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Abstract: The complex formation of grain yield (GY) is related to multiple dry matter (DM) traits;
however, due to their time-consuming determination, they are not readily accessible. In winter wheat
(Triticum aestivum L.), both agronomic treatments and genotypic variation influence GY in interaction
with the environment. Spectral proximal sensing is promising for high-throughput non-destructive
phenotyping but was rarely evaluated systematically for dissecting yield-related variation in DM
traits. Aiming at a temporal, spectral and organ-level optimization, 48 vegetation indices were
evaluated in a high-yielding environment in 10 growth stages for the estimation of 31 previously
compared traits related to GY formation—influenced by sowing time, fungicide, N fertilization,
and cultivar. A quantitative index ranking was evaluated to assess the stage-independent index
suitability. GY showed close linear relationships with spectral vegetation indices across and within
agronomic treatments (R2 = 0.47–0.67 ***). Water band indices, followed by red edge-based indices,
best used at milk or early dough ripeness, were better suited than the widely used normalized
difference vegetation index (NDVI). Index rankings for many organ-level DM traits were comparable,
but the relationships were often less close. Among yield components, grain number per spike
(R2 = 0.24–0.34 ***) and spike density (R2 = 0.23–0.46 ***) were moderately estimated. GY was mainly
estimated by detecting total DM rather than the harvest index. Across agronomic treatments and
cultivars, seasonal index rankings were the most stable for GY and total DM, whereas traits related to
DM allocation and translocation demanded specific index selection. The results suggest using indices
with water bands, near infrared/red edge and visible light bands to increase the accuracy of in-season
spectral phenotyping for GY, contributing organ-level traits, and yield components, respectively.

Keywords: high-throughput; hyperspectral sensing; remote sensing; yield prediction; phenomics;
precision farming; fungicide intensity; nitrogen use efficiency; water band indices; vegetation index

1. Introduction

In wheat, grain yield formation is influenced by various growth factors, including sowing date,
fungicide intensity, N fertilization, and genotypic potential [1–8]. However, treatment effects strongly
differ by environments, and interactions between these agronomic measures are relevant [2,9–12].
Therefore, numerous field trials are required to assess the optimum level of agronomic treatments in
specific cropping regions. On the other hand, plant breeders are compelled to screen large numbers
of genotypes for their yield potential under field conditions [13]. However, owing to the time- and
cost-intensive determination of further traits, most of the trials focus on grain yield (GY) and a few
other traits, such as plant height, anthesis date, and disease incidence. Thus, the primary effects of
the considered treatments are often not addressed, which, however, could optimize the breeding
process [14] or allow cultivar-specific fertilization and fungicide strategies [15,16]. Tested in common
trials, these strategies can be further optimized when accounting for the characteristics of the cultivar
and the cultivar group, i.e., line and hybrid cultivars. The use of non-destructive high-throughput
phenotyping techniques could improve the understanding of GY-related mechanisms and allow
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low-cost objective assessments, thus widening the phenotyping bottleneck. However, it requires
further evaluation with respect to sensor suitability, the selection of spectral vegetation indices (SVI),
and optimum growth stages for measurements [17,18].

Yield formation depends on the photosynthetically active leaf area and biomass as well as its
duration over time, thus demanding the detection of phenology and senescence status, which is often still
visually evaluated [19–21]. However, approximately two-thirds of the vegetative biomass is allocated
to the stems, partially contributing to GY via translocated DM [7,22]. Conversely, spike biomass at
anthesis can be related to the sink size, which is often yield-limiting in wheat [23]. Furthermore, GY is
a function of total dry matter (DM) and its efficient allocation to the grain (harvest index HI; [24]).
Treatments, such as the timing of sowing and N fertilization applied early in the season, may affect total
DM more than the HI, whereas fungicide level often has stronger effects on the HI, and cultivars differ in
both traits [25]. Considering these different treatment effects with respect to biomass accumulation and
allocation, to plant organs and to different growth stages, optimum dates for spectral measurements
may differ; however, they were rarely compared systematically. The same applies to the suitability of
different SVIs, leading to the question whether index selection based on data dominated by ‘agronomic’
treatments, i.e., fungicide, sowing time and N fertilization, can be transferred to data dominated by
genotypic differences, representing breeding trial scenarios [26].

Several studies have reported the useful in-season estimation of GY in wheat [27–36].
Often, increasing correlations until milk ripeness were reported [26,28,37–39], but also heading and
anthesis [39,40] as well as stem elongation–heading [41] were found to be useful, albeit predominantly
for differentiating GY of genotypes. In spring barley, the DM of leaf blades, followed by culms,
was mostly better estimated than that of spikes and leaf sheaths [42]. Studies on wheat breeding lines
suggested red edge (RE)-based SVIs for DM at anthesis and maturity [41,43] and found better estimations
in thin, less-saturated canopies. The detection of N fertilization effects is well established [44,45]
whereas the previous applications of spectral sensing for disease detection focused on leaf level
measurements and imaging techniques for guiding fungicide applications [15,46].

The present study evaluates the spectral estimation of DM data previously reported by Prey et al.
(2019a) [25], including plant- and organ-level DM traits at anthesis and maturity, DM allocation and
translocation as well as yield components in response to two levels of N fertilization, fungicide intensity
and sowing dates for six winter wheat cultivars. It complements an analysis on index-based phenotyping
of the dataset’s N traits [47]. This previous study reported a good estimation of grain N uptake in all
treatment combinations by using RE indices, while the estimation of N translocation, partitioning and
grain N concentration was restricted to the agronomic applications rather than genotypic differences.
However, the index rankings for DM traits may likely differ from those for N traits. Thus, the present
study aimed at evaluating (i) the ability to estimate GY-related DM traits, (ii) the suitability of
vegetation indices, (iii) optimum growth stages, as well as (iv) the differences resulting (i–iii) from the
contributing treatments.

2. Materials and Methods

2.1. Experiment and Plant Sampling

The field trial was conducted as a split-split-plot design with control (Cont)/reduced fungicide
(RF)/early sowing (sowing date 1: SD1) on the main plot (MP), N level (N) on the sub-plot and cultivar
(Cv) on the sub-sub-plot during the 2016/2017 growing season in southeastern Germany (48.406◦ N,
11.692◦ E). Thus, it represented genotypic and management effects, but not that of varying environments.
The soil was homogeneous Cambisol of silty clay loam. The average annual temperature is 7.5 ◦C,
and the annual precipitation is approximately 800 mm. The previous crop was grass-clover, resulting
in high soil N content and dense canopies. Six cultivars (line cultivars Impression, JB Asano and
Kerubino, and hybrid cultivars Hybred, Hyland and Hystar) of winter wheat (Triticum aestivum L.)
were mechanically drilled at a depth of 3 cm with a row spacing of 12.5 cm at 350 kernels m−2. The plots



Agronomy 2020, 10, 603 3 of 19

were 1.5 m wide and 6.4 m long. The cultivars differed in yield components, disease susceptibility, and
phenology. The sowing date was September 28 for SD1, and October 23 for Cont and RF. Each cultivar
was treated at two N levels, applied in two doses (N1: 60 kg N ha−1; N2: 120 kg N ha−1) within
each of the three MPs, and in four replicates per N level, resulting in four replicates for each factor
combination (MP*N*Cv). Foliar fungicide was applied twice in Cont and SD1 plots but not in RF
plots. The study year was characterized by overall favorable weather conditions with above-average
temperatures and radiation during March, May and June in spite of the below-average conditions in
April. Conversely, precipitation was above-average in April and July but below-average in May and
June, leading to mild drought stress and accelerated senescence in some cultivars during the grain
filling phase. See [25] for details on the field trials.

Biomass was sampled at mid-flowering as well as at physiological maturity and manually
separated into flag leaves, flag leaves-1 (second leaf layer from above), ‘other leaves’ (remaining leaves),
culms including leaf sheaths, and spikes. After final sampling, all plots were harvested (August
01–02) using a combine harvester. In addition to organ-level DM traits, derived plant traits were
calculated, including yield components, the harvest index (HI), post-anthesis assimilation (PAA),
dry matter translocation (DMT), DMT efficiency (DMTEff), contribution of PAA to grain filling (CPAA)
as well as N utilization efficiency (NutEff) and N use efficiency (NUE) for total dry matter and GY
at maturity, respectively. Although NutEff and NUE included total N uptake (Nup) and fertilized N
in the calculation, they represent normalized DM traits. Additionally, anthesis date and plant height
were included. Refer to [25] for details and Table S1 for a list of all traits.

2.2. Spectral Measurements and Data Preparation

Spectral measurements were performed on 10 measurement days during the main growth
stages from leaf development at end of March until hard dough ripeness in the middle of July
(Table 1). The measurements were conducted with the PhenoTrac 4 mobile sensor platform [42],
using a hyperspectral bidirectional passive spectrometer (tec5, Oberursel, Germany), measuring at a
nominal resolution of 3.3 nm between 300 and 1000 nm. The distance to the canopy was approximately
80 cm, and plot boundaries were excluded. A recording frequency of 5 Hz along with the RTK-based
localization (real-time kinematic global positioning system; Trimble, Sunnyvale, CA, USA) allowed
gapless coverage of the plots. The spectra were smoothed using a five-band moving average filter [44]
to remove spectral noise.

Table 1. Dates of spectral measurements with days after sowing (d.a.s) and predominant growth stage.

Date (Month/Day) d.a.s. (Cont, RF) Growth Stage

03/31 159 leaf development
04/13 172 tillering
05/17 206 stem elongation
05/25 214 booting
06/01 221 ear emergence
06/08 228 anthesis
06/21 241 early milk
06/26 246 late milk
07/01 251 early dough
07/04 255 soft dough

According to previous studies and similar to [47], 48 SVIs were selected from literature (Table S1).
The indices were grouped per included spectral range (visible light VIS, red edge RE and near-infrared
NIR), with VIS < 700 nm, ‘extended’ RE: 700–765 nm and NIR > 765 nm (Table S2, Figure 1). The upper
RE boundary was higher than that in the common definition to include indices with a NIR/RE band
closer to the RE than the normalized difference vegetation index (NDVI; NIR = 780 nm), because the
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reflection increased until approximately 770 nm (Figure 1). See Table S2 for the equations of all tested
SVIs and Figure 1 for the position of the included bands.
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Figure 1. Plot-level spectra obtained on June 21 with the band position of the tested spectral vegetation
indices colored by index groups: Near infrared (NIR: > 765 nm), visible (VIS: < 700 nm), and extended
red edge (RE: 700–765 nm). The spectra are colored, indicating differences in grain yield from the
lowest yield (yellow) to the medium yield (green) and the highest yield (blue).

2.3. Statistical Analysis

For each sampling date, SVIs were tested using simple linear regression with the DM traits across
the values of the four replicates. The data analysis was conducted in R 3.4, using the lm-function
(R Core Team, 2017). The coefficient of determination (R2) was used to compare the relationships.
Significance levels correspond to p < 0.001 (***), p < 0.01 (**) and p < 0.05 (*). To assess the influence of
the contributing treatments on the trait estimation, the relationships were compared for different data
subsets to consider different treatment combinations either in agronomic factor trials or in breeding
yards: (i) full data, (ii) combined Cont and SD1 data (‘Cont_SD1′), (iii) combined Cont and RF data
(‘Cont_RF’), and (iv) six main plot*N level (MP*N) combinations (Figure 2). Considering the MP*N
blocks as possible trial environments created by the main plot (MP) treatments in combination with
N levels for assessing genotypic variation, as used by plant breeders, the results of these blocks
were averaged and compared for the aggregated, averaged data (n = 6). Testing using different
datasets aimed at assessing the potential for trait estimation under various influencing conditions.
Thus, conditions in (iv) can simulate conditions for phenotyping genotypic variation, whereas those
in i–iii are referred to as ‘agronomic’ conditions. The relationships were compared regarding the
estimation potential by trait, the index ranking and optimum measurement stages.
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Figure 2. Datasets used for testing trait~index relationships. The three ‘agronomic’ datasets correspond
to the data of the whole trial (full data), the combined main plots control (Cont) and ‘reduced fungicide’
(RF -> Cont_RF) as well as the combined main plots Cont and sowing date 1 (SD1 -> Cont_SD1).
Main plot*N (MP*N) represents the testing within the subplots as the interactions of main plots (MP)
and N fertilization level (N1: 60 kg N ha−1; N2: 60 kg N ha−1). N denotes the number of included data
points, which slightly differed after the removal of some outlier plots for all dates.

To overcome the influence of differing growing conditions and the date-specific index ranking,
indices were quantitatively ranked by their normalized performance for each trait in each dataset.
The across-dates (n = 10) mean and maximum coefficients of determination (R2) values of each
index were normalized to the trait-specific average mean and maximum R2 from all SVIs within
each of the three ‘agronomic’ datasets and the MP*N data, respectively. A value > 1 indicated
a comparative advantage of the index for the trait under consideration. Thereafter, the relationships
(R2) and the index rankings were compared between datasets. Consequently, the within-dataset
mean and maximum rankings were summed up (i) across the three ‘agronomic’ datasets and (ii)
for the MP*N dataset, respectively, to achieve a more robust ranking across contributing treatments.
The mean- and maximum-based rankings were combined by summing the rankings for identifying
one index per trait. Considering a selection of indices robust towards date-specific suitability as more
important, the mean-based ranking was double-weighted. These weighted mean/maximum-rank sums
(WMMRS) were used to identify one trait-specific optimum index from the ‘agronomic’ approach,
irrespective of the R2 level achieved, with WMMRS of < 9 indicating below-average and WMMRS of >

9 above-average index performance for a specific trait. The performance of the WMMRS-based best
indices was compared over time both in the agronomic datasets and the MP*N dataset to validate the
transferability of the index section between agronomic and breeding trials. In addition, the stability
of the agronomic rankings was compared with the WMMRS-rankings of the MP*N approach using
Spearman’s rank correlation coefficient.

3. Results

3.1. Optimized Index and Date Selection Considering the Contributing Treatments

The best relationships found for all trait * index combinations indicated considerable differences
in the index suitability.

3.1.1. Grain Yield

Both for the full data (Figures 3a, 4a and 5a), and the average results from the six MP*N
combinations (Figures 3b, 4a and 5a), a strong advantage is visible from all NIR-based water band
indices for grain yield (GY; DM grain) and total DM. In contrast, several other indices performed
similarly well in the Cont_SD1 and Cont_RF subsets (Figure S1). Still, the NWI_5 ranked highest—with
the weighted mean/max rank sum ranking (WMMRS) of 15 in the agronomic ranking being by two
thirds better than the average of the tested index ensemble, and clearly above the best non-water
band index (R780_740; WMMRS = 11). In contrast, the NWI_5 and the best NIR/RE indices ranked
similarly for total DM at maturity with a slight advantage of the NDRE_770_750 (WMMRS = 13). In all
four data subsets, one of both traits was the best estimated among the direct plant traits. The NWI_5
reached coefficients of determination (R2 ***: p < 0.001) of 0.67, 0.47, 0.65, and 0.50 for GY in the full
dataset, Cont_SD1, Cont_RF and from the average of the six MP*N combinations, respectively (Table 2;
Figure 4a), corresponding to RMSE-values of 404–549 kg ha–1 (not shown). For all subsets, the best
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measurement dates were either 07/01 (month/day; early dough ripeness) or 06/26 (milk ripeness) for
GY (Table 2). Figure 5a depicts the seasonal R2-values in the four datasets for GY from all indices
and the highlighted WMMRS-based best index NWI_5. The blue lines demonstrate a clear advantage
of the NIR-based water band indices over all other indices during the most suited phase at grain
filling. For all datasets, the phase of booting/ear emergence/anthesis was less suited. For the full data,
Cont_SD1, and MP*N, already moderate relationships (R2

≈ 0.30–0.40 ***) are visible during tillering
and stem elongation. However, this was not confirmed in Cont_RF, and the index ranking was not
stable in this phase. For total DM (Figure 5b), all datasets except Cont_RF confirmed the advantage
of the water band indices only during the later grain filling with a slight outperformance over many
other indices. Instead, the rank-best index NDRE_770_750 was more suited during the vegetative
phase in all datasets. R2-values (≈0.50 ***) were highest in Cont_SD1 already during stem elongation,
whereas as for GY, only the post-anthesis phase exhibited good relationships in Cont_RF and MP*N.
With GY being a multiplicative function of total DM and its relative allocation to the grain (harvest
index; HI), relationships with HI were tested as well, but showed low potential (Figure 5c). Only the
R787_765 yielded useful relationships at dough ripeness in Cont_RF (R2 = 0.37 ***) and in the full data
(R2 = 0.27 ***), as well as in MP*Nat anthesis, but not within all MP*N blocks (Figure 4c).Agronomy 2020, 10, x FOR PEER REVIEW 8 of 20 
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Figure 5. Seasonal coefficients of determination (R2) for all evaluated indices for grain yield (GY; DM
Mat. Grain, a), total DM at maturity (b), and harvest index (HI, c). The lines are colored according
to the index groupings based on the covered spectral regions (Figure 1). The results for the main
plot*N (MP*N) combinations are averaged from the results within the six main plot*N combinations.
Horizontal gray lines indicate the significance threshold (p < 0.05). Broad colored lines highlight results
of the WMMRS-based best indices.
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Table 2. Best spectral vegetation index (SVI) for each trait based on the weighted mean/max rank sums (WMMRS) from the ‘agronomic’ approach’ and its highest
seasonal R2-value reached on the optimum date (month/day) in the different datasets: ‘Full data’, ‘Cont_SD1′, ‘Cont_RF’ as well as the six main plot*N level
combinations (MP*N). Considering the six MP*N blocks as different environments, the results for MP*N are based on the average R2 matrices from the six MP*N
subsets. Due to the slightly different number of data points, the significance for MP*N was re-calculated based on the significance thresholds in the six subsets. Trait
abbreviations: dry matter (DM), anthesis (Ant), maturity (Mat), harvest index (HI), post anthesis assimilation (PAA), contribution of post anthesis assimilation to grain
filling (CPostAA), DM translocation (DMT), DM translocation efficiency (DMTEff), grain number per spike (GNS), thousand kernel weight (TKW), nitrogen utilization
efficiency (NutEff), and nitrogen use efficiency (NUE). The significance levels correspond to p < 0.001 (***), p < 0.01 (**) and p < 0.05 (*).

Seasonal Best R2-Value Optimum Date

Trait Group Trait Best SVI WMMRS Full Data Cont_SD1 Cont_RF MP*N Full Data Cont_SD1 Cont_RF MP*N

DM
[kg ha−1]

Ant. spikes BRI 17 0.18 *** 0.26 *** 0.19 *** 0.28 ** 06/26 07/01 06/26 07/04
Ant. stems GNDVI 13 0.16 *** 0.23 *** 0.17 *** 0.27 ** 05/25 05/25 06/08 06/08

Ant. flag leaf R780_R550 13 0.31 *** 0.45 *** 0.26 *** 0.39 *** 06/26 06/21 06/26 07/04
Ant. flag leaf

-1 LCI 12 0.34 *** 0.41 *** 0.33 *** 0.40 *** 06/08 06/08 06/08 06/21

Ant. other
leaves R787_R765 12 0.33 *** 0.34 *** 0.16 *** 0.29 ** 06/08 06/08 06/08 06/08

Ant. leaves R780_R550 13 0.32 *** 0.40 *** 0.25 *** 0.39 *** 06/08 06/08 06/08 06/08
Mat. grain NWI_5 15 0.67 *** 0.47 *** 0.65 *** 0.50 *** 07/01 07/01 06/26 07/01
Mat. chaff BRI 14 0.21 *** 0.22 *** 0.25 *** 0.22 ** 06/21 06/26 06/21 06/21
Mat. stems NDRE_770_750 14 0.31 *** 0.37 *** 0.26 *** 0.36 *** 05/25 05/17 05/25 06/21

Mat. flag leaf NDRE_770_750 12 0.27 *** 0.41 *** 0.20 *** 0.40 *** 07/04 07/01 07/04 07/04
Mat. flag leaf

-1 R780_R550 11 0.32 *** 0.37 *** 0.34 *** 0.39 *** 06/26 07/01 07/04 07/01

Mat. other
leaves GNDVI 13 0.28 *** 0.30 *** 0.31 *** 0.43 *** 06/08 06/08 06/08 06/08

Mat. leaves R780_R550 12 0.37 *** 0.46 *** 0.32 *** 0.50 *** 06/26 06/26 06/26 06/26
Ant. total LCI 13 0.16 *** 0.21 *** 0.18 *** 0.28 ** 06/08 06/01 06/08 06/08
Mat. total NDRE_770_750 12 0.42 *** 0.56 *** 0.53 *** 0.50 *** 06/08 05/17 06/26 06/26



Agronomy 2020, 10, 603 9 of 19

Table 2. Cont.

Seasonal Best R2-Value Optimum Date

Trait Group Trait Best SVI WMMRS Full Data Cont_SD1 Cont_RF MP*N Full Data Cont_SD1 Cont_RF MP*N

derived DM

HI R787_R765 18 0.27 *** 0.10 ** 0.37 *** 0.26 ** 07/01 06/08 07/01 06/08
PAA NWI_3 16 0.16 *** 0.15 *** 0.12 ** 0.13 n.s. 07/01 05/17 05/17 06/26

CPostAA NWI_2 18 0.08 ** 0.10 ** 0.09 ** 0.09 n.s. 05/17 05/17 05/17 06/26
DMTEff TCARI_OSAVI 25 0.12 *** 0.13 *** 0.11 ** 0.09 n.s. 06/26 06/26 07/01 06/26

DMT TCARI_OSAVI 21 0.07 ** 0.07 * 0.05 * 0.08 n.s. 07/04 07/04 06/08 06/08
GNS BGI 30 0.24 *** 0.27 *** 0.31 *** 0.34 *** 06/08 06/08 06/21 06/01
TKW NWI_2 13 0.25 *** 0.11 ** 0.43 *** 0.10 n.s. 07/04 06/08 07/04 06/08

NutEff total REIP 17 0.32 *** 0.40 *** 0.31 *** 0.16 * 06/26 06/26 05/17 05/25
NutEff grain REIP 15 0.34 *** 0.46 *** 0.36 *** 0.26 ** 05/25 06/26 05/25 07/04

NUE Mat.
total RVSI 24 0.26 *** 0.29 *** 0.19 *** 0.42 *** 07/01 07/01 07/01 06/21

NUE Mat.
grain R787_R765 25 0.38 *** 0.53 *** 0.30 *** 0.32 *** 06/26 06/26 06/26 04/13

spike density PSSR 20 0.28 *** 0.46 *** 0.23 *** 0.40 *** 06/21 06/21 06/21 06/21
yield per

spike BGI 14 0.27 *** 0.30 *** 0.21 *** 0.36 *** 03/31 06/08 06/21 05/25

kernels per
m2 NDRE_770_750 15 0.26 *** 0.24 *** 0.23 *** 0.23 ** 05/17 05/17 05/17 05/17

others
anthesis date Maccioni 12 0.40 *** 0.54 *** 0.49 *** 0.59 *** 06/21 07/04 06/21 06/21
plant height REIP 15 0.51 *** 0.55 *** 0.45 *** 0.56 *** 05/25 05/25 05/25 06/21
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3.1.2. Further Direct DM Traits

In all four datasets, the level of the best relationships for organ-level DM traits was comparable
for almost all NIR/VIS and RE-based indices (Figure 3 for the full data and MP*N; Figure S1 for
Cont_RF and Cont_SD1). The R2-level was markedly higher in the MP*N subset and Cont_SD1
than in the full data and Cont_RF, and tended to be higher for maturity traits than that for anthesis
traits. Notably, the DM of stems and spikes and total DM at anthesis were hardly detectable in the full
data, Cont_SD1 and Cont_RF (R2 always < 0.20). The DM of leaves was better detected, both in the
‘agronomic’ datasets and in MP*N (Figures 3 and 6; Table 2.). At anthesis, the relationships were closer
for the flag leaf and flag leaf-1 than those for ‘all leaves’ and the lower leaf layer; however, they were
approximately similar for maturity and anthesis leaf DM traits. Indices including green bands (GNDVI
and R780_R550) ranked best for ‘all leaves’, ‘other leaves’ and ‘flag leaf-1′. The index rankings for the
most direct DM traits were comparable between the ‘agronomic’ and MP*N approaches.
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Figure 6. Seasonal coefficients of determination (R2) for all evaluated indices for selected DM traits
in the full data and in the MP*N approach. Scatterplots depict trait~index relationships from one
of the best index/date combination. Refer to Figure 5 for the description of the seasonal line plots.
Horizontal gray lines indicate the significance threshold (p < 0.05). In the scatterplots, colored thin lines
correspond to linear regressions for the MP*N subsets, dashed blue and red lines to Cont_SD1 and
Cont_RF, respectively, and the dashed gray lines to the full datasets. R2-values are colored accordingly.
Thick colored lines highlight results of the WMMRS-based best indices.
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3.1.3. Derived DM Traits

Neither for the ‘agronomic’ datasets nor for MP*N, any index assessed PAA, CPostAA, DMTEff,
and DMT on a useful level. Among the yield components, moderate relationships were found for
grain number per spike (GNS) in all datasets from the BGI (R2 = 0.24–0.34 from ear emergence to milk
ripeness), as well as for the thousand kernel weight (TKW) only in the full dataset (R2 = 0.25) and
Cont_RF (R2 = 43; both during early dough ripeness) from the NWI_2 (Figure 6; Table 2). Spike density
was better detected by the PSSR index in Cont_SD1 (R2 = 0.46) and in MP*N (R2 = 0.40) than in the full
data and Cont_RF, with R2-values peaking always at early milk ripeness (06/21). As for GNS, the BGI
ranked highest for yield per spike (Table 2.). Moderate relations were found for kernels per m2 in all
datasets, always being best during stem elongation (05/17); however, the NIR-based water band indices
were better suited during grain filling in MP*N (Figure 6). With the N use efficiency (NUE) relating GY
or total DM to fertilized N, R2-values (Figure 3) and index rankings were identical to those for GY and
total DM, respectively, in the MP*N approach. In contrast, less close relationships were found in the
full data (max. R2 = 0.38 for NUE_grain and R2 = 0.26 for NUE_total; Table 2)—only during later grain
filling and with best relationships from the R787_765, RVSI, and TCARI_OSAVI indices. The ‘internal’
conversion efficiency, N utilization efficiency (NutEff), yielded better relationships with respect to
grain DM than for total DM and was best assessed in Cont_SD1 (R2 = 0.46; Table 2). Thus, for a given
red edge inflection point (REIP)-value, NutEff was lower in N2 than that in N1 and lower in RF than in
the other main plots, respectively (not shown).

3.2. Index Ranking According to Traits and Datasets

For most traits, a good agreement was observed between maximum- and mean-based index
rankings (example for GY in Figure 7), indicating that indices with the highest potential on the best
dates (maximum ranks) were also better suited on less favorable dates. Aiming at an unequivocal index
ranking, both measures were combined to weighted mean-maximum-based rank sums (WMMRS) by
summing both rank values.
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Figure 7. Mean-and maximum-based index rankings for grain yield (GY; DM Mat. Grain) combining
(a) the rank-sums from the three ‘agronomic’ datasets ‘full data’, Cont_SD1 and Cont_RF, and (b) for
the MP*N data. The value of three corresponds to the average ranking across all indices. The MP*N
ranking was scaled to the same average numeric level for direct comparison. The colors indicate index
groups based on the included spectral regions (Figure 1).

Figure 8 shows the WMMRS-values calculated for all evaluated trait*index combinations, for the
combined rankings from the three ‘agronomic’ datasets (‘full data’, Cont_SD1 and Cont_RF; a), as well
as for the rankings from the MP*N data (b), which were multiplied by three for direct comparison at
the same numeric level. For each trait, the value of nine corresponds to the average ranking across
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SVIs. Due to some strong upper outliers, all values >15 were colored in the same blue shading for
a better contrast of the other values. Considered irrelevant, rankings for trait*index combinations that
did not exceed a threshold of R2-values of 0.20 are not shown (white cells). For the following traits,
no index exceeded this threshold for the agronomic datasets: The DM of spikes and stems as well
as total DM at anthesis, and the derived DM traits PAA, CPAA, DMTEff, and DMT. The mean and
maximum-based rankings (Figure 7) and the combined rankings confirm the clear outperformance of
the NIR-based water band indices, particularly for GY (WMMRS > 13; Figure 8), but also high rankings
for total DM at maturity as well as for the yield components kernels per m2 in both rankings, TKW,
and yield per spike in the agronomic ranking. However, for the other direct DM traits, most NIR/VIS
indices except the EVI, MCARI1, MCARI2, and the MTVI2, and most RE indices, except the R787_765,
TCARI_OSAVI, MCARI, DD, and PSRI yielded clearly higher and mostly similar rankings. The
R787_765 and the TCARI_OSAVI reached high rank sums (WMMRS > 17) for the NUE traits in the
agronomic ranking but not in the MP*N ranking, and the R787_R765 for HI in the agronomic ranking.
Overall, only few indices reached relevant relationships (R2 > 0.20) in both rankings for most derived
DM traits. In addition, this was observed partly for the direct DM traits in the agronomic approach,
but the index rankings differed less in the MP*N approach. For each trait, the rankings from both
matrices were correlated against each other for comparing the possibility of transferring the index
selection optimized on one dataset to the other. As visible from the correlations between rankings
(Table 3), the index rankings were relatively stable between both approaches for most direct DM traits,
with Spearman’s ρ < 0.80 only for stem DM at both sampling dates, and flag leaf DM at maturity.
Among the other traits, stable rankings (ρ > 0.86 ***) were found for the yield components GNS, spike
density, and kernels per spike, as well as for plant height. Moderately stable rankings (ρ = 0.70 ***−0.82
***) were found for PAA, NutEff total, NutEff grain, and anthesis date, but substantially differing
rankings for the other trait.
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Figure 8. Weighted mean/maximum-based rank sums (WMMRS) for all evaluated trait/index
combinations, combining the rankings from (a) the three agronomic datasets (full data, Cont_SD1 and
Cont_RF) and (b) from the six MP*N subsets. Rankings based on mean R2-values across dates were
double-weighted. For each trait, the value 9 corresponds to the average ranking across all indices.
Light blue cells indicate ranking values beyond 15. Blue lines delimit the index and trait groups.
Rankings for trait*index combinations that did not exceed the threshold of maximum R2-values of
0.20 are not shown (white cells), being considered irrelevant. Label numbers were rounded for a more
concise comparison.
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Table 3. Spearman’s ρ and significance level of the correlations between the agronomic and the MP*N
index rankings (Figure 8) by target trait.

DM Derived DM
Ant. spikes 0.90 *** HI 0.23
Ant. stems 0.77 *** PAA 0.82 ***

Ant. flag leaf 0.90 *** CPostAA −0.13
Ant. flag leaf-1 0.90 *** DMTEff 0.16

Ant. other leaves 0.82 *** DMT 0.47 ***
Ant. leaves 0.98 *** GNS 0.86 ***
Mat. grain 0.98 *** TKW −0.24
Mat. chaff 0.93 *** NutEff total 0.70 ***
Mat. stems 0.76 *** NutEff grain 0.81 ***

Mat. flag leaf 0.73 *** NUE Mat. total −0.19
Mat. flag leaf-1 0.90 *** NUE Mat. grain −0.03

Mat. other leaves 0.92 *** spike density 0.86 ***
Mat. leaves 0.94 *** yield per spike 0.63 ***
Ant. total 0.86 *** kernels per m2 0.95 ***
Mat. total 0.97 ***

other traits
anthesis date 0.81 ***
plant height 0.91 ***

4. Discussion

This study aimed at assessing the influence of the optimized selection of SVIs and of measurement
stages/dates on the estimation of various DM traits, which influence the formation of GY as a function
of the contributing treatments.

4.1. In-Season Estimation of Grain Yield and Contributing DM Traits

Grain yield can only be indirectly estimated by spectral measurements—both with respect to
the temporal shift and the detected information at the organ level [42]. Although SVIs are primarily
influenced by leaf area, chlorophyll content and leaf area distribution [48], seasonal influences are
important as well, particularly post-flowering, which is the most important phase for grain filling [8],
although it is influenced by progressive senescence. Therefore, this study included multiple DM traits
that contribute to grain filling for elucidating the GY ~SVI relationships, and multiple measurement
dates, given that the trial treatments influenced the traits in different phases [25]. Because of the effects
of sowing date on the early development in terms of DM traits, canopy cover, and SVIs [49], and the
positive yield effect of early sowing (SD1) [25], moderate relationships were found already during leaf
development and tillering, but not in the datasets without varying sowing dates, corroborating results
in a breeding population [26]. Moreover, given that R2-values again decreased to a minimum until
ear emergence/anthesis, as also found in [26], this early discrimination confirms the spectral detection
of early vigor [49,50], but should not be generalized for the prediction of grain yield. This seasonal
pattern is in line with the previous GY estimation across the full trial data [51] and with the spectral
estimation of the N traits [47]. Concerning the seasonal pattern in Cont_SD1, the SVI*date interaction
(Figure 5) confirms the relative weakness of water band indices during the early phase [49] for ‘planar’,
un-saturated canopies, being in line with [47]. However, already at tillering, the differentiation with
a good performance of the water band indices and of most RE indices, but the failure of NIR/VIS
indices, possibly indicates the advantage of a stronger sensitivity of the former groups for overcoming
saturation in dense canopies, as also observed for wheat breeding lines [26], N fertilization in wheat
cultivars [51], drought-stressed wheat [39] and barley [52]. The usefulness of the RE indices was in line
with previous studies on cultivar discrimination during grain filling [53,54] and with the analysis of the
N traits in the same experiment, for which, however, water band indices ranked relatively lower [47].
The overall suitability of the early dough and milk ripeness stages indicates that delayed senescence
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increased GY under favorable maturation conditions, as frequently observed [26,28,31,38,47]. The close
relationships between yield and water band SVIs have been obtained on similar sites with multi-year
wheat and barley experiments [39,55] and were further evidenced for wheat as well under non-drought
conditions [26,51]. Unlike for GY, notably, NIR/RE indices clearly outperformed the water band indices
for total DM during the vegetative phase. In turn, the better suitability of the water band indices for
GY during grain filling indicates an advantage for senescence-influenced canopies. Water band indices
ranked clearly behind ‘structural’ NIR/VIS and RE indices for leaf DM (Figure 6), indicating that
the detection of leaf area index (LAI) is not sufficient for GY estimation, and the advantage for GY
may be related to the detection of canopy water mass or rather senescence status. During grain
filling, leaf senescence was captured by RGB-imaging and correlated with all possible spectral band
combinations in normalized vegetation indices. On all dates, indices that included water band
information significantly correlated with the leaf senescence status and did so mostly better than
NIR/VIS and RE-combinations (not shown). Thus, lower GY in RF than in Cont and in N1 than in N2
was associated with accelerated leaf senescence.

The index rankings for both multiplicative GY components, total DM and harvest index (HI),
were not indicative for the index ranking for GY. In spite of a significant reduction in HI in RF
compared to Cont by 9% [25], the HI was moderately detected only by the R787_R765 during later grain
filling, when the HI is actually determined as a result of the ongoing assimilation and translocation of
assimilates. These findings are similar to those found for grain and total N uptake and N harvest index,
respectively [47]. From a temporal perspective, the reaction in pre- and post-anthesis components
of GY—i.e., DM translocation (DMT) and post-anthesis assimilation (PAA), including reduced PAA
without fungicide, increased PAA but reduced DMT and translocation efficiencies in response
to N fertilization [25]—could not be retraced by any index, confirming the results for genotypic
differences [26]. On the one hand, these traits are ‘accumulated’ over time, which apparently cannot
be captured by ‘snap-shot’ measurements on single days. On the other hand, their destructive
determination was complex, including the sampling of various traits both at anthesis and maturity
and possible errors in determining the exact anthesis time, so that these traits may be less stably
referenced [25]. While, similarly as for PAA, post-anthesis N uptake was not sufficiently detected,
moderate estimations (R2 = 0.26–0.33) had been achieved for N translocation [47].

4.2. In-Season Estimation of Yield Components

Kernel number per m2 was the most relevant yield component for explaining genotypic variation in
GY in the six MP*N subsets (R2 = 0.65–0.85) [25]. Its moderate estimation in all datasets already during
stem elongation from red edge indices was related to a similar R2-pattern as observed for total DM,
possibly indicating an association between both traits [56]. Thus, Babar et al., (2006) reported similar
correlations for total DM and kernels per m2 for wheat genotypes, but did not find useful relationships
for spike density, GNS, and TKW. Instead, a more direct estimation is conceivable for spike density
through the best-ranking pigment-specific simple ratio PSSR [57], which may detect the bright-colored
spikes. In contrast, another study obtained good estimates only for spike density across environments
but not for GNS and TKW [58]. Overall, likely indirect detections of most yield components must be
carefully interpreted considering the growing conditions and contributing treatments.

4.3. Suitability of the R787_R765 and TCARI_OSAVI for the Agronomic Approach

Owing to the low reflection difference between both bands, the R787_R765′s index values were
only slightly higher than one, but the index showed high rankings in the agronomic approach for
several traits. This included HI, TKW, yield per spike, NUE and NutEff—along with the similarly
performing TCARI_OSAVI. Despite the similar ranking, both indices use substantially different spectral
bands (Figure 1), indicating that the initial index grouping based on the spectral regions is not sufficient
for predicting similarities in the suitability to estimate the tested traits. The R787_R765 was previously
found useful for detecting N concentration in grassland [59] and the TCARI_OSAVI for LAI-insensitive
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chlorophyll detection [60]. The correlation matrix between all band combinations and image-based
leaf senescence status during grain filling (data not shown) indicates that the R787_R765 detected
senescence too. While the index was positively correlated with the NDVI during the vegetative stages,
the relationships turned negative during grain filling (data not shown). The negative relationships of
R787_R765 (and inversely the positive relationships of the TCARI_OSAVI) with HI and its high rankings
demonstrate its sensitivity to senescence, as introduced by the agronomic treatments, notably reduced
fungicide [25], as well as to their concomitant effect on the plant traits—findings which largely agree
with the analysis of the N traits [47]. In contrast, these traits were not reliably detected for the cultivar
differences in the MP*N approach.

4.4. Stability of Index Rankings According to Dataset

This study aimed at comparing the index rankings retrieved from data dominated by variation
introduced by ‘agronomic treatments’ to the index rankings based on data dominated by the difference
between cultivars within MP*N subsets. Comparing the rankings on the same datasets holds the
advantage of including the same environmental effects and possible errors during sampling and analysis,
considering that environmental effects, especially on the derived DM traits, can be substantial [7].
The constant index rankings found for the important traits GY and total DM at maturity are especially
promising, as is the case for most ‘direct’ traits (Table 3; green colored traits in Figure 9) and the
corresponding N traits [47].
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Figure 9. Relationship of maximum R2-values found by trait in the full data and the MP*N approach.
The data is colored by Spearman’s ρ on the correlations between the WMMRS-rankings of the ‘agronomic’
and the MP*N approach. Dashed lines mark the 1:1 line and R2-thresholds (R2 = 0.30) for categorizing
the traits by R2-values in both approaches.

In contrast, rankings for weakly estimated traits in either of the approaches are less reliable,
including traits related to the pre/post-anthesis contribution to grain filling (DMT, DMTEff, PAA
and CPostAA), and HI (bottom left quadrant in Figure 9). Several traits, which were moderately
estimated (max. R2 > 0.3) in both approaches, showed substantially differing index rankings,
including NUE_Mat_grain, stem DM at maturity, NutEff_grain, and anthesis date, as visualized
in Figure 9 by blue-colored traits (correlations between rankings < 0.67) in the upper right
quadrant. Consequently, these ‘more specific’ traits would require an index selection more optimized
by contributing treatments and/or trial environments, whereas indices selected for green-colored traits
are promising for a more robust application.
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5. Conclusions

The previous use of spectral proximal sensing in field trials either for plant breeding or agronomic
factor optimization focused on the in-season estimation of the grain yield potential. Although analyzed
using only the data from one year, the present study extended spectral methods to further traits,
which were rarely tested before, especially for all relevant growth stages.

With respect to the initial research questions, the following conclusions are drawn:(i) The
index-based estimation of notably GY and its cumulative component, total DM, is promising for
applying sensor-based phenotyping. Additional information is gained on further yield-related traits,
yet generally at a lower accuracy.

(ii) The comparison of many indices should not only serve for recommending specific indices,
but rather ‘index types’, as grouped by the included spectral regions. The mostly similar performance
of most indices within groups indicates close relationships between several indices, making the index
selection more robust. This is relevant for transferring the results to sensors differing in band number,
placement or narrowness [51]. As in previous analyses, water band indices followed by red edge
indices outperformed the NDVI for most traits.

(iii) Overall, the milk ripeness stage was the most promising; however, for estimating the effects
of sowing date and N fertilization, as included in the agronomic data, vegetative stages were also
indicative. The suitability of the late, senescence-influenced grain filling phase may have been improved
by the overall favorable maturing conditions.

(iv) The different agronomic treatments affected the target traits in different ways and in
different growth stages, consequently altering the optimum measurement stages and affecting
the accuracies in the different datasets.The present results can contribute to the optimization of
sensors, the selection of measurement dates and specific SVIs, and should be evaluated on further
datasets. Notably, the optimization of drone-based sensors can boost proximal sensing methods for
field trials [61], but requires further evaluation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/4/603/s1:
Table S1: List of plant traits considered in this study, grouped by trait groups. Table S2: List of spectral vegetation
indices used in this study. ‘R’ denotes the reflection in indicated wavebands. Figure S1: The index suitability by
target trait in the ’agronomic’ blocks Cont_RF and Cont_SD1: Maximum coefficients of determination (R2) found
for each index x trait combination from 11 measurement dates. Gray lines delimit index and trait groups.
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