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Electroencephalographic (EEG) Burst Suppression (BSUPP) is a discontinuous pattern
characterized by episodes of low voltage disrupted by bursts of cortical synaptic
activity. It can occur while delivering high-dose anesthesia. Current research suggests an
association between BSUPP and the occurrence of postoperative delirium in the post-
anesthesia care unit (PACU) and beyond. We investigated burst micro-architecture to
further understand how age influences the neurophysiology of this pharmacologically-
induced state. We analyzed a subset of EEG recordings (n = 102) taken from a
larger data set previously published. We selected the initial burst that followed a
visually identified “silent second,” i.e., at least 1 s of iso-electricity of the EEG during
propofol induction. We derived the (normalized) power spectral density [(n)PSD], the
alpha band power, the maximum amplitude, the maximum slope of the EEG as well as
the permutation entropy (PeEn) for the first 1.5 s of the initial burst of each patient. In
the old patients >65 years, we observed significantly lower (p < 0.001) EEG power
in the 1–15 Hz range. In general, their EEG contained a significantly higher amount of
faster oscillations (>15 Hz). Alpha band power (p < 0.001), EEG amplitude (p = 0.001),
and maximum EEG slope (p = 0.045) all significantly decreased with age, whereas
PeEn increased (p = 0.008). Hence, we can describe an age-related change in features
during EEG burst suppression. Sub-group analysis revealed no change in results based
on pre-medication. These EEG changes add knowledge to the impact of age on
cortical synaptic activity. In addition to a reduction in EEG amplitude, age-associated
burst features can complicate the identification of excessive anesthetic administration in
patients under general anesthesia. Knowledge of these neurophysiologic changes may
not only improve anesthesia care through improved detection of burst suppression but
might also provide insight into changes in neuronal network organization in patients at
risk for age-related neurocognitive problems.
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INTRODUCTION

Electroencephalographic (EEG) recordings during the
perioperative period can help assess a patient’s brain under
anesthesia. The EEG activity changes from a high frequency/low
amplitude pattern during wakefulness to low frequency/high
amplitude waves during anesthesia (Brown et al., 2010). If
exposed to even higher concentrations of the hypnotic agent
(i.e., propofol or sevoflurane), the electrical activity of the brain
switches from being dominated by slow and moderate frequency
oscillations to a discontinuous state characterized by alternating
episodes of cortical activity interrupted by epochs of voltage
attenuation without oscillations. This state is often referred to
as burst suppression (BSUPP; Swank and Watson, 1949). The
neuronal mechanisms underlying periods of suppression likely
involve activation of intrinsic inhibitory currents as well as a
decrease in excitatory input to cortical neurons (Lukatch et al.,
2005). It is still unclear whether cortical burst discharges are
primarily driven by thalamocortical inputs or if neocortical
burst suppression activity is intrinsically generated by the
cortex itself (Lewis et al., 2013). Although the pattern may
be associated with adverse neurocognitive patient outcomes,
such as postoperative delirium or postoperative neurocognitive
decline (Soehle et al., 2015; Fritz et al., 2016), anesthetic protocols
designed to prevent BSUPP have failed to result in large changes
in delivered anesthetic agent or on delirium outcomes. Hence,
the controversy on the subject persists (Shortal et al., 2019;
Wildes et al., 2019), as it does for the general relation between
EEG-based monitoring and outcome (Berger et al., 2020; García,
2020). This may in part be related to the difficulty in identifying
classic burst suppression patterns in vulnerable patients and
because the surgical population most affected by postoperative
neurocognitive disorders overlap with the population more
likely to develop BSUPP. Purdon et al. described the increase
in the occurrence of BSUPP with age (Purdon et al., 2015).
To reliably identify this electroencephalographic feature a
detailed description of the ‘‘burst’’ during BSUPP is crucial.
EEG amplitude (total power) under general anesthesia decreases
with age; complicating the interpretation of EEG signals
(Schultz et al., 2004; Purdon et al., 2015; Kreuzer et al., 2020).
Current commercial monitoring approaches mainly focus on the
identification of the isoelectric episodes, i.e., they rather perform
a ‘‘suppression detection’’ than a ‘‘burst and suppression detection’’
(Rampil, 1998; Särkelä et al., 2002; Jensen et al., 2014). These
approaches may underestimate the real occurrence of burst
suppression (Muhlhofer et al., 2017). A better understanding
of burst features could help to supplement the suppression-
based detection by adding information regarding the burst. To
more closely investigate the age-induced changes in the EEG
characteristics of BSUPP and especially on the bursts, we used
data from a previously published study (Hesse et al., 2019). To
ensure a quasi-steady-state condition we focused on the first
burst, i.e., after the brain switched to BSUPP during induction
with propofol. To investigate a possible impact of premedication
with midazolam, we conducted a sub-group analysis. With
our findings we can add to the existing knowledge regarding
the effects of age on the EEG described for general anesthesia

without BSUPP (Schultz et al., 2004; Purdon et al., 2015; Kreuzer
et al., 2020), sleep (Carrier et al., 2001), and (relaxed) awake
states (Polich, 1997).

MATERIALS AND METHODS

Patients
For our analyses, we included 168 patients undergoing surgical
intervention with general anesthesia that developed BSUPP
during anesthesia induction with propofol that were recruited in
the Atlanta hospitals for a previous study (Hesse et al., 2019).

The study protocol was approved by local Ethics or
Institutional Review Boards (Emory University). Written
informed consent was obtained from each patient. In the original
study, we only enrolled patients that we expected to be admitted
to the post-anesthesia care unit (PACU) after non-emergency
and non-cardiac surgery. We included 102 patients with a clearly
identifiable initial burst. Sixteen patients younger than 45 years
formed the YOUNG group for our investigation and 20 patients
older than 65 years formed the OLD group. We arbitrarily
chose the age thresholds for the YOUNG and OLD group but
oriented ourselves at EEG related work that defined a patient
being OLD if the age was more than 60 (Wildes et al., 2019)
or 70 years of age (Purdon et al., 2015). The anesthesia teams
were not required to follow any specific pharmacologic protocol
for the induction or maintenance of general anesthesia. For
this retrospective analysis, we examined the data from patient
records collected at a single site who received propofol as an
induction agent followed by sevoflurane for maintenance. The
detailed information regarding the initial study is published by
Hesse et al. (2019). We included patients that developed BSUPP
during anesthesia induction with propofol. With our analyses,
we focused on the EEG information and EEG changes in our
patients that could help to improve EEG-based monitoring, but
also impact monitoring by age-related EEG changes. Because
83 patients received midazolam as premedication we decided to
additionally look at these cases separately and hence conducted a
sub-analysis regarding a possible influence of midazolam on our
results. Six of the 16 patients in the OLD group did not receive
midazolam whereas every YOUNG patient had midazolam
premedication. Figure 1 presents the flow chart of the selection
and analysis process.

EEG Recording
We recorded EEG from all patients using a SEDLine Legacy
monitor (Masimo, Irvine, CA, USA) with an electrode strip
placed on the forehead of the patient according to the
manufacturer’s specification. The sample rate of the EEG was
250 Hz. Before burst extraction, we band-pass filtered the signal
from 0.5 to 47 Hz with the MATLAB filtfilt function and
downsampled the EEG to 125 Hz.

Burst Extraction and Analysis
The identifying person was blinded to the age of the patient.
The examiner visually identified the initial burst (longer than
1.5 s) in each recording. For analysis, the burst EEG had to
follow at least 1 s of visually identified severe attenuation of
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FIGURE 1 | Flow chart describing patient and group selection as well as the
analyses performed. After selecting the patients with clearly identifiable burst
suppression, a set of spectral and time-domain parameters was used to
investigate the influence of age on the electroencephalogram (EEG) during a
burst. Besides the evaluation of the entire power spectrum, the parameters of
choice were absolute and relative alpha band power, maximum amplitude,
maximum slope, spectral entropy, permutation entropy, and the local variance
of the EEG.

EEG amplitude (<10 µV). The concept of the ‘‘silent second’’
has been previously described as a suitable concept to reliably
detect the onset of EEG burst suppression (Pilge et al., 2014).
Bursts can vary in duration (Lewis et al., 2013). To minimize the
influence of temporal burst characteristics, i.e., the way the EEG
characteristics changes within one burst over time, we refrained
from analyzing the EEG trace beyond the first 1.5 s of each burst.
Supplementary Figure 1 presents exemplary bursts from the
young and old age group.

Analyses of the Initial Burst Episodes
We performed all quantitative EEG analyses with MATLAB
R2017a (MathWorks, Natick, MA, USA). For the selected
1.5 s, we calculated the power spectral density (PSD) using
the pwelch function with a frequency resolution of 0.8 Hz.
Because of the age-related change in EEG amplitude and hence
spectral power (Schultz et al., 2004; Purdon et al., 2015), we
also used the normalized PSD (nPSD), i.e., the PSD divided
by the total power within the 0.8–30 Hz range reflecting
the architecture of the EEG, for our analyses. To use one
parameter that may serve as a proxy for processed EEG indices
used for patient monitoring, we calculated the spectral entropy
(SpEnt) as used in the state and response entropy of the

Entropy Module (GE Healthcare, Helsinki, Finland; Viertio-
Oja et al., 2004). The SpEnt presents the Shannon Entropy
applied to the power spectrum and it evaluates the shape of the
spectrum. The more uniformly the power is distributed among
the frequencies, the higher the SpEnt. A general slowing of
the EEG as observed in anesthesia will cause a shift towards
higher power in the lower frequencies. This leads to a ‘‘less
uniformly’’ distributed spectrum causing SpEnt to decrease.
Besides the spectral approach, we also conducted analyses
in the time domain. Therefore, we calculated the maximum
amplitude for each burst as well as the maximum slope, i.e., the
largest difference in amplitude between two sample points.
As a parameter that analyzes the signal in the time domain,
but can also be related to spectral EEG features, we applied
the permutation entropy (PeEn; Bandt and Pompe, 2002). The
PeEn quantifies the probability distribution of rank patterns
of a certain length, here three data points. The higher the
PeEn the more uniformly distributed are the probabilities and
the more irregular is the analyzed signal. The PeEn with the
used settings, i.e., embedding dimension m = 3 and time
lag τ = 1 estimates the centroid of the power spectrum
(Berger et al., 2017). We further calculated the local signal
variance as used in a standard burst suppression detection
algorithm based on signal variance (An et al., 2015). It also
can be applied to short signal segments (Yan et al., 2012). We
calculated the parameter varBS for the selected, 1.5 s burst
sequence using 10 consecutive data points with a one-point
shift. This means we constructed a vector containing the
local variance for the initial bursts for each patient. From
these vectors, we then used the 95th percentile values for
statistical analysis. Taking the 95th percentile value instead of
the maximum allows for correction against outliers caused by
potential artifacts. In contrast to the algorithm presented by An
et al. (2015), we did not perform the logical decision regarding
burst or suppression.

Statistical Analysis
To appropriately present the results, we used descriptive and
inference statistics. For age-related changes, we calculated a
linear model for all included patients using the MATLAB fitlm
function. We obtained the regression curve and conducted
a one-sample t-test to compare the slope coefficient of the
model against a slope of zero. Based on the complementary
nature of our analyses, we did not perform a correction for
multiple comparisons but present the exact p-values and the 95%
confidence intervals of the slope coefficient instead (McDonald,
2009). We further derived the correlation strength, i.e., the
fit of the model by calculating the R2 value. Additionally
we calculated the Spearman’s correlation coefficient using the
MATLAB rho = corr (X, Y, ‘‘type,’’ ‘‘Spearman’’) function. For
easier interpretation of the data, we also calculated an effect
size between the YOUNG (<45 years) and OLD (>65 years)
patients. We present our results as medians with minimum
and maximum values or for the PSD as median and the
median absolute deviation. We calculated the area under the
receiver operating curve (AUC) with 10k-fold bootstrapped
95% confidence intervals for parameter values to measure the
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strength of the effect of age, i.e., the separability between YOUNG
and OLD, using the Measures of Effect Size (MES) toolbox
in MATLAB (Hentschke and Stüttgen, 2011). In general, an
AUC above 0.9 or below 0.1 seems to indicate an outstanding
effect, an AUC above 0.8 or below 0.2 indicates an excellent
effect, and an AUC above 0.7 or below 0.3 indicates an
acceptable effect (Mandrekar, 2010). For comparison of the
PSD and nPSD between the YOUNG and OLD, we used the
AUC with 95% confidence intervals. We considered a difference
as significant if for at least two neighboring frequencies the
95% confidence interval did not contain 0.5. This analysis was
following previous analyses (Fleischmann et al., 2018; Kreuzer
et al., 2020).

RESULTS

Demographics
From the 408 cases in the Atlanta hospitals, we included
102 patients with visually identifiable initial bursts. Figure 1
shows the experimental setup of our analyses. The median age
of the 102 included patients was 56 years (1st and 3rd quartile: 49
and 64 years). We included 67 male and 35 female patients. Their
American Society of Anesthesiologists (ASA) physical status
classification (Mayhew et al., 2019) was ASA 1 for four, ASA 2 for
47, ASA 3 for 48, and ASA 4 for three patients. We present the
detailed distributions as Supplementary Figures 2A–D. We did
not observe a slope significantly different from 0 for the fentanyl
equivalents with age: fentanyl equivalents µgkg−1 = 2.41 + 0.02 ∗
age (p = 0.383; R2 = 0.00). The corresponding plot is presented as
a Supplementary Figure 3.

Spectral Analyses
Here we present the results from the linear models and the group
comparisons between the young and the old patients. To better
understand our results, we explicitly state YOUNGvs. OLDwhen
we refer to group comparisons. When comparing the PSD of the
YOUNG vs. OLD, we observed a higher power in the frequencies
up to ∼15 Hz in the YOUNG as depicted in Figure 2A. In
the frequency range up to 15 Hz, the AUC was >0.7, and the
95% confidence intervals excluded 0.5. When focusing on the
architecture of the EEG using the nPSD, we found significantly
higher relative power (AUC >0.7 and 95% confidence intervals
exclusive 0.5) in the bursts of the OLD starting at around 15 Hz
as displayed in Figure 2B.

Evaluating the absolute alpha power over the entire age
range, we found a significant decrease (p < 0.001) in
alpha band power with age for the initial burst (Figure 3).
However, normalized alpha power did not demonstrate an
age effect (no significant difference from a slope of zero
for the normalized alpha power, p = 0.719; Supplementary
Figure 4A). Further, we did not find a significant effect for
SpEnt (p = 0.145) as displayed in Supplementary Figure 4B.
For the comparison between YOUNG and OLD including
all patients we found an ‘‘excellent’’ effect of age on alpha
power, i.e., lower alpha power in the OLD [AUC = 0.86
(0.73 0.97)]. We found no effect of age on a relative alpha
power [AUC = 0.60 (0.40 0.78)] and SpEnt [AUC = 0.36

(0.18 50.55)] when comparing YOUNG and OLD. Table 1
presents the statistical parameters for the linear model of
each parameter.

Time-Domain Analyses
For the time domain analyses, we observed a significant decrease
in amplitude (p = 0.001) and maximum slope (p = 0.045)
with age as presented in Figures 4A,B as well as in Table 1.
We further found a significant increase (p = 0.008) in PeEn
with age (Figure 4C). For all patients included, we found
an ‘‘excellent’’ separation in the maximum EEG amplitudes
[YOUNG: 20.29 (12.40–54.00) µV; OLD: 13.07 (6.20–26.11)
µV; AUC = 0.84 (0.69 0.95)] and an ‘‘acceptable’’ separation
for the maximum slopes [YOUNG: 1.22 (0.80 2.44) µV/ms;
OLD: 0.86 (0.35–1.89) µV/ms; AUC = 0.72 (0.55 0.87)].
The PeEn was higher in the OLD [2.04 (1.90–2.27)] than
in the YOUNG [1.94 (1.75–2.18); AUC = 0.73 (0.56 0.88)].
The separation was acceptable. We also found a significant
decrease (p < 0.001) in the local EEG variance (see ‘‘Materials
and Methods’’ section) varBS with age (Figure 4D). The
separation between YOUNG and OLD was ‘‘excellent’’ with
an AUC = 0.85 (0.70 0.95).

Sub-analyses Regarding a Possible Impact
of Midazolam
Eighty-three out of 102 patients received pre-operative
midazolam. To examine a potential contribution of midazolam
pre-medication to our observation of age-related changes in
burst suppression, we applied our linear regression model
to a subset of data including the patients with midazolam
pre-medication only and found similar results. Age-related
decreases in alpha band power (p < 0.001), EEG amplitude
(p = 0.003) and maximum EEG slope (p = 0.019) persisted
in this subset, and PeEn increased (p = 0.033). The plots
for the linear models are presented in the Supplementary
Figure 5 and the coefficients are presented in Supplementary
Table 1. Examination of the binary variables YOUNG vs. OLD
showed a similar trend, but we did not observe significant
differences in the normalized power in the high frequencies.
Supplementary Figure 6 presents the corresponding (n)PSD
plots and statistical results. The separation of alpha power
was ‘‘excellent,’’ with lower alpha power in the premedicated
OLD [AUC = 0.90 (0.75 1)]. We found no effect of age when
comparing YOUNG and premedicated OLD for the relative
alpha power [AUC = 0.63 (0.42 0.82)] and SpEnt [AUC = 0.39
(0.19 0.61)], but in premedicated OLD, maximum EEG
amplitudes were lower [AUC = 0.89 (0.75 1), ‘‘excellent’’ effect]
and the maximum slope was flatter [AUC = 0.77 (0.58 0.92),
‘‘acceptable’’ effect]. PeEn was higher in the premedicated OLD
in a [AUC = 0.30 (0.13 0.50), ‘‘acceptable’’ effect]. Because
only 6/25 patients in the OLD group received midazolam we
are aware of the small sample size that presents a limitation of
the investigation. Further research will be necessary to give a
definite answer.

Interestingly, although the sample size is small, we observed
differences in the spectral composition of the EEG between the
OLD patients that did receive midazolam and OLD patients that
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FIGURE 2 | Absolute (A) and normalized (B) power spectral density and corresponding receiver operating curve (AUC) with 95% confidence intervals for the young
(<45 years) and old (>65 years) patients. (A) YOUNG patients had significantly higher power in the frequencies up to 15 Hz. (B) OLD patients had significantly higher
normalized power in the frequencies higher ∼15 Hz.

FIGURE 3 | Linear regression model of decreasing absolute alpha band power (pwr) with age (year). Alpha power of the initial burst significantly (p < 0.001)
decreases with age. Alpha pwr = −0.14∗age + 21.20 (p < 0.001); YOUNG vs. OLD: AUC = 0.86 (0.73 0.97). ∗ Indicates a significant difference (p < 0.05).

did not receive midazolam. Non-premedicated OLD patients had
more high-frequency contents in their burst EEG as presented in
Supplementary Figure 7.

Although it remains possible that midazolam has an
influence on burst characteristics in this population, we are
reluctant to draw this conclusion as many factors influence the
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TABLE 1 | Statistical parameters of the linear model (electroencephalographic, EEG parameter vs. age) and the comparisons between the YOUNG and OLD patients.

Linear model Slope 95% CI p t-stat R2 rho YOUNG vs. OLD (AUC)

Alpha power = 21.20–0.14∗age −0.21, −0.07 <0.001 −4.11 0.14 −0.32 0.86 (0.73–0.97)
Norm. alpha power = −7.60–0.01∗age −0.07, 0.05 0.719 −0.36 0 −0.02 0.60 (0.40–0.78)
SpEnt = 2.90 + 0.01∗age −0.002, 0.012 0.145 1.47 0.02 0.14 0.36 (0.18–0.55)
Max amplitude = 31.97–0.26∗age −0.41, −0.10 0.001 −3.30 0.1 −0.35 0.84 (0.69–0.95)
Max slope = 1.488–0.009∗age −0.017, −0.0002 0.045 −2.03 0.04 −0.23 0.72 (0.55–0.87)
PeEn = 1.880 + 0.002∗age 0.001, 0.004 0.008 2.72 0.07 0.15 0.27 (0.12 0.44)
log(varBS) = 6.03–0.03∗age −0.05, −0.02 <0.001 −3.90 0.13 −0.33 0.85 (0.71–0.95)

CI, confidence interval; rho, Spearman’s correlation coefficient.

FIGURE 4 | Linear regression models regarding the influence of age on
maximum amplitude (A), maximum slopes (B), permutation entropy (C), and
signal variance in burst suppression (D). (A) The maximum amplitude
significantly (p = 0.001) decreases with age. (B) The maximum slope
significantly (p = 0.045) decreases with age. (C) Maximum permutation
entropy (PeEn) significantly (p = 0.008) increases with age. (D) Signal variance
in burst suppression (varBS) significantly (p < 0.001) decreases with age.
∗ Indicates a significant difference (p < 0.05).

decision to administer midazolam (e.g., subjective assessment of
cognitive frailty).

DISCUSSION

Here we demonstrate an influence of age on the burst
characteristics during anesthetic-induced EEG burst

suppression. We found that the spectral EEG characteristics
of the initial burst changed with age. Older patients had less
power in the low frequencies up to ∼15 Hz. When normalizing
the power spectrum, we could observe a higher contribution
of the higher frequencies starting at around 15 Hz in the old
patients to the total power. Similar changes with age in total
and relative power were shown for the EEG under general
anesthesia without burst suppression (Schultz et al., 2004;
Purdon et al., 2015; Kreuzer et al., 2020). Consequently, older
patients had lower amplitudes and flatter EEG slopes that
led to a lower EEG power in the alpha band as well as to
a higher signal irregularity as reflected by the higher PeEn.
Because we focused on the initial burst, i.e., at the state change
of the brain from the oscillatory to the burst suppression
mode, the observed differences are not due to a different
‘‘state of burst suppression’’ as a result of a pharmacologic
effect. We decided to not focus on the concentration, but
on the time point of the state change in EEG activity to
ensure comparability of our recordings. When considering
only patients pre-medicated with midazolam the results were
very similar.

Although it is known that total EEG power decreases with
age for other quiescent states like general anesthesia without
BSUPP (Schultz et al., 2004; Purdon et al., 2015; Kreuzer
et al., 2020), sleep (Carrier et al., 2001), or wakefulness (Polich,
1997), this is definitive evidence that the burst amplitude
also decreases with age. While this is not surprising, this
finding may have implications for the use and design of
processed-EEG monitoring approaches. Current monitoring
systems such as the bispectral index (Rampil, 1998), the
patient state index (Drover et al., 2002), or the state and
response entropy (Viertio-Oja et al., 2004) calculate the
(burst) suppression ratio (BSR) to display the occurrence
and strength of BSUPP. The BSR reflects the proportion
of suppressed EEG within a defined period, for instance,
63 s for the bispectral index (Muhlhofer et al., 2017). Most
BSR algorithms focus on the detection of suppressed EEG
as evidence for a BSUPP episode. If the EEG amplitude
is below a set threshold for a defined duration, BSUPP is
detected (Rampil, 1998; Särkelä et al., 2002; Jensen et al., 2014).
Artifacts (i.e., EKG or motion) for instance can contaminate
the signal and can spuriously cause increased EEG activity,
thus hindering algorithms that detect BSUPP by identifying
suppression (Willingham and Avidan, 2017). This leads to
an underestimation of BSUPP by the monitoring devices
(Muhlhofer et al., 2017) and to a possible misclassification
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of the BSUPP EEG as an awake EEG (Hart et al., 2009;
Willingham and Avidan, 2017). Other reported approaches
to detect BSUPP based on signal variance (An et al., 2015),
may prove superior to commercially used algorithms but
they also focus on the suppression episode or the transition
from suppression to burst. In order to detect suppression
a threshold variance value is defined and then a logical
decision is made. If the local variance is below the threshold
the EEG segment is considered to be suppression. Since
age reduces the local variance during bursts, adjustment of
the threshold is necessary to not increase the amount of
detected suppression.

Hence, EEG information derived during the bursts could at
least function as a quality and plausibility check for BSUPP
detection. But to correctly interpret the information from the
burst, the parameter should be corrected for age.

Again, we focused on the first identifiable burst and did not
consider any propofol concentrations for detection, because first,
older patients require less propofol, and second, because BSUPP
can also occur at very low anesthetic concentrations as described
by Sessler et al. (2012).

One may question the relevance of reliable BSUPP detection,
but only if there are tools that can reliably detect burst
suppression in all patients we as researchers may be able to
investigate the proposed investigation of burst suppression and
an increased risk of postoperative neurocognitive disorders.
Currently, there is an ongoing, controversial discussion
regarding the association of postoperative neurocognitive
disorders with excessive doses of hypnotic agents and/or BSUPP.
Several studies highlighted a possible association between this
intraoperative EEG pattern and delirium in the postoperative
care unit (Hesse et al., 2019) or postoperative delirium (Soehle
et al., 2015; Fritz et al., 2016). Other studies could not show
this relationship (Shortal et al., 2019; Wildes et al., 2019).
In particular, the study by Shortal et al. shows that young
volunteers may not be affected by BSUPP (Shortal et al.,
2019). But these studies use different tools and criteria to
identify burst suppression. Some results for instance were
derived from processed EEG information only (Soehle et al.,
2015), while others used spectral EEG representations (Shortal
et al., 2019) or the raw EEG (Wildes et al., 2019) for burst
suppression identification. Because the processed EEG burst
suppression indices may underestimate the real occurrence
of burst suppression (Muhlhofer et al., 2017) the studies
using these indices may not be easily compared to other
studies. Hence, standardized burst suppression detection
may prove helpful. And the inclusion of the EEG burst
information in an age-adjusted manner could help to achieve
this goal.

LIMITATIONS

Of course, our approach has some limitations. First of all,
we only describe changes happening in frontal regions of the
cortex, and to optimize burst suppression detection, the analysis
of spatiotemporal dynamics over the entire cortex could be
useful. Earlier findings described spatiotemporal differences

in BSUPP features (Lewis et al., 2013). Nevertheless, as a
consequence of feasibility, current monitoring devices usually
record the patient’s EEG from the forehead. Hence, we chose
the frontal EEG for our research approach. Further, the
effects described are only for propofol-induced bursts and
the results could be different for other anesthetics since the
choice of the anesthetic regimen, for instance, influences the
burst characteristics (Kenny et al., 2014; Fleischmann et al.,
2018). Also, the role of ischemic events that may be related to
the development of burst suppression (Morimoto et al., 2005;
Kertai et al., 2011) will have to be investigated more closely
in the future to distinguish them from drug-induced burst
suppression. While we could describe an age-related change
in the EEG burst characteristics we did not control for any
confounders such as comorbidities that come with age. This
needs to be done with a properly sized data set and an appropriate
study design. A part of our patient collective, and especially
the younger patients, received midazolam as premedication.
Midazolam is a potent agonist of the γ-aminobutyric acid
receptor type A (GABAA receptor) and premedication with
midazolam seems to modify intraoperative EEG signatures
(Windmann et al., 2019). As far as we can interpret our
results from the limited sample size, we observed similar
results as for the analyses of the entire data set. But one
should have in mind that the sample size is underpowered
for this observation. Still, our data indicate that midazolam
premedication may reduce high-frequency brain activity within
the bursts in old patients. Midazolam as well as propofol have
been demonstrated to promote low-frequency oscillations in the
brain (Yeom et al., 2017). Mechanistically midazolam additively
or synergistically interacts with propofol depending on the
GABA concentration (McAdam et al., 1998) and might therefore
further enhance cortical inhibition finally resulting in a less
high-frequency activity.

CONCLUSION

Age-related EEG features identified for general anesthesia are
also present during burst suppression in the architecture of
the bursts. The burst amplitude decreases and the bursts
become more irregular. As a consequence, automated detection
approaches for BSUPP may become less accurate with age.
Our findings highlight the necessity of age-adjusted monitoring
approaches to optimize monitoring for old patients.
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