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Abstract

Automatic monitoring of construction processing has drawn attention in the fields of

Architecture-Engineering-Construction, and Facilities-Management industry increasingly. Point

clouds, acquired via laser scanning or stereo matching of images, have been considered the most

appropriate data source in monitoring the lifecycle of construction projects due to accurate and

detailed 3D information provided. However, inconsistent coordinate systems, lack of topological

and semantic information, complex construction scenarios pose great challenges for using point

clouds in construction monitoring and change detection.

This research aims to develop novel methods and techniques involving point cloud registration,

semantic segmentation, and change detection to obtain and present spatial and temporal changes

in structural components of buildings of the site during the construction process. Hereby, the

work provides contributions on three major aspects: (i) global matching for point cloud regis-

tration, (ii) point embedding for semantic segmentation of point clouds, and (iii) information

fusion for change detection.

To achieve robust and efficient registration of point clouds, we developed novel registration meth-

ods that utilized global features and their attributes in the frequency domain. The low-frequency

components of the global signals are matched to achieve robust and efficient registration of point

clouds. To interpret 3D scenes robustly and embed 3D points in discriminative feature space, we

focus on the engineering of point correlations, the involvement of attention mechanism, and the

improvement of receptive fields of points. The point correlations can be either considered using

the manifold-learning-based method in which the correlation in feature space and spatial space

are both involved or can be embedded by building global relations between points using deep

learning techniques.. The attention mechanism is also involved in improving the discriminate

features and suppressing interference. The improvement of the receptive field can be achieved

by building multi-scale neighborhoods during feature learning. In the change detection task,

both the geometric and semantic changes are considered. Geometric changes are obtained by

the occupancy conflicts of point clouds. By fusing the geometric and semantic information using

the Dempster-Shafer theory, we can visualize the changes in the construction sites.

The methods for the proposed co-registration and segmentation were evaluated by experiments

with different open benchmark datasets and for the change detection with an TUM-PF-own

datasets. For the co-registration (WHU-TLS), an average of translation errors about 40 cm and

an average of rotation errors about 0,1 degree can be achieved. For the segmentation, an overall

accuracy of about 85% (ISPRS Vaihingen ALS) and about 54% (TUM photogrammetric point

cloud) can be obtained. As for the change detection, an overall accuracy of about 75% can be

finally achieved.
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Kurzfassung

Die automatische Überwachung von Bauprozessen hat in den Bereichen Architektur, Ingenieur-

wesen, Bauwesen und Facility Management zunehmend an Bedeutung gewonnen. Punktwolken,

die durch Laserscanning oder automatische Bildzuordnung erfasst werden, gelten als die am

besten geeignete Datenquelle für die Überwachung des Lebenszyklus von Bauprojekten, da sie

genaue und detaillierte 3D-Informationen liefern. Inkonsistente Koordinatensysteme, fehlende

topologische und semantische Informationen und komplexe Bauszenarien stellen jedoch eine

große Herausforderung für die Verwendung von Punktwolken bei der Bauüberwachung und der

Erkennung von Veränderungen dar.

Ziel dieser Forschungsarbeit ist es, neue Methoden und Techniken zu entwickeln, die Koreg-

istrierung von Punktwolken, semantische Segmentierung und Änderungsdetektion umfassen, um

räumliche und zeitliche Veränderungen der strukturellen Gebäudekomponenten einer Baustelle

während des Bauprozesses zu erfassen und darzustellen. Dabei liefert die Arbeit Beiträge zu drei

Hauptaspekten: (i) Globales Matching für die Registrierung von Punktwolken, (ii) Merkmal-

seinbettung für die semantische Segmentierung von Punktwolken und (iii) Informationsfusion

für die Änderungsdetektion.

Um eine robuste und effiziente Registrierung von Punktwolken zu erreichen, wurden neue Meth-

oden entwickelt, die globale Merkmale und ihre Attribute im Frequenzbereich nutzen. Die

niederfrequenten Komponenten der globalen Signale werden genutzt, um eine robuste und ef-

fiziente Registrierung von Punktwolken zu erreichen. Um 3D-Szenen robust zu interpretieren

und 3D-Punkte in einen diskriminierenden Merkmalsraum einzubetten, konzentriert sich die

Arbeit auf die Entwicklung von Punktkorrelationen, die Einbeziehung von Aufmerksamkeits-

mechanismen und die Verbesserung des rezeptiven Felds von Punkten. Die Punktkorrelatio-

nen können entweder durch nichtlineare Dimensionsreduktion bestimmt werden, bei der sowohl

die Korrelation im Merkmalsraum als auch Nachbarschaftsbeziehungen einbezogen werden oder

durch globale Beziehungen zwischen Punkten durch Deep-Learning-Methoden eingebettet wer-

den. Der Einsatz eines sogenannten Aufmerksamkeitsmechanismuses dient der Verbesserung der

Unterscheidungsmerkmale und unterdrückt Störungen. Die Verbesserung des rezeptiven Feldes

kann durch den Aufbau von Nachbarschaften in mehreren, verschiedenen Distanzen während des

Lernprozesses erreicht werden. Bei der Änderungsdetektion werden sowohl die geometrischen als

auch die semantischen Veränderungen berücksichtigt. Geometrische Änderungen werden durch

Belegungskonflikte von Punktwolken ermittelt. Durch die Fusion von geometrischen und seman-

tischen Informationen unter Verwendung der Dempster-Shafer-Theorie können Änderungen auf

Baustellen visualisiert werden.

Die Methoden für die vorgeschlagene Koregistrieung und Seemntierung wurden durch Experi-

mente mit verschiedenen offenen Benchmarkdatensätzen und die Änderungsdetektion mit TUM-

PF-eigenen Datensätzen evaluiert. Im Mittel konnten für die Koregistrierung (WHU-TLS) ein

Translationsfehler von ca. 30 cm und einen Rotationsfehler von ca. 0,1 Grad, für die Seg-

mentierung Gesamtgenauigkeiten von ca. 85% (ISPRS Vaihingen ALS) und ca. 54% (TUM

photogrammetrische Punktwolke) und für Änderungsdetektion ca 75% erreicht werden.
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1 Introduction

1.1 Motivation

In the fields of Architecture-Engineering-Construction and Facilities-Management (AEC/FM),

the management of the life-cycle of a construction project is of great importance. Activity man-

agement of the construction project usually requires a forward flow of design intent of the project

and a feedback flow of project state information. As a process providing feedback information,

progress monitoring is one of the core tasks in the management of a construction project [Turkan

et al., 2012]. The need for automatic and accurate progress monitoring of construction projects

has increased in recent decades. In the past decade, advances in computer vision have boosted

many crucial tasks like building modeling [Arayici, 2007; Xu et al., 2018a; Xu & Stilla, 2019],

progress tracking [Turkan et al., 2012; Kim et al., 2013; Bosché et al., 2014], scene recognition

[Xu et al., 2017], and quality control [Shih & Wang, 2004; Gordon & Akinci, 2005; Arayici, 2007]

towards automatic, intelligent, and integrated processing pipelines. Here, Building Information

Model (BIM) is a representative platform that is increasingly widely used for the design of con-

struction projects and the monitoring of the construction progress, which can provide a solution

for accurate progress monitoring [Tang et al., 2010; Tuttas et al., 2017]. However, there are still

gaps between the current development of progress monitoring and the final goal of progress mon-

itoring with high automation and digitization. Challenges also occur in many specific tasks, such

as integration of multiple attributes, alignment of time frames, and standardization of data for-

mats and processing interfaces. For tackling these challenges, progress monitoring has been widely

studied in the fields of AEC/FM. However, traditional ways of implementing progress monitoring

depend on visual inspections, extensive manual records, and data analysis. The conventional

methods rely heavily on personal skills, inspector experiences, and surveying techniques [Bosché,

2010]. The traditional surveying-based methods for construction monitoring are labor-intensive,

error-prone, time-consuming, and lacking continuity. To address these problems, many researchers

have studied various techniques for automatic construction monitoring, such as 2D imaging based

site analysis [Haas et al., 1984; Abeid et al., 2003; Ibrahim et al., 2009; Chi et al., 2009; Wu

et al., 2010], photogrammetry based site mapping [El-Omari & Moselhi, 2008; Golparvar-Fard

et al., 2009, 2015; Braun et al., 2015; Tuttas et al., 2015, 2017], and terrestrial laser scanning

(TLS) based mapping and scene analysis [Stone & Cheok, 2001; El-Omari & Moselhi, 2008; Lee

et al., 2013; Kim et al., 2013; Bosché et al., 2014; Xu et al., 2017; Xu et al., 2018b]. Among the

aforementioned technologies, point clouds acquired using light detection and ranging (LiDAR)

and stereo vision techniques have been considered the most appropriate technique to capture 3D

information of construction projects with high accuracy and efficiency [Xu & Stilla, 2021]. By

using LiDAR techniques, distances from the sensor to nearby surfaces can be observed with mil-

limeter to centimeter accuracy at speeds of thousands of point measurements per second [Tang

et al., 2010]. While benefiting from the stereo vision techniques, images captured by digital cam-

eras can not only cover regions of interest but also be processed to generate point clouds with

accurate positions and rich 3D details. Besides, colors and textures also serve as additional infor-

mation to aid further modelling. Laser scanning and stereo vision techniques show their advances
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in providing fast, accurate, comprehensive, and detailed 3D as-built information for the sensed

construction scene.

In Fig. 1.1, Tuttas et al. [2017] illustrated the general procedure for construction progress

monitoring using point clouds. The construction project’s schedule can be updated by comparing

the as-built information from the sensed data with as-planned information provided by 4D-BIM.

Thus, decisions can be made for further construction activities. For a fair comparison with as-

planned BIM, as-built information from the sensed technologies has to be organized at the object

level for fulfilling the requirement of progress monitoring purposes. However, the raw 3D points

do not naturally contain object-oriented information. Further processing of the measured 3D data

is required for achieving the task of progress monitoring.

Figure 1.1: Illustration of the general procedure for construction progress monitoring using a 4D BIM and
a photogrammetric point cloud [Tuttas et al., 2017].

Remarkable researches have been reported in developing processes and algorithms for process-

ing 3D point cloud data in the field of progress monitoring. Turkan et al. [2012] developed an

automated recognition system that combines 3D object recognition technology with schedule in-

formation into a combined 4D objection-oriented progress tracking system, which helped update

the design plan of the construction progress. Kim et al. [2013] proposed a system by match-

ing a-built data with an as-planned model and revising the as-built status. Bosché et al. [2014]

monitored the construction of a utility corridor in a university engineering building with a Scan-

versus-BIM object recognition framework. Tuttas et al. [2017] performed continuous monitoring
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by acquiring and subsequently comparing co-registered point clouds. Xu et al. [2018a] provided

a robust solution for reconstructing scaffolds from a photogrammetric point cloud of a construc-

tion site using a novel 3D feature descriptor and a projection-based segmentation method. Puri

& Turkan [2020] developed a semi-automated methodology for monitoring bridge construction

projects by comparing project as-built data from 3D point clouds and 4D project design model.

The process involved the registration of virtual point cloud from 3D model and as-built point

cloud and also segmentation and object recognition based on the scanned data.

From the aforementioned researches, it can be seen that three major tasks should be ad-

dressed (see Fig. 1.2) in the progress monitoring: (1) registration; (2) semantic segmentation or

object recognition; (3) change detection. To be specific, point clouds acquired at different epochs

should be aligned by point cloud registration for a fair comparison between different states of a

construction project or comparison between as-built and as-planned data. Meanwhile, semantic

segmentation should be conducted to fill semantic gaps between raw point clouds and the required

as-built model. Most importantly, comparison between different states of construction process

should be implemented by change detection of point clouds to detect and present changes of

construction scenes.

Figure 1.2: Three-step workflow for change detection from point clouds.

However, to achieve automatic progress monitoring and change detection, several essential

problems must be addressed (see Fig. 1.3). First, point clouds acquired during the construction

process and BIMs at different states should be aligned in the same coordinate system to enable

the comparison. Generally, due to temporal changes and incompleteness caused by occlusions in

complex urban environments, it leads to difficulties in setting reliable and sufficient ground control

points and it is usually challenging to find correspondences completely automatically. It makes

the registration of point clouds a challenging task. Second, there are uneven densities resulting

from different viewing distances of scanners and noise and outliers of point clouds, which makes

the extracted features ineffectual and leads to difficulties in interpreting the complex construction

scene. In addition, in construction scenes, there exists not only various categories of building

objects but also some temporal objects belonging to other categories, which makes construction

scenes of high complexity. Third, the progress of a construction project is indicated by changes

between different states of the construction. The comparison is usually conducted based on the

segmentation and recognition results of building objects. However, as mentioned before, for either

laser scanning or stereo vision technique, they all have limits in observations, such as occlusions.

This factor should also be considered when detect and present changes in a construction scene.

Considering the aforementioned problems, the research questions can be summarized as follows:

I To what extent of robustness, accuracy, and efficiency could a marker-free alignment of

point clouds measured at different time epochs with temporal changes and incompleteness

of data achieve?
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II What are the necessary aspects that must be considered when learning features to ensure an

accurate interpretation of complex scenarios using point clouds with uneven point densities,

intense noise, and outliers?

III To what extent of automation could be achieved for change detection? Is it sufficient enough

to detect changes by purely comparing segmentation results of building objects?

Figure 1.3: Problems for construction monitoring and change detection.

For finding answers to the aforementioned research questions, before introducing our objectives

and contributions, we first provide a detailed survey and review of related work in the following

section.

1.2 State of the art

Numerous researchers have studied change detection using point clouds. According to the three-

step workflow mentioned in the last section, we will provide detailed reviews and discussions

concerning methods and algorithms relating to registration, semantic segmentation, and change

detection in the following section.

1.2.1 Registration of point clouds

Point cloud registration has long been a challenging task in the field of photogrammetry and

computer vision. The objective of registration is to estimate a rigid transformation that aligns

multiple individual but related point clouds into a unified coordinate system [Hebel et al., 2009; Xu

et al., 2019a]. These point clouds might be acquired from different viewpoints, at different times,

using different platforms, or via multimodal sensors. The registration between them should be

done in an automatic and marker-free manner. Numerous studies have been intensively reported

to solve mark-less point cloud registration, with two major steps always involved, including the
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estimation of correspondences and the calculation of transformation parameters. Here, matching

correct correspondences is the key to the success of registration. In the following, we will review

methods using the matching of correspondences, which can be grouped into three fundamental

classes conforming to the principles that they used: geometric constraint-based methods, feature

description-based methods, and global information-based methods.

Geometric constraint-based registration

For geometric constraint-based approaches, a geometric constraint is formed by points or primi-

tives as an indicator for retrieving and matching correspondences. For example, Iterative Closest

Point (ICP) searched for associated points based on minimizing point-by-point distances between

the various point clouds [Besl & McKay, 1992; Habib et al., 2010; Al-Durgham & Habib, 2013] for

point cloud registration. Its variants, such as Geometric Primitive ICP [Bae & Lichti, 2008], geo-

metric features + ICP [Habib et al., 2005, 2010; Gressin et al., 2013], Go-ICP [Yang et al., 2013],

are also representative approaches, which utilize geometric constraints by minimizing distances

between corresponding elements. However, for the ICP-based methods, proper initial transfor-

mation estimation is needed to avoid incorrect local optimum. Apart from ICP-based methods,

many methods follow a different registration scheme, in which specially designed combinations of

points or primitives matter to the identification of corresponding points. This specially designed

combination of points or primitives can create a constraint when searching for candidate pairs of

points, significantly increasing the efficiency compared with a random matching test. 4-point con-

gruent systems (4PCS) and its variants such as Super4PCS [Mellado et al., 2014], keypoint-based

4PCS (K4PCS) [Theiler et al., 2014], and semantic keypoint-based 4PCS (SK4PCS) [Ge, 2017]

are representative approaches following this strategy. In this type of method, corresponding sets

of congruent points are identified by utilizing the constraint of intersection ratios and selecting

candidates for finding correspondences. In affine transformation, intersection ratios of four points

congruent sets consisting of two pairs of points are invariant. Thus, by filtering out all four point-

sets follow intersection ratios from a given four point-sets in the target point cloud, we can reduce

the number of candidates in the source point cloud. Compared with feature description-based

registration, the geometric constraint-based methods have higher robustness to occlusions and

unequal densities since the geometric constraint can be built on a larger scale than the features

extracted from a local context. Similarly, instead of points, using the combination of different

kinds of primitives, for example, two pairs of planes [Chen et al., 2019], is also a compelling choice.

The use of geometric primitives like planes can upgrade the robustness of the geometric features,

as they constraint degree of freedom (DoF) and are less sensitive to uneven point densities and

outliers [Xu et al., 2019a]. For example, measured distances between points in the point-based

4PCS methods are more sensitive to noise than the primitive-based one. The volumetric 4PCS

(V-4PCS) [Huang et al., 2017] is also a method under the framework of 4PCS, which extended

the surface expression to volumetric ones and shows a promising improvement in computational

efficiency.

Feature description-based registration

For feature description-based registration approaches, the corresponding pairs between point

clouds are identified through retrieving features with the most substantial similarity. An appro-

priate feature description plays an essential role in this retrieving process, usually implemented

by feature descriptors. Various feature descriptors have been demonstrated in many studies that

are useful in feature retrieving and matching. An eligible feature descriptor should have two

core characteristics, namely, high descriptiveness and rotation-invariance. High descriptiveness

ensures a discriminative description of geometric features for non-corresponding points and sub-
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stantial similarity between features of corresponding points. Rotation-invariance guarantees the

robustness of the generated features, which the rigid transformation between point clouds should

not influence. Renowned examples of feature descriptors include scale-invariant feature transform

(SIFT) [Flitton et al., 2010], fast point feature histogram (FPFH) [Rusu et al., 2009], rotational

projection statistics (RoPS) [Guo et al., 2013] and signature of histogram of orientations (SHOT)

[Tombari et al., 2010]. However, the performance of descriptors (i.e., SIFT) highly depends on

the saliency of input points selected by keypoint detectors like Harris 3D. The detection of key

points will highly influence the performance of both candidate selection and feature extraction.

Furthermore, the basic principle for achieving rotation in-variance mainly counts on the pose

normalization. For instance, SIFT achieves rotation-invariance in feature extraction by orienting

the local reference frame (LRF) axis to the dominant orientation of gradients. However, the ori-

entation of LRF is easy to be influenced by noise and outliers. An alternative is to obtain the

local geometry statistics, which are easy to implement and fast to compute. However, the critical

problem is that this kind of feature may encounter low descriptiveness. Additionally, features

can also be extracted from geometric primitives that clustered from points, such as lines [Habib

et al., 2005; Hebel & Stilla, 2010, 2012; Ge & Hu, 2020], curves [Yang & Zang, 2014], planes

[Xiao et al., 2013], surfaces [Ge & Wunderlich, 2016]. Thus, the accuracy of extracting these

geometric candidates for registration, such as key points or primitives, is an important factor

that influences the registration results. Besides, artifacts may also be brought in when extracting

geometric primitives.

Global information-based registration

In the aforementioned registration categories, local information is mainly utilized and generated

based on 3D points themselves or clusters of primitives. Registration can also make use of global

features derived from the entire point clouds. For instance, in the normal distribution transform

(NDT) method [Biber & Straßer, 2003], points were transformed into a normal distribution, the

natural distribution of which forced alignment between point clouds [Magnusson et al., 2007]. The

distribution of point densities is another global indicator for alignment. In some representative

methods, coherent point-drift [Myronenko & Song, 2010] and kernel affinity correlation [Tsin &

Kanade, 2004] were applied on the density for finding correspondences. In a recent work of [Dong

et al., 2018], global features were used for the fast orientation of multi-scan unordered point clouds.

In our previous work [Huang et al., 2019], 3D point clouds of a highly complicated scenario were

projected into 1D histograms and 2D images for achieving registration in low-dimensional spaces.

These projected histograms and images were also a global expression of original point clouds.

Generally, for both geometric constraint-based and feature description-based registration, they

follows the strategy of finding local correspondence. Compared with local-correspondence-based

approaches, the global information-based methods can avoid the establishing of local feature

descriptions and thus be more robust to noise and outliers and less sensitive to irrelevant changes

of details. However, large overlap are usually required for global-information-based methods.

Otherwise, the approaches based on global features may make a significant difference.

1.2.2 Semantic segmentation of point clouds

For parsing semantic information of the 3D scene from point clouds, one practical solution is

semantic labeling. The primary goal of semantic labeling of point clouds is to annotate every point

in the point cloud with a label of semantic meaning, in accordance with geometric or radiometric

information provided based on the point itself and its neighborhood. This can be achieved via

the classification of acquired points. Due to the development of deep learning techniques, many

new advances have also brought new solutions for semantic segmentation of point clouds. Thus,
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semantic segmentation approaches can be divided into two groups based on the rule that whether

deep learning techniques are applied: traditional methods and deep learning-based methods.

Point cloud classification with traditional methods

To achieve the semantic labeling of points, supervised classification is typically implemented

[Vosselman et al., 2017; Li et al., 2019a]. It comprises two main steps: generation of distinctive

features and classification of 3D points with corresponding features with a classifier. For the

extraction of features, the local context of each point is conventionally defined by its neighboring

points and presented by various handcrafted mathematical expressions based on spatial or spectral

attributes of these points. For the training process, the mathematical expressions of the selected

representative samples are integrated into a feature vector and fed into a classifier along with the

corresponding labels. In previous work, to create discriminative features, studies have exploited

both point geometry and inherent attributes. Many contextual features extracted from spatial

distributions and directions of points have shown their effectiveness in the classification task

[Yang et al., 2017a], such as eigenvalue based features from covariance matrix of point coordinates

[Chehata et al., 2009; Weinmann et al., 2015a,c], waveform-based features from transformation

[Jutzi & Gross, 2010; Zhang et al., 2011], 2D projected patterns [Zhao et al., 2018], elevation values

and height differences [Maas, 1999; Gorgens et al., 2017; Sun et al., 2018], and orientations of

points from normal vectors [Rabbani et al., 2006]. However, designing good handcrafted features

is a critical and challenging task, which requires a good understanding of the scanned objects and

highly depends on empirical tests [Xu et al., 2019b].

Classifier refers to a mathematical function or transformation implemented by algorithms or

strategies, which projects input features to a category. A well-designed classifier should maxi-

mum the discrimination of features of various semantics. Regarding point cloud classification, a

considerable amount of classifiers have been introduced and tested, including AdaBoost [Chan

& Paelinckx, 2008], support vector machines (SVM) [Mallet et al., 2011], composite kernel SVM

[Ghamisi & Höfle, 2017], and random forest (RF) [Chehata et al., 2009], Hough forest [Yu et al.,

2016], 3D Markov Random Field (MRF) [Yin & Collins, 2007], and conditional random fields

(CRF) [Niemeyer et al., 2014; Weinmann et al., 2015b; Yao et al., 2017; Vosselman et al., 2017;

Li et al., 2019b]. For supervised classification, a classifier is trained using the generated features

and the corresponding labels so that the classifier’s parameters can be optimized for inferring

categories of points from input features. Then, the trained classifier can be used to predict labels

of points from other test areas. However, these interactions are not controllable. There is still

heterogeneity in the classification results in some cases, especially in low-density areas and borders

of urban objects. Therefore, contextual information is typically considered to improve the spatial

smoothness of the classification results. Furthermore, to encode the spatial dependencies between

3D points, a graph structure is usually constructed to model the adjacency relationship. Numer-

ous optimization strategies are based on specific classic graphical models such as MRF [Munoz

et al., 2009; Lu & Rasmussen, 2012; Kang & Yang, 2018]. In Landrieu et al. [2017], instead of

fixing on some standard graphical models, a general mathematical optimization framework with

more versatile solutions for spatial smoothing is proposed.

Point cloud classification with deep learning techniques

Compared with classification approaches using handcrafted features, classification methods using

learned features can automatically discover the feature representations needed for classification

from raw points, requiring less prior knowledge and avoiding sophisticated feature design. Feature

learning is usually achieved via dictionary learning or deep learning. At the moment, deep-

learning-based methods for point cloud classification are getting increasingly popular recently,
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which provides end-to-end solutions that decrease the efforts in feature design and improve abilities

to learn high-level feature representation for the classification task. For a neural network-based

method, its layer structure and parameters can implicitly express the spatial interactions between

3D points, facilitating the feature representations. Tennumerous neural networks have achieved

remarkable performance in a wide range of applications. Examples include VoxNet [Maturana

& Scherer, 2015], MultiViewCNN [Su et al., 2015], PointNet [Qi et al., 2017a], PointNet++ [Qi

et al., 2017b], PointCNN [Li et al., 2018], PointSIFT [Jiang et al., 2018], superpoint graph (SPG)

[Landrieu & Simonovsky, 2018], RandLA-Net [Hu et al., 2020], and many more.

Generally, deep learning methods for point cloud classification can be categorized into five

major types: projection-based methods, voxel-based methods, point-based methods, graph-based

methods, and attention-based methods.

Projection-based methods

The core idea of projection-based methods is to project points from the 3D Euclidean space

to 2D planes or manifold space so that the projected data can utilize CNN approaches designed

for 2D data. Values (e.g., grayscales, intensities, or densities) of the projected data will represent

either geometry (e.g., elevations) or attributes (e.g., RGB colors) of original 3D points. The most

commonly used 2D projected representation is imagery. The 2D rendered image derived from

virtual cameras of different viewing positions [Su et al., 2015] is an example. Through the use of

multiple 2D rendered images, the 3D geometry of an object can be delineated. The rendered 2D

images of an object are then applied to a 2D CNN network for object classification. According

to reported studies, projection-based methods have demonstrated success in various classification

applications using large-scale LiDAR point clouds. In Yang et al. [2017b], geometric features and

full-waveform attributes were generated from local neighboring points of each point and assigned

with x− and y− coordinates to a pixel in a 2D image. The generated 2D images encapsulated

either geometric and radiometric information and were then fed into 2D CNNs. With the predicted

labels of 2D pixels and a back-projection, the labeling of 3D points could be achieved. In Yang

et al. [2018], based on the previous strategy of [Yang et al., 2017b], a multi-scale CNN and 2D

images of features extracted from neighborhoods of various scales were developed, which obtained

a better performance of classification. In Boulch et al. [2018], snapshot images with pixels, in

which RGB colors and depths were encoded, were applied to a 2D fully convolutional network.

Once the labels of 2D pixels were obtained, they were back-projected to the original 3D space to

fulfill 3D point classification eventually. In Zhao et al. [2018], 2D images of multi-scale contextual

information, including features of height, intensity, and roughness, were attained to represent the

original 3D LiDAR points. Then, a multi-scale CNN was applied to conduct a classification of

3D points using these 2D images. Apart from 2D images, a digital surface model (DSM), as

2.5D data, is also adopted to represent 3D points of ALS data, since points in ALS data always

reveal an even distribution in horizontal directions and lack of vertical distribution. In Chen et al.

[2017], the DSM generated from 3D points was utilized as one input, fed into a two-stream deep

neural network. Generally speaking, the neural network design based on the projection method

is directly inherited from the existing 2D CNN solutions, and there is almost no need to adjust

the network structure. However, these methods are deficient in presenting information from the

depth direction and inevitably cause errors in rendering and interpolation.

Voxel-based methods

Voxel-based approaches structure the 3D space into regular voxel grids and project discrete 3D

points into these voxels. Then, 3D points will be represented by the spatial occupancy of voxels so

that a 3D convolution with a cubic template can be applied. VoxNet [Maturana & Scherer, 2015]

is one early example, which directly transformed points to 3D voxels assigned with occupancy

and implemented a 3D CNN to predict class labels of 3D objects. In Engelcke et al. [2017], as
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an improvement, point clouds were voxelized into grid structures, then the voting procedure was

introduced in a 3D CNNs. Similar to grey values of 2D pixels, occupancy is the most commonly

used attribute that could be assigned to 3D voxels. However, there are also some other strategies

to represent points with voxels. For instance, in Wang & Posner [2015], values of voxels were

encoded by attributes generated from spatial positions of all points within this voxel. Besides,

irregular-shaped 3D grid structures (e.g., voxels may have different sizes or cuboid shaps) can

also be used for organizing 3D points. For example, the octree structure was introduced to CNNs

in Wang et al. [2017], wherein normal vectors of points in each leaf node were averaged as voxel

values and then fed into CNN. Similarly, Kd-trees were also utilized to structure discrete 3D

points [Klokov & Lempitsky, 2017]. Voxel structures can also combine with pixels. For example,

in Qin et al. [2019], both voxels and pixels were used as inputs in the proposed VPNet for semantic

labeling of ALS data. The generation of voxels provided contextual information from the local

area. On the contrary, auxiliary structures can be utilized to assist voxels as well. For instance,

in Zhou & Tuzel [2018], unified features of every voxel were extracted via an additional feature

encoding layer based on the region proposal network. These features would tackle the sparsity

of 3D points. In Qi et al. [2016], two aforementioned schemes (i.e., voxel-based convolution and

feature encoding layers) were combined into a multi-orientation volumetric CNN. The features

of each orientation were generated with a shared network, and results of an image-based CNN

were also integrated. In Su et al. [2018], sparse bilateral convolutional layers directly operated

on a collection of points represented as a sparse set of samples in a high-dimensional lattice. The

efficiency can be maintained using indexing structures to apply convolutions only on occupied

parts. Choy et al. [2019] introduced a 4D CNN for spatio-temporal perception, and a hybrid

kernel was proposed to deal with the exponential increase of parameters in using a 4D hypercube.

However, similar to the shortcomings of projection-based methods, the voxelization process, either

regular-shaped or irregular-shaped ones, definitely lead to a loss of spatial information since this

is a sampling process. In this case, aliasing is inevitable due to the setting of the voxel resolution.

Moreover, points of different categories may be rasterized into a voxel with the same label, which

adds ambiguity and decreases the accuracy. The 3D structure requires considerably larger memory

consumption and computational cost than 2D images, which hinders applying and developing this

method.

Point-based methods

Point-based methods use discrete points as input to networks. As a milestone, the emergence

of PointNet [Qi et al., 2017a] started the trend of directly using discrete points in deep neural

networks. PointNet and its variants [Qi et al., 2017b, 2018] showed remarkable performance on

popular benchmarks with either indoor [Armeni et al., 2016; Dai et al., 2017] or outdoor [Geiger

et al., 2012; Hackel et al., 2017; Zhang et al., 2019b] applications. One of the key innovations

of PointNet is to consider the unstructured and disordered characteristics of 3D points through

a transformation and align points into the same orientation frame. Thus, it can establish an

end-to-end framework in which 3D points can be classified without preprocessing. Moreover, for

each point, local and global features were considered and learned in PointNet. In Yousefhussien

et al. [2018], the multi-scale frame was developed to embed PointNet, for achieving a classification

of large-scale ALS point clouds. In Li et al. [2018], PointCNN with a new network structure was

proposed to learn an X transformation of points to deal with permutations and centralization.

In Jiang et al. [2018], PointSIFT encoded 3D information of point orientations, then the module

was embedded in the multi-scale frame of PointNet++. In Thomas et al. [2019], KPConv used a

newly designed point convolution, which adapted kernel points to local geometry, in which weights

for kernel positions are defined by linear correlation. In Boulch [2020], ConvPoint replaced the

discrete kernels by continuous ones. Zhang et al. [2019a] proposed an efficient convolutional

operator which utilized statistics from concentric spherical shells to define local representative



28 1. Introduction

features. The RandLA-Net method proposed an efficient and lightweight network architecture

that involved a random point sampling strategy and a novel local feature aggregation module [Hu

et al., 2020]. In Li et al. [2020a], a geometry-attentional network was designed, which improved

PointSIFT by embedding dense hierarchical structure and elevation-attention module. In this

work, low-level geometric vectors were introduced to induce the learning of high-level local pattern

representation, which increased the discrimination of geometric awareness of features. In Li et al.

[2020b], a density-aware convolution module was introduced to directly work on 3D point sets

and deal with uneven density distribution of 3D point clouds. Additionally, a context encoding

module was designed to regularize the global semantic context. In Wen et al. [2020], a directionally

constrained fully convolutional neural network utilized a novel directionally constrained point

convolution module to encode local context in an orientation-aware way by considering projected

2D receptive fields. Moreover, point-based methods are also used as an encoder for extracting

deep features, which can be integrated with other optimization algorithms. For instance, in

Huang et al. [2020b], PointNet++ with hierarchical data augmentation was proposed to learn

deep features of points and then optimized by a manifold-based feature embedding.

Graph-based methods

Rather than directly using discrete points as input, points, as well as the contexts, can be

structured by a graph. A graphical model could naturally represent the spatial space of 3D

scenes [Landrieu et al., 2017]. The graph-structured data is then fed into a newly designed

network. GraphCNN is an encouraging instance, which has shown promising results on different

applications [Simonovsky & Komodakis, 2017; Landrieu & Simonovsky, 2018; Wang et al., 2018].

In the graph-structured data, the edges between the points are created for generating the topology

of the graph.

Attention-based methods

Recently, the attention mechanism is becoming increasingly popular, as it can provide scores

of importance for parameters. The attention helps in improving the discriminate features and

suppressing interference. In Fu et al. [2019], a dual attention network was proposed to integrate

local features with their global dependencies adaptively. The feature aggregation is achieved by

a weighted sum of the features at all positions. Meanwhile, channel attention was also applied

to learn the interdependencies between feature channels. As for semantic segmentation of point

clouds, in Feng et al. [2020], a point-wise spatial relation module was introduced to learn the

dependencies of all points. In Li et al. [2020a], elevation-based attentions were learnt as an ac-

tivation map for the deep features used for classification. Meanwhile, some work utilizes the

attention mechanism in scope for feature aggregation. In Hu et al. [2020], attention-based ag-

gregation is applied to the local scope to integrate the neighboring features. However, most of

the aforementioned attention modules only utilized relations as the weights to aggregate features.

The global structural information could be further explored based on the relations.

Compared with classic classification methods using handcrafted features, deep-learning-based-

methods show their advances in learning high-level feature representation and improving the dis-

crimativeness of extracted features in the classification task. Among deep-learning-based methods,

point-based approaches shows their strength due to the capabilities of dealing with geometric na-

ture of point clouds directly. Although many state-of-the-art deep learning-based methods has

achieved remarkable performance in many applications, there are still some aspects that could be

further exploited. First, the local geometric characteristic of points can be further investigated

using deep learning methods. Second, long-range relations may provide additional and rich infor-

mation provided in large receptive fields. Third, the optimization of the deep embedded feature

space could be exploited.



1.2. State of the art 29

1.2.3 Change detection using point clouds

Change detection is to identify differences in the state of an object or phenomenon by observing it

at different time points [Singh, 1989]. Generally, the change detection approaches can be categories

into three classes concerning the representation type of the output for changes: (1) point-based

changes; (2) voxel- or occupancy grid-based changes; (3) segment/object-based changes.

Point-based change detection

The most direct way of detecting changes between 3D data is a point-to-point comparison, which

is also denoted as surface difference. Basgall et al. [2014] obtained changes by directly calculate

differencing between LiDAR and stereophotogrammetric point clouds using the CloudCompare

software. The changes of single buildings were detected by visual inspection. Kang et al. [2013]

used the Hausdorff distance to calculate point-to-point distances to avoid local density variation

issues for detecting changes between point clouds. Xu et al. [2015] utilized a point-to-plane surface

difference map by merging and comparing two datasets. The changes were detected by applying

context rules to the difference map. This method required heavy prior knowledge about the scene.

Du et al. [2016] proposed an automatic method to detect building changes in urban areas using

aerial images and LiDAR data which was coregistered using the ICP algorithm. In this method,

height difference and grey-scale similarity were utilized as indicates for changes. Besides, the

graph-cuts method was applied to further optimize the detected changes by considering contextual

information. This method applied some thresholds for the detecting task, and the thresholds

were set based on prior knowledge of the scene. In general, point-to-point distance is sensitive to

point densities. Additionally, in point-based change detection, the high-level semantics are not

considered, and the limitations of observation are also not tackled.

Voxel-based change detection

For voxel-based change detection methods, point clouds are structured to 3D grids or octree-based

voxels, in which the changes can be conducted by comparing different occupancy states between

point clouds. Pagac et al. [1998] utilized occupancy grids for constructing and maintaining a map

of an autonomous vehicle’s environment for the purpose of navigation, using evidential reasoning.

The sensor readings are fused into the map using the Dempster-Shafer theory (DST). Wolf &

Sukhatme [2004] applied a similar method for SLAM in a dynamic environment. The occupancy

state is defined as free, unknown, and occupied. The changes can be obtained by comparing differ-

ent states of occupancy. However, the aforementioned methods only studied occupancy modelling

in 2D grids. Hebel et al. [2013] applied Dempster-Shafer theory (DST) to determine conflicting

evidence along the laser pulse propagation path. Occupancy grids are utilized for tracing the

propagation path in 3D space for each measurement. Meanwhile, additional attributes are taken

to define the types of changes into account by considering different characteristics of man-made

objects and vegetation. Xiao et al. [2015] further combined the occupancy-based change detec-

tion with a point-to-triangle distance-based method to conduct direct consistency evaluation on

points. This combined method tackled irregular point densities and occlusion problems. Gehrung

et al. [2016] proposed a framework for the volumetric modeling and visualization of large-scale

urban environments. However, the usual raycasting-based methods bring artifacts caused by the

traversal of negative discretized space. Gehrung et al. [2018] utilized knowledge about planar

surfaces to prevent the type of artifacts. In Gehrung et al. [2019], a Delta Octree was utilized for

encoding changes between epochs, which improved the processing efficiency of detecting changes.

Although the voxel-based change detection methods consider tackled the occlusion problems,

while the changes of high-level semantics are not considered.
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Segment-based change detection

Segment-based methods utilize segmentation techniques to extract clusters, and these clusters

serve as basic units for detecting changes. The post-classification method is regarded as a popular

method since it transforms the direct geometric or spectral comparison to label changes, which

tends to be more robust toward disturbances induced by acquisition conditions (such as season,

luminance differences), on the other hand, it is able to provide a type change matrix. However,

in most cases, the change detection results of this method highly depend on the classification or

object detection results, which subsequently requires careful sample collection and feature design.

Vosselman et al. [2004] detected and updated building changes in a 2D map using laser scanning

data. After segmentation and filtering bare earth points, the object points were classified as

buildings or vegetation based on surface roughness, segment size, height, color, and first-last

pulse difference. The building segments were compared with the building objects on 2D maps

for change detection. Aijazi et al. [2013] classified point clouds into two main object classes:

permanent and temporary. Different natural or human-made changes occurring in the urban

landscape over this period are detected and analyzed using cognitive functions of similarity, and

the resulting 3D cartography is progressively modified and updated accordingly. Schachtschneider

et al. [2017] assessed the behavior of each segment in the scene from temporal objects from

the global occupancy grid based on the segmentation results of point clouds. A region-growing

algorithm achieved the segmentation of the point clouds.

For point-based change detection, methods rely highly on strong prior knowledge on the

scene, which limits the generalization of the methods. In addition, point-based change detection

is comparatively less robust to change of details, i.e., point densities or illuminance. As for

voxel-based change detection, although in some occupancy-based change detection methods the

occlusions are addressed when detected changes and the different characteristics of objects are

considered, the work on semantic changes of complex urban scenes with high occlusions is quite

limited. Segment-based change detection can present high-level changes but also highly rely

on the preprocessing results. The improvement of the semantic segmentation process and the

consideration of missing information could be further investigated.

Figure 1.4: The proposed solutions for the research questions, including three aspects: (1) global matching
achieved by utilizing global features and attributes in frequency domain; (2) point embedding considering
point relations and the attention mechanism; (3) information fusion by fusing the geometric occupancy
and semantic information.
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1.3 Objectives and contributions

In this thesis, we present a framework for detecting changes from construction sites and urban

scenes using 3D point clouds, with a sequence of novel algorithms and methods in the fields of

registration, semantic segmentation, and change detection. We aim to develop robust methods

and techniques to acquire and present changes of structural components of buildings in the con-

struction scene during the construction process. Additionally, the specific concerns of the three

tasks will be addressed, and the pros and cons of the proposed methods will be discussed. The

possible further solutions will be provided as possible future work.

To provide answers for the research questions in Section 1.1, we proposed solutions (see

Fig. 1.4) that focus on aspects of global matching, point embedding, and information fusion,

which can help us solve the task of detecting changes in construction sites. With these solutions,

a wide range of algorithms and methods were developed. In Fig. 1.5, we illustrate an overview

of these methods, containing former works from other researches and our proposed methods and

their developing routes.

Figure 1.5: A diagram of algorithms and methods with involved publications of solved tasks, core strategies,
and their relations.
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1.4 Structure and organization

This thesis is organized as follows: Chapter 2 presents the theoretical basics of Fourier-based

image registration, manifold learning-based dimensionality reduction, point-based deep learning

operations, the voxel-based structure of point clouds, and occupancy-based change detection.

Chapters 3-5 describe the core parts of this thesis, namely the methods for solving the afore-

mentioned research questions. Chapter 6 presents the experiments, including the datasets and

the evaluation metrics. Chapter 7 presents the experimental design, results, and analysis on the

results. Chapter 8 presents the discussion on the three main tasks involved in the progress mon-

itoring and change detection of construction sites using point clouds. Chapter 9 finalizes this

thesis by presenting the conclusions and providing outlooks for future works.
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2 Basics

In this chapter, we introduce specific techniques and algorithms about the Fourier-based im-

age registration, manifold learning-based dimensionality reduction, point-based deep learning

techniques for semantic segmentation, the voxel-based data structure, and the occupancy-based

change detection. Our methods are developed based on similar concepts of these techniques.

To be specific, for the task of point cloud registration, our methods are developed based on 3D

extension of Fourier-based image registration and provide our solution for robust phase correla-

tion. As for semantic segmentation, manifold learning-based methods are used for dimension-

ality reduction, which is vital in feature engineering. Our method improves the local manifold

learning-based methods by considering spatial constraints and provides a solution for large-scale

data. Deep learning techniques are also popular and advanced techniques on semantic segmen-

tation. Our methods tend to make an improvement based on the concept of point-based deep

learning techniques by considering long-range relations and involving an attention mechanism.

Raycasting-based change detection provides a solution for determining changes considering the

unseen space. Our method aims at considering the unseen space but with a different type of point

clouds and makes an improvement by considering semantic information.

2.1 Fourier-based image registration

In this section, we will introduce image registration using Fourier-based method. The principle of

phase correlation, different solutions for robust shift estimation based on phase correlation, and

the application to image registration will be explained in the following sections.

2.1.1 The principle of phase correlation

Before introducing the robust shift estimation based on phase correlation, a short introduction

to phase correlation will be given. Compared with some other commonly used correlation-based

methods, phase correlation tends to be more accurate and efficient. The general idea of phase

correlation is that any translation between two relevant images in the spatial domain can be

represented as a phase shift in the frequency domain. Assume that two images are related to

each other by shifts in the column and row direction denoted as x0 and y0, respectively, and the

relation can be presented by:

s(x, y) = r(x− x0, y − y0), (2.1)

where s(x, y) and r(x, y) represent the two image in spatial domain. Then, a discrete Fourier

transform (DFT) can be conducted on these two images to transform them into the frequency

domain. Afterward, the relation between the Fourier transforms can be written as:

S(u, v) = R(u, v)e−i(ux0+vy0), (2.2)
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in which S(u, v) and R(u, v) are the corresponding Fourier transforms of s(x, y) and r(x, y). The

normalized cross-power spectrum can be represented as:

Q(u, v) =
S(u, v)R∗(u, v)

|S(u, v)R∗(u, v)|
= e−i(ux0+vy0), (2.3)

in which R∗ is the complex conjugate of R, and the magnitude of Q is normalized to 1. The

inverse Fourier transform (IFT) of Q(u, v) is a Dirac delta function centered on (x0, y0). Thus,

the translation can be estimated by finding the peak coordinates of this function, as shown in

Fig. 2.1. However, this solution can only provide results in integer pixel, which is not precise

enough. To get subpixel estimation, one way is to get precise determination of the main peak

location of the IFT of the normalized cross-power spectrum, but this method is sensitive to noise.

Figure 2.1: Illustration of the phase correlation. a) Phase correlation with image pair, b) phase correlation
of image pair with noise.

2.1.2 Robust shift estimation

To obtain robust and precise shift estimation, two major solutions are usually applied (see

Fig. 2.2). One is Stone’s solution [Stone & Cheok, 2001], in which the phase shift angle is

treated as a linear function of the shift parameters. By employing plane-fitting, the shifts can

be estimated with the removal of high-frequency components. Fig. 2.2 illustrates the workflow of

Stone’s solution. Since the phase different angle is a linear function of the shift parameters, and

it is defined by:

∠Q(u, v) = ux0 + vy0. (2.4)

We try to solve the linear function for the 2D plane for estimating the shifts.
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Figure 2.2: Illustration of two solutions for robust phase correlation. a) The procedures of Stone’s solution,
b) the procedures of Hoge’s solution.

The other one is Hoge’s solution [Hoge, 2003]. The idea is to represent the normalized cross-

power spectrum by two rank-one signals. The normalized cross-power spectrum can be separated

as:

Q(u, v) = e−i(ux0+vy0) = e−iux0e−ivy0 = Qx0(u)Qy0(v). (2.5)

Thus, the problem of the shift estimation can be simplified by investigating the rank-one signals.

First, the rank-one signals can be approximated by the singular value decomposition (SVD)

method. By utilizing the decomposed signals, the problem of 2D phase unwrapping and high-

frequency components eliminating can also be simplified into finding a 1D solution, which is

much more robust and also avoids the ill-posed problems when noise is intense. However, the

aforementioned robust phase correlation only considers shift estimation. In real application,

the registration of images should also involves the estimation of rotation and scaling. Based

on the characteristics of Fourier transform, the robust phase correlation can be extended to a

full registration strategy with rotation, scaling, and translation using Fourier-Mellin transform

(FMT).

2.1.3 Fourier-Mellin transform

Let f(x, y) and g(x, y) represent two relevant images in spatial domain, and these two images are

related to each other by the rotation θ0, scaling ψ, and the translation t = [tx, ty]. The relation

can be written as:

f(x, y) = g(ψ(x cos θ0 + y sin θ0)− tx, ψ(−x sin θ0 + y cos θ0)− ty). (2.6)

The two images can be transformed into the frequency domain using a DFT algorithm. Let

F (u, v) and G(u, v) be the Fourier transforms corresponding to images f(x, y) and g(x, y). Thus,

the relation of the Fourier transforms of the corresponding images can be expressed by:

F (u, v) =
1

ψ2
G(

1

ψ
(u cos (θ0) + v sin (θ0)),

1

ψ
(−u sin (θ0) + v cos (θ0)))e

−jθ0(utx+vty). (2.7)
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In terms of the magnitude, this relation can be simplified to:

|F (u, v)| = 1

ψ2
|G(

1

ψ
(u cos (θ0) + v sin (θ0)),

1

ψ
(−u sin (θ0) + v cos (θ0)))|. (2.8)

We can see that the translation only influences the phase information, and the rotation and

scaling are decoupled with the translation. To recover the rotation and scaling simultaneously,

the Fourier magnitude spectrum is further transformed into a log-polar space by log-polar trans-

formation (LPT), in which two Fourier magnitude spectrum are related to each other by a linear

shift:

|F (r, θ)| = 1

ψ2
|G(

r

ψ
, θ + θ0)|, (2.9)

|F (log r, θ)| = 1

ψ2
|G(log r − logψ, θ + θ0)|. (2.10)

Thus, by finding the shift (x0, y0) between these two spectra in the log-polar space, the rotation

and scaling can be estimated:

ψ = ex0 , θ0 = y0. (2.11)

By applying FMT, the estimation of rotation and scaling of 2D images is transformed into a shift

estimation problem.

2.2 Manifold learning-based dimensionality reduction

Manifold learning is a popular method which is widely used for dimensionality reduction and

has shown promising results in the many fields, such as hyperspectral classification [Hong et al.,

2017] and image reconstruction [Zhu et al., 2018]. Here, we present the basic concept of local

manifold learning (LML) methods. LML methods aim to find the underlying local manifold

structure that lies in a complex high-dimensional space and embed it in a lower dimensional

space. Generally, LML methods comprise the following three steps: neighborhood recovery,

computation of affinity weight, and calculation of embedding, that are illustrated in Fig. 2.3.

Given X = [x1,x2, ...,xN ] ∈ RN×D, which denotes N samples with D dimensions, LML methods

aim to embed these samples into a low-dimensional space represented by Y = [y1,y2, ...,yN ] ∈
Rd×N (d << D). The calculation of the embedding can be formulated as:

Ŷ = arg min
Y


n∑
i=1

∑
j∈φi

(yi − yj)
2Wij

 , s.t.YPYT = I

= arg min
Y

{
YLYT

}
, s.t. YPYT = I,

(2.12)

where W represents the affinity matrix, wherein Wij represents the affinity weight of the ith and

jth samples, and j ∈ φi, where φi is a set of neighbors of the ith (the neighbors are usually defined

by k-nearest neighborhood (KNN)). L is the Laplacian matrix, which is defined by L = W −D,

and Dii =
∑

jWij . P is used to formulate the constraint defined by different LML methods.

2.2.1 Locally linear embedding

A popular example of LML methods is locally linear embedding (LLE) [Roweis & Saul, 2000].

LLE assumes a globally nonlinear but locally linear embedding; therefore, each point and its
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Figure 2.3: Illustration of LML methods. a) Neighborhood recovery, b) computation of affinity weight, c)
calculation of embedding.

neighboring points can be embedded into a low-dimensional space by multiplying a linear re-

construction matrix. In this case, the reconstruction matrix can be obtained by minimizing the

residual summation of squares for reconstructing each point from its neighboring points as:

R̂ = arg min
R


n∑
i=1

||xi −
∑
j∈φi

Rijxj ||22

 s.t.
∑
j∈φi

Rij = 1, (2.13)

where R ∈ RN×N denotes the reconstruction matrix, and Rij represents the reconstruction weight

between the ith and jth samples.

Given the reconstruction matrix, we aim to find the d-dimensional coordinates by minimizing

the following embedding cost function:

Ŷ = arg min
Y


n∑
i=1

||yi −
∑
j∈φi

Rijyj ||22

 , (2.14)

which is subject to the following constraints:

1

N

N∑
i=1

yi = 0

1

N

N∑
i=1

yiy
T
i = I.

(2.15)

Alternatively, the embedded coordinates can be calculated in a graph-embedding manner, and

consequently rewritten as an optimization equation:

Ŷ = arg min
Y


n∑
i=1

||yi −
∑
j∈φi

Rijyj ||22

 , s.t.YPYT = I

= arg min
Y


n∑
i=1

∑
j∈φi

||yi − yj ||22Wij

 , s.t.YPYT = I

= arg min
Y

{
YLYT

}
, s.t.YPYT = I,

(2.16)

where affinity weight matrix W can be derived from reconstruction weight R as:

Wij =

{
Rij +Rji −RijRji, if j ∈ φi
0, otherwise.

(2.17)
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Furthermore, Laplacian matrix L can be computed by

L = D−W

= (I−R)T(I−R).
(2.18)

In the case of LLE, the constraint is assumed to be P = I. LLE is a feasible method that

is capable of fully considering the local properties of the data. Consequently, the local manifold

structure can be well learned and represented.

2.2.2 Locality preserving projections

In this part, we will review another widely-used local manifold learning (LML) method: lo-

cality preserving projections (LPP). LPP embeds the high-dimensional data or feature into a

low-dimensional subspace in which the topological structure of high-dimensional data is locally

preserved. Given a set of data samples X = [x1,x2, ...,xN ] ∈ RL×N with L dimension by N

pixels, LPP linearly learns a mapping A to find the corresponding low-dimensional embedding

Y = [y1,y2, ...,yN ] ∈ RD×N (D << L). This process can be modeled in the following:∑
(yi − yj)

2Wij , (2.19)

where Wij , which is an adjunct matrix, can be defined as:

Wij =

{
exp(−||xi − xj ||2/σ2)
0

, (2.20)

where σ denotes the standard deviation of Gaussian kernel function.

To enhance the model’s interpretability and transferability, Eq. 2.19 can be approximately

modeled in a linearized way. Suppose yT = aTX where a is a linear projection, thus Eq. 2.19 can

be simplified as follows: ∑
(yi − yj)

2Wij =
∑

(aTxi − aTxj)
2Wij

=
∑

aTxiDiix
T
i a−

∑
aTxiWijx

T
j a

= aTX(D−W)XTa = aTXLXTa,

(2.21)

where D is a diagonal matrix and Dij =
∑

j Wij . L is the Laplacian matrix computed by

L = D −W. To avoid the trival solution, a necessary constraint formulated by yTDy = 1 is

forced in the process of solving Eq. 2.21, and its linearized version can be written as:

aTXDXTa = 1. (2.22)

Accordingly, the variable a can be estimated by minimizing the following objective function:

â = arg min
a

(
aTXLXTa

)
. (2.23)

The solution of Eq. 2.23 can be equivalently obtained by solving the following generalized eigen-

values decomposition problem:

XLXT = λXDXTa. (2.24)

2.3 Point-based deep learning operations

In this section, we will introduce two deep-learning based methods which directly work on 3D

points for classification and semantic segmentation. The first one is PointNet [Qi et al., 2017a],

and the other one is PointNet++ [Qi et al., 2017b].
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2.3.1 PointNet

We first present the basic idea of PointNet. PointNet proposes a solution for spatial encoding

considering the raw nature of 3D points, thereby enabling the processing of 3D points in a direct

manner.

Given a sequence of unordered points X = {x1, x2, ..., xn}, a function α is defined to map a

set of points to a feature vector:

f(X) = α(maxni−1(β(xi))), (2.25)

where α and β usually represent multi-layer perceptron (MLP) network. The function f is

invariant to the input permutations. β can be treated as a spatial encoding for a point.

Compared to other previous proposed deep-learning-based methods, the network of this method

is capable of operating on 3D point clouds directly, and it is invariant to the permutations of in-

put points. The process of classifying points into specific categories is greatly simplified into an

end-to-end method without preprocessing steps such as rasterization. The key aspect of PointNet

is learning global features from a set of points. However, it lacks the capability of capturing local

context at different scales.

2.3.2 PointNet++

As an improvement of PointNet, PointNet++ was derived from PointNet by adding hierarchical

strategy to enhance the capability of encapsulating local information and the efficacy of feature

expression in urban scenes with high complexity. The aim of PointNet++ is to learn multilevel

local contextual information progressively. Typically, as illustrated in Fig. 2.4, first, the original

inputs are grouped into a set overlapped sub-pointsets. Then local features are learned from

these local neighborhoods to produce low-level local features. Subsequently, these local features

in the lower level can be utilized for higher-level feature learning with the same procedure. These

grouping and learning procedures are repeated until the global features of all input points are

obtained. While dealing with the segmentation task, the features for all the original points are

extracted. In this case, a hierarchical propagation strategy is adopted by propagating the features

extracted from subsampled points back to the original ones.

Figure 2.4: Illustration of the hierarchical architecture of PointNet++.
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2.4 Voxel-based structure of point clouds

Voxelization refers to a method of structuring point clouds and coverting point clouds to voxel

grids with points [Xu et al., 2021]. There are two major methods for voxelization of 3D space:

octree-based voxelization and grid-based voxelization.

2.4.1 Octree-based voxelization

In Vo et al. [2015], the input point cloud can be organized with an octree strucutre, which is a

tree data structure in which each internel node has eight children. It means that for each node

the space is subdivided into eight subspaces. A illustration of the octree structure is presented in

Fig. 2.5. By using the octree structure, unordered and unstructured 3D points in a point cloud

can be organized in a strucuted way, which improves the efficiency of searching and traversing

occupied space.

Figure 2.5: Illustration of the octree structure.

2.4.2 Grid-based voxelization

The other voxelziation method is to organize point clouds using 3D grid. Fig. 2.6 illustrates

the voxelization and binarization of a given 3D point cloud. A voxelization process is presented

to transform the unstructured and unordered points to a regularly resampled discrete 3D grid.

Differing from the voxelization step in the other previous work, in which only the point cloud is

voxelized, instead, the 3D space covering the entire point cloud is voxelized and resampled. The

centers of all these voxels will be utilized to represent the point cloud and serve as basic input

elements for the further process. Then, a binarization process is conducted on the resampled 3D

grid, in which binary values (i.e., zero or one) are annotated to each voxel. The binary values

actually denotes the occupancy of each voxel. It means that if points whose number is above a

threshold fall into a voxel, the voxel will be marked as value one. Conversely, if a voxel contains

limited number of points, it will be annotated with value zero. The threshold is actually set to

filter out some isolated points. The thresholds are identified according to point densities of point

clouds. In case that the bounding box of the point cloud is not a cubic, a zero-padding should be

done, ensuring three dimensions are of the same sizes. The position and assigned labels of voxels
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Figure 2.6: Voxelization and binarization of point clouds. a) Original point clouds from top view and d)
from oblique view, b) voxelized point clouds from top view and e) from oblique view, c) binarized voxels
from top view and f) from oblique view. It should be noted that Type 1 denotes the empty voxels annotated
with value zero and Type 2 denotes the voxels with limited numbers of points and annotated with value
zero.

will be used as inputs for further steps. In this way, an unevenly distributed point cloud can be

resampled to a cubic grid, which represents the spatial distribution of point clouds and whose

basic elements represent the corresponding point occupancy.

2.5 Occupancy-based change detection

Occupancy-based change detection allows for the handling of occlusions and changes implicitly, in

which changes can be identified by conflicts of occupied space and empty space along the direction

of laser beam [Hebel et al., 2013]. Here, we present the basic concept of occupancy-based change

detection methods using LiDAR data.

2.5.1 Processing stages of LiDAR data analysis

In occupancy-based change detection, some prerequisites should be full-filled for data analysis,

including the access to the component’s raw measurements, i.e., the range data, the scanning

geometry, and the IMU/GNSS trajectory. In general, the data acquisition and preprocessing can

be distinguished as two different stages: (I) the creation of the reference database; (II) change

detection based on current measurements.

In stage (I), the creation of reference data consists of the combination of multiple measure-

ments and the optimization of raw data, including the correction of positioning errors. Hebel

& Stilla [2012] presented the method for object-based analysis and registration of ALS measure-

ments. In the object-based analysis, by computing the local principal components and applying

a combination of a region growing method and RANSAC plane fitting, planar shapes can be seg-
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mented and separated from clutter objects, i.e., bushes or trees. The segmentation results were

latter used as support for the change detection process.

In stage (II), three major steps are conducted for the new LiDAR measurements, including (i)

categorization, (ii) alignment, and (iii) comparison to the reference database. For step (a), a fast

segmentation method is applied by scanline segmentation and grouping of line segments [Hebel &

Stilla, 2008]. Then, the segmented planar objects can be used for alignment of the current data

and the reference one [Hebel & Stilla, 2010]. Step (iii) is the most important part for change

detection. We will explain it in details in further sections.

2.5.2 Generation of the database

For each measurement, it can be expressed as following considering the navigation information:

p = s +RNRBRSr, (2.26)

where p denotes the laser point, s is the 3D position of the laser scanner, RN is the rotation

matrix describes the orientation provided by IMU, RB denotes the relative orientation of IMU

and laser scanner, RS describes the scanning geometry, and r denotes the distance measurement

provided by laser scanner. The equation can be simplified as:

p = s + r, (2.27)

where r considers the distance measurement and orientation information. Different from classic

occupancy-based methods, Hebel et al. [2013] evaluated the occupancy of 3D space directly on

the exact positions of the measured 3D points. The gird structure is only used for searching.

Specifically, in stage (I), the information about the proximity of laser beams and points is assigned

to a 3D grid that covers the entire scene. In stage (II), the grid structure allows for evaluating

whether the current measurement confirm or contradict previous information.

In stage (I), for each laser pulse, the origin and the measured range are stored in an indexed

list L. If there are multiple echoes for a single laser pulse, there will be multiple entries in the

indexed list L. As shown in Fig. 2.7, 3D grids are filled with indices of L. The index will be

assigned to the cell according to the 3D position of the laser point. VP illustrates the an index-

based rasterization, while VR is utilized for storing all the indices of a laser beam that go through

grid cells, which is achieved by Bresenham’s algorithms [Bresenham, 1965]. Thus, we could get

3D grids with laser indices stored in each cell.

Figure 2.7: Filling of the voxel grids VP and VR. i: index; si: sensor position; pi: laser point; ri: range
measurement [Hebel et al., 2011].
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2.5.3 Occupancy modeling from a single measurement

Dempster-shafer theory (DST) is commonly used for data fusion. It has the advantages of as-

sessing conflicting information implicitly and allows for combining evidence commutatively and

associatively, which is essential for dealing with objects scanned from different perspectives and

datasets acquired at different epoches. The state of occupancy can be represented by a universal

set U = {empty, occupied}. The power set 2U of U is given as the set {∅, {empty}, {occupied}, U},
which contains all possible states. According to DST, a belief mass within range [0, 1] is assigned

to each element in the power set. In addition, the empty set ∅ has zero mass, and the the masses

of the remaining set are summed to one:

m : 2U → [0, 1],m(∅) = 0,
∑
A∈2U

m(A) = 1. (2.28)

An assignment that obeys the aforementioned rules is called as ”basic belief assignment”. DST

makes use of the mass assignment and sets a range for each state of occupancy that contains

the classic probability. The mass of each state, m({empty}), m({occupied}), and m(U) are

abbreviated as e, o, and u respectively. If u is equal to one, the occupancy at given position is

totally unknown, which distinguishes the lack of information from uncertainty.

With the assumption of a straight-lines propagation of laser pulse, for a single laser range

measurement p = s + r, the space between the laser source and the reflecting 3D point should be

empty, and the occupancy of space behind the reflecting point should be unknown. For the other

space, the occupancy remains unknown. However, a laser ray is not a perfect line and a single

laser point can not be presented as a pinpoint. Thus, a spatially extended distribution is assumed

to present the laser beam considering the physical properties of the laser pulse propagation, errors

in the georefencing and the alignment of the data, and the smallest observable and discriminable

structure size. Thus, as illustrated in Fig. 2.8, on the basis of the distance dx and dy, the

Figure 2.8: Longitudinal and transverse distances of q to p [Hebel, 2012].

assignment of belief mass to an arbitrary position q can be defined as:

e = (1− 1

1 + e−λdx−c
) · e−κd

2
y ,

o = (
1

1 + e−λdx−c
+

1

1 + e−λdx+c
) · e−κd

2
y ,

u = 1− e− o,

(2.29)

where dx = (q − p) · r denotes the longitudinal distance and dy = ‖(q − p) × r‖ denotes the

transverse distance. The parameters (λ, c, κ) depict the fuzziness of laser points. The parameters

should represent the physical characteristics of the laser range measurements in the observation.

The first factors of e and o are composed of sigmoid functions, among which one is used to

describe the free space in front of p and the other one is for the unknown space behind the point.

The longitudinal influence is controlled by the parameter c and λ. The second factor of e and

o describes a Gaussian function, which is controlled by the parameter κ influence the transverse
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extent. Fig.2.9 shows the ideal graph of nonzero belief masses around laser point p, where the

parameters λ, c, and κ are set as 12, 5, and 8, respectively.

Figure 2.9: Comparison of belief masses (occupied, empty, and unknown) [Hebel, 2012].

2.5.4 Combination of evidence from different measurement

In the former section, only a single laser measurement p = s + r and its influence on mass

assignment are considered for position q. However, in practical cases, two or more laser beams

are usually observed in the neighborhood of position q. Thus, for position q, here, we assume

that two independent measurements, including p1 = s1 +r1 and p2 = s2 +r2, are obtained. Here,

the DST is applied to combine multiple measurements. The amount of conflict between the two

mass sets is:

C = e1 · o2 + o1 · e2. (2.30)

Based on the combination rule of the DST, the conflict evidence is ignored and the joint mass

can be calculated as:

e =
e1 · e2 + e1 ·u2 + u1 · e2

1− C

o =
o1 · o2 + o1 ·u2 + u1 · o2

1− C
u =

u1 ·u2
1− C

, (2.31)

The aforementioned operation can be written as m = m1⊕m2. Since the operation is commutative

and associative, it allows for the combination of an arbitrary number of belief assignments. When

the data amount is large, LiDAR point cloud can be divided into small blocks and stored separately

in different files to avoid memory problem.
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Figure 2.10: Conflicts between reference data (green) and the current measurement q = sQ + rQ (red) : a)
empty space at q and b) occupied space along rQ [Hebel, 2012].

2.5.5 Change detection

To detect whether new measurements confirms or contradicts the mass assignments that are

obtained based on former measurements, the conflict types are defined. The first type of conflicts

happen when the laser point lies in the region of empty space (Fig. 2.10a). Here, let Iq be the

set of indices which are assigned to the cell vqinVR. Thus, the joint mass m1 can be obtained by

taking old measurements pi ∈ L where i ∈ Iq:

m1 = ⊕i∈Iqmi. (2.32)

Meanwhile, the mass assignment m2 can be given as:

e = u = 0, o = 1. (2.33)

The conflicts between m1 and m2 can be obtained in the same way as it is achieved in Eq. 2.30.

The other types of conflicts occur when the laser beam traverses occupied space in front of

laser point q (Fig. 2.10b). Here, the Bresenham’s line drawing algorithm is applied to identify

grid cells VP through which the laser beam (sQ, rQ) passes. Let vp denote the subset of VP and

Ip be the set of indices assigned to cells Vp. These indices denote the laser point in the reference

data that are influenced by the current laser measurement. Thus, for each position pi with i ∈ Ip,
the mass set m2 can be updated as:

m2 ← m2 ⊕mi, ∀i ∈ Ip (2.34)

Then, the measure of conflict can be obtained as C = m2({empty}).

2.5.6 Consideration of additional attributes

In the former sections, the different characteristics of continuous surfaces and clutter are not

considered in the model described in Eq. 2.29. However, the vegetation penetration of laser pulse

when scanning vegetation may leads to self-induced conflicts of mass assignment since multiple

echoes are dealt with independently. Considering this aspect, one possible solution is to increase
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the degree of ignorance and the dimensions of occupied space when representing the fuzziness of

vegetation. Here, two weighting factors fe and fo are induced:

e = fe(1−
1

1 + e−λdx−c
) · e−κd

2
y ,

o = fo(
1

1 + e−λdx−c
+

1

1 + e−λdx+c
) · e−κd

2
y ,

u = 1− e− o.

(2.35)

Here, classification results are utilized to separate vegetation with continuous surfaces. In addi-

tion, for the continuous surfaces, the model can be refined by considering the orientation of the

surfaces. In case a continuous surface is detected, the distribution should be spread out along the

detected surface. Thus, the longitudinal and traverse distances can be modified using the local

normal vector:
d̄x = (q− p) · n0,

d̄y = ‖(q− p)× n0‖.
(2.36)

In the extended model, if the distance between point q and laser point p is far away, the belief

mass is still modeled using (dx, dy) and (λ, c, κ) using Eq. 2.29. If the distance is small, the belief

mass can be modified by using (d̄x, d̄y) and (λ, c, κ), where the parameter κ has a substantially

smaller value.

2.5.7 Multi-view stereo vision

In this section, we introduce the process of generating point clouds using images, in which two

major steps are involved, including a structure from motion (SfM) process and a multi-view stereo

(MVS) process. First, the image sequence of each acquisition date is processed by a SfM process

(see Fig. 2.11), which involves the process of recovering relation camera poses and the sparse 3D

points from unordered image sequences. Based on the camera poses recovered in the SfM process,

dense point clouds can be generated based on the oriented images using the MVS process.

Figure 2.11: The process of SfM.
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In the SfM process, the key part of the SfM process is to find the corresponding points

between images. SIFT descriptor is utilized to generate features from images, and kd-tree is used

to calculate the Euclidean distances between features of keypoints and to define corresponding

points for matching. The F matrix which contains both exterior orientation parameters and initial

camera parameters can be estimated using a RANSAC process, in which outliers can be excluded

during the process. Following the same procedure, chain pairwise matches can be generated and

formed tracks. The exterior orientation parameters, including rotation R and translation t can

be generated by decomposing the essential matrix E, which can be obtained using F matrix:

xT1 Fx2 = 0

E = KT
1 FK2

, (2.37)

where K denotes the matrix formed by camera intrinsics.

However, the exterior parameters estimated by the aforementioned process is not precise

enough, Bundle Adjustment (BA) will be utilized to further optimize the estimated parameters

by minimizing the reprojection errors (see Fig. 2.12). The BA process aims at minimizing the

function:

J =
∑
i

∑
j

(x̃ji −K[Ri|ti]Xj)2, (2.38)

where x̃ji denotes the image coordinates and Xj denotes the object coordinates.

Figure 2.12: Illustration of reprojection error.

The exterior orientation of all images can be determined in a common coordinate system

using the SfM process. However, we can only obtain sparse point clouds since reconstructed

points are generated based on the points matched with features. Thus, the MVS process is

utilized to further reconstruct dense point clouds from the images sequence, in which almost

all the pixels in images are matched with others and reconstructed as 3D points. In the MVS

process, first, every image is selected as master image once. For all master images all potential

search images are selected based on the criteria just mentioned. To avoid that an image receives

two (or more) search images which are close together, i.e. whose distance is below the minimum

baseline length, only the image having the lowest sum of the angle deviation criteria is selected.

For all remaining k search images, Semi Global Matching [Hirschmuller, 2007] is performed using

LibTSGM [Rothermel et al., 2012], and k disparity maps are calculated. The disparity maps are

fused based on a scheme which follows the one presented in, where the final value for the distance
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D from the camera center to the 3D point and its stand deviation are determined by a least

square adjustment. The final 3D point coordinates are then calculated by:

Xo = R(n ·D) + Xc. (2.39)

With rotation matrix R, unit vector n from the perspective center to the pixel and camera

position Xc. Additionally, the precision of the coordinates can be determined based on the

standard deviation of parameters estimated in bundle adjustment. To determine the best point,

the point with the highest number of rays is determined. If there are points with the same number

of rays, the point with the smallest standard deviation will be chosen.

In case that disparity maps may change widely in quality and resolution, Kuhn et al. [2017]

developed a feature based on Total Variation that allows pixel-wise classification of disparities

into different error classes.
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3 Robust registration of 3D point
clouds

Point cloud registration is invariably an essential and challenging task in the fields of photogram-

metry and computer vision to align multiple point clouds to a united reference frame. In this

chapter, we report two point cloud registration methods [Huang et al., 2020a,c]. To be specific,

the first method is a three-step projection-based methods which includes a projection from the

3D space to a 2D plane, a projection from the 3D space to a 1D histogram, and phase correlation

between the images and the histograms. While, the second one is a fully 3D registration solu-

tion which is achieved by converting the estimation of rotation, scaling, and translation in the

spatial domain to a problem of correlating low-frequency components in the frequency domain.

Fig. 3.1, we show the key methods corresponds to the ones we have shown in our research frame

in Section 1.3.

Figure 3.1: The proposed methods for registration that included in this chapter.

3.1 Projection-based point cloud registration with 2D phase cor-

relation (PBPC)

The PBPC method consists of three essential steps: the decoupling of 3D transformation via

projection-based dimensionality reduction, the estimation of horizontal transformation (i.e., rota-

tion, scaling, and translation), and the estimation of vertical translation. In Fig. 3.2, the workflow

is illustrated, showing the core steps of involved methods and sample results. It should be noted

that the target point cloud provides the reference coordinate system, and the source point cloud

is the point cloud need to be registered to the reference. A detailed explanation of each step will

be given in the following.

In the first step, the projection-based dimensionality reduction is used to decouple the 3D

transformation into the 2D horizontal transformation and 1D vertical translation. In the following

step, the 3D transformation estimation can be solved by solving the 2D matching between images

and the 1D matching between histograms separately. Specifically, 3D point clouds are projected to

the principal projection plane vertically, generating 2D images with intensities of pixels indicating

the number of projected points. Correspondingly, 1D histograms are generated by projecting

all the points in point clouds to the z-axis horizontally. Afterward, in order to match the 2D

images for estimating horizontal transformation, we use Fourier-Mellin Transformation (FMT)

for decoupling rotation, scaling, and translation between images. In this way, both the estimation
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Figure 3.2: Workflow of the PBPC method.

of rotation and scaling and the estimation of translation are converted into problems of solving

the shifts. The shifts can be then well estimated by a robust 2D phase correlation method.

Similarly, 1D histograms are also registered by a 1D robust phase correlation method. Combining

these estimated transformations using 2D images and 1D histograms to 3D transformation, point

clouds acquired at different times can be finally registered into a united coordinate system. In the

following sections, the essential algorithms and detailed steps of the workflow will be elaborated

on.

3.1.1 Decoupling of 3D transformation

The decoupling of 3D transformation is actually to decompose 3D transformation between point

clouds into a 2D transformation (i.e., rotation, scaling, and translation) between images and

a vertical translation between histograms, which composed of three steps: (1) identifying the

principal projection plane and axis; (2) projecting 3D points to the principal projection plane to

generate 2D images; (3) projecting 3D points perpendicularly to the principal axis to obtain 1D

histograms.

Identification of the principal plane and axis

The purpose of identifying the principal projection plane is to find the ground surface or floors

with a horizontal orientation so that points in a point cloud can be projected to this plane. This

is because for conducting the decoupling of horizontal and vertical transformations, we need a

common reference plane and a reference axis. Benefiting from the characteristics of common

artificial buildings, all the walls of a building are constructed along the vertical direction. This

indicates that the majority of walls in a point cloud are perpendicular to a principal projection
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plane in parallel to the ground surface or floors, and in the meantime, the principal axis (i.e.,

the normal vector) that is perpendicular to this principal plane will be in parallel to these walls

as well. Thus, this principal plane and the corresponding principal axis should be identified in

advance to the projection of points.

The approach of detecting and extracting a principal plane is achieved by the plane-fitting

algorithm based on RANSAC [Schnabel et al., 2007], which is the most popular used method for

shape fitting. Since the ground surface is normally the plane having the largest coverage area in

the construction site. For some special cases that even the ground surface is occluded, we will

first extract the plane of a facade and then define a plane perpendicular to this facade as the

principal plane. In other words, we need to detect and extract one major planar surface (i.e.,

ground or facade) from the point cloud and then define the principal plane. Specifically, given

points P = {p1, p2, ..., pn} of a point cloud and the mathematical model of the plane T (θ) with a

set of parameters θ ∈ Θ, RANSAC pursuits to estimate the parameter value θ∗ ∈ Θ which has the

largest number of inliers in P. RANSAC is an iterative strategy, and in each round of iterations

(e.g., the round i) the generic process is executed with following sequences: First, select random

sample Pm ∈ P with nm points, where nm is the minimal number of points for estimating θi. For

the case of the plane, at least three points are mandatory to define a plane in 3D space. Then,

estimate the value of θi using only Pm. Afterward, evaluate the cost C(θi) of fitting entire dataset

P to the estimated model T (θi):

C(θi) =
∑
p∈P

fρ(T (θi),p), (3.1)

where fρ is the function to measure the cost for each p. The iteration process is repeated for a

given number of iterations. The parameters θ∗ make the model T (θ∗) earning the minimum cost

are chosen as the optimized parameters for the model, and normally it means the model with the

largest number of inliers Pin ∈ P. The inliers Pin are identified by a given threshold of ρ. To be

specific, a point has an error e to the model T (θ), which is small than ρ, the function fρ returns

zero value and otherwise a positive penalty T :

fρ(e) =

{
0 if e2 < ρ2

T 2 else
. (3.2)

If not only one plane is extracted, for the extracted planes, we will select the largest one with a

relatively smaller residual as the ground. Once the principal plane is found, its normal vector,

which is perpendicular to the principal plane, will serve as the principal axis for the horizontal

projection. In Fig. 3.3, we give an illustration of the identified principal plane and axis.

Figure 3.3: Illustration of the identified principal plane and axis. a) The identified principal plane and axis
from isometric view and b) from side view.
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Vertical projection

The vertical projection of the point cloud is a transformation from the 3D points into a 2D image

by projecting all the points to the principal plane along the vertical direction. Subsequently, the

2D projection-based image is generated, in which the grey value of each pixel is calculated by

counting the number of points projected into the area denoted by the bounding box of this pixel.

For the vertical structure, we assume that the points belong to the vertical structure fall into the

aligned pixels or neighboring pixels, which indicates that the bright lines in 2D projection refer to

the vertical structure in 3D point clouds. Thus, we apply a filter to eliminate the artifacts caused

by isolated points in 3D point clouds in the projection image by setting a threshold to the grey

values of the pixels. The threshold depends on the pixel size we set for vertical projection and

the noise level of point clouds.

Horizontal projection

As for generating horizontally projected 1D histograms, we adopt a similar strategy, in which the

3D points are projected to the principal axis and the height range is divided into a sequence of

bins and the value for each bin also represents the number of points falling into the height range

represented by each bin. Here, for the generated histogram, the peaks represent the horizontal

structures since the horizontal structures create a high number of points owing to similar heights.

Correspondingly, a filter is applied to eliminate some noise caused by irrelevant information and

retain the main structures of the as-built buildings for further matching.

3.1.2 2D image matching with FMT and phase correlation

This section describes the Fourier-based method we apply for the 2D image matching. In the

problem of 2D image matching, rotation, scaling, and translation need to be settled. In PBPC,

the estimation of rotation and scaling is separated with the estimation of translation and is also

transferred into a shift estimation problem using FMT. Additionally, if rotation and scaling are

settled, the estimation of translation parameters is also a shift estimation problem. These two

shift estimation problems are then solved by a robust phase correlation method.

Decoupling of horizontal rotation, scaling and translation with FMT

As introduced in Section 2.1, by applying FMT, the estimation of rotation and scaling of 2D

projection images is transformed into a shift estimation problem. Besides, translation estimation

is also converted to a shift estimation problem. An illustration of the processing of the projected

images using FMT is given in Fig. 3.4. We solve the shift estimation problem with a robust phase

correlation method, which will be presented in the following section.

Shift estimation with robust phase correlation

Inspired by the Hoge’s solution, the cross-power spectrum can be decomposed to two rank-one

signals. Thus, the problem of the shift estimation can be simplified by investigating the rank-one

signals. Firstly, the rank-one signals can be approximated by the SVD method. By utilizing

the decomposed signals, the problem of 2D phase unwrapping and high-frequency components

eliminating can also be simplified into finding a 1D solution, which is much more robust and

also avoids the ill-posed problems when noise is intense. In order to estimate the slope of the

fitted line of the decomposed and unwrapped signal, a RANSAC algorithm is adopted, in which a

subset with a minimized required size of randomly sampled data is utilized to fit the model. The

workflow of the robust phase correlation is illustrated in Fig 3.5.
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Figure 3.4: Illustration of FMT for projected images.

3.1.3 Vertical signal matching using 1D phase correlation

As for the 1D histogram matching for the vertical translation estimation, it can be achieved in a

similar way to the 2D image matching. Firstly, the 1D histogram in the spatial domain can be

regarded as 1D signals and transformed into the frequency domain as:

F (u) = G(u)e−i(ux0). (3.3)

Similarly, the normalized cross-power spectrum of these 1D signals can be expressed as:

Q(u) =
F (u)G∗(u)

|F (u)G∗(u)|
= e−iux0 , (3.4)

and the phase difference angle can be written as:

∠Q(u) = ux0. (3.5)

Thus, the shift can be estimated by fitting the slope of the 1D line by RANSAC. As shown

in Fig. 3.6, before the line fitting, 1D unwrapping needs to be conducted to solve the problem

of phase-wrapping. Afterward, the aforementioned RANSAC algorithm is leveraged to fit the

low-frequency components of the unwrapped phase angle for the translation estimation.

The complete process can be summarized as follows: (1) identify the principal projection

plane by plane-fitting using RANSAC; (2) project the point clouds to the principal projection

plane and obtain the 2D projection-based images; (3) project the point clouds to the principal

axis and obtain the 1D histogram; (4) decouple the horizontal rotation, scaling and translation

of the 2D images using FMT; (5) Estimate horizontal rotation and scaling using a robust phase

correlation algorithm, and a similar step is conducted to estimate horizontal translation; (6)

estimate vertical translation with 1D histograms using 1D phase correlation; (7) register the

point clouds with estimated transformation parameters.

3.2 Robust global point cloud registration with 3D phase corre-

lation (GRPC)

For estimating 3D transformation between two coordinate frames, traditional point cloud reg-

istration methods rely heavily on matching correspondences via local geometric features. They
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Figure 3.5: Shift estimation using a robust phase correlation method.

firstly extract key points or feature points from both source and target data and then conduct the

matching of corresponding points with features for estimating the transformation between differ-

ent coordinate frames. Unlike conventional methods, GRPC is a new global information-based

registration strategy following a principle which estimates 3D transformation in the frequency

domain robustly. Following principle of GRPC, the entire point clouds are converted into 3D

signals and regards them as global features. Then, the transformation between coordinate frames

is achieved via the phase correlation in the frequency domain. Comparing with using local fea-

tures of key points, the use of global features can increase the robustness. By transforming 3D

points to 3D signals in the frequency domain, we can separate and eliminate high-frequency parts

representing noise and outliers, so that the matching of features could be more reliable. By using

a novel robust and accurate phase correlation, the feature matching can be addressed by the

optimization with a closed-form expression.

In Fig. 3.7, we illustrate a comparison of workflows using GRPC and conventional feature

description-based ones. Specifically, the principle of GRPC for estimation of 3D transformation
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Figure 3.6: Estimation of vertical translation with 1D phase correlation.

mainly comprises three principal aspects, including the transformation from the spatial to the

frequency domain, decoupling of rotation, scaling, and translation, and robust and accurate shift

estimation.

3.2.1 Transformation from the spatial domain to the frequency domain

First, the point clouds are voxelized using the grid-based voxelization method in Section 2.4.2.

The transformation from the spatial domain to the frequency domain is to create discrete 3D

signals from unstructured and unordered points, which could be further used for the phase corre-

lation. The transformation includes the voxelization and binarization of 3D points and 3D Fourier

transformation of voxelized 3D data.

3D Fourier transform of voxelized 3D data

In the voxelization step, the original point clouds have been transformed to regularly sampled

discrete 3D signals. Assume that two signals are correlated to each other by shifts in the spatial

domain denoted as ts ∈ Rn×1, where n is the dimensions of the data. The correlation between

the two signals can be expressed as:

s(x) = r(x− ts), (3.6)

where s(x) and r(x) represent two signals in the spatial domain. Afterward, a fast discrete Fourier

transform (FFT) can be conducted on these two signals to transform them from the spatial domain

to the frequency domain: {
S(k) = FFT (s(x))

R(k) = FFT (r(x))
, (3.7)

where S(k) and R(k) are the corresponding Fourier transforms of s(x) and r(x). Here, we use

lowercase letters to represent the spatial domain, while uppercase letters denote the frequency

domain. If we carry out a phase correlation between S(k) and R(k), the relation between these

two signals can be written as:

S(k) = R(k)e−i2π(kts). (3.8)
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Figure 3.7: Workflow comparison of GRPC and conventional feature description-based strategy. Blue
denotes the target point cloud. Red denotes the source point cloud.

The normalized cross-power spectrum can be calculated as:

Q(k) =
S(k)R∗(k)

|S(k)R∗(k)|
= e−i2π(kts), (3.9)

where R∗ represents the complex conjugate of R. The magnitude of Q is 1 after the normalization.

From this equation, we can find that the translation ts can be solved by exploiting the correlation

between the signals. At this point, we have converted the estimation of translation in the spatial

domain to an addressable problem in the frequency domain. This is a commonly used strategy

in dense image matching in many previous works. However, when it comes to the point cloud

registration, the problem is more complex, because the transformation between coordinate frames

is an ill-posed problem of seven DoFs [Bellekens et al., 2015]. For solving the ill-posed estimation

problem of transformation, the transformation has to be decoupled and converted into a shift

estimation task.

3.2.2 Decoupling of rotation, scaling and translation

The proposed strategy is to obtain the transformation by decomposing the transformation to

several sub-problems, which can quickly solve shift estimation by phase correlation methods. First

of all, we present the method used to decouple the transformation parameters, namely rotations,

scaling, and translation. Before introducing details of the method, we present some basic concepts

and notations used in the method. Assuming that two 3D voxel data can be presented as f(x)

and h(x) which differ by rotations, translation, and scaling, the relation between the two 3D data

can be expressed as:

h(x) = sf(g(α, β, γ)x− ts), (3.10)
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in which g(α, β, γ) denotes rotations, s represents scaling factor, and ts = [tx, ty, tz] shifts the 3D

voxel data by translation.

Two 3D voxelized discrete data can be transformed to the frequency domain using 3D FFT,

then the relation between the spectrum of the data can be represented as follows:

H(k) = s3F (g(α, β, γ)ks−1)e−i2πg(α,β,γ)ksts , (3.11)

where k = [u, v, w] denotes the coordinates in frequency domain. It shows that the translation

only has an impact on the phase of the spectrum. Thus, by calculating the magnitude of the

spectrum, the 3D translation can be decoupled. The relation can be simplified as:

|H(k)| = s3|F (g(α, β, γ)ks−1)|. (3.12)

As shown by the equation, the spectral magnitude is influenced by a combination of rotations and

scaling. A decoupling process is needed for estimating rotations and scaling separately. Explicitly,

the rotations orient the 3D structure of the magnitude of the spectrum in the same way as it

does for the original 3D data in the spatial domain. At the same time, the scaling affects the

spectral magnitude in two aspects. One aspect is that the cubed scaling s3 only influences the

amplitude of the magnitude spectrum. However, the amplitude does not influence the structural

information, indicating that it makes no difference in the phase matching procedure. Another

is that the term s−1 indicates that the scale difference between signals in the spatial domain

shows a reciprocal effect on the spectrum in the frequency domain. It means that scale also

influences the structural information of the spectrum. Thus, in order to decouple rotations with

scale, the spectral magnitude is radially accumulated. By accumulating spectral data radially, we

can obtain a spherical function on which rotations present shifts of the structural information.

Then, only rotations remain in terms of the accumulated spectrum. Thus, the general procedure

of the seven DoFs transformation estimation is to estimate the rotations using the accumulated

spectrum first and subsequently estimate other transformation parameters.

3.2.3 Robust and accurate shift estimation

Via the use of phase correlation, we can convert the spatial translation estimation to the underly-

ing shift estimation of phase angle differences. The main concept of phase correlation is that any

shifts between two correlated signals (i.e., 2D images or 3D discrete signals) in the spatial domain

can be represented as a phase shift in the frequency domain. Compared with correlation-based

solutions which are also widely used, phase correlation seems to be more robust and accurate.

Simultaneously, the processing efficiency is improved as a fringe benefit.

However, if we apply classic phase correlation methods (e.g., estimating shifts from the peak

of the IFT of the cross-power spectrum) to point cloud registration, we will encounter problems.

For example, the estimated shifts can only achieve a voxel-level accuracy, which directly relates

to the granularity of voxelization. In Fig. 3.8, we display a sketch showing a comparison between

registrations with voxel- and subvoxel-level accuracies. To obtain an accurate registration, a sub-

voxel level accuracy is mandatory, and this should be addressed by a fine-estimation of phase angle

differences in the phase correlation. Moreover, as we have previously mentioned, the outliers and

non-overlap areas will result in noise in the frequency domain signals, so we need to overcome

these disturbances in the estimation of phase angle differences simultaneously. To this end, a

novel multidimensional phase correlation method is proposed using merely the low-frequency

components and `1-normalized linear fitting for an accurate and robust shift estimation.
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Figure 3.8: Registration (top view) with a) voxel level accuracy and b) sub-voxel level accuracy.

Multidimensional phase correlation

As assumed, the signals to be matched are in three dimensional, thus, the coordinates and shifts

can be written as k = [u, v, w] and ts = [tx, ty, tz], respectively. It should be noted that although

the solutions are provided in the 3D version, it can be easily adaptive to other multidimensional

cases (i.e., 2D). In this case, the normalized cross-power spectrum can be written as:

Q(u, v, w) = e−i2π(utx+vty+wtz). (3.13)

The IFT of Q(k) contains a Dirac delta function in an analytical way. Thus, the phase correlation

Figure 3.9: Multidimensional phase correlation. a) Original point clouds, b) voxelized 3D points, c)
spectrum of discrete 3D signals after FFT, d) correlated tensor from phase correlation of spectrums.

result can be obtained by finding the Dirac peak, whose coordinates corresponds to the estimated

parameters. However, this solution has a two-fold drawback. On the one hand, when the noise

level is high, it will be hard to find a single peak for the function, which will lead to the failure or

mistake in estimating the shifts. On the other hand, this kind of strategy is only able to produce

a result in the accuracy of integer voxels or pixels, as shown in Fig. 3.8. This level of accuracy can

not fulfill the requirement of registration of different scenes, especially for large-scale scenarios

where the voxel size cannot be set as a small value. Although there are some solutions proposed

to improve the accuracy of the sub-pixel level by interpolation, the fitting of a high-dimensional
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polynomial function is not always robust, especially in high noisy cases. For tackling this problem,

rather than sticking to interpolating the peak by some high-dimensional functions, many other

methods have been reported aiming at improving the accuracy of phase matching to the sub-pixel

level. An elegant way to solve the unknown shift parameters is to fit the phase difference angle,

which can be represented as a linear function (i.e., 3D plane function). However, this is only

feasible in an ideal situation. The real case is that noise, outliers, and the low-overlapping ratio

of point clouds will produce strong disturbances to the cross power spectrum. Furthermore, the

phase unwrapping of the high dimensional tensor will face an ill-posed problem with a high-level

noisy cross-power spectrum tensor. In the following section, we will present our solution to the

problems mentioned above.

Extraction of low-frequency components and signal decomposition

After obtaining fourier spectrum for each individual 3D signals and their corresponding normalized

cross-power spectrum, it is of great importance to select from the frequency components and

separate those low-frequency parts. Assuming that the 3D phase correlation between point clouds

share similar characteristics to the 2D phase correlation between images, the same procedures

can be conducted for the 3D signals. For 2D image matching, the concept is that high-frequency

components corresponds to aliasing and noise, thus most of energy lies in the low-frequency

components of the signals [Leprince et al., 2007]. Thus, for the cross-power spectrum from the

3D phase correlation, a similar strategy is conducted to mask out around 80% of frequency

components at the boundary of the tensor Q (see Fig. 3.10). Namely, only the center part of the

tensor Q will be preserved for further processing. As for the estimation of the parameters, instead

Figure 3.10: Illustration of extraction of low-frequency components.

of fitting the high-dimensional plane, a robust subpixel phase correlation method is applied, which

combines the concept of SVD and `1 normalization for robust estimation. The normalized cross-

power spectrum can be rewitten as:

Q(u, v, w) = e−i(utx+vty+wtz) = e−iutxe−ivtye−iwtz = Qx0(u)Qy0(v)Qz0(w). (3.14)

The cross-power spectrum can be represented by three rank-one signals. Thus, the task of the 3D

shift estimation can be separated to several tasks which exploits the rank-one signals. Firstly, the

SVD method can be utilized to divide the cross-power spectrum into several approximate rank-

one signals. Thus, instead of solving phase wrapping and eliminating high-frequency components

in high dimensions, these problems can be solved by finding 1D solution using the decomposed

signals. Compared to the previous one, the 1D solution will be less sensitive to noise and outliers.

Simultaneously, the ill-posed problem of high-dimensional phase unwrapping can also be avoided.

To calculate the coefficients of the fitted linear function of the decomposed and unwrapped signal,

we adopt a robust algorithm in which `1 normalization is utilized to add constraint and improve

the model’s robustness. Compared with `2 normalization (e.g., least-squares adjustment), `1 is

less influenced by noise and outliers by adding constraints for the parameters.
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Robust estimation of 3D shifts with `1 norm

Although the low-frequency components in the cross-power spectrum are separated and extracted,

Eq. 3.15 can still be utilized for the calculated of shift parameters. In order to estimate the

parameters of this linear function, a robust estimator with `1 normalization is adopted (see

Fig. 3.11), which can be presented as follow:

arg min(
1

2N

N∑
i=1

(yi − β0 − xTi β)2 + λ

p∑
j=1

|βi|), (3.15)

where (xi, yi) are N pairs of data values of the decomposed signals and λ is a non-negative regu-

larization parameter. In this problem, `1 norm is involved, aiming to add constraints when esti-

mating the linear function parameters. The alternating direction method of multipliers (ADMM)

algorithm is utilized to solve the aforementioned optimization problem.

Once the linear functions for each decomposed signals are estimated, parameters of the un-

wrapped phase angles of the identified components can be converted to the real estimated shift

parameters: 
∆X = δxM/(2π)

∆Y = δyN/(2π)

∆Z = δzL/(2π)

, (3.16)

where M , N , L denote the dimensions of the input tensor, which are from DFT. In DFT that we

used for transforming the point cloud into the frequency domain, the dimensions of the samples

space in the frequency domain are M ×N × L. Since the shifts are converted to the phase angle

difference ranging from −π to π, once we get the phase angle differences ∆X, ∆Y , and ∆Z, we

need to recover the real shifts by the use of Eq. 3.16 based on the sampled dimensions from DFT.

Figure 3.11: Illustration of the robust estimation of 3D shifts using `1 norm.

3.2.4 Application to the proposed GRPC method

Based on the proposed principle, we present GRPC for point cloud registration in the frequency

domain, decoupling of transformation, and robust multidimensional phase correlation. The way of

decoupling rotations and scaling is inspired by [Bülow & Birk, 2012, 2018]. Essential processing

steps are summarized as a complete workflow shown in Fig. 3.12. In this workflow, the first

step of the registration is the determination of rotations, which can be achieved by matching

the accumulated spectrum in the Fourier domain, which is invariant to scaling and translation.

Afterward, the scaling can be estimated using the rotationally aligned data by an adaptive FMT

method. Finally, the 3D translation can be purely estimated by the shift estimation method,

namely the robust 3D phase correlation by matching the 3D data, which has been re-scaled and

re-rotated.
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Figure 3.12: Detailed steps of the GRPC method. Gray block stands for the transformation for the spatial
domain to the frequency domain. Red blocks denotes the rotation estimation. Green blocks represent the
scaling estimation. Blue blocks display the translation estimation. RPC denotes robust phase correlation.

Since the GRPC method is under the framework of coarse registration, if more precise results

are required, fine registration methods (i.e., ICP) can be conducted as a subsequent step to

improve the registration accuracy.

3D Rotation estimation

As presented in Section 3.2.2, rotations are presented as rotations of points on an accumulated

spherical layer. In order to recover 3D rotations from the corresponding rotated spherical struc-

ture, we intend to use the similar solutions to the way we use for the translation estimation,

which is solved analytically. One solution is to use spherical harmonics [Bülow & Birk, 2018].

However, the main limitation is that the rotational information is recovered based on the standard

cross-correlation, but the cross-correlation yields several peaks. There is a same problem as we

have mentioned that even though the peak can be found, it is hard to achieve sub-voxel level

interpolation since no closed-form way is provided. So the general idea is to resample the hemi-

sphere of the accumulated spectrum. However, since the resampled layer is not an intrinsically

2D rectangular matrix, the structural distortions are dealt with a two-step strategy [Bülow &

Birk, 2012]. First, the yaw angle is determined following the rotational behavior of the spherical

structure. Then, the 3D spectrum is rotated according to the determined yaw angle. After the

rotation, only roll and pitch angles remain their influence on the spherical structure. Thus, the

remaining problem is to estimate roll and pitch by resampling the hemisphere in a rectangular

way.
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Figure 3.13: Illustration rotational resampling. a) Spectrums from 3D signals, b) rotational resampled
spectrum, c) FFT of rotational resampled spectrum, d) FFT of rotational resampled spectrum in log-polar
space.

Determination of yaw angle

The general idea to determine the yaw angle is to treat it as a rotation of a resampled structure.

The structure is resampled along with spherical coordinates. The accumulated spectrum can be

expressed with a resampled spherical coordinate system. The coordinate system is as follows:

vi = 1, . . . Nrot

vj = 1, . . . Nrot

φ = arctan(
vi
vj

)

θ = (v2i + v2j )
1
2
π

Nrot

, (3.17)

where Nrot denotes the size and vi and vj present the coordinates of the resampled images.

In accordance with the spectral magnitude, the spherical coordinates can be given as:
u = rsin(θ)cos(φ) +

N

2

v = rsin(θ)sin(φ) +
N

2

w = rcos(θ) +
N

2

, (3.18)

frot(vi, vj) =

r=re∑
r=rs

F (u, v, w) (3.19)

In the resampled matrix, roll and pitch are shown as undesirable interference, which displays

roughly as shifts between the matrices in x- and y-directions.

In order to recover the rotation between the resampled images, translation can be decoupled by

calculating the Fourier magnitude spectrum. Then, the estimation of rotation can be transformed
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to a shift estimation problem by LPT as illustrated in Fig. 3.13, where the spectrum of the two

signals can be expressed as:

|F (r, θ)| = |G(r, θ + θ0)|, (3.20)

|F (log r, θ)| = |G(log r, θ + θ0)|. (3.21)

It is clear that the rotation is converted to a shift between the two signals. Thus, by finding the

shift (x0, y0) in the log-polar space, the rotation can be estimated:

θ0 = y0. (3.22)

Determination of roll and pitch angles

Figure 3.14: Illustration of rectangular resampling. a) Spectrums from 3D signals, b) target spectrum and
rotated source spectrum, c) retangular resampled spectrum.

Different from the determination of yaw angle, roll and pitch angles are estimated simultane-

ously. First, the 3D voxel data is rotated based on the formerly estimated yaw. Then, the rotated

spectral magnitude is attained using the same step, as mentioned before. For determining roll

and pitch, the spectrum is re-sampled in a rectangular way by a perpendicular projection of the

hemisphere into a matrix. Shifts between matrixes can roughly represent the roll and pitch. The

resampled coordinate system can be expressed as:


γ = −π

2
(
vk −Nrect/2

Nrect/2
), vk = 1, . . . Nrect

ψ =
π

2
(
vl −Nrect/2

Nrect/2
), vl = 1, . . . Nrect

, (3.23)

where Nrect is the square size of the rectangular resampled images.
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Correspondingly, the related accumulated spectrum can be calculated as:
u = r sin(γ) cos(ψ) +

N

2

v = r sin(γ) +
N

2

w = r cos(γ) cos(ψ) +
N

2

, (3.24)

frect(vk, vl) =

r=re∑
r=rs

F (u, v, w). (3.25)

By determining the shifts using the same phase correlation method, roll and pitch can then be

estimated. Since all rotation parameters have been estimated, the spectrum can be re-rotated.

Only the scaling remains to influence the structure information of the spectrum magnitude.

Scaling estimation using FMT

Figure 3.15: Scaling estimation using FMT. a) Discrete 3D signals, b) spectrum of discrete 3D signals, c)
Spectrum in log space after FMT.

As mentioned in the previous sections, the radial accumulation of the spectral data is scale-

invariant, which allows for the rotation-only registration. In this section, since the rotations have

already been determined, Eq. 3.12 can be simplified as:

|R(k)| = ψ3|S(kψ−1)|. (3.26)

The spectral magnitude can be transformed into a log space by FMT, in which the Fourier

magnitude spectrum is related to each other by:

|R(log(k))| = ψ3|S(log(k)− log(ψ))|, (3.27)

which illustrates that spectral structure is logarithmically deformed along each direction. By

taking the log transformation, the scaling is changed as a shift in each direction. Thus, by finding

the shift (x0, x0, x0) between the two spectra in the log space, the scaling factor can be estimated

as:

ψ = ex0 . (3.28)
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Note that there are common causes that the shifts in x-, y-, z-directions are different. How-

ever, under the assumption that we solve registration with seven DOFs, the influence of scaling

change on the spectrum’s structure along each direction should be the same. Instead of adding

a constraint, we apply an easy way under this situation. By estimating the 3D shift between the

spectral structures in the log domain, the shifts in different directions can be determined. Thus,

scaling for different directions can be easily calculated using Eq. 3.28. Subsequently, by finding

the scaling that can produce the phase correlation’s maximum peak, the scaling can be chosen

among the three scaling factors.

Translation estimation using 3D phase correlation

Once the rotations and scaling have been determined, point clouds can be aligned according to

the estimated parameters. Only translation remains. Thus, the further step is straightforward:

the determination of 3D translation and can also be achieved simply by the 3D phase correlation.

Without further procedures (i.e., transferring to other domains or conducting a resampling pro-

cess), the translation can be directly determined by the proposed phase correlation method in the

time domain using the aligned voxelized data. Assume that the estimated shifts are calculated as

(∆X,∆Y,∆Z). Afterward, considering the difference of the coordinates (X0, Y0, Z0) calculated

from the rough alignment, the estimated 3D translations should be (X0+∆X, Y0+∆Y , Z0+∆Z),

which are the final outputs.
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4 Semantic segmentation of
urban scenes

Semantic labeling is an essential but challenging task when interpreting point clouds of 3D scenes.

As a core step for interpretation, semantic labeling is to annotate every point in the point cloud

with a label of semantic meaning, which plays a significant role in many point cloud related

applications. In this chapter, three methods [Huang et al., 2019; Huang et al., 2020b, 2021]

regarding the semantic segmentation of point clouds will be introduced, including Multi-scale

local context embedding for semantic segmentation (MLCE), deep point embedding for semantic

segmentation (DPE), and a global relation-aware attentional neural network for semantic seg-

mentation (GraNet). These methods involve feature embedding of local context information,

nonlinear manifold learning for feature dimension reduction, global graph-based optimization for

refinement, and relation-based modules to a network structure. In Fig. 4.1, we show the key

methods corresponds to the ones we have shown in our research frame in Section 1.3.

Figure 4.1: The proposed methods for semantic segmentation that included in this chapter.

4.1 Multi-scale local context embedding for semantic segmenta-

tion (MLCE)

The first method is multi-scale local context embedding, which includes two major stages: (I)

extract point-based multi-scale geometric features; (II) reduce the dimensionality of features. The

workflow of the proposed method is illustrated in Fig. 4.2.

4.1.1 Extraction of point-based multi-scale geometric features

Feature extraction is a crucial part in point cloud classification, and its performance plays an

important role in the quality of the classification results. However, it remains a challenging task

to extract sufficient information from raw points. In this method, we construct a set of geometric

features including surface features, statistical features, dimensionality features, height features and

orientation features. Specifically, they consist of local density Dk, omnivariance Ok, anisotropy

Ak, eigenentropy Ek, local curvature Ck, sum of eigenvalues
∑

k, geometric center X̂k, linearity

Lk, planarity Pk, scattering Sk, height mean H̄k, height difference ∆Hk, normal vector nk, and

verticality Vk (see Table 4.1). These features are used to represent the local geometric shape

based on eigenvalue decomposition of 3D structure tensor formed by a specific neighborhood of

the point p [Weinmann et al., 2015a].
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Figure 4.2: Workflow of the MLCE point cloud classification strategy. a) Scaling, b) geometric space, c)
concatenation, d) embedding, e) classification.

Table 4.1: List of used features in MLCE.

Category Features Definition

Surface Local density Dk = 3n
4πrseed3

Statistics [Chehata et al., 2009]

Omnivariance Ok = 3
√
e1 · e2 · e3

Anisotropy Ak = (e1 − e3)/e1

Eigenentropy Ek = −
3∑
i=1

eiln(ei)

Local curvature Ck = e3
e1+e2+e3

Summation
∑

k = e1 + e2 + e3
Center X̂k = 1

k+1

∑k
i=0 Xi

Dimensionality [Weinmann et al., 2015a]
Linearity Lk = e1−e2

e1
Planarity Pk = e2−e3

e1
Scattering Sk = e3

e1

Height [Maas, 1999]
Height mean H̄k = 1

n

n∑
i=1

Zi

Height difference ∆Hk = Zmax − Zmin

Orientation [Rabbani et al., 2006]
Normal vectors

Nx

Ny

Nz

Verticality 1−Nz

The geometric features are also influenced by the neighborhood scale. Thus, to consider

different local context, the geometric features of the query point are calculated using three different

neighborhood size k. Here, k=k0, k1, k2, and in this paper k0=10, k1=20, k2=30 (determined

based on the point density). Then the geometric features are concatenated to form the multi-scale

feature vector to represent the 3D point cloud scene.

4.1.2 Low-dimensional embedding of multi-scale features

Multi-scale feature modeling can provide the geometric information more sufficiently by consid-

ering the local neighboring context of a given point. To some extent, the redundancy of the

features hinders the classification performance from further going better. For this reason, feature

selection has been used to, to some extent, handle this issue by filtering some features based on

the inter-correlations between features or the coherence between features and given labels. It
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should be noted that, however, that the new feature space constructed by those selected features

still lies in the original space. Beyond the original feature space, we propose to utilize the local

manifold learning (LML)-based method (locality preserving projections (LPP) in our case) on

the extracted geometric primitive to learn a compact low-dimensional feature representation by

locally embedding the neighboring information.

Compared with other dimensionality reduction (DR) methods that maximize or preserve the

specific information, such as principal component analysis (PCA) and linear discriminant analysis

(LDA), LML-based method is capable of mining the underlying data structure and considering

the correlation between points. More specifically, for each point in the multi-scale feature domain,

there is a strong spatial correlation between points, particularly their neighborhoods. Intuitively,

LPP learns the low-dimensional representation by constructing a neighboring graph for each

sample in the high-dimensional feature domain. This might further enhance the connections

between the original features of the points and their neighbors.

Compared with other nonlinear LML’s approaches, LPP can explicitly project out-of-samples

into the learned subspace, owing to its linearized technique. Moreover, a large number of samples

are usually used for the model’s learning in practice. For these two purposes, the multi-scale

geometric features are fed into the LPP, leading to the geometric primitive embedding as the

input of the final classifier.

4.2 Deep point embedding for semantic segmentation (DPE)

The second method is the deep point embedding, which is a further development of the MLCE

method. The multi-scale feature learning is improved as hierarchical deep feature learning (HDL).

The manifold-learning-based method is further optimized by considering the spatial constraint

using joint manifold-based embedding (JME). The result of classification can be further optimized

by global graph-based optimization (GGO). Fig. 4.3 illustrates the framework presenting the

essential steps of the involved methods and sample results. The detailed explanation of each

step in the framework is introduced in the following sub-sections. The HDL step is designed

Figure 4.3: Workflow of the DPE method.

for learning the original features of points. Here, hierarchical splitting is applied to the input

datasets. Specifically, the training and test point clouds are subdivided into non-overlapped

sub-pointsets, and then, these pointsets are downsampled to a fixed number, which fulfills the
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input requirement of the network. The features extracted from the network comprise point-

based description and texture information of the entire sub-pointsets; therefore, the deep features

extracted from hierarchical pointsets can be used to represent texture information from different

scales. Consequently, these features of the multi-scale inputs are aggregated into a concatenated

feature vector. Moreover, considering the high redundancy and regional dependence of the feature

vector, we use a manifold-learning-based algorithm to generate the representation with a lower

dimension for describing each point in a globally optimal manner. Considering the high correlation

between neighboring points, we apply JME for dimensionality reduction; JME operates in both

high-dimensional feature and spatial domains. The initial classification results can be obtained by

feeding the embedded features into a classifier, e.g., random forest (RF) or support vector machine

(SVM). Finally, GGO is employed for regularizing the initially labeled points to achieve locally

smooth and globally optimal classification results. In the following sub-sections, we present the

essential algorithms in our workflow in detail.

4.2.1 Hierarchical deep feature learning (HDL)

PointNet proposes a solution for spatial encoding considering the raw nature of 3D points, thereby

enabling the processing of 3D points in a direct manner. Compared to PointNet, fine-grained

patterns can be recognized in PointNet++, which can help produce better results in the case of

scenes with high complexity. Moreover, PointNet++ shows higher robustness to the variation of

point densities. Consequently, it is chosen for extracting deep features in the framework of DPE.

Figure 4.4: Reason for adopting hierarchical subdivision strategy. a) An illustration of the real scene as
true orthophoto, b) the target vehicle is cut into pieces by the single-scale subdivision with fixed template
size, c) the target vehicle can be fully represented by multiscale sub-pointsets in different template sizes.
Labels are used for better illustration.

However, although PointNet++ has higher generalization ability than PointNet, its usage in

the classification of large-scale airborne point cloud in complex urban scenes poses challenges.

For the training and inference of a network, the process of splitting and sampling is inevitable.

However, as shown in Fig. 4.4, artifacts may be induced in this process. As shown in the figure,

small objects are cut into pieces; this process is unable to provide sufficient information for

identifying the small pieces. Therefore, to improve the ability of the network to deal with different-

scale objects, we enhance the ability of PointNet++ to handle complex 3D data via a hierarchical

data augmentation method. The hierarchical sampling strategy provides a trade-off solution

for object integrity and fine-grained details. Specifically, HDL is conducted in the three steps in

Fig. 4.5. First, during the training stage, three rounds of subdivisions are repetitively implemented

to the entire point cloud used for training. The scale of the sub-pointset is different in each round,

and the sub-pointset is presented as a fixed number of points. In other words, in each round of

the subdivision, a different scale will be used to constrain the size of sub-pointsets, in order to
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Figure 4.5: HDL for deep feature learning.

subdivide the point cloud into non-overlapped sub-pointsets having a predefined and fixed number

of points. Therefore, after the three-round subdivisions, the whole scene is presented with sub-

pointsets on different scales. All these sub-pointsets are fed into the network after a downsampling

step to ensure the inputs are provided in a consistent manner. In this case, the network can be

trained to have a stronger generalization ability while dealing with widely varied-scale objects.

Secondly, the point clouds for testing are processed identically for subdivision and downsampling.

However, the difference between the training and test processes is that the subdivided pointsets

in different scales are not fed into the network together. The subpoints in each scale are fed to

obtain the deep features. Then the points in the original point clouds that are not contained

in the inputs for the network are interpolated to obtain deep feature vectors. Consequently, all

the points subdivided with different scales can be assigned a deep feature vector that contains a

different level of contextual information. Finally, the deep features from different scales can be

concatenated to form a multiscale deep feature vector.

4.2.2 Joint manifold-based embedding (JME)

Although multi dimensional features (MDF) provide contextual information, they have high re-

dundancy, inter-correlation, and regional dependence, which is counterproductive to the improve-

ment of feature discrimination. Therefore, with an aim to reduce feature correlation and simplify

feature representation with a lower dimensionality, we developed a manifold learning algorithm

to mine the underlying data properties and leverage the optimal embedded feature domain.
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Based on the original local linear embedding (LLE) strategy introduced in Section 2.2, to

extract better representative features of 3D points, we apply JME, thereby improving both the

robustness of the embedder and the ability of incorporating spatial information. Here, the embed-

ding is calculated with the addition of spatial information under the assumption that neighboring

3D points in a spatial domain should share similar reconstruction weights. In such a scenario, we

propose a method that embed both contextual and spatial information of 3D points under the

LLE framework with. The JME method comprises three steps: recovery of the spatial neighbor-

hood, computation of reconstruction weight with the spatial constraint, and calculation of joint

embedding, which is illustrated Fig. 4.6. It is noteworthy that, for 2D images, spatial correlation

can be easily represented by four-neighborhood or eight-neighborhood. However, for 3D point

clouds, the distribution of points is unstructured, and consequently, it is hard to be modeled or

rasterized. Therefore, we use K-nearest neighborhood (KNN) to define the spatial correlation

between points, and the spatial neighborhood is established by these points. Furthermore, the

calculation of the reconstruction weights can be formulated by adding the spatial constraints of

these neighboring points:

r0i = arg min
r0i

{
K∑
k=0

||xik −Xl
irik||22

}
, (4.1)

where k = 0, 1, ...,K denotes the spatial neighboring points of the target points defined by KNN,

and Xl
i = [x1

i ,x
2
i , ...x

l
i] denotes the l neighbors in the domain selected by KNN. It should be noted

that the selection of K for spatial neighborhood selection is limited by computation resources.

Empirically, we find K = 5 to be sufficient.

The constraint of this equation is represented as:

||Xl
i(Kr0i −

K∑
k=0

rki )|| ≤ ε

(rki )
Trki = 1, where k = 0, 1, ...,K,

(4.2)

where ε denotes the tolerant error. This problem can be seen as a joint optimization problem

Figure 4.6: Integration of spatial information in joint embedding. a) Recovery of the spatial neighborhood,
b) computation of reconstruction weight with the spatial constraint, c) calculation of joint embedding.
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that can be rewritten as:

q0
i = arg min

q0
i

{
K∑
k=0

||X̂l
i −AR̂i||22

}
, s.t.ER̂i = tT = [1, 1, ..., 1]T

A =



KαXl
i −αXl

i −αXl
i . . . −αXl

i

Xl
i

Xl
i

Xl
i

. . .

Xl
i



R̂i =


q0
i

q1
i
...

qKi

 , X̂l
i =


0

x1
i0

x1
i1
...

x1
iK

 ,E =


e

e

e
. . .

e

 .

(4.3)

where the sizes of t, A, R̂i, X̂l
i, and E are 1 × (K + 1), (K + 2)L × (K + 1)l, (K + 1)L × 1,

(K + 2)L× 1, and (K + 1)× (K + 1)l, respectively. Here, e is a unit vector with size 1× l. α is

the coefficient used to balance the error and the constraint.

r0i = arg min
r0i

{
K∑
k=0

||X̂l
i −AR̂i||22 + γ||ER̂i − ê||22

}
, (4.4)

where ê is a unit vector with size (K + 1)× 1.

The weight vector can be solved as:

r0i = (ATA + γETE)−1(ATXl
i + γETê). (4.5)

Finally, we use these weight vectors to solve the embedding problem by using Eq. 2.16 in Sec-

tion 2.2.

In the proposed representation, each point in the original data is first represented by regional

deep features extracted from a point-based neural network. Then, these features are embedded

with spatial information by excavating the local manifold structure, wherein these features are

optimized based not only on the local data but also the global feature correlations.

Large-scale LML

For commonly used small-sized 2D datasets, the LLE-based methods always work quite well and

provide satisfactory outputs [Bachmann et al., 2005; Ma et al., 2010; Hong et al., 2017]. However,

for an enormous number of points in a point cloud, the computation of low-dimensionality embed-

ding is challenging owing to the massive amount of data. More than millions of points are collected

for each point cloud; this renders algorithms with high demands for memory and computational

cost impractical. To mitigate this problem, it is essential that both construction of the affinity

matrix and spectral decomposition of the matrix are intractable for a large number of samples.

Therefore, under the framework of LML, we propose a new algorithm, KNN joint manifold em-

bedding (K-JME), to improve efficiency by adopting k-means clustering before embedding. This

strategy can be applied not only to our joint embedding methods but also in other LML-based

algorithms. The improved algorithm mainly comprises three steps. Firstly, M cluster centers are

obtained by the k-means clustering, and they are denoted as: Xc = [x1c, x2c, ..., xMc] ∈ RM×D.
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Then the joint manifold learning algorithm is executed to acquire a representation with reduced

dimensionality of the M cluster centers by using Eq. 2.16 in Section 2.2.

Ŷc = arg min
Y

{
YcLcY

T
c

}
, s.t.YcPYT

c = I, (4.6)

where Lc = Dc −Wc, and Wc can be calculated using Eq. 4.1.

Finally, the local manifold structures obtained with these M cluster centers serve as the

manifold structure of the original data. In this manner, we can reconstruct the manifold structure

of the original data using the correlations between the original data points and the clusters. The

reconstruction weights can be calculated by using Eq. 4.1 as follows:

w0
ci = arg min

w0
ci

{
K∑
k=0

||xik −Xl
ciwcik||22

}
, (4.7)

where k = 0, 1, ...,K denotes the spatial neighboring clusters of the target points in the original

data defined by KNN, and Xl
ci = [x1

ci,x
2
ci, ...x

l
ci] denotes the l neighbors in the feature domain

selected by KNN.

Assuming that the local manifold structures in high-dimensional and low-dimensional spaces

are consistent, the low-dimensional representation of the original data points can be obtained by

yic = wi
c ×Yi

c, (4.8)

where yic ∈ R1×d denotes the reduced dimensional representation of the i-th data point. wi
c =

[wc1,wc2, ...,wcl] ∈ R1×l stands for the reconstruction weights calculated between the data point

and its l-nearest cluster centers in the high-dimensional feature space constrained by K spatial

neighboring clusters, and Yi
c ∈ Rl×d is the selected l d-dimensional representation from the

obtained low-dimensional representation of M cluster centers, Yi
c = [yc1,yc2, ...,ycl] ∈ RM×d.

Finally, the high-dimensional deep features are embedded into an optimal low-dimensional

space. The embedded features are classified with a specific classifier. We use RF in the clas-

sification step to obtain initial classification results because RF is a robust classifier, and it is

influenced by less parameters compared to other classic classifiers. Furthermore, the optimal

number of decision trees is determined by cross-validation.

4.2.3 Global graph-based optimization (GGO) for labeling refinement

After the classification of the aforementioned embedded features with a specific classifier, the

initial results can be further optimized to obtain locally smoothed results. Under the mathematical

framework presented in Landrieu et al. [2017], a probabilistic model is applied to use a graph

structure to model spatial correlations. Labeling refinement is conducted by searching for the

optimal labels to improve the regularity with the graph-structured optimization. As illustrated in

Fig. 4.7, it can be divided into three steps: construction of the graph, construction of the energy

cost, and the solution. The regularization can be converted into a graph-structured problem. The

graphical model is constructed by the undirected adjacency graph, which is defined by ten KNN

neighboring points, and is expressed as G = {V,E}, where V denotes the nodes (representing the

points in 3D space) and E denotes a set of edges defined by the correlations of the neighboring

points. With respect to the edge weights, we did not use the commonly adopted spatial distances

or constant values for estimating weights. Instead, we measured the custom distance in the feature

space (i.e., the feature space with reduced dimensions) between points, and used this distance

to weight the edge. To obtain optimal labels using the constructed graph, the problem can be
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Figure 4.7: GGO. a) Graph construction, b) graph cut, c) refinement of labels.

formulated as a problem that aims at minimizing the energy cost, and it is defined as :

E(L) = αR(L) + Φ(L), (4.9)

where L = [l1, l2, ...ln] (1 ≤ li ≤ m) denotes a set of labels with m categories. Moreover, α is a

factor used to balance the influence between the local smoothness, R(L), and the penalty inducing

the fidelity, Φ(L). With this configuration, the optimization process of the classification results

can be achieved to make the labels locally continuous and globally optimal. The two terms on

the right-hand side have different definitions in various energy functions. In our framework, the

term for regional smoothing can be defined as:

R(L) =
∑

Wu,vδ(Vu, Vv), (4.10)

where δ(Vu, Vv) penalizes adjacent points, Vu and Vv, of different labels, lu and lv, and it is

obtained by the Potts model [Potts, 1952]:

δ(Va, Vb) =

{
0 if la = lb

1 if la 6= lb
, (4.11)

where Wu,v is a positive value related to the strength of the penalty using the distance constraint.

Wu,v = exp(−||Xu −Xv||2/2σ2), (4.12)

where Xu and Xv denote the representations of the points in the given feature space (i.e., the

feature vectors). Furthermore, the fidelity term, Φ, enforces the influence of the labels

Φ(L) = −
∑

lk log(l̂k), (4.13)

where lk denotes the initial label of the point, whereas l̂k represents the optimized label of the

point.

The aforementioned cost function can be easily solved by employing a graph-cut strategy

using the alpha-expansion, which can quickly find an approximate solution with a few graph-cut

iterations [Boykov et al., 2001; Kolmogorov & Zabih, 2004; Boykov & Kolmogorov, 2004]. Here,

the labeling cost is not considered because we assume that the labels of all objects are independent;

consequently, all elements in the labeling cost matrix are set to 1, except the diagonal ones that

are set to 0. The optimization results automatically adapt to the underlying scene without the

need for predefined features of certain potential objects.
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4.3 A global relation-aware attentional neural network for se-

mantic segmentation (GraNet)

The third method is a novel neural network focusing on semantic labeling of point clouds, which

investigates the importance of long-range spatial and channel-wise relations and is termed as

global relation-aware attentional network (GraNet). GraNet first learns local geometric descrip-

tion and local dependencies using a local spatial discrepancy attention (LoSDA) convolution

module. In LoSDA, the orientation information, spatial distribution, and elevation information

are fully considered by stacking several local spatial geometric learning modules and the local

dependencies are learned by using an attention pooling module. Then, a global relation-aware

attention (GRA) module, consisting of a spatial relation-aware attention (SRA) module and a

channel relation-aware attention (CRA) module, is presented to further learn attentions from the

structural information of a global scope from the relations and enhance high-level features with

the long-range dependencies. The aforementioned two important modules are aggregated in the

multi-scale network architecture to further consider scale changes in large urban areas.

Here, we first introduce the local spatial discrepancy attention convolution module and the

design of each module involved in this local encoding module. Then the global relation-based

attention module is explained, in which the contextual information is further investigated under

the global scope. In Section 4.3.3, the network configuration of the GraNet is presented, in

which an encoder-decoder framework is developed on the basis of PointNet++ [Qi et al., 2017b]

architecture.

4.3.1 Local spatial discrepancy attention (LoSDA) convolution module

The LoSDA module consists of spatial distribution encoding (SDE), directional feature encoding

(DFE), and elevation feature encoding (EFE), and an attention pooling module, which sequen-

tially implements the description of local geometric characteristics and considers the local depen-

dencies. In Fig. 4.8, we illustrate the scheme of the LoSDA module we used, which is applied to

each 3D point and outputs aggregated features. It shows how the three modules are integrated

to learn the output features. For each input point pi, the further operations are conducted on the

point itself and its KNN points Pi together with attributes or intermediate learned features fi.

First, the directional features are obtained using the DFE module. The former features are con-

catenated with the directional features. A shared multi-layer perceptron (MLP) is then followed

to obtain fused features from the combination of the original features and the directional features

to generate orientation-augmented features. Second, the spatial information is processed by two

feature encoding modules. Based on the spatial information provided by the neighboring points,

the 3D coordinates are fed into the SDE module and the height information is fed into the EFE

module. Then, the learned features from these two modules are concatenated and followed by a

shared MLP to obtain the spatial features. Finally, the orientation-augmented features and the

spatial features obtained in the last two steps are concatenated and fed into the attention pooling

module to generate the aggregated features based on all the neighboring features. By encoding

information using the aforementioned three modules, we can get an explicit representation of the

local spatial information for a given point. Then, we will provide detailed explanations for each

module.

Spatial distribution encoding (SDE)

As stated in Hu et al. [2020], given the input point pi and its KNN point set Pi = {p1i , p2i , p3i , ..., pKi },
the use of KNN points can make point features be aware of their relative spatial locations, in-

dicating the local spatial distribution of points. To encode the spatial distribution of an input
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Figure 4.8: Exploited local spatial discrepancy attention encoding module. The purple panel shows the
directional feature encoding module. The pink panel shows the attention pooling module. The light green
panel shows the spatial distribution encoding module and the blue one shows the elevation feature encoding
module.

point pi in its KNN point set Pi, their relative point positions will be utilized, which is calculated

as follows:

rji = MLP (pi ⊕ pji ⊕ (pi − pji )⊕ ||pi − p
j
i ||), (4.14)

where ⊕ is the concatenation operation, and || · || calculates the Euclidean distance between the

neighboring and input points.

Directional feature encoding (DFE)

The directional feature of a point can also be encoded from the spatial locations of points in the

local area, which describes the orientation information in the horizontal directions. To encode the

directional feature of the input point pi, we utilize the point-wise local feature descriptor proposed

by Jiang et al. [2018], which depicts directional information of eight orientations. Specifically, we

implement a selection of the nearest neighbors for point P in each of the eight octants using

the Stacked 8-neighborhood Search (S8N). Since distant points provide little information for a

description of local patterns, when no point appears within the searching radius in some actant,

we duplicate p0 as the nearest neighbor of itself. We further process features of those neighbors

that reside in a 2 × 2 × 2 cube for local pattern description centering at p0. Many previous

works conduct max-pooling on unordered feature vectors to get new features, while we believe

that ordered operations such as convolution can better exploit the local geometric structure

information. Thus we utilize orientation-encoding convolution, which is a three-stage operator

that convolves the 2×2×2 cube along x−, y−, and z− axis successively. Formally, the features of

neighboring points is a vector V of shape 2×2×2×d, where the first three dimensions correspond
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to three axes. Slices of vector M are feature vectors, for example M1,1,1 represents the feature

from top-frontright octant. The three-stage convolution is formulated as:

Vx = g(Conv(Wx, V )) ∈ R1×2×2×d

Vxy = g(Conv(Wy, Vx)) ∈ R1×1×2×d

Vxyz = g(Conv(Wz, Vxy)) ∈ R1×1×1×d

, (4.15)

where Wx ∈ R1×2×2×d, Wy ∈ R1×2×1×d, and Wz ∈ R1×1×1×d are weights of convolution operator

(bias is omitted for clarity). In this work, we set g( · ) = ReLU( · ). Finally, we will get a

d dimension feature by reshaping Vxyz ∈ R1×2×2×d, integrating information from eight spatial

orientations and obtains a representation that encodes orientation information.

Elevation feature encoding (EFE) (Optional)

Since the elevation information plays an important role in ALS point cloud classification, eleva-

tions should be further emphasized by encoding the elevations provided by the neighboring points

to the high dimensional features. In the classification of point clouds of construction site, EFE is

not utilized. The elevations of points are encoded to describe the positioning discrepancy in the

vertical direction. It should be noted that the elevation encoding module will be removed when

classifying MLS or photogrammetric point clouds. To encode elevation information of the input

point pi, the coordinates in z- direction of the local neighboring point set of pi is extracted and

formed a 1-dimensional vector, and then the feature vector is embedded to the same d-dimensional

feature using a MPL layer. The MLP layer is formed by a 1 × convolution layer, a batch nor-

malization layer, and a ReLU activation layer. Thus, the elevation information encoding can be

formulated as:

Z̃i = MLP (Zi), (4.16)

where Zi = z1, z2, ..., zK is the z coordinates of the input KNN point set Pi and Z̃i is the extracted

elevation features for the KNN point set.

Attention pooling

Assuming a given point pi withK neighboring points together with point features F̂i = f̂1, f̂2, ..., f̂K ,

the attentive pooling is used to aggregate the obtained point features F̂i of point pi [Hu et al.,

2020]. As shown in Fig. 4.8, the attention scores are achieved by a shared MLP and a followed

softmax, which is defined as follows:

aji = g(f̂ ji ,W ), (4.17)

where j ∈ 1, ...,K is the neighoring point number and W stands for the learnable weights of a

shared MLP. The function g( · ) is the shared MLP followed by softmax. Then, these features are

weighted by the attention scores and summed as follows:

f̃i =

K∑
j=1

(f̂ ji · aji ), (4.18)

where f̃i stands for the output aggregated feature of the input point pi.

4.3.2 Global relation-aware attention (GRA) module

Inspired by the work in Zhang et al. [2020], we design the GRA module, which learns global

attentions from the structural information presented by relations from all the points and all the

channels in a global scope and strengthens high-dimensional features using the exploited global

attention maps. The GRA module consists of two sub-modules: SRA and CRA.
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Spatial relation-aware attention (SRA) module

In order to capture the long-range dependencies between points, the SRA module is applied to

3D points with intermediate deep features. In the former local attention module (i.e., attention

pooling module in LoSDA), convolution operations are conducted with small receptive fields

on feature maps. However, in order to learn discriminative features for each position, global

structural information can be utilized by collecting relations for all the points to enhance the

feature representation. Thus, we introduce the SRA module, which consists of three major steps,

namely the calculation of relations (named as affinity matrix) between all nodes, the formation of

relation-augmented features, and the calculation of attention scores for each position. The details

will be explained in the following texts, as illustrated in Fig. 4.9.

Given a feature tensor X ∈ RN×C presenting a point set with N points and C channels from

an immediate layer in the network. We regard the C-dimensional feature vector of each spatial

point as a node in the graph. Then, all the feature nodes representing the spatial positions can

form a graph Gs with N nodes. The pairwise relation from node ni to node nj can be calculated

using a dot product, which is termed as affinity:

rsi,j = αs(xi)
Tβs(xj), (4.19)

where αs and βs are two embedding functions implemented by a MLP layer. Then, the bidi-

rectional relations between node ni and nj are described by the pairwise affinity value and the

relations between all the points can be presented by an affinity matrix As ∈ RN×N .

As illustrated in Fig. 4.9, relation features are generated by extracting the column and the

row at the spatial position from the affinity matrix. For each node ni, the relation vectors can

be obtained as rsi = [As(i, :),As(:, i)] ∈ R2N . In the figure, we present the relations between

node n7 with other feature node as an example. When calculating the attention scores of the ni
feature node, the original feature vector from the point itself should also be considered to further

utilize both the non-local information and its relation to the local original information. Thus, the

spatial relation-augmented features can be denoted as:

ysi = [pool(ψs(xi)), r
s
i ], (4.20)

in which ψs denote embedding functions for the original features. αs denotes a MLP layer and

the embedded features are further fed into a pooling layer after the embedding operation using

αs. Here a max pooling is utilized. ysi ∈ R2N+1 denotes the spatial relation-augmented features

for node i and is obtained by connecting the original features with relation feature vector.

The global relation features contain rich contextual information. In order to further mine

valuable information from them, we propose to infer attention via a learnable model. Since the

dimensions of the spatial relation-augmented features are different from the original feature vector

for each point, the spatial relation-augmented features are further embedded using a shared MLP

to obtain attention maps for all the point for each feature channel. The spatial attention values

can be obtained by:

asi = Sigmoid(γs(ysi )). (4.21)

where γs denotes the embedding functions for the relation-augmented features. A sigmoid function

is followed to obtain attentions. asi ∈ RC denote a sequence of attention scores for each feature

channel. Then, the attention scores of each nodes can formed a attention matrix as ∈ RN×C .

Finally, the spatial relation-aware features can be obtained by:

Ys = as ∗X. (4.22)
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Figure 4.9: Illustration of the GRA module. a) SRA module, b) CRA module.

Channel relation-aware attention (CRA) module

To further consider the interdependencies between channels, as shown in Fig. 4.9, we use a similar

strategy and design a channel relation-aware attention module. The main difference is that the

relations are calculated between channel-wise nodes instead of spatial positions.

Given an intermediate feature tensor X ∈ RN×C presenting a point set with N points and C

channels. We treat the point set as a graph Gc with C nodes. Thus, the pairwise relation from

node ck to node cl can be calculated as:

rck,l = αc(xk)
Tβc(xl), (4.23)

where αc and βc are two embedding functions, which are achieved by a MLP layer. Then, the

relations between all nodes can be represented by an affinity matrix Ac ∈ RC×C . Subsequently,

for each node ck, we obtained the relation vector as rck = [Ac(k, :),Ac(:, k)] ∈ R2C . In Fig. 4.9,

we use node c5 as an example for illustration. Then, the original feature vector is embedded
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and concatenated with the pairwise relations between all the nodes and generate a new channel

relation-augmented feature vector as:

yck = [pool(ψc(xk)), r
c
k], (4.24)

where ψc also denotes the embedding functions implemented by a MLP layer, and the embedding

function ψc is followed by a pooling layer. The channel attention value can then be obtained

using a similar procedure to the procedure conducted on the corresponding spatial module:

aci = Sigmoid(γc(yck)), (4.25)

where where γc denotes the embedding functions for the relation-augmented features. aci ∈ RN

is attention score for each node and forms the attention matrix ac ∈ RN×C . Finally, the channel

relation-aware features can be obtained by multiplying attention scores:

Yc = ac ∗X. (4.26)

Integration of the GRA module

In order to make full use of the SRA and CRA modules, we further integrate these two modules.

In this work, we investigate three patterns for the configuration. In the following text, to make the

elaboration clearly and briefly, the configurations of SRA and CRA modules are terms as the GRA

module. As illustrated in Fig. 4.10, there are three modes in constructing the GRA module by

combining the SRA and CRA modules. Mode 1 is a serial configuration, where the SRA module

follows the CRA module. Mode 2 is also a serial configuration, but in this configuration, the CRA

module comes after the SRA module. Mode 3 is a parallel pattern in which the intermediate deep

features obtained after feeding to the CRA and SRA modules parallelly are concatenated to

obtain the final output of the GRA module. The effect of different configurations will be tested

in Section 7.2.3.

Figure 4.10: Illustration of different configurations of the GRA module. a) Mode 1, b) Mode 2, c) Mode 3.

4.3.3 Details of the network architecture

The multi-scale network framework is inspired by the framework of PointNet++ [Qi et al., 2017b].

Fig. 4.11 illustrates the detailed architecture of our network, which is implemented by a classic

encoder-decoder architecture with skip connections. The input point cloud is initially fed to a

fully connected layer to extract point features based on the original point features except for

point coordinates. Four encoding and decoding layers are then used to learn features for each

point. At last, a fully-connected layer is used to predict the semantic label of each point. The

input is a large-scale original point cloud with a size of N × d (the batch dimension is dropped

for simplicity), where N is the number of points, d is the feature dimension of each input point.

For our testing datasets, each point is represented by its 3D coordinates, intensity, and numbers
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Figure 4.11: Detailed network architecture of GraNet.

of return. The encoder has four layers, progressively reducing the size of the point clouds and

increasing the feature dimensions of each point. Each encoding layer consists of the LoSDA

module and a grouping and sampling module. The point cloud is downsampled with a four-fold

decimation ratio. In particular, only 25% of the point features are retained after each layer.

Meanwhile, the feature dimension of each point is gradually increased each layer to preserve more

information. The decoder also has four layers that are used after the above encoding layers.

For each layer in the decoder, we first use the KNN algorithm to find one nearest neighboring

point for each query point. The point feature set is then upsampled through a nearest-neighbor

interpolation. Next, the upsampled feature maps are concatenated with the intermediate feature

maps produced by encoding layers through skip connections, after which the MLP module is

applied to the concatenated feature maps. After all the points have been decoded to the original

point size, the GRA module is applied to the feature maps. Then, the semantic label of each

point is predicted through a fully-connected layer.
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5 Change detection

In this chapter, we present a method of detecting changes of construction sites using photogram-

metric point clouds. The overall goal is to detect changes considering both geometric changes and

semantic changes. Fig. 5.1 shows the core methods corresponds to the ones we have shown in our

research frame in Section 1.3. The entire workflow of our change detection method is presented in

Fig. 5.2, with involved algorithms, methods, and illustrations of intermediate results shown. Our

change detection method follows a two-step strategy. In the first step, the geometric changes are

detected using an occupancy-based change detection method using multi-stereo vision (OBCD-

M), which is inspired by previous studies [Hebel et al., 2013]. In the second step, for the detected

geometrically consistency occupancy, semantics can be further considered to contribute to detect

the semantic consistency and conflicts. Here, a semantic-aided change detection method (SACD)

is applied.

Figure 5.1: Proposed methods for change detection that included in this chapter.

Figure 5.2: Workflow of change detection procedure.
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5.1 Occupancy-based change detection using multi-stereo vision

(OBCD-M)

The general principle of the OBCD-M method is that changes can be determined by evaluating

occupancy conflicts of occupied space and empty space along the viewing rays of cameras consid-

ering the sensor positions. By using the occupancy-based change detection, both occlusions and

changes can be handled implicitly. Here, photogrammetric point clouds acquired at two different

epochs are taken for comparison. We name point clouds acquired at the former epoch as the

reference database. The point cloud acquired at the latter epoch as the current database. It

should be noted that the raw data, including the camera positions and camera intrinsics, is also

required.

To define conflicts between the reference database and the current database, the whole data

processing mainly consist of two steps. First, the reference data is assigned to a 3D grid that

covers the complete measured area. Second, based on the grid structure, we can evaluate whether

the current measurements confirm or contradict previous information in the reference database.

5.1.1 Generation of the reference database

Before evaluating the occupancy conflicts between the reference data and the current measure-

ments, we first assign the reference data to a 3D grid that covers the entire measured area. Here,

the grid cells are used not only for searching but also for representing changes, which is different

from the process introduced in Section 2.5. The different function of grid cells is resulted from

the different data acquisition methods. For photogrammetric point clouds, we can generate point

clouds with different densities using different interpolations. 3D points in a small neighborhood

would probably be generated from the same camera rays. Here, two types of 3D grid VP and

VR are utilized for storing indices of camera measurements according to positions of 3D points.

The same as the procedures in Section 2.5, VP presents the index-based rasterization of point

clouds, while VR denotes the grid cells that are traversed by camera rays. The camera rays are

determined by camera positions and the field of view identified by intrinsic parameters. For both

types of grid cells, the index of cameras are stored in the cell. In Fig. 5.3, we illustrate how the

camera indices are stored in grid cells of VP and VR.

5.1.2 Occupancy modelling of 3D space

Similar to the occupancy model of LiDAR rays introduced in Section 2, the state of occupancy

can be represented by a universal set U = {empty, occupied}. The power set 2U of U is given

as the set {∅, {empty}, {occupied}, {empty, occupied}}, which contains all possible state. For the

occluded spaces, since there is no information acquired from these shadowed area, the occupancy

space can be either empty or occupied. Thus, it is actually implicitly modeled as unknown space

represented by the set {empty, occupied}. According to Dempster-Shafer theory (DST), a belief

mass within range [0, 1] is assigned to each element of the power set. In addition, the empty set

∅ has zero mass, and the masses of the remaining set are summed to one:

m : 2U → [0, 1],m(∅) = 0,
∑
A∈2U

m(A) = 1. (5.1)

An assignment that obeys the aforementioned rules is called as “basic belief assignment”. DST

makes use of the mass assignment and sets a range for each state of occupancy. The mass of

each state, m({empty}), m({occupied}), and m({unknown}) are abbreviated as e, o, and u

respectively. As illustrated in Fig. 5.4, the occupancy can be easily modelled as occupied, empty,

and unknown. The space that is traversed by at least one ray that in combination with a ray of a
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Figure 5.3: Storage of camera indices in 3D grids. a) Rays from two camera positions ci and cj intersect
in position pi,j located in the 3D grid cell VP . Corresponding camera indices are stored in the cell, b) rays
from camera positions ci and cj traverse 3D grid cells VR. The same indices are stored in the traversed
grid cells.

second camera led to a 3D point is determined as e = 1, o = 0, u = 0. The space that are occupied

by 3D points can be defined as occupied space, and the belief masses would be e = 0, o = 1, u = 0.

For anywhere else, it would be unknown and the belief masses are e = 0, o = 0, u = 1.

Figure 5.4: Occupancy modelling of stereo vision. We get 3D points on the building element if camera rays
intersect on the surface of the element. The corresponding grid cell is observed as occupied. The space
along the corresponding camera rays is observed as empty.

In case more than two cameras are used for data acquisition, we need to combine the mass

assignment. Assume that k images are acquired from k camera positions and the image sequence

is denoted as Im. For each image pair (Ii, Ij), the belief masses would be (ei,j , oi,j , ui,j) deter-
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mined following the occupancy modelling of stereo vision. Then, the belief masses under k-image

acquisition can be modelled by considering all the possible choices between the image sequence.

First, assume that we now have two image pairs (Ii1, Iji) and (Ii2, Ij2) and the corresponding

belief masses are (ei1,j1, oi1,j1, ui1,j1) and (ei2,j2, oi2,j2, ui2,j2). The combination of belief masses

would be:

e = (ei1,j1 · ei2,j2 + ei1,j1 ·ui2,j2 + ei2,j2 ·ui1,j1) ·
1

C

o = (oi1,j1 · oi2,j2 + oi1,j1 ·ui2,j2 + oi2,j2 ·ui1,j1) ·
1

C

u = (ui1,j1 ·ui2,j2) ·
1

C

, (5.2)

where C = ei1,j1 · oi2,j2 + ei2,j2 · oi1,j1. The operation can be simplified as m = mi1,j1 ⊕ mi1,j2.

Thus, the combination of k images can be obtained by:

m(Ik) = ⊕Il⊂ILmIl (5.3)

where IL denotes the set of image sequence when randomly selecting two images from k images.

Il is one sample of image sequence in the set. The combination of the occupancy images is

commutative and associative. Thus, the order is arbitrary. The corresponding belief masses

under k-image acquisition can be written as (E(Ik), O(Ik), U(Ik)).

5.1.3 Change detection

After generating the reference database and modelling the occupancy, we can decide whether the

new image measurements confirm or contradict the mass assignments based on the former image

measurements. Here, we define two types of conflicts: (i) conflict type A (Fig. 5.5a): 3D point

q appear at empty space defined by former measurement; (ii) conflict type B (Fig. 5.5): camera

rays traverse occupied space in front of q.

For conflict type A, vq ⊂ VR is the grid cell where q is located. Assume that there are camera

rays from two image acquisitions, the mass assignment to the grid cell based on the current

measurement should be (E(I2), O(I2), U(I2)). Let Iq denote the image indices stored in vq, then,

the joint mass resulting from former measurements should be (E(Iq), O(Iq), U(Iq)). Thus, a

measure of conflict can be determined as Cq = E(O(I2)Iq).

Then, we address the other type of conflict. For each grid cell vq ⊂ VP that the camera

rays of new measurements traverse, we retrieve the image indices of former measurements as Ip.

The current measurements are denoted as Iq. Thus, a measure of conflict can be calculated as

Cq = O(Ip)E(Iq). To summarize, conflicts always occur when the space is occupied at one time

epoch but empty at the other one. Thus, the belief mass which denotes whether the space changes

or nor can be determined as:

Conflicting = E(Iq) ·O(Ip) +O(Iq) ·E(Ip)

Consistent = E(Iq) ·E(Ip) +O(Iq) ·O(Ip)

Unknown = U(Iq) · (E(Iq) +O(Ip)) + U(Ip) · (E(Iq) +O(Iq)) + U(Iq) ·U(Ip)

, (5.4)

where Iq and Ip denote the image acquisitions of the current and former measurements, respec-

tively.

In the final results, the occupancy can be classified into three different folds, geometrically

conflicting, geometrically consistent, and geometrically unknown. The geometrically conflicting

parts can be defined as geometric changes.
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Figure 5.5: Conflicts between reference data and current measurements under image acquisition. a) Conflict
type A: 3D point q with the intersection of rays from cq1 and cq2 appear at empty space defined by former
measurements with cameras ci1 and ci2, b) Conflict type B: camera rays traverse occupied space in front
of q obtained based on image acquisition from camera cq1 and cq2.

5.2 Semantics-aided change detection (SACD)

However, geometric changes are not sufficient to present changes of the observed scene. Apart from

geometric changes which can be presented by the changes of occupancy states, semantic changes

also widely appear in the construction progress and are vital for monitoring the construction

process. As illustrated in Fig. 5.6, the images shows that there is no building roof in Fig. 5.6a but

the formwork of the building roof has been finished in Fig. 5.6b. The illustration of corresponding

point clouds is shown in Fig. 5.6c-d. The geometric changes on the top of the building is clearly

illustrated. The corresponding point cloud is shown in Fig. 5.6g-h. For Fig. 5.6e, a formwork

appear in the scene, while the formwork is replaced by a almost finished building wall in Fig. 5.6f.

Although the detailed geometric change between formwork and as-built building structure can

be determined with high-precision data, we detect this type of changes as semantic changes due

to the limitation of data quality and parameter settings, i.e., the grid sizes. Generally, geometric

changes appears when the occupancy of space changes, while the semantic changes occur when

the semantic categories of occupied space changes.

To detect semantic changes, semantic information of gird cells should be considered. In our

method, semantic information can be obtained using the semantic segmentation method presented

in Section 4. Here, GraNet are utilized to obtain semantic labels for each points. The labels are

presented in a soft way, namely soft labels without directly indicating the exact class of objects. It

means that for each grid cell we can obtain a sequence of possibilities which denote the possibilities

that the grid cell belongs to each category. Based on the results of geometric changes in the

former section, the semantics can be further considered. It should be noted that there is no need

to compare semantics when the grid cell has geometric changes. Thus, before considering the

semantic information, grid cells with uncertainties and geometrically changed occupancy status

are filtered out. Only grid cells which are geometrically consistent will be considered for further

semantic comparison.

Since the results of the former semantic segmentation of construction sites are presented with

soft labels, the estimation of confirming and conflicting is also achieved based on the possibilities

of each categories. If the category of the grid cell remains unchanged, the grid cell will be

defined as semantically consistent. Otherwise, although the grid cell is geometrically consistent,
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Figure 5.6: Illustration of different change types. a) Scene section before placing the formwork, b) scene
section corresponding to 5.6a with formwork and iron for a concrete building floor, c) point cloud corre-
sponding to 5.6a, d) point cloud corresponding to 5.6b, e) scene section showing the formwork for a building
wall, f) scene section showing the building wall corresponding to 5.6e, g) point cloud corresponding to 5.6e,
h) point cloud corresponding to 5.6f.

its semantics have changed and this will also be annotated as changes in the final change detection

result.
Consistent =

∑
k

pki · pkj

Conflicting = 1−
∑
k

pki · pkj
, (5.5)

where pki ∈ p1i , p2i , ..., pKi and pkj ∈ p1j , p2j , ..., pKj . K is the number of categories. By considering the

possibilities of semantic changes, the whole change detection process is finished, with four types

of change status: geometrically changed, geometrically and semantically consistent, geometrically

consistent but semantically changed, and uncertain.
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6 Experiments

In this chapter, we will introduce the experiment design, the experiments, including datasets and

preprocessing, and the evaluation metrics for the analysis of experimental results.

6.1 Experiment design

For testing the performance of the methods introduced in Section 3-5, various experiments were

conducted. These experiments can be divided into three major groups.

The first group is the test of the registration methods using several benchmark datasets, in-

cluding three published TLS benchmark datasets, including the Bremen dataset, the large-scale

TLS point clouds registration benchmark (WHU-TLS) dataset [Dong et al., 2020], and the Real-

world Scans with Small Overlap (RESSO) dataset [Chen et al., 2019]. The performance of PBPC

and GRPC were compared with several baseline methods. Since GRPC is a 3D improved solu-

tion for PBPC. Thus, we mainly conducted sensitivity analysis on GRPC, including parameters

involved in the method and some attributes of datasets, such as noise levels and overlapping

ratios between registration pairs. The experiments were implemented using Matlab R2017b and

conducted on a computer with an Intel i7-4710MQ CPU and 16GB RAM.

The second group is the test of the performance of the semantic segmentation methods. Since

the semantic segmentation methods were involved in different practical applications, these pro-

posed methods were tested using different benchmark datasets. The MLCE method was tested on

an ALS dataset (i.e., the DFC2018 dataset). The DPE method was tested on two ALS benchmark

datasets, including the ISPRS benchmark dataset [Cramer, 2010; Rottensteiner et al., 2012], the

ALS dataset of a selected area provided by Actueel Hoogtebestand Nederland (AHN)∗ [Xu et al.,

2014; Vosselman et al., 2017]. The GraNet method was tested on three benchmark datasets,

including the ISPRS benchmark dataset, the Large-scale Aerial LiDAR Dataset for Semantic

Labeling in Dense Urban Areas (LASDU) [Ye et al., 2020], and the Dayton Annotated LiDAR

Earth Scan (DALES) data set [Varney et al., 2020]. Since in the semantic segmentation meth-

ods, both non deep learning methods and deep learning methods were involved, the experiment

environments contained two parts. The non deep learning algorithms were tested using Matlab

R2017b and implemented on a computer with an Intel i7-4710MQ CPU and 16GB RAM. The

deep learning methods were implemented in the framework of Tensorflow and performed on an

NVIDIA TITAN X (Pascal) 12 GB GPU.

The third group is the test of the whole change detection workflow on a construction dataset,

which is a real practical application for monitoring the construction process. The construction

dataset was registered using the proposed registration method (i.e., GRPC). Then, the construc-

tion dataset was using the semantic segmentation method (i.e., GraNet). Finally, based on the

former registration and semantic segmentation results, the changes between datasets of different

∗https://downloads.pdok.nl/ahn3-downloadpage/
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acquisition dates were conducted using the proposed change detection method. The experiments

about change detection was conducted using Matlab R2017b and on a computer with an Intel

i7-4710MQ CPU and 16GB RAM.

The details about experimental datasets and the prepossessing of the datasets will be provided

in the following sections.

6.2 Experiments

We have designed three groups of experiments. The first one is for the test of the registration

methods. The second one is for the test of the semantic segmentation methods. The third one

is for the test of the whole change detection procedure on a construction datasets, including

registration, semantic segmentation, and change detection.

6.2.1 Experiments for registration

Figure 6.1: The Bremen TLS dataset. a) Target and b) source point clouds color-coded with intensities.

In order to test the versatility of the registration methods, three benchmark datasets with

different point densities and different characteristics of scenes were utilized for testing the per-

formance. In this section, we will introduce the test datasets. For evaluating the performance of

PBPC and GRPC, experiments were conducted using three benchmark datasets, and their results

were evaluated and analyzed.

The Bremen dataset

The Bremen dataset is a pair of TLS point clouds from the ThermalMapper project acquired by

the Jacobs University Bremen covering a large urban area (see Fig. 6.1). Table 6.1 shows the

detailed information of the Bremen dataset, including the area size of the observed scene, the

number of points, and the overlap ratios between scans. It should be noted that the target point

cloud serves as a reference and the source point cloud is the one to be registered.

The WHU-TLS dataset

The WHU-TLS dataset is published by Wuhan University, which provides multiview point clouds

with varying point densities acquired from different scenes. We selected three representative

scenes from the WHU-TLS dataset: a subway station, a park, and a cliff of a mountain. As

shown by Fig. 6.2, point clouds acquired from these three different scenes show different geometric

characteristics, which provide us valuable opportunities to test the strength and weakness of the
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Figure 6.2: The WHU-TLS dataset. a) - d) the selected point clouds of the subway station dataset textured
with RGB color, e) - f) the selected point clouds of the park dataset color-coded with intensities, i) - l) the
selected point clouds of the mountain dataset color-coded with heights.

proposed method. Detailed information for the selected point clouds is listed in Table 6.2. For

this multiview dataset, the reference scan for each registration pair is also listed in Table 6.2.

The RESSO dataset

The last one is the RESSO dataset (see Fig. 6.3). For this dataset, we used six TLS point clouds,

which generated five registration test pairs. For each registration pair, Scan 2 is regarded as

the reference scan. The detailed information of these scans is listed in Table 6.3. As shown by

the table, the five pairs have different overlap ratios. By utilizing this dataset, the influence of

different overlap ratios can be tested on GRPC.

Table 6.1: Information of the Bremen TLS dataset.

Parameters Target Source

Area (m2) 451 ×587 585 ×422
Number of points (million points) 15.2 15

Approxi. overlap ratio 0.85
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Table 6.2: Information of the WHU-TLS dataset.

Scene Scan index Area (m2) Number of points (million points)
Approxi. overlap ratio

Reference scan index ratio

Subway

5 73 ×60 41.7 / /
3 111 ×161 39.0 5 0.96
4 203 ×35 39.1 5 0.92
6 67 ×179 40.5 5 0.86

Park

14 461 ×564 3.9 / /
13 600 ×638 3.8 14 0.55
15 526 ×552 4.9 14 0.47
16 434 ×534 4.8 15 0.67

Mountain

4 255 ×277 3.4 / /
2 130 ×331 3.7 3 0.54
3 122 ×346 3.5 4 0.50
5 209 ×329 2.7 4 0.69

Table 6.3: Information of the RESSO TLS dataset.

Parameters Target Source (a) Source (b) Source (c) Source (d) Source (e)

Scan number 2 1 3 5 6 7
Area (m2) 275 ×280 195 ×273 256 ×258 231 ×192 218 ×183 177 ×260

Number of points (million points) 0.82 0.45 0.62 0.78 0.60 0.22
Approxi. overlap ratio / 0.52 0.60 0.48 0.39 0.24

6.2.2 Datasets for semantic segmentation

As mentioned in Section 6.1, the semantic segmentation methods were tested using five benchmark

datasets.

The DFC2018 dataset

The DFC2018 dataset is a classification-related benchmark dataset acquired by the National Cen-

ter for Airborne Laser Mapping using an Optech Titan MW (14SEN/CON340) with an integrated

camera (a LiDAR sensor operating at three different laser wavelengths, namely 1550 nm, 1064

nm, and 532 nm), including 20 land use and land cover categories. Here, experiments are carried

out using LiDAR point clouds collected by laser wavelength 1550 nm. The dataset is illustrated

in Fig. 6.4. For the dataset, we adopted a random sampling strategy to select training and test

samples. We randomly select 500 samples for each class as training samples and the rest of sam-

ples with labels is assigned as test samples. Labels are selected as training, and test samples can

be seen in Fig. 6.4.

The ISPRS benchmark dataset

The ISPRS benchmark dataset was acquired in August 2008 by an airborne Leica ALS50 system

with an average flying height of 500 m and a 45◦ field of view. The point density is approximately

4 points/m2, and there are approximately 753,000 points for training 412,000 for testing. In

this dataset, all LiDAR points contain the x−, y−, z−coordinates in Euclidean space, intensity

values, and the number of returns. These points have been manually assigned to the following nine

classes of different objects: powerline, low vegetation, impervious surfaces, cars, fences/hedges,

roofs, facades, shrubs, and trees. The test areas are located in the city center of Vaihingen,

Germany, where buildings are present in a dense and complex pattern with an area of 389 m ×
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Figure 6.3: The selected scans from the RESSO TLS dataset. a) Target point cloud, b) - f) source point
clouds to be registered. All point clouds are color-coded with heights.
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Figure 6.4: Top view of the DFC2018 dataset. a) Color composite of MS-LiDAR intensity data, b) ground
truth, c) training samples, d) test samples. The map of training samples is dilated for better illustration.
And the black points in classification maps are pixels without projected LiDAR points.

419 m. Moreover, the training area contains mainly residential houses and high-rise buildings

covering an area of 399 m × 421 m. The test and the training areas are illustrated in Fig. 6.5.

Figure 6.5: Top view of the ISPRS benchmark dataset colored by elevations. a) Training area, b) test
area. It should be noted that the scales of two color bars are different.

In order to conduct the training process, we divided the dataset into several point blocks as

illustrated in Fig. 6.6, similar to the strategy used in Li et al. [2020a]. Considering the covering

area of the dataset, the target size for each block in this step was set to be 100 m × 100 m.

The training dataset was then divided into 13 non-overlapped blocks, which consisted of two

blocks for validation and 11 blocks for training. Among these blocks, block 13 and block 4

were selected for validation considering the balance of different categories in the validation data.

Each block was further divided into 25 m × 25 m blocks with a 12.5 m overlap in both x−
and y−directions. Besides, the test dataset was also processed using the same procedure for
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the training and validation datasets. After the two-step subdivision, the uneven densities of the

dataset and each block hold points whose data amount varies from hundreds to ten thousand

points. To meet the requirement for the input for the networks, we randomly sampled points for

each block to generate sub-pointsets for training and test processes. A fixed value of 4096 was

chosen as the size for each sub-pointset. Moreover, each point within the pointset was represented

by a 5D vector considering the provided information that comprises the x−, y−, z−coordinates,

intensities, and return numbers.

Figure 6.6: Illustration of the data division of the ISPRS benchmark dataset. a) The division of the large
training blocks, b) the further subdivision of each training block.

In DPE and GraNet, when constructing a local neighborhood for each point, the number of

neighboring points was all set as 32, the same as the hyperparameter in PointNet++. In the

training process, we used an Adam optimizer with an initial learning rate of 0.001, a momentum

value of 0.9, and a batch size of 4. The learning rate was iteratively reduced based on the current

epoch by the factor of 0.7. Moreover, the training process lasted for 1000 epochs totally, and the

weights were saved if the loss decreased.

The AHN3 ALS dataset

AHN is a digital height map with detailed and precise altitude data for the entire Netherlands; it

additionally provides a high resolution and precise LiDAR database. The AHN data are mainly

used for water management. There are multiple versions of AHN, and the most recent and detailed

one is AHN3. In AHN3, each point has x-, y-, and z- values, and it is classified into the ground

surface, water, buildings, artificial objects, and unclassified (including vegetation). Moreover,

each point contains scanning information similar to that of the Vaihingen dataset such as the

number of returns, intensity, and GPS time. The experimental dataset is a part of the AHN3

dataset, which covers an area of 2km × 2km in the city center of Rotterdam, The Netherlands,
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as illustrated in Fig. 6.7. The data were acquired with the FLI-MAP laser scanning in April

2010. The point density is approximately 10 points/m2. The number of points in the training

area is approximately 19,008,000, and that in the two test areas is approximately 9,860,000 and

7,828,300, respectively.

Figure 6.7: Top view of the selected area in the AHN3 dataset (color coded with heights). Area with
available reference labels is framed. (Red box: test areas, Other: training area).

The LASDU dataset

The LASDU dataset is a part of data obtained in the campaigns from HiWATER (Heihe Water-

shed Allied Telemetry Experimental Research) project [Li et al., 2013]. The study area is located

in the valley along the Heihe River in the northwest of China. The covering study area is nearly

flat, and the average elevation is about 1550 m. The dataset was acquired in July 2012 by a

Leica ALS70 system onboard an aircraft with a flying height of about 1200 m. The average point

density was approximately 3 points/m2, and the vertical accuracy ranges between 5-30 cm. One

part of the dataset was manually labeled, covering an urban area of around 1 km2, with highly

dense residential and industrial buildings. The total number of annotated points is approximately

3.12 million. In the dataset, five categories of urban objects were considered: ground (e.g., ar-

tificial ground, roads, and bare land), buildings, trees (e.g., tall and low trees), low vegetation

(e.g., bushes, grass, and flower beds), artifacts (e.g., walls, fences, light poles, vehicles, and other

artificial objects). The entire labeled point cloud of the investigating area has been divided into

four areas. The numbers of points in these four areas are around 0.77 million, 0.59 million, 1.13

million, and 0.62 million, respectively. In Fig. 6.8, the training and testing datasets are shown,

with the elevation of the study area given. From Fig. 6.8, we can find that the annotated area is

nearly flat, and the maximum difference of elevation is only around 70 m.

Considering that the LASDU dataset has a similar point density to the ISPRS benchmark

dataset, we conducted similar division procedures on the LASDU dataset to generate the data
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for the training and validation process. The whole training data was split into several 100 × 100

large blocks without overlaps. Then, 90% of blocks were used for training, and the other 10%

blocks were treated as validation data. All these blocks were subdivided into 25 × 25 subblocks

with 12.5-m overlaps in both x− and y−directions. Finally, before putting all these small blocks

into the network for the training process, the points were resampled from each point set to meet

the input requirement. The number of points as the input size was set as 4096. Additionally, the

hyperparameters set for the training process was also similar. The batch size, the initial learning

rate, the decay rate, and the max epoch were set to 4, 0.001, 0.7, and 1000, respectively.

Figure 6.8: Top view of the LASDU dataset colored by elevations. a) Training area, b) test area. It should
be noted that the scales of two color bars are different.

The DALES dataset

The DALES dataset is an ALS benchmark dataset with over a half-billion hand-labeled points

spanning 10 km2 of area. DALES is the most extensive publicly available ALS dataset with over

400 times the number of points and six times the resolution of other currently available annotated

aerial point cloud data sets. The average point density was about 50 points/m2. In the dataset,

eight categories of objects are considered: ground, vegetation, cars, trucks, powerlines, poles,

fences, and buildings. The dataset contains 40 tiles in total, with 29 tiles for training and 11

for testing. Each tile covers an area of 0.5 km2 with about ten million points. This data set

gives a critical number of expert verified hand-labeled points for evaluating new 3D deep learning

algorithms, helping to expand the focus of current algorithms to aerial data. In Fig. 6.9, since the

dataset is enormous and it is impossible to show the whole dataset in this paper, two examples

from the test dataset are illustrated.

The DALES dataset is a much larger dataset compared with the former two datasets. Thus,

different division procedures are conducted on the DALES dataset. First, three tiles were selected

from the training tiles as validation data. Then, all tiles were subdivided into 20 m × 20 m

subblocks without overlaps. In order to fulfill the input requirement of the network, the points

of each subblock were resampled to a point set with a size of 8092 points. The batch size was set
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Figure 6.9: Top view of the DALES dataset colored by elevations. a) - b) Two selected tiles from the
testing dataset. It should be noted that the scales of two color bars are different.

to 8. The initial learning rate was set as 0.0005. The decay rate and the max epoch were set to

0.7, and 1000, respectively.

6.2.3 Dataset for change detection

The performance of the change detection method is tested using one photogrammetric point cloud

dataset acquired at a construction site.

The construction site is the Haus für Kinder (HFK), located in Moosach, Munich, Germany,

which is a peripheral construction site with neighboring houses on one side and grassland on the

other. The images are acquired via a UAV platform with the nadir and oblique view directions.

The focal length of the camera is 18 mm and the image size is 6000 × 4000 pixels. Table 6.4

shows the details for the HFK dataset, including acquisition date, area of the scene, number

of points, as well as approximate overlap ratios. In Fig. 6.10, positions and configuration of

images for the HFK dataset, as well as the generated point clouds, are illustrated. It should be

mentioned that the overlap ratio is calculated based on the reference point cloud which is acquired

on the former acquisition date for each dataset. To obtain the semantics of the acquired point

clouds, the dataset was manually labeled to 17 categories, including cranes, structures under

construction (strut const), wooden piles (wood piles), metal pipe piles (metal piles), concrete

blocks (concrete), waster baskets (waste), others, pipe or sticks (pipes), planes or battens (planes),

scaffolds or ladders (scaffolds), formworks, containers or boxes (containers), sheds or tens (sheds),

buildings, naturals, impervious layer (impervious), bare lands. In the semantic segmentation of

the construction dataset, the point clouds acquired on Oct 20, Nov 20, and Dec 12, 2014 were used

for training and the other two point clouds are used for testing. As for the change detection of

point clouds, we evaluate our method on two pairs. The first comparison was conducted between

point clouds acquired on Dec 12, 2014 and Jan 16, 2015. The second one was conducted on point

clouds acquired on Jan 16 and Feb 26, 2015.
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Figure 6.10: Positions and configurations of cameras taken in the construction site HFK. a) Positions of
cameras in HFK on Jan 16, 2015, b) - f) point clouds of HFK acquired on Oct 20, Nov 20 and Dec 12,
2014, and Jan 16, and Feb 26, 2015, respectively.

Table 6.4: Information of the construction dataset.

Acquisition
Size (m2)

Number of points
Approxi. overlap ratio

date (Million points)

2014/10/20 61 ×56 10.2 /
2014/11/20 62×63 25.6 0.09
2014/12/12 105×87 30.1 0.08
2015/01/16 61×56 24.2 0.13
2015/02/26 62×77 34.1 0.31

6.3 Evaluation metric

6.3.1 Evaluation metric of registration

The performance of the registration methods was evaluated from two different aspects. The first

evaluation criterion is registration accuracy. First, ground truth is needed for the evaluation

of registration accuracy. For the Bremen dataset, we manually aligned source and target point

clouds, followed by an ICP refinement as ground truth. As a registration benchmark, the WHU-

TLS dataset and the RESSO dataset provided the accurately aligned source and target scans as

ground truth. Then, the matching was performed between the source and target point clouds.
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The matching results can then be compared with the ground truth. The ground-truth transfor-

mation information of the two construction datasets was calculated based on the ground control

information. The comparison between different algorithms was conducted using the rotation error

er and the translation error et:

∆T = Tg(Tr)
−1 =

[
∆R ∆t

0 1

]
, (6.1)

er = arccos(
tr(∆R)− 1

2
), (6.2)

et = ‖∆t‖, (6.3)

wherein tr( · ) denotes the trace. Furthermore, Tg and Tr represent the transformation matrix of

the ground truth and the estimated one, correspondingly.

The second one is the time performance, which is used to test the efficiency of the proposed

method. In our experiments, the execution time for the whole registration process was recorded.

Additionally, the GRPC method can also achieve an estimation of a seven DoFs transforma-

tion, including scaling and experiments, so evaluating the performance on scaling estimation is

also conducted. The estimation of scaling is evaluated by scaling error:

∆s = |sr
sg
− 1|, (6.4)

where sr and sg are the scaling factor of ground truth and the estimated one, respectively.

6.3.2 Evaluation metric of semantic segmentation

For evaluation of the performance of semantic segmentation, we utilized the following evaluation

metrics: F1 measure (F1), overall accuracy (OA), average accuracy (AA), and average F1 score

(AvgF1). Among them, F1 is specifically used to evaluate the classification performance on every

single class, whereas OA, AA, and AvgF1 score are applied to assess the performance on the

whole test dataset.

6.3.3 Evaluation metric of change detection

In order to evaluate the performance of change detection, ground truth has been generated from

the point clouds which were manually labeled with semantic categories. Precision (pr), recall (r),

and F1 are utilized to evaluate the performance of our method in each category, including changes

and consistency. The overall performance is evaluated using OA and AvgF1.
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7 Results and Analysis

In this chapter, we will provide the qualitative and quantitative results of the proposed algorithms

and methods listed in Chapters 3-5. Based on the results, we will analyze the methods from

different aspects.

7.1 Registration results

7.1.1 Registered multi-station TLS point clouds

Registration results of the Bremen dataset

Experimental results of PBPC and GRPC using the Bremen TLS dataset are listed in Table 7.1.

In the experiment of PBPC, the gridding size was set as 1 m. The maximum iteration number

was set as 1000. The thresholds of the ratio of inliers and for estimating inliers in the RANSAC

process were set to 0.9 and 0.1 respectively. In experiment of GRPC, the voxel size was set to

1 m. The filtering threshold for voxelization and binarization was set to 5.0. As shown in the

table, the rotation error of PBPC is about 0.1 degrees and the translation error is nearly 0.2

m. The rotation error of GRPC was about 0.04 degrees, and the translation error was nearly

0.25 m. In light of the requirement of coarse registration, the two registration method’s results

are satisfactory. Additionally, the processing time was around 1 minute. Fig. 7.1 shows coarse

registration results of the Bremen dataset using GRPC. As illustrated in the figure, the source

point cloud and the target point cloud were well aligned. As illustrated in Fig. 7.2, it can be seen

that the spires of the the Bremen bank and the facades were well matched.

In order to validate the effectiveness and efficiency of the GRPC method, we selected several

baseline methods for comparison, which were the method using FPFH and a RANSAC pro-

cess (FPFHSAC) [Holz et al., 2015], K4PCS, and Voxel-based 4-plane congruent sets (V4PCS)

[Xu et al., 2019a]. FPFASAC is a feature-based method, which combines FPFH features and a

RANSAC process for estimating transformation parameters. K4PCS and V4PCS are both im-

proved strategies in the framework of 4PCS. In K4PCS, keypoints are utilized to replace points

in point clouds to reduce the number of candidates and improve the robustness of selected points.

Differing from 4PCS and K4PCS, V4PCS replaces points by planes as candidates for the congru-

ent pairs. The baseline results of these methods were provided in [Xu et al., 2019a]. As shown in

the table, all registration methods provided acceptable results for a coarse registration. Compared

with these baseline methods, PBPC and GRPC achieved better registration results considering

both rotation and translation errors. Additionally, PBPC and GRPC also showed their supe-

riority in their efficiency. Meanwhile, compared with PBPC, GRPC showed better results with

smaller rotation errors and same level of translation errors. However, PBPC is faster compared

to GRPC.

It should also be noted that since the ground truth was generated by manual alignment

followed by an ICP refinement, we also evaluated the quality of the ground truth by calculating
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Table 7.1: Comparison of four registration methods using the Bremen dataset.

Methods Rot err (degrees) Trans err (m) Time (s)

FPFHSAC [Holz et al., 2015] 0.3601 0.0692 318
K4PCS [Theiler et al., 2014] 0.3682 0.4826 256

V4PCS [Xu et al., 2019a] 0.1916 0.6312 78
PBPC 0.1010 0.2181 57
GRPC 0.0453 0.2436 67

Figure 7.1: Registration result of the Bremen dataset using GRPC. a) Source and target point clouds
shown in the same coordinate frame, b) aligned source and target point clouds.

Figure 7.2: Details of the registration result of the Bremen dataset using GRPC. a) - b) Scene sections of
the registered point clouds.

the residual distances between corresponding points between the aligned source using GRPC

and target point clouds. In Fig. 7.3, the histograms of residual distances between corresponding

points in the alignment results using the given ground truth and the aligned source scans using

our method are shown. It can be seen that regarding the residual distances, the GRPC method

provides better alignment results compared with ground truth created by manual alignment, with

smaller mean residual distances and lower standard deviations being obtained.

Results of the WHU-TLS dataset

To further evaluate the versatility of the GRPC method to different scenes, three different scenes

were selected from the WHU-TLS dataset for testing, including both regular-shaped areas (i.e.,

urban areas) and irregular-shaped areas (i.e., mountain cliffs). Since multiple scans were acquired

for each scene, four scans were selected for testing, and each scan was matched to the corresponding

reference scan. The voxel sizes used for registering point clouds of the scenes of the subway, the
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Figure 7.3: Histogram of residual distances between corresponding points in Bremen dataset between a)
ground truth and the align source scan and between b) target and the align source scans.

park, and the mountain were 1.0 m, 1.5 m, and 1.0 m, respectively. Additionally, the filtering

thresholds for voxelization and binarization were set to 3.0, 5.0, and 2.0. Table 7.2 lists the

registration results of the GRPC method and the baseline results using Hierarchical merging-

based multiview registration (HMMR) [Dong et al., 2018] provided by the publisher of the WHU-

TLS dataset. The baseline method is also a hybrid method combining both global (for initial

orientation) and local features (for fine registration) [Dong et al., 2020]. As shown in Table 7.2,

for the scene of the subway, the rotation errors of the GRPC method were less than 0.2 degrees,

and the translation errors were less than 0.6 m. Meanwhile, the processing time was less than

two minutes. Compared with the baseline method, GRPC provided better registration outputs

in several cases (i.e., the matching between Scans 5 and 3 and Scans 5 and 6), with better results

achieved in both rotations and translations.

Table 7.2: Performance comparison of the GRPC method and the baseline using the WHU-TLS dataset.

Scene
Registration pair Baseline [Dong et al., 2018] Our GRPC

(Target & Source) Rot err (degrees) Trans err (m) Rot err (degrees) Trans err (m) Time (s)

Subway
5 & 3 Failed 0.0490 0.4848 65
5 & 4 0.0722 0.7025 0.1841 0.2125 120
5 & 6 0.0931 1.0286 0.0692 0.5493 93

Park
14 & 13 0.0864 0.0438 0.0795 0.4059 158
14 & 15 0.0572 0.0358 0.0646 0.3202 137
15 & 16 0.0256 0.0112 0.0862 0.7704 135

Mountain
3 & 2 0.0495 0.0180 0.2338 0.4010 79
4 & 3 0.0422 0.0090 0.1827 0.2946 74
4 & 5 11.1691 7.9453 0.1332 0.3263 69

For the scene of the park, the GRPC method achieved less than 0.1 degrees rotation errors,

which was the same level as the results provided by the baseline method. However, GRPC’s

translation errors were larger than 0.3 m, while the baseline method can provide translation

errors at a centimeter-level. Compared with the first scene, the processing time is longer, about

two and a half minutes. For the scene of the mountain, GRPC provided results about a rotation

error of around 0.2 degrees and a translation error of about 0.3 m. In general, compared with the

GRPC method, baseline [Dong et al., 2018] achieved better results in most cases with rotation

errors less than 0.1 degrees and most of the translation errors in centimeter-level, which may

benefit from the iterative optimization procedure. However, it also failed in some cases, namely,

the matching of Scans 4 and 5 of the mountain scene when details of scans changed in a broad

range. It shows that one advantage of the GRPC method is that it runs stable under different
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situations in various registration datasets. Additionally, the GRPC method is efficient concerning

the processing time. Fig. 7.4 depicts the registration results of multiple scans in different scenes

from the WHU-TLS dataset. The reference scans for the multiscan registration in the scene of the

subway, the park, and the mountain were Scan 5, Scan 14, and Scan 4, respectively. As illustrated

in the figure, it can be observed that walls, buildings in the park, and the mountain’s valley were

well aligned.

Figure 7.4: Registration results of the WHU-TLS dataset using GRPC, with color representing different
scans. a) - c) Source and target point clouds shown in the same coordinate frame, d) - f) aligned source
and target point clouds.

Results of the RESSO dataset

Apart from the Bremen-TLS and WHU-TLS datasets, we further tested the GRPC method using

another benchmark dataset, namely the Resso dataset. In the experiments, the voxel size was set

to 1.0 m. The filtering threshold for voxelization and binarization was set to 3.0. In Table 7.3, it

can be seen that the rotation errors were all smaller than 0.3 degrees, and the translation errors

were less than 0.6 m. Besides, the processing is comparatively fast, with processing time less than

50 s. The registration results of the baseline method, Plane-based descriptor (PLADE) [Chen
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et al., 2019], provided by the data publisher, are also given in Table 7.3. In PLADE, a plane and

line-based descriptor are utilized to establish correspondences between point clouds. It can be

seen that the GRPC method always performed better in estimating rotations. However, as for

the estimation of translations, GRPC and PLADE achieved almost the same level results.

Table 7.3: Performance comparison of the GRPC method and the baseline using the Resso dataset.

Scene
Registration pair Baseline [Chen et al., 2019] Our GRPC

(Target & Source) Rot err (degrees) Trans err (m) Rot err (degrees) Trans err (m) Time (s)

7a

2 & 1 0.3265 0.2082 0.2650 0.5610 45
2 & 3 0.0810 0.0854 0.0727 0.3075 46
2 & 5 0.4475 0.3626 0.1951 0.4000 43
2 & 6 0.5060 0.5741 0.0485 0.2909 48
2 & 7 0.2497 0.4057 0.2844 0.2391 44

Figure 7.5: Registration results of the Resso dataset using GRPC, with color representing different scans.
(a) Source and target point clouds shown in the same coordinate frame. (b) Aligned source and target
point clouds.

The visualized results of the registration of the selected scene in the Resso dataset are shown in

Fig. 7.5. It can be observed that the spires, palm trees, and walls of buildings were well matched.

7.1.2 Registered multi-temporal construction dataset

Fig. 7.6 presents the registration results of the multitemporal dataset acquired on the HFK

construction sites achieved by the GRPC method. As shown in the figure, we can see that the

point cloud sequence is well united to the same reference system from different views. Table 7.4

provides the quantitative results for the registration of the point cloud sequence. We can achieve

registration of all source point clouds using the GRPC method, with satisfactory results. The

rotation errors are all smaller than 0.4 degrees, and the translation errors are less than 0.2 m.

By comparing the multitemporal dataset, we can further detect changes during the construction

process. However, we register all the other point clouds sequentially referencing to the point

cloud acquired on the last acquisition time. When the time sequence is long, the registration will

produce high translation or rotation errors or even fail since the errors are accumulated during the

sequential process. Therefore, in the practical cases, the registration of sequential point clouds

can be conducted in some ways to eliminate the accumulating effect, i.e., registration of point

clouds in a closed loop and eliminating closure errors.
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Table 7.4: Registration results of the construction dataset using GRPC.

Acquisition date Rotation error (degrees) Translation error (m)

2014/11/20 0.3201 0.0172
2014/12/12 0.2549 0.1872
2015/01/16 0.1067 0.0328
2015/02/26 0.2385 0.1507

Figure 7.6: Registration results using the construction dataset using GRPC. a) - b) Points clouds before
and after registration from oblique view, c) - d) points clouds before and after registration from top view,
e) - f) are points clouds before and after registration from side view.

7.1.3 Sensitivity analysis

Performance under different data properties

Three benchmark datasets for point cloud registration were tested in the experiments, including

different point densities, different coverage areas, and different scenes. In Fig. 7.7, mean values

and standard deviations of the residual distances between corresponding points in the aligned
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results are shown, in which both ground truth and aligned source scans using the GRPC method

were used as references.

Figure 7.7: Mean values and standard deviation of residual distances between corresponding points in all
pairs of scans between a) ground truth and the align source scan and between b) target and the align
source scans.

For most registration pairs, the mean values and standard deviations of residual distances

in results using the GRPC method were close to those using ground truth. It means that the

GRPC method can provide acceptable results under different evaluation criteria, even employing

checking point-by-point details. Additionally, we selected several representative registration pairs

and illustrate the distribution of registration errors in Fig. 7.8. As shown in the figure, for most

registration pairs, the distance errors were less than 0.25 m. By comparing different registration

pairs, it can be seen that although the geometric characteristics of the acquired scene changes

and data property changes, the GRPC method can produce nearly equal and high quality of

registration.

Influence of voxelization resolutions

The resolution of voxels is a significant factor influencing the result of registration. The resolution

represents the geometric size of each voxel used in the step of voxelization and binarization. In

the experiments, two registration pairs were selected from the aforementioned tested datasets.

The first one is the pair of Scans 2 and 3 from the Resso dataset, which serves as a representative

of regular-shaped areas. The other one is the pair of Scans 3 and 2 from the scene of a mountain
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Figure 7.8: Selected registered results colored by the residual distances between corresponding points,
where the gray points represent the non-overlap areas. Point distances between ground truth and the align
source scan in a) Bremen, c) WHU-TLS subway, e) WHU-TLS mountain, and g) Resso. Point distances
between target and the aligned source scans in b) Bremen, d) WHU-TLS subway, f) WHU-TLS mountain,
and h) Resso.

cliff in the WHU-TLS dataset, which stands for a representative of irregular-shaped areas. In the

experiments, the sizes of voxels are set to 1.0 m, 2.0 m, and 3.0 m. In Fig. 7.9, the registration

results using the GRPC method, including rotation errors, translation errors, and processing time,

are provided.

As we can predict, when the voxel size gets larger, the execution time will decrease. The

results perfectly proved this assumption. For both datasets, the processing time experienced a

remarkable drop along with the increment of voxel resolution. On the other hand, it is also

noticeable that both rotation errors and translation errors for the two datasets showed drastic

improvements. For the Resso dataset, the rotation errors increased from less than 0.1 degrees to

0.7 degrees, and the translation errors rose from 0.3 m to larger than 1 m. For the WHU-TLS

mountain dataset, the rotation errors increased from 0.2 degrees to about 0.8 degrees, while the



7.1. Registration results 109

Figure 7.9: Sensitivity analysis of GRPC on voxel resolutions. a) Results using the Resso dataset, b)
results using the WHU-TLS mountain dataset.

translation errors expanded from 0.4 m to almost 2.8 m. It can be seen that no matter for regular-

shaped areas or irregular-shaped areas, the voxel resolution is an essential factor that influences

registration results. One reason may be that the voxel size actually defines the sampling rate in

the process of voxelization. When the voxel size is large, a sparse sampling is conducted on point

clouds, which leads to strong aliasing effect.

Influence of scaling changes

All tested datasets we used in the experiments provide no scaling changes. To investigate the

effectiveness of the scaling estimation and the influence on the estimation of other transformation

parameters, we generated several simulated registration pairs of point clouds with scaling changes

by zooming out the source point cloud. We selected the pair of Scans 2 and 3 from the Resso

dataset and the pair of Scans 3 and 2 from the WHU-TLS mountain dataset as registration

pairs for testing. The source scans, namely Scan 3 from the Resso dataset and Scan 2 from the

mountain dataset, were zoomed out with various scaling factors. The target scans remained no

changes. As illustrated in Fig. 7.10, it is clear that when the scale difference gets larger, the

registration accuracies decrease with larger rotation, translation, and scaling errors no matter for

regular-shaped areas and irregular-shaped areas. It could be explained that when the point cloud

is zoomed out with a large scale factor, the aliasing effect will be caused by a relatively sparse

sampling process on the point cloud.

Figure 7.10: Sensitivity analysis of GRPC on changes of scale. a) Results using Resso dataset, b) results
using WHU-TLS mountain dataset.

Additionally, as shown in the figure, the influences of scaling changes on rotation errors and

translation errors are almost with the same trend except for some individual cases. Since point

clouds have been zoomed to approximately the same scale after scaling, the accuracy of estimated
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translations will not be influenced by the aliasing effect caused by a sampling process but merely

influenced by errors in the estimation of scaling and rotations.

Influence of signal-to-noise ratios

Figure 7.11: Rotation and translation errors with different noise ratios and noise levels using GRPC. a) -
b) Results using the Resso dataset, c) - d) results using WHU-TLS mountain dataset.

To validate the robustness of the GRPC method, we conducted further experiments, which

added noises to the original point clouds. In experiments, we selected two registration pairs from

the aforementioned datasets. One pair is Scans 2 and 3 from the Resso dataset, and another

pair is Scans 3 and 2 from the WHU-TLS mountain dataset. Meanwhile, Gaussian noises with

different noise ratios and different noise levels were added to corresponding point clouds. It should

be noted that noise ratio means the proportion of points that are changed to noise, while the noise

level means the amplitude of the added noise. Thus, the influence of noise on regular-shaped and

irregular-shaped datasets can also be investigated. The voxel size and the filtering threshold for

voxelization and binarization were set as 1.0 m and 3.0. As shown in Fig. 7.11, the registration

accuracies vary in a small range with changes in noise ratios and noise levels. It demonstrates

the robustness of the GRPC method and proves that GRPC can still be effective in a highly

noisy situation. Comparatively, the registration of the mountain dataset is more sensitive to the

influence of noise, with higher translation errors gained. However, for the mountain dataset, the

estimation of rotations seems to be more stable under the changes of both noise ratios and noise

levels.

Influence of overlapping ratios

In the real world, occasionally, it is unpredictable for a pair of scans to have varying overlap ratios,

which is challenging work for point cloud registration. Thus, we also investigated the influence

of overlap ratios on registration results using the GRPC method. As depicted in Table 6.3, the

dataset provides several scans with different overlap ratios varying from 0.60 to 0.24, but with

the same data quality. The voxel sizes were all set to 1.0 m, and the filtering thresholds were
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set to 3.0, as mentioned in Section 7.1.1. In Fig. 7.12, overlap ratios, and their corresponding

rotation and translation errors are shown. As illustrated in Fig. 7.12, the registration results are

not directly positively influenced by overlap ratios. When the overlap ratio dropped from 0.52 to

0.24, the registration accuracy was still acceptable with a rotation error by about 0.3 degrees and

a translation error by 0.25 m. Generally, it shows that GRPC is kind of robust to the variations

of overlap ratios.

Figure 7.12: The rotation and translation errors of the registration results using the Resso dataset with
different overlap ratios.

7.2 Semantic segmentation results

7.2.1 Semantically segmented urban scenes using MLCE

The performance of MLCE was tested on the 2018 GRSS DFC LiDAR dataset. We compare

the classification results on multi-scale features with that of a single-scale neighborhood, and the

classification results on dimensionality-reduced data using LPP with those using some benchmark

DR methods (PCA and LDA) and original geometric features (OGF). Since our main focus is to

assess the discriminative performance of the learned geometric features, we, therefore, use a classic

classifier, namely random forest whose number of trees is selected to be 100 by cross-validation.

Moreover, ten replications were performed for selecting training and test samples.

Performance comparison and analysis between multi-scale feature extraction and

single scale feature extraction

The representation of the neighborhood of points is a crucial issue directly influencing classification

performance. Thus, the neighborhood for each point is of great significance. Table 7.5 shows the

classification accuracy obtained by using different neighborhood scales for feature extraction.

The multi-scale feature extraction outperforms the other two feature extraction methods.

Compared to the single scale and dual scale, multi-scale feature extraction increases OA by 4.52%

and 0.96%, respectively. As for AA, on the other hand, the corresponding increase is, 7.14%

and 1.52% respectively. Overall, with the increase of scales of neighborhoods, the performance

of classification also increases. It means that multi-scale features provide a more distinctive

representation of local context.

Performance comparison and analysis between LPP and classical DR methods

Table 7.6 lists the OA and AA of four different methods with optimal parameters determined by

cross-validation on the training set.
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Table 7.5: Comparison of different feature extraction methods using the DFC2018 dataset (All values are
in %). Noted that the highest values in OA and AA are marked with bold texts.

Method Neighborhood size OA AA

Single-scale k1=10 74.98 60.70
Dual-scale k1=10, k2=20 78.54 66.32
Multi-scale k1=10, k2=20, k3=30 79.50 67.84

Table 7.6: Comparison of different dimensionality reduction methods using optimal parameters with the
RF classifier on the DFC2018 dataset (All values are in %). Noted that the highest values in OA and AA
are marked with bold texts.

Method Neighborhood size OA AA Running time (s)

OGF / 79.50 67.84 /
PCA d = 10 80.32 67.62 0.09
LDA d = 19 70.71 56.36 0.15
LPP d = 4, k = 15 86.66 77.62 1.78

The LML method outperforms other methods. Compared to OGF, PCA, and LDA, LPP

increases OA by 7.16%, 6.34%, and 15.95%, respectively. For the AA, on the other hand, the

corresponding increase is 9.78%, 10%, and 21.26%, respectively. The classification maps are shown

in Fig. 7.13. These results demonstrate the effectiveness of this LML method and imply that it

successfully contributes to extracting robust and discriminative low-dimensional features.

Moreover, we also provided the classification results with the MLCE method on the test scene

given in the DFC2018 dataset, yielding an OA of 40%. To our knowledge, the resulting accuracy

is reasonable to a large extent, since our task is point cloud classification without considering

intensities.

Figure 7.13: Classification maps of different algorithms obtained using the RF classifier on the DFC2018
dataset. a) Classification result uisng OGF, b) classification result using PCA, c) classification result using
LDA, d) classification result using LPP.

Sensitivity analysis of parameters in low-dimensional embedding

The sensitivity of parameters is tested by varying the number of neighbors k, the size of reduced

dimensionality d and the variance of Gaussian kernel in weight determination σ for LPP. As
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Figure 7.14: Sensitivity analysis of MLCE on three parameters: a) reduced dimensionality, b) number of
neighbors, c) variance of Gaussian kernel.

shown in Fig. 7.14, the performance of LPP is some kind of sensitive to the parameters. In

general, from the perspective of reduced dimensionality, the classification accuracy increases when

decreasing dimensionality. When the reduced dimensionality reaches approximately four, the

accuracy reaches the nearly optimal level. Compared with reduced dimensionality, LPP is much

less sensitive to the other two parameters, namely the number of neighbors and the variance

of the Gaussian kernel. When the number of neighbors gradually increases, the corresponding

classification accuracy increases moderately to a peak (e.g., k is equal to around 15) and then

fluctuates. A large number of neighbors may obscure the local structure, whereas a small number

of neighbors may be not sufficient to represent the local structure, causing the fluctuation of the

performance of LPP. The accuracy reaches a peak when the variance of the Gaussian function

in weight determination is 5.0. Thus we can determine the optimal parameters for LPP in the

application of classifying the DFC2018 dataset for reduced dimensionality, number of neighbors,

and the variance of Gaussian function to be 4, 15, and 0.5.

7.2.2 Semantically segmented urban scenes using DPE

The performance of the DPE method was tested on two benchmark datasets, including the ISPRS

benchmark dataset and the AHN3 dataset. We also conducted ablation study on the DPE method

to test the effectiveness of each module in the DPE method using the two datasets. In addition,

the sensitivity of parameters were tested using the ISPRS benchmark dataset.

Classification results of the ISPRS benchmark dataset

To test the performance of the DPE method, we conducted comparisons between the results

with the following conditions: (i) using original single-scale deep features (SDF) with original

PointNet++, (ii) using multi-scale deep features (MDF) with the RF classifier, and (iii) using

the embedded features obtained using JME with the RF classifier. Furthermore, to evaluate the

performance of the feature dimensionality reduction in addition to the DPE method, we imple-

mented several classic dimensionality reduction methods to provide fair comparison; with such a

comparison, we can investigate the effectiveness of JME. Moreover, to validate the feasibility of

GGO used for smoothing the classification results, we conducted comparisons between the results

with and without GGO. Both quantitative and qualitative results prove the effectiveness of the

DPE. More specifically, we finally achieved an OA of 83.2% for labeling the nine classes.

Comparison between SDF and MDF
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For the point-based deep neural network, the sampling of point clouds in large urban scenes is

an important issue that directly affects the classification results. To validate the performance of

our MDF, we compared the results obtained by extracting deep features using HDL (i.e., MDF)

to those by extracting features directly from the original PointNet++ (i.e., SDF). Here, Table 7.7

lists the classification results of SDF and MDF with the RF classifier. In experiments, the numbers

of trees used in the RF classifier were set to 100 and 200, respectively. Concerning OA, MDF

Table 7.7: Comparison of different feature learning methods using the ISPRS benchmark dataset (All
values are in %). Noted that the highest values in OA, AvgF1, and F1 for each category are marked with
bold texts.

Methods power low veg imp surf car fence hedge roof fac shrub tree OA AvgF1 Time

SDF 58.5 81.4 98.1 55.3 19.2 86.9 41.0 33.2 71.2 79.1 60.5 /
MDF 64.2 85.1 99.2 68.9 19.2 88.2 36.5 37.7 69.2 81.2 63.1 1h17m30s
JME 66.1 86.4 99.4 74.1 20.5 90.9 41.9 39.2 72.2 83.0 65.6 39m12s+20m27s

Figure 7.15: Classification results of test area 1. a) Ground truth, b) the classification result with SDF,
c) the classification result with MDF, d) the classification result with JME, e) the smoothed classification
result with GGO.

can largely improve the performance of classification with a 2.1% increment in OA. Additionally,

an increase of 2.6% is seen in AvgF1. Meanwhile, the classification accuracy show improvement
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for a majority of the classes. The F1 of powerline, low vegetation, impervious surface, car, roof,

and shrub show considerable increase by 5.7%, 3.7%, 1.1%, 13.6%, 1.3%, and 4.5%, respectively.

This indicates that the HDL strategy can produce higher classification accuracy, especially for

the classification of small objects such as cars and pole-like objects (e.g., parts of powerlines).

This can be attributed to the reason that the induction of multi-scale contextual information can

provide better representation for such small objects, especially in improving object integrity. The

visualization of the classification results is presented in Fig. 7.15 and Fig. 7.16. Here, PointNet++

provides a good initial result, which indicates the efficacy of the deep neural network in providing

informative features. Moreover, through the utilization of the hierarchical subdivision strategy,

some wrongly classified areas can be corrected.

Figure 7.16: Classification results of test area 2. a) Ground truth, b) the classification result with SDF,
c) the classification result with MDF, d) the classification result with JME, e) the smoothed classification
result with GGO.

Effectiveness of feature embedding with JME

Regarding the embedding process on the obtained MDF, to determine the effectiveness of the

JME method, the original MDF and the embedded features testing with the same classifier (i.e.,

RF) were compared. The 384-dimensional deep features were embedded into a 50-dimensional

feature vector. The results of the comparison are listed in Table 7.7. Compared to the classification

results using MDF, JME achieves an increment of 1.8% and 2.5% for OA and AvgF1, respectively.

Regarding the classification accuracy of each class, all F1 values show improvement with the

embedding process, especially for cars and facades that show improvement of more than 5%.

These results indicate that the JME method has proved to be effective for the classification task.

More specifically, the features embedded with JME can provide improved classification results

compared to either MDF or SDF with the integration of contextual information in both the

feature and the spatial domains. Furthermore, the processing time in the classification step of

MDF and JME is provided. It should be noted that the time provided for MDF comprises two
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Figure 7.17: Details of classification results of the ISPRS benchmark dataset for comparison. a) - b)
Ground truth, c) - d) the classification result with SDF, e) - f) the classification result with MDF, g) - h)
the classification result with JME, i) - j) the smoothed classification result with GGO.

Table 7.8: Comparison of existing feature dimensionality reduction methods (All values are in %). Noted
that the highest values in OA, AvgF1, and F1 for each category are marked with bold texts.

Methods Optimal parameters power low veg imp surf car fence hedge roof fac shrub tree OA AvgF1

PCA d=10 0.0 33.7 50.5 3.1 0.1 59.7 4.1 2.3 38.4 43.7 21.3
LLE d=30, k=10 33.4 85.1 98.9 65.9 15.2 89.1 35.6 41.0 72.3 81.6 59.6
SE d=30, k=10 0.0 83.2 94.0 71.7 0.0 85.3 0.0 32.1 72.4 79.7 48.8

LPP d=15, k=30 50.4 79.7 95.8 46.7 16.2 84.3 39.9 30.3 69.3 77.2 56.9
1D-NN / 66.9 85.8 99.4 73.3 12.5 90.3 40.5 39.8 71.6 82.4 64.4
JME d=50, k=5 66.1 86.4 99.4 74.1 20.5 90.9 41.9 39.2 72.2 83.0 65.6

parts: the time required for feature dimensionality reduction and for classification. It is evident

that the application of JME largely reduces the processing time spent on classification. A detailed

visualization of the performance using the embedded features is illustrated in Fig. 7.17. It can be

seen from the figure that some small wrongly labeled areas such as the boundaries of buildings

adjacent to trees can be corrected. Furthermore, the “salt and pepper” effect in the classification

map is considerably eliminated compared to the classification map of MDF, which corroborates

the effectiveness of embedding contextual information in producing smoother results.

Comparison with other dimensionality reduction methods

To further demonstrate the strength of the integration of spatial information in JME, we

compared it with other commonly utilized dimensionality reduction methods such as PCA, LLE,

spectral embedding (SE) [Belkin & Niyogi, 2003], and LPP. Apart from the aforementioned

commonly-used dimensionality reduction methods, we constructed a simple 1D neural network

(1D-NN) for dimensionality reduction. It is composed of a fully connected layer that reduces the

feature dimensionality to 64, a fully connected layer, and a softmax layer for classification. The

classification results are presented in Table 7.8. JME increases OA by 39.3%, 1.4%, 3.3%, 5.8%,

and 0.6% compared to PCA, LLE, SE, LLP, and 1D-NN, respectively. Besides, the corresponding

increases on the AvgF1 are 44.3%, 6.0%, 16.8%, 8.7%, and 1.2%, respectively. These results imply

the efficacy of the manifold learning method-JME, as the accuracies of JME outputs are higher

than those gained by means without using manifold learning. Additionally, comparison between
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these manifold learning-based methods indicates that JME can provide a more discriminative

feature representation with lower dimensionality. Especially, compared to the results of LLE,

JME achieves remarkable improvement through approximately a 6% increment in AvgF1. The

joint learning method shows improvement on the LLE by incorporating contextual information

in the spatial domain. Moreover, the joint learning method provides improved performance when

compared to the 1D-NN, which proves the efficacy of this method.

Effectiveness of labeling smoothing using GGO

To evaluate the usefulness of smoothing, we tested a graph-based regularization for obtaining

optimal global results. Here, the regularization strength was set to 1.0. The initial and optimized

classification results are presented as a comparison in Table 7.9. It can be seen that the imple-

mentation of GGO improves the OA and the AvgF1 by 0.2% and 0.6%, respectively. Although

the overall performance does not show remarkable improvements, the influence of GGO is clear in

some specific classes such as powerlines, facades, and cars. In Fig. 7.17, the detailed visual illus-

tration indicates an improvement in both smoothness and classification performance with global

contextual information. As aforementioned, through a powerful feature representation method,

most areas in the urban scenes such as roofs and high vegetation are correctly labeled. Most pow-

erlines, whose density is relatively sparse, are labeled correctly as well. A small amount of noise

(i.e., wrongly labeled points) still presents in the classification results. In the results of GGO, the

wrongly labeled points can be corrected based on the contextual information. However, although

the use of the optimization procedure corrected the labels of those wrongly classified points, the

change in the statistic of the classification accuracies seems not apparent. One possible explana-

tion is that our feature engineering strategy has already provided contextual properties with high

quality, especially the implementation of the multi-scale strategy. Thus, the initial classification

output is already of high accuracy, so that the graph-based optimization can merely serve as a

smoothing.

Table 7.9: Comparison between initial and smoothed classification results using the ISPRS benchmark
dataset (All values are in %). Noted that the highest values in OA, AvgF1, and F1 for each category are
marked with bold texts.

Methods power low veg imp surf car fence hedge roof fac shrub tree OA AvgF1

Initial 66.1 86.4 99.4 74.1 20.5 90.9 41.9 39.2 72.2 83.0 65.6
Smoothed 68.1 86.5 99.3 75.2 19.5 91.1 44.2 39.4 72.6 83.2 66.2

Classification results of the AHN3 dataset

In addition to the ISPRS benchmark dataset, we obtained the point-wise classification results

using the AHN3 dataset to further investigate the versatility of the DPE method on a large-scale

ALS point cloud dataset. The results are listed Tables 7.10 and 7.11 and Figs. 7.18 and 7.19.

For the part of deep feature extraction, hyperparameters of the training process are the same

as the setting given in the description of the processing of the ISPRS benchmark dataset. For the

feature embedding part, the 384-dimensional deep features were embedded into a 30-dimensional

feature vector with the neighborhood size set as 20. The number of trees used in the RF classifier

is 100. As for the graph-based optimization, the regularization strength is set as 1.0.

As seen in Table 7.10, JME outperforms the other feature extraction methods with the AHN3

dataset. Compared to the baseline provided by PointNet++, after the hierarchical subdivision

process and the embedding of deep features, the OA and the AvgF1 are incremented by 5.1% and

8.2%, respectively. Effectiveness of JME in providing a good representation of deep features is
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Table 7.10: Comparison of different feature learning methods using the AHN3 dataset (All values are in
%). Noted that the highest values in OA, AvgF1, and F1 for each category are marked with bold texts.

Methods Ground surfaces Buildings Water Artificial objects Other OA AvgF1

SDF 90.6 85.8 78.9 34.3 84.0 86.0 74.7
MDF 93.2 87.5 93.3 41.8 86.0 89.8 80.4
JME 94.2 89.1 95.3 49.1 86.9 91.1 82.9

Table 7.11: Comparison between the initial and smoothed classification results using AHN3 dataset (All
values are in %). Noted that the highest values in OA, AvgF1, and F1 for each category are marked with
bold texts.

Methods Ground surfaces Buildings Water Artificial objects Other OA AvgF1

Initial 94.2 89.1 95.3 49.1 86.9 91.1 82.9
Smoothed 94.1 89.8 96.3 52.2 86.2 91.2 83.7

Figure 7.18: Classification results of the AHN3 dataset. a) - b) Ground truth of test areas, c) - d)
classification results with SDF, e) - f) classification results with MDF, g) - h) classification results with
JME, i) - j) the smoothed classification results.

clearly demonstrated by the results. Additionally, as seen in Fig. 7.18, with the embedded features,

most areas of our interest such as buildings, ground surfaces, and water can be correctly classified.

Compared to the results with PointNet++ that are denoted as SDF, some large uncorrected
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Figure 7.19: Details of the classification results with the AHN3 dataset for comparison. a) - b) Ground
truth of test areas, c) - d) classification results with SDF, e) - f) classification results with MDF, g) - h)
classification results with JME, i) - j) the smoothed classification results.

labeled areas can be refined with MDF; this is obvious for some areas covered by water. The

classification maps shown in Fig. 7.18 and details shown in Fig. 7.19 indicate the remarkable

improvement with the utilization of feature embedding.

Regarding the classification results after labeling smoothing, although the improvement is not

significant compared to that provided by the feature engineering part, the AvgF1 still increases

by 0.8% as shown in Table 7.11.

Sensitivity analysis of parameters in DPE

Influence of different hyperparameters on embedding performance

To effectively obtain optimal feature representation, high-dimensional features are embedded

into a reduced dimensional feature space by using JME; however, the performance of JME is highly

dependent on certain hyperparameters. To investigate the influence of the hyperparameters on

the embedding performance, we assessed the sensitivity of these parameters by altering their

values in reasonable ranges. Two key parameters, number of neighbors and dimensionality, were

tested in the experiments.

As seen in Fig. 7.20, the sensitivity of these parameters on the performance of JME is evident

to some extent. Generally, the performance of JME improves with increasing dimensionality

at an early stage. Then, the classification accuracy reaches the peak when the dimensionality

is approximately 50. Furthermore, classification results remain almost stable when the reduced

dimensionality continues to increase; this can be explained as: the 50-dimensionality embedded

features are sufficient to provide a satisfying representation of the classification task. It should be

noted that owing to the biased distribution of different classes in the test areas, the improvement

of classification accuracy can be better presented by the AvgF1 score. By contrast to the case

of the parameter, reduced dimensionality, JME seems to be more stable in facing the variation

of the other parameter, the number of selected neighbors. As seen in Fig. 7.20, the classification

accuracy decreases with a very small margin when the number of neighbors increases. This can be



120 7. Results and Analysis

Figure 7.20: Sensitivity analysis of JME on two hyperparameters: a) reduced dimensionality, b) number
of neighbors.

attributed to the reason that the local data structure may be concealed by a large neighborhood.

In typical cases, the optimal number of neighbors is neither too large nor too small because the

local data structure cannot be efficiently represented by a small number of neighbors. However,

in our case, the results reach a peak at an early stage. The application of the k-clustering strategy

in the embedding process may be the reason for the same. The optimal parameter values utilized

in the classification of the ISPRS benchmark dataset were determined to be 50 and 5 for the

dimensionality and the number of neighbors, respectively.

Effect of regularization strength on the performance of GGO

GGO is achieved by minimizing the cost function that is a weighted sum of a local smoothness

term and a fidelity term. We tested different values for the regularization strength. As shown in

Fig. 7.21, generally, the regularization strength slightly affects the classification accuracies, and its

effect on AvgF1 is more pronounced than that on OA. Furthermore, the classification accuracies

including both OA and AvgF1 reach their best values when the regularization strength is set to

1.0.

7.2.3 Semantically segmented urban scenes using GraNet

The performance of GraNet was tested on three benchmark dataset, consisting of the ISPRS

benchmark dataset, the LASDU dataset, and the DALES dataset. The ablation study was con-

ducted on the GraNet. Moreover, the result of GraNet is compared with start-of-the-art methods,

also including the DPE method.

Classification results of the ISPRS benchmark dataset

Comparing with other PointNet-based methods

Based on the obtained classification results, we compare the results of GraNet with the other

four methods, including PointNet [Qi et al., 2017a], PointNet++ [Qi et al., 2017b], Hierarchical

Data Augmented PointNet++ (HDA-PointNet++) [Huang et al., 2019], and PointSIFT [Jiang

et al., 2018].
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Figure 7.21: Sensitivity analysis of GGO on the regularization strength.

Table 7.12 lists the classification results of the four aforementioned methods and the GraNet

method, which are all under the framework of the multi-scale network structure. As shown by the

table, GraNet can outperform the other four reference PointNet++ based methods. In respect of

the OA, we can find that GraNet can achieve the best results with an OA of 84.5%. First, it can

be seen that PointNet shows lower ability when dealing with this kind of fine-grained situation,

especially when considering the classification accuracy of some small objects, such as powerlines,

cars, and fence hedges. Compare to the baseline method for our strategy, PointNet++, the OA

increases by 5.4%. Additionally, compared with the improved solution, PointSIFT, our method

also achieve better results with an increment of OA by 1.8% and AvgF1 by 5.7%. It indicates the

effectiveness of the local spatial encoding method and relation-aware strategy in GraNet compared

with purely encoding local neighborhood and orientation information with MLP. Furthermore,

GraNet also achieves higher classification accuracy for most categories than the other PointNet++

based methods. It is also worth mentioning that HDA-PointNet++ shows the best results in some

large-scale categories, such as low vegetation and impervious surface, compared with the other

methods, although it does not provide competitive OA and AvgF1. The main reason is that for

deep neural networks directly handling describe points, the subdivision and sampling of the entire

point clouds in urban scenarios is a critical step that directly impacts the classification results.

By the use of the multi-scale subdivision and sampling, the scale information can be considered,

especially for the objects with larger-scale dependencies.

Table 7.12: Comparing of the GraNet method and different PointNet++ based methods using the ISPRS
benchmark dataset. (Values in %). Noted that the highest values in OA, AvgF1, and F1 for each category
are marked with bold texts.

Methods Power Low veg Imp surf Car Fence hedge Roof Fac Shrub Tree OA AvgF1

PointNet [Qi et al., 2017a] 0.0 77.1 92.6 0.0 0.0 77.6 5.4 28.5 37.0 71.2 69.3
PointNet++ [Qi et al., 2017b] 58.5 81.4 98.1 55.3 19.2 86.9 41.0 33.2 71.2 79.1 60.5

HDA-PointNet++ [Huang et al., 2020b] 64.2 85.1 99.2 68.9 19.2 88.2 36.5 37.7 69.2 81.2 63.1
PointSIFT [Jiang et al., 2018] 50.6 80.3 91.3 74.9 38.4 92.9 59.2 41.8 81.4 82.7 67.9

GraNet 67.7 82.7 91.7 80.9 51.1 94.5 62.0 49.9 82.0 84.5 73.6

In Fig. 7.22, we provide the classification map obtained using GraNet. From the figure, we can

see that GraNet shows good ability in recognizing complicated and fine-grained patterns. It per-

forms well in classifying small objects, such as powerlines, cars, and, fences. However, it showed

deficiency in distinguishing the boundaries between facades and buildings. For better comparison
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Figure 7.22: Classification results of the ISPRS benchmark dataset. a) Ground truth, b) GraNet.

with baseline method PointSIFT, we also provide some details for the classification results in

Fig. 7.23. As shown in the figure, PointSIFT has a strong ability to distinguish details since it

constructs local orientation features in different scales. It also performs well in persevering bound-

aries between objects. However, in a larger scope, it may cause errors. For example, it wrongly

recognized buildings as low vegetation due to similar local geometric characteristics. However,

for the GraNet method, there are fewer misclassified points between categories. Meanwhile, it is

obvious that our method works better in classifying powerlines that are sparsely distributed in

the dataset.

Error map of classification results

Fig. 7.24 illustrates the error map of the classification results using the GraNet method on

the ISPRS benchmark dataset. From the figure, it can be seen that the majority of 3D points

can be assigned with correct labels. However, there are still some errors in the classification

maps. With reference to the ground truth provided in Figs. 7.15, most of the errors lie in the

boundaries between buildings and facades and also the boundaries between vegetation, including

low vegetation, tree, and shrub. These parts do indeed share similar geometric characteristics,

and the local neighborhood is also similar when the point cloud is sparse. Additionally, for the

classification of vegetation, the lack of sufficient spectral information may also be one reason

that it is hard to distinguish these three categories, especially when the geometric attributes are

similar.

Comparing with results from other published methods

For further evaluation, we also compare the GraNet method with other published methods

achieving baseline results, which can be regarded as reference methods, including LUH [Niemeyer

et al., 2016], NANJ2 [Zhao et al., 2018], WhuY4 [Yang et al., 2018], RIT 1 [Yousefhussien et al.,

2018], DPE, and a geometry attentional network (GANet) [Li et al., 2020a], DANCE-NET [Li
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Figure 7.23: Details of classification results of the ISPRS benchmark dataset. a) - c) Ground truth, d) - f)
PointSIFT, g) - i) GraNet.

et al., 2020b], a directionally constrained fully convolutional neural network (D-FCN) [Wen et al.,

2020], KPConv [Thomas et al., 2019], and RandLA-Net [Hu et al., 2020]. The published results of

these methods can be checked from the ISPRS 3D semantic labeling dataset website∗, published

papers, or based on the published codes. In Table 7.13, a comparison of the classification results

obtained by these methods is provided and displayed with the aforementioned evaluation metrics.

LUH utilized a two-layer hierarchical CRF. For these two layers, one layer operated directly on

points, while the other operated on generated segments using manual features. Apart from LUH,

all the other methods are deep learning-based methods. Noted that not all the abovementioned

methods directly handle the discrete points. NANJ2 and WUY4 methods rely on 2D deep learning

strategies. The NANJ2 method utilized a 2D CNN to predict labels of ALS point clouds in an

urban scenario by learning depth features of multiple scales with several selected attributes,

including height, intensity, roughness, and a color vector. The WUY4 method had a similar

strategy as that uses in the NANJ2 method, wherein the pixel-wise features, generated based on

the geometric attribution of 3D points, were fed into a 2D CNN to obtain the classification results.

Unlike 2D-based methods, RIT 1 was implemented directly on 3D points by using a proposed

multi-scale 1D fully convolutional architecture. Since the other deep-learning-based methods have

been introduced in Section 1.2.2, we do not give further explanations on these methods. When

compared with other aforementioned methods, one major strength of GraNet is that this method

ranks first among all the listed state-of-the-art methods in terms of AvgF1 of 73.6%. Its OA is

the same as the value of GANet, but its AvgF1 is 0.4% higher than GANet. Besides, compared to

NANJ2 and WhuY4, although we did not achieve higher OA, the AvgF1 of our method is higher

by 4.2%, and 4.3%, respectively. Additionally, the GraNet method is an end-to-end method that

directly works on 3D points compared with these two methods. Compared with the other 3D

∗http://www2.isprs.org/commissions/comm2/wg4/vaihingen-3d-semantic-labeling.html
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Figure 7.24: The error map of the classification results of the ISPRS benchmark dataset using GraNet.

Table 7.13: Comparison of the GraNet method and other published methods using the ISPRS benchmark
dataset (Values in %). Noted that the highest values in OA, AvgF1, and F1 for each category are marked
with bold texts.

Methods Power Low veg Imp surf Car Fence hedge Roof Fac Shrub Tree OA AvgF1

LUH [Niemeyer et al., 2016] 59.6 77.5 91.1 73.1 34.0 94.2 56.3 46.6 83.1 81.6 68.4
NANJ2 [Zhao et al., 2018] 62.0 88.8 91.2 66.7 40.7 93.6 42.6 55.9 82.6 85.2 69.3
WhuY4 [Yang et al., 2018] 42.5 82.7 91.4 74.7 53.7 94.3 53.1 47.9 82.8 84.9 69.2

RIT 1 [Yousefhussien et al., 2018] 37.5 77.9 91.5 73.4 18.0 94.0 49.3 45.9 82.5 81.6 63.3
DPE [Huang et al., 2020b] 68.1 86.5 99.3 75.2 19.5 91.1 44.2 39.4 72.6 83.2 66.2
GANet [Li et al., 2020a] 75.4 82.0 91.6 77.8 44.2 94.4 61.5 49.6 82.6 84.5 73.2

DANCE-NET [Li et al., 2020b] 68.4 81.6 92.8 77.2 38.6 93.9 60.2 47.2 81.4 83.9 71.2
D-FCN [Wen et al., 2020] 70.4 80.2 91.4 78.1 37.0 93.0 60.5 46.0 79.4 82.2 70.7

KPConv [Thomas et al., 2019] 73.5 78.7 88.0 79.4 33.0 94.2 61.3 45.7 82.0 81.7 70.6
RandLANet [Hu et al., 2020] 68.8 82.1 91.3 76.6 43.8 91.1 61.9 45.2 77.4 82.1 70.9

GraNet 67.7 82.7 91.7 80.9 51.1 94.5 62.0 49.9 82.0 84.5 73.6

methods, our method has a higher OA and AvgF1. It is worth mentioning that KPConv provides

higher classification accuracies when classifying powerlines and trees compared with our method.

For powerlines that are sparsely distributed on the scene, it shows its adaptiveness to various

densities. As for the RandLA-Net method, the major advantage is its efficiency. It is much faster

compared to our method.

Classification results of the LASDU dataset

The same as the comparison in the evaluation using the ISPRS benchmark dataset, we also

compare the results with the other method under the framework of PointNet++. Table 7.14 lists

the classification results of four different PointNet++ based methods, consisting of PointNet,

PointNet++, HDA-PointNet++, and PointSIFT. Since the urban scene presented in the LASDU

dataset is less complicated than the ISPRS benchmark dataset, the performance of PointNet is

slightly better. At least, most urban objects can be distinguished. Compared to the baseline

method, PointNet++, using the proposed method, OA and AvgF1 are incremented by 3.5% and
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4.7%. By stacking features from multiple scales, recognizing small objects and distinguishing

objects from different scales can be strengthened using HDA-PointNet++. However, compared

to the GraNet method, OA and AvgF1 are still lower by 1.9% and 2.6%. Compared to PointSIFT,

which considers the orientation and scale information, GraNet still performs better by considering

additional elevation information and long-range dependencies. Additionally, when it comes to the

classification accuracies, it can be seen from the table that the GraNet method achieves the best

results in most categories among the aforementioned methods. As shown in Figs. 7.25, using

Table 7.14: Comparing of the GraNet method and different PointNet++ based methods using the LASDU
dataset (all values are in %). Noted that the highest values in OA, AvgF1, and F1 for each category are
marked with bold texts.

Methods Artifacts Buildings Ground Low veg Trees OA AvgF1

PointNet [Qi et al., 2017a] 13.2 86.2 86.3 51.0 59.9 77.5 59.3
PointNet++ [Qi et al., 2017b] 31.3 90.6 87.7 63.2 82.0 82.8 71.0

HDA-PointNet++ [Huang et al., 2020b] 36.9 93.2 88.7 65.2 82.2 84.4 73.2
PointSIFT [Jiang et al., 2018] 38.0 94.3 88.8 64.4 85.5 84.9 74.2

GraNet 42.4 95.8 89.9 64.7 86.1 86.2 75.8

Figure 7.25: Classification results of the LASDU dataset using GraNet. a) Ground truth, b) GraNet.

the GraNet method, most areas of our interest, such as buildings, artifacts, and vegetation, can

be correctly classified. It is clear that the GraNet method performs well in terms of recognizing

artifacts and preserving their boundaries between the ground. In Fig. 7.26, a detailed comparison

with the baseline method PointSIFT is also provided. From the figure, we can see that our method
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performs better in classifying the boundary points between buildings and ground. Additionally,

for the building roof which shows the different local structure, our method performs better than

PointSIFT with long-range constraint. However, both the GraNet method and PointSIFT meet

some problems in classifying low vegetation and ground for some specific areas.

Figure 7.26: Details of classification results of the LASDU dataset using GraNet. a) - c) Ground truth, d)
- f) PointSIFT, c) - i) GraNet.

Classification results of the DALES dataset

Since the results of some start-of-the-art methods on the DALES dataset, we directly compare the

results using GraNet with these baseline methods. Table 7.15 displays the classification results

of six baseline methods, containing KPConv, Pointnet++, ConvPoint, SuperPoint, PointCNN,

and ShellNet. These methods are all deep-learning-based ones, which have been introduced in

Section 1.2.2. From the results, it can be seen that the KPConv architecture has a stronger

performance on the DALES dataset with the highest OA and mIoU . The GraNet method also

achieves satisfying classification results, which ranks second compared with the other start-of-

the-art deep-learning methods. The classification maps using the GraNet method are shown in

Fig. 7.27, which shows that the GraNet method can classify the majority of points from various

categories correctly. In Fig. 7.28, details of the classification results are illustrated. From the

result, we can see that there are both large batches with low contrast, which were wrongly

classified. One reason may be the selection of block size. Although the GraNet method tends to

learn long-range dependencies from other points globally, the connections are only limited inside

the bounding box of the block size. For large-scale datasets, a small block size would be enough

to obtain contextual information for small objects correctly. However, for large objects, small

blocks are not efficient enough for providing important contextual information. On the other

hand, a large block size will increase memory and run time. For the GraNet method, the memory
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increases quadratically. This is the main drawback of this method. The difference between the

KPConv architecture and other methods (except for Superpoint Graphs) is that KPConv did not

rely on selecting a fixed number of points within a bounding box. This may also be the reason

why KPConv performed better on the DALES dataset.

Table 7.15: Comparison of the GraNet method and different baseline methods using the DALES dataset
(all values are in %). Noted that the highest values in OA, mIoU , and IoU for each category are marked
with bold texts.

Methods Ground Buildings Cars Trucks Poles Powerlines fences Vegetation OA mIoU

KPConv [Thomas et al., 2019] 97.1 96.6 85.3 41.9 75.0 95.5 63.5 94.1 97.8 81.1
PointNet++ [Qi et al., 2017b] 94.1 89.1 75.4 30.3 40.0 79.9 46.2 91.2 95.7 68.3

ConvPoint [Boulch, 2020] 96.9 96.3 75.5 21.7 40.3 86.7 29.6 91.9 97.2 67.4
SuperPoint [Landrieu & Simonovsky, 2018] 94.7 93.4 62.9 18.7 28.5 65.2 33.6 87.9 95.5 60.6

PointCNN [Li et al., 2018] 97.5 95.7 40.6 4.8 57.6 26.7 52.6 91.7 97.2 58.4
ShellNet [Zhang et al., 2019a] 96.0 95.4 32.2 39.6 20.0 27.4 60.0 88.4 96.4 57.4

GraNet 96.3 93.3 80.6 40.8 91.8 61.1 65.6 94.5 97.3 78.0

Ablation study of GraNet

In order to investigate the effectiveness of each individual module in the GraNet method, we con-

duct the following ablation studies. All the experiments were conducted on the ISPRS benchmark

dataset. The detailed design of the ablation studies and the evaluation results are provided in

the following.

Effectiveness of the LoSDA module

To vindicate the LoSDA module and explore the effectiveness of each module in LoSDA,

we trained five models using the same network architecture with different local spatial encoding

modules, namely only SDE (model A), only DFE (model B), the combination of SDE and DFE

(model C), the combination of SDE, DFE and EDE (model D), the full local spatial encoding

module using the final combination of SDE, DFE, and EDE with attention pooling (model E).

All the experimental results are listed in Table 7.16.

Table 7.16: Comparison of models with different local spatial encoding methods using the ISPRS bench-
mark dataset (Values in %). Noted that the highest values in OA, AvgF1, and F1 for each category are
marked with bold texts.

Methods Power Low veg Imp surf Car Fence hedge Roof Fac Shrub Tree OA AvgF1

A 49.8 81.5 90.5 76.8 38.4 91.6 54.5 47.8 78.0 81.8 67.6
B 50.6 80.3 91.3 74.9 38.4 92.9 59.2 41.8 81.4 82.7 67.9
C 49.5 82.2 91.7 73.6 43.2 93.8 60.6 45.9 80.0 83.6 68.9
D 60.8 82.4 91.2 78.8 41.9 93.8 62.7 46.0 81.4 83.9 71.0
E 60.1 82.1 92.1 80.2 46.2 94.1 63.1 47.7 81.1 84.1 71.9

Results in Table 7.16 show that directional features can better present the local geometry

compared with features based on local distribution. However, since the SDE and the DFE module

actually describe the local geometry from different perspectives, we further conduct experiments

to test the effectiveness of combining these two local feature embedding modules. We can see from

the results that the classification results are further improved compared with the results using

SDE and DFE individually. Additionally, for the ALS point clouds, elevations of points play an

essential role. It is shown in the table that model D has a higher OA by 0.3% and a higher AvgF1

by 2.1%, compared with model C. The results prove that the elevation-based module benefits the

description of local geometry. The dependencies between local points are further investigated by
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Figure 7.27: Classification results of the DALES dataset using GraNet. Only two selected tiles are shown.
a) - b) Ground truth, c) - d) the classification maps using GraNet.

adding the attention pooling module to the current local spatial encoding module. As shown by

the results, the classification accuracy is further improved. Compared with different combinations

of each module in the LoSDA module, we can see that each module is useful in learning local

feature descriptions. Moreover, compared with the baseline method PointSIFT, the local spatial

encoding module in the GraNet method can better encode the geometric structures in the local

scope and is efficient for both large-scale and small-scale categories.

Effectiveness of the GRA module and different modes

In order to validate the effectiveness of the GRA module and compare the different combination

modes of SRA and CRA, we conducted further experiments on the ISPRS benchmark dataset.

Namely, based on the LoSDA module and the baseline architecture, we add different modes of
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Figure 7.28: Details of classification results of the DALES dataset using GraNet. Only two selected
examples are shown. a) - b) ground truth, c) - d) GraNet.

the GRA module to the network and evaluate the results. It should be mentioned that here the

baseline method refers to the network which uses the LoSDA module for local spatial encoding.

Table 7.17: Comparison of models with different configurations of the GRA module using the ISPRS
benchmark dataset (Values in %). Noted that the highest values in OA, AvgF1, and F1 for each category
are marked with bold texts.

Methods Power Low veg Imp surf Car Fence hedge Roof Fac Shrub Tree OA AvgF1

Non GRA 60.1 82.1 92.1 80.2 46.2 94.1 63.1 47.7 81.1 84.1 71.9
Only CRA 62.8 82.3 91.5 79.6 49.4 94.4 62.5 48.4 81.1 84.1 72.4
Only SRA 61.8 82.8 92.2 74.7 49.4 94.2 61.8 52.2 81.7 84.4 72.3
Model 1 67.7 82.7 91.7 80.9 51.1 94.5 62.0 49.9 82.0 84.5 73.6
Model 2 66.8 82.9 91.9 80.4 47.6 94.1 62.7 48.4 81.2 84.3 72.9
Model 3 67.5 83.0 92.5 80.7 48.2 94.3 63.8 50.0 80.6 83.3 73.4

All the results using different configurations of the GRA modules are listed in Table 7.17. As

can be seen from the table, it is clear that the relation-aware attentional module can provide an

improvement compared with the baseline method. In detail, by adding the CRA module, the

AvgF1 experiences an increase by 0.5%. The use of the SRA module produces an increment

of OA by 0.3% and AvgF1 by 0.4%. Besides, by combining the SRA and CRA modules, the

performance of our proposed method is further augmented. By using the configuration of Mode

1, the results are improved with an increase of OA by 0.4% and AvgF1 by 1.7%. Mode 2 and

Mode 3 also provide improvement for the classification results. It should be mentioned that Mode

1 outperforms all the other configurations of the GRA module, producing the highest OA with

84.5% and AvgF1 with 73.6%. In Fig. 7.29, a detailed illustration of the classification results

using the GraNet and the network without the GRA module is provided. Here, model 1 was

utilized. By using the effective local spatial encoding module, most of the area has been correctly

classified, including the roofs, impervious surfaces, and trees. By stacking the GRA module, some
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small areas are corrected, such as cars and part of building roofs. However, even using the GRA

module, it is still hard to correctly distinguish fences with shrubs and vegetation.

Figure 7.29: Classification results with the GRA module and without the GRA module. a) - b) Ground
truth, c) - d) the classification result using the model without GRA, e) - f) the classification result using
the model with GRA (Model 1).

Sensitivity analysis of input block size of the network

For fulfilling the input requirement, the entire point clouds are divided into small blocks. However,

the number of parameters of the network depends on the input size. To investigate the influence

of the input block size on the classification results, we added further experiments by improving

the input block size to 40 m × 40 m. Correspondingly, the input size was changed to 8912 points.

Table 7.18 list the classification results using two different block sizes. From the table, we can

see that the OA increases by 0.1% but the AvgF1 decreases by 0.4%. The decrease is mainly due

to the decrease in the classification accuracy of powerlines. However, the classification accuracies

increase for some comparatively large objects, i.e., low vegetation, impervious surfaces, trees.

Thus, although the overall performance does not change by a large margin, it can be seen that a

larger block size will improve the classification performance on large objects. However, the small

objects will have a low classification accuracy.

Table 7.18: Comparison of results using different input block sizes using the ISPRS benchmark dataset
(Values in %). Noted that the highest values in OA, AvgF1, and F1 for each category are marked with
bold texts.

Methods Power Low veg Imp surf Car Fence hedge Roof Fac Shrub Tree OA AvgF1

25 m × 25 m 67.7 82.7 91.7 80.9 51.1 94.5 62.0 49.9 82.0 84.5 73.6
40 m × 40 m 64.0 83.1 91.9 81.1 52.2 94.6 60.3 49.6 82.3 84.6 73.2

Complexity and runtime analysis

To evaluate the complexity and training efficiency of GraNet, we list the numbers of parameters

(params) and running time of eight networks in Table 7.19, including two baseline methods,

the combination of PointNet++ structure and the LoSDA module, and five different modes of

GraNet. The input size for all networks is set to 4096. It should be mentioned that the running

time refers to the time used for one epoch during the training process, including the time used
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for both training and validation. It is clear that the number of parameters is not increased, and

the training process is faster using the LoSDA module compared with PointSIFT. However, after

stacking the GRA modules, the complexity of the model increases dramatically, especially when

stacking the CRA module. For the different configurations of the GRA module, no matter the

parallel or serial configurations, the number of parameters and the running time do not vary too

much. In general, the complexity of GraNet is higher than the baseline methods. The increase

of the classification accuracy may partially arise from the increase of the network complexity.

However, since the training dataset is not a dataset with a large data amount, apart from the

PointNet++, the running time of all the other networks varies in a small range.

Table 7.19: The number of parameters and running time of different network models.

Method Params (Millions) Running time (s)

PointNet++ 0.97 32

PointSIFT 13.56 65

PointNet++ & LoSDA 9.58 52

GraNet (only CRA) 61.02 61

GraNet (only SRA) 10.68 60

GraNet mode 1 62.13 67

GraNet mode 2 62.13 65

GraNet mode 3 62.14 67

7.2.4 Semantically segmented construction scenes

The experimental results of semantic segmentation of the construction dataset are listed in Ta-

ble 7.20. Here, the results of the GraNet method are compared with the results using the LoSDA

method which has a similar network structure but without the GRA modules. As seen from the

table, for the dataset acquired on Jan 16th, 2015, the GraNet method can achieve the results

with an OA of 53.5% and AvgF1 of 26.8%, while the LoSDA method can only obtain results with

an OA of 52.5% and AvgF1 of 24.1%. For the other dataset acquired on Feb 26, 2015, the OA

of the semantic segmentation result using the GraNet is 55.8% and the AvgF1 of the semantic

segmentation result is 35.9%. The LoSDA shows a decrease of OA by 0.8% and AvgF1 by 1.7%.

From the result, we can see that the two deep learning-based methods can not achieve satisfying

semantic segmentation results on the construction dataset, especially for some categories, such as

waste, pipes, and planes. Even though the long-range relations can augment the performance of

the network as shown in former experiments, the contribution of the relation modules is not that

obvious on the construction dataset.

Table 7.20: Semantic segmentation results of the construction dataset. (Values in %). Noted that the
highest values in OA, AvgF1, and F1 for each category are marked with bold texts.

Date Methods
Cranes Struct const Wood piles Metal piles Concrete Waste Others Pipes Planes Scaffolds

Formworks Containers Sheds Buildings Naturals Impervious Bare lands OA AvgF1

2015/01/16
LoSDA

16.0 58.8 16.2 / 19.0 0 / 9.4 11.0 56.1
2.4 0 / / / 20.3 80.0 52.5 24.1

GraNet
39.0 60.0 2.4 / 17.8 16.9 / 1.5 20.1 54.2

13.5 1.2 / / / 16.5 78.2 53.5 26.8

2015/02/26
LoSDA

22.5 63.0 23.4 44.0 37.5 0.7 / 0 12.7 50.1
22.2 19.9 / / / 65.6 83.6 55.0 34.2

GraNet
36.8 62.5 25.5 32.7 37.5 13.4 / 2.2 7.4 53.2

18.6 29.6 / / / 65.6 81.5 55.8 35.9
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Figure 7.30: Semantic segmentation results of the construction dataset. a) - b) Ground truth, c) - d) the
semantic segmentation results of the construction dataset using GraNet.

Fig. 7.30 illustrates the classification maps using the GraNet method. From the figure, it is

obvious that GraNet shows satisfying classification results on categories, such as cranes, structures

under construction, and scaffolds, which have evident geometric characteristics. In Fig. 7.31,

we provide further details for the classification results. In this figure, we provide not only the

comparison between the labeled ground truth and the classification result but also an illustration

of the original data. From the comparison, it is clear that there are strongly different visual

characteristics even for the same categories, such as structure under construction. This may be

one of the reasons that lead to the wrongly classified result as illustrated in Fig. 7.31k. Generally

speaking, there may be four major reasons that lead to the unsatisfying results on the construction

dataset:

q The training process was conducted on the former three datasets which were acquired in the

early stage of the construction process but the test was performed on the two datasets of the

later construction stage. The environment of the construction scene and the corresponding

objects all show a big difference.

q The construction dataset has a strong bias between different categories. For some cate-

gories, the number of samples is not enough to provide sufficient geometric and radiometric

information for training.

q The difference between objects in the same categories is large, as shown by the previous ex-

ample of the structure under construction (see Fig. 7.31). For instance, the visual difference

may result from different illustrations or different covering materials. Geometric differences

may result from the incompetence of data.

q One deficiency resulted from the deep learning-based method is that the result is influenced

by the way of dividing. As shown in Fig. 7.31k, the boundaries of dividing blocks are obvious

in the classification result.
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Figure 7.31: Details of semantic segmentation results of the construction dataset using GraNet. a) - b)
Illustration of scene sections in point clouds, c) - e) original point clouds, ground truth, and semantic
segmentation results of section i, f) - h) original point clouds, ground truth, and semantic segmentation
results of section ii, i) - k) original point clouds, ground truth, and semantic segmentation results of section
iii.
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7.3 Change detection results

7.3.1 Geometrical changes of construction scenes

The experimental results of geometric change detection of the construction site are listed in

Table 7.21. For the dataset acquired on Jan 16, 2015, the change detection was referenced with

the dataset acquired on Dec 12, 2014. The dataset acquired on Feb 26, 2015 was compared with

the dataset acquired on Jan 16. The voxel sizes for the occupancy-based change detection are all

set to 0.3 m, considering the object sizes and the observed area. Here, we list the numbers of

voxels detected as conflicting, consistent, and unknown, respectively.

Table 7.21: Results of geometric changes.

Acquisition Date
Number of voxels

Conflicting Consistent Unknown

2015/01/16 63403 26869 50598
2015/02/26 44349 38243 4788

Figure 7.32: Experimental results of geometric change detection using construction point cloud sequence. a)
- b) The construction data acquired at Dec 12, 2014 and Jan 16, 2015, respectively, c) - d) the construction
data acquired at Jan 16, 2015 and Feb 26, 2015. e) - f) the detected geometric changes between the
aforementioned two construction data pairs.

From the results, we can see that even though we only considered the union of occupied

space provided by the datasets used for change detection and did not count the unobserved areas,

there was still much space which had observing conflicts between different acquisition time. It

also makes the process of detecting unknown areas and consideration of occlusions important.
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Figure 7.33: Illustration of selected scene sections for showing details of geometric changes. a) Section i
and ii are selected from the scene, b) section iii are selected from the scene.

In addition, we can see that the number of unknown voxels decreases dramatically. It can be

concluded that when the construction process went to the late stage, the change of observation

environment decreased. As for the detected changes, compared with the data acquired in Dec

2014, about 75% of occupied space changed. However, when the construction process went further

to the end stage, the changes occupied less than 50%.

In Fig. 7.32, the results of geometric change detection are illustrated. As shown in the figure,

from Dec 12, 2014 to Jan 16, 2015, the main changes lay in the top of the structure under

construction, as well as some temporary objects around the construction site. The unknown area

mainly existed in the corner of walls or some areas which were occluded by temporal objects.

Most of the vertical walls were consistent during the one month. However, there was still some

part of the vertical structure which were under construction. From Jan 16, 2015 to Feb 26, 2015,

the geometric changes decreased obviously, with fewer changes on the construction environment

and construction structure. The vertical structure has much fewer changes compared with the

last construction process stage. The main changes still lay in the area of top of the building

under construction. Fig. 7.33 illustrated the scene sections we selected for detailed illustration.

Fig. 7.34 illustrates the details of the detected geometric changes of selected sections. As shown

in Fig. 7.34d, there is no formworks placed on the scene section, while in Fig. 7.34e, we can see

that the formworks and iron for a building roof. The geometric changes were detected using

our method as illustrated in Fig. 7.34f. the construction of the top plane of the structure was

detected. In Figs. 7.34g-i, the changes from planes of scaffolds to a concrete building wall were

also detected. However, there are also some drawbacks of this method. First, as illustrated in

Fig. 7.34a, the points of the vertical structure were not reconstructed during the MVS process and

this area was detected as changed areas in the result. In the occupancy-based geometric change

detection method, the errors during the MVS process are not fully considered. In addition, for

some areas whose semantic categories changed but the occupancy remained, the occupancy-based

change detection can not detect them as changes. The semantic changes should also be taken

into consideration.
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Figure 7.34: Details of geometric change detection results using the the OBCD-M method. a) - c) The
original reference database, the current database, and the geometric change detection results of section i,
d) - f) the original reference database, the current database, and the geometric change detection results of
section ii, g) - i) the original reference database, the current database, and the geometric change detection
results of section iii.

Table 7.22: Accuracy assessment of the SACD method using the construction dataset (Values in %).

Acquisition Date Evaluation metric Changed Consistent OA AvgF1

2015/01/16
pr 87.0 89.9

88.2 88.0r 97.8 82.2
F1 89.9 86.1

2015/02/26
pr 51.7 94.3

67.9 73.6r 93.6 54.6
F1 72.6 74.4
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Figure 7.35: Experimental results of semantic change detection. Subplots a) and b) are the ground truth.
Subplots c) and d) present the semantic change detection results.

Figure 7.36: Illustration of selected scene sections for showing details of semantic changes. a) Section i, b)
section ii, c) section iii.

7.3.2 Semantics-based changes of construction scenes

As stated in the last section, semantics are also an important indicator of changes. Thus, we

further involved the semantic segmentation results obtained in Section 7.2.4 and obtained the

changes with semantics. Table 7.22 lists the accuracy assessment of semantics-aided change

detection. As seen from the table, we can see that the OA of semantics-aided change detection

from Dec 12, 2014 to Jan 16, 2015 are 88.2% and the AvgF1 is 88.0%. The F1 of detecting

changed is 89.9% and the F1 of detecting consistent is 86.1%. As for detecting changes between

the dataset of Jan 16, 2015 and Feb 26, 2015, the SACD method can achieve results with OA of

67.0% and 73.6%. The accuracies presented by F1 of detecting changes and consistent are 72.6%
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Figure 7.37: Details of experimental results of semantic change detection using the construction dataset.
a) - d) the original reference database, current database, ground truth, the results of semantic change
detection of section i, e) - h) the original reference database, current database, ground truth, the results
of semantic change detection of section ii, i) - l) the original reference database, current database, ground
truth, the results of semantic change detection of section iii.

and 74.4%, respectively. It should be mentioned that the first change detection was conducted on

a dataset (Dec 12, 2014) with manually semantic labels and a dataset with predicted labels using

our proposed method. However, the second one was performed on two datasets with predicted

labels.

Fig. 7.35 depicts the results of semantics-aided change detection. Compared with the ground

truth, the majority of changed and consistent areas coincide, especially for the changes of the ver-

tical structure under construction and the temporal objects on the ground around the construction

scene. However, the main mis-detected areas lay on the top plane of the structure under construc-

tion. It results from the misclassification of the top plane of the structure under construction.

The selection of scene sections are illustrated in Fig. 7.36. In Fig. 7.37, the details of the results

of the semantics-aided change detection are illustrated. Here, we also provide an illustration of

the comparison between the original data. As shown in Fig. 7.36a-d and Fig. 7.36e-h, the vertical

structures which remain consistent were correctly determined as semantic consistent areas. The

area in the boundary of structure under construction, i.e., the top boundary, was detected as

changed area as illustrated in Fig. 7.36a-d, which also coincides with the ground truth. However,

as illustrated in Fig. 7.36i-l, section iii lies in the top plane of the building structure. The covering

material changed, which led to a strong visual difference between the two observed scenes. That

is also the reason why this area was detected as changes in our results. Thus, there are two



7.3. Change detection results 139

main drawbacks of our semantics-aided change detection method. The first one is that the result

is influenced by both the results of semantic segmentation and the results of geometric change

detection. Second, from the visual results of change detection, we can see that the boundary of

detected changes is also influenced by the selection of voxels as illustated in Fig. 7.36l.
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8 Discussion

In this chapter, we will discuss the three key tasks in the change detection of the construction site,

namely registration, semantic segmentation, and change detection from several aspects based on

the experimental results, including the major problems of the tasks, the advantages, the limita-

tions of the proposed methods, and their sensitivity to the parameterization and the attributes

of data.

8.1 Discussion on 3D point cloud registration

The experimental results described in Section 7.1 demonstrated that datasets could be well regis-

tered using our proposed methods. Two registration methods were proposed for the registration

tasks, including the PBPC method and the GRPC method. By improving the projection-based

method to a full 3D solution, the presented method is not limited to the application in urban

areas or construction scenes. However, it is also applicable for non-regular-shaped areas, such as

mountains. The registration result is also improved, especially for the estimation of rotations.

The PBPC method relies on the determination of the principle, which is limited by the geometric

characteristics. The estimation of principle will bring additional errors in the estimation of rota-

tions. However, the GRPC method estimates all the transformations using the global information

and in the frequency domain. In terms of registration accuracy, our proposed method can produce

better results compared with other feature-based methods. We evaluated our proposed method

under different scenarios. For example, the Bremen dataset and the RESSO dataset observed

urban scenes, while in the WHU-TLS dataset, a mountain area was presented using TLS point

clouds. These datasets also show different geometric characteristics, different point densities,

and different overlapping cases. Our proposed method can achieve satisfying results on all these

datasets. Meanwhile, the registration results on the construction datasets demonstrate that our

proposed method is also efficient in registering multitemporal datasets. We also evaluated the

robustness of our proposed method under different noise ratios and noise levels. The results show

that the increase in noise levels and noise ratios did not significantly increase registration errors.

The proposed method is robust under different noise situations. We evaluated different parame-

ter settings for the proposed GRPC method. The experimental result shows that the setting of

voxel size influenced the performance of the GRPC method. Large voxel size can increase the

processing efficiency but decrease the presentation of details, leading to a deficiency in registra-

tion. A reasonable set of parameters represents a compromise between the level of details and

the computational sources.

Generally, by utilizing global features and matching low-frequency components in the fre-

quency domain, we can align point clouds under different scenarios, including datasets acquired

from different viewpoints and at different times. Promising results also prove the versatility of the

GRPC method to different datasets with regular-shaped or irregular-shaped geometric charac-

teristics. The proposed GRPC method can efficiently achieve registration with majority rotation

and translation errors, reaching less than 0.2 degrees and 0.5 m, and outperform state-of-the-art
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methods on several benchmark datasets. Meanwhile, the experiments also proved that the GRPC

method is kind of robust to noise and is still effective and efficient under low-overlapping cases.

However, the registration is influenced by the selection of voxel size. The voxelization process will

also lead to the aliasing effect. Additionally, the decoupling of rotation, scaling, and translation

and the sequential process manner of these parameters will bring accumulated estimation errors

for the parameters estimated in the late steps compared with conventional registration methods,

which simultaneously estimate all the transformation parameters.

8.2 Discussion on semantic segmentation of urban scenes

As for the experiments of semantic segmentation, we evaluated the performance of the proposed

method under different applications using several benchmark datasets. The results demonstrated

that our proposed methods could achieve satisfying results for recognizing different urban objects

presented in the benchmark datasets.

For the MLCE method, an ablation study was conducted on the proposed point cloud classi-

fication workflow that combined multi-scale geometric feature extraction with LPP for the DR of

features. The experimental results demonstrated the importance of broadening the receptive field

of local feature reconstruction and the effectiveness of DR in feature engineering. The qualitative

and quantitative results revealed that our method could outperform other feature DR methods

in classification and provide an effective and distinctive geometric feature representation. In ad-

dition, different parameter settings were tested on LPP. It shows that the performance of LPP is

sensitive to the parameters. A proper setting of the parameters is vital in the process of DR.

As for the DPE method, it made an improvement based on the former strategy. First, we

used a deep neural network, PointNet++, to directly extract deep features from pointsets instead

of handcrafted features. Second, the extension of local receptive fields was achieved using a

hierarchical subdivision strategy. The first two steps were named HDL in the DPE method.

Third, a novel robust manifold-learning-based algorithm, namely JME, was employed for point

feature embedding by integrating spatial information. Fourth, the initial classification results

can be optimized by a graph-cuts-based regularization method, namely GGO. The experimental

results indicate that the strategy of DPE can provide classification results with high accuracy,

especially while providing fine-grained results. The results of the ablation study indicate the

effectiveness of each part of the procedure. Moreover, these embedded features using JME were

proved to be capable of producing smoother results, although degradation of the effect of GGO

on the smoothing of the initial classification results was seen to some extent. We also evaluate

the performance of the proposed method under different parameterizations. The performance

of JME is sensitive to the change of reduced dimensionality but less sensitive to the change of

the number of neighbors. The regularization strength slightly influences the classification results.

Generally, a proper selection of dimensionality in feature embedding is of great importance in

DPE. However, DPE showed weakness in identifying the boundaries of buildings and trees and

classifying specific spectral and geometric similar categories, such as fence hedge, shrubs, and

trees. The JME algorithm is not efficient enough and has a high requirement on the computation

memory, limiting the application of DPE to an extremely large-scale dataset.

The GraNet method is a novel deep-learning-based method investigating the construction of ef-

ficient local neighborhood representation and the importance of long-range dependencies provided

by relation-aware modules. Experimental results demonstrated that the GraNet method achieved

high classification results on three benchmark datasets and outperformed other commonly used

advanced point-based strategies. Besides, comparative results also validated the feasibility of us-

ing the orientation information, the elevation information, and the local dependencies achieved
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by local attention pooling to enhance the feature importance and the importance of considering

long-range relations in complicated scenes, especially for urban scenes. Compared with the former

two methods, GraNet does not require a careful selection for the hyperparameters. However, the

way of subdivision of the training and test dataset affects the semantic segmentation results. The

effect is apparent when classifying a large dataset, such as the DALES dataset and the construc-

tion dataset. The other drawback of GraNet is that the relation-aware modules involved in the

network result in a heavy configuration of the network. In addition, the experimental results of

GraNet on the construction dataset were not satisfying. It revealed that our proposed method

still shows deficiency when dealing with datasets with high complexity.

Overall, we can identify the categories of objects in urban scenes and building objects in

the construction scenes using the proposed semantic segmentation methods. High classification

accuracies on different datasets prove the effectiveness of the proposed methods. The experimental

results also revealed that our proposed methods outperformed other commonly used advanced

point-based strategies and state-of-the-art methods. In addition, the DR methods, including LPP

and JME, are sensitive to the hyperparameter setting. As for GraNet, the performance of this

method is influenced by the data subdivision during the training and test process. Moreover,

the performance of our semantic segmentation methods is also limited by the geometric and

radiometric information provided by the datasets.

8.3 Discussion on change detection of the construction site scene

The experimental results in Section 7.3 demonstrated that geometric changes and semantic

changes can be detected, provided that data are appropriately aligned and segmented in the

former experiments of registration and semantic segmentation. The geometric changes can be re-

liably detected using the occupancy-based method. The detected unknown space can also reflect

the changes of the observation environments. Although the result is specific to the experimental

system, including the camera configurations and reconstructing 3D point clouds from images,

the idea of retrieving rays for finding occlusions and geometric conflicts applies to other systems.

However, for the occupancy-based change detection, the size of detectable changes is limited by

the data quality and the size of 3D grid cells. The results reveal that there are obvious “zig

zag” effect in the boundaries between areas with detected geometric changes and areas that are

consistent. The natural boundaries can not be well presented. As for the semantic-aided change

detection, we actually conduct a direct differencing between the semantic segmentation results of

different time epochs. In this case, the results highly rely on the semantic segmentation quality.

If the classification correctness is too low, we can not use the semantic segmentation results for

detecting semantic changes. In addition, due to the influence of changes of illumination and cov-

ering materials on the results of semantic segmentation, these factors also have an obvious impact

on the results of semantic change detection.
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9 Conclusion and Outlook

In this chapter, we will provide conclusions drawn based on the work presented in this thesis and

propose new possible directions for further research work based on the limitations of the proposed

methods. The conclusions are grouped according to the their relationship to specific goals of this

thesis and also regarding to the research question in Section 1.1.

9.1 Conclusion

Research question I: To what extent of robustness, accuracy and efficiency could a

marker-free alignment of point clouds achieve?

First, the task of point cloud registration is addressed. Global features and low-frequency compo-

nents are utilized for achieving point cloud registration. The qualitative and quantitative results

reveal that the GRPC method can outperform other representative registration methods as well

as our former method (e.g., PBPC), with the majority of rotation and translation errors reaching

less than 0.2 degrees and 0.5 m. Additionally, it has been proved that the proposed registration

method shows its superiority in the matching of point clouds with high-level noise and with a

wide range of overlaps and various geometric characteristics, which shows the robustness of the

proposed registration method. Furthermore, the case study on the registration of the construction

dataset demonstrates that the proposed registration method is also robust to temporal changes

and incompleteness of data. Regarding the efficiency of the proposed method, when registering

large-scale datasets (i.e., the Resso dataset), the processing time was less than 50 s. However, the

proposed method is sensitive to voxel size, indicating the level of details presented by the global

features obtained after the voxelization step. A large voxel size will lead to a strong blurring

effect on the presentation of details, while a small voxel size will significantly decrease processing

efficiency. Additionally, since the registration method follows a sequential estimation procedure

and the transformation parameters are not estimated synchronously, estimation errors will be

accumulated. These factors should be considered in our future work.

Research question II: What are the necessary aspects to be considered when learning

features for an accurate interpretation of complex scenarios using point clouds?

Here, the task addressed is the semantic segmentation of point clouds. For designing robust

and discriminative features for the semantic segmentation task, we develop feature embedding

strategies using traditional methods and deep learning-based methods, whose main focus lies in

improving receptive fields of points, the engineering of point correlations, and the involvement of

attention mechanism. The improvement on semantic segmentation results when applying multi-

scale neighborhood construction strategy reveal the importance of improving receptive fields.

The correlation of local points can be considered by utilizing manifold-learning-based methods.

From the result of JME, we can conclude that the consideration of local point correlations in

both spatial and feature domain could promote the accuracy of semantic segmentation and also
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improve the smoothness of semantic segmentation results. On the other hand, the correlations

between non-local points are investigated by building global relations between points, which is

achieved by utilizing GGO in the DPE method and the GRA modules in the GraNet method.

In addition, the attention mechanism is also involved in improving the discriminate features

and suppressing interference. The experiments on several benchmark datasets presenting various

urban scenarios have validated the effectiveness of consideration of non-local point correlations

and the attention mechanism in the task of semantic segmentation. The aforementioned aspects,

including the improvement of receptive fields, engineering of point correlations, especially in

a global way, and the attention mechanism, ensure fine-grained and highly accurate semantic

segmentation results under different scenarios using point clouds with different point densities or

intense noise and outliers. We can obtain a classification result with AvgF1 of 73.6 % on the

ISPRS benchmark dataset, outperforming most start-of-the-art methods. However, despite that

the aforementioned aspects show promising results in semantic segmentation, there are still some

drawbacks. For instance, the point embedding achieved by manifold-learning-based methods

is sensitive to hyperparameters. It takes much effort to define optimal parameters. The high

computation requirement has also limited the application of the proposed manifold-learning-based

method to a large-scale dataset. The GraNet method is a fully end-to-end deep learning-based

solution, and it can be utilized in various scenarios. However, the way of division of training and

test has a high effect on the semantic segmentation results.

Research question IIIa: To what extent of automation could be achieved for change

detection?

The final task addressed is change detection during the construction progress. Here, we identified

changes from two different perspectives. The first one is the geometric changes, which indicate

the changes of occupancy in 3D space. It can be the change of appearance or shapes of building

objects. The second one is the changes in semantics. It indicates that the occupancy of 3D space

does not change, but the categories of objects change. Using the two different types of changes, we

can fully consider the changes that may happen on the construction sites and define the difference

between the changes. For the change detection, an overall accuracy of about 75% can be finally

achieved. The whole process of change detection of building objects in the construction site,

including the procedures: robust registration, semantic segmentation, detection of geometric and

semantic change detection with a voxel representation. The three parts involved in the process

are automated. However, there are some obvious limitations of the current workflow. The final

change detection results rely highly on the results of registration and semantic segmentation. An

optimal parameterization for each former step is vital for the success of change detection. It needs

a lot of computation effort. Additionally, the semantic segmentation of point clouds requires a

large number of training samples. Here, the ground truth was created based on manual work,

limiting the level of automation of the whole procedure.

Research question IIIb: Is it sufficient enough to detect changes by purely comparing

segmentation results of building objects?

In the proposed framework of change detection, apart from the conflicts in semantics, one crucial

part is to take occlusions and missing information into account. Besides, as explained previously,

the change detection by purely comparing semantic segmentation results of building objects is

influenced by the accuracy of semantic segmentation results. It is also one of drawbacks of our

framework. Poor semantic segmentation results will lead to a hard interpretation of the results of

change detection. Some geometric constraints could be considered to improve the results. This

is also a further direction we could consider in our future work. Additionally, in our proposed
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method, the voxels are the basic element presenting the changes. A proper selection of voxel

size is vital for compromising the presentation of detail and computation efforts. The voxel

representation also limits the presentation of boundaries of changes.

To summarize, we proposed a framework for detecting changes of the construction sites, in-

cluding a series of methods and algorithms addressing the specific tasks, namely point cloud

registration, semantic segmentation, and change detection. These methods can provide effective

tools for fast point cloud alignment, scene interpretation, overall change detection when dealing

with point clouds acquired from construction sites. However, for real applications in construction

monitoring, the connections to the construction plans and schedules should be considered. For

example, an alignment between acquired point clouds and as-planned model should be conducted.

The interpretation of construction scene should be on object-level. The changes should be also be

on the object-level thus a detailed monitoring on each object of interest on the construction sites

could be achieved. There is still a long way to go for achieving a detailed construction monitoring

using point clouds.

9.2 Outlook

Considering the drawbacks of the proposed methods and the deficiency in real applications, in

the future, the following aspects can be investigated:

q The first task is the optimization of semantic interpretation of point clouds. First, the

performance should be further improved. Although our method performed well in some

benchmark datasets, the performance on the construction datasets was not fully satisfactory,

which also limited the performance of semantic change detection. The current method focus

more on the learning of geometric features based on 3D coordinates of 3D points. However,

the color information is not fully investigated. The further work could be conducted on the

investigation of attribute information provided by point clouds. Second, the point-based

method will produce results influenced by the way of division of training and test. The

division boundary will show on the semantic segmentation results. Currently, there are

some deep learning methods working on clusters of point instead of directly on 3D points.

The natural boundaries could be preserved by the point clusters and the use of point clusters

could also greatly decrease the size of inputs and thus improve the efficiency.

q The point cloud registration could be further optimized. First, the influence of voxel size

could be decreased by building a hierarchical voxel selection. The voxel size is selected

following an adaptive step, depending on the demand for accuracy of the registration, the

data quality, and the scene size. Then, the point clouds could be separated partially and

segments could be further registered with small voxel size. In the procedure, the registra-

tion can be optimized by gradually registering point clouds from globally to locally. The

accumulation errors appearing in both feature-based registration and our proposed method

should be further addressed. Currently, there are many deep learning-based methods devel-

oped for achieving finding of correspondence and transformation estimation synchronously.

The use of some newly developed deep learning techniques for point cloud registration may

help us overcome the problems.

q The process of change detection could be further improved. In this work, we present changes

in the voxel element. However, in real applications, object-based monitoring is usually re-

quired for updating the state information of construction progress. Further research could be

conducted on the optimization of the whole change detection procedure. Instead of semantic

segmentation of point clouds, construction datasets should be segmented to instance- and
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object-based levels. Then, changes could be conducted by comparing corresponding objects

for detailed change detection. In addition, in the context of occupancy models, we have

only considered the belief masses of measurements from different acquisition epochs. Other

conditions or constraints are not taken into consideration. In future work, the probabilistic

approaches, i.e., Bayes’ theorem, could be applied to substitute the Dempster-Shafer theory

for taking other conditions into consideration.
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Gressin A, Mallet C, Demantké J, David N (2013) Towards 3d lidar point cloud registration improvement
using optimal neighborhood knowledge. ISPRS Journal of Photogrammetry and Remote Sensing, 79:
240–251.



152 Bibliography

Guo Y, Sohel F, Bennamoun M, Lu M, Wan J (2013) Rotational projection statistics for 3d local surface
description and object recognition. International Journal of Computer Vision, 105 (1): 63–86.

Haas C, Shen H, Phang W, Haas R (1984) Application of image analysis technology to automation of
pavement condition surveys. Publication of: Balkema (AA).

Habib A, Detchev I, Bang K (2010) A comparative analysis of two approaches for multiple-surface regis-
tration of irregular point clouds. International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 38 (1): 61–66.

Habib A, Ghanma M, Morgan M, Al-Ruzouq R (2005) Photogrammetric and lidar data registration using
linear features. Photogrammetric Engineering & Remote Sensing, 71 (6): 699–707.

Hackel T, Savinov N, Ladicky L, Wegner JD, Schindler K, Pollefeys M (2017) SEMANTIC3D.NET: A new
large-scale point cloud classification benchmark. In: ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, IV-1-W1: 91–98.
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