have dynamically modified properties as negative
density, negative compressibility, or negative refraction. The general idea of negative effec-
tive material constants offers novel design opportunities for future lightweight components.
Such unconventional material properties result from the evaluation of the material properties
on the macro scale. However, metamaterials consists of sub elements scaled below the wave-
length of the media it interferes with. This microscopic dimensioning yields macroscopic
properties that seems to be beyond the limits of conventional materials.

In general, there are many different concepts of acoustic metamaterials. This thesis focuses
on two concepts for the design of novel lightweight structures with beneficial vibroacoustic
properties. The first concept is based on the idea of so called "acoustic black holes". The idea
is to capture bending waves at predefined locations to reduce structure borne noise. Local
thickness reductions with additional damping treatment effectively dissipate large amounts
of vibrational energy. An advantage of this concept is the potential to reduce the mass of
the overall structure, while the vibroacoustic properties improve on a large frequency range.
In this work, comparisons between structural components with and without local thickness
reduction demonstrate the increased energy dissipation at localized damping treatments and
explain the resulting lower amplitudes of the vibration and the reduction of the radiated
sound power. Beyond that, the presented numerical studies reveal that a smooth thickness
profile generating a smooth impedance transition is not generally necessary to maximize
the performance. Studies of different thickness profiles explain the particular influence on
the macroscopic behavior of the structure. Based on that, the presented studies show that
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an abrupt thickness profile with localized damping measures outperforms smooth profiles
with similar damping measures on a wide frequency range. The benefit of a smooth ABH
configuration only emerge for low frequencies.

The second concept, which is investigated in detail, are locally resonant materials. The ad-
vantage of this concept is that local resonances modify the vibroacoustic properties of the host
structure in desired frequency ranges. Such materials are suitable for specific narrow-band
excitation scenarios. In vehicles, such phenomena result from the blade passing frequency of
propellers, the gear mechanism or other narrow-band noise induced by the engines. Due to
the different scales of the resonating sub structures and the host structure, various modeling
aspects for locally resonant materials are covered. The focus of this work are beam-like
resonators. The author derives the relation between the dynamic behavior of beam-like
resonators and simple SDOF systems. In general, resonant materials strongly improve the
vibroacoustic performance at the target frequency of the resonators. However, slightly below
and above the target frequency, multiple additional resonances occur. The reason for that
are the multiple eigenfrequencies due to the local resonators. A detailed discussion about
the sound radiation of such materials clarifies under which circumstances the additional
resonances result in an increased sound radiation.

It was shown that parameter studies based on the unit cell are suitable to evaluate the
performance of periodic materials. Applying the Wave Finite Element Method to compute
the wave solutions, it is possible to identify the stop band characteristics.

The novelty of the presented methodology is the computation of the spatial decay charac-
teristics in the stop band. It is shown how the spatial decay is linked to the motion of the
structure in the vicinity of the target frequency. Therefore, the spatial decay can be used to
evaluate the performance of the resonators and derive design criteria for optimized resonant
materials. The benefit of this procedure is that it only requires a detailed model of a single
unit cell. This reduces the computational effort and offers the possibility to directly link the
dimensioning of the local resonances to the wave propagation that occurs in the material. As
the procedure does not require knowledge of the boundary conditions of the host structure it
can be used in an early stage of development. The procedure is applied for mass optimized
locally resonant materials. For beam-like resonators, an optimal resonator spacing exists
that maximizes the spatial decay at the target frequency of the resonator. Furthermore, it is
also possible to maximize the stop band size based on the dimensioning of the resonators.
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A Appendix

A.1 Derivation of solution for the beam in bending with

varying thickness

The force equilibrium at an infinitesimal beam element yields the governing equation for the
beam in bending.

Figure A.1: Force equilibrium at the infinitesimal beam element.

The shear forces Q changes by ∂Q
∂x
dx. The inertia term consists of the mass m of the element

and the acceleration ẅ. Balancing all forces along the infinitesimal element yields

−mẅ + q(x)dx+ (Q+ ∂Q

∂x
dx)−Q = 0 (A.1)

with

m(x) = ρA(x) dx . (A.2)
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The cross section A of the beam and the mass m vary with spatial coordinate x. ρ is the
density of the material. Inserting the varying mass m(x), the force equilibrium (A.1) results
in

−ρA(x)dx ẅ + q(x)dx+ ∂Q

∂x
dx = 0 . (A.3)

Subsequently, (A.3) is divided by dx:

−ρA(x)ẅ + q(x) + ∂Q

∂x
= 0 . (A.4)

According to Euler-Bernoulli beam theory, the shear force Q is

Q = − ∂

∂x

(
EI(x)∂

2w

∂x2

)
, (A.5)

with E being the Young’s modulus. Inserting (A.5) in (A.4) yields

−ρA(x)ẅ + q(x)− ∂2

∂x2

(
EI(x)∂

2w

∂x2

)
= 0 . (A.6)

In the following, it is assumed that the external loading q(x) is zero and that the beam
oscillates harmonically with a frequency Ω.

w =
¯
we iΩt (A.7)

¯
w is a complex amplitude. i is the imaginary unit and t is the time variable. The acceleration
ẅ is computed by deriving w twice with respect to time t

ẇ = iΩ
¯
we iΩt = iΩw ,

ẅ = −Ω2

¯
we iΩt = −Ω2w . (A.8)

Consequently, (A.6) transforms to

ρA(x)Ω2

¯
w − ∂2

∂x2

(
EI(x)∂

2
¯
w

∂x2

)
= 0 . (A.9)
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In the next step, one defines the varying thickness and width as presented in [Mironov and
Gladilin 2016]

h(x) = h0(x/x0)2 , (A.10)
d(x) = d0(x/x0)α . (A.11)

h0 and d0 describe the initial thickness and initial width, receptively. x0 marks the location
where the uniform cross section ends and the profile reduction starts. Consequently, the
cross section A and the area moment of inertia I are

A(x) = h0d0

x2+α
0

x2+α (A.12)

I(x) = h3
0d0

12x6+α
0

x6+α . (A.13)

Inserting (A.12) and (A.13) in the equation of motion (A.9) yields

ρ
h0d0

x2+α
0

x2+αΩ2

¯
w − ∂2

∂x2

(
Eh3

0d0

12x6+α
0

x6+α∂¯
w2

∂x2

)
= 0 . (A.14)

After dividing both sides with Eh3
0d0

12x6+α
0

the expression simplifies

12ρΩ2

E

(
x2

0
h0

)2

x2+α

¯
w − ∂2

∂x2

(
x6+α∂

2
¯
w

∂x2

)
= 0 . (A.15)

The solution of (A.15) has the form [Mironov and Gladilin 2016]

¯
w(x) = xγ . (A.16)

Inserting this approach results in

12ρΩ2

E

(
x2

0
h0

)2

x2+α+γ − ∂2

∂x2

(
x4+α+γγ (γ − 1)

)
= 0 . (A.17)

Resolving the second derivative with respect to x simplifies the expression

12ρΩ2

E

(
x2

0
h0

)2

x2+α+γ − x2+α+γ ((4 + α + γ) (3 + α + γ) γ (γ − 1)) = 0 . (A.18)
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A division with x2+α+γ leads to an forth order expression for ν

12ρΩ2

E

(
x2

0
h0

)2

− (4 + α + γ) (3 + α + γ) γ (γ − 1) = 0 . (A.19)

To simplify this expression, [Mironov and Gladilin 2016] substitute γ with χ− α+3
2

12ρΩ2

E

(
x2

0
h0

)2

−
(
χ+

(5
2 + α

2

))(
χ+

(3
2 −

α

2

))(
χ−

(3
2 + α

2

))(
χ−

(5
2 + α

2

))
= 0 .

(A.20)

Applying (a− b)(a+ b) = a2 − b2 twice reveals a further simplification to

12ρΩ2

E

(
x2

0
h0

)2

−
(
χ2 −

(
α + 5

2

)2)(
χ2 −

(
α + 3

2

)2)
= 0 . (A.21)

This leads to a bi-quadratic equation for χ

χ4 − χ2
((

α + 5
2

)2
+
(
α + 3

2

)2)
+
(
α + 5

2

)2 (α + 3
2

)2
− 12ρΩ2

E

(
x2

0
h0

)2

= 0 . (A.22)

An additional substitution of ι = χ2 leads to two solutions

ι1,2 = 1
2

((
α + 3

2

)2
+
(
α + 5

2

)2)
(A.23)
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Consequently, there exist four solution for γ = χ− α+3
2

γ1,2,3,4 = −α + 3
2 ±

1
2
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α + 3

2

)2
+
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α + 5

2

)2)
(A.25)
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)2)2

−
(
α + 5

2

)2 (α + 3
2

)2 12ρΩ2

E

(
x2

0
h0

)2
  1

2

(A.26)
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A.2 Derivation of the amplification functions for the

two-DOF-oscillator

ks

m

creskres

mres

c

wres = w + wrel

w

f(t)

Figure A.2: The two-DOF-oscillator.

The differential equation describing the two-DOF-oscillator is

f(t)−mẅ − cẇ − ksw + cresẇrel + kreswrel = 0 , (A.27)
−mres(ẅrel + ẅ)− cresẇrel − kreswrel = 0 . (A.28)

Reordering and a further division of A.27 by m and A.28 by mres leads to

ẅ + c

m
ẇ + ks

m
w − cres

m
ẇrel −

kres
m

wrel = f(t)
m

, (A.29)

ẅrel + ẅ + cres
mres

ẇrel + kres
mres

wrel = 0 . (A.30)

With the definition of the eigenfrequency ω = ks
m

and the damping ratio D = c
ccrit

= c
2mω

the eigenfrequency and damping ratio of the main structure and of the resonator can be
introduced

ẅ + 2ωDẇ + ω2w − 2mres

m
ωresDresẇrel −

mres

m
ω2
reswrel = f(t)

m
, (A.31)

ẅrel + ẅ + 2ωresDresẇrel + ω2
reswrel = 0 . (A.32)

In the next step the mass ratio µ = mres
m

is introduced

ẅ + 2ωDẇ + ω2w − 2µωresDresẇrel − µω2
reswrel = f(t)

m
, (A.33)

ẅrel + ẅ + 2ωresDresẇrel + ω2
reswrel = 0 . (A.34)
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The two force balances (A.33) and (A.34) can be written in matrix notation
1 0

1 1


︸ ︷︷ ︸

M

 ẅ

ẅrel


︸ ︷︷ ︸

ẅ

+
2ωD −2µωresDres

0 2ωresDres


︸ ︷︷ ︸

C

 ẇ

ẇrel


︸ ︷︷ ︸

ẇ

+
ω2 −µω2

res

0 ω2
res


︸ ︷︷ ︸

K

 w

wrel


︸ ︷︷ ︸

w

=
f(t)

m

0


︸ ︷︷ ︸

f

. (A.35)

The matrices M, C and K are named mass, damping and stiffness matrix. The external
force f(t) is an harmonic force with frequency Ω that acts on the main structure

f(t) =
¯
fe iΩt . (A.36)

The steady state solution will oscillate with the same frequency as the excitation frequency.
Therefore, for the particular solution, the following approach is applied [Petersen 1996]

¯
w =

¯
we iΩt . (A.37)

Inserting (A.36), (A.37) and the respective time derivatives in (A.35) yields
−Ω2

1 0
1 1

+ iΩ
2ωD −2µωresDres

0 2ωresDres

+
ω2 −µω2

res

0 ω2
res


¯
we iΩt

=
 ¯
f

m

0

 e iΩt .

The exponential terms e iΩt cancel
−Ω2 + i2ΩωD + ω2 −i2ΩµωresDres − µω2

res

−Ω2 −Ω2 + i2ΩωresDres + ω2
res

 ¯
w

¯
wrel


︸ ︷︷ ︸

¯
w

=
 ¯
f

m

0

 . (A.38)

From the second line in (A.38), we can relate
¯
wrel to ¯

w

¯
wrel = Ω2

−Ω2 + i2ΩωresDres + ω2
res ¯
w . (A.39)

Inserting this into the first line of (A.38), yields
(
−Ω2 + i2ΩωD + ω2 + (−i2ΩµωresDres − ω2

resµ)Ω2

−Ω2 + i2ΩωresDres + ω2
res

)
¯
w = ¯

f

m
. (A.40)
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Thus, the solution of
¯
w and

¯
wrel are

¯
w = ¯

f

m

a+ ib

c+ id
, (A.41)

¯
wrel = ¯

f

m

Ω2

c+ id
, (A.42)

with

a = ω2
res − Ω2 , (A.43)

b = 2ΩωresDres , (A.44)
c = Ω4 − Ω2(ω2 + ω2

res + µω2
res + 4ωωresDDres) + ω2

1ω
2
res , (A.45)

d = 2Ω
(
ωD(ω2

res − Ω2) + ωresDres(ω2 − Ω2 − µΩ2)
)
. (A.46)

The absolute value of the deflections |w| and |wrel| depends on the amplitude f0 of the
excitation

|
¯
w| = f0

m

√
a2 + b2

c2 + d2 , (A.47)

|
¯
wrel| =

f0

m

√
Ω4

c2 + d2 . (A.48)

In a next step, the displacement amplitudes are normalized with the static deflection wstat =
f0
ks
. Furthermore, one introduces the frequency ratio α = Ω

ω
and β = ωres

ω
. This results in the

amplifications functions V and Vrel

V = |
¯
w|
wstat

=
√
e2 + f 2

g2 + h2 , (A.49)

Vrel = |¯
wrel|
wstat

=
√

α4

g2 + h2 . (A.50)

with

e = β2 − α2 , (A.51)
f = 2αβDres , (A.52)
g = α4 − α2(1 + β2 + µβ2 + 4βDDres) + β2 , (A.53)
h = α[2D(β2 − α2) + 2βDres(1− α2 − µα2)] . (A.54)
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A.3 Influence of the damping and the tuning of the

two-DOF-oscillator

This section discusses the influence of the damping Dres and the tuning β of the resonator.

Figure A.3: Influence of the damping ratio of the resonator on the amplification functions; damping ratio of
the main structure D = 0, mass ratio µ = 0.05 and frequency tuning of the resonator β = 1;
the dashed line indicates the original structure without the resonator.

Figure A.3 shows the amplification functions for a varying damping ratio. The mass ratio µ
is 0.05. The main structure is undamped (D = 0) and the resonator frequency is equal to
the resonance frequency of the host structure (β = 1). In theory, an undamped resonator
(Dres = 0) is able to reduce the vibration amplitude of the main structure at the resonance
frequency ω to zero. Nevertheless, two peaks of large deflection of the main structure appear
for excitation frequency slightly smaller and higher than ω. The larger the damping ratio,
the larger the deflection of the main structure at the resonance frequency. The advantage of
an increasing damping is that the two peaks that split up the resonance peak of the main
structure also decreases. As previously, the relative motion of the resonator is larger than
the motion of the main structure.

In the following, the influence of the frequency tuning of the resonator is investigated. Fig-
ure A.4 shows the influence of three different frequency tunings: one tuning where the
resonance frequency of the resonator is slightly lower, the second tuning where the reso-
nance frequency of the resonator is equal to the resonance of the main structure and a third
tuning with a resonance frequency slightly higher than the resonance frequency of the main
structure. With the tuning, the two frequency peaks and the minimum are shifted.

In general, one might be interested in optimal choices of parameters of the resonator. The
optimal parameter set depends on the objective to minimize. For example, if the objective
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Figure A.4: Influence of the frequency of the res on the amplification functions; damping ratio of the main
structure D = 0, damping ratio of the resonator Dres = 0.01 and mass ratio µ = 0.05; the
dashed line indicates the original structure without the resonator.

is to minimize the deflection at a specific frequency, one would prefer very low damping
ratio of the resonator. Asami et al [2002] gives an overview of existing optimal parameters
for different optimization objectives as well as optimal parameters of resonators for damped
structures. In practice, undamped material does not exist. Furthermore, the accuracy of the
manufacturing processes are limited. Therefore, the choice of optimal parameters should be
investigated in the range of these limits.

Classically, the optimal tuning and damping of the resonator is assumed to be found when
the two resonance peaks have the same height. This is achieved with setting the fix points
A and B in figure A.3 to the same height [Hartog 1956]

βopt = 1
1 + µ

, (A.55)

Dres,opt =
√

3µ
8 · (1 + µ)3 . (A.56)

In many applications, the material defines the damping constant and can not be chosen
arbitrarily. In that case the (A.55) cannot be applied. For very low damping ratios as they
might occur using a metamaterial based on alloys, the optimal tuning should be optimized
separately. Table A.1 illustrates the improvement of the amplification function when the
tuning β is optimized for a fixed damping ratio. The objective is to minimize the maximum
value of the amplification factor. As previously, the main structure is undamped (D1 = 0),
the mass of the res is 5% of the main mass. The optimal tuning based on (A.55) for a mass
ratio µ of 0.05 is 0.952.
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DD βopt Improvement
0.1 0.955 >2%
0.05 0.961 >7%
0.02 0.964 >10%

Table A.1: Optimal tuning for a fixed damping ratio; the mass ratio µ is 5%.
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A.4 Geometry parameters of beam-like resonators

Design tB wB l1 l2 13 tm
1 0.3 mm 1.0 mm 15.8 mm 2.5 mm 5.0 mm 1.0 mm
2 0.3 mm 1.0 mm 13.3 mm 2.5 mm 5.0 mm 1.0 mm
3 0.3 mm 1.0 mm 10.3 mm 2.5 mm 5.0 mm 1.0 mm
4 0.3 mm 1.2 mm 10.9 mm 2.5 mm 5.0 mm 1.0 mm
5 0.3 mm 1.3 mm 11.1 mm 2.5 mm 5.0 mm 1.0 mm
6 0.3 mm 1.4 mm 8.2 mm 2.5 mm 5.0 mm 1.0 mm
7 0.3 mm 1.4 mm 8.0 mm 2.5 mm 3.9 mm 1.0 mm
8 0.3 mm 1.4 mm 7.5 mm 2.5 mm 3.9 mm 1.0 mm
9 0.3 mm 1.4 mm 7.2 mm 2.5 mm 3.9 mm 1.0 mm
10 0.3 mm 1.5 mm 6.9 mm 2.5 mm 3.5 mm 1.0 mm
11 0.3 mm 1.5 mm 6.7 mm 2.5 mm 2.9 mm 1.0 mm
12 0.3 mm 1.5 mm 6.2 mm 2.5 mm 2.9 mm 1.0 mm
13 0.4 mm 1.5 mm 7.9 mm 2.5 mm 2.9 mm 1.0 mm
14 0.3 mm 1.7 mm 6.0 mm 1.1 mm 3.8 mm 1.0 mm
15 0.3 mm 2.1 mm 8.7 mm 0.7 mm 0.7 mm 0.2 mm
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A.5 Derivation of the amplification function of the beam-like

resonator

f(t) x

ks

m

w
wb(x)

mtip, Itip

Figure A.5: Translation of the beam-like resonator with tip mass to a discrete mass-spring system.

The motion of the beam is described with the relative motion wb, which can be described
by a sum of the mode shapes of a clamped cantilever beam

¯
wb(x) =

∞∑
r=1 ¯

w0,rΦr . (A.57)

According to Erturk and Inman [2011], the mode shapes of a cantilever beam with tip mass
are

Φr = cos λr
L
x− cosh λr

L
x+ Yr

(
sin λr

L
x− sinh λr

L
x

)
, (A.58)

with

Yr =
sin λr − sinh λr + λr

mtip
mbeam

(cosλr − cosh λr)
cosλr + cosh λr − λr mtip

mbeam
(sin λr − sinh λr)

. (A.59)

The corresponding λr results from the solution of the equation

1 + cosλ cosh λ+ λ
mtip

mbeam

(cosλ sinh λ− sin λ cosh λ)

−λ3 Itip
mbeamL2 (coshλ sin λ+ sinh λ cosλ) + λ4 mtipItip

m2
beamL

2 (1− cosλ cosh λ) = 0 , (A.60)

where Itip is the mass moment of inertia of the tip mass at x = L. Figure 4.9 shows the
influence of the tip mass and the mass moment of inertia on the mode shapes of the beam.
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The generalized quantities for the base excited clamped beam with tip mass are

mr = ρA
∫ L

0
Φ2
r(x)dx+mtipΦ2

r|x=L + Itip
λ2
r

L2 Φ̃′2r |x=L , (A.61)

with Φ̃′r|x=L = − sin λr − sinh λr + Yr (cosλr − cosh λr) , (A.62)

kr = EI
∫ L

0
Φ′′2r dx = EI

λ4
r

L4

∫ L

0
Φ̃2
rdx , (A.63)

with Φ̃′′r = − cos λr
L
x− cosh λr

L
x+ Yr

(
− sin λr

L
x− sinh λr

L
x

)
, (A.64)

pr =
∫ L

0
p(x)Φrdx = Ω2

(
ρA

∫ L

0
Φrdx+mtipΦr|x=L

)
wbase . (A.65)

In the example shown in figure A.5, the base excitation is the motion of the SDOF system
(wbase = w). Using the generalized quantities, the following equation describes the steady
state solution of the motion of the beam due to a harmonic base excitation

¯
w(

−Ω2
(
ρA

∫ L

0
Φ2
r(x)dx+mtipΦ2

r|x=L + Itip
λ2
r

L2 Φ̃′2r |x=L

)
+ EI

λ4
r

L4

∫ L

0
Φ̃′′2r dx

)
¯
wr,0

−Ω2
(
ρA

∫ L

0
Φrdx+mtipΦr|x=L

)
¯
w = 0 .

(A.66)

Dividing by ρA
∫ L

0 Φ2
r(x)dx yields

(
−Ω2(1 + ζξ1 + τξ2) + ωr,beamξ3

)
¯
wr,0 − Ω2 (ξ4 + ζξ5)

¯
w = 0 . (A.67)

The parameters ζ = mtip
ρAL

describes the mass ratio between tip mass and mass of the beam.
Respectively, the ratio τ = Itip

mbeamL2 describes the relation between the mass moments of
inertia of the tip mass and the beam. The parameters ξi contain information about the
shapes of the deformation. These parameters are dimensionless and are independent of the
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geometry of the beam-like resonator. They only depend on the mode shape Φr

ξ1,r = L
Φ2
r|x=L∫ L

0 Φ2
r(x)dx

, (A.68)

ξ2,r = Lλ2
r

Φ′2r |x=L∫ L
0 Φ2

r(x)dx
, (A.69)

ξ3,r =
∫ L
0 Φ̃′′2r dx∫ L

0 Φ2
r(x)dx

, (A.70)

ξ4,r =
∫ L
0 Φrdx∫ L

0 Φ2
r(x)dx

, (A.71)

ξ5,r = L
Φr|x=L∫ L

0 Φ2
r(x)dx

. (A.72)

As previously, the division with the resonance frequency of the host structure in figure A.5
ω2 = ks/m enables the introduction of the dimensional frequency ratios α = Ω

ω
and βr =

ωr,beam
ω (

β2
r ξ3,r − α2(1 + ζξ1,r + τξ2,r)

)
¯
wr,0 − α2 (ξ4,r + ζξ5,r) ¯

w = 0 . (A.73)

The derivation of the motion w of the mass m is similar as for the cantilever beam without
end mass

(
−Ω2m+ ks

)
¯
w −Q(x = 0) =

¯
f , (A.74)

where the shear force at x = 0 is

¯
Q(x = 0) = −EI

∞∑
l=1 ¯

wl,0
λ3
l

L3

[
sin λl

L
x− sinh λl

L
x+ Yl

(
− cos λl

L
x− cosh λl

L
x

)]
x=0

= 2EI
∞∑
l=1

λ3
l

L3Yl¯
wl,0 . (A.75)

Inserting the link between λl and the first eigenfrequency of the beam ω2
l,beam = λ4

l

L4
EI
ρA

, the
shear force at the beginning is

¯
Q(x = 0) = 2EI

∞∑
l=1

λ3
l

L3 ¯
wl,0 = 2ρAL

∞∑
l=1

Yl
λl
ω2
l,beam¯

wl,0 . (A.76)
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Inserting (A.76) in (A.74) and dividing it by the mass of the host structure m results in
(
−Ω2 + ks

m

)
¯
w − 2ρAL

m

∞∑
l=1

Yl
λl
ω2
l,beam¯

wl,0 = ¯
f

m
. (A.77)

Again, the division by the square of the eigenfrequency of the main structure ω2 enables the
introduction of the dimensionless frequency ratios α = Ω

ω
and βl = ωl,beam

ω

(
1− α2

)
¯
w − 2ρAL

m

∞∑
l=1

Yl
λl
β2
l ¯
wl,0 = ¯

f

ks
(A.78)

Using the mass ratios µ = mtip+mbeam
m

and ζ = mtip
mbeam

the term ρAL
m

equals µ
1+ζ

(
1− α2

)
¯
w − 2 µ

1 + ζ

∞∑
l=1

Yl
λl
β2
l ¯
wl,0 = ¯

f

ks
(A.79)

Consequently, the following two equations describe the motion of the mass and the beam-like
resonator

(
1− α2

)
¯
w − 2 µ

1 + ζ

∞∑
l=1

Yl
λl
β2
l ¯
wl,0 = ¯

f

ks
, (A.80)(

β2
r ξ3,r − α2(1 + ζξ1,r + τξ2,r)

)
¯
wr,0 − α2 (ξ4,r + ζξ5,r) ¯

w = 0 . (A.81)

¯
w describes the amplitude of the displacement of host structure and

¯
wr the amplitudes of

mode r of the relative beam motion. Reformulating (A.81) yields

¯
wr,0 = α2 (ξ4,r + ζξ5,r)

β2
r ξ3,r − α2(1 + ζξ1,r + τξ2,r) ¯

w . (A.82)

Inserting (A.82) in (A.80) results in

(
1− α2

)
¯
w − 2 µ

1 + ζ

∞∑
l=1

Yl
λl

β2
l α

2 (ξ4,l + ζξ5,l)
β2
l ξ3,l − α2(1 + ζξ1,l + τξ2,l) ¯

w = ¯
f

ks
, (A.83)

which can be rearranged to solve for
¯
w

¯
w = ¯

f

ks

1

(1− α2)− 2 µ
1+ζ

∑∞
l=1

Yl
λl

β2
l
α2(ξ4,l+ζξ5,l)

β2
l
ξ3,l−α2(1+ζξ1,l+τξ2,l)

. (A.84)
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Plugging in (A.84) in (A.82) solves for the unknown beam deflection
¯
wr,0

¯
wr,0 = ¯

f

ks

α2 (ξ4,r + ζξ5,r)
β2
r ξ3,r − α2(1 + ζξ1,r + τξ2,r)

1

(1− α2)− 2 µ
1+ζ

∑∞
l=1

Yl
λl

β2
l
α2(ξ4,l+ζξ5,l)

β2
l
ξ3,l−α2(1+ζξ1,l+τξ2,l)

. (A.85)

Around a resonance frequency of the beam (α ≈ βr), a single term dominates the summation.
Therefore, it is possible to simplify the summation in that frequency range

∞∑
l=1

Yl
λl

β2
l α

2 (ξ4,l + ζξ5,l)
β2
l ξ3,l − α2(1 + ζξ1,l + τξ2,l)

≈ Yr
λr

β2
rα

2 (ξ4,r + ζξ5,r)
β2
r ξ3,r − α2(1 + ζξ1,r + τξ2,r)

(A.86)

Using this it is possible to approximate the displacement for frequencies around the target
frequency of the resonator

¯
w ≈ ¯

f

ks

β2
r ξ3,r − α2(1 + ζξ1,r + τξ2,r)

(1− α2) (β2
r ξ3,r − α2(1 + ζξ1,r + τξ2,r))− 2 µ

1+ζ
Yr
λr
β2
rα

2 (ξ4,r + ζξ5,r)
, (A.87)

¯
wr,0 ≈ ¯

f

ks

α2 (ξ4,r + ζξ5,r)
(1− α2) (β2

r ξ3,r − α2(1 + ζξ1,r + τξ2,r))− 2 µ
1+ζ

Yr
λr
β2
rα

2 (ξ4,r + ζξ5,r)
. (A.88)

Again, normalizing the absolute values of the deflections with the static deflection wstat = |
¯
f |
ks

results in the amplification function for the host structure and the relative motion of the
beam

V ≈

√√√√√ (β2ξ3,r − α2(1 + ζξ1,r + τξ2))2(
(1− α2) (β2

r ξ3,r − α2(1 + ζξ1,r + τξ2,r))− 2Yr
λr

µ
1+ζβ

2
rα

2 (ξ4,r + ζξ5,r)
)2 ,

(A.89)

Vr,0 ≈

√√√√√ α4 (ξ4,r + ζξ5,r)2(
(1− α2) (β2

r ξ3,r − α2(1 + ζξ1,r + τξ2,r))− 2Yr
λr

µ
1+ζβ

2α2 (ξ4,r + ζξ5,r)
)2 .

(A.90)
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A.6 Evaluation of the structural intensities (STI)

The STI represents the power flow in the material. It is useful to gain insights about
the directional flow of energy of structure-borne sound. The STI is a non-complex vector
quantity, which depends on the stresses and the velocities in the structure. The components
of structural intensity are computed according to Pavic [1987] as

Ix = −0.5Re{
¯
σxx¯

v∗x +
¯
τxy¯
v∗y +

¯
τxz¯
v∗z} ,

Iy = −0.5Re{
¯
τyx¯
v∗x +

¯
σyy¯

v∗y +
¯
τyz¯
v∗z} , (A.91)

Iz = −0.5Re{
¯
τzx¯
v∗x +

¯
τzy¯
v∗y +

¯
σzz¯

v∗z} .

where
¯
σii is the normal stress and

¯
τij is the shear stress. The first subscript indicates the

direction of the surface normal and the second subscript relates to the direction of the stress.

¯
v∗i is the complex conjugate of the velocity. Commercial software packages do not provide the
STI directly. It can be calculated via the provided stresses and velocities. Before evaluating
the STI, be aware of the fact that a standard finite element implementation computes the
stresses accurately at the integration points, whereas the velocities are computed at the
element nodes.

1 2 3
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# Node number
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Figure A.6: Patch of four shell elements.

Before evaluating (A.91), it is necessary to compute stresses and velocities at the same
location. A common way to compute the STI at the nodes is to extrapolate the stresses to
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the nodes [Cook 1989]. As a node is adjacent to several elements, there are different stresses
fields from different elements. For instance, node five (the red marked node in figure A.6)
is connected to four elements. For each element, there exists a stress solution. The nodal
stresses are estimated by averaging the stresses of the four adjacent elements at the location
of node five. To get a reliable results one should check the difference in stress levels in
the adjacent elements. If the stresses show large differences depending on the element, the
averaging can result in inaccurate stresses at the nodes. Further mesh refinement increase
the accuracy of the nodal stress computation. With the nodal stresses, it is possible to
evaluate (A.91) to determine the STI at each node.
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A.7 Modeshapes of beams with different thickness profiles

Figure A.7 shows the first twelve modes of three different beams. As expected, the indenta-
tion decreases the stiffness of the structure and reduce the eigenfrequencies of each mode. As
the abrupt thickness profile (ABH step) has a stronger effect on the stiffness of the structure,
the respective eigenfrequencies are lower than the eigenfrequencies of the respective modes of
the beam with the smooth profile (ABH 2-2). Furthermore, the local thickness indentation
generates a locally pronounced modeshape. These observation also hold for the beams with
additional constrained layer damping (CLD). Figure A.8 shows the respective modes for the
beams modified by a CLD.

Figure A.8 shows the impact of the CLD. First, the eigenfrequencies of the uniform beams
are compared. Up to the forth mode, the beams with CLD have larger eigenfrequencies than
the beams without the CLD. Thus, up to the forth mode the eigenfrequencies increase due to
the increased stiffness. For higher modes, the beams with CLD have lower eigenfrequencies.
For the larger modes the increased mass due to the CLD decreases the eigenfrequencies.
Comparing the beams with indentations, the stiffening effect of the CLD holds for more
modes. For the beam with the smooth thickness reduction (ABH 2-2), the stiffening of the
CLD increases the eigenfrequencies up to the fifth mode, whereas for the abrupt thickness
profile (ABH step), the eigenfrequencies increase up to the eighth mode.
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Figure A.7: Modeshapes of the first twelve modes of beams with different thickness profiles (without
CLD). Remark: The strongly varying thickness of the beams is an artifact that results from
squeezing the deformation pattern along the beam axis.
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Figure A.8: Modeshapes of the first twelve modes of beams with different thickness profiles with CLD.
Remark: The strongly varying thickness of the beams is an artifact that results from squeezing
the deformation pattern along the beam axis.
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A.8 Wavenumber spectra of beams with different thickness

profiles

The following section explains the transformation of a variable into the Fourier domain

¯
v(x)

F

V (k) . (A.92)

The following derivations are based on the derivations in Müller [2019a].

The radiated power from a structure into the adjacent fluid depends on the velocity distri-
bution of the structure. In general, only the vertical displacements significantly contribute
to the sound power radiated into the far-field. Therefore, one only considers the velocity

¯
v(x) perpendicular to the surface. The vertical velocity

¯
v(x) results from a finite element

model which therefore is a discrete function in space

¯
v (x) ∆0 (x) =

¯
v (x)

∞∑
n=−∞

δ∗ (x− nXs)

=
∞∑

n=−∞¯
v (nXs) δ∗ (x− nXs)

(A.93)

with

δ∗ (x) =

1 for x = 0

0 for x 6= 0
. (A.94)

Xs is the spatial sampling period. As the beam structure is limited in space, the function is
multiplied with a rectangular function r (x)

r (x) =

1 −Xs
2 < x < L0 − Xs

2

0 else
. (A.95)

L0 is the length of the beam. The rectangular function r(x) is chosen in such a way, that its
limits do not coincide with a sampled value to avoid that the last value of a period coincides
with the first value in the next period (these values would be summed up). r(x) can be
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imagined as the range of observation

¯
v (x) ∆0 (x) r (x) =

[ ∞∑
n=−∞¯

v (nXs) δ∗ (x− nXs)
]
r (x)

=
N−1∑
n=0

h (nXs) δ∗ (x− nXs)
. (A.96)

Hint: There are N samples within the rectangle, which are equidistant
(
N = L0

Xs

)
. The

frequency spectrum of the finite length discrete spatial signal is still continuous. To calculate
the values of this spectrum only at equidistant frequencies, it is discretized with ∆1 (x) =
L0
∑∞
m=−∞ δ

∗ (x−mL0).

In the spatial domain, we obtain a convolution with ∆1 (x) leading to a periodic function,
where the sampling frequency fs = 1

L0
is chosen such that an overlap in the spatial domain

is avoided.

[
¯
v (x) ∆0 (x) r (x)] ∗ ∆1 (x)︸ ︷︷ ︸

˜
¯
v(x)

=
[
N−1∑
n=0 ¯

v (nXs) δ∗ (x− nXs)
]
∗ L0

[
N−1∑
m=0

δ∗ (x−mL0)
]

(A.97)

˜
¯
v (x) = . . . + L0

N−1∑
n=0 ¯

v (nXs) δ∗ (x+ L0 − nXs) + (A.98)

+ L0

N−1∑
n=0 ¯

v (nXs) δ∗ (x− nXs) +

+ L0

N−1∑
n=0 ¯

v (nXs) δ∗ (x− L0 − nXs) + . . .

˜
¯
v (x) is the discrete approximation of

¯
v (x). Applying some algebraic transformations, (A.98)

is written in a short form

˜
¯
v (x) = L0

∞∑
m=−∞

N−1∑
n=0 ¯

v (nXs) δ∗ (x− nXs −mL0)
 . (A.99)

Using a Fourier series, the Fourier transform of the discrete periodic function ˜
¯
v (x) can be

expressed as a sum of equidistant δ∗ functions.

V
(
r

L0

)
=

∞∑
r=−∞

αr δ
∗ (f − r f0) with: f0 = 1

L0
(A.100)
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where

αr = 1
L0

L0−Xs2∫
−Xs2

˜
¯
v (x) e−i2πr

x
L0 dx with: r = 0, ± 1, ± 2, . . . (A.101)

Inserting (A.99) leads to

= 1
L0

L0−Xs2∫
−Xs2

L0

∞∑
m=−∞

N−1∑
n=0 ¯

v (nXs) δ∗ (x− nXs −mL0) e−i2πr
x
L0 dx (A.102)

The integral is evaluated over one period and the simplified equation is

αr =
L0−Xs2∫
−Xs2

N−1∑
n=0 ¯

v (nXs) δ∗ (x− nXs) e−i2πr
x
L0 dx (A.103)

=
N−1∑
n=0 ¯

v (nXs)
L0−Xs2∫
−Xs2

δ∗ (x− nXs) e−i2πr
x
L0 dx

=
N−1∑
n=0 ¯

v (nXs) e−i2πn r
Xs
L0 (A.104)

with: L0 = N Xs

αr =
N−1∑
n=0 ¯

v (nXs) e−i2πn
r
N ; r = 0, ± 1, ± 2, . . . (A.105)

Finally, we obtain for (A.100):

V
(

r

N Xs

)
=

∞∑
r=−∞

N−1∑
n=0 ¯

v (nXs) e−i2πn
r
N δ (f − rf0) (A.106)

V
(

r

NXs

)
is periodic with respect to a period N

V
(

r

N Xs

)
=

N−1∑
n=0 ¯

v (nXs) e−i2πn
r
N r = 0, 1, . . . N − 1 . (A.107)
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(A.107) is the discrete Fourier transform, which assigns N sampled values of a function in
the transformed domain to N sampled values of an original function in the spatial domain
using the continuous Fourier transform.

Using this transformation, the discrete vertical velocity of the beam is transformed into the
discrete wavenumber domain.

˜
¯
v(x)

F

V (k) . (A.108)

As demonstrated in section 2.5.1, the wavenumber spectrum of the structural motion gives
information about the sound radiation. For the sound radiation, the squared absolute value
is required (see (2.39)). The squared absolute value of a complex spectra is

|V (k)|2 = V (k)V (k)∗ . (A.109)

Wavenumber components smaller than the respective wavenumber of the air contribute to
the sound radiation. In the following graphs, the wavenumber of the air is marked with the
respective vertical line.
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Figure A.9: Wavenumber spectra of the vertical surface velocity for beams with different thickness profiles
(without CLD) at different frequencies; the vertical lines mark the corresponding wavenumber
of the air.
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Figure A.10: Wavenumber spectra of the vertical surface velocity for beams with different thickness
profiles (without CLD) at different frequencies; the vertical lines mark the corresponding
wavenumber of the air.
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Figure A.11: Wavenumber spectra of the vertical surface velocity for beams with different thickness pro-
files with CLD at different frequencies; the vertical lines mark the corresponding wavenumber
of the air.
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Figure A.12: Wavenumber spectra of the vertical surface velocity for beams with different thickness pro-
files with CLD at different frequencies; the vertical lines mark the corresponding wavenumber
of the air.
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A.9 Insertion loss of plates with different ABH

The following section evaluates the performance of different ABH configurations in plates,
the author compares the different configurations to the uniform plate. For the energetic
evaluation, the energies are normalized with respect to the input power. This is necessary
to avoid an overlaying interpretation linked to a changes in the input power due to a simple
modal shift. The energetic insertion loss is

∆L = 10 log
(
Euni/Puni
E.../P...

)
[dB] . (A.110)

The thickness profiles are two dimensional circular indentations in a rectangular plate. In
two dimensions the thickness profiles are rotational symmetric with respect to the center
of the indentation. The thickness profiles follow the expression h(r) = εrβ + hmin. The
minimum thickness at the center of the circular indentation is 1 mm and the diameter of
200 mm defines the parameter ε. Figure 5.11 illustrates an exemplary configuration. The
plate’s dimension are 600 × 500 × 3 mm. The material of the plate is titanium. Table 5.2
lists the material properties of titanium. A harmonic surface load which covers the area of
20× 20 mm excites the plates.

The following section investigates various configurations of single and multiple ABH. The
numbering of the ABH in figure 5.11 determines the order in which the ABH are allocated.
The following labeling helps to distinguish the different configurations:

4︸︷︷︸
# of

indentation

ABH︸ ︷︷ ︸
ABH or
uniform

2.2︸︷︷︸
exponent

β

CLD︸ ︷︷ ︸
additional CLD
at indentation

Figure A.13: Insertion loss of a plate with a single ABH profile with different exponents β (without CLD).
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Figure A.14: Insertion loss of a plate with multiple ABH profiles (without CLD).

Figure A.15: Insertion loss of a plate with two different ABH profile with and without additional CLD.

Figure A.16: Insertion loss of a plate with two different ABH profile with CLD and SLD.
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Figure A.17: Insertion loss of a plate with multiple ABH with different profiles and CLD; Comparison of
one (top), two (middle) and four (bottom) incorporated ABH.
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A.10 Influence of the geometry of a beam-like resonator

The following investigation assesses the influence of the geometry on the eigenfrequency, the
mass of the resonator, and the amplification functions V . A coupled beam model (presented
in section 4.1.1) evaluates the eigenfrequency and the amplification function. The beam-like
resonator is coupled to a simple mass-spring system to compute the characteristics of the
amplification function (see figure 5.19).

Figure A.18: Geometric parameters of the beam-like resonator.

The beam-like resonator consists of three segments: a beam segment of length l1, a transition
segment of length l2 and an end mass of length l3. The ALM process limits the overhang
thickness tm to 1 mm and the transition angle to 30◦. Additionally, the installation space is
restricted to

l1 + l2 + l3 ≤ 25 mm , (A.111)
tb + 2tm ≤ 5 mm , (A.112)

wm = wB + 2 tan(60◦)l2 ≤ 25 mm . (A.113)
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Figure A.19: Influence of l1 and l3 on the first eigenfrequency, the mass and and the distance of the
resonance peaks and the minimal value of the amplification function.
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A.11 Wavenumber spectra of beams with attached

resonators

The following section investigates the impact of resonators on the vibration of the structure
and the radiated sound power. The host structure is a beam made of aluminum and has a
length of 1 m and a thickness of 1 cm. Table 5.4 lists the material properties of aluminum.
The beam consists of 100 beam elements. 30 periodic resonators complement the beam. The
model of the beam is shown in figure 5.48. The discrete resonators are added as additional
DOF (see section 4.1.3). All vertical degrees of freedom of the beam are loaded by a single
load. Each single load has an amplitude of 1 N and random phase drawn from the uniform
distribution between −π and +π. This ensures that all bending modes are excited.

Figure A.20: Wavenumber spectra of the vertical surface velocity for beams with 30 periodically attached
resonators (fres = 1242 Hz) at different excitation frequencies; the vertical line marks the
corresponding wavenumber of the air.
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Figure A.21: Wavenumber spectra of the vertical surface velocity for beams with 30 periodically attached
resonators (fres = 1595 Hz) at different excitation frequencies; the vertical line marks the
corresponding wavenumber of the air.
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