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Many immune cells and effector molecules (e.g. cytokines, Interferons, growth factors)
utilize different combinations of Janus kinase (JAK) and signal transducer and activator
of transcription (STAT) molecules to transduce signals from the cell surface to the
nucleus, where they regulate transcription. This pathway is basically involved in almost
all inflammatory diseases and also in the interleukin (IL)-23/IL-17 cascade, which is an
essential part of the pathogenesis of spondyloarthropathies (SpA). Upon evidence from
in vitro and in vivo experiments indicating disease-modifying effects of JAK inhibition in
inflammatory joint disease, numerous inhibitors of the JAK/STAT pathway (= JAKinibs)
with different selectivity against the four members of the JAK family [JAK1, JAK2,
JAK3, and tyrosine kinase 2 (TYK2)] were developed. Trials in rheumatoid arthritis
were successful with respect to efficacy and safety, and currently, three JAKinibs are
approved for the treatment of rheumatoid arthritis in the European Union. Although
new treatment options (anti-IL-23, anti-IL-17, and phosphodiesterase 4 inhibitors) have
become available for spondyloarthritis and especially psoriatic arthritis (PsA) within the
last years, most of them are biologics and do not address all disease manifestations
equally. Therefore, multiple trials were initiated to evaluate JAKinibs in PsA and axial
spondyloarthritis (axSpA). A trial of Tofacitinib (OPAL) was successful in PsA and has
led to the inclusion of JAKinibs into the treatment algorithm. Currently many trials with
JAKinibs are ongoing for PsA and axSpA, with one phase III trial of upadacitinib (selective
JAK1 inhibitor) showing good therapeutic response in active radiographic axSpA.

Keywords: JAK – STAT signalling pathway, small molecule inhibitor, axial spondyloarthritis, preclinical efficacy
and tolerability, safety profile

INTRODUCTION

Spondyloarthropathies (SpA) are a group of chronic inflammatory diseases, including axial SpA
(axSpA) and psoriatic arthritis (PsA), as well as other less common forms like enteropathic or
reactive arthritis. Besides skeletal manifestations (axial disease, peripheral arthritis, enthesitis, and
dactylitis), the involvement of extra-articular organs (uveitis, psoriasis, and inflammatory bowel
disease [IBD]) is a shared feature of these diseases (1). Current therapeutic options for SpA are
limited compared with those for rheumatoid arthritis (RA), especially for axSpA, and mainly
antibody-based, such as anti-tumor necrosis factor (TNF), anti-Interleukin (IL)-23 and anti-IL-17.
Additionally, the therapeutic response greatly varies between the different diseases and affected
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systems such as the spine, peripheral joints, skin, and eyes. Only
51.3% of axSpA patients respond to TNF inhibitors (TNFi),
some loose response over time, and others are not eligible (2,
3). Janus kinase (JAK) and signal transducer and activator of
transcription (STAT) molecules are central transmitters of pro-
and anti-inflammatory signals in immune regulation (4). The IL-
23/IL-17 pathway is highly important in the pathogenesis of SpA
and is partly controlled by JAK (5, 6). Therefore, JAK inhibitors
offer new treatment options for SpA. As these are currently more
limited for axSpA compared with PsA, this review focuses on JAK
inhibitors and their clinical application in axSpA.

JANUS KINASE AND SIGNAL
TRANSDUCER AND ACTIVATOR OF
TRANSCRIPTION SIGNALING IN
SPONDYLOARTHRITIS

JAK and STAT are central signal transducers for a great number
of pro-inflammatory (e.g. IL-2, IL-7, IL-12, and IL-23) and anti-
inflammatory cytokines (e.g. IL-10) influencing innate immune
responses thought to be essential for the induction of SpA and
adaptive immune functions maintaining and perpetuating the
disease (7–9). This intracellular tyrosine kinase family consists
of JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2) and is
coupled to STAT molecules (STAT1, STAT2, STAT3, STAT4,
STAT5a and b, and STAT6) (7). Cytokine-receptor binding
on the cell surface leads to autophosphorylation of JAK or
phosphorylation of a partner JAK. Such activated JAK further
phosphorylate sites of the intracellular domain of the receptor
providing docking sites for STAT molecules. Dimers of STAT
molecules phosphorylated by JAK migrate to the nucleus where
they regulate gene expression. Different combinations of JAK
and STAT are assigned to different cytokines and their receptors,
providing a multitude of pathways and functions, as depicted in
Figure 1 (7). However, STAT can be activated by other kinases
and exercise effects in an un-phosphorylated state and even
extra-nuclear. JAK also act independently of STAT molecules,
for example, by directly phosphorylating histones adding further
to the complexity of JAK and STAT signaling in immune cell
regulation (10).

With regard to the pathogenesis of SpA, JAKs are involved
in the signaling of key cytokines within the IL-23/IL-17
pathway, and Genome-wide association studies have found
single nucleotide polymorphisms (SNPs) for IL23R, JAK2, and
TYK2 in ankylosing spondylitis (AS) (11). IL-23, produced
by activated myeloid cells, is important for the generation
of IL-17 and IL-22 by target cells such as T helper cells 17
(Th17), gamma delta T cells (γδ T cells), or innate lymphoid
cells (ILCs) type 3 (12). A combination of JAK2 and TYK2
transmits the IL-23 signal via STAT3 and, to a lesser extent,
STAT4 (6, 13). IL-17A production is mainly JAK2-dependent,
whereas IL-22 production requires TYK2 and JAK2 (14). By
blocking IL-17 production, JAK inhibition subsequently affects
the downstream effects of IL-17. Other cytokines favouring
the development and maintenance of IL-17 producing cells

include IL-6 (JAK1/JAK2/TYK2) and IL-21 (JAK1/JAK3) (7,
15). IL-22, another effector cytokine in the pathogenesis of
SpA, uses the combination of JAK1 and TYK2 (7). Next to
its protective functions at the epithelial barrier in the gut,
IL-22 has pro-inflammatory and proliferative effects (synovial
fibroblasts, keratinocytes) as well as osteoanabolic effects
providing another interesting treatment target for SpA (16–
18). Granulocyte-macrophage colony-stimulating factor, another
pro-inflammatory cytokine produced by T cells and ILCs type 3
in SpA patients, signals via JAK2 (7, 19).

Respective of the various cytokines relying on JAK-STAT
signaling, inhibition of this pathway offers multiple possibilities
to modulate the immune and tissue response implicated in
SpA. As cells of articular and extra-articular organs are utilizing
this pathway, JAKinib will most likely affect the different sites
of the disease. However, the protective pathways regulated by
JAK-STAT might lead to adverse effects like viral infections by
interfering with interferon signaling, as wells as with numbers
and function of natural killer (NK) cells, cytotoxic T cells,
and ILC (7).

ANIMAL AND PRECLINICAL DATA ON
JANUS KINASE INHIBITORS IN
SPONDYLOARTHROPATHIES

Although animal models for SpA do not fully replicate human
disease, they have been useful in examining the molecular disease
mechanisms and the role of JAK-STAT signaling. Enthesitis,
an early and common feature in all forms of SpA, appears in
mice with a myeloid cell-specific A20 (TNF-α-induced protein
3) deficiency (9, 20). The SpA-like arthropathy in this model is
independent of TNF and relies on IL-1β and IL-6. Treatment with
tofacitinib, an unselective JAK inhibitor, significantly reduced
disease activity, confirmed by less inflammation of the synovial–
entheseal complex on histology (20). In the SKG mouse model,
which resembles human SpA if arthritis is initiated with
curdlan and is dependent on IL-23 and Th17 cells, treatment
with tofacitinib ameliorated established disease (21). Another
experimental JAKinib also suppressed both inflammation and
periosteal/entheseal bone formation in this model (22).

JAKinibs of different selectivity were shown to reduce Th17-
type responses in CD4 T cells from patients with AS, PsA, and
RA ex vivo with similar efficacy (23). Small interfering RNA-
mediated knockdown of TYK2, signaling downstream of IL-23,
was shown to be equally efficient in reducing type-17 cytokine
secretion compared with JAK1 silencing or tofacitinib treatment
(23). Several SNPs around the TYK2 locus are associated with AS.
Some of these exonic SNPs lead to loss-of-function variants of
TYK2. One of these SNPs associated with multiple autoimmune
diseases is protective, but does not impact on non-autoimmune
domains such as susceptibility to infections (24). A highly specific
TYK2 inhibitor, NDI-031407, blocked disease progression in the
SKG mouse model (14). MRI imaging showed prevention of
joint space narrowing and bone marrow edema. NDI-031407 also
protected mice from bone marrow edema and enthesis-related
synovitis in the IL-23 mini-circle model (mostly dependent
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FIGURE 1 | Schematic representation of relevant JAK-STAT signaling pathways in the pathogenesis of Spondyloarthritis. Binding of the different Interleukins (IL) to
their specific receptor subunits on different cell populations, e.g. T cells, innate lymphoid cells (ILC) or effector cells such as osteoblasts, fibroblasts or keratinocytes
leads to activation of a specific JAK-STAT pathway. The different isoforms of JAK are coupled to specific receptor/cytokine pairs and allow for a targeted inhibition
with a specific JAKinib. However, overlap exists allowing for unintended side effects or accumulative effects. JAK1-specific inhibitors for example affect signaling by
IL-6, IL-21, IL-7, IL-9 and IL-22 targeting most of the relevant immune and effector cell populations in SpA pathogenesis.

on γδ T cells). It completely abrogated IL-22 production but
only partially inhibited IL-17 production from γδ T cells upon
stimulation with IL-1β and IL-23 (14). The frequency of a loss-
of-function TYK2 SNP (rs12720356) was significantly higher in
AS patients with lower rates of spinal fusion, providing further
evidence that targeting JAK could have effects on ankylosis.

With regard to the effects of JAKinib on bone metabolism,
an important aspect in SpA, an experimental JAK2 inhibitor,
AG490, reduced alkaline phosphatase activity in primary bone-
derived cells from AS patients and healthy controls (25). On the
other hand, tofacitinib and baricitinib increased bone mass in
the K/BxN serum-transfer mouse model of RA-like arthritis and
enhanced osteoblast function in vitro while sparing osteoclasts
(26). These findings were confirmed in two RA patients treated
with tofacitinib showing a substantial reduction in erosions of
the metacarpophalangeal joints by micro-CT. Because activation
of bone formation is deleterious in axSpA but useful in RA,
further insight into the differential effects of JAKinib in these
diseases is warranted.

Considering the combined data from animal models and
clinical trials of anti-IL-23 antibodies in axSpA, TYK2 and JAK1
emerge as most promising targets of JAKinib for the treatment of
axSpA, as they are involved in pathways relevant to the initiation
(IL-23) and effector (IL-22) phase of the disease and especially
in osteoproliferation (27). Table 1 gives an overview of JAKinibs
already tested in clinical trials and under preclinical evaluation.

CLINICAL DATA ON JANUS KINASE
INHIBITORS IN
SPONDYLOARTHROPATHIES

Tofacitinib (a pan-JAKinib, 196 biologic naïve patients) and
filgotinib (a selective inhibitor of JAK1, no more than one TNF
inhibitor, 107 patients, TORTUGA) have been trialed in phase
II trials of active AS with an inadequate response to ≥2 or
intolerance to non-steroidal anti-inflammatory drugs and high-
sensitivity C-reactive protein (CRP) ≥3 mg/L (filgotinib trial)
(50, 51). Upadacitinib (selective for JAK1) has been evaluated
in a combined phase II/III trial (178 JAKinib and biologic naïve
patients, SELECT-Axis 1) in active AS with the earlier mentioned
inclusion criteria (52). The combined data on the efficacy
on disease activity, functionality, and radiographic progression
summarized below are extracted from these studies.

Efficacy on Disease Activity
After 12 weeks of treatment, Assessment in SpondyloArthritis
International Society 20 (ASAS20) response rates were
significantly higher for 5-mg tofacitinib twice daily (80.8%)
and 200-mg filgotinib once daily (76%) compared with placebo
(41.2 and 40%, respectively) but not for 2 mg (51.9%) or 10 mg
(55.8%) of tofacitinib. ASAS40 response was significantly higher
for all tofacitinib groups at week 12 and for 15-mg upadacitinib
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TABLE 1 | Overview of JAK inhibitors tested in clinical trials and under preclinical evaluation for spondyloarthropathies and related diseases.

JAK inhibitor Target Trial/disease Status PMID/NCT trial number Trial status

Tofacitinib JAK1/JAK3 Rheumatoid Arthritis Approved (28–31)

Psoriatic Arthritis Approved (32, 33)

Axial Spondyloarthritis Phase III NCT03502616 Active

Ulcerative Colitis Phase III (34)

Crohn’s disease Phase II (35)

Psoriasis Phase III (36)

Uveitis Phase II NCT03580343 Active

Baricitinib JAK1/JAK2 Rheumatoid Arthritis Approved (37, 38)

Filgotinib JAK1 Rheumatoid Arthritis Phase III (39)

Axial Spondyloarthritis Phase III NCT04483687, NCT04483700 Not started, Not started

Psoriatic Arthritis Phase III NCT04115748, NCT04115839 Active, Recruiting

Ulcerative Colitis Phase III NCT02914522 Completed

Crohn’s disease Phase III NCT02914561 Recruiting

Uveitis Phase II NCT03207815 Recruiting

Upadacitinib JAK1 Rheumatoid Arthritis Approved (40–42)

Axial Spondyloarthritis Phase III NCT04169373 Recruiting

Psoriatic Arthritis Phase III NCT03104374, NCT03104400 Active, Active

Ulcerative Colitis Phase III NCT03653026, NCT02819635 Recruiting, Recruiting

Crohn’s disease Phase III NCT03345836, NCT03345849 Recruiting, Recruiting

Pefacitinib Pan-JAK Rheumatoid Arthritis Phase III (43, 44)

Psoriasis Phase II (45)

Ulcerative Colitis Phase II (46)

Deucravacitinib (BMS-986165) TYK2 Psoriatic Arthritis Phase II NCT03881059 Active

Psoriasis Phase II (47)

Abrocitinib (PF-04965842) JAK1 Psoriasis Phase II (48), NCT02201524 Terminated

Itacitinib (INCB039110) JAK1 Rheumatoid Arthritis Phase II NCT01626573 Completed

Psoriasis Phase II NCT01634087 Completed

PF-06651600 JAK3 Rheumatoid Arthritis Phase II NCT04413617 Not started

Ulcerative Colitis Phase II NCT02958865 Recruiting

Crohn’s disease Phase II NCT03395184 Recruiting

SHR0302 JAK1 Rheumatoid Arthritis Phase III NCT04333771 Not started

Axial Spondyloarthritis Phase II/III NCT04481139 Not started

Ulcerative Colitis Phase II NCT03675477 Recruiting

Crohn’s disease Phase II NCT03677648 Recruiting

PF-06826647 TYK2 Psoriasis Phase II NCT03895372 Recruiting

Ulcerative Colitis Phase II NCT04209556 Recruiting

Brepocitinib (PF-06700841) JAK1/TYK2 Psoriatic Arthritis Phase II NCT03963401 Active

Psoriasis Phase II NCT02969018 Completed

Ulcerative Colitis Phase II NCT02958865 Recruiting

Crohn’s disease Phase II NCT03395184 Recruiting

NDI-031407 TYK2 SKG mouse model Preclinical (14)

NDI-031232 TYK2 Preclinical

SAR-20347 JAK1/TYK2 Psoriasis mouse model Preclinical (49)

once daily compared with placebo at week 14 (52 vs. 26%).
Tofacitinib (5-mg), filgotinib, and upadacitinib additionally
lead to a significantly higher change of the mean Ankylosing
Spondylitis Disease Activity Score (ASDAS) with rates of −1.4,
−1.47 at week 12, and −1.45 at week 14, respectively, compared
with placebo (−0.9, −0.57, and −0.54). Bath Ankylosing
Spondylitis Disease Activity Index 50 (BASDAI50) response
rates were significantly higher for all tofacitinib groups and
upadacitinib with 42.3 to 46.2 and 45% vs. 23.5 and 23% in the

placebo group. Enthesitis was significantly ameliorated by week
12 in 5- and 10-mg tofacitinib versus placebo.

The onset of response was slower with tofacitinib (approx.
week 4) compared with TNF inhibitors but very rapid for
filgotinib (week 1) and upadacitinib (week 2).

One limitation of the study of filgotinib is the relatively high
proportion of patients with high high-sensitivity CRP at baseline,
as elevated CRP is a known predictor of good response to
therapy (53).
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Efficacy With Regard to Functionality
Spinal mobility measured by Bath Ankylosing Spondylitis
Metrology Index (BASMI) improved significantly with filgotinib
compared with placebo by week 12 (−0.75 vs. −0.39). In the
tofacitinib trial, significant improvement of BASMI was only
achieved with 10 mg twice daily. In the upadacitinib trial,
consistent improvements were seen with treatment for BASMI
but did not meet significance based on multiplicity adjustment
per the Hochberg procedure.

Efficacy With Regard to Radiographic
Progression
Five- and 10-mg tofacitinib and filgotinib significantly improved
Spondyloarthritis Research Consortium of Canada spine (−5.5
and −6.6, and −5.7) and sacroiliac joint (SIJ) scores (−3.2 and
−3.6, and −3.52) compared with placebo (spine −0.1 and −0.52,
SIJ −0.8 and 0.06). Upadacitinib had significant effects on the
Spondyloarthritis Research Consortium of Canada spine score
(−6.93 vs. −0.22).

A recent evaluation of the baseline and week 12 MRI scans
from the TORTUGA trial found decreased SIJ erosion scores and
increased backfill scores in the filgotinib group with increased
erosion scores and no change in backfill scores in the placebo
group, supporting the effects of filgotinib on structural lesions in
axSpA (54).

Treatment-Emergent Adverse Events
Treatment-emergent adverse events (TEAEs) appeared slightly
more often with 5- and 10-mg tofacitinib compared with 2 mg
and placebo (53.8 and 51.9% vs. 44.2 and 43.1%) and upadacitinib
(62 vs. 55% in the placebo group) but were similar in the filgotinib
trial (31% both groups). The most common TEAEs in all trials
were nasopharyngitis and upper respiratory tract infections.
There were no malignancies, opportunistic infections, and cases
of active tuberculosis or cases of extra-articular manifestations
(IBD, psoriasis, and uveitis). Episodes of herpes zoster (HZ) were
reported with tofacitinib and upadacitinib, and one non-serious
venous thromboembolic event (VTE) with filgotinib.

Results from a phase III randomized controlled trial (RCT) of
tofacitinib in active AS (NCT03502616) are expected this year.

Safety of Janus Kinase Inhibitors
In general, the long-term safety profile of JAKinibs is good and
similar among the different inhibitors. Fears of high rates of
opportunistic (including tuberculosis) and other infections have
not been confirmed. Due to a lack of long-term data for JAKinib
in SpA, data reported here are collected from clinical trials and
post-marketing surveillance of RA. This seems feasible, as the
three performed trials of JAKinibs in AS have so far shown similar
safety profiles. However, it cannot be excluded that with longer
observation periods and new trials leading to more exposed
patients, new safety concerns may arise.

Overall incidence rates of serious infections are similar to
those with biological disease-modifying antirheumatic drugs
and range from 2.5 to 3.8 per 100 patient-years (55–58).
However, a thorough screening of patients for tuberculosis before
therapy is mandatory, with special alertness to extrapulmonary

manifestations of tuberculosis (59). Reactivation of hepatitis
B has been reported with JAKinib treatment, but treatment
with tofacitinib in refractory cases under antiviral prophylaxis
seems safe and effective (60, 61). The increased incidence of
HZ is specific for JAKinib treatment and, for unknown reasons,
seems to be more pronounced in Japan and Korea, ranging
from 3.3 to 3.9 per 100 patient-years (26, 57, 58, 62, 63). The
common risk factor for HZ over the different JAKinib was age
(64, 65). Filgotinib so far has shown lower incidence rates of
HZ and serious infections compared with other JAKinib, but
long-term observations are lacking (66). This effect can possibly
be attributed to less inhibition of JAK1-mediated signaling of
interferon γ and IL-2, IL-4, and IL-15 (necessary for proliferation
of NK cells) by filgotinib (67).

Regardless of a slightly increased risk for overall malignancies
for RA patients compared with the general population, so far, no
significant effects of JAKinib have been identified, excluding non-
melanoma skin cancer (68). With respect to the two- to threefold
increased risk for lymphoma in RA patients, the crude incidence
rates with tofacitinib and baricitinib were low, with 0.10 (56).
The effects of long-term use of JAKinib on the risk of cancer,
for example, via interference with tumor surveillance through NK
cells and interferon signaling are still unknown (57, 69).

As patients with RA, AS, and PsA generally have an increased
risk for deep vein thrombosis (DVT), pulmonary embolism
(PE), and venous thrombembolism (VTE) (risk ratios, 2.08,
2.17, and 1.96, respectively), special interest was given to such
events in trials with JAKinibs (70–72). Incidence rates for DVT
and PE with tofacitinib were 0.1 each (0.2 for PE with the
10-mg dose) and for VTE with upadacitinib 0.6 per 100 patient-
years, and 0.1 and 0.2 per 100 patient-years with 100 and
200 mg of filgotinib (57, 58, 73). Therefore, a randomized safety
endpoint study in moderate to severe RA comparing tofacitinib
and TNF inhibitor has been implemented, including patients
with at least one cardiovascular risk factor (NCT02092467).
Nevertheless, the FDA and EMEA requested a warning of
thrombosis for tofacitinib, baricitinib, and upadacitinib in 2019
(74, 75). A mechanistic explanation for the increased risk of
thromboembolic events is still lacking. Despite a metanalysis of
30 RCTs on JAKinib in RA showing no significant differences in
short-term major adverse cardiac events or VTE, a recent analysis
of the World Health Organization global database (VigiBase)
revealed a 2.3–3.4-fold increased risk for DVT and PE with
tofacitinib and baricitinib in Europe (76, 77).

Use of a JAKinib has to be carefully evaluated in patients
with risk factors for gastrointestinal perforation such as
older age, history of diverticulitis or other gastrointestinal
conditions, and use of prednisolone >7.5 mg/day or non-
steroidal anti-inflammatory drugs (78, 79). The incidence rates
per 1,000 patient-years for gastrointestinal perforation were
0.11 for tofacitinib and 0.04 for baricitinib (56). In analogy
to tocilizumab, the risk of gastrointestinal perforation might
be ascribed to the inhibition of IL-6 signaling by the different
JAKinibs (57, 80).

Dose adjustments according to the metabolism of each
drug should be considered for patients with moderate to
severe hepatic or renal dysfunction. Laboratory changes in
patients treated with JAKinibs are common and include changes
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of hemoglobin, lymphocyte and platelet counts. However, it
has been hard to separate the intrinsic effects of JAKinibs
via concomitant JAK2 inhibition (main signaling JAK for
erythropoietin and thrombopoietin receptors) and disease-
driven inflammatory effects on erythro- and thrombopoiesis.
Other common laboratory changes include elevation of serum
transaminases, creatinine, high- and low-density lipoprotein
cholesterols, but usually do not result in treatment cessation.

Teratogenic effects of JAKinib have been reported in
preclinical animal studies, and so far pregnancy outcomes of
47 patients treated with tofacitinib during RCT are known
(81–83). There were 25 healthy newborns, one congenital
pulmonary valve stenosis, seven spontaneous abortions, eight
medical terminations, and six pending or lost to follow-up (84).
Therefore, JAKinibs are contraindicated during pregnancy and
breastfeeding, requiring strict contraception in females of child-
bearing age until at least 1 week after the last dose.

Next to the known TEAEs of conventional synthetic and
biological disease-modifying antirheumatic drugs, e.g. infections,
a special focus has to be placed on HZ, VTE and PE, and changes
in blood cells and lipid metabolism with JAKinib treatment.

DISCUSSION AND PERSPECTIVE

Although the data from three RCTs of JAK inhibitors in active AS
are very promising, studies evaluating patients who have failed
TNFi or anti-IL-17 therapy will be of great interest to place
JAKinibs in the treatment algorithm of axSpA. Other interesting
issues are head-to-head comparisons with TNFi and efficacy in
non-radiographic axSpA. For a better assessment of the long-
term safety results of the SpA study extensions will have to be
awaited. Also the differential effect of more selective JAKinibs on
the various disease manifestations of SpA needs to be clarified.
Interest focuses on the newly developed specific TYK2 inhibitor,
BMS-986165, which has already completed a phase II trial for
psoriasis and promises clinical efficacy in axSpA by preclinical
data and translational research. It also needs to be elucidated

if SpA patients might profit from different dosing strategies for
induction and maintenance of remission, such as high loading
doses and low maintenance doses. However, these new orally
available agents will most likely soon be included in the treatment
recommendations for axSpA and provide the clinician with
options in patients who are not eligible or have contraindications
to TNFi or anti-IL-17, such as allergic reactions, congestive
heart failure, or concomitant demyelinating disease (TNFi) and
concomitant active IBD (anti-IL-17) (85, 86). JAKinibs may also
be advantageous in patients with repeated infections, as they
have a shorter half-life compared with bDMARD or csDMARD.
With regard to avoiding radiographic progression and chronic
disability in axSpA patients, JAKinibs face the same challenges as
other drugs. From long-term observations with TNFi, it became
evident that a halt in radiographic progression probably can
only be achieved with very early and prolonged treatment (for
more than 4 years) (87, 88). Targeting new bone formation
specifically might have too many adverse effects on general
bone homeostasis.

Overall, JAKinibs seem safe when used in a well-screened
patient population of SpA and under regular surveillance.
They appear equally effective to biologic drugs by current
evidence and have advantages besides their oral application and
shorter half-life.
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