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The same mechanisms that enable host defense against helminths also drive allergic
inflammation. This suggests that pathomechanisms of allergic diseases represent
evolutionary old responses against helminth parasites and that studying antihelminth
immunity may provide insights into pathomechanisms of asthma. However, helminths
have developed an intricate array of immunoregulatory mechanisms to modulate type 2
immune mechanisms. This has led to the hypothesis that the lack of helminth infection
may contribute to the rise in allergic sensitization in modern societies. Indeed, the anti-
inflammatory potential of helminth (worm) parasites and their products in allergy and
asthma has been recognized for decades. As helminth infections bring about multiple
undesired effects including an increased susceptibility to other infections, intended
helminth infection is not a feasible approach to broadly prevent or treat allergic asthma.
Thus, the development of new helminth-based biopharmaceutics may represent a safer
approach of harnessing type 2–suppressive effects of helminths. However, progress
regarding the mechanisms and molecules that are employed by helminths to modulate
allergic inflammation has been relatively recent. The scavenging of alarmins and the
modulation of lipid mediator pathways and macrophage function by helminth proteins
have been identified as important immunoregulatory mechanisms targeting innate
immunity in asthma and allergy. In addition, by regulating the activation of dendritic cells
and by promoting regulatory T-cell responses, helminth proteins can counterregulate
the adaptive T helper 2 cell response that drives allergic inflammation. Despite these
insights, important open questions remain to be addressed before helminth molecules
can be used for the prevention and treatment of asthma and other allergic diseases.

Keywords: helminths, inflammation, macrophage, asthma, immune regulation, allergy, helminth molecules, type
2 immunity

INTRODUCTION

Helminth infections affect about 2 billion people worldwide, and children in developing countries
are particularly susceptible (1). Depending on parasite burden, helminth infections can be
asymptomatic or induce pathology in the host, with malnutrition, anemia, educational loss, and
cognitive deficits as major consequences (2–4).

Helminths usually infest their host as tissue-migratory larvae, which establish niches in the
lung, skin, liver, or intestine, where they develop, mate, and release new infectious offspring.
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The host plays a critical role in this life cycle and represents a
vehicle for the spread of the parasite. During evolution, helminths
have learned to suppress host defense and establish chronic
infections that can endure up to 20 years (5). Helminths typically
induce a host protective type 2 cell–mediated immunity, which
limits type 1 inflammation, reduces host tissue damage, and
ensures parasite survival (6). Helminth-induced type 2 immune
responses are initiated by the damaged epithelium, which secretes
alarmins [interleukin 25 (IL-25), IL-33, and thymic stromal
lymphopoietin] that activate and recruit type 2 innate lymphoid
cells (ILCs2) and CD4+ T helper 2 (TH2) lymphocytes. The
production of type 2 cytokines (IL-4, IL-5, IL-10, and IL-13),
as well as granulocyte-macrophage colony-stimulating factor
(GM-CSF), by these cells induces eosinophilia, M2 macrophage
polarization, and the secretion of immunoglobulin G1 (IgG1),
IgG4, and IgE (7–11).

A type 2 immune response is also a hallmark of asthma and
allergy, suggesting that host defense and repair mechanisms of
antihelminth immunity have implications for the pathogenesis
and treatment of these inflammatory diseases. Epidemiological
evidence on the reciprocity between helminthiases and chronic
inflammatory diseases has implicated helminth infections in
the prevention of allergy and asthma [see previous reviews
(12–14)]. Helminths produce molecules with powerful
immunomodulatory activities such as the anti-inflammatory
protein-2 (AIP-2) in hookworms, the transforming growth factor
β (TGF-β) mimic (Hp-TGM), the alarmin release inhibitor
(Hp-ARI), or the enzyme glutamate dehydrogenase (Hpb-GDH)
in the nematode Heligmosomoides polygyrus (15–18). The
anti-inflammatory effects of helminth products observed in
experimental models of asthma prompt a better investigation of
helminth-(product)–driven regulation of type 2 inflammation
and its underlying mechanisms of action in human settings.
Current research aims to translate promising findings from
rodent models to human disease and to ultimately develop
helminth-based biotherapeutics for the prevention and therapy
of allergy and asthma.

EPIDEMIOLOGICAL EVIDENCE FOR
PROTECTIVE ROLES OF HELMINTHS IN
ALLERGY AND ASTHMA
Helminths exert diverse effects on asthma and allergies
depending on the species, parasite load, and time of infection
(19, 20). Some parasites trigger or worsen asthma and allergic
symptoms, whereas others tend to reduce the risk of these
diseases (21).

Ascaris lumbricoides is a gastrointestinal parasite that passages
through the lung. Studies in several countries have shown an
association between Ascaris infection, asthma, and aeroallergen
sensitization (22–24), which also correlated with Ascaris-specific
IgE (sIgE) (25–27). A high prevalence of asthma and wheezing
was particularly observed among Ascaris-infected children (28,
29). Similarly, infection with Strongyloides and Toxocara species
correlates positively with allergic airway disorders. Infection with
the intestinal parasite Strongyloides stercoralis was associated with
an increased risk of asthma and its exacerbation (21, 30, 31)
and Toxocara species infection resulted in increased allergy

and asthma prevalence in children, which positively correlated
with serum IgE levels (32–34). Thus, some helminth species
trigger mechanisms such as the production of cross-reactive IgE
or inflammatory mediators that promote allergic sensitization
and/or asthma symptoms. A detailed understanding of how
parasites drive allergic inflammation may provide important
insights into pathomechanisms and therapeutic targets of
allergy and asthma.

However, other epidemiological studies have shown a lower
prevalence of asthma and allergic disorders during chronic
intestinal helminth infections (35–37). Hookworm infection
appears to be particularly protective (21), whereas the results for
other parasites vary, depending on study design and the assessed
outcomes. In several studies, deworming of chronically infected
people increased allergic reactions and overall responsiveness of
patients’ immune cells (38–41), and long-term antihelminthic
treatment increased skin prick test reactivity to mite in Ascaris
species and Trichuris species–infected children, as well as in
allergic rhinitis patients (38–40). However, effects on asthma
or rhinitis symptoms were not assessed in these studies. Direct
evidence for helminth-driven modulation of allergic diseases in
humans came from a multitude of studies on Schistosoma species
infection. Children infected with Schistosoma haematobium
displayed reduced skin prick test reactivity to house dust
mite (HDM) and other aeroallergens (42) and lower allergic
responses to mite were observed in Schistosoma mansoni–
infected individuals (43). Allergy-protective effects of helminths
were related to the intensity and chronicity of the infection,
as well as parasite burden (36, 44, 45). Furthermore, in the
presence of S. mansoni, peripheral blood mononuclear cells from
asthmatic patients released a lower amount of inflammatory type
2 cytokines and higher levels of anti-inflammatory IL-10 (46).
A lower hospitalization rate was observed for asthmatic patients
infected with S. mansoni, suggesting that infection may reduce
asthma morbidity (47).

In summary, the detrimental or protective effects of
helminthiases on asthma and allergy depend on the parasite
species, the duration of the infection, and the immunological
context. These diverse effects may be due to different antigen
or mediator repertoires, which affect hallmark type 2 responses
such as eosinophil recruitment, the activation of allergen-specific
TH2 cells, or IgE class switching. Worm molecules may also
exert a different propensity for uptake by antigen-presenting cells
and thus differentially regulate the induction of T cell responses.
Finally, environmental factors, the presence of coinfections, and
microbiota composition influence the immune response toward
helminth parasites, resulting in different outcomes in helminth-
infected individuals from different locations (48–50).

IMMUNOMODULATION OF ASTHMA
AND ALLERGIC DISEASES BY
HELMINTH MOLECULES
As helminth infection has been implicated in the prevention of
allergy and asthma, experimental infection with helminths has
been used in humans and animals to test potential therapeutic
effects. Although rodent studies have demonstrated that helminth
infection ameliorates allergic inflammation, clinical trials have
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not found the same benefits (51–54). Encouraging results
regarding the modulation of the immune response during asthma
were observed in experimental infections with Schistosoma
species, H. polygyrus, and Nippostrongylus brasiliensis. S. mansoni
and Schistosoma japonicum are natural human parasites that
showed anti-inflammatory effects in models of ovalbumin (OVA)
and HDM allergy (45, 55–57). Protection against allergic airway
inflammation (AAI) in Schistosoma-infected mice was associated
with the upregulation of IL-10, downregulation of IL-5, and
induction of regulatory T cells (Tregs), which together induce a
modified type 2 immune response (58–60). Induction of Tregs
and IL-10 production is also implicated in allergy-suppressive
actions of the gastrointestinal mouse parasite H. polygyrus (61–
64). Infection with H. polygyrus suppressed airway inflammation,
by reducing eosinophil recruitment, and this effect was associated
with Treg and Breg expansion and the upregulation of anti-
inflammatory IL-10 (63, 65). IL-10–dependent prevention of
allergy has also been observed with the parasiteN. brasiliensis, in a
model of OVA-induced airway hyperresponsiveness in rats. These
studies suggest shared allergy-suppressive mechanisms among
different parasite species (66).

Although animal models of helminth infection have
contributed to the understanding of parasite-driven immune
regulation in asthma and allergy, deeper insights into
immunomodulatory effects of helminths have been provided
by studying active molecules produced by parasites. The
systematic analysis of parasite products by the help of proteomics
and genomics has identified a comprehensive collection

of helminth-derived molecules with immunomodulatory
effects on asthma and allergic diseases (Figure 1). One of
the best characterized helminth-derived immunomodulators
is ES-62, a phosphorylcholine (PC)–containing glycoprotein
secreted by the parasitic filarial nematode Acanthocheilonema
viteae. ES-62 has shown protective effects in mouse models
of asthma, lung fibrosis, and rheumatoid arthritis (67–70),
with its immunomodulatory capacity depending on the
PC moiety (71). Through PC modification, ES-62 can act
on a variety of cells of the immune system, ranging from
mast cells (MCs), macrophages, dendritic cells (DCs) to B
cells, to affect intracellular pathways associated with antigen
receptor and TLR signaling (67, 72–75). In MCs, ES-62 inhibits
high-affinity IgE receptor (FcεRI)–induced degranulation,
resulting in reduced ear swelling and hypersensitivity in a
mouse model of oxazolone-induced skin inflammation. The
suppression of MC activity by ES-62 further diminished airway
hyperresponsiveness, lung pathology, and eosinophilia during
OVA-induced AAI (67). The regulatory effects of ES-62 were
mediated by the suppression of OVA-specific CD4+ T cell
proliferation, concomitant with decreased production of IL-4,
IL-13, and interferon γ (IFN-γ) (76). The regulatory potential of
ES-62 on MCs depended on the inhibition of MyD88-mediated
signaling downstream of TLR4 and FcεRI3, which was partially
dependent on IL-33/ST2 signaling (75, 77). The suppression
of IL-33 signaling was also described as a key mechanism
underlying the H. polygyrus–driven modulation of type 2
immune responses. This effect is mediated by the secretion

FIGURE 1 | Overview of immune regulatory helminth molecules and their mechanisms of action in mouse models of allergic airway inflammation and in human
in vitro models. Immunomodulators from different helminths can act on a variety of cells ranging from innate to adaptive and effector immune cells. Blocking of
signaling is shown by red arrows, induction by green, and modulation by spaced, gray arrows. AAI, allergic airway inflammation; AIP-2, anti-inflammatory protein 2;
As, A. simplex; Av, A. vitae; Cys, cystatin; DC, dendritic cell; Ev, Extracellular vesicles; GDH, glutamate dehydrogenase; HDM, house dust mite; HpARI, H. polygyrus
Alarmin Release Inhibitor; HpBARI, H. polygyrus Binds Alarmin Receptor and Inhibits; HpbE, H. polygyrus extract; Mϕ, macrophage; MIF, macrophage migration
inhibitory factor; Nb, N. brasiliensis; OVA, ovalbumin; PC, phosphocholine; SEA, schistosome soluble egg antigen; Sm, S. mansoni.

Frontiers in Immunology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 2106

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02106 September 9, 2020 Time: 19:38 # 4

Bohnacker et al. Allergy Modulation by Helminth Molecules

of an Alarmin Release Inhibitor (HpARI), which binds and
blocks IL-33, and by the recently discovered Binds Alarmin
Receptor and Inhibits (HpBARI) protein, which blocks the
IL-33 ST2 receptor in mice and human cells (18, 78). HpARI
was shown to hamper IL-33 release in human lung explants
and in a human IL-33 transgenic mouse model after Alternaria
allergen administration (18), whereas HpBARI inhibited
eosinophil recruitment after Alternaria allergen administration
(78). Another undefined H. polygyrus product was able to
downregulate IL-33 production through the induction of IL-1β,
thus promoting parasite chronicity (79). In Alternaria-induced
AAI, H. polygyrus downregulated the IL-33 receptor via releasing
extracellular vesicles containing microRNAs, resulting in reduced
eosinophilia and improved lung function (18, 80, 81). These
results indicate that vesicle release represents an efficient way
to deliver immunomodulatory molecules to host immune cells.
Similar to scavenging of IL-33 by HpARI, the recently identified
protein p43 from Trichuris muris can bind IL-13 and thereby
inhibit parasite expulsion (82), raising the question if this
molecule can also modulate IL-13–driven airway inflammation.

Another conserved mechanism of helminth-driven immune
regulation is the use of cysteine protease inhibitors (cystatins).
Mammalian cysteine proteases are required for proteolytic
processing of antigens, enabling presentation on MHC class II
molecules and effective T cell responses. Cystatins from A. viteae,
Brugia malayi, N. brasiliensis, Onchocerca volvulus, Clonorchis
sinensis, A. lumbricoides, H. polygyrus, and Litomosoides
sigmodontis have been shown to interfere with this process to
evade antigen-induced immunity (83–94). AvCystatin from
A. viteae mitigated airway inflammation and colitis in mice
through the induction of IL-10–producing macrophages (93)
and reduced pollen-specific responses in lymphocytes from
allergic patients (94). Cystatin from N. brasiliensis (NbCys)
dampened OVA-specific splenocyte proliferation, as well as
IgE and cytokine production by inhibiting cathepsins L and
B (89). Similar effects were observed for cystatin (rAl-CPI)
from A. lumbricoides, which decreased TH2 cytokine and IgE
production in a mouse model of HDM-induced AAI (92).

A large repertoire of immunomodulatory molecules is also
present in the egg stage of some parasites. Schistosome soluble
egg antigen (SEA) from S. japonicum showed inhibitory effects
on the development of airway inflammation in a CD4+ CD25+

T cell–dependent manner during OVA-induced asthma in mice
(95). In the same model, antigens from S. mansoni (Sm22.6,
Sm29, and PIII) reduced airway inflammation, eosinophilia,
OVA-specific IgE levels, and TH2 cytokine production in the BAL.
The beneficial effects of Sm22.6 were due to the induction of IL-
10, similar to the S. mansoni egg glycoprotein IPSE/α-1, which
induced IL-10–producing Bregs (96). In contrast, SM22.6 and
PIII triggered the expansion of CD4+Foxp3+ T cells suggesting
that both Treg and Breg cells are involved in the modulation of
type 2 inflammation by SEA (97).

Helminth molecules can also mimic host-derived mediators.
H. polygyrus or administration of its excretory–secretory
products (HES) induces Treg cells, suppressing effector cell
proliferation in vitro and AAI in vivo. This regulatory
response was mediated by Hp-TGM, a protein with TGF-β–
like activity (15, 64). TGH-2 from B. malayi similarly activated

TGF-β pathways, suggesting TGF-β signaling as a shared
immunomodulatory mechanism among parasite species (98).
B. malayi, Ancylostoma ceylanicum, Trichinella spiralis, and
Anisakis simplex also produce homologs of the mammalian
cytokine macrophage migration inhibitory factor (MIF) (99–
103). MIF homologs from B. malayi (99) and T. spiralis (100)
functionally reflect host MIF proteins, e.g., regarding chemotactic
effects on monocytes, whereas the MIF homolog from A. simplex
(As-MIF) showed direct anti-inflammatory activity on OVA-
induced AAI, where it suppressed the production of TH2
cytokines (IL-4, IL-5, and IL-13), as well as eosinophilia and
goblet cell hyperplasia in the airways. These effects were again
associated with the recruitment of CD4+CD25+Foxp3+ T cells
and the upregulation of IL-10 and TGF-β (102, 103).

Treg cell induction in vivo was also observed for an
excretory/secretory protein of Ascaris suum (PAS-1), which
inhibited airway inflammation in a murine model of OVA-
induced AAI by decreasing eosinophilia and TH2 cytokines
in the BAL, as well as OVA-specific serum IgE (104). PAS-1
also abrogated airway inflammation and airway hyperreactivity
induced by the proinflammatory A. suum molecule APAS-3
by reducing the production of proinflammatory cytokines
in the airways and IgG1 and IgE levels in the serum (105).
The amelioration of OVA-induced asthma by PAS-1 was
mediated by IL-10/TGF-β–producing Treg cells (CD4+CD25+)
and IFN-γ–producing CD8+ T cells (104, 106). Thus,
many helminth molecules target IL-10, TGF-β, and IFN-
γ, which efficiently suppress type 2 cytokine and antibody
responses involved in antihelminth immunity and allergic
inflammation (107).

Recently, a metalloprotease (TIMP)–like protein from Necator
americanus (AIP-2) with Treg-mediated anti-inflammatory
effects on AAI was identified. AIP-2 did not suppress matrix
metalloprotease catalytic activity, but modulated the activity
of CD103+ DCs that reduced the expression of costimulatory
markers and expanded Treg cells. Thus, administration of AIP-
2 reduced eosinophil recruitment, type 2 cytokine (IL-5, IL-13)
production in the airways, and OVA-specific IgE in the serum.
Importantly, AIP-2 also inhibited the proliferation of T effector
cells from the blood of human HDM allergic patients (17).

Another recent study showed that in addition to products
of the adult L5 stage of H. polygyrus (e.g., HES, HpARI),
a preparation of the infective larval (L3) stage could protect
mice against the development of AAI. The H. polygyrus larval
extract (HpbE) and its active protein component, Hpb GDH,
efficiently suppressed HDM-induced AAI in vivo. In particular,
HpbE and recombinant Hpb GDH modulated the arachidonic
acid metabolism of macrophages, inducing an anti-inflammatory,
type 2 suppressive eicosanoid profile (16). HpbE-/GDH-treated
macrophages exhibited high IL-10 and prostaglandin E2 (PGE2)
production, but low production of proinflammatory leukotrienes,
which are key mediators of AAI (16, 108). Macrophage-derived
PGE2 was particularly important for the HpbE-driven regulation
of AAI in this study, and another study found that also helminths
themselves can produce this immunomodulatory mediator (109).
The HpbE-induced eicosanoid switch was largely mediated
through nuclear factor κB, p38 mitogen-activated protein kinase,
hypoxia-inducible factor 1α, and the cyclooxygenase-2 pathway.
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Finally, HpbE reduced the chemotaxis of granulocytes from
patients suffering from type 2 airway inflammation (16).

Together, these studies reveal that helminth molecules
are efficient modulators of the innate and adaptive immune
responses that drive AAI.

DISCUSSION

Helminths have unique immune regulatory potential, and
understanding the complex array of immune responses triggered
by these parasites may be instrumental for the diagnosis,
prevention, and treatment of type 2 inflammatory diseases, such
as allergic asthma. Identifying the molecules and mechanisms
that determine whether a parasite will promote or suppress
allergic inflammation may foster both the definition and targeting
of pathomechanisms of chronic type 2 inflammation. Parasitic
infections influence immunity and inflammation by a variety
of molecular and cellular mechanisms, including the induction
of Treg cells and regulatory macrophages, producing anti-
inflammatory mediators, such as TGF-β, IL-10, and PGE2, with
beneficial effects in experimental models of asthma. However,
the translation of these results from rodents to humans is
not trivial. For instance, little is known about the correct
dose or duration of parasite infection required for protective
effects in humans. Safety concerns about detrimental effects of
parasite infection limit clinical trials, and high immunological
variation, e.g., due to different genetic background, complicates
the interpretation of data from experimental helminth infection
in humans. Indeed, not all studies show an impact of helminth
infection or deworming on allergic inflammation (110, 111),
which is in line with the lack of a therapeutic effect of
intended helminth infection on AAI in humans (51–53) [for a
comprehensive review, see Evans and Mitre (112)]. It is important
to note that epidemiological studies commonly assess effects of
helminth infection on skin prick test reactivity (e.g., atopy) rather
than asthma symptoms, which may explain disparities between
different studies.

Safety concerns regarding live helminth infections may
be overcome by the identification and characterization of
helminth-derived anti-inflammatory molecules, which may be
developed as biotherapeutics. Therapeutic approaches exploiting
the immunomodulatory potential of helminths, while avoiding
infection-related side effects, represent an attractive treatment
option for major chronic airway diseases. The identification

of the cellular and molecular pathways targeted by helminth
molecules (e.g., T cells, DCs, TLR-/IL-33 signaling) should aid
the discovery of new worm-based drugs. Such drugs will have
to be delivered preferentially locally, i.e., to the inflamed tissue
at an optimal dose, route, and frequency of administration,
which remains to be determined for each molecule. The recent
identification of immune regulatory molecules that reduce AAI
upon local delivery and simultaneously act on key human
cells involved in asthma (e.g., epithelial cells, macrophages,
eosinophils) (16–18) justifies the hope that effective topical
helminth-based biotherapeutics can be developed. Formulation
for local delivery into the airways represents a vital alternative
to current biologics or oral corticosteroids that today represent
the standard treatment for more severe forms of type 2 airway
inflammation. However, before helminth-derived molecules can
reach the clinics, there are several hurdles to be cleared. This
particularly includes the immunogenicity of helminth molecules,
potential proinflammatory side effects, as well as their half-
life in the human organism. Reducing the immunogenicity
of foreign helminth molecules represents a major challenge
that may, e.g., be tackled by packaging immune regulatory
proteins into nanocarriers for targeted delivery to a specific cell
type or by designing non-immunogenic (humanized) mutants.
Despite these challenges, significant scientific progress has
been made to turn worm molecules into drug candidates.
The unique and diverse modes of action of helminth-derived
molecules make them promising candidates to become the
next generation of biotherapeutics for the treatment of type 2
inflammatory disorders.
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