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Abstract

The geometric electromagnetic particle-in-cell (GEMPIC) framework provides the foundation
for Vlasov—Maxwell solvers that preserve at the discrete level the non-canonical Hamilto-
nian structure. Preserving the structure of the kinetic equations enables stable numerical
methods for long time simulations. In this dissertation, the GEMPIC framework is extended
to curvilinear coordinates and perfect conductor boundary conditions. Several semi-implicit
time integrators based either on a Hamiltonian splitting or on an antisymmetric splitting of
the Poisson matrix are discussed and assessed regarding their conservation properties and
computational efficiency.

Zusammenfassung

Das geometrisch elektromagnetische particle-in-cell (GEMPIC) Rahmenkonzept legt die Grund-
lage fiir Vlasov—Maxwell Léser, die die nicht kanonische hamiltonische Struktur auf der dis-
kreten Ebene erhalten. Die Erhaltung der Struktur der kinetischen Gleichungen ermdglicht
stabile numerische Verfahren flir Langzeitsimulationen. In dieser Dissertation wird das GEM-
PIC Rahmenkonzept um krummlinige Koordinaten und perfekte Leiter Randbedingungen
erweitert. Verschiedene semi-implizite Zeitintegratoren, die entweder auf einer Aufteilung
des Hamiltonianoperators oder auf einer antisymmetrischen Aufteilung der Poisson Matrix
basieren, werden behandelt und bezuglich inrer Erhaltungseigenschaften und rechnerischen
Effizienz eingeschatzt.

Geometric PIC Methods on Mapped Grids 8



1 Introduction
1.1 Goal

Plasma simulation with numerical schemes that preserve the structure of the kinetic equa-
tions can provide new insights into the long time behaviour of fusion plasmas. However, there
are multiple challenges on the route towards real tokamak simulations such as the handling
of the geometry, the boundary conditions or the different time scales. During my doctoral
project, | have developed and implemented in the SelLalLib [1] an extension of the geomet-
ric electromagnetic particle-in-cell (GEMPIC) framework [56] to curvilinear coordinates and
perfect conductor boundary conditions.

1.2 Methods and Challenges in the GEMPIC Framework

The Vlasov-Maxwell (VM) system is a set of partial differential equations, which describe the
dynamic behaviour of a collisionless plasma and the coupled self-consistent electromagnetic
fields. The Vlasov equation governs the evolution of the plasma particle distribution func-
tion whereas Maxwell’s equations describe the propagation of the electromagnetic fields with
source terms given by the moments of the particle distribution function, namely the charge
and the current densities.

The particle-in-cell (PIC) method [51, 8, 23] is a common technique to solve these differential
equations. The solution is computed following the trajectories of macro-particles representing
the plasma particles. In [40], various PIC methods and their conservation properties are
described.

In GEMPIC, the electromagnetic fields are discretised in space with the finite element exterior
calculus (FEEC) framework developed by Arnold, Winther & Falk [3]. An important feature
of this general approach for the finite element discretisation of partial differential equations
is the compatibility with structure-preserving numerical methods. The basis functions for the
finite element spaces are constructed from B-splines, since they form a de Rham complex as
demonstrated in [12]. This formulation yields a semi-discrete Poisson system that satisfies the
Jacobi identity. A review of geometric integration methods for Hamiltonian systems exploiting
the Lagrangian and Poisson structure is given in [42].

For the discretisation in time, Poisson integrators as well as energy conserving time-stepping
schemes are considered. The former results in two semi-explicit Hamiltonian splittings based
on [45] and [21] whereas the latter is based on the discrete gradient method [36, 68] and
requires an antisymmetric splitting of the Poisson matrix. The discretisation with the discrete
gradient method leads to implicit systems, which have to be solved iteratively. Therefore,
the implicit methods are computationally more expensive than the semi-explicit schemes.
However, they are more suitable to the multi-scale nature of simulations with magnetohydro-
dynamic time scales because they do not suffer from the stability constraints that restrict the

Geometric PIC Methods on Mapped Grids 9



semi-explicit schemes to small time steps.

General curvilinear coordinates are introduced into the VM system using the basic notations
for the representation of scalar and vector functions in curvilinear coordinates in [79] and [27].
When radial mappings are introduced, real boundary conditions for the fields and particles
are required, since periodic boundary conditions are not feasible for the radial direction. For
the fields, perfect conductor boundary conditions as described in [41] can be used to model
a lossless metallic surface. Compatible particle boundary conditions include reflection and
absorption.

The multi-scale dynamics of a plasma occur due to the different magnitudes of the char-
acteristic lengths of the two particle species, the electrons and the ions. The difference in
the gyroradii, for example, depends on the square root of the mass ratio between ions and
electrons. Therefore, many simulations in realistic fusion devices lay focus on the ion motion
considering a quasi-neutral background with adiabatic electrons because this makes it possi-
ble to disregard the small time scales of the electrons. However, even in this simplified case,
noise reduction techniques have to be applied as proposed in [80, 84] to obtain meaningful
results with a reasonable number of particles.

1.3 Outline

The thesis is structured in the following way:

In the first part, a general coordinate transformation is introduced to the VM system. In
Chapter 2, the VM system and its Poisson structure and conservation properties are re-
viewed. Furthermore, the notation for curvilinear coordinate transformations is introduced
and applied to the electromagnetic fields. Chapter 3 approaches the structure-preserving
semi-discretisation based on the PIC method for the particle distribution function and FEEC
for the fields. Here, the discrete de Rham sequence in logical coordinates induces a de Rham
sequence on the physical domain. The semi-discrete Hamiltonian structure is presented in
Chapter 4, where the equations of motion are derived from the discrete Poisson matrix. Chap-
ter 5 is devoted to the Lagrangian formulation of the VM system in order to examine different
representations of the particle trajectories based on the potentials. In Chapter 6, we dis-
cretise the equations of motion in time and discuss the advantages and disadvantages of
the different discretisation schemes. Chapter 7 comments briefly on our sampling strategy
and the initialisation of the electric field. In Chapter 8, the new code is verified in numerical
experiments with periodic boundary conditions showing the conservation properties of the
respective time discretisation methods.

Part Il treats the boundary conditions of the VM system. In Chapter 9, we focus on the field

boundary conditions. First, we examine the natural boundary conditions of the variational for-
mulation of Maxwell’s equation. Second, the boundary parts are represented in the B-spline

Geometric PIC Methods on Mapped Grids 10



basis and third, we apply the perfect conductor boundary conditions. Chapter 10 comments
on the handling of the particle boundary conditions. In Chapter 11, challenges occurring from
singular mappings are gathered. Chapter 12 discusses preconditioners for the conjugate gra-
dient solvers of the boundary mass matrices. The implementation of the boundary conditions
is verified in a numerical test case with various coordinate transformations in Chapter 13.

Part Il presents the quasi-neutral model. In Chapter 14, the quasi-neutral equations with
adiabatic electrons are introduced into the GEMPIC framework. Chapter 15 contains the time
discretisation of the quasi-neutrality equations, which works analogously to Chapter 6, and
reviews the linearised § f method. Concluding, Chapter 16 shows the application of the quasi-
neutral model in two numerical test cases, the ion acoustic wave and the ion temperature
gradient instabilities.

In Part IV, background information on the physical units and the computation of the dispersion
relation is given. The normalisation of the VM system from physical units to dimensionless
quantities is presented in Chapter 17. Chapter 18 reviews the linearisation of the VM system
in order to compute the dispersion relation of the plasma waves simulated in the numerical
experiments.

Chapter 19 concludes the thesis with a short summary of the contributions for the GEMPIC
framework and an outlook to related open problems. In the appendix, useful definitions,
formulas and integrals are provided.

1.4 Related Work
1.4.1 Structure-preserving Framework

In recent years, various structure-preserving particle-in-cell (PIC) discretisations of the Vlasov—
Maxwell (VM) system have been developed as reviewed in [71] and [96]. The preservation
of the symmetry in the variational and Hamiltonian structure of the VM system is related to
the conservation of physical quantities such as charge, energy or momentum. This leads to
algorithms that feature long term accuracy and stability.

Early attempts of structure-preserving PIC codes for the VM system were made by Lewis [61,
62], where a general framework for the semi-discretisation of Low’s Lagrangian [64] based
on finite differences is given. Similarly, Shadwick, Stamm & Evstatiev described an energy
conserving variational semi-discretisation based on finite elements in [31, 77, 82]. For the
time discretisation an explicit symplectic integrator is used.

A fully-discrete structure-preserving PIC algorithm for the VM equations was proposed by
Squire, Qin & Tang [81] in 2012. Their variational formulation is based on a fully discrete
action principle applied to Low’s Lagrangian [64], where the electromagnetic fields are dis-
cretised using the discrete exterior calculus [26].

Geometric PIC Methods on Mapped Grids 11



In 2015, Crouseilles, Einkemmer & Faou [21] introduced a Hamiltonian splitting (HS) for the
continuous Poisson bracket introduced by Morrison in [69]. However, this bracket does not
satisfy the Jacobi identity so that the splitting is not Poisson structure conserving. A correction
was given by He, Qin, Sun, Xiao, Zhang & Liu [45], who discovered an alternative HS for the
corrected Poisson bracket described in [94, 65, 70]. Their HS leads to an explicit time discreti-
sation that preserves the Poisson structure. Using this time discretisation, Xiao, Qin, Liu, He,
Zhang & Liu [97] presented a discretisation of the non-canonical Poisson bracket for the VM
system. The variational formulation uses Whitney form interpolants [95], which preserve the
de Rham complex. Subsequently, He, Sun, Qin & Liu [46] published a structure-preserving
PIC method, where the non-canonical VM bracket is discretised based on first order finite
elements. In the following, Xiao, Qin, Liu & Zhang showed a local energy conservation law in
[98] and derived a fully discrete action principle in [96].

At the same time, Kraus, Kormann, Morrision & Sonnendrticker [56] introduced the system-
atic mathematical framework GEMPIC, the geometric electromagnetic particle-in-cell method.
The framework is based on two main building blocks, the semi-discretisation of the Poisson
bracket with finite element exterior calculus (FEEC) [3] and the time discretisation via the HS
introduced in [45]. The following work extends or elaborates on parts of this framework:

In 2021, Kormann & Sonnendricker [55] presented two energy conserving time discretisa-
tions based on the discrete gradient method. [72] compared one of these time discretisations
in a 1D2V setting to a similar time discretisation proposed by Lapenta [59]. The mathematical
framework of GEMPIC coming from the Lagrangian formalism was investigated in [14]. In
this paper, Campos Pinto, Kormann & Sonnendriicker consider general basis functions for
the finite element spaces in the de Rham complex and investigate the duality of the varia-
tional formulation of Maxwell’s equations resulting in the choice between a weak or strong
formulation of Ampére’s, respectively Faraday’s equation. The application of this variational
framework to spectral methods was described in [13]. The spectral methods feature various
conservation properties such as energy, charge or momentum conservation extending the
particle-in-Fourier (PIF) ansatz developed by Ameres [2] to the GEMPIC framework.

There exist several possibilities to include collisions into the GEMPIC framework. In the case
of energy-preserving time integrators, it is natural to use metriplectic integrators because
they share the same time discretisation strategy. Specifically, Kraus, Hirvijoki & Burby [50]
examined the extension of the GEMPIC framework with a non-linear Landau collision opera-
tor. The metriplectic formulation of the collision operator is employed for a semi-discretisation
that conserves density, momentum and energy. Using the discrete gradient method for the
time discretisation guarantees energy conservation and a discrete H-theorem, i.e. a mono-
tonic dissipation of entropy and an unique equilibrium state.

In the case of a HS on the other hand, the microscopic description of collisions via stochastic
processes is better suited, since metriplectic integrators do not preserve the Hamiltonian

Geometric PIC Methods on Mapped Grids 12



structure. In [88], the variational formulation of the collisional VM system was investigated on
the continuous level as a coupling of a partial and a stochastic differential equation. Then,
the general formulation of stochastic variational integrators developed in [57] can be used
to discretise this formulation in order to include collisional effects in the GEMPIC framework
when using Hamiltonian or variational time discretisations.

Associated to the work on this framework, the following publications have been recently re-
leased: In 2019, Hirvijoki [48] proposed a drift kinetic PIC code for the VM system, which is
based on a discrete action principle and conserves charge. The work on the Landau collision
operator in the metriplectic formulation was continued in [49]. However, the new formulation
is no longer compatible with the conservation of the Poisson structure in the GEMPIC frame-
work. Holderied, Possaner & Wang [52] presented a hybrid MHD-kinetic code based on the
finite element exterior calculus providing an exact de Rham complex. However, the system
does not possess a discrete Poisson structure.

1.4.2 Curvilinear PIC Codes

So far, the geometric methods for the VM system have been limited to Cartesian geometry.
Yet, on the route to simulations in a fusion device, e.g. a tokamak or a stellarator, a realistic
geometry can only be described accurately with a multipatch of coordinate transformations.
Therefore, we review the state of the art of PIC codes with curvilinear coordinate transforma-
tions.

In 1995, Eastwood, Arter, Brealey & Hockney [30] presented the first electromagnetic PIC
code on a non-orthogonal grid based on a body-fitted finite element discretisation that con-
serves the charge. The equations of motion are derived from an action principle and the
particles are pushed in logical coordinates. Proceeding from this work, Wang, Kondrashov,
Liewer & Karmesin [90] introduced an electromagnetic PIC code called EMPIC. The code
features a finite volume discretisation and a hybrid particle pusher, which means that the ve-
locity is kept in physical coordinates. Simulations are performed on a sinusoidally distorted
grid and the energy error is bounded.

Fichtl, Finn & Cartwright [32] proposed an electrostatic 2D2V code in 2012. The fields are
discretised with the finite difference method and the particle position and velocity are both
pushed in logical coordinates. The code is momentum conserving and applies homogeneous
Neumann boundary conditions for the fields. Likewise, Delzanno et al. [25] described an
electrostatic 3D PIC code called CPIC with finite difference discretisation. The code uses
a hybrid particle pusher and allows for mesh refinement. Absorbing and reflecting particle
boundaries are tested on a sinusoidally distorted grid and on an annulus. For the fields
Neumann or Dirichlet boundary conditions can be applied.

In 2016, Chen & Chacén [16] published an electromagnetic 2D3V PIC code in curvilinear

Geometric PIC Methods on Mapped Grids 13



coordinates for the Vlasov—Darwin model. The fields are discretised with the finite difference
method and the time discretisation is fully implicit featuring charge and energy conservation.
While the particle position is pushed in logical coordinates, the velocity is kept in physical
coordinates leading to a hybrid particle pusher. A fluid preconditioner is used for acceleration
of the field solver and multispecies test cases are simulated on a sinusoidally distorted grid.
Complementary, the code was extended to perfect conductor boundary conditions and a
reflecting particle boundary in [17].

In 2019, Gonzalez-Herrero, Micera, Boella, Park & Lapenta [37] proposed a semi-implicit PIC
code in axially symmetric cylindrical coordinates, which uses a finite volume discretisation.
The code is based on the ECSIM code by Lapenta [59] and features energy conservation.

In [73], the GEMPIC framework was extended to general curvilinear coordinate transforma-
tions.

More recently, Xiao & Qin [54] extended their geometric PIC code [96] to orthogonal curvilin-
ear coordinate transformations maintaining the explicit time discretisation via a Hamiltonian
splitting. The explicit time splitting is obtained by the use of a logical velocity variable but
this is only possible for the special case of an orthogonal transformation. They apply perfect
electric conductor boundary conditions in two directions and periodicity in the third direction.
Particles hitting the boundary are removed from the simulation. A different approach was
taken by Wang, Qin, Sturdevant & Chang [91] using the structure-preserving framework to
build an electrostatic 2D PIC code on unstructured grids with fully kinetic ions and adiabatic
electrons. A de Rham complex is constructed with Whitney forms assuming homogeneous
Dirichlet boundary conditions for the fields and a reflecting boundary for the particles. This
setup allows for simulations of ion Bernstein waves in a 2D magnetized plasma.

Curvilinear coordinate transformations are also used with a variety of other methods such as
semi-Lagrangian [43], gyrokinetic [99] or MHD codes [52]. In 2011, Colella, Dorr, Hittinger
& Martin [19] used a finite volume discretisation of the Vlasov—Poisson system with Dirichlet
boundary conditions to perform simulations in a D-shaped annular geometry. In [66], this
code was extended to mapped multi block grids and tested on a sinusoidally distorted mesh
with advection problems. Vogman et al. [89] introduced a continuum code with finite vol-
ume discretisation for an electrostatic axisymmetric cylindrical Vlasov—Poisson system using
specular reflection as particle boundary conditions and Dirichlet boundary conditions for the
fields.
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2 The Vlasov—Maxwell System and Curvilinear
Coordinates

The Vlasov equation in physical phase-space coordinates (x, v) for a species s with charge
qs and mass m, reads

PROND) | v ehievat) + (B 1) 4 v < Bl 0) Vofibevi) =0, @1)

where E and B denote the electromagnetic fields, which are evolved according to Maxwell’'s

equations,
aEgt"t) — Vi x B(x, 1) — J(x,1), (2.2a)
B _ _g E(x,1), (2.2b)
ot
Vi - E(x,t) = p(x,1),
Vx - B(x,t) =0.

The system couples through the first two moments of the particle distribution function f,, the
charge and the current densities,

p(x,t) = qu/fs(x,v,t) dv, J(x,t) = qu/fs(x,v,t)vdv.

The equations (2.1), (2.2a), (2.2b) can be obtained by a bilinear, antisymmetric Poisson
bracket that satisfies Leibniz’ rule and the Jacobi identity. The following Poisson bracket
was introduced in [69] and corrected in [94, 65, 70]:

) 1
{F,G}fs, E, B] :Z/ [(52’5?3] dxv

ds 0F 4G 0G OF
+;m/fs <vv(5fs.5E_vv5fs.5:E) dxv
r X [ 5 (Vi 7w )

0F 0G 0G oOF
+/ <cur15E 'SB —curl(s—E . 53) dx,

where [f7 g] =Vxf -Vyg—Vyxg-Vf.

The time evolution of a functional F[f, E, B] is expressed by
d
a}"[fs,E,B] ={F,H}, (2.3)

where the Hamiltonian # equals the sum of the kinetic energy of the particles and the electric
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and magnetic field energies,

M= [WPLov) axdve g [BEOP+BROPa (24

Equivalently, the equations of motion follow from the Lagrangian introduced by Low [64],

£ =Y [ £bevaA(tx) + mv] % - S — gb(t,x)] dxdy
1 2
w5

The Lagrangian is formulated with the scalar potential ® and the vector potential A. Their

(2.5)
AA(t, x)
B

—Vo(t, x) —

1
dx—/ IV x A(t,x)[* dx.
2 Jo

relation to the electromagnetic fields is given by

0A(x,1)

E(X7t) = —V@(X,t) - ot ’

B(x,t) =V x A(x,1).

2.1 Conservation Properties

Proposition 2.1. The Viasov—-Maxwell system features some conservation properties, which
are important for long term stability:

Energy conservation
d, d Mg 9 1 2 2 _
“H=7 (;2/\\;\ fs(x,v) dxdv + 2/|E(x)| +|B(x)| dx) =0,

Momentum conservation

d d
<= <zs://msvfsdxdv+/QE><de> = 0.

Proof. The proof can be found in [78, Sec. 3.4.2]. O

From the Poisson bracket we obtain only Ampere’s (2.2a) and Faraday’s laws (2.2b) but the
conservation of the Gauss laws follows by taking the divergence of Ampére’s and Faraday’s
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laws,

OE d
V.Sl =V.VixB-V. J:>dt(V-E—p)—0,
aB d

The momentum is conserved if Gauss’ law is initially satisfied for both particle species and
conserved over time, since

d
77; — [P, H} = /E(p — divE)dx.
So, when the conservation of Gauss’ law is lost, the conservation of the total momentum is

violated, too.

2.2 Differential Forms and the Structure of Maxwell’s
Equations

Maxwell’s equations for the electric and magnetic fields are given as

OE(x,t) IOB(x,t)
T Vx x B(x,t) — J(x,1), o = Vx x E(x,1),
Vx - E(x,t) = p(x,1), Vx -B(x,t) =0.

The structure of Maxwell’s equations can be understood by interpreting the fields as differen-
tial forms following [9, 6, 47, 92]. The spaces of electromagnetics form a de Rham complex,
which in terms of Sobolev spaces can be expressed as

rad .
H'(Q) 8 H(curl, Q) _curl | H(div, Q) div L2(Q) (2.6)
and is accompanied by the dual de Rham complex
rad .
LQ*(Q) g H*(div, Q) Lﬂ, H*(Curl, Q) div Hl*(Q) , (2_7)

where the notation * is used to denote the dual of the corresponding spaces.

Definition 2.1. The Sobolev spaces are defined as

HY(Q) ={w € L*(Q)| dw € L}(9)},
H(curl, Q) :={w € L*(Q)?| curlw € L*(Q)*},
H(div, Q) :={w € L*(Q)}|divw € L*(Q)},

)

L*(Q) :={w € Q{w,w) 2 < 00}.
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The complex must have the property that in each step the image of the operator is in the
kernel of the next operator. This complex property is satisfied, since curl grad ® = 0 for all
® € H'(Q) and divcurl A = 0 for all A € H(curl, Q).

For the interpretation of the field equations, there are two options: Either we choose E €
H(curl,Q) and B € H(div,2) and then, interpret the two equations of the first column,
Ampére’s law and the electric Gauss law, in the weak sense, and the two equations of the
second column, Faraday’s law and the magnetic Gauss law, in the strong sense, or vice versa.
We use the first option and consider the following mixed form of Maxwell’s equation with the
test functions ¢ € H(curl, Q) and ¢ € H(Q):

[ o0 e dx= [ Vux ol Bixdx- ()0, (@28
Q

M — Vy x E(x, 1), (2.8b)

/ Vaeth(x) - B(x,t) = p*(1)(2), (2.80)

Vi B(x,t) = 0, (2.8d)

where J* € H*(div,Q) and p* € L**(Q) are linear functionals defined as J*(¢)(t) =
(e, 2, p*(¥)(t) = (¢, p)r2. Note that we have assumed that the boundary terms van-
ish in (2.8a) and (2.8c). Further investigations regarding the boundary conditions are given in
Chapter 9.

2.3 Curvilinear Coordinates
2.3.1 Notation

Let us first introduce our notation for the curvilinear coordinates before discussing how these
can be consistently combined with differential forms. We consider a bijective coordinate trans-
formation from the logical space Q := [0, 1]? to the physical space (2, e.g. a Torus in spherical
coordinates. The transformation map is denoted by

F: Q5 QCR? £ F(€) =x,

where & = (&1,&,&3) T, x = (z1,29,23) " are the variables on the logical and physical mesh,
respectively.

The matrix of the partial derivatives, the Jacobian matrix, and its determinant are defined
as

OF; 0x;
(DF(E),; = Zgs) = 5

Jr(€) = det(DF(£)).
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We assume that the mapping is non-singular, i.e. Jr(£) # 0 V€ € Q, and therefore, the
Jacobian matrix is invertible. The case of singular mappings is discussed in Chapter 11.

Definition 2.1. The column vectors of the Jacobian matrix form the so-called covariant basis
of the tangent space,
_OF(§)  oOx

i TR DF = (t1]ta[ts)

whereas the columns of the transposed inverse Jacobian matrix form the dual basis, which is
called the contravariant basis of the cotangent space,

n; = -, DF(¢)™" =: N(£) = (n1|nz/ny).

Proposition 2.2. The following relations hold between the covariant and the contravariant
basis vectors:

1
n; = —to th, n9 X N3 = tl,
Jr
! ts Xt X t
ny = — : ng X ng = ;
2 Tr 3 Xt 3 1= 5t
1
ng = —t; X tog, n; Xxny =—t
3 Tr 1 Xt 1 2= 5%
Proof. The proof can be found in [79]. O

Definition 2.3. The coefficients of the metric G,,, and its inverse are defined in the following
symmetric way:

Gm(€) = DF(§)' DF(§), G (&) =N(&) ' N(©),
t1-t1 t1-to t-tg n|{-n; nj-nsg nj-ng
Gm = to-t; to-ty to-t3|> G;zlz np-n; nNp-ny no-nj
t3-t] t3-ty tsz-ts3 n3-n; n3-ne ng-ng

2.3.2 Covariant and Contravariant Basis

There is a common notation of the covariant and contravariant basis vectors, which is de-
scribed in [27, 63].
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Definition 2.4. The basis vectors are defined as

o6 06 06\ .,
8331781'2’8333 ’ T

ox
9&;

e; =

’ eZ—V§z—<

so that the vectors e; are the columns of the Jacobian matrix DF and the vectors €' are the
columns of the transposed inverse of the Jacobian matrix N = DF~ .

Definition 2.5. The entries of the metric, g;; = (Gr,)

m

. . Zj o 71
ij» and its inverse, g = (G.}!),., are

represented as

gij =ei-ej, g’ =e"-é.

Proposition 2.6. The following relation hold between the basis vectors:

i s

e’ -e; =0;,
€ = gij €,
e' =g e;.

Proof. For the differential elements we have the relations
d¢§; = V¢ - dxand dx = gzdgl + g;;dfg + ggdgg =e; d¢’.
Then, it follows that
& = V& - e;d¢’,
which leads to
V¢ - e :ei~ej :5;-.

When we represent the basis vectors in the respective other basis, we get

e = (e;- ej)ej = gz-jej7

e = (e'- ej)ej = gijej.

We can represent every vector field either in the contravariant or in the covariant basis,

D = Dje! + Dye? + D3e® = De; + D%ey + D3e3, where D; =D -¢;, D' =D - €',
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However, in the context of differential forms, there is a proper choice, which facilitates the
computation of the exterior derivative. Therefore, a differential 1-form, which is for our choice
the electric field, is represented in the contravariant basis,

E=FEe =NE=E;, =FE;,i=1,2,3

whereas the differential 2-form, in this case the magnetic field, is represented in the covariant
basis,

. DF. B;
B=DBle=—B=DB="1;i=123. (2.9)
Jr Jr

Note that for the representation in the contravariant basis, we need the covariant components
of the vector field and vice versa. We prove this assertions in the next section in Proposition
2.10.

Then, we take a look at the representation of the derivatives.

Proposition 2.7. With the definitions from above, we state the following relations for the
differential operators:

The gradient of a scalar function is given by

V® = NV . (2.10)

The curl of a vector field A is transformed as

VxA—?Vng (2.11)

The divergence of a vector field F is represented in curvilinear coordinates as
1 T
Vi F=— V- (JFN F) . (2.12)

Jr

Proof. + We compute the gradient as

9 _ ;09
¢ = V¢ '— = NV;¢0.
Ve = Veigg T ag Ve
We compute the curl of the vector field as
. . 0A; . . IR HA Hx
A = Ael) = A , A xel = i v o — j
V x V x (Aje) i(VxVE)+VA; xe 8§ie xel=— 9, 96,

where we used the relation e’ x e/ = )ek from [27]. Then, we prove the claim with

J(€
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our definition of the vector potential A = NA = Ae' as a 1-form,

0A3 _ 0Ay
02 03
" ijk )
PrGexa=2os _oa | =204 0X
Jr Jr &3 91 Jrp 0§ 0&
0As _ 94y
061 062

We compute the divergence of the vector field as

1 0 0

v AN 1 i,
< ¥ JFagi(F ) JFagi(JFe F)
_ 1 T
—JFV£-(JFN F)

Lemma 2.8. The cross product between a vector field and a differential 2-form is represented
in curvilinear coordinates as

(vxB)=N(N"v)xB.

Proof. We compute the covariant component of the cross product and obtain

(vxB)= ek(v x B = eksiijFUiBj = ekz-:ijkei -vJpB’
= N(N"v) x B,
where we used the Definition 2.4 and the representation of the 2-form in (2.9). O

2.3.3 Transformation of Differential Forms
We introduce curvilinear coordinates to the differential forms and show how they are trans-

formed in a consistent way as can be seen in [58].

Definition 2.9. For a scalar differential 0-form, g € H' (), we define § € H' () as

§(&) == g(F(§)) = g(x). (2.13)

Next, we consider the transformation of the other differential forms.
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Proposition 2.10. We have the following properties:

1. Avector function, E € H (curl, ), corresponding to a differential 1-form, is transformed
by the covariant Piola transform,

E(x) = N(&)E(&) withE € H(curl, Q). (2.14)

2. A vector function, B € H (div,2), corresponding to a differential 2-form, is transformed
by the contravariant Piola transform,

_ DF(¢)

Bx) Jr(§)

B(¢) with B € H(div, ). (2.15)

3. Ascalar differential 3-form, h € L*(), is related to h € L*()) via

1 -
h(x) = h(§).
(x) G (€)
Proof. 1. Given a scalar function, i)(ﬁ), ®: O — R, which is a 0-form, the result follows

from the transformation rule for the gradient of a scalar function in Proposition 2.7.
Then, the de Rham sequence (2.6) yields a representation of the gradient of a 0-form
as a 1-form, V@ (x) = E(x). We compute

(2.10) -

Vx®(x) =" N(§)Ve2(€)

and reformulate the result to get

E(x) = Vx®(x) = N(£)VeD(€) = N(€)E(E), where E = Ved(£).

2. A similar proof for differential 2-forms uses the transformation rule for the curl in Propo-
sition 2.7. Given a vector function, A: Q — R3, which is a 1-form, it follows from the
de Rham sequence (2.6) that the curl of the function can be represented as a 2-form,
Vx x A(x) = B(x). So, we obtain

2.11) DF (&)

( ~
Vx X A(x) T () Ve x A(§),
which leads to
B(x) = DJf ((5))13(5), where V¢ x A(€) = B(€).

3. The result for differential 3-forms is proven the same way with the formula for the diver-
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gence of a vector field in Proposition 2.7,

@12) 1 A
Vi B = Ve BE).
[
For integrals we use the transformation formula
[ strax= [ o(Pienliee) de. @.16)
Q Q

2.4 Curvilinear Vlasov and Maxwell’s Equations

We transform the Vlasov—Maxwell system using the curvilinear transformation rules for the
differential forms.

Proposition 2.1. Under the coordinate transformation F'(§) = x,

1. the Vlasov equation (2.1) transforms to

Afs(€,v,1)

o
SNV Veh(6v.

HEN(E) (B0 + (V) TV) ¥ BED) - Vfi(v.t) =0

2. Faraday’s (2.8b) and magnetic Gauss’ laws (2.8d) in strong form do not change, i.e.

aBéf’t) = Ve x E(£, 1), (2.17a)
Ve -B(&,t) = 0; (2.17b)

3. the weak formulation of Ampere’s (2.8a) and Gauss’ laws (2.8c) is transformed for all
@ € H(curl,Q), ¢ € H'(Q) as

0 R DF . DF.- L
| Ve NELr|ag = [ DEVex e TUBLIAde ~ [ No-NI|elde,
ot Jq a Jr JF Q
(2.18a)
/Nvgq;-NE|JF|d§:/qzﬁ|JF|d§. (2.18b)
Q Q

Proof. The equations are derived by inserting the coordinate transformation into the Vlasov
and the Maxwell equations and using Proposition 2.10.
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1. We insert the coordinate transformation x = F(£) into the Vlasov equation (2.1),

({W +v- ngs(F(£)7V>t)

+—(E(F(§),t) + v x B(F(§),1)) - Vv [s(F(§),v,t) =0,
and use the Piola transformations (2.14) and (2.15) to obtain

afs(g;v’t) +v- N(&)vgf;(E?Vvt)
q

+ (N(EE(, 1) + v x gf((g

Then, we use the Lemma 2.8 to obtain the proposition.

B(éa t) vvfs(E,V,t) =0.

2. Using the Piola transformation for differential 2-forms (2.15) and the chain rule in Fara-
day’s equation (2.8b) leads to

DF(€) 0B(£,t) .15 OB(x, )
Jr(§) Ot - ot

(11)  DF(§)
 Jr(§)

Since DF'(€) is invertible for any &, we arrive at (2.17a). With the transformation of the

Ve x E(€,1).

= —Vx x E(x,t)

divergence of a 2-form, we obtain for magnetic Gauss’ law (2.8d)

@12) 1

Jr(§)

0= Vy-B(x,t) Ve -B(&,1). (2.19)

3. We use the transformation formula (2.16), the Piola formulas (2.14) and (2.15) and the
curvilinear curl (2.11) to insert the coordinate transformation into the weak formulation
of Ampeére’s law (2.8a) and electric Gauss’ law (2.8¢).

We note that the advection coefficient N (&) "v for the & advection in the curvilinear Vlasov
equation depends on &. Therefore, fs is no longer a conserved quantity but instead prs
(cf. [16, 43]) and the curvilinear Vlasov equation in conservative form reads

at(JFfs) + Vﬁ ' (NTVJFfs) + Vv . <§;N(E + (NTV) X B)JFfs> = 0.

S
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3 Structure-preserving Discretisation in
Curvilinear Geometry

In this section, we will introduce a particle discretisation for the distribution function and a
compatible finite element discretisation of the fields extending the discretisation proposed in
[56] to the curvilinear case.

3.1 Discrete Particle Distribution Function

In order to define the charge and current densities in Maxwell’'s equations, we need to define a
discrete particle distribution function from the positions x,, and velocities v, of the IV, particles
of all species s. We use a definition based on J-functions in phase space,

NP
Fa(%,v,t) = wpb(x — x(8)5(v — vi(t)).
p=1

The §-function defines the point evaluation in a convolution with another function. Therefore,
we need to scale by the inverse Jacobian determinant when the argument is transformed as
expressed in the following lemma:

Lemma 3.1. In curvilinear coordinates the delta distribution transforms with the inverse Ja-
cobian determinant,

56— €,(1)
== 0) =170

Proof. We choose N, points &, € Q so that F(§,) =xp, € QVp € {1,...,N,} and use the
following ansatz:

Iy eR:0(x—x%xp) =70(—&,) Vpe{l, .., Np}.

Then, we integrate over €2 on both sides and use the transformation rule (2.16) on the right-
hand side,

/ 5(x — xp) dx = / 23(€ — &) r(E)]dE Vp e {1, N,).
Q Q

Since the left-hand side equals 1, we get

Ly =€)
7= = 0= %) = 77

[ Tr(€)] Vp e {L, ..., Np}.

Geometric PIC Methods on Mapped Grids 27



Hence, the discrete distribution function in logical coordinates is defined as

Np

fn(&,v,t) = fu(F pr £|JF£p ))6(v—vp(t)). (3.1)

Upon inserting the discrete form of the particle distribution function, the current and the
charge densities take the following form:

Jn(&)=DFT(¢ Z/qsfhs £ v,t)v dv=DF' (¢ Z Gy |(§ (E)T)vp, (3.2a)

Z/Qths £, v,t) Zprp o~ gT)‘ (3.2b)

Note that this representation is smooth enough, since we only consider the densities in weak
form and the Jacobian determinant from the transformation rule cancels out the inverse Ja-
cobian determinant.

Let us collect the logical positions of all particles and their velocities in the vectors E :=
(&1, &n,) ",V i= (vi,...,vn,) . Moreover, we use use the following notation: W, :=
diag(wpmyp) @13, W, := diag(wpgp) @13, N := diag(N(§,)), G := diag(Gn(§,)), 1 < p < N,
Hence, the equations for the characteristics of the particles are written as

-
I

NT(

[

)V,
(®) (BE ) + (N (®)V) x BE,1)).

<.
I

W

Z

3.2 Finite Element Discretisation
3.2.1 Discrete de Rham Sequence

Arnold, Falk, and Winther [3] have developed a theoretical framework for the finite element
discretisation that respects the sequence properties of the de Rham complex. The idea is
to define discrete spaces that form the following commuting diagram with the continuous

spaces:
~ grad - - i -
HY(Q) H(eurl, @) — s fr(div, @) — Y 12(@)
Ho H1 H2 HS
- grad z curl N div -
Vo Wi Va V3
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The operators 11, £ = 0,1, 2,3, are projecting the corresponding differential forms to the
finite dimensional subspaces V. with dimension,

N ifk=0,3,
dim Vj, = ie. Tlyd = &), € Vp, ILE = Ej, € V4, ILB = By, € Vs.

3N, ifk=1,2

The most common construction of such compatible finite element spaces is based on La-
grange finite elements for 14, Raviart-Thomas elements for V1, Nédélec elements for V> and
discontinuous elements for V5. Moreover, a compatible sequence can be constructed from
splines of mixed order as proposed by Buffa, Sangalli, & Vazquez [12]. In our numerical
experiments, we apply the latter elements. We introduce basis functions for the finite dimen-
sional subspaces f/k, scalar functions f\f for k = 0, 3 and vector valued functions

AYy = (AF0,00T, AT, = (0,882 0)T, AL = (0,0, A% T for k = 1,2.

The de Rham structure can also be expressed on the level of matrices and vectors. For
¢ € Q, we collect the value of each basis function in a row vector as

A4(6) = (A4(6), A5(©). - Ak, () € RV for k= 0.3,

~k ~k ~k
A() = (A} (). A5 1(€).... A, 5(6)) € R¥M for k= 1,2
Then, the following relations hold for the basis functions:

VeA'(€) = AL(€)G,
Ve x A (€) = A%(€)C, (3.4)
Ve A%(€) = A3(¢)D

for some matrix G € R3N1*No denoting the discrete gradient matrix, C € R3V2*3MN denot-
ing the discrete curl matrix and D € R™3*3N2 denoting the discrete divergence matrix, all
independent of £&. These matrices need to satisfy

DC=0and CG =0 (3.5)

to mimic the complex properties div curl = 0 and curl grad = 0.

Examples of discrete spaces that satisfy these properties have been proposed in the literature
and are particularly easy to construct on a Cartesian geometry. Using the transformation
rules for differential forms, however, it is straightforward to construct a compatible basis in
curvilinear coordinates from a compatible basis on the logical mesh.
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Lemma 3.1. A de Rham sequence on the physical domain can be constructed from the de
Rham sequence on the logical mesh by

DF(§) «
Jr(§)

A%(x) = A%(€), Al(x) = N(€)A'(€), A*(x) =

Proof. The following computations show the assertions:

VxA'(x) = N(€)VeA'(€) = N (A (€)G = Al (x)G,
DF(¢) DF(€)
Jr(€) Jp<s>

1 3 A3 x
7@ V(D = XX

for the same matrices G, C and D as on the logical mesh. O

Vi x Al(x) = Ve x Al(¢) = A?(¢)C = A*(x)C,

Vi - A2(x) = Ve A(€) =

The mass matrices for the differential forms are defined as

(Wo); = /Q A0(&)AYE)|Tr(€)] dEfor 1 <i,j < No,
()1 = | A?(&)TG;1<5>A3<5>|JF<5>| defor1 < I,J < 3N,

U_/AI &) Go(6)AS(€)———— defor1 < I,J < 3N,

IJ()I

3.2.2 Discretisation of the Curvilinear Maxwell Equations

To discretise Maxwell’s equations based on the compatible finite element spaces, we repre-

sent the electromagnetic fields with a finite number of degrees of freedom, & € R3Vi1x1, b e
R3N2x1 gg

En(&,1) = AN ©)a(t) = > A (€)és ), (3.7a)

N e

Bi(&,1) = A*(©b(t) = > Ak (&)br(1). (3.7b)
K=1

We recapitulate the Piola transforms (2.14) and (2.15) of the electromagnetic fields and intro-
duce the basis representation of the finite-dimensional subspaces,

Ej(x,t) = E4(F(£),t) = N(§)E,(&,t) = N(§A'(£)&(t),
Bh(xa t) = Bh(F(S)vt) = Bh(£>t) =
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Proposition 3.2. The transformed discrete versions of Ampére’s and electric Gauss’ laws
take the following form in matrix notation:

G'Mie=-W, °(E) 1y, (3.8b)

o
Il

Proof. The Maxwell equations in weak formulation are discretised by approximating (E, B) €
H (curl, Q) x H(div, Q) with the discrete fields (E;,, Bj) € V1 x V; defined on finite-dimensional
subspaces with discrete test functions in V; and V4.

For Ampére’s law, we insert (3.7a) and (3.7b) into (2.18a) and use the basis functions A! € V;
as test functions,

~DF(§)
Jr(€)

- / N(©)AL(€) - N(€)3n(&)Jr (&) de.

A*(€)b|Jp(€)| dg

5 [ V©OA©) - NOA ©slr©lde = [ f(f))vg < Al(E)

Next, we use the relation (3.4) for the curl and insert the transformed current (3.2a),

| AOTNE©TNOA IR 10 = [ (R0 DFE)T DFOA )b de
Q ¢ '

. oo (E—¢,)
_ 1 T T w P v
AL\ T =1 A1 s—cT [ A2e)T A2 1 :
@/QA (©)T G (E)A(E)] (&) de b = C /QA (€7 Gl €A(€) 5 € B

Np
- Z qupAl(gp)TN(gp)Tvp'
p=1

For Gauss’ law, we insert (3.7a) into (2.18b) and choose the basis functions A® € V}, as test
functions,

- [ (N@VeR©) NOM©slr@)] de = [ A€ pe)1r(e)] de.
Q Q

Then, we use the relation (3.4) for the gradient and insert the transformed charge (3.2b),

T T e R e [ o n 08,
[ BHO0TNEONOM @l r@)] e =~ [ ROTS a1 Ir(E)]de
Np
& 67 [ A@TCHOA @R dE s == i R(E,)"
p=1

With the notation of the mass matrices (3.6) we obtain the equations in matrix notation. [
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Proposition 3.3. The transformed discrete versions of Faraday’s and magnetic Gauss’ laws
take the following form in matrix notation:

b= —Cé, (3.92)
Db = 0. (3.9b)

Proof. For Faraday’s law, we insert the discrete transformed fields and their basis represen-
tation (3.7a),(3.7b) into (2.17a),

O(A*()b(t))

> = —Ve x AL(€)a(t).

Then, we use (3.4) to reformulate the curl,

A*(&)b(t) = —A*(&)Ce(t)
& b(t) = —Ca(t).

For the magnetic Gauss law, we insert (3.7b) into (2.17b),
Ve - A*(€)b(t) =0,
and use (3.4) to calculate the result,

A%(€)Db(t) = 0
& Db(t) =0
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4 Semi-discrete Hamiltonian Structure

In the previous section, we have obtained a spatial semi-discretisation of the Vlasov—Maxwell
system. Let us now analyse the structure of this semi-discretisation.

4.1 Equations of Motion and Poisson Matrix

From the discretisation of the Vlasov—Maxwell system (3.3), (3.8a) and (3.9a) we get the
following equations of motion with hybrid particle push:

where we denote by (=) the 3NV, x 3N, matrix with generic term A}(gp) for1 <p <N,
and 1 < I < 3N;. Furthermore, we introduce the N, x Ny matrix ~0(E) with generic term
A)(g,) for1 <p < N,,1<i< Ny 2(E)and *(Z) are defined accordingly.

The corresponding divergence constraints are discretised in (3.8b) and (3.9b) as

G Mg =-W, °(E) 1y,

. (4.2)
Db = 0.
Let us consider the semi-discrete Hamiltonian for the system (4.1).
Proposition 4.1. The semi-discrete Hamiltonian can be written in matrix notation as
Y LT Lo - etk
Hp, = §V W,,V + 2& Mie + §b Msb. (4.3)

Proof. We discretise the Hamiltonian of the Vlasov—Maxwell system (2.4) in curvilinear coor-
dinates,

DF(§)
Jr(€)

B(&)

H=S"2= [ vpf Je©)] deav + = [ [IN@E@©P? RUAST
=35 [Py @) dav e g [ (IN@B©F +| ()] de,

by inserting the ansatz for the discrete particle distribution function (3.1) and the basis repre-
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sentation of the discrete fields (3.7a),(3.7b),
e m 1 ~ ~
= s [&TRIOTNOTNOA ©8lr(6)] e
<200 DFE)T DF(E) 35,
T ARNGIE = e S GUEATIES

Afterwards, we use the definition of the mass matrices (3.6) to obtain the proposition

Then, the derivative of the discrete Hamiltonian is computed as

DHp, () = (0,W,,V,M&,Myb) .

Next, we consider the discretisation of the Poisson bracket, which is expressed as
{Fn(0),Gn(0)}a = DFp ()" I(0) DG (W),

(4.4)
where J is the discrete Poisson matrix. In particular, setting F, (1) = @ and Gy, (@) = H,,, the
time evolution of the equations of motion is given by the discrete analogon of (2.3),
da .
=J(u)DHy,.
ar ~ JWDH,

This should correspond to the equations of motion (4.1). Therefore, the Poisson matrix needs
to have the following form:

(4.5)
0 NT(E)W,}! 0 0
~WIN(E) WoN(E)B(E,b)NT(E)W;! WoNE) (E)M;! 0
J= " " . (4.6)
0 M HE) INT(E)W . 0 MicT
0 0 —CM7! 0
where B(E, b) is a 3N, x 3N, block matrix with generic block
0 bis(AP(E,)  —bia(AT?(E,)
2 N2
Bu(&pt) = 3 | —his(A23(€,) 0 bia (DA (€,) (4.7)
i=1
bia(AT () —bia (DA () 0
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4.2 Discrete Poisson Bracket

In this section, we show that, with this form of the Poisson matrix (4.6), (4.4) indeed defines
a discrete Poisson bracket.

Theorem 4.1. The differential operator { f, g}4 = Df " IDg forms a discrete Poisson bracket.

Proof. The Poisson matrix J is obviously antisymmetric and the bilinearity and Leibniz’s rule
follow trivially from the form (4.4):

Bilinearity: {c1f1 + caf2,9}a = c1Df1IDg + c2D f2IDg = c1{f1,9}a + c2{f2. 9}as
Leibniz's rule: {f,gh}a = DfID(gh) = DfIDgh + DfIDhg = {f,g}ah + {f,h}ag.

So, it is only left to prove that the Poisson matrix satisfies the Jacobi identity.

The matrix J satisfies the Jacobi identity if and only if the following condition holds:

0di(w) . o 03(@) o o Odg(m) oo ) .
Z < g Jlk’(u) + oy Jll(u) + ouy Jll(u) =0 Vi, j,k,

l

where 4,7, k,l run from 1 to 6N, + 3N; + 3N32. The Poisson matrix J has the following
block-structure:

0 J12(E) 0 0

(1]
[

Jo1(E) Jn(E,b) Jua(E) 0

0 J32(2) 0 J34

0 0 Juz 0

Therefore, many combinations of indices are trivially zero. In particular, the matrix only
depends on E and b and hence the derivatives are only non-zero if | € [1,3N,] or | €
[6N, +3N1 +1, 6N, + 3N + 3N2]. Moreover, we need to find combinations of i, j, k (or per-
mutations of these) for which both 7;; and .7 i, are non-vanishing. For [ € [1,31V,], this only
leaves the options 4, j, k € [3N,+1,6N,] and the option i € [1,3N,] and j, k € [3N,+1,6N,].
However, if I € [6N, + 3N; + 1,6, + 3N; + 3N2|, we only have i, j € [3N, + 1,6N,,| and
k € [6N,+1,6N, + 3N1]. Let us now consider each of these three non-trivial terms one-by-
one.
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Let first i € [1,3N,] and j,k € [3N, + 1,6N,]. Then, we obtain the condition

3Np =).. E) ki
> (M (GaiE) + 2B (@) = o

0= o=
P ! l

Inserting the expressions of the terms of the Poisson matrix, we get

3N,

T/ _ _W-IN(=)),.
2(3('\' (5:)2’\’ i (T @ity + X WgE'\lK“))“(NT(E)W;I)zj)
=1

Since N is a block diagonal matrix, the terms are only non-zero if all four indices belong to the
same particle. Additionally, we can leave out the W,,, term because it is diagonal and has the
same entry for each component of one particle. Using the definition of the transpose inverse
Jacobian matrix, N;; = gX , we are left with the following expression:

3N,
i(aazi = 0 0% _l>_ =, "%,
=1

8:1 an 8Xk 8:1 8Xk 8X] 6Xkan 8X38Xk

where we have used the symmetry of second derivatives by Schwarz’s theorem in the last
step.

Next, let i, j, k € [3N, + 1,6N,]. This yields the following expression to show:
3N,

Z ( anQ( )]jZ(E‘)k+k7282,(:l)]ku712(':‘)li+‘72§£_l)j12(:4) > =0.
=1 =l — =

With the expressions of the Poisson matrix we obtain

3N,

B(=. BINT (=),
Z[a(WqN(‘—‘)B(‘—Hb)N (‘—‘))z] (NT(E‘))lk

=1
O(W,N(E)B(E, b)NT(E));

+ 5, ZNT(E))
BE TANT (=
L oW, N(H)B(H,b)'\' (_))m(NT(E))U].

Since W,,, is a diagonal matrix, each term contains (W,,!);;(W;.!);;(W;,!) k., which therefore
is left out. Moreover, both N and B are block-diagonal. So, the terms are only non-zero if
all four indices belong to the same particle. Let us denote the corresponding particle index
by p and introduce p,v,0 € {1,2,3}asi —3N, =3(p—1)+p, j—3N, =3(p—1) + v,
k—3N, =3(p—1)+ 0. Inthis case, we also have (W,); = (Wy);; = (W,)rr SO that we can
leave out this matrix as well. Then, we use the definition of NT and the following identity for
the generic block B(&,) of B:

N DF - ~ 2
By, =1xBj=1x J—Bh:N<(NT) th> — NB,N'.
F
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This leaves us with

3 A A A
Z OB (Xp) v piy + OB (Xp)vo Opn + IBh(Xp)op Opin
=1 pn  OTpo pn  Opu pn  OTpy

_ <aéh(xp);w + th("p)uo 4 6Bh(xp)au) .

0Tp,o Oxp Oy

If w = v = o, we get the diagonal terms that are zero and if two indices are the same, say
p = v, we get aBgi’;”:‘“’ + 8355:3"

£ = ( due to the antisymmetry of By,. Last, if the three
indices are all different, we get

N <th(xp)12 . 0B(xp)2s . OBy (x,

)31 .
=+divB .
8.%';,;73 8.%'],71 890;,,2 v h(Xp)

Since div By, = 0 is guaranteed over time by the construction of the discrete de Rham com-
plex when it is initially satisfied, this is also zero.

Finally, we consider the case that i, j € [3N, + 1,6N,], k € [6N,, + 1,6N,, + 3] yielding

3Np —_ —_— 3N2 "
Z MJH(:)U + MJIZ(:)% + Z ﬂ(j43)14k =0.
0= 0= Oba
=1 A=1
With the expressions of the Poisson matrix, we obtain
Ve (O(Wa (N D) (E)MTY); A(—=ME(N " HT(E)Wa )
Z( - = M T gty - 2 - EMhs <NT<E>wm1>”>
=1 =l =1

We contract this with W,,, for indices 1, 7, |\7I1 onindex k£ and Wq—1 on index 1,

3Np Ty =), TNT (= )
=1 (=) =
_ ‘”’ZN2 O(N(E)B(E, b)NT (),
- A=1 86‘4 (C)Ak

This is possible as W,,,, Wq_1 and M, are constant, symmetric and positive definite. Moreover,
we see again that ¢ and j belong to the same particle due to the block-diagonal structure of
the terms. Therefore, we can also contract W, on index j and Wq_1 onindexi. Let us introduce
again the corresponding particle index p and p, v € {1,2,3} such thati —3N, = 3(p—1)+u
and j —3N, = 3(p—1)+v. For these index combinations, the sum over the particle positions
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breaks down to

3N,

1y (=) TINT (= .
5t (a«N A E>§~>>Zk<NT<E))U ANy E<l~>vvq>m (NT(E>Wq1>h>
=1

_OALGG)  OALG)

Oxp,y Oxp

;

0 if u=v,

=9 (curl Al(xp))ok if (1, v, 0) cyclic permutation of (1,2,3),

—(curl A'(x,))or i (1, v, o) non-cyclic permutation of (1,2,3),

where we used N ! = ! and the chain rule in the first equality. For the derivative with
respect to b, we use expression (4.7) for the block of B belonging to particle p to find

N2 9B
Z 8h (gp Z A Ep
am1 9ba =
where
0 ]\12473(519) _A,Q472(£p)
Ka&) = | -R%e,) o A%
Ai,Q (Sp) _Ai,l(gp) 0

It holds that A, = NA4NT in the same way as Bj, = NB,NT. Hence, we get

3IV2 Z\B(Z. bINT (= Na o
A=1 A=1

Now, for i — 3N, =3(p—1)+pand j — 3N, = 3(p — 1) + v, we need the component (u, v),
which is zero if © = v and AZLU if (1, v, 0) is a cyclic permutation of (1,2, 3) (or the negative
if the permutation is non-cyclic). This yields

Mz
y
~“

S

G
s

(Cak =

3Ny a(N(E)B(E7 B)NT(E))U
Az::l b A

A=1
0 if u=v,

=9 (A%(x,)C)ok if (1, v, 0) cyclic permutation of (1,2,3),

—(A2(x,)CQ)gr  if (1, v, o) non-cyclic permutation of (1,2,3).
/4
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Hence, the term vanishes due to the de Rham sequence properties of the basis. O

Since the conservation properties are tightly connected to the Poisson structure, preserving
the Jacobi identity with the numerical approximation results in numerical conservation laws.

4.3 Discrete Casimir Invariants

One class of functionals that are conserved over time in Hamiltonian systems are so-called
Casimir invariants, functionals that Poisson commute with all other functionals. In this section,
we consider the discrete Casimir invariants of our discrete Poisson structure (4.1), i.e. func-
tions C(1) of our discrete dynamic variables i1 = (Z, V., &, b) that satisfy

{C,F} =0« J(@)DC(@) =0 VYF(q).

First, we derive a general form for such discrete Casimir invariants and second, we show that
the divergence constraints (4.2) are such discrete Casimir invariants and hence, conserved
over time in our discretisation.

Proposition 4.1. Let C'(a) be a discrete Poisson invariant of the system (4.1) with Poisson
matrix (4.6). Then, there existe € RNo and b € R™3 such that

C@)=e'( %E)"W,1ly, + G 'M;&) +b'Db. (4.8)

Proof. Let us consider the equation J(a)DC (1) = 0 line by line. The first line reads
NT(E)W, !DyC =o0.

Therefore, C' must be independent of V. Next, we consider the third line, already assuming
DvC = 0, which yields

M;'CTDyC = 0.

Hence, it follows that D;C € ker(CT). Due to the complex property of our de Rham se-
quence, there exist a b € R such that D;C' = D" b. Analogously, the fourth line,

CM['DsC = 0, i.e. M ' DsC € ker(C),

yields due to the complex property that there exists a € € R™ such that DsC = M;Ge.
Finally, the second line of the Poisson matrix yields the following expression for D=C'":

D=C =W, "EM['DsC =W, '(E)Ge =W, grad °(E)e, (4.9)

where we used again the complex property for the last equality. Putting everything together,
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we get the general form (4.8) of a discrete Casimir invariant. O
As a consequence the divergence constraints (4.2) are conserved over time.

Corrolary 4.2. The discrete electric Gauss law, G' M, & — W, =M N, = 0, is conserved
over time if it is satisfied initially.

Proof. This follows immediately from Proposition 4.1 setting € = 1, and b = Oy, since this
leads to the discrete Casimir G' M;é& — Wq~0(E)T1NP. O

Remark 4.3. The discrete magnetic Gauss law, Db = 0, follows from Proposition 4.1 for
e = Oy, and b = 1y,. It can be referred to as “pseudo-Casimir’, since it satisfies the
properties of a Casimir but it is a requirement for the Jacobi identity to hold.
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5 Lagrangian Formulation of the Vlasov-Maxwell
System in Curvilinear Coordinates

5.1 Equations of Motion

For this chapter, we consider the Lagrangian (2.5) for one species in discrete form,

o= [ 50V aAn(E )+ ] = G — g (1, x)] dxdv
1 9 (5.1)
+3/

Ayt 1
OAnEX) " g / IV x Ap(t, %) dx.
2 Ja
Theorem 5.1. The Lagrangian (5.1) under coordinate transformation leads to the same equa-

ot

—V&,(t,x) —

tions of motion as in (4.1) and (4.2).

Proof. We start by inserting the coordinate transformation, F'(§) = x, into the discrete La-
grangian and use the transformation rule (2.16) for the integrals. The scalar potential @, is
described as a 0-form and the vector potential Ah as a 1-form, for which we use the Piola
transform (2.14),

o= [ €9 | (¥ ©ANED) + mv) - DF(©E - e ~ a0 17p(©)] g av

~ 2 2
w5 f (‘—N(&)vgéh@,t) - (o2 | EEE e x A ) ARG
Next, we insert the discrete particle distribution function,
: L H(E-E,)
= ———5(v —
fh(gv V) ;wp |JF(E)| (V Vp>7
and obtain
N - : 1 -
L= pr [(qp (€,)An(E,.t) + mpvp)  DF(,)E, — 5myv2 = a;80(&,.1)
+3 [ |-V @Vebuie.n - N@Aue 0| 1r©)ae (52
1 DF(¢) . 2
3 [- ‘ ek Auen)| 1r(©)]de
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Then, we use the finite element representation of the potentials in their respective basis,
~1

o, = A(&)B(t), A=A (&a(),

and the discrete derivative matrices from (3.4) to get

Np
L= pr |:(QpN(£p)A1 (gp)é(t) + mpr> : DF(&p)ép - %mpv;i - qu\o(fp)&)(t)

+3 [ |-V ©A ©6h0) - N@A @ e e
w5 }DF(@A (€)ca)

|Jr (&) dE.

Hence, the Lagrangian consists of three parts, £ = £,(£,,£,, vy, $,8) + Lg(¢,a) + Lp(a).

The equations of motions are given by the Euler-Lagrange equations,

doL_or
dt dg; g’

for the particle positions in phase space and the degrees of freedom of the potentials, ¢ =

(B,V,¢,a)".

We start with the particle velocity v, forp = 1,.., N,,,

oL .
Tvp - wpmpDF(Ep)gp — WpMpVp,
oL = 0.
avp
Putting these two together yields
&, =N"()v, Ype{l,..N,}. (5.3)

For the particle positions £,,, we use the Einstein notation for summation over double indices
to obtain

GioE = i (@NEIA A0 + mov,) - DFE,)) = g (A (€)3(0) + myv, - DF(E,))
— oy (A (€08 + DA (€3, + mpDFT (€, +my 30V DFT (6,060
g{ = wp (40(DA'(6,)8) &, — 4, VeA"(,) + m, Vev, DF(E,)E,)

Since ag v DF(£,)ép: = Vev) DF(€,)€,, the Euler—Lagrange equation takes the follow-
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ing form:

A (€,)a+ q,DA' (£,)aé, +m,DF T (€,)V, = ¢p(DA' (£,)3) &, — ,VeA'(€,) .

We solve for v, and insert the equation (5.3) for Sp,

U= EN(E,) ((DA'(€,)8) NT(€,)v, — DA'(€,)aNT (€,)v, — VeA'(€,)d — A'a) .

Furthermore, we use
(NT(€v) x (Ve x A'(6,)a) = ((DA'(¢,)a)7 — DA'(£,)) NT(€,)v
and the discrete derivative matrices from (3.4),
v, = %’N(gp) ((NT(gp)vp) (vg x A'(¢,) ) '(€,)Gp — A'(¢,)a ))
P
@ = JENE) (VT(Eve) < (A7(,)Ca) ~A'(€,)(6p+ ).

Last, we introduce the electromagnetic fields, & = —a — G¢, b = Ca, to obtain the following
form of the Lorentz force:

= LN (E,) (A'(€,)8(0) + (NTv,) x A%(€,)b(t)) ¥ € {1,.... Ny ).

P

Next, we compute the Euler-Lagrange equations for a;,J = 1,..., N;. We notice that only
Ly depends on a,

d oL d 0Lk d 0 |1 <1 ~ 1,
S e = e |3 ) PVOA©6H0 - NOA @) (@)
d 1

=~ [ (N©A}©) - N©OA' (€)(~6¢ — &) |Jr(€) ¢

—— [A'@TNTON©A©S IR dE VI € {1, M),

We write this in matrix form with the help of the mass matrix from (3.6),

doL g
dtoa
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Then, we see that only Lz and £,, depend on a ;. Let us start with £,

oL,
6a J

= % [pr<(qp (€,)A <£p>a<t>+mpvp)-DF@p)ép—impv,%—qmﬁp)&)]
=" wpapN(€)AL(E,) - DF(E,)E, = > wpaphy(€,) TNT(€,)v, VJ € {1,.... N1}
p p

From the particle part of the Lagrangian we got the discrete current. Now, we look at the
magnetic field part of the Lagrangian,

2
e [1 [~ R @can| e ds]
:_/@f((g))vgxﬁ(g)) . gf(g)AQ(gmauF(g)dg Ve {1, N1}
T
/CTAK TDF(é)S) . 135((5)) (&)b |Jp(€)|d¢ VK € {1,...,Ny}.

Introducing the mass matrix (3.6), this becomes in matrix notation

0Lp
O0a

= —C"Msb.

Finally, we put the three parts together to get the weak form of Ampere’s law (3.8a),

Mié = C Myb — E wppA (EP)TNT(EP)VP
P

Last, we look at the equations for ér,I =1, ..., Ny. Since the Lagrangian has no dependency
on ¢, the right-hand side of the Euler-Lagrange equations equals zero. Observing that Lp
does not depend on <13 the left-hand side reduces to 827’ + ‘%E From £, we obtain the
discrete charge,

ggj’ - E)Zz lz W ((qu(gp)Al(gp)a(t) + mpvp) .DF(£,)€, — %mpvg - qpfxo(gp)&(t))]

=— prqpf\(}(ﬁp) VI e{l,..,No},
p
whereas the equation for Lz leads to

GLE_i 17 <1 YR AL (VA ()2
S [2 [Ev@R ©6a0) - NoR @) |JF<§>|d4

— - [(N(e)VeR}(©) - N(©A
- [CTRNOTNTON©A @ 1T (©)]dge I € 1.1}

Y(€)(—Gp — &) |Jp(€£)|dg VI € {1,..., No}

We put this two parts together and use the mass matrix (3.6) to end up with the weak formu-
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lation of the electric Gauss law (3.8b),

G'Mie=— prqpf\o(ﬁp).
P

In conclusion, we obtained the following equations of motion from the Euler—Lagrange equa-
tions with the particle positions and velocities, & = (&;,...,€y,)", V = (v1,..,vn,) ", and
the degrees of freedom of the electromagnetic fields, e, b:

Additionally, the relation between the potentials and the electromagnetic fields gives us the
missing two Maxwell equations

6=-Gp—a=-Cée=Ca=h,
b=Ca= Db=

5.2 Poisson Matrix

In this section, we introduce a generalised notation of the Lagrangian formalism by using the
general coordinate z = (E,V,é,a)" with é = —a. Therefore, we use the temporal gauge
setting the scalar potential q?) to zero in order to simplify the scheme.

Then, the Lagrangian from (5.2) takes the following form:
L=~(z) z—h(z)
with
- - N
V() = (W A (2)a + W,,DF T (B)V,0,0,~Ms&)

1 S P 1 .
h(z) :EVTWmV + 5éTMlé + 5(c::\)TMgcgl.

Definition 5.1. We define the Lagrangian matrix as L;; := ngl — gzj .

Then, we review the following proposition taken from [10]:
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Proposition 5.2. The discrete Poisson matrix can be computed as the inverse of the La-
grangian matrix.

doL _ oc
» 49z = 95 and note that the

derivatives can be written in general form with Einstein summation as

Proof. We take a look at the Euler—Lagrange equations

doL(z) d_ = 0vz)

a 8z2 _E’%(Z)_ 82’]' Kk
OL(z) _ dvi(z), _ ON(z)
8ZZ' N (921‘ % &zi '

So, the Euler-Lagrange equations are denoted by

Ovi, _0v, Oh
aZj 7 6zi J 8zi'

Solving this equation for - leads to

_ L O
82’@' 82]‘ KA 82’1‘.

<37j i

With a Legendre transformation we realise that the Hamiltonian of this system is given by

oc . .
’Hh—g-z—ﬁ—y(z)-z—[,—h(z).

Therefore, we write this equation as

L(Z)E = DHp(z).

Assuming that the Lagrangian matrix is invertible, we see that its inverse is the discrete Pois-
son matrix as inverting the matrix leads to the same system as in (4.5),

dz
— = L"(z)DH,.
P (z)DHp

For the Lagrangian (5.2), the Lagrangian matrix is a 4x4 block matrix with the following
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form:

Hence, the inverse is computed as

0 Ly " 0 0
. -LyY Lyt Lt oo

0 Ly’ 0 LT

0 0 —L! 0

In this case, we have

0 NT(E)W ! 0 0
| ~W,IN(E) WaN(E)BE aNT(E)W,,! WaNE) M1 0

0 —M;I(W)TNT(E)W% 0 Mt

0 0 —M;! 0

5.3 Logical Particle Velocity

Up to this point, we only considered a hybrid particle push as given in (4.1). Now, let us look
at the particle velocity in curvilinear coordinates. We note that there are two options for trans-
forming the particle velocity. Either we represent it in the covariant basis with contravariant
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components or vice versa,

v =e' = DF(§)V,
v =elv; = N(€)v.

Naturally, we have v = x = DF(g)é = e;4". So, if we choose the contravariant components
of the velocity, we get € = v whereas for the covariant components, we get & = G LE)v.

For the contravariant velocity components v, we obtain

(8, V,a) =W
Y2 ="73=0,
74(8) = My8,
h(z) = %WmVTGm(E)V + %,éTN/Ilé + %(Ca)TMQCé

. N 1 -
W,, VG, HE)V, + 5éTMlé +-a'C"MyCa.

\)

We divide the Lagrange matrix in the block matrices L;; = giz}] — g%, I1=1,.4,J=1,..,4.
Since ~; does not depend on € and ~» and 3 equal zero, we get Lis = Lg; = Lo = Log =
L3s = Lgz = 0 and since =4 only depends on €, we obtain Loy = Lo = L4q = 0. Hence, the
only non-zero blocks are Ly, L2, Lo1,L14, La1, L3s and Lys. Let us begin with the parts that

are identical for both choices,

0 1
om0,
9 5
L3 Li, = %:_ 1

Now, we look at the parts that are different. For the velocity v, we get

) -
Lip = —LJ, = _a%; — W,,G(E)
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whereas for v, we obtain

Since term L1; is more complicated to compute, we look at it componentwise for each parti-

cle,

: oy O\, . .
(Lll)z]é-] — < 3(5; _ a&-] )é_ja 1,9 = ]_,...,3Np.

For the contravariant components of the velocity, v, we obtain

(371,3' 01,

9&; ¢

)&= (064~ 06, 4s) -+ m (25 (Gn(O9); ~ 05, (Gl € €

:q(éx(V§xA)) +m<€><(V£><Gm\7))i.

A
Next, we introduce the matrix B(Z, a) via

B(E,4)E = (E x (~2(E)Cé)> - <E x (Vg x WE)&)) .

Using E = V, this leads to

Lip = W,B(Z,a) + Wy, (VE\”/TGm(E) — V;02,6m(8) ) .

On the other hand, for the covariant components of the velocity, v, we get

(371,;' 01,

&; &

)

)& =4 (004 - 0, 45) & =a (£ x (Ve x &) .

We can write this part of the Lagrangian matrix as

L1 = W,B(E,a).

Now, we can build the Lagrangian matrix for v and v using the same structure as in (5.4).
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For v, we get

Li = W,B(E,4) + Wy, (VaV Gy — V02,6 )
Ly = G(E)Wy,

L3 :Wq 1(5)7
L4 = |\~/|17

which leads to the Lagrangian matrix,

W,B(E,4) + Wi VeV Gy — Widz,GnV; —Gu(BEW, 0 —W, ()
W, G (E) 0 0 0
L =
0 0 0 —M
1@ w, 0 M, 0

Then, we compute the Poisson matrix as

0 GRlw! 0 0
WGl G (wié(s, a)+ V=V G, — asjemf/j) GHWR! WG Myt 0

0 —M;l( I)TG,,_HIW

3l

0 0 —M;? 0

With the derivative of the Hamiltonian,
1 B ) o 3 T
DH = (2VEVTWme(E)V,WmeV,Mlé, CTMQCQ) :

the equations of motion are given by

==V,
V =G (&) (Wl B(E,a) + %V:(VTGm(E)) - V}(?EGMm(E)) \Y%
+G, (B)Ws (B, (5.5)
e=—M"'1(E)TW,V+MICTMCa,
Ca=-Ce
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For v, we obtain

L, = W,B(E, a),
Lo = Wiy,

L3 :Wq~1(E)a
Ly = M;.

W,B(E,a) W, 0 -W, YE)
W, 0 0 0
L =
0 0 0 —My
TEw, 0 M 0

and the Poisson matrix is computed as the inverse of the Lagrangian matrix,

With the derivative of the Hamiltonian,
1 . R L B T
DH = <2VEVTWmG;L1(E)V,WmG;3V,Mlé,chleca) ,

we obtain the following equations of motion:

E=G,'(8)V,

;s 1 N N - N -
V= —§VEVTG;1(E)V +W.B(E,a)G H{E)V+W. ‘e, 56)
é=—-M1(HTW,GHE)V + MTICTMyCa,
Ca= —Ce.

Remark 5.1. When we compare the particle characteristics for the hybrid ansatz and the
two representations in logical coordinates, we see that for a non-orthogonal mapping the
equations of motion are non-linear. Only for the representation of the velocity in contravariant
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coordinates V, the position update can be solved explicitly, since

=V =G, (E)V=N(B)V.

(-

However, for the velocity in logical coordinates, we get an additional part compared to the
hybrid case because the Hamiltonian is dependent on =,

[eX

V = WaN(E) (~1(E) + (NT(E)V) x ~2‘(5)}3) ,

X
0]

V= WG} (E) (~1(E)é TV ~2(5)15) +GIN(E) (;VE(VTGm(E)V) — V0= ,Gm(a)\?> :

V=Wwa (=) + (G, (E)V)x AE)b) - %VEVTG”(E)V-

ps m

Generally, this leads to a non-linear velocity update with a quadratic velocity. Therefore, we
have chosen the hybrid particle push for our implementation.
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6 Time Discretisation of the Equations of Motion

For the GEMPIC method on Cartesian grids, two approaches for structure-preserving time
propagation schemes that exploit the form (4.5) have been proposed: In [56], the discrete
Hamiltonian (4.3) is split into five parts flh7i, i =1,...,5 so that each part of the equations
a = {ﬁ,’i—lh,i} yields explicit equations of motion and the discretisation preserves Gauss’
law. This splitting was first proposed in [45, 97]. A second ansatz is to decouple system
(4.5) with an antisymmetric splitting of the Poisson matrix J. Then, the resulting subsystems
can be solved by a discrete gradient method yielding an energy-preserving time stepping
scheme. In [55], two schemes are constructed this way: a semi-implicit scheme that does not
preserve the electric Gauss law and a fully implicit scheme that preserves Gauss’ law. The
discrete gradient methods readily extend to the curvilinear case as we will show in Sections
6.2 and 6.3. However, for a general coordinate transformation an explicit Hamiltonian splitting
(HS) can no longer be constructed, since the coordinate directions do not decouple for non-
orthogonal mappings. Instead, we will construct two semi-explicit splittings that preserve
Gauss’ law in Section 6.1.

6.1 Charge Conserving Splittings

6.1.1 GEMPIC Hamiltonian Splitting

In this section, we consider an HS as in [56]; however, we only split into three parts,
7:[h = 7:[p + 7:[]3 + 7:[B

with

T & 4 lere =

e Mle, 7‘[3 =-b MQb

_1 |
H, = 5VTWmV, Hi =3 5

Thus, we obtain the three subsystems

= {u,H,}, a={u,Hg}, u={uHp}

The subsystems for 7z and H g are solved exactly and then, evaluated at the discrete time
steps t" = nAt. Let us denote u(t") =: u".
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For Hf, the equations of motion are

E=0,
V=WJ.NE) {(E)e,

" (6.1)
e=0,
b=—-Cé

Vil = VT L AtW o N(ED) H(EM)en,
én—i-l — én

bt = b" — AtCe".

For Hp, we get

. [I]
Il

<
I
o o

(6.2)

<
o Ez
Il Il
S 0
_‘
<t
)
o

which leads to the discretisation

En-‘rl — En
Vn+1 — Vn,
|\7|1én+1 = Mlén + AtCTMQBn,

B = B

For H,, we obtain the following equations:
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Here, we get the analytic solution

At
2(At) = Z(0) + /0 NT(E())V(t) dt,

This system is implicit in the particle coordinates (£, V) but decouples between different
particles. It is not possible to solve the resulting 6 x 6 systems explicitly. Therefore, the
kinetic energy part was further split into the three directions in [56]. Such a splitting yields
explicit equations only if the Jacobian matrix of the coordinate transformation is diagonal and
constant. Since this is generally not true, we keep the kinetic part together.

In order to solve the non-linearity caused by the dependence of N on E, we need to introduce
an approximation that conserves the Poisson structure. In [55], it has been shown that a
Gauss-conserving discretisation can be obtained using the same constant velocity for both
the position and the current update. We solve the particle equations with the symplectic
midpoint method in a fixpoint iteration using a predictor-corrector scheme. Then, the current
for the update of the electric field is computed with a line integral for ~!(Z(t)) and the velocity
from the position update. This results in the following system:

2 =E" + AINT (B)V, (6.4a)
VISV AW N (B) B (E67)NT (§) V.
~ ~ tn+1 ~
Me"tl =M, 8" — / LE(r)TdTW,NT () V, (6.4b)
t’!L
f)nJrl :Bn
where E = S 48" § = VIV gng g (7) = (OSSN

Proposition 6.1. For the proposed splitting, Gauss’ law is preserved over time if it is satisfied
initially and (6.3) is discretised as in (6.4).

Proof. First, we identify the two splitting steps in which the electric field is changed. In 3,
the update of the electric field (6.2) multiplied by G stays constant due to the discrete com-
plex property (3.5). For 7—~Lp, we multiply (6.4b) with G, plug in the position formula (6.4a)
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= =n+l
and use that 4€ = "7 —E" i5 constant in time,
dr At

~ - tntl ~ En—‘rl _=n
G Mgt — G 'Me" = —/ G &) drw,——
t

n At
tn+1
5 - ~ d
& G Mt - GTmye" = —/ wW,G" H(E(7)" fi(T ") ar.
tn
Last, we use the chain rule, Ml]\[ —GT =) T %D and obtain
dr P dr
- Ly 4 EE)T
G M&"t! — GTM;&" / ——— 1y, dr
tn 7_
& GTME™ ! — GTMe" = — (W, @) 1y, - W, "(E") 1y, ).

Note that the source-free part of Maxwell’s equations is solved in separate splitting steps,
Which causes a restriction on the time step (cf. [55, Appendix A.2]. Using the stability condition
for on Cartesian grids with the minimal cell size of the mapped grid provides a rough
estlmate for the maximal time step. For the simulation results of this Hamiltonian splitting we
use the acronym HS.

In [54], the original explicit Hamiltonian splitting into five parts from [45] was constructed for
curvilinear coordinates with the velocity represented in covariant coordinates v (5.6). How-
ever, this works only for orthogonal mappings, where the partial derivatives of the diagonal
entries of the inverse metric equal zero, i.e. 852.g“' = 0,7 = 1,2,3. In this case, the particle
update is componentwise independent, meaning fl does not depend on &; and ?; does not
depend on ©; for ¢« = 1, 2, 3, which yields the following splitting:

Hp = Hp1 + Hpo + Hps + He + Hp
with sz = 2mpvzg i, i =1,2,3,Hp = % ™ é,Hp = %CTéTI\N/IgCé.

Then, with the notation from [27], ¢ = (G,,):; ", the five operators are given by

i

T
& = g"'(&, &),
by = —%911(52,§3>1711~\§53 - %352911(52753)1717
i = %911(52753)@1]\%52 - %353911(52,53)@%,
é1 = —qM ' AT (&) Tg" (&2, &)1
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Hpo :
6‘2 = 922(51753)627

- q s A27 1 0
U1 = 5922(51,53)02/\51?3 - 5851922(51,53)1;5,

>

o~ 1 .
5= —Lg2(er, 69)Ah — 506,67 (61,60)03,

&y = —qM5 A3(€) T g% (&1, &3) o

Hp?) :
&3 = g% (&1, &),
2 q ~A2F 1 U
v = _E933(§17§2)U3A%b2 - 5861933(51’&)”%’
B q A A27 1 3
U2 = E933(§1,€2)U3A%51 - 5852933(51’52)”5’

é3 = —qM5 A5(€) T g% (&1, &) 3.

HEe
v="2LA's,
m
b = —Ce.
Hp
&= M-CTRLB

Remark 6.2. Examples for orthogonal mappings that satisfy the additional condition are cylin-
drical and spherical coordinates,

x = (&1 cos(&2), &18in(&), &) T, x = (& sin(&2) cos(&3), & sin(&o) sin(és), & cos(é2)) '

Examples for mappings that are orthogonal but do not satisfy the additional condition are the
cylindrical mapping with a square root of the radial direction,

x — (\/gcos(fg), \/aSin(§2)7 &)7,

or an elliptical mapping,
x = (Rcosh(&;) cos(&s), Rsinh(&;) sin(&), &3) T
Other mappings such as the sinusoidally distorted mapping,

x = (&1 + asin(&) sin(&), & + asin(é) sin(&), &) T

are not even orthogonal so that the metric has non-diagonal entries. This prevents an explicit
time discretisation in form of a Hamiltonian splitting. In summary, we see that the explicit
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Hamiltonian splitting can only be constructed for a limited number of mappings. Therefore,
on the route towards realistic tokamak geometry, we focus on the semi-implicit time stepping
methods based on a hybrid particle push.

6.1.2 Alternative Splitting

The following splitting in three parts is taken from the paper of Crouseilles, Einkemmer &
Faou [21], where another bracket is used, which does not satisfy the Jacobi identity. The dis-
cretisation of this bracket yields a different matrix, which together with a Hamiltonian splitting
results in slightly different subsystems. In this splitting, the first subsystem takes the same
form as (6.1) in the GEMPIC splitting but the second subsystem is given as

[
I

0,
W4 N(Z2)B(Z,b)NT (E)V,

V=W
Whé — Wb,
b=0.

Thus, only the update of the electric field can be solved exactly whereas the velocity equation
must be solved implicitly because the velocity directions cannot be decoupled. For the dis-
cretisation, the symplectic midpoint method is used. However, as this is only a 3x3 system
particle-wise, the direct computation of the inverse of (I — S'W. N(E")B(E", B")NWE”))
is most suitable. This leads to the following discrete equations: "

B71+1 — Bn
(6.5)

As in the GEMPIC splitting (6.4a),(6.4b), we solve the position update iteratively with the
symplectic midpoint method in a predictor-corrector scheme. Then, we compute the current
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with the same velocity and an exact line integral for ~ *(Z(t)),

En+1 L z=n
"= E" + AN () v,

[

2
Vn—l—l —_ Vn,
~ _ tn+1 ~ En+1 + En (6'6)
Mi&" = M;&" /t YE(r)) " dTW,NT <2 ) v,
b =b".

Proposition 6.3. For the proposed splitting, Gauss’ law is preserved over time if it is satisfied
initially and the third system is discretised as in (6.6).

. . . En+175n o T En+1 =n
Proof. It applies the same proof of Proposition 6.1 with =—x=- = N (+> vr. O

Although this splitting is not derived from our Poisson structure, it still conserves Gauss’ law
and is quite fast as we do not need to deal with the non-linear dependency of = and V in the
”Hlp step. Again the curl-part of Maxwell’s equations is split so that the scheme is subject to a
time step restriction. For the simulation results of this method, we use the acronym CEF.

6.2 Energy Conserving Antisymmetric Splitting

Next, we consider energy conserving time discretisations constructed as discrete gradients
[75]. First, we revise the idea of the discrete gradient method following [67].

Theorem 6.1. Let us consider a system of ordinary differential equations of the form

u=J(a)DH (i)

with a skew-symmetric matrix 7. Then, the discrete gradient discretisation of the form

ﬁn—l-l —a”

A7 — j(ﬁn-‘rl’ﬁn)D?:[h(ﬁn-i-l’ﬁn)

is energy conserving if 7 ("1, ") is skew-symmetric.

Proof. The energy variation in one time step is defined as

7:[;;4-1 _ 7:[% — Df}:lh(ﬁn-f—l’ ﬁn)T (ﬁn-f-l _ ﬁn) )
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Now, we insert the discretisation from above and use the skew-symmetry of 7 (a" !, a"),

A — Y = DR, )T (AT (@0 ) DA i)

= —AtDH, (@, 0") T J (@, a") DH, (@, a") = 0.

Several ways to construct discrete gradients have been proposed in the literature [53, 36, 15].
However, in our case the Hamiltonian is quadratic—and D7, linear—so that all methods
simplify to the second order midpoint rule. Hence, this leaves us with the choice of how to
discretise 7. Moreover, we follow [55] and split the discrete Poisson matrix J, keeping its
skew-symmetry in each subsystem. So, we obtain the following four subsystems:

system 1: E=N'(E)V,
system 2: V = W 4 N(
system 3: b

system4: V =W.N(E) (E)e, Mye = — 1(E)'NT(E)W,V.

In the first system, the element of the Poisson matrix N(Z) " is changing over time and needs
to be approximated. We use a Crank-Nicolson method to maintain second order accuracy
and solve the system iteratively with a predictor-corrector scheme,

NT(EnJrl) + NT(En)

A4S
2

Note that the system is block-diagonal and hence, only couples the position of one particle at
a time.

In the other three systems, the Poisson matrix is constant over time and we use the midpoint
rule to discretise the D, part. Then, the equation for the second system reads

Vn+1 —_Vn W NBNTVn+1 N VAU

At 2
At At

(6.8)
& (I — 2WqNBNT> AVALRE (I + 2WqNI§NT> v,

where for every particle the inverse of the 3x3 matrix on the left-hand side can be exactly
calculated.
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With the same method, system 3 becomes

_ antl _ zn - ptl L pn
M S — TR, 2
At 2
BnJrl o f)n antl +en
_ = C——.
At 2
We write this in matrix form as
My —4LCTMy | [ et My AICTMq | | &
5tc | bt —£tc | b"

and decouple the equation with the Schur complement S = M; + ATtZCT,\NAQC,

-1

'\7'1 *%CTMQ | 0 S—1 0 | %CTMQ
A A
St | —5tC | 0o 1) \o |
So, we get
~n+1 -1 \/ At? TN/ ~n TN
e =5 (Ml — TC MQC)e + AtC Mgb ,
A (6.9)
bt = b — 7C(é”“ +én).
Finally, system 4 is discretised as
v+l _yn -, entl + en
- _WeN T =
At m 2
N én+1 _en 5 Vn+1 + V"
My— — — _ 1 TNTW vy v
1 At ( ) q
and we use again the Schur complement to decouple the matrix form of the system,
| —SWaN 1| [Vt | StwaN"L| [ V"
%(~1)TNTW(1 |\~/|1 entl _%(~1)TNqu Ml &n

Then, the Schur complement has the following form: S = M; + 22w, W4 (")TNTN L,
which leads to the inverse

| —&tWaN ! I AtWaN1) (10 | 0

ALCHTNTW, M 0 | 0 S\ HTNTW, |
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Hence, we obtain the decoupled equations

- At2 -
VARREER A %W%N“(én+1 +8"),

where we introduced the particle mass matrix, M* := (" 1) TNTN !, which is calculated com-
ponentwise for one particle as

71,1 i1,1 A1,1 11x1,1  R1,1 12%1,2 K11 1331,3

A; 0 0 A; 0 0 A;7g A A;7g oA A;7g A

* . ~ —1 ~ _ ~ ~ - ~ -~ ~
W, =| 0 &0 |Gal| 0 B2 o | = [AR@Al AlgmRle Rlageils
11,3 31,3 %1,3 31%1,1  %1,3 32%1,2 %1,3 33%1,3

0 0 A 0 0 A A7 A A;7go A A;7g A

forl1 <4,j5 < Nj.

When we look at the charge conservation of the system, we notice that the conservation of
Gauss’ law gets lost if the current is not computed in the same splitting step as the position
update, which is pointed out in [55]. The simulation results of this energy conserving discrete
gradient method are labeled as DisGradE.

6.3 Energy and Charge Conserving Antisymmetric Splitting

In this section, we change the splitting and solve the systems 1 and 4 from the antisymmetric
splitting (6.7) together. Our goal is to devise a discrete gradient method that also preserves
Gauss’ law. The three subsystems are given as

system1: E=N(E) 'V, V=W.N(E) (E)e, M\yé=—- (&) 'NE)"W,V,

—

For the first system, we have to construct a discretisation of the partial Poisson matrix that is
antisymmetric to maintain the energy conservation. Moreover, we are aiming at an approxi-
mation that preserves Gauss’ law. Both goals are achieved with the following discretisation:

En—H _=n NT(En—H) 4 NT(ETL) Vn+1 N VAU

At 2 2 ’
vnrtl _yn N(EnJrl) + N(En) 1 tntl antl 4+ &n
—;— = Wx - Y&(r)dr—————, (6.10
At " 2 At/tn (E(r)dr——F—, (6.10a)
Mlén—i-l _ Mlén 1 1 o - NT(En+1) + NT(En) vl + vV
At = _7 (':‘(T)) dr 2 Wq 9 ’
t7L
(6.10b)

Bn+1
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Since the system (6.10) is implicit, it has to be solved iteratively: First, we loop over the
particle position and velocity and second, update the electric field with the computed current.
Last, the whole system is looped over in a fixpoint iteration for the electric field.

The last two systems are still solved as in (6.8) and (6.9). Let us take a look at the conserva-
tion properties of this splitting.

Proposition 6.1. The splitting defined by (6.10), (6.8) and (6.9) conserves the discrete en-
ergy.

Proof. Since system 2 and 3 are still discretised with the discrete gradient method, they
trivially conserve the discrete energy. Therefore, we only have to check the discretisation of
the first system (6.10). The variation of the discrete energy in this splitting step is given by
 /n+1 /. 1 n+1\T n+1 ~n+I1\T g =xn+1l 1 n\T n ~n\T N =N
Hr —’Hh:§<(V )W, V4 (671 T, & )—5((V )W, VP + (87) Mle)

1 - -
_ 5 ((Vn+1)TWmVn+1 _ (Vn)TWmVn + (én+1)TM1én+1 _ (én)TMlén) )

We multiply (6.10a) with (V™+1 4+ V™) TW,, to find after some reordering,

(VnJrl)TWmVnJrl o (Vn)TWmVn —

tn+1

-
e NT(E"H+NTEY),, VT +ve L,
</tn 1(.:.(7'))T dr ( )2 ( )Wq 5 (e tlie ).

Using (6.10b) to express the right-hand side yields

~ ~ T
(Vn+1)TWmVn+1 o (Vn)TWWmVn - _ <M1én+1 o Mlén> (én—i-l + én)

=~ (e TMe! - (@) &)

Proposition 6.2. The splitting defined by (6.10), (6.8) and (6.9) preserves Gauss’ law over
time if it is satisfied initially and system 1 is discretised as in (6.10).

=n+1l_m=n
=

Proof. This is proven in the same way as Proposition 6.1 with a constant term =—=- =

T En+1 T =n n+1 n . .
N ET N (B VIV i this step. O

The simulation results of this charge and energy conserving discrete gradient method are
labeled as DisGradEC.
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Let us compare the building blocks of the DisGradEC method to the HS in terms of complex-
ity. Usually, the number of particles is much larger than the number of degrees of freedom
for the fields so that the most expensive step is the evaluation of the line integral for the
current deposition (cf. [55, Sec. 5.2.2.]). However, for DisGradEC, this evaluation needs to
be repeated in each non-linear iteration. Moreover, for the source-free Maxwell equations,
the computation of the Schur complement for DisGradEC is more expensive than the explicit
solution for HS.

The DisGradE scheme treats the source-free Maxwell equations in the same way as Dis-
GradEC. Computationally, the most expensive part is the assembly of the particle mass ma-
trix. Both the evaluation of the line integral and the particle mass matrix depend to the sixth
power on the order of the basis functions (cf. the discussion in [55]). In the case of DisGradEC
however, the constant depends both on the number of cells crossed by the particles in the
line integral and on the number of non-linear iterations. Therefore, a general comparison is
not possible.
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7 Particle and Field Initialisation

7.1 Particle Sampling

Proposition 7.1. When we sample uniformly in logical coordinates, the weights of the particle
distribution function are scaled with the Jacobian determinant.

Proof. The particle weights are defined as w, = é where f is the distribution function and g
the particle density function from which we sample. For the particle distribution function we
assume a small perturbation of an equilibrium function fo,

fx,v,t=0)=f(§v,t =0) = (14 acos(k- F(£))) fo(v),

_ 1 1(v—vp)? -
fo(v) 7m exp (—2%) £€0,1)>=Q,veR

When sampling uniformly in x, the particle density function g(x, v) is characterised via

//g(x,v)dxdv—l.
R3 JQ

So, we choose

1 1
e —_
VO](Q) (\/ ZWUTI)?’ *P < 2 U%x

V —V 2
3(v) = g(v) = 1<0>) |

However, when we sample directly in &, the normalisation is transformed to

/Rg/gg(x’v>d"d":A3é§(£,V)\JF(£)\dgdv:1.

This leads to the choice

=6 v) — 1 1 o C1(v—vp)?
e )_vol(ﬁ)!JF(ﬁ)!(\/%vTx)?’ p< 2 v, >

Since we defined the logical domain as Q = [0, 1], we obtain vol(€2) = 1 and the weights
are computed as

V) — (1 + acos(k - F(Ep))> | TR (&,)]-

Remark 7.2. If we sample uniformly in the physical domain, the inverse of the coordinate
transformation is needed to compute the logical coordinates. Therefore, this sampling strat-
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egy is only feasible if the inverse transformation can be computed analytically.

7.2 Poisson’s Equation

For the initial electric field we solve Poisson’s equation:
GTMIG(% = ﬁa

—Go.

e

When the kernel of the Poisson matrix is not equal to the zero vector, we have to compute the
whole nullspace in order to use a linear solver. The condition for the nullspace is given by

[Exax=Te [N©BE©IFE @€ =0+ [ NOA €I dee =0

The initial charge for the weak formulation of Poisson’s equation is accumulated as p =
Z)electron + pion’ where
b= [ 7€) R(OIFE)]d6 = 0. T, R(E,)
p

In this case, we use a constant ion background represented by
R RSGIACIEH
The integral is solved with Gauss quadrature points &, and quadrature weights w, as

Pi=ai Y weAEAY(€)|Tr(E,)-
q

L2 error
/

L2 error

10 8 L L L L L L
8 8.5 9 9.5 10 10.5 1
Particle number in powers of 2

8 85

9

9.5

10

10.5

Particle number in powers of 2

(b)

Random numbers

"

(a) Sobol numbers

Figure 1 Convergence rates for Sobol and random numbers.
To check the convergence of our sampling strategy in different domains, we sample a constant
66
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particle distribution function in & and measure the value of p.jeciron + Pion IN the L? norm
for different numbers N, of particles. We use Sobol and random numbers on a Cartesian,
distorted and cylindrical grid and obtain the expected convergence rate of N%) for Sobol and
L_ for random numbers [5]. In Figure 1, we see the L? error for the different grids together

p
with the expected convergence rate for Sobol and random numbers.
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8 Numerical Experiments

We have implemented the 3D3V propagators in curvilinear coordinates as part of the SelLaLib
library [1] with a finite element solver based on compatible splines (see [4, Appendix A] for
some details on the implementation). In this section, we reproduce two numerical test cases
from [56] in a three dimensional setting to validate the code. Additionally, we perform an
actual three dimensional (3D) simulation and compare the conservation properties of the
different schemes. All numerical simulations are performed for electrons with a neutralising
ion background. The particles are loaded with Sobol numbers and sampled uniformly in
logical configuration space. In the absence of a coordinate transformation, the mass matrices
are block-diagonal and can thus be inverted in Fourier space (cf. [55]). With a coordinate
transformation, this is no longer the case. Therefore, we use a conjugate gradient solver that
we precondition with the Fourier solver for the Cartesian case to invert the mass matrices.
The idea to use a direct solver on the Cartesian mesh as preconditioner for an iterative solver
on the curvilinear mesh was borrowed from [29]. Note that this yields a solution to machine
accuracy for the Cartesian case. Therefore, we switch off the preconditioner in this case
to show comparable accuracy in the conservation properties, which depends on the solver
tolerance.

8.1 Coordinate Transformation

We use two periodic coordinate transformations for our test cases, an orthogonal non-uniform
transformation and a sinusoidal transformation as defined in [19], which leads to a distorted
grid. The transformations are defined by the following functions:

L (& +esin(2n&)) L (& + esin(2n&;) sin(27éy))
Fon(§) = | L (& + esin(2n&)) |+ Fast() = | L (& + esin(2ng)) sin(27&,))
Lfg L§3

We choose ¢ < % so that the inverse Jacobian matrix does not become singular. Figure 2
visualises the (z, y)-part of the corresponding grids for the distortion parameter ¢ = 0.1.

(a) Orthogonal non-uniform grid (b) Distorted grid

Figure 2 Orthogonal and distorted grid for distortion parameter e = 0.1.
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8.2 Strong Landau Damping

First, we consider an electrostatic test case so that the equations of motion (4.1) simplify to

V=W
Mie=— YE)'NT(E)W,V, (8.1a)
G'Mé=p (8.1b)

In the electrostatic case, the magnetic field is set to zero and Faraday’s law is excluded. The
electric field at initial time, E(x,t = 0), is calculated using Gauss’ law (8.1b) with the scalar
potential € = —G¢ and the propagation of the electric field is determined by Ampére’s law
(8.1a).

The initial distribution for the electrostatic Landau damping is given by

1 1/ v?
————exp (— (g)) ,x € [0,L]3,veR3
(27r)§v%x 2 \vz,

We choose the parameter as vy, = 1,k = (0.5,0,0)",a = 0.5 and L = %. For the
numerical resolution, we take 3,200,000 particles, 16x16x2 grid cells, spline degrees (3,3, 1)
and a time step of At = 0.05 and for the iterative solver a tolerance of 10~!3. The tolerance
for the non-linear iteration in DisGradEC is set to 10~!2, which leads on average to 6 iterations
per time step on the Cartesian grid and 13 on the distorted grid. Note that we normalised to
dimensionless quantities in terms of the electron Debye length Ap. and the plasma frequency

fe(x,v,t =0) = (1 + acos(k-x))

Wpe-

These parameters embed the 1D2V setup from [56] in the 3D3V phase space.

108

T
1D Reference
HS

CEF

2L

10 I\ — — —DisGradE
—-—-—DisGradEC

Damping rate

Time

Figure 3 Landau damping on distorted grid: First component of the electric field energy for various integrators with time step
At = 0.05 and distortion parameter ¢ = 0.1 for the coordinate transformation.
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Figure 3 shows the first component of the electric energy for various integrators on the dis-
torted grid together with a 1D reference run on the Cartesian grid. All propagators yield
similar results, which match the damping and growth rate obtained from the 1D test case in
[56], where the damping rate is given as v; = —0.286 and the growth rate as v, = +0.087.

Table 1 Landau damping: Maximum error in Gauss’ law and in the total energy until time 500 for the semi-explicit and implicit
time integrators with time step At = 0.05 and distortion parameter ¢ = 0.1 for the coordinate transformation.

Gauss Energy
Method Cartesian | Distorted Cartesian | Distorted
HS 3.1-10713 [ 5.3.107" || 1.0-107* | 1.0-107*
CEF 2.9-10713 | 5.3-107*" || 1.0-107* | 1.0-107%
DisGradE || 7.4-107% |2.9-1072 | 3.1-107 | 25.10714
DisGradEC || 2.5-107" | 5.4-107™ || 1.4-10713 | 1.1-10712

From Table 1 it becomes obvious that the constructed conservation properties are satisfied
numerically.

8.3 Weibel Instability

As an electromagnetic test case, we study the Weibel instability [93] as simulated in [56, 21]
with the 3D3V initial distribution

1 1 2 2+ Uz
fe(x,v,t=0)=(1+acos(k-x)) —F5——exp | —= 1)2714_ Y ; :
(27T> 20T, U%y 2 Uy UTy

where x € [0, L]3,v € R3. The magnetic field is initially set to B(x,t = 0) = Scos(k - x)é,

and E(x,t = 0) is calculated from Poisson’s equation. We choose the parameters as vy, =
%,wy = V12vr,, k = (1.25,0,0)",a = 0,L = % and 8 = 1073. For the numerical
resolution, we take 800,000 particles, 16x 16 x2 grid cells, spline degrees (3,3, 1) and a time
step of At = 0.05 and for the iterative solver a tolerance of 10~ 3. The tolerance for the
non-linear iteration in DisGradEC is set to 10~'2. Note that we normalised to dimensionless

quantities in terms of the electron Debye length A p. and the electron plasma frequency wy..

These parameters are comparable to the 1D2V settings in [56]. However, § is chosen one
magnitude larger so that the initial growth of the magnetic field is higher than the effects
caused by the particle noise at the chosen resolution.

Remark 8.1. For the 1D2V Weibel instability, we look only at the waves given by D, = 0 in
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the dispersion relation (18.14). In dimensionless coordinates, this takes the following form:

W

2
D(w k) =w? — k2 — 1+ (“Ty> [1+¢2(Q),¢= 5

UTx

From the dispersion relation the growth rate of the magnetic field is computed as v =
0.02784.

1D Reference
———Hs

1D Reference
— — —HS

CEF CEF
DisGradE DisGradE
—-—-—DisGradEC | 1 w0 e DisGradEC

3Bl
311BI°

. . . . 1 | . |
0 50 100 150 200 250 0 50 100 150 200 250
Time Time

(a) Orthogonal non-uniform grid (b) Distorted grid

Figure 4 Weibel instability: Magnetic field energy for various integrators with time step A¢ = 0.05 and distortion parameter
e = 0.1 for the coordinate transformation.

Figure 4a shows the magnetic field energy as a function of time for different propagators on
the orthogonal non-uniform grid and Figure 4b shows the same quantity on the distorted grid.
In both cases, a 1D reference run with an explicit HS on Cartesian coordinates is given for
comparison using the 1D Weibel distribution from [56] with 5 = 1073.

Next, we set the wave vector to k = (1.25,1.25,1.25)" and o = 0.1 so that we have a
perturbation in every x-component. For the numerical resolution, we take 1,600,000 particles,
8 grid cells in every direction and spline degrees (3,3,3). The other parameters remain
unchanged.

We run the HS scheme with different distortion parameters ¢ of the transformation. Therefore,
we take ¢ = 0 as a reference and go from ¢ = 0.01 up to € = 0.1 to study the effect of the
coordinate transformation. The time step is taken as A¢ = 0.01 to obey the CFL-condition for
all choices of . The initial distribution is sampled in logical coordinates. Hence, the number
of particles per cell is approximately constant. The larger the distortion of the grid, the larger
cells appear and parts of the domain become more and more underresolved and the quality of
the solution decreases. Note that the considered coordinate transformations are artificial with
the goal to validate our method. Problem-specific coordinate systems and sampling methods
should be designed such that they yield a resolution that is as homogeneous as possible.

In Figure 5a, we see that for decreasing £ the magnetic field growth rate converges to the
scaling case with ¢ = 0, which coincides with the run without transformation.
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(a) Magnetic field energy (b) Error in total energy

Figure 5 Weibel instability on distorted grid: Third component of the magnetic field energy and energy error for HS with time
step At = 0.01 and different values of the distortion parameter ¢ for the coordinate transformation.

Last, we look at the conservation properties of our propagators. Therefore, the time step is
set to At = 0.05 and the distortion parameter to ¢ = 0.05 so that all methods run stably.
For the fully implicit step in DisGradEC we need on average 4 iterations per time step on the
Cartesian grid, 7 on the orthogonal non-uniform grid and 8 on the distorted grid.

Table 2 Weibel instability: Maximum error in Gauss’ law and in the total energy until time 500 for the semi-explicit and implicit
time integrators with time step At = 0.05 and distortion parameter e = 0.05 for the coordinate transformation.

Method Cartesian | Orthogonal | Distorted
HS 1.9-1071 [ 5.9.10719 | 6.8-10710
CEF 1.9-1071 | 58-10710 | 6.9.10710
Gauss
DisGradE || 1.1-1076% | 1.7-10°6 1.6-10
DisGradEC || 3.8-10713 | 6.4-10719 | 8.6-10"10
HS 1.1-107* [ 1.8-107* 1.6-1073
CEF 1.1-107* [ 1.8-107% |1.6-10°3
Energy
DisGradE | 3.2-10710 | 1.4.-10710 | 42.10710
DisGradEC || 6.0-10712 | 1.6 -10719 | 4.2.10710

In Table 2, we see the difference between the energy and the charge conserving methods. As
expected, the discrete gradient methods (DisGradE, DisGradEC) conserve the total energy
whereas for the HS scheme the energy is not conserved but the error is bounded as can be
seen in Figure 5b. As proven in Chapter 4, the charge conserving discrete gradient method
(DisGradEC) and the semi-explicit schemes (HS, CEF) conserve Gauss’ law. Note that all
conservation properties are up to the tolerance of the solver times the condition number of
the mass matrices.
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8.4 Jean’s Instability
8.4.1 Introduction Stellar Dynamics

It is also possible to simulate the dynamics of a stellar system in the GEMPIC framework.
Therefore, we consider the dimensionless Vlasov—Ampére system with f representing the
distribution function for the stellar particles and E representing the gravitational energy. The
sign in Ampeére’s law is flipped compared to the plasma physics case because two masses
attract each other while charged particles of the same species repel each other,

Of+v -Vef+E-Vyf =0,
E=J—Jean (8.2)

with J = ¢ [ vf dv. To check that we still have a Hamiltonian system, we consider the total
energy

1
H= T;/v2f(a:,v)dvdx— 2/HEH2d>c,
which takes the following form at the semi-discrete level:
1+ 1
Hp = §V W,V — ie Mje.

Then, its derivative is computed as DH;, = (0,W,,V,—M;je)' and the discrete Poisson
matrix can be written as

0  MIA'X)TwW

3

Thus, the equations of motion are given by

u=JDH,,
X \Y%
vV|= Wa A'(X)e
é MIAYX)TW,V

We discretise in time with the explicit Hamiltonian splitting (HS) scheme and the energy con-
serving discrete gradient method (DisGradE).
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8.4.2 Single Species
As a first 1D test case we consider the Jeans instability from [35, 18] and adapt the setup to

2 2
Uy + Uy

2
2UTZ,

our 1D2V GEMPIC code. The initial distribution is given by
L
) T € [O,k] ,v eR?

1
=1+ acos(kx)———exp | —
fO ( ( )\/%UTx p(
with a = 0.01,vpr, = 1 and L = 27. The first component of the gravitational field, E1, is
(8.3)

020 =p—1,

computed initially via
Ey=-0,9,

where p = ¢ [ fdv. E; is set to zero initially and stays zero, since J; is zero as well. For
the weak Jeans instability, we consider the wavenumber k£ = 0.8 and simulate with N = 64
grid cells, cubic splines, N, = 1,000,000 particles and a time step of At = 0.05 until time

T = 100. The strong instability is computed with the wavenumber k£ = 0.1.

An average current arises from this instability in the Ampére equation, which causes the sim-
ulation to become unstable. In the case of a non-zero average current, the Viasov—Ampeére

and Vlasov—Poisson system are no longer equivalent. Therefore, we subtract J,,,cqn in (8.2)
forcing the average current to stay zero over time in order to guarantee a stable simulation.

The dispersion relation for the stellar Vlasov—Ampere system is taken from [7],

K [1+£2(6) with € = ——

k:?] \/ivTxk'
In the dimensionless case, the Jeans wavenumber is set to k; = 1 so that the Jeans length
Aj= i—’; becomes 27. From the 1D dispersion relation, we compute a growth rate of 0.304 for

the weak Jeans instability and a growth rate of 0.985 for the strong Jeans instability. In Figure

D(k,w) =

104 T
[~ ~

10"
/
/

/
e ~.
N =
102/
HS
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DisGradE
Growth rate
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(a) Weak Jeans instability

analytical growth rates.
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(b) Strong Jeans instability
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Figure 6 Jeans instability: First component of the gravitational energy for various integrators with time step At = 0.05 with



6b, we see the gravitational energy together with the analytical growth rates for the weak
and the strong Jeans instabilities. In both cases, the ascent of the electric field matches
the analytical rate. In Table 3, the Maximum error in Gauss’ law and in the total energy are

Table 3 Jeans instability: Maximum error in Gauss’ law and in the total energy until time 100 for the semi-explicit and implicit
time integrators with time step At = 0.05.

Gauss Energy
Method Weak Strong Weak Strong
HS 1.4-107% | 52.107™ || 24-1075 | 2.9-1072

DisGradE || 1.2-1072% | 4.5-1072 | 5.9-10714 | 1.3.107 1

displayed for the explicit HS scheme and the implicit DisGradE method. As expected, the
DisGradE method conserves the total energy whereas the HS scheme conserves Gauss’
law.

8.4.3 Two Species

Next, we simulate a multispecies test case for hot and cold stellar particles with the same
mass. Then, the initial distributions are given by

1 v2 4 v2
for =6(1+ acos(kx)————exp | — 1,
V21U 202 1

1 v2 + 02 L
S S I [0} v ER?
V 27TUT.’E2 21}Tx2 k

foz = (1 —0)(1 4+ acos(kx)

with a = 0.01,vr;1 = 1,vree = 0.1,0 € [0,1] and L = 2x. The first component of the
gravitational energy is initially computed by Poisson’s equation (8.3) and FE» is initially zero
and stays zero over time. For the weak Jeans instability, we take again a wavenumber of
k = 0.8. We simulate with N = 64 grid cells, cubic splines, N, = 1,000,000 particles and
a time step of At = 0.05 until time T' = 45. We simulate for § = 0.25,0.5,0.75,0.9,1.0 and
the dispersion relation is taken again from [7] but adapted to our multispecies simulation with
dimensionless coordinates,

D) =1~ 15 [ (1+6Z(6) + 201 -0) (1462 (6)

with & = ﬁm,fg = kﬁ”m

Table 4 displays the analytical growth rates computed from the dispersion relation together
with the simulated growth rates, which were fitted to the curves of the gravitational energy, for
different values of §. In Figure 7, we see the first component of the gravitational energy for
the different values of § together with the analytical growth rates. As expected, the growth of
the gravitational energy matches the analytical rates. Figures 8-11 show the time evolution of
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Table 4 Weak Jeans instability: Analytical and simulated growth rates for different values of ¢.

0 | Analytical growth rate | Simulated growth rate
0.25 0.83 0.83
0.50 0.73 0.72
0.75 0.60 0.60
0.90 0.47 0.46
1.00 0.30 0.30

10" ¢
100 F
EH 101 L
i
10-2 L 0=0.25
60=05
6=0.75
6=0.9
6=1.0
10'3 Growth rates '
0 5 10 15 20 25

Time

Figure 7 Two species weak Jeans instability: First component of the gravitational energy for HS with time step A¢ = 0.05 for
different values of § together with the analytical growth rates.

the phase space distribution (X, V1) of the hot particles colored in red and the cold particles
colored in blue until T" = 35.
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9 Field Boundary Conditions

In the first part, we have introduced a general coordinate transformation into the structure-
preserving GEMPIC framework. However, we assumed periodic boundary conditions, which
also limits the coordinate transformation to periodic mappings. In Part Il, we extend our
system to real boundary conditions enabling the use of radial grids such as a cylindrical or an
elliptical grid.

9.1 Weak Formulation of Maxwell’s Equations

In the weak formulation of Maxwell’s equations in (2.8a) and (2.8c), we have assumed that the
boundary terms vanish, which is the case for the chosen periodic boundary conditions. Now,
we take a closer look at these natural boundary conditions. Using the cross product form
of the Divergence theorem (A.7), Ampeére’s law tested with ¢ € H(curl, Q) can be rewritten
as

a/cp-de—/Vxxcp-de—i—/ (Bxcp)-nda—/cp-de.
ot Jo Q 00 Q

For Gauss’ law tested with ¢p € H'(Q) we take the scalar form of the divergence theorem
(A.6) to obtain

w(E'n)da—/ﬂvw'de:/ﬂwpdx.

o0N

Generally, we have to decide between the following two kinds of boundary conditions:

Dirichlet boundary: ¢|sn = f with a known function f at the boundary 012,
Neumann boundary: (V¢ - n)|sq = f with a known function f at the boundary 092.

For realistic Tokamak geometry, we consider some kind of cylindrical or spherical coordinates
with one radial direction and two periodic angles. So without loss of generality, we consider
real boundary conditions in the first direction and periodic ones in the other two.

Then, the normal vector to the boundary in logical coordinates is given as i = +(1,0,0) .
Since the normal vector transforms with the covariant Piola transform (2.14), it takes the
following form in physical coordinates:

N(§)n ny

SIN©a Tl

n

In the following, we only show the terms for i = (1,0,0) " because in the other case the signs
are just flipped. To compute the boundary part of Ampere’s law tested with ¢ in curvilinear
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coordinates, we insert the Piola transforms for the electromagnetic fields and the test function,
(2.14) and (2.15), and use do = ||tz x t3||d&,

DF - ty x b
/ <B X N¢> valtz X tsll s
o0 \ JF [N

We note that the scalar triple product permutes,(%f& X N@) -Nh = (N@ x Nna) - 2E'B,

F F
and insert the notation from Definition 2.1 for the columns of the Jacobian matrix to facilitate
the computation of the vector operations,

[[62 x 3]

do.
Jr||n |

/~ ((n1@1 + n2@o + n3P3) x ny) - (t1B) + t2 By + t3B3)
a6

Then, we make use of the vector identities from Proposition 2.2 to obtain

_t _t ~ ~ ~ -
/‘~ (—(pgg + @32> . (tlBl + t9 By + t3B3) do. (9.1)
o0 Jr Jr

Using the same formulas for the boundary part of Gauss’ law gives us

/~ 1[} <NE nl) Htg X tgH do = /~ 1; (nlEl + HQEQ + n3E3) -n1Jrpdo. (9.2)
2% [ ] 2%

9.2 Poynting Flux
We also have to account for the field energy that crosses the boundary. In Poynting’s theorem

[74] this dynamic is described.

Theorem 9.1. The energy balance of the field energy, Hrp, is given by

dHep :_/ (ExB)-nda—/J-de. 9.3)
di o0 Q

Proof. The total field energy is defined as Hgp = %fQ E-E + B .- Bdx and so the time
derivative of this term gives us

d . :
HEB_/B-B+E-de.
dt Q

We insert Ampére’s and Faraday’s laws,

E=VxB-J,
B=-V xE,
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to see

/B-B—l—E-de—/—(VxE)-B—l—(VxB—J)-de
Q Q

:—/V-(EXB)dX—/J-EdX.
Q Q

Then, the result follows from the divergence theorem (A.7). O

Remark 9.2. The term |, a0 (ExB)-nda, which gives the field energy crossing the boundary,
is called Poynting’s flux.

We transform Poynting’s flux to curvilinear coordinates by inserting the Piola transforms for
the electromagnetic fields (2.14) and (2.15),

. DF .
/ <NE x B) C Mg, %ty da
a0 Jr [y |

Next, we use the permutation property of the scalar triple product and write the equation with
the notation from Definition 2.1 for the columns of the Jacobian matrix and its inverse,

[[t2 > t3]]

do.
Jr|na ]

/~ (n1 X (nlEl + n2E2 + Il3E3)> . (t1B1 + tQBQ + tgég)
o0

Last, we use the vector identities from Proposition 2.2 to obtain

t3 -ty - ~ ~ ~
/~ <3E - 2E3> - (t1B1 + t2Bs + t3B3) da. (9.4)
o0 \JF Jr

9.3 Spline Boundary Conditions

In this section, we review the construction of spline basis functions with real boundary condi-
tions. First, we review general properties of the basis splines given in [24], which we will use
further on.

Let us start with the knot vector T' = {t;}1_p<j<nN+p+1, Which is a non-decreasing sequence
of points. In our case, we have chosen the equidistant grid points £; of our IV, cells for the
knot sequence so that §;1 — &§; = A¢.

In Part I, we have worked with basis splines that are defined on a periodic knot sequence,
which has the following form:

T= {§N—p+17 "'7§Na§17§27 "'7§N—17€N7§17 "'7€p+1}'

From this knot sequence the N splines of degree p are defined according to the following
formula:
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Definition 9.1. The j-th basis spline is computed via the recursion formula

=1t w1 tivpr1 — & op—1
SP(¢) = LGP lg) 4 P S by, (9.5)
7 (©) tiyp —tj 7 © titp+1 = Lit1 ()

where the spline of degree zero is defined as S;’(a;) = X[t;.t;+1]- Furthermore, the derivative
of the j-th spline is calculated as

ds?(€) (Sﬁ-’_l(f) ) >

(9.6)

A6 T\t —tj  tirpr —tin

Here, the spline values are collected in a vector as SP(&) = (SY(€), ..., SK(€))-

Now, for non-periodic boundary conditions, we consider clamped splines. Therefore, we
duplicate the outer grid points p times so that they have multiplicity p + 1. Note that without
assuming periodicity we have NV + 1 grid points for N cells. Then, the knot sequence is given
by

T = {€17 "'7{17&27 "'75N7§N+17 "'7§N+1}'

From this knot sequence the NV + p splines of degree p are defined again via the recursion
formula (9.5), where for dimensionality reasons we need to consider an additional first and
last zero spline of degree p — 1.

In our convention, we denote the spline starting in the first cell as S7. Accordingly, the first
spline and last spline of degree p are computed via (9.5) as

t2—& - 82— & op-
Sp(6) =4, 4, S5O = T5 S5, (6).
() =5t 6 = S )

Since the other splines equal zero at the boundary, we obtain

lwhenj=1-p, 1when j = N,

SP(0) = S(1) =

0 else 0 else .

This leads to the following evaluation of the product of two splines at the boundary:

—lwheni=1—(p—1)Aj=1—p,
[SPT1SP) = SPH(1)SE(1) — SPTH0)SP(0) = ¢ 1wheni=j =N,

Oelse.
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We collect the spline values in a vector as S;(§) = (S7_,(€), ..., S}/(€)) and write the spline
derivative in matrix vector form with the help of the discrete 1D derivative matrix D, defined
via dgsp(g) — 8P71(£)D,. The entries of the matrix are computed using the formula for the
spline derivative (9.6),

sy, (€)

_ P 1
as?_(€) p 55’,;@) ST, .
— = . for2 < j <p,
dg AL\ j—1 J
dSp
A— (Sp ! S§’+11(§)) for1 <j <N —p,
dsp Shoy(€) SR
S 3 O v (Sl 1) < jepon,
A& j+1 J
dsp 92 g
dg AE '
Then, the matrix is given by
0 0 0 0 0 0 0 0 0 O
-2 9 0 0 O 0 0 0 0
0 0 0 0 0 0 0 O
0 0 -2 -2 0 0 0 0 0 0
1 0 0 0 -1 1 0 0 0 0 O
D, € R(N+p)X(N+p)7D* -

Ag . . : . " . . . . : 7

o
o
o
o
o
)
o
)
|
[l
=3

where the first row accounts for the one spline less we have with degree p — 1.

The 3D spline basis for differential 0-forms is constructed as a tensor product of the 1D
splines,

A(€) = SP(&) ® SP (&) ® SP(&3). (9.7)

Without loss of generality, let us assume clamped splines in the first direction and periodic
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splines in the other two directions. Then, we build the 3D derivative matrices accordingly,

Dy 0 —D3 Do
G=|p,|.C=| by, 0o -p |.D=G, (9.8)
Ds -Dy D 0

where the block matrices D1 2 3 are constructed as the tensor product of 1D derivative ma-
tricesvia D1 = D, 1 1,Dy =1 ®D®1,D3 = 1®1® D. Here, | stands for the
identity matrix and the periodic derivative matrix is computed via d%Sp({) = SP LD,

1 0 0 -1
-1 1 0 0
D=L
=2l 0 -1 1 0
0 T 0
0 0o -1 1

Then, the 3D spline basis functions for the differential 1-,2- and 3-forms are defined as

ABL(€) 0 0 A>1(€) 0 0
Ag) = i, AC(E) = 12, ,
(€) 0 A2 0 (€) 0 A22¢) 0 ©.9)
0 0 AL3(g) 0 0 A%3(g)

A%(€) = SPTH(E) @ SPTH (&) © ST (&)

with
AVHE) =8P (&) @ SP(&) @ SP(&s),  APN(€) = SP(&) @ 8P (&) © SP(&),
AY?(€) =8P(6) @ SPTH (&) @ SP(Es),  AP(€) = SPH(&) ® SP(&) © 8P (&),
AP (E) =8P(6) @ SP(&) @ SPTH (&),  AP(€) = SPH(&) @ 8P (&) ® SP(&).

Proposition 9.2. The spline basis functions A°, [&1, ]&2, A3 defined in (9.7) and (9.9) form a
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discrete de Rham sequence with the derivative matrices G, C, D (9.8),

VeA? = A'G,
Ve x A = A°C, (9.10)
Ve A® = A°D.

Proof. Since we defined the derivative matrices to reproduce the partial derivatives of the
splines on the level of the degrees of freedom, (9.10) holds by construction. Additionally, we
have to check that CG = 0 and DC = 0. We compute the former block-wise as
—D3Ds + D2D3
CG= | D3D, — Dy D5

—DoD1 + D1 Do

Then, the Kronecker product structure of the derivative matrices guarantees that the matrices
commute because the identity matrix commutes with every matrix, e.g.

DsDy =(I® 1@ D)(Dy®1@1) =D, @1@D = (D@12 1)(1®1® D) = D,Ds.

Therefore, the matrix multiplication equals zero. Analogously, we can verify the same result
for DC = 0. O

9.4 Boundary Matrices

We insert the spline representation of the magnetic field, (3.7b), into the boundary part of
Ampére’s law (9.1) and test with the respective spline basis function ¢ = Al to obtain

~19t3 ~149t ~ . ~ -
/~ (o, —A1’2J—3, A1’3J2> (6172, 1, t5A%2 £3A%3) d5b.
o0 F F

Then, we define the boundary matrix

0 0 0
1

1 1
. 1 o o o
M} = / / |ty 6 AL2RZT gy o AL2R22 gy £y AI2A2 dé, dés.
0 Jo F £&1=0

to -t ABSAZL gyt ATSAZ2 gy gy ALSAZS

Analogously, we use the spline representation of the electric field, (3.7a), to rewrite the bound-
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ary part of Gauss’ law (9.2) and test with the respective spline basis function 12 =A°,
/~ /~\0 ((nljil’l, n2/~Xl’2, 1’131~\1’3) . nl) JF doe.
)

Then, the 0-form boundary matrix is defined as

1

déa d&s.

1 1
Mg = / / (AO (n1 . l’llAl’l, np - n2A1’2, np - n3A1’3> JF)
0 JO £1=0

Inserting the spline representations of the fields (3.7), the Poynting flux (9.4) takes the follow-
ing form:

0 0 0

1 - o~
T o o o ~ Tl
€ /m 70| ts t AL2A2L g toAL2A22 g . t3AL2A23 | dob = —& M,b.

—tq - t1A1’3A2’1 —to - t2A1’3A2’2 —to - t3A1,3A2,3

(9.11)

9.5 Perfect Conductor Boundary Conditions
Looking for a physically meaningful boundary condition, we end up with the perfect conductor
boundary condition as described in [41],

Exn=0, (9.12)
This also implies that with matching initial conditions

B-n=0. (9.13)

This can be seen by taking the scalar product of Faraday’s law (2.17a) with the normal vec-
tor,

%B-nz—(VgxE)-ﬁ:—V£~(Exﬁ):O,

since n is constant in our case. Hence, we have found our pair of boundary conditions for the
electromagnetic fields.

Since in our case the normal vector simplifies to n = (+1,0,0)", the perfect conductor

= (0, B5().~E2(6)T)| =0
o0

[2}9]

boundary conditions translate to (E x (£1,0,0)")

= +B(§)

o0

=0.

and (%—‘? (£1, o,o)T)
aQ
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To satisfy the boundary conditions (9.12), the differential 1-forms have to be in the constrained
Sobolev space Hy(curl, Q) := {w € L*(Q)*|curlw € L* ()3 A (w x i) | = 0}. Addition-
a0

ally, the 2-forms have to be in Hy(div, Q) := {w € L?(Q)?|divw € L*(Q) A (w-n)| =0}

a9
to satisfy the derived boundary conditions (9.13).

For our discretisation with spline finite elements, we impose the boundary conditions (9.12)
as essential boundary conditions. This yields the following conditions on the spline basis
functions:
A2 =0, AV =0, A*(¢§] =0 (9.14)
a0 aQ a0
Note that the constrained spline finite element spaces resulting from imposed Dirichlet bound-
ary conditions are given in [12, Sec. 3.3].

Consequently, the boundary term from Ampere’s equation vanishes for the perfect conductor
boundary conditions, since the 1-form boundary matrix equals zero,

0 0 0
- (RS Y
M, =/ / T —ta b ABZAZY gy £ AN2A%2 gy - t3AN2A2S _d§2d&s = 0.
o Jo | Jr a0
t2 . tlAl,?)]\Q,l t2 . t2]\1,3/~\2,2 t2 . t3A1,3A2,3
(9.15)

This means that the Poynting flux (9.11) equals zero, too. Therefore, we do not have field
energy exchange over the boundary and the system is closed.

In Proposition 9.2, we have proven that the clamped basis splines by construction satisfy a
discrete de Rham sequence. Now, we assume perfect conductor boundary conditions (9.14)
for the spline basis functions and have to check that (9.10) still holds at the boundary. A
compatibility condition is given by the following proposition:

Proposition 9.1. Assuming perfect conductor boundary conditions, the clamped basis splines
constructed in Section 9.3 form a discrete de Rham sequence at the boundary if and only if
they satisfy the condition

S (&) =0. (9.16)

o0

Proof. We want to show that the B-splines still form a discrete de Rham sequence as in
(9.10). This sequence consists of three lines. We start with the first line stating

VA" = A'G.
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Then, for a 0-form ® = A%(¢)¢, we obtain at the boundary

06, SL ()| @ SP(&) @ SP(&s) AVY©)| Dig
o0 o0
(Ved'(©)) = | S| ©0u57(6) 987(E) |95 0 A %
[519)
SE(6)|  ®SP(&2) ® 0, 57 (8s) 0
[219]

This is satisfied non-trivially if and only if S{(&1)| = 0.

o0

Next, for the second line of (9.10), we look at the rotation of a 1-form A = A'a at the
boundary,

SE(&)|  ©®0e,SP(6) @ SPTHE) — SE(&)| @ SPTH (&) ® 06, SP(&3)
o o0
(Vex A a= {8071 (e)| ©87() ©06,87(6) — 0 SU(E)|  ®87(g) @ 71 (&) | &
0 0 bE19)
06, 80(61)|  ©SPTH&) @ S8P(Es) — SETH(E)| @05, SP (&) © SP(&)
o0 o
0
L A22(¢)| (Dyar - Dray) | 2P A%(9)| Ca.
a0 a0
AZ3(g)|  (Drap — Dody)
o
This leads again to the compatibility condition S¥(&;) =0,
9

Since there are no boundary conditions on the differential 3-form basis, the third line of (9.10)
is also satisfied at the boundary,
2

(Vs ‘A (E))

which concludes the proof. O

From this proposition, it follows that also the boundary part from Gauss’ law vanishes, since
the 0-form boundary matrix equals zero,

|\7|2 = /1 /1 (]XO <n1 . nlﬁl’l,nl . nglil’Q,nl . n31~\1’3) JF)
o Jo

~d§adés =0.
a8

We already showed that the initial boundary condition B - i = C for the magnetic field is
conserved over time because the magnetic field is updated with the curl of the electric field.
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Assuming that the basis functions form a de Rham sequence and that B is computed from
the 1-form potential A, we have B - i1 = 0, since

a
o0

(Be)-n)

8Q=(V§X1~\l-fl)

=57(&1)

_® 852'517(52) ® SP(&3) — SP(61) ® SP(&)® 853510(53)5 =0.
Q

1%} o2
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10 Particle Boundary Conditions

10.1 Introduction

When the particle trajectories hit the boundary, we also need to impose some boundary
conditions on them. Note that we avoid a possible singularity by excluding the pole on the
physical mesh as can be seen exemplarily in Figure 14. Therefore, on the logical mesh, we
have an inner boundary at &, = 0 and an outer boundary at &, = 1. Following [17], we
consider reflecting boundaries. We make use of the normal vector n = N(§)n = n; to
compute the reflection at the boundary as

n

Inner boundary at{; =0: & = —§,v=v—2(n-v) mE =V~ 2(ng - v)

nj;
[na]?°

Outerboundary até; =1: 6 =2—-&,v=v —2(n; - v)

The particle weight is kept constant. The reflecting boundary prevents heat fluxes and cur-
rents at the boundary and ensures exact energy conservation.

In this study, we additionally consider a constant in- and outflow of particles: A particle of
identical weight is reinserted at the opposite boundary with the same velocity, which can be
considered as periodic particle boundary conditions,

Inner boundary até; =0: 6 =&+ 1, v =,
Outerboundary até; =1: & =& — 1, v=v.

This choice again conserves mass, energy and magnetic momentum. This second boundary
conditions mimics a periodic behaviour and is considered here as an intermediate step for
verification purposes rather than being physically motivated.

10.2 Conservation Properties
10.2.1 Charge Monitoring

In both semi-explicit time discretisation schemes, the charge conservation depends on the
exact solution of the particle trajectory in the following part:

5 én—l—l - el _ En+1 _=n

M———— = — YEr) T drw, —————.

Rl [ e aw S

Since the particle update is computed iteratively, it is important that we impose the boundary
conditions after computing the midpoint & = W in (6.4) and (6.6). In the case of a
particle trajectory crossing the boundary, we solve this part with a split line integral. First,
we compute the point of intersection of the particle trajectory with the boundary and compute
the line integral up to that point. Second, we reflect the particle position and velocity at this
point and compute the line integral between the point of intersection and the new particle
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position.

10.2.2 Energy Monitoring

The energy conservation of the implicit time discretisation methods depends on the solution
of the antisymmetric subsystems. Therefore, the DisGradE method stays energy conserv-
ing because the particle position is updated independently of the particle velocity and the
electromagnetic fields provided that the number of particles is constant.

However, if the position is updated in the same step as the velocity and the electric field, which
is the case for the DisGradEC method, it is crucial that the electric and the kinetic energies
balance out. So, when a particle crosses the boundary and is reflected back, we need to
update the electric field with the new velocity. Solving this system iteratively leads to the
problem that the reflection can flip the sign of the particle velocity in iteration, which prevents
the convergence. Therefore, the reflection boundary conditions are only implemented for the
DisGradE and not for the DisGradEC method.
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11 Challenges with Singular Coordinate
Transformations

When dealing with a mapping that contains a singularity, there are two main challenges. The
first challenge is the construction of smooth basis functions at the pole. However, Toshniwal
et al. [87, 86] recently presented an instruction for constructing such basis functions. The
second challenge is the evaluation of the electromagnetic fields in an environment around
the pole.

Let us consider a radial mapping with a pole at £&; = 0 such as the two examples given in
(13.2) for ro = 0. Then, we review a solution for the evaluation of the electric field, which is
found in [100]. For a differential 1-form E, the adequate representation is given by the Piola
transform (2.14) so that E(¢,x) = N(E)E(t,é). This holds for all &, > 0 but for & = 0 the
transposed inverse Jacobian matrix becomes singular. Thus, we search for an expression of
the electric field in physical coordinates at the pole. Therefore, we rewrite the representation
of the electric field by multiplying both sides with the transposed Jacobian matrix, ]:3(5) =
DFT(¢)E(x). Componentwise, we can write this out as

- OFI(E) IF(€)

Ey(§) O Ey(x) + O Es(x),
Es(&) = 8}(;1£(€)E1(X) + 8%§(£)E2(X)7

E3 (E) == LzEg(X).

At the pole, the third component of the electric field in physical coordinates is given trivially
by E5(0,0,z) = I%E?,(O,SQ,&),). For the first two components of the electric field, we focus
on the first line because the partial derivatives in the second line equal zero,

OF1(0,6) _ 0F3(0,&)

=0 V.
O, g, ?
Thus, we obtain
~ 8F 07 aF O,
E1(0,2,83) = (0,0, 2)18(5152) + B(0,0, 2)28(5152).

Then, the components of the electric field in physical coordinates can be calculated from the
given field in logical coordinates at the left-hand side for two linear independent angles &,.
For the cylindrical coordinates in (13.2), two independent angles would be £&; = 0 and & = i
so that the linear system simplifies to

E1(0) = E1(0), E, <0, i,o) = F5(0).

We get the same result for every pair of independent angles because the values of the two
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components E;, Fs need to be constant at the pole. With this expression, we can evaluate
the electric field in a small e-environment around the pole, x = 0. For ||x|| < &, we obtain
& &1

E(x)=(1- ;)E(QO, z) + ;N(E’&,ﬁz)ﬁ}(&&,&s)-

Let us transfer this idea to the evaluation of the magnetic field. The magnetic field is trans-
formed by the Piola transform form for 2-forms (2.15), which has the following form:

DF(§)
Jr(€)

At the pole, this representation is not possible because the Jacobian determinant equals zero.
Multiplying by the inverse of the Jacobian matrix divided by the Jacobian determinant does

B(t,x) = B(t,¢).

not help, since the inverse Jacobian matrix is singular, too.

However, for the magnetic part of the Lorentz force, we only need the cross product of the
velocity and the magnetic field,

DF -
v B=vx —B.

F
This term can be reformulated as in (2.8),
DF - -
vx—B:N({/xB>,
Jr

where we introduced the logical velocity v = N7 (€)v. Finally, we only need a representation
of v at the pole. We can compute the logical velocity as the discrete time derivative of the
position, v = 5H+A1t"£n. However, this works only if there is an analytical inverse of the
coordinate transformation, since in this case, we can compute the particle push in physical

coordinates avoiding the singularity in the inverse Jacobian matrix, N ' (&),

g = FTHE(E") + Atv™).

Then, we use the same method that we used for the electric field, to obtain
(v B0.8) = 92(0.6)(v x BJ(0) + 22(0,6)(v x B)2(0)
5 G2 1 851 y G2 1 afl 5 G2 2 )

(vxB(0.&)), = (vx B(0),.

!

Subsequently, the Lorentz force in a small e-environment around the pole is calculated as

a ((1 _ 51) (E(0,0,2) +v x B(0,0,2)) +

m 9

gl N(E7527£3>(E(57£2a§3) + {’ X B(£7527£3>) .

3
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12 Preconditioner

The condition number of the B-spline finite element mass matrices (3.6) increases exponen-
tially with the degree p of the B-splines as explained in [29]. Therefore, the use of ordinary
iterative solvers such as the conjugate gradient (CG) solver becomes computationally expen-
sive and inefficient. Donatelli et al. [29] review several possibilities for fast solvers such as
preconditioned conjugate gradient (PCG), h-multigrid or multi-iterative methods. Alternatively,
the p-multigrid method is investigated in [85].

In our framework, we use a PCG method to solve the linear equations with the finite element
mass matrices I\7I172 because there are several options for the preconditioner. Our precondi-
tioner is based on the fact that circulant matrices are diagonal in Fourier space and hence,
can be cheaply inverted based on the Fast Fourier Transform (FFT). On a periodic tensor
product grid without coordinate transformations, the finite element matrices are circulant so
that the linear equation systems can be solved directly after Fourier transformation yielding
a very efficient solver compared to iterative solvers in this case. We refer to [55] for a de-
tailed description of this solution strategy. Since the structure of the mass matrices with real
boundary conditions is still close enough to a circulant matrix, we choose such an eigenvalue
solver, P, as preconditioner. Furthermore, its building block is already implemented in the
SelalLib [1].

Observing the structure of the mass matrices for clamped splines of degree p, we notice
that only the first and last p + 2 rows differ from the mass matrix for periodic splines of the
same degree. This observation motivates the alternative idea to use the eigenvalues of the
periodic matrix only for the middle part that is identical to a periodic mass matrix, except for
the periodicity at the boundary, and invert the boundary part, which consists of the first and
last p + 2 rows of the mass matrix, separately.

Figure 12 shows the eigenvalues of the 1D mass matrix with clamped splines for the two
preconditioner ideas. We see that both methods improve the distribution of the eigenvalues
of the preconditioned matrix. Since we are only interested in the ratio between the lowest and
the highest eigenvalue, we decide to use the eigenvalue solver on the whole mass matrix,

eigualmax
€igualmin ©

which has a lower condition number sk =

However, in the case of a singular mapping, we need an additional part for the preconditioner
to lift the singularity in the mass matrix M as investigated in [28, Sec. 3.2]. Assuming for
instance that the entries of M are of minimal order © <§%) we want to precondition with a

matrix which has entries of maximal order O(¢;) and is close to an inverse of M.

We start by looking for a matrix whose maximal eigenvalue is similar to the one of M and

that is easily invertible. Two possible choices are the diagonal row lumped mass (Mfump)ii =

> M;; or the main diagonal matrix (D?);; = M;;. If the entries of the lumped mass become
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25 T T T T
Original boundary mass matrix
Preconditioned with symbol
X Preconditioned with exact inverse for boundary part & symbol for inner block
2 |- -
1.5 - b
X
1+ X X X b4 X X b¢ X X b4 X X X X X b¢ X X b¢
X .
05 |- . .
0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Quadratic spline

3.5 T T T T
Original boundary mass matrix
Preconditioned with symbol
3r x  Preconditioned with exact inverse for boundary part & symbol for inner block q
25 -
2k 4
1.5 4
X
1+ X X X X X x X by X x X X X X X X X X x
05 F x 4
O 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) Cubic spline

Figure 12 Analytical eigenvalues of the 1D preconditioned mass matrix for different spline degrees.

very small or even negative, there are two options. Either we define a positive lower limit for
the sum of the row or we use the main diagonal matrix instead because the diagonal elements
are always positive.

Then, the preconditioner consists of the inverse of the lumped mass or the main diagonal
matrix and the eigenvalue preconditioner P ¢, which is used on the now uniform system. In
order not to destroy the symmetry of the matrix, we construct the preconditioner as

P=M,. P/:M.. orP=D"'P;;D",

lump lump
where the entries of the inverse matrices can easily be computed as (I\N/Il;}np)ii = ﬁ
3
and (D71); = ——.
(2 M”
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Table 5 shows the maximum number of iterations for the CG and PCG solver of the mass

matrices. The numbers are taken from the simulation of the electromagnetic Weibel instability

in Chapter 13 on various grids with a time step of At = 0.01 and a solver tolerance of 10713,

Note that for a lower tolerance the CG solver would not converge without the preconditioner. It

can be seen that our preconditioner largely reduces the number of iterations and the iteration

count only moderately increases with increasing spline order.

Table 5 Number of iterations for the CG and PCG solver of the mass matrices for spline degree p.

Number of iterations CG solver
Grid P =2 De =3
N,=8 | N,=32| N, =8 | N, = 32
Cartesian 426 451 740 772
Distorted 498 502 797 818
Cylindrical 1626 2977 2583 4807
Elliptical 2270 2881 3805 4678
Number of iterations PCG solver
Grid Pz =2 pz =3
N,=8 | N,=32| N, =8| N, =32
Cartesian 8 8 11 11
Distorted 18 18 23 22
Cylindrical 10 10 13 14
Elliptical 14 16 21 22
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13 Numerical Experiments

13.1 Coordinate Transformation

A new class of mappings is introduced that operate on a deformed domain. For the sinusoidal

transformation the mapping is modified to

Ly (&1 + esin(Lpéy) sin(27€))
Faist(§) = Ly (& + esin(Lpéy) sin(27€2)) (13.1)
L.&s

Figure 13 visualises the (x, y)-part of the sinusoidally distorted grid on a square domain with

(a) Square domain (b) Deformed domain

Figure 13 Distorted grids on different domains for distortion parameter ¢ = 0.05.

L, = 27 and on a deformed domain with L,, = 7 for the distortion parameter ¢ = 0.05.

Furthermore, we introduce two radial mappings, a cylindrical and an elliptical transforma-

tion,

(ro + Ly&1) cos(2m&a) L, cosh(&1 + 7o) cos(2m€2)

Fey(€) = | (ro + L,&1)sin(2n&) |+ Feu(€) = | L, sinh(g; + ro)sin(2n&s) |- (13-2)

L &3 L.&3

Figure 14 visualises the (z, y)-part of the corresponding grids, where the pole is excluded for

ro > 0 avoiding a singularity in the mapping.
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(a) Cylindrical grid

Figure 14 Cylindrical grid with ro = 0.5 and elliptical grid with 7o = 0.05.

13.2 Test case

Motivated by the results in [17], we test the implementation of the perfect conductor bound-
ary and the reflecting particle boundary conditions with a simulation of the Weibel instability
[93]. The instability is excited by an anisotropy in the thermal velocity and amplified with the
initialisation of the corresponding component of the magnetic field. The initial distribution is
given by

1 1 2 2 2
f(x,v,t=0) = (14 acos(k-x)) exp <_2 (1;364_2?;_’_”22))7
U v ~

3
(2m)2 vy UT

where x € [0, L]?,v € R3. We can choose between the following three scenarios that trigger
the instability:

© k=1.25e;,vr; < vy, Where we initialise
By (x) = B cos(kyx) or Bs(x) = B cos(kyz),
* k =1.25¢e,,vry < vrg ., Wwhere we initialise

Bi(z,y) = B cos(kyy) sin (2&:) or B3(y) = B cos(kyy),

T

© k=1.25e,,v7, < vrg,y, Where we initialise

Bi(z,z) = B cos(k,z)sin (T) or By(z) = fBcos(k.z).

T
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The remaining two components of the magnetic field are initialised with zero.

0.02 _ vrj _
V2T V12 ﬁ’
above the particle noise, we set 5 = 1072 for the initial magnetic field. The initial electric field

We set v =

where (i,7,k) = (z,y,2), (y,z,z) or (z,z,y). To start

is calculated from Poisson’s equation and the initial perturbation in space is set to zero with
a = 0.

For the numerical resolution, we take 2,048,000 particles, 8 x8x 8 grid cells, cubic splines and
a time step of At = 0.1. The tolerance of the iterative solvers for the DisGradE method is set
to 10~!3 and the tolerance of the PCG solver for the mass matrices is set to 10~'4. Note that
we normalised to dimensionless quantities in terms of the electron Debye length Ap. and the
plasma frequency we.

13.2.1 Comparison to Periodic Boundary Conditions

We start by comparing simulation results with the perfect conductor boundary conditions to
the simulation results with periodic boundary conditions.

R 102k Y

I1B]*

\
”\‘H\h

\h,
(

JN“W
I

Periodic field & particle boundary
Periodic particle boundary
— — — Reflecting particle boundary

I

Periodic field & particle boundary
Periodic particle boundary

— — — Reflecting particle boundary
. I I

I I
100 200 300 400 500

.
. 100 200 300 400 500
Time Time

(a) Initialisation of Ba(x) = B cos(kyx) (b) Initialisation of Bs(z) = /3 cos(kyx)

Figure 15 Weibel instability with k = 1.25&,: Magnetic field energy for HS with time step At = 0.1 on a Cartesian grid with
different boundary conditions.

Figures 15, 16 and 17 show the magnetic field energy on a Cartesian grid for the three
different choices of the wave vector k = 1.25¢é;,i € {z,y,z}. Additionally, there are two
different components of the magnetic field in each scenario that can be initialised to start the
Weibel instability right away. Since the results coincide for the three time integrators, we show
only the simulation of the semi-explicit HS scheme with a time step of At = 0.1. Displayed are
the simulation results for the perfect conductor boundary conditions with periodic or reflecting
particle boundaries and a simulation with periodic field and particle boundary conditions for
comparison.

When initialising the second and third component of the magnetic field, we see in Figures 15,
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Figure 16 Weibel instability with k = 1.25é&,,: Magnetic field energy for HS with time step At = 0.1 on a Cartesian grid with
different boundary conditions.
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Figure 17 Weibel instability with k = 1.25&.: Magnetic field energy for HS with time step At = 0.1 on a Cartesian grid with
different boundary conditions.
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(a) Sum of first and third component of the magnetic field (b) Second component of the magnetic field

Figure 18 Weibel instability with k = 1.25&, and initialisation of B2: Different components of the magnetic field energy for HS
with time step At = 0.1 on a Cartesian grid with different boundary conditions.

16b and 17b that the growth of the magnetic field in the simulation with the periodic particle
boundary coincides with the growth of the magnetic field in the simulation with periodic field
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and particle boundary conditions. However, the reflecting particle boundary leads to a lower
growth rate and even delays the beginning of the growth in the magnetic field in the two
cases displayed in Figures 16b and 17b. We will try to explain this behaviour exemplarily for
the latter case. In Figure 18b, we see that the second component of the magnetic field, which
was initialised to start the instability right away, shows no signs of the expected growth for the
reflecting boundary conditions. This component is updated as By = 8, E; — 8, E in Faraday’s
law (2.8b). Normally, the anisotropy in the velocity causes a discrepancy between the partial
derivatives of these two components of the electric field resulting in the growth of the magnetic
field. However, the reflecting boundary conditions prevent a current through the boundary,
which seems to level the values of the two components of the electric field. Therefore, the
growth of the second component of the magnetic field is suppressed. Nevertheless, Figure
18a shows that the instability arises in the first and third component of the magnetic field.
However, the growth is delayed, since these two components were not initialised.

On a Cartesian domain, the physical and the logical fields only differ by a constant scaling.
Therefore, the perfect conductor boundary conditions on the logical fields ensure E5, E5 and
By to be zero at the boundary. This is why, we initialise the first component of the magnetic
field with By (x) = Bsin (Z2) cos(kyy+ k-z). In this case, the growth rates of the periodic and
reflecting particle boundary conditions coincide, which are lower than the one with periodic
field and particle boundary conditions as can be seen in Figures 16a and 17a.

13.2.2 Domain Deformation

Next, we are interested in the behaviour on a deformed mapped grid. Therefore, we apply
the sinusoidal coordinate transformation (13.1) with L, = 7. Again the results for the three
time integrators coincide so that we only show the results of the semi-explicit CEF scheme
with a time step of At = 0.1.
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(a) Initialisation of Ba(z) = B cos(kzx) (b) Initialisation of B3(z) = 8 cos(kzx)

Figure 19 Weibel instability with k = 1.25&,.: Magnetic field energy for CEF with time step At = 0.1 on a distorted grid with
distortion parameters € = 0, 0.05 for the coordinate transformation.

Figures 19, 20 and 21 show the magnetic field energy on the distorted grid with distortion
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Figure 20 Weibel instability with k = 1.25é&,: Magnetic field energy for CEF with time step At = 0.1 on a distorted grid with
distortion parameters € = 0, 0.05 for the coordinate transformation.
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Figure 21 Weibel instability with k = 1.25&,: Magnetic field energy for CEF with time step At = 0.1 on a distorted grid with
distortion parameters € = 0, 0.05 for the coordinate transformation.

parameters ¢ = 0, which is equal to the Cartesian grid, and £ = 0.05 for the three different
choices of the wave vector k = 1.25¢;,i € {z,y, z}. Displayed are the simulation results for
the perfect conductor boundary conditions with periodic and with reflecting particle bound-
aries. Figure 19 shows that the domain deformation effects the growth of the magnetic field
especially in the beginning. In Figure 20, we see that the coordinate transformation couples
the coordinate directions, which leads to the initial steep growth in the magnetic field. In
Figure 21b, the reflecting particle boundary still delays the growth of the magnetic field but it
starts earlier on the deformed grid. For the periodic particle boundary, the domain deforming
transformation leads to a steeper growth in the beginning, which can be seen in Figures 21a
and 21b. Figure 21a shows only minor differences for the simulation with a reflecting particle
boundary on the Cartesian or on the deformed grid.

Since the coordinate transformation mixes the first two directions of the logical coordinates
in the computation of z and y, z is the only periodic coordinate direction left. Therefore,

we focus on the scenario with the wave vector k = 1.25¢,. Since the instability is delayed
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under coordinate transformation when we initialise the second component of the magnetic
field, we look at the case, where the first component of the magnetic field is initialised with

Bi(z,z) = Bsin (E—w) cos(kz).

x

As a next step, we investigate the effect of the distortion parameter £ and compare the dis-
torted grid (13.1) on a square mapped grid with L,, = 27 to the deformed mapped grid with

L. =T
p 2°
| Evolution of B N Evolution of B
10° T T 10 T T
102 s
10'3 //
= ( .
8 ! B
! =
104 H
f
10°
10—6 1 1 L L
0 100 200 300 400 500
Time Time
(a) Periodic particle boundary (b) Reflecting particle boundary

Figure 22 Weibel instability with k = 1.25&,: Magnetic field energy for CEF with time step At = 0.1 on a distorted grid with
different values of the distortion parameter ¢ for the coordinate transformation.

In Figure 22, the magnetic field energy on the distorted grid is displayed for different values
of the distortion parameter €. We present only the simulation results of the HS scheme with a
time step of At = 0.1 because all three schemes show the same behaviour of the magnetic
field. We see that for the square mapped grid, the coordinate transformation does not change
the growth of the magnetic field even for a high distortion parameter of ¢ = 0.1. However,
for the domain deforming coordinate transformation the higher distortion parameter ¢ = 0.1
leads to a slightly different growth of the magnetic field. Additionally, after the saturation all
the curves drift apart, especially with the periodic particle boundary conditions.

13.2.3 Radial Grids

Let us extend the Weibel instability to the radial grids given by the coordinate transformations
in (13.2), where we set g = 0.01 to prevent a singularity at &, = 0 and choose L, = L — ry.
From now on, we consider the particles to be reflected at the boundary, since this is an
expected physical behaviour. Additionally, we double the resolution in the radial and angular
directions to 16 x16x8 grid cells in order to see the impact of the time step constraints on the
semi-explicit integrators.

Figure 23 shows the first component of the magnetic field energy on a cylindrical and an
elliptical grid with reflecting particle boundary conditions. Due to the stability constraints, we
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Figure 23 Weibel instability with k = 1.25é: First component of the magnetic field energy for various integrators with time
steps At = 0.01, 0.1 on cylindrical and elliptical grids with 7o = 0.01.

have to choose a lower time step of At = 0.01 for the semi-explicit schemes whereas the
implicit method shows comparable results with a time step of At = 0.2 or higher. The stability
constraints arise from the smaller cells near the pole, where the semi-explicit schemes have
problems, when particles cross too many cells in one time step. Although the semi-implicit
DisGradE method takes roughly about seven to ten times longer for a time step than the semi-
explicit HS or CEF schemes, it seems that it is more suitable to this type of domain deforming
mappings, since its simulation results show the same behaviour of the magnetic field as the
semi-explicit schemes while requiring at most one-twentieth of the time steps.
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Figure 24 Weibel instability with k = 1.25&: First component of the magnetic field energy for DisGradE with time step
At = 0.1 for various domain deforming mappings.

In Figure 24, we see the first component of the magnetic field initialised with By (z,z) =
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B sin (z—j) cos(k,z) for various domain deforming mappings. The simulation results are ob-
tained by the DisGradE method with a time step of At = 0.1. For all mappings, we see
a growth in the magnetic field. However, the growth rates differ as well as the lengths of
the linear phase, especially for the elliptical grid, where the saturation happens much later
compared to the other cases.

13.2.4 Conservation Properties

Conclusively, let us take a look at the conservation properties of the different time integrators
on the deformed mapped grids. Table 6 shows the conservation properties of the three time

Table 6 Weibel instability with perfect conductor boundary conditions: Maximum error in Gauss’ law and in the total energy
until time 500 for the semi-explicit and implicit time integrators on various grids.

Method Cartesian | Distorted | Cylindrical | Elliptical

HS 1.8-1071 [ 52-10710 | 6.3-10719 | 5.8-10710

Gauss CEF 1.8-107 [ 5.2-10719 | 6.4-10719 | 5.6-10710

DisGradE || 3.4-107% | 4.0-107% | 2.1-1073 | 4.7-1073

HS 1.8-107* [15-107* | 15-107% | 2.0-1076

Energy CEF 1.8-107% [3.7-1073 | 18-107% | 7.0-1077

DisGradE || 2.0-107 [ 92.-1072 | 5.0-10712 | 1.1-10711

integrators until 7" = 500 with a time step of At = 0.1 except for the semi-explicit schemes on
the radial grids, where stability constraints restrict to a time step of At = 0.01. The distortion
parameter is chosen as € = 0.05. We see the difference between the energy and the charge
conserving methods. As expected, the implicit DisGradE method conserves the total energy
whereas for the semi-explicit HS and CEF schemes the energy is not conserved. Though,
the error is bounded for the semi-explicit schemes. In contrast, the semi-explicit HS and CEF
schemes conserve Gauss’ law, which is not conserved for the implicit DisGradE method.
Note that all conservation properties are up to the tolerance of the solver times the condition
number of the mass matrices.
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14 Introduction

In several interesting test cases with realistic physical applications, we are only interested in
the ion motion, which happens at a time scale about two orders of magnitude greater than the
one of the electrons. However, in a full kinetic model, we need to solve for the time scale of
the electrons, which requires too much computing power to obtain reasonable results. In this
part, we introduce the quasi-neutral model, where we get rid of the stability constraint of the
electron time scale by considering a neutralising background density of adiabatic electrons.

In an electrostatic setting, the density of the adiabatic electrons is given by the Maxwell—
Boltzmann distribution,

qe®(t,x)
Ne(t, x) = npe(x)e Te® .

Since the exponent is assumed to be small, this can be approximated by

et ) = o) (14 198,

Starting from a quasi-neutral setting, where n; = n., we obtain

2
n
p = qe(ne — nge) = %@. (14.1)
e
Furthermore, we use the continuity equation to get
5, 2nge O
9P 9092 _ _y.7. (14.2)

ot T. ot

Then, the weak form of the quasi-neutrality equations (14.1) and (14.2) tested with ¢ €
H'(9) is given by

2
/ AP dx = / Ypdx,
Q e Q

(14.3)
0 qgn()e _
ﬁt/g D dJCI)dx—/QV¢-JdX—/GQ¢(n-J)d0.
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Proposition 14.1. Under the coordinate transformation F (&) = x the weak formulation of
the quasi-neutrality equations (14.3) is transformed and discretised as

Np
Mo = Z gpwph®(€,) T, (14.4)
Moot = GT quwp (&) TN(E,) vy (14.5)
p=1

Proof. First, we insert the coordinate transformation and use the transformation formula
(2.16) to obtain

/qenow@w )] de = /wprJF )| de,
Q

0 e
(%/ qng B Tp(€)] dE = /Nvgw NJ|Jp(&)]dE — / Y(Ni - NJ)|Jp(£)|ds.

Then, we discretise with the finite element method and insert the representation of the scalar
potential, which can be written as ® = AO(E)&). Furthermore, we choose the basis function
A° €V} as test function,

27’L - ~ ~ A
[ R TR OB (€) 06 = [ A°€)T pul ()] a6
Q He @

2, B ~ . )
5 | RO TR (@)de = [ (NOTVER(©) N(@Tule(e)]de

ot log T,
- /8(2 A(&)(ny - N(€)Tp)| k(&) da

When we assume periodic or perfect conductor boundary conditions as in Section 9.5, the
boundary term vanishes.

Next, we use the PIC representation of the transformed densities (3.2b) and (3.2a) and insert
the derivative matrix for the gradient (3.4),

S SCRECIACETEY UG > o] Mr(EN 06

N,
qgn o~ ~ 3 ~1 T — 5(5 - gp)
/QT:)Ao(ﬁ)TAO(ﬁ)JF(é)d£¢:/ﬁ(N(£>A (€)G) D app— Vol Ie(€)] €.

Introducing the mass matrix Mo, := [ %AO(@TAO(QUFQN d¢ yields the proposition.
O
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15 Time Discretisation

We consider a magnetised plasma with a background field B that is constant in time. Then,
the equations of motion take the following form:

=N (2)V,
V =W N(E) (—Nl(E)Gclv +B(E, Bo)NT(E)V) 7

Mocp =G L(E)TNT(E)W,, V.

[

The Hamiltonian for this electrostatic setting is given by

~ 1 1~7~ -~
= SV W, V §¢TMOB¢>

and the discrete Poisson matrix corresponding to the equations of motion is obtained as

0 NT(E)W;,! 0
IE o) = | ~W;INE) W NE)BE bo)NT ()W, —Wo NE) (E)GMy
0 Mo GT H(E)INT(E)W s 0

15.1 Hamiltonian Splitting

In this section, we consider a Hamiltonian splitting, where we split the Hamiltonian in two
parts Hj, = 7:[p + Hq and denote the corresponding subsystems.

The operator 7:[p collects the equations, where the quantities are updated by the particle
velocity,

=N"(®)V,
V =W N(E)B(E,bg)N' (B)V,

[

MO@& = GT ! (E>TNT(E>W%V'

Then, the system for the operator Hq consists of the following equation:

V =-W4 NE) 1(E)Go. (15.1)

As in Subsection 6.1.1, the equations for 7-Lp are discretised in time with the symplectic mid-
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point rule in a fixpoint iteration,

"t =" + ANT (B) V,
VI =V AW N (8) B (B, ) NT (B) V.,
~  ~n+1l ~ o~ II e ~
M0€¢n+ :MOed)n + GT / 1(5(7_))T dTquNT (E) V’

tn

= =ntl mn +1 —_ ntl_ ymn _nygn+l
where E = BV AE" Y — V'AV" gng m(7) = ETDEEET  Eyrthermore,
the equation of operator 4 can be solved explicitly resulting in the charge conserving HS

scheme,

~n

Remark 15.1. The alternative CEF scheme can be constructed corresponding to Subsection
6.1.2 by computing the velocity update with the static magnetic field in a separate step as in
(6.5).

15.2 Discrete Gradient Method

Splitting the discrete Poisson matrix into three antisymmetric parts leads to the following
subsystems:

system 1: E=N'(E)V,
system 2: V = W4, N(E)B(E,bo)N' (E)V,

my

. ~ ~ ~ 2 ~ T
system 3: V = W, N(E) 1(E)Gp, Moedp = (N(E) 1(5)6) W, V.

my

[

For the DisGradE method, the first two systems can be discretised as in Section 6.2,

system 1: 2"t = 8" + AtNT(EnH) +NT(E")

2
- At -
system 2: <| - AQthNBNT> vl = <| + 2WqNBNT> S

v,

For system 3, we use the discrete gradient method,

Vn+1 _Vn
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We write this in matrix form as

| StWa N IG, | [ Vit | —&'W.u N 1G, | (V"
—4LN1G)Tw,, M. Prtt SHN1G)TW,, M. P
and decouple the equations with the Schur complement

At?

S+ = Moe + quiWL?GT(Nl)TG;L1~1G.

Then, the inverse of the matrix on the left-hand side can be computed as
-1

[ W4 NG, I —4Wa NG| (I 0 I 0

—5HNTIG) "W, Mo. 0 | 0 S \ANTIe) W, I

Hence, we obtain the decoupled equations,

~n+1 _ n 1 fe—n —_n n
ot =5t (s_cb +AtGT @ TNT (@MW, V )

At ~
Vn+1 — Vn _ 7WﬁN(En) 1(En)G((I)n+1 + (I)n)'

my

When we solve system 1 and 3 together as in Section 6.3, we get the DisGradEC method
with the two subsystems
. T . ~1 - o~ 2 ~1 T
system 1: E=NE)"V, V= -Wa NE) (B)Gd, Mo = (N(E) (E)G) W, V,
system 2: V.= W ¢, N(E2)B(Z, b)N(E) ' V.

m;

While system 2 can be solved as above, we discretise system 1 analogously to (6.10) yielding
an energy and charge conserving scheme,

En—H _=n NT(En—H) 4 NT(En) Vn+1 S VAU

At 2 9 )
Vet v NE"H+NE") 1 " "+ "
ASEEEER ST = L= T
A Wa e [ T Em) are S
V s V b et i _n (0 n
Moc®” —Moed” _ 1 s /t ()T ar N ET) FNTED,, VAV

15.3 Linearised ¢ f Method

The quasi-neutral model induces major problems with particle noise. Therefore, we rely on
noise reduction techniques to obtain satisfying results even though we loose the conservation
properties.
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In [84, 83], a linear 4 f method for the quasi-neutral Vlasov system is described based on the
linearised electrostatic Vlasov equation for ions,

d - 8(5]01 T s qi o di .
a&fz ot +N (£)V : V:E(sz + Ev x By - vvéfz = mlN(£)5E Vv fois

with the equilibrium function
02 4+ 02 + 02
foi(&,v) = exp | ———5—|.
(FUTJ?) 211%—-:0

So, the unperturbed particle characteristics are given as

ép = N(Ep)vpa
. qi
Vp = Evp X BO
and the weights for the linear 6 f method, w, (&, v, t) = WJF(@,), are updated as
7 vaP
dwp d 5fz q; = JF(Ep)
Qup _ 49 5B o foi(& vy S 15.2
dt dt f[) F(&p) mZN(gp) (gp) \Y pfo (Ep Vp) fol(ﬁp,vp) ( )

The scalar potential and with it the electric field are still advanced by the quasi-neutrality
equation (14.2).

The linear 5f method can be simply integrated in the semi-explicit time stepping schemes
given in Section 15.1 by replacing (15.1) in operator He with equation (15.2). In this case,
the weight update can be discretised explicitly in time. In the implicit schemes given in Section
15.2, the use of the linear ¢ f method would break down the antisymmetric structure of the
system leading to a different discretisation of the equations of motion. Therefore, we only use
the linear 0 f method for the semi-explicit schemes.
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16 Numerical Experiments

16.1 lon Acoustic Wave

In [84], the setup for a periodic ion acoustic wave is given. This is an electrostatic test case
with constant external magnetic field, B = Byé,, and the following initial distribution:

f-(xvt—O)—(l—I—acos(k-x))#ex (—1 (U2>) x € [0,L],v eR3
T eoteg, T\ 2\ )) TR

The scalar potential at initial time, ®(x, t = 0), is calculated from the quasi-neutrality equation

(14.4). We choose the parameters as By = 1,a = 0.5,T, = 5,vp; = 4/ - = ﬁ =1,

m;
k = (0 0.3, 13 1000
take 1,024,000 particles, 2x8x 16 grid cells, spline degrees (1, 3,3) and a time step of At =

0.1. The tolerance of the iterative solvers for the DisGradE method is set to 10713 and the
0—14

)T,Lgc = L, = 3—75 and L, = 1000. For the numerical resolution, we

tolerance of the PCG solver for the mass matrices is set to 1 . The tolerance for the

non-linear iteration in DisGradEC is set to 10~'°. Note that we normalised to dimensionless
quantities in terms of the ion gyroradius p; and the ion cyclotron frequency w;.

Adapting the dispersion relation from (18.22) to this test case and introducing the dimension-

1+ Z (fk m) An (<%>2>] '

n=—oo

less quantities yields

T,
D(k,w 14+ =—
( ) TkaTl

For our parameters, we obtain on the one hand w = 0.0168 — 0.0024: and on the other hand
w = 1.1859 4 0.0¢. The former represents an ion acoustic wave with a a damping rate of

v = —0.0024 and a wave period of T' = = 373.86 whereas the latter stands for an

0.0168 0168
undamped Bernstein wave with a period of 7" = 155=5 1859 = 5.2982.

In Figure 25, we see that the damping rate computed by the dispersion relation is only
matched in the beginning. Afterwards, the constant Bernstein wave suppresses further damp-
ing, which is also observed in the paper of Sturdevant et al. [84].

Table 7 lon acoustic wave: Maximum error in Gauss’ law and in the total energy until time 1000 for the semi-explicit and
implicit time integrators with time step A¢ = 0.1.

Gauss Energy

HS 7.0-10712 | 6.3-107*

CEF 75-10712 | 38-1074

DisGradE | 5.1 1.9-10712

DisGradEC | 6.1-10"'2 | 1.2.10°8
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Figure 25 lon acoustic wave: Scalar potential energy for various integrators with time step At = 0.1 and analytical damping
rate.
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Figure 26 lon acoustic wave: Energy error for the semi-explicit time integrators with various time steps.

We have started with this periodic 2D test case embedded in 3D on the one hand to compare
to the test case in [84] and on the other hand to show the compatibility of the ansatz with
adiabatic electrons with the structure-preserving framework. In Table 7, we see the maximum
error in Gauss’ law and in the total energy for the different time integrators. As expected, the
semi-explicit HS and CEF schemes as well as the fully implicit DisGradEC method conserve
Gauss’ law whereas the implicit DisGradE and DisGradEC methods conserve the total en-
ergy. We check the error in the total energy and Gauss’ law for different time steps At to
see if the errors are bounded by the time step size. Figure 26 shows the maximum error in
the total energy for the semi-explicit schemes HS and CEF whereas Figure 27b shows the
maximum error in Gauss’ law for the implicit DisGradE scheme. For the DisGradEC method,
the energy error depends on the tolerance of the non-linear iteration and on the time step as
can be seen in Figure 27a.
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Figure 27 lon acoustic wave: Energy and Gauss’ law error for the implicit time integrators with various time steps.

16.2 lon Temperature Gradient Instability

The test case for an ion temperature gradient instability (ITG) in slab geometry is taken from
[83]. However, we consider a 3D setting with perfect conductor boundary conditions for the
fields and reflecting particle boundary conditions. In this case, we have to use the linear ¢ f
method reviewed in Section 15.3 to reduce the particle noise. Additionally, we introduce the

>€
field-line-following coordinate R = (:p + Z‘é’g Y = z) to obtain an initial steady state

solution of the electrostatic Vlasov equation, where the external magnetic field is given by
B = Bye.,.

Then, the initial distribution with a gyrotrope initial perturbation takes the following form:

fi(R,x,v) = {1 + asin G—‘j) <cos(k ‘R) + %cos(k - x) exp (f Ti(RI)m;(kg * ki)))] foi(Ray V),

1 me 4
fOi(Rm:V) = mexp (—m> ,X € [O,L],V e R,
2 i ote) ) R

m;

The initial scalar potential ®(x,¢ = 0) is computed from the quasi-neutrality equation (14.4).
We choose the parameters as o = 0.1,7, = 4,m; = 1,k = (0,0.2, 0.002)T, Ly=L,= i—’;
and L, = i—” For the numerical resolution, we take N, = 8,192,000 particles, N, = 8x8x16
grid cells, cubic splines and a time step of At = 0.125. The tolerance of the PCG solver for
the mass matrices is set to 1074, Note that we normalised to dimensionless quantities in

. . \ kpTim; . ;
terms of the ion gyroradius p; = Y-’z and the ion cyclotron frequency weio = abo,
0 1

Since Sturdevant et al. refer to [76] for the test case, we assume the ion temperature profile
and its gradient to be given as

_ R;r
T;(R,) =T; [1 — krwr, Ly tanh < )] , (16.1a)
Tk,
T/(R,) = ——— 0, (16.1b)
cosh2< Rﬂj: )
wr; La
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where T; = 1 and wr;, s, are varied. Note that we have to choose wr, in such a way that the
temperature profile stays positive. Figure 28 shows the temperature profile and gradient for
various values of k7, and wr;.

(a) Temperature profile (b) Temperature gradient
Figure 28 Temperature profile and gradient for various values of k7, and wr;.

The velocity gradient of the initial distribution function fo;, which is used in the linear ¢ f
method, can be computed as

m;v . my miU2 3 Tz'/(RI)
vaOz - <_T@(Rx) +eyqu0 (2E(Rz) B 2> TZ(RI)> fOZ'

Following [83], we start by approximating the temperature and its gradient with the constant
values at R, = 0, T;(R, = 0) = T; = 1 and T/(R, = 0) = —r7,T; so that the velocity
gradient simplifies to

2
m;v.o . m; [ Mmv 3
\V4 = —— — - — — — ) -
VfOz ( Tz eyquO < 2Tz 2) /{TZ> fOz

Furthermore, these are the same approximations used in Chapter 18 to derive the dispersion
relation (18.22). Then, we compute the growth rates for various choices of k7, from this
dispersion relation,

D=1+ 514G Y (Z(G)An(O)-
];%*Z;[Z(gn)/\n(g) — 2 (1 + G Z(Cn))An(§) — 2&(@)%(6)]” ;
mlkzﬂ

where £ =

232 C = S
n = —
4 Bg ﬁkz,/%
K

In Table 8, we see the analytical growth rates computed from the dispersion relation above
together with the ones obtained from the simulations by fitting growth rates to the curves
during the linear phase. Figure 29 shows the simulation results of the ITG in slab geometry
for the different values of x7, together with the analytical growth rates. All runs are computed
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Table 8 lon temperature gradient instability in slab geometry: Analytical and simulated growth rates for the approximated and

varying temperature profiles and gradients for different values of k7;.

Analytical growth rate Simulated growth rate
KT.
" constant profile constant profile | varying profile
0.12 4.3-1073 4.4-1073 3.9-1073
0.10 3.9-1073 3.9-1073 3.7-1073
0.08 3.4-1073 3.4-1073 3.2-1073
0.06 2.8.1073 2.7-1073 2.2-1073
0.04 2.0-1073 1.9-1073 1.3-1073
108 ! | 7
e 7
R it Vo &y
K, = 0.04 g S
Growth rates v e
10° ¢ pa—
105k = |
104 F -
103
0 1500

Time

Figure 29 lon temperature gradient instability in slab geometry: Scalar potential energy for CEF with time step At = 0.125 for
various values of ~, with approximated temperature profiles and gradients and analytical growth rates.

with the linear § f method for the approximated temperature profiles and gradients. We show
only the simulation results of the alternative Hamiltonian splitting scheme CEF, since the HS
scheme yields comparable results. The computed growth rates are matched in the linear
phase. However, for values of k7, > 0.1, we see the beginning of a steeper growth after
T = 1200. This can be explained by the interaction with higher modes.
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Figure 30 lon temperature gradient instability in slab geometry: Scalar potential energy for CEF with time step At = 0.125 for
various values of k7, and w; with varying temperature profiles and gradients and analytical growth rates.

While the simulations with approximated temperature profiles and gradients yield good re-
sults compared to the dispersion relation that used the same approximations, we are also
interested in the results with varying temperature profiles. Figure 30 shows the simulation
of the ITG in slab geometry with the temperature profiles and gradients given in (16.1a) and
(16.1b). All simulations are performed with the linear § f method for the CEF method. We see
that the instability starts later and the growth rate is lower when we use the varying profiles.

As a next step, we want to simulate the ITG on a cylindrical grid. The test case is taken from
[60], where the MEDIUM test case from [20] is simulated, and adapted to our framework. We
still consider an constant external magnetic field in z—direction, B = Byé,, and the initial
distribution is given by

f(r,0,z,v,t=0) = [1 + acsin <7T(T_TO)> cos <m9 + ]Zz)} foi(Rz, V),
0

(r,0,2) € [ro, 1] x [0,27] x [0,27Ry],v € R

with the equilibrium Maxwellian

nol(Rx) 7711'1)2
foi(Rz,v) = exp <— )
( 27TTi(R_)>3 2T3(Ra)
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The parameters are chosen as o = 0.1,7, = T;,m; = 1,(m,n) = (15,1),r9 = 0.1, =
14.5, Ry = 239.8081535 and By = 1. For the numerical resolution, we take IV, = 8,192,000
particles, NV, = 8x16x16 grid cells, cubic splines and a time step of At = 0.1. The tolerance
of the PCG solver for the mass matrices is set to 104 and the normalisation to dimen-
sionless quantities is still in terms of the ion gyroradius p;p and the ion cyclotron frequency

Weio-

The profiles for the temperature and the density are given as

Ts(r) = Tsexp (—/ﬁ;Tszs tanh (T)) ,s € {i,e},

s

_ rT—T
no(r) = ng exp <—/€n0wn0 tanh ( >> ,
Wy

where 7 = ™4 and the parameters are chosen as T; = 1.0,x7, = 0.27586,wr, =

1.45,ng = r1—"o ~ 0.9 — 0.055 _ 90
5, No f;61 exp (—Hnoi/.)no tanh(ﬁ;;))dr 9, Kng y Wy

The velocity gradient of the initial distribution function fy; can be computed as

o miv . m; [ny(Ra) mv® 3\ T/(R.) '
vos = (i o o) * (ot ) i)

Analogously to the test case in slab geometry, we approximate the profiles and their gradients
with constant values at r = 7, Ty(r = 7) = T; = 1, no(r = 7) = np ~ 0.99, T/(r = 7) =
—FmTi = 0.27586, n((r = ) = —kp,nig ~ 0.054. These approximations are necessary to
use the linear § f method, since we lack a representation of the field-line-following coordinate
R, in the cylindrical geometry. Figures 31 and 32 show the density and temperature profiles
together with these approximations.

Then, the velocity gradient of the initial distribution function simplifies to

2
o m;v ~ My mv § i
vaOZ — ( TZ ey quO |:K/n0 + < 2ﬂ 2) K/Ti:| > fO'L.

In Figure 33, we see the simulation results of the semi-explicit time integrators with time
step At = 0.1. Both simulations are performed with the linear § f method. Fitting a linear
growth rate to the curves yields a growth rate of v ~ 0.02 whereas in [60] a growth rate of
~v =~ 3.8 -1073 is computed. This shows that the constant approximations of the density and
temperature profiles and their gradients lead to a higher growth rate.

Since the linear ¢ f simulations of the ITG instability lack conservation properties, the next
goal would be going to full f simulations that yield the conservation properties of our structure-
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Figure 31 Density profile and gradient for the ITG simulation in cylindrical geometry.
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Figure 32 Temperature profile and gradient for the ITG simulation in cylindrical geometry.
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Figure 33 lon temperature gradient instability in cylindrical geometry: Scalar potential energy for the semi-explicit time
integrators with time step At = 0.1 with approximated density and temperature profiles and gradients.

preserving framework. Therefore, we have to deal with the following challenges:
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First, we need to investigate different temperature profiles for the ITG in slab geometry.
For example, variation of the parameter w7, leads to different growth rates.

Second, we want to verify the growth rates that follow from the varying temperature pro-
files. However, the alterations for the dispersion relation to deal with a varying temperature
profile are not trivial. One solution could be to compare to reference simulations made with
gyrokinetic codes, where dispersion relations already exist for simplified models.

Last, the problems with the particle noise imply that we need a huge amount of particles
to get the necessary resolution for the instability to happen. We have to try out different
amounts of particles unless we find a way to verify the conservation properties with § f
methods.

For the ITG in cylindrical geometry, the additional problem arises that we need to find a
field-line-following coordinate R, so that fo(R.,Vv) is an steady state solution of the Vlasov
equation. A solution for the § f method is described in [44, Sec.5], where an extra source
term is used to account for the case when fj is not an kinetic equilibrium. Moreover, we lack
a dispersion relation for cylindrical coordinates so that we rely on reference solutions and the
computed growth rates of gyrokinetic models.
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Part IV

Physical Units and Dispersion Relation
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17 Normalisation

17.1 Vlasov—Maxwell Equations in Sl Units

In Sl units the Vlasov equation for particle species s is given as

Oufs+V - Vxfs+ = (B+v x B) - Vyfy =0

S

and Maxwell’s equations as

0B
E=-"—
V X TR
OE
VXB—ILLD<J+€082€>,
V-E=",
€0
V-B=0.

The equations are coupled by the source terms, namely the charge
p=Ya [ty
S
and the current

J:Zq/vfsdv.

The total energy of the system is given by the Hamiltonian in Sl units,

mg €0 1
H:ZQ/VQdexdv+2/|E|]2dx+2uo/\B|2dx.

17.2 Physical Parameters of a Plasma

In the following, we use a number of physical constants:

Vacuum permeability 119 = 1.2566370621219 107645,

Vacuum permittivity so = 8.854187812813 x 1071245
Boltzmann constant x5 = 1.380649 1023,
Elementary charge ¢ = 1.602176634  10~'°C,
Electron mass m. = 9.109383701528 % 103" kg,

Proton mass m, = 1.6726219236951 * 10~2"kg,
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Neutron mass m,, = 1.6749274980495 * 10~27kg.

A plasma, which consist of ionised particles, is characterised by the temperature T, density n
and mass m of the negative charged electrons and the positive charged ion kernels. Mostly,
we consider electrons and ions with the same temperature and density, T; = T, = Tk, n. =
n; = n. Although the Sl unit for the temperature T}, is Kelvin, we usually give the energy Tg
instead, which is calculated from the temperature via the formula Ty = T kp. Furthermore,
the energy is often given in electron volt, which has the value of the elementary charge,
lev = 1.602176634 % 10719,

Since the plasma in the fusion reactor consists of Deuterium and Tritium, we assume that the
ion mass is given by the sum of the mass of one proton and one neutron, which build the
kernel of Deuterium. It is quite common not to use the real mass ratio from electrons and
ions, which is denoted as M = m;/m. = 3670.5, but to set an artificial value, for example
M = 200. We will see the practicality of this setting later on.

Additionally, we need the initial magnetic field B to compute the following simulation parame-

ters:
i kT,
Thermal velocity [%] : vps = /"B,
-17 . _ nsq?
Plasma frequency [s™'] : wps = ¢/ 1ok,
. _ vre _ [eokpTs
Debye length [m] : Aps = f= = \/I,
Cyclotron frequency [s7!] : wes = W;%f,

Gyroradius [m] : p, = 2L = YkoTams

Wes lgs|B >

Plasma beta [A2 JTQ] Bs = M

In Table 9, we state the parameters from above for the specific settings of different fusion
devices.

17.3 Dimensionless Parameters

For numerical simulations, the equations are normalised such that the resulting dimension-
less quantities are of order one. For the normalisation, the following quantities are fixed: nef,
Trefs Mref, Gret aNd wier OF Lygs. First, the species, ions or electrons, is chosen and then,
the frequency or length such as the cyclotron frequency and the gyroradius or the plasma
frequency and the Debye length.

From these initial values, we define the following quantities:

Tretkp

Myef ’

The reference velocity v,ef =
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Table 9 Parameters for different fusion devices.

Devices Wendelstein 7x | Asdex Upgrade | ITER
Major radius Ro[m)] 5.5 1.6 6.2
Minor radius alm] 0.53 0.8 2.0
Magnetic field BI[T] 2.5 3.9 5.3
Average particle density | n[m™3] | 1.89-102% 2.0-10%° 1.0 - 10%°
Average thermal energy | T[keV] 5.0 8.7 8.8,8.0
vre[ms™Y | 3-107 3.9-107 3.9-107
Thermal velocity
vpilms™1] | 4.9-10° 6.5 - 105 6.2 10°
pelm] 6.7-107° 5.7-107° 4.0-107°
Larmor radius
pi[m] 4.1-1073 3.5-1073 2.4-1073
wee[s7Y] | 4.4 - 101 6.9 - 10 9.3 101
Cyclotron frequency
wei[s71] | 1.2-108 1.9-108 2.5- 108
Apelm] | 3.8-107° 4.9-107° 7.0-107°
Debye length
Api[m] | 3.8-107° 4.9-107° 6.6 - 107°
wpe[s™1] | 7.8 10 8.0- 10 5.6 - 10
Plasma frequency
wpils™1] | 1.3-10%° 1.3-10% 9.3 -10°

The reference length or frequency L. = fj—eff, Wref = 7L

)
ref

2
The reference epsilon eyef = —etrel

’
WiosMref

The reference beta Syt = p1og0v?2

ref*

There are two obvious choices for the reference frequency, either the plasma frequency or

2
qins
2
WhsMs

the gyrofrequency. For the choice wyer = wps, We get eef = = ¢gp and it follows

2
that Bref = “2Fs2 g = ¢ i. On the other hand, if we cho0Se wyer = Wes, We g6t Bref =
ps s

uokplsns — B, s = e, i, which is the definition of the plasma beta.

Based on the reference values, we define the following rescaled quantities:

TSZkBqu_QS 5 — Ms n o — Ms

Tret > 45 7 qret’ 5 T Miges? 8 Meet? 5 = 06
f=twet, L= 72, %= 2 k= kLyet, v = ;&
ref ref ref
=g = b I = i
Nref » P QrefMref’ NyefUrefqref ’
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¢ E — Lyef Gref E’ ]/\3 — Lyof Gref B

v Myef Uref Mref ’

=

ref ref

A~ 3
H=—"—H

5
MrefV ofMref

17.3.1 Vlasov-Maxwell System

Proposition 17.1. The dimensionless Vlasov—Maxwell system takes the following form:

agfs+v-v,zfs+%(ﬂ+ox1§) Veofs =0,

oB = Vi x E, Vi E=5
at €0
9B _ Ve xB- ey, Vi-B=0
8t /Bref €0

with the source terms
=4 [ fav, 3=Ya [
S

Proof. First, we rescale the Vlasov equation in Sl units (17.1) with the dimensionless quanti-
ties. Note that we can approximate the partial derivatives as

which leads to the scaling 0; = Ojwref, Vx = VL
equation can be written as

Vy = Vgu ;. Then, the Viasov

ref ’

A 2

nrefwref nref ref % Nyref  Qref QS Vet Miref £ Uref Myef . a ;
3 8f5 7 : xfs+ v3 LiiEJ"UrefL vxB 'V\A/fs:&
ref ref ref Ulef Uref Mref M ref Qref ref Gref

3
Next, we multiply the equation with ﬁ and use the definition wyes = }j—ff to get the
dimensionless Vlasov equation

affs+{’vﬁfs+?;]; (E‘FQXP’) v\?fs:O

Additionally, we review the definition of the source terms,

~ f A~
p= Z QrefQS/ 3 fs Ve dv, I = Z Qrefqs / Uref ;)e st dv.
s

Vet Uref
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We see that the definition of the dimensionless source terms as p = 7 j@ =P J= W

is the obvious choice.
Second, we consider the electric Gauss law (17.2b) with dimensionless variables,

2

Viet Mref - QrefTref .
of Tlre _ Gre

Gl gy = el
refdref €0

2
In this case, we use eer = 5 and are left with the factor %,

ref "'re

Since the right-hand side of the magnetic Gauss law (17.2d) equals zero, this equation scales

perfectly,
—1 Uref Myef A
L1re Vi -B=0
ref Lref Gref *
& Vi B =0.

In Faraday’s law (17.2c) the partial time and position derivatives cancel out together with the

normalisation factors of the electric and magnetic field,

2
—1 Yref Mref o
ref re —V;( x E = —Wref
Liet Gret

Uref Myef @
Lyet Gret ot

2
We multiply both sides with LL; and obtain

refVUref

oB

V&XE:—ﬁ.
ot

Last, we insert the dimensionless quantities in Ampére’s law (17.2a),

9 o
VpefM A a VE MyefWref OE
<L1";f ref> Vi{ x B = Ho nref“ref‘]refJ + 50%&@7A .

ref dref ref qref ot

2
We multiply both sides with Usz% and use the e,.r and wyr definitions from above to get

ref tref

2 3 3 "

Lreeref Vet Mref 4 Vet Mref OE
0 | Eref D) J+e 0759 T~

UrefMref Lreeref L refdref ot

V&XEZ(

A Eref 2 8E
& Vi x B = ugv? iy | ~ .
% Movref50<€0 + 8t>
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Then, we solve for the time derivative of the electric field and introduce the reference beta

2
Bret = HOEQV et
OE

Vi xB-— frefy_ 9
5ref €0 t
OJ

Proposition 17.2. The dimensionless Hamiltonian takes the following form

1
€0 / B i+ — / 1B dk
ref

7= st/M I

Proof. We insert the dimensionless quantities in the Hamiltonian in Sl units (17.3)

MyefM Tref 2 R N
H= Z r62 : /Ugef’ ‘2 5 stref dXU?ef dv
s ref
"’ref"”‘“ef) IBIPL, dx

2

€0 UrefMref > E 3.d / <

- _ref " TCl x + _

2 < Lreeref | ’ | | ref ref Qref

Multiplying the equation with — fvfefn yields
re: ref ref

3 A~
N w Mg D 1a 1a
H = E — et e L3 fv2 1cnref/|v| fsdxdv
s mrefvfefnref e 2
3 3
w eovE Loogm?2. 1 w m2.1
ref O0Vref LrefTlref 2 ref ref ref f 2
+ 5 /\E\ dx + e /HB] dx.
MrefUpofMiref qref mrefvrefnref Hoqref
Last, we use the definition of w,.r and e, to obtain
o1 [iglax B|2d
| E] + |B"d
ref

= Zm5/|v| I
O

17.3.2 Quasi-neutral Vlasov System
Proposition 17.3. The coupling of the Viasov equation (17.1) with the quasi-neutrality equa-

tions (14.1) and (14.2) rescales perfectly to dimensionless quantities

Proof. We have already shown that the Vlasov equation rescales perfectly. Hence, we only
consider the quasi-neutrality equations and its Hamiltonian. Let us start with the quasi-
neutrality equations in Sl units,

2

*n n

T0=p—ane —qTeatqb:—vx
e

-J.

128
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When we insert the dimensionless variables, we see that both equations scale perfectly,

2 25
GrefMref Tret ¢°Tle 4 ~ A «
(b = QrefTiref P — qQrefTlellref,

Tref Qref T
L P
Ned — 5— g
T,
2
%;e qref ref T -0 t¢ refnref'Ureerefvic -J,
re re e
~D A
q n R
=0 t¢ =-Vi-J

Then, we look at the total energy for the system and insert the dimensionless quantities,

Mg 1 q Ne
’H:ZQ/\V\Qdexdv—i—2/ | @2 dx

MyefMs 2 2 Nref ; 1 qrefnref q e T, ref 2
= g —— | L3 dxud dv 4 = [ 2L L3
2 / ref|V | | 3 f sHref ref 2 / Tref Te qref H(bH ref

Uref

3 A~
We multiply the equation with —x and use the definition of w,.; and H from above as

refvrefnref

well as the fact that we can write Tyef as v2,my.¢ to obtain

3 3

~ w m n ~
H = Z ——ref mrefLrerrefnref / |V| fs dxdv + 1r56f nrefTrefLref/ q : ||¢H2d

5
MyrefUpofMref MrefUporMref

~D A

S
=35 [k hazav g [ TR apas
S
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18 Dispersion Relation

18.1 Linearised Vlasov Equation

In this section, we search for analytical solutions of a simplified Vlasov—Maxwell system.

Proposition 18.1. The linearised Vlasov equation takes the following form:

00
B L vif+ LBy +v xBo) - Vodf = —LEE+vx0B)-Vofo.  (181)
ot m m
Proof. We look for a normalised steady state solution fy(x,v) of the collisionless Vlasov
equation,

dfo

SV Vot - (Bg+v x Bo) - Vi fo =0

& v-Vxfo= _%(EO +v x Bg) - Vy fo.

Lemma 18.2. Assuming zero steady state fields, a Maxwellian distribution in v is an equilib-
rium function for the Vlasov equation,

fol¥) = =" exp <—1 <(”“f LA U L ‘f’z)z» (182)

(V27)3vpzvryvrs 2 VT, V7, v,

Proof. The steady state electric field satisfies Gauss’ law,

V-EOZQ</f0dV—n0> =0,

where ng = ffo dv. Hence, Eg is a constant and we have chosen it to be zero. Since
we assumed that the magnetic field By equals zero as well, it follows that v - Vi fy = 0.
Therefore, the equilibrium function only depends on v. Last, we want f; to be normalised in
the sense that [ fo(v)dv = 1. Thus, the Maxwellian distribution is a feasible choice for the
steady state solution of the Vlasov equation. O

Lemma 18.3. Considering only a magnetic steady state field, the equilibrium function can be
written as

2 2
fo(vi,v)) = +exp (— v ) . (18.3)

2 2
2UTL QUTH

Proof. Without loss of generality, we assume that the background field lies in z-direction,
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By = €. By. Then, we choose the following cylindrical coordinates for the velocity:
v = (v sin(f), v (cos(8), ’U”)T

and compute

vy sing
v cosf Tor,
(VXBO)~Vf0(UJ_,’UH) = —UJ_SiHQ . _vaciosH Bof():().
Ty
0 _A

o)

Consequently, we have
v Vxfo=v xBg-Vyfo=0,

which shows that fy (v, ,v)) is a steady state solution of the Vlasov equation. O

Lemma 18.4. When the density, N (R,), or the temperature, T (R,.), are position dependent,
an equilibrium function is given by

fo(N, T, K) = (‘;\;(f(i))?) exp <_1{((2;))> . (18.4)

Proof. Assuming that the electric field Eq still equals zero, we obtain from the steady state
equation that

v - Vxfo= —%V x Bo - Vy fo.

Without loss of generality, we assume that the magnetic field lies in the z-direction, By =
€. By. Let usintroduce the kinetic energy K = m2”2 and the new field-line-following coordinate
R = (z+ ;)T%’ — 5—%, 2)T, where Qg = % denotes the gyrofrequency of the background

field. Note that for By — oo this system converges to the guiding centre model.

Then, we perform a linear Taylor expansion of fj in z,

B(Rev) = fofev) + 220 g ()
z, V)= 5 - ~ P
0 0 Qo Oz Qo

to show that the Maxwellian is still normalised,

/fo(Rx,v)dv:/fo(ﬂc,v)dv+/%aﬁ)(wdv:no(a:).
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The partial derivatives of the distribution function are computed as

Ou,fo( B, K) = =5 fo(0,¥), - Oufol By K) = =5 o),
_yym Ox fo(z, V)

Oy, fo(Rz, K) = fo(ﬁU,V)—i-T,

d d
@no(l’) muv? § ET(CC)
no(z) ( ) T(z)

T(x)

_9foON  0fodT _
Oufo(:v) = 5550 Y 0T 0w —

fg(l’)

2T (x) 2

Next, we insert the computed derivatives into the condition for the steady state solution and
obtain

'U:came(xvv) =V vxfO(Rz,K) = _%V x By - vva(Ra:aK) = _%(UyBoavxfO - UIBOa’nyO)

72 UmmUyBO 6J:f0(x7v)
m T(x) Qo

vy My By

T(.’l?) fo(iE,V) +U$BO

Jo(z,v) — ) = 0,0, fo(z, V).

Let us consider a small perturbation of the equilibrium state for the fields and the particle
distribution function, f = fo+ed f, E = Eq+cdE, B = Bg+¢0B and insert this representation
into the Vlasov equation,

A(fo+¢edf)

ot +v-Vx(fo+edf)+

%((EO + e6E)v x (Bg + e6B) - Vy (fo + 0f) = 0.

Then, we use the fact that f; is a steady state solution and expand the terms to

c (W+v.vx6f+q(Eo+v X Bo)'Vvéf—i-&g((SE‘FV X ‘5B)'vv5f>
ot m m
= < L(GE +v x 6B) - Vu .
m

Keeping only linear terms in ¢ leads to (18.1). O

18.2 Transformed Field Equations

Proposition 18.1. The Fourier—Laplace transformed Maxwell equations take the following

form:
—~  kxE
0B = =% (18.5a)
w
pocow?0E — k*0E + k(k - 0E) = —ipowdJ, (18.5b)
k.o = —i2
€0
k6B =0,
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Proof. Let us take a look at Maxwell’s equations,

Hogo—F, = Vx X B — pod, VX-E:E,
ot -
aE:_VxXE, VX'BZO.
ot

We linearise Maxwell’'s equations and take the Fourier—Laplace ansatz from (A.1) for the
perturbed fields,

IE(x,t) = /gf}(k,w) exp (—iwt + ik - x) dk dw,

0B(x,t) = /5/]\3(k,w) exp (—iwt + ik - x) dk dw.

Inserting this ansatz into the linearised equations leads to

wdB =k x JE, (18.6a)
1120wl E = —k x 6B — iuood, (18.6b)
k-0E = —ié—p,
€0
k- 6B =0

We use Faraday’s equation (18.6a) to cancel out 5B in the Ampere equation (18.6b). This
gives us

—~ 1 —~ —
Moé‘ow(SE = -k x *(k X (5E) — i/jo&],
w

& ,uoeongE — K%E + k(k- gE) = —iuowﬁ,
where we denote k - k as k2.

The source terms are defined as

a:q/v@v, Epzq/é”}v.

Proposition 18.2. The transformed Poisson equation is given by

~

1255 = s (18.7)
€0
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Proof. The Poisson equation for one species s has the following form:

—V-V@—%</5fsdv—no).
€0

It is linearised as
k250 = & / 5f,dv,
€0

where we inserted the Fourier—Laplace ansatz from (A.1) for the scalar potential and the
distribution function,

Fo(x,t) = /ﬁs(k,w) exp (—iwt + ik - x) dk dw,

0d(x,t) = /(ﬁ(k,w) exp (—iwt + ik - x) dk dw.
Here, the charge density term is defined as

5= . [ 5. (18.8)

Proposition 18.3. The transformed quasi-neutrality equations are given by

-
AP~
q"10e0 — i, (18.9)

2 5D —
wmzk.&]i.

e

Proof. The quasi-neutrality equations have the following form:

2
q°noeP
Te ZQi/fidv+Qen0€a
e

2
q nOeaq)__ . ) )
. ot \Y% (ql/vfzdv>,

where we assume ng. = ng; = nyg.

For the background potential, we obtain

®) =

([ ) =o.

Te
qno
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Then, the linearised quasi-neutrality equations take the following form:

2 g(f e
QZ?ZQi/5f¢dV7

20, 5P -
—iwd nod = —ik- (qi/véfl- dv> ,

T,
where we used the Fourier—Laplace ansatz from (A.1),
fi(x,t) = /E?i(k,w)exp(—iwt + ik - x) dk dw,
5B (x,t) = / 59 (k, w) exp (—iwt + ik - x) dk dw.
The source terms are defined as

gji ZQi/Vﬁiw 5701 = %’/@iv'

18.3 1D Dispersion Relation

In this chapter, we consider a one dimensional (1D) plasma wave without background fields,
i.e. Eg = By = 0. Without loss of generality we assume k = (k,0,0)". For the perturbed
quantities we consider the Fourier and Laplace transformations introduced in (A.1),

Sf(z,t) = /g}(k,w) exp (—iwt + tkx) dk dw,
0P(z,t) = /g&)(k:,w) exp (—iwt + ikx) dk dw,
SE(z,t) = /gﬁ(k’,w)exp(—iwt—i-ikx) dk dw,

0B(x,t) = /5/]\3(16,01) exp (—iwt + ikx) dk dw.

Inserting this representation into (18.1) and solving for 5} leads to

ﬁ:iiw.v‘,fo. (18.10)

m kv —w

18.3.1 Electrostatic Dispersion

A general formulation of this setting can be found in [78, Sec. 3.3].
Proposition 18.1. In an electrostatic setting, the linearised 1D charge density for a species
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s is computed as

P 2
bpy = =0 L10 (14 C.Z(C). (18.11)
sV Ts
_ w—kvy

where (s = T
Proof. We consider an electrostatic setting, where B = 0 and dE = —Vxd®. For the
Fourier—Laplace coefficients, this gives us

oF = —ikid.

Then, the representation of S} in (18.10) simplifies to

—~ 5
5f:g ko

m kv, —w

6vsz-

Inserting this representation into (18.8) yields the linearised charge density,

, _
Sp, = L / ML o fdv.

kv, —w

Next, we insert the equilibrium function fys(v) from (18.2) adapted to 1D,

) — N2
~ — q*ngps k(vy — vz) 1 ( (vy — Uz) )
5, = —3d / exp (= We Z V)7 g,

Ps msva, kv, —w \2murs P 202, ’

Afterwards, we substitute v, — 7, = v/2urs0,

5Ap5: ans\/»/J—wkv p(—0'2)d0'.

mgv
$°Ts k\['UTs

Finally, we set (; = “=*% and expand the integral to

kvV2ur
exp )
1+<sf/ — da].

Then, we use Definition A.2 of the Zeta function to obtain the proposition. O

6}5:_6{(\5

STs

Corrolary 18.2. The dispersion relation of the 1D Vlasov—Poisson system for a species s
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takes the following form with ¢, = :Jilff :
Ts

2

D(k,w) =1+ k‘;g% [1+¢Z(¢)]. (18.12)

Proof. In this case, we couple the electrostatic Vlasov equation to the Poisson equation.
Thus, we insert the representation of 5705 given by (18.11) into the linearised Poisson equation
(18.10),

2 — q2n08
k70® = =0 ——5- 14+ ¢Z(Cs)]-
EQMsV]g

Then, we solve for the form D(k’,w)c@ = 0 and use the definition of the plasma frequency,

— anOS i
Wps = 1/ ey » t0 ODtain

2
<1+ s [1+<sz<<s>]) 5% = 0.

2,2
k2vg,

Corrolary 18.3. The multispecies dispersion relation of the 1D Vlasov—Poisson system is

given by

w2 2

D(k,w) = 1+ 2 [1 4 CZ(C)] + 2 [1+ GZ(G)]
kv, kv

: _ w—kv, . w—kvg
with Ce = kv2vp,’ Gi = kv2vp;”

Proof. We take the dispersion relation for one species (18.12) and set f = f. + f;. O

Corrolary 18.4. The dispersion relation of the 1D quasi-neutral Viasov system takes the

following form with ¢; = L=E0

kv2vr;
Teno;
D(k,w) =1+ 14+ GZ(G)]- (18.13)
Tinoe

Proof. For this system, we couple the electrostatic Vlasov equation for ions with the quasi-
neutrality equations. Therefore, we insert the representation of 6Apl taken from (18.11) into
the linearised quasi-neutrality equation (18.9),

2n0e0® = ¢no;
L2007 — 5810 11 4 ¢, 2(¢).
T, m;vy,
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Then, we solve for the form D(k, w)cﬁ) =0,

(1 + ?n”" [1+ QZ(Q)]) 5® = 0.

i10e

18.3.2 Electromagnetic Dispersion

Proposition 18.5. The dispersion relation of the 1D Vlasov—Maxwell system takes the fol-
lowing form:

det (D(k,w)) = Dyp(k,w)Dyy(k,w)D,.(k,w) (18.14)

with ¢ = : \/%fmc and

w2
Dyo(k,w) =1+ 2;’;(2[1 +¢Z(0)],

D, (k R e (L 1
yy(k,w) = _uo€ow2+ﬁ @[ +CZ(Q)] -1,
k2 w2 (2
D..(kw) =1———+ 2 (Lzn14+¢20)]-1).
(hw) = 1=+ 2 (e (20 1)

Proof. We couple the Vlasov equation to Maxwell’s equations via the source terms

p=>a [ fav, =3 a. [ vav,

First, we substitute 6B in (18.10) via (18.5a),

kxSE
Y .V fo-

— 5E
Y

kvg —w

Second, we insert this representation of ¢ f into the linearised Ampere equation (18.5b),

o~ o~ 2 [SE+v X kxSE
(pocow?® — k*)0E + k(k - OE) — wuo% / kv—w -Vyfovdv = 0.

Then, we reformulate v x ¥X°E as (v . §E)k — (v . k)°E and insert our choice for the wave

w
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vector, k = (k,0,0)"

w2(§EI @x + %(Uy@y + ’Ungz)

2 2\ | — o.)q2/ v h =
<w B “050) OE, kmeo ) v —% (1= va)OE,
(w2 o Nﬁ%) 6EZ (1 — ﬁvx)éEz
The system can be written as
D(ka CU)SE = 0.

8111' fO
By, fo dv = 0.

61)2 fO

Thus, we need to compute the determinant of the matrix D(k,w) to find a solution for & and

w. To simplify the expression, we assume v

= 0 and introduce the representation of the

equilibrium function fo(v) from (18.2) to compute the velocity gradient in the matrix entries,

2 2 2
1 v2 v v
W o Vp Uy € @ Ty Tz
Dy = w? + kwp/ — 5 NGTSE dv,
Uz = | V1 (V2m)3vrsvryur,
2 2 2
1 Vg Yy Vz
k 1 k 2 (”%Fx—i_v%y—i_ %z)
Dy, = ww2/ Uz wlz — L v ¢ ' dv
Ty — 1.%p w 2 2 Y ’
k e N Uy (\/ 277)3UT:EUTyUTz
2 2
1 v v
k 1 5 j—i—”%z )
pAN L z
D o EWQ Vg W'U;z U:L‘ Y dv
w2 = % v, _ @ 2 )
Tk vTx sz UTvayUTz
1
w v Ve €
Dy, = % 12)/ z Tx 3 dv,
Uz — % Uy (V 27T) VT2 VTyVT 2
2 2 2
1 Yz Yy Vz
-3 t5 -+t
) sk ok <T 3, >
D,., = w? — k7+f2 Yy Sz L—=Jva e S dv
Yy — - EP | oo — | 42 02 V27)3 ’
Ho<o A AN Ty (V27)3vrevryvrs
BB (7 A
2
W o vy fvx 1- ng e “\'Te Ty 2
D,=D,,=-—w Uy dv
Y y = k §4 v — ¥ ,02 1)2 \/T 3 )
Tk Tz Tz ( 77) VT2 VTyVUT2
2 2 2
1 v v v
_2<U2:c v2y +v2z >
D w 2/ UZ 1)$ e Tx Ty Tz d
= — — v
zx D w 2 bl
k Uz — % Uy (V27T)3UTmUTyUTZ
2 2 2
1 v v v
2 2 k k _2<”%1+”2Ty Tz >
EAN - v x z
D wQ_ k _|_f 2 Uz wvz 1 wvz € Y dv
= € kP ) v, —49 \ 02 v2 V27)3 ’
Ho<0 e~ % \ Tz Tz (V27)3vrevryvrs
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Using (A.5b), we compute
1 v2 '05 v2
- 5 1)2z + U2 + 1)22
oo e Tx Ty Tz

2 2 2
_1 Yz + Yy + Yz
2 1)2 1)2 1)2
Tx Ty Tz
Uy dv, =0

© 4 /
U d’U =
/—00 ! (\/%)3UT1UTyUTz Y —o0 (\/ 27T)3UTxUTyUTz

to see that all off-diagonal entries of the matrix equal zero. Therefore, the determinant of the

matrix breaks down to the product of the diagonal entries,
det (D(k,w)) = Dyp(k,w)Dyy(k,w)D,.(k,w) = 0.

Then, we use (A.5c) to compute

1
2 2

o T
2 © Y 2
vi————dv, = v
/_Oo y(\/?ﬂ')UTy Y Ty

2
1 vz

/OO 9 677 Vi, d 9
V,—F—— AUy = U
- z ( TW)”TZ z Tz

and obtain the following diagonal entries:

_1 "’Zar
2 v
9, w oo vy 1 e "'Ta
Dyy(k,w) =w +l~cwp/v —ﬂvTﬁ dvg,
T k YTx TUTy
1 1)%
272
k2 1 v Y vy e " 'Ta
Dyy(k,w) = w?— —— +w§ S Tx + kT v%yi dv,,
HOEQ Vg — % \ U, Uy, V2T,
_1 03
v2

k2 1 v 7. — Ug e Tx
D (k,w):w2—+w2/<x+k>vz — dv,.
= HOEO P vy — % \ W3, V3., vor: vre

Next, we substitute v, = v/2vp,0 to solve the integral over vy,

w o? e 7
Dyo(k,w) = w? +2 w? / do
90»’17( ) k\/ngTx P 2

2 1 5o ~ ) e
Dyy(k,w) = w? — —— + wﬁv%y/ (U + Bv2ur, > ¢ do,
g

. w 2
Ho€o 2070 UTy

w o g2
D..(k,w) =w? - K + wv? /1 Ty hor 7)e do
2z\F, YTz o— w 2 ﬁ ’

k\/i'l)Tm
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w

k\/isz,
</e”2
1+ — d
0+C< +ﬁ p— o
K Hc/e-‘” do
v%x ) oc—C(

Dylkw) = — & 2 )
+(¢;/;-de (ng/;fzdg)],

Last, we expand these integrals and introduce ( =

Dok, w) = w? + 2@}}2,

Ho€o
2 2 —o?
Dot =t | e (14 L [
Vi, T) o—(
¢ /8_02 C/e‘”2
— do— 1+ —= d
+<ﬁ _¢ o + =) o-¢ o ,

Ho€o
where we used (A.5a) and (A.5b).

Inserting the Zeta-function (A.2) leads to

Dya(k,w) = w® +2w2¢* (14 (Z(C)),

2
Dyyks) = ? — w2 (Y1 4 czc)—1) |
Ho€o Vg

Dzz(kaw) =w? - i +w§ (U§Z (1 + CZ(C)) - 1) :
Ho&o Uy

Dividing the determinant by w? yields (18.14). O

18.4 2D Dispersion Relation

The general procedure is taken from [22] whereas the treatment of the temperature gradient
is reviewed in [11]. Since we want to use the dispersion relations for a curvilinear setting,
where we only have two periodic coordinate directions, we focus on a two dimensional wave
vector. Conventionally, we consider the second and third coordinate directions as periodic
angles. Thus, without loss of generality, we assume that k = (0, %, k.)".

Let us consider an external electric that equals zero, Eg = 0, a constant external magnetic
field By = €.Bp and an equilibrium function fo(x,v,,v.), where v, = ,/v2 + vg. We can
write the linearised Vlasov equation (18.1) as the total time derivative of J f with a source
term on the right-hand side,

d o, q g
Eéf_(8t+v~Vx+E(v><Bo)-Vv)5f_ L (GE+v x 0B)- Yy .

With the method of characteristics, which is described in the appendix A, we solve for § f by
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integrating along the particle characteristics,

of = —% OEX, ') +V/(t') x dB(xX', 1)) - Vi fo(v') dt'. (18.15)

We consider the unperturbed particle characteristics

with the initial conditions x'(t) = x, v/(t) = v.

These trajectories are integrated as

— a5 (cos(0 + Qo(t' —t)) — cos )

X () = x4 [ 5 (sin(0 + Q(t' — 1)) —sing) |- (18.16)

v (t —t)

vy sin(6 + Qo(t' —t))
V(') = vy cos(0+ Qo(t' — 1)) | > (18.17)

Uy

where Qg = 22¢

T m

is the gyrofrequency of the magnetic background field. For the perturbed
guantities, we make an ansatz with a Fourier—Laplace transformation as in (A.1),

o0f(x,t) = /(5/}(1@_, ks w)exp (—iwt +i(k y + ky2)) dky dk, dw,
IE(x,t) = /5/]\3(/ﬂ, ky w)exp (—iwt + i(k1y + kz2)) dk, dk, dw,

0B(x,t) = /g]\3(kl, k., w)exp (—iwt +i(k y + k,z)) dk, dk, dw.

First, we insert the Fourier—Laplace representation into (18.15) and solve for ﬁ

t

of = _% i (OE +v' x 0B) - Vo foexp(i(kL(y —y) + k(2 — 2)) —w(t — ) dt'.

Second, we substitute 7 = (¢ — t) to use the solution of the particle position characteristics
(18.16),

— q 0 — , — ZkJ_UJ_ . . .
of = ——+ ((5E +v' x 5B) -V foexp % (sin(f + Qo7) —sin(0)) + i(k,v, — w)7 | dr.

— 00

(18.18)
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Furthermore, we transform the velocity derivative and insert the solution of the velocity tra-
jectory (18.17). Therefore, we assume an equilibrium function fy as in (18.4), where we
approximate the temperature and density profiles and their gradients with constant values for
simplification,

Ofo  Ofo0vy vl

6% = By, O, = @ufoa = Sln(9+907')3uf07

ofo 1 3f0 Ofo Ovy Oz fo vy Oafo

8% Qo 9zt vy 0u) = + 0y, fo v + cos( + Qo7)0y, fo-

Then, we rearrange the integral using the definition of the Bessel function (A.3). Additionally,
we use the exponential representations of cosine and sinus,

et (6+807) + e~ (04+Q07)
2 )
et (0+8Q07) _ o—i(04+Q07)

2 ’

cos(0 + Qo7) =

sin(f + Qo7) =

to calculate the following terms:

cos(0 + Qo) exp (Zk;‘zvl (sin(f + Qo7) — sin(@)))
0

i(0+QT —i(0+QoT 0
B A oA Py prevee
0

n,n'=—oo

Z J. (kLUL> 7 (kle> et((n+1)—n")0+i(n+1)Qo7 +ei((n—1)—n’)9+i(n—1)QoT

! QO 2
n,n =—0oo
00 kiv > (kL'Ui >
_ Z In—1 ( + Jn1 7, kivy oi(n—n’)0+inQor
! 2 ! 0 ’
n,n =—0oo

sin( + Qo7) exp (“‘“5“ (sin(0 + Qo) — sin(@)))
0

i(0+QoT —i(0+Q0T 0
21 Qo Qo

n,n’'=—oo

Z 7. <kJ_’UJ_> J <I€J_UJ_> ei((n+1)fn’)9+i(n+1)ﬂo‘r _ ei((n+1)fn’)9+’i(n+1)ﬂo‘r

/ Q 21
n,n'=—oo
kv kv
0o J _ ( LU > _ J ( 1LYV )
_ Z n-1 | "0, n+1 | 7, 7. kivy Gi(n—n")0+inQor
, 2i " 0
n,n’=—o0
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Last, we set b = % and use the identities (A.3) and (A.2) to obtain

oo

cos(f + Qo7) exp (21{51& (sin( 4+ Qo7) — sin(&))) = Z %Jn(b)Jn/ (b) ei(n—n")9+inQor
0

n,n’=—oo

sin(f 4+ Qo7) exp (Zkéqu (sin(@ + Qo7) — sin(@))) = Z i%]n(b)Jn/ (b) 'm0 +inSoT
0

n,n’'=—oo

Then, we insert the result into the integral term (18.18),

gjo id T (b)

i(n—n')0+i(nQo+k,v, —w)T
/ Z 6E+v X 5B) (8Q£o + gfi ) J,(b) Ay (b)e< )0+i(nQo+ T Ar

=—00

A0
(18.19)

18.4.1 Electrostatic Dispersion

Proposition 18.1. In an electrostatic setting, the linearised charge density for a species s is

computed as
2 / 0
~ —~ ¢°N wp
op, = —0d 1 - — Z(Cn) A , 18.20
s monay ( + ( ¥ ) G n:zoo (¢n) (5)) (18.20)
_ w—nfd U RV
where ¢, = T fvTOg and§ = —57-.

Proof. Let us assume an electrostatic system. Therefore, we set (5/]§ = 0 and the electric
field is computed as E = —V®, from which follows OFE = —ikdd.

Then, we can solve the time integral from (18.19),

gfoszdbj (b)
o i(n—n')0

(
— q qFE ¢
B o . Oz fos dfos n /
of m Z iko® (TJ;O %ﬂjﬂ(b) Tu () i(nQo + kov: —w)

& 7, (b)
q 0 ki Ofos  kinOfos Afos\ Jn(b)Jns (b)ei("*n/)a -
T m 2 ks 5.
m n ngoo (QO 81' " b avj_ * avz nQO + kzvz — W
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We compute the linearised charge density from (18.8) by inserting the representation of 3}

~ ¢ ki 3f05 kin 0fos 0 fos Jn(b)Jn/(b)ei("—"’)G
ops = 5<I> i
Ps = / Z < x b avl_ + k 8112 TLQO T k‘zvz W dv

n,n'=—oo

To solve the velocity integral, first, we insert the initial distribution fys from (18.4) with the con-
stant approximations of the temperature and density profiles and their gradients and compute
the partial velocity derivatives,

¢ ms kinmgv mu, T (b) Ty (b)ei(nfn')e
op =01 .- k. . 7
p= / Z (TS wrs fo b T Jo T fo ) I — dv

n,n’=—oo

where wh,, = "L (dNpy 4 415, Second, we transform the velocity integral to cylindrical

qsBo
00 21 o)
/ dv:/ / / v, dv dfdwv..
R3 0 0 —00

coordinates via
The double sum breaks down due to the integral
2
/ exp(i(n —n')0) df = 275,
0

and setting vry = /7% we obtain

~ k O — wh -+ k 92 N M
5p= 5oL / Z J2< J.UJ_) no — wh + kv, 2wy ” 22, du, do,.
’I’)’L UTS

W= Qo nfdo + kv, —w (\/ QWUTS)
. H Vz — i VL -
For the integral over v, we substitute —7=— = 7 and for the integral over v, -7~ = o,

which leads to

~ —~  2¢°N > o0 k120, * nQy — ! . s
bp=—b—1t"— Y / oot g2 (B2 ) / 1 = wp +hV2urT 2
msstﬁ ne—o0ov0 Qo —oo N8 + sz\/iUTs —w

Then, the integral over ¢ is computed with (A.4a) as

where £ = % and A, (§) is the modified Bessel function of the first kind. Next, we define
0
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Cn = 2= ZQI? and compute the integral over T as

no— "JT
/OO n —w’T + kz\/istTef7-2 dr — /OO T+ feor/307s 77_ dr

Q
—oo N8y + k20T — w T — X0
00 0 z\/>Ts 00 koo 207
2

:/Ooe_T2d7'+ w—w% /00 e’ dr
—00 k‘ \/§st w—nflg

T —
& ks \['UTS

=V (1 - <1 — ) CoZ(Cn)) :

Putting these results together, we obtain

2 oo

=555 5 (1 (1- ) G260 mmcer

sUTs n=—00

Observing that > "> A, (§) = 1 V¢ € R yields the proposition. O

Corrolary 18.2. The dispersion relation of the electrostatic Vlasov—Poisson system for one

species s takes the following form with ,, = k“’;gf}o and§ = K UTS :

D=k +K+ U”S <1+<1—> ¢o Z Z(&) n(g)). (18.21)

Ts n=-—oo

Proof. We couple the electrostatic collisionless Vlasov equation with the Poisson equation.
Thus, we insert the representation of (SAp from (18.20) into the linearised Poisson equation
(18.7),

s"Ts n=—00

k2<ﬁ—<@ﬂ1+1 —g S Z(6)A
- 50m2v2 - 0 Z (Cn) n(g) :

We solve the equation for 5® and get the form D(k, w, a:)cﬁ) = 0 with

w? W} >
D(k,w,z) = k? + vgs (1 + < — J) o Z Z(Cn)An(f)> .

Ts n=-—o00

Corrolary 18.3. The dispersion relation of the quasi-neutral Vlasov system can be written as

Dk, ks w) = % ¥<1+< /T> o > Z(gn)An(§)>, (18.22)

n=—oo

Geometric PIC Methods on Mapped Grids 146



— k2 T;
wher = w=n gng e = Lt
ore G ko) 2Li ands Qgm

my

Proof. We couple the electrostatic collisionless Vlasov equation for ions with the quasi-neutrality
equations. Therefore, we insert the representation of 5A,ol from (18.20) into the linearised
quasi-neutrality equation (18.9),

2NG®  ~¢N ’ S
q = —5(I)q (1 + (1 — C:?) CO Z Z(Cn)An(§)> :

T. T;

n=—oo

We solve this for §& and get the form D(k, w, x)gcf = 0, which leads to (18.22). O

Remark 18.4. We can expand the dispersion relation to

N N
D(kl,kz,w)z + —

N = _ kiTikT,
T. T

1 +<0 Z <Z(<n)An(§) qZBowaTz(COZ(gn)An(f)))] )

n=—oo

where we assume % = 0 and the temperature derivative is computed as

01, (O Z(6)An() = 5 [(2(6) + 6 Z/(G0)) An(€) — 262(G)A3(6)]
This leads to
D=tz 146 PIRCIINE
ky dT; / /
e SE(2(6) + 62 G 262G ) ).

We insert the derivative of the Zeta function to obtain

D=t 146 3 (26
k dT; ,
o SHZEIAO) - 26,1+ G2 (G — 262G ).

For a small argument§ < 1, the sum is dominated by the 0—th Bessel function Ay. Therefore,
we break down the sum to n = 0. Additionally, we have

lim Ao(f) =1 —5.

£—0
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This leads to the following simplified dispersion relation:

ki
2q; Bow dx

pN N (1 Gz + 12(0) — 2601 + <oz<<o>>]) |

T. T;

18.4.2 Electromagnetic Dispersion

Proposition 18.5. For a constant temperature and density, the current has the following
entries

§ [Ann(@ 4 (= 2) M@ 42000 + (g 2) Ana©) + 802(6) )
Ty = — cowls niw ‘Z’ZO %Z((n) <G(n —1,1m,2,/26) — G(n + 1,12, Jﬂ)) ,
T == oty 30 28014 6,26} (G~ 1m,2 VB - Gl + 1n,2V3D),
Jyz = — Juy, o
Iy == ieuy 3 wz;?gi M(OGZ(G),
Jyz = — igowy, io &An(ou + CnZ(Gn)),
Jow = — %Jm,
Jzy —Z%Jyz,
Joz = — 1260w’ Z An( Cn [1+ ¢ Z(Gn)],

ki %
_ 1 w—nfo
where ¢ = and ¢, = fovBor

Proof. Let us assume that the temperature and density profiles are constant. This leads to
0z fo = 0 and

9 fo ZdI 1 (b)
0

v

/ Z 6E +v x 5]3) 0f0m 7 (p) | u () ei(n=—n")0+i(nQo+kov.—w)T

n n’*foo
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In the Lorentz force, we can substitute the magnetic field for the electric field via (18.5a) and

solve for it,

0
g "0 i(nQo+k v, —w)T
= — Jl Z ) / e 0 dr
LD S o

n,n'=—oo

<zJ’ [va0+ (v1.Dy. fo — vzauf@] E,

@\:

(b [ Ulfo—i-*(vj_avzfo Uzavlfo)] Ey

)
nkJ_ -~
|:61)sz Uj_avzfo ’UzavaO):| Ez) .

Then, we solve the time integral and obtain

o0 i(nfn/)e

= — Jn/
m Z i(nQo + kv, — w)

. k. ~

ZJ?”L(b> I:aULfO + ;(UJ_avsz - 'UzavaO)] E,
n k. ~
+ E'] (b) |:81u_ 0 + — (UJ_avsz - Uzavlfﬂ):| Ey

nk:l

+ Jn(b) |:avzf0 b (ULavsz Uzazu_fﬂ):| Ez) .

Now, we are able to compute the source term 53 for Ampere’s equation. Therefore, we
transform the integral over v into the integral over v, , 0, v,,

00 2 e’}
5J:q/ V(Sfdv:q/ / / vofv, dv) dfdv,.
R3 0 0 —o0

As before, we write the velocity in cylindrical coordinates and use the identity

v, sinf —iv, J),(b)
Z It / eiln=r')? v cosf df = 2m Z 2 Jn (D)
v, VI (D)
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given in [22] to obtain

—iv J) (b)
2 0o 00 0
-~ .q 2
5!] =1— nv
L, /0 /_Oo nz_:oo nQo + kv, —w 7= Jn(b)
vy Jn (D)

<ZJ7{L(b) |:8U1_f0 + %(Ulavzfo - /UZa’UJ_fO):| Ex

k. ~
#5000 [0 fo+ = (010050 = .00, 10| By

Q ~
+ Jn(b) {avsz - Z%(UJ_a'szO - Uzaulfo)} EZ> vy dvy dv,.
1

Assuming an equilibrium function as in (18.3), we can compute the velocity gradient as

vy
Oy, fo=———fo,
vr
1

v
avzfo = _TZfO
VT

and following from that:

ULavsz - UzavaO =0.

In this case, the current simplifies to

—Z"UJ_J;l(b)
2 0o 00 o0
o~ _ qf 27T o
0 = Zm /0 / Z nly + kv, —w b In (D)
O n=—00
vz (b)
(”ju;l(b)ﬁx n %%Jn(b)ﬁy n U;Jn(b)f?z> fov, v, du..
v v VT
€L i
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We write this as the matrix vector product 6J = JSE with the matrix entries

22 3
Jrz = " / / G J;L(b)2f0 dv, dv,

mvTL nQo + kv, —w

q*2r < n 02
Jx == J T = L ! n zZ
! ! / / Z ku_ TLQO =+ ]{;ZUZ _ an(b)J (b)fO dUL dv

mvTl
sz—ﬁiJH— njf: [ - o fk”%z_wJ:I(b)Jn(b)fodudvz,
oy = m2v2T71 Ojoo nli;_z% nfly +1;€th — an(b)2f0 dvy dv,
Jys J%TiJzy = sz: / / i T;i“ o ) fodu dve,
o= T;f: / / X_j nQOf k“j)sz ()2 fo dvy du,.

Inserting fy from (18.3) yields

2
2 vl 0o 20
noq 2w / T 2 / e 1
Jrw = E T g (b)? do du.,
mvTL e 27T1JTL () + oo V21U, K2y —w 4+ 18

2 ”2
J_
SN 2@TZ 1

2 o0
ngq*2m nQo/ T2 g
Ty = — ) ,(b)d du.,
w mv2, Z 27rvTL ¢ (6)Jn(b) dv, oo V2mup, KUy —w 4+ 18 Ve

1l n=-—o0

"’z

[eS) T 202
=z

_ nog o7 el / e 27 v,
Joz = T (b Jn(b)d dv,,
msz Z / 27TUT - TL( ) ( ) v —c0o V 27T’UTZ kZUZ —w + nQO v

n=—oo

1)2

=2 S -/ L S AT ST Y (L ——
— L v v
v = mvy, 4 2mvF k2 " Y] Vervp, kv —w 0y
2 _ V2
noq32m nQO o * e v Uy

Ty = - A / do.
Y : muZ., n; / 27rv2 ¢ + Ta(B)"dvs oo V2mvT, k2Us —w 4+ 18 e

2
00 v
nog2m * vy TnE ) * e 2 v?
Jyw =—1 5 E 5—e L Jp(b)* duy dv,
muy, £ 27 oo V2mup, k2 —w 4+ 18

= ¢ and insert the recursion formula for the derivative

. v.
We substitute T = f o
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of the Bessel function (A.3) to get

e = noq Z / o3 (Jn-1(80) + Jnt1(B0)* = 2J51(B0) Jny1(Bo)) do

n=-—o00
x / !
kz\/isz —o0 \/77- T — kj;g?ﬁz

2 o 00
ny:_ noq Z \@nﬁo/o aQe*UQ(Jn_l(ﬂa)—Jn+1(/30))Jn(ﬂU)dU

dr,

m S k‘L’UTJ_
_ w—nfY Ty
kZ\/%TZ oo VT
> 21}TL
Z (Ju1(B0) = Jus1(80)) Ju(Bor) do
X / T d
_ w—nf T
kZ\/%TZ oo VT T =
2 © 202 e co 72
.noq 2n QO / 9 9 1 e 1
Tyy = — 4 e T, (Bo)? do S
" m ”:z:oo kiv%i. 0 kzﬂUTz —00 ﬁ T = ]:z)\/g?;z
2 00
Jyz = —i—— - oe 7 J,(Bo) do—F+— dr,
Y m _2_: vkl Jo n(fo) k \/§sz oo T — =
S kz\/iUTz
2 2
.ogq
Jzz =—1— Z / oe —o? 50’) / — dT,
m n=-—00 zUTzf — szvq?z
where = %

2 2

k
Next, we define ¢ = — Ti and ¢, = “\/gfo and use the integral formulas for the Bessel

functions (A.4a), (A.4b) and (A.4c) as well as the definition of the Zeta function A.2 to obtain
the proposition.

From the linearised Ampére equation (18.5b), we obtain

2 _ kiJrkg 0 0
100
0 W2 k2 kiks +1i J| 0E =0.
Ho€o Ho€0 HOEOD
kLkz 2 _ ki
L 0 HOEOD w HOE0 ]
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Then, the dispersion relation is obtained by computing the determinant of

2,2
2 _ ki +kZ ) s W s w
w HOEO 2#060 Jra Zuoso J‘T?! Z[LQE() Tz
2
D(kL kz w): W 2 k3 C W kik, - w
E Zuoé‘o Jya: w HoEo +ZM0€0 Jyu HoEO +Zu050 Jyz
i T, Bk 4w g w2 M e g
Hogo 7 FT HoE0 Hogo “FY HOEQ Hogo 7 FF
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19 Summary and Outlook

In this thesis, we have derived a geometric particle-in-cell method on mapped grids based
on a discretisation of the fields with finite element exterior calculus [3]. After examining dif-
ferent representations of the particle trajectories, we have decided to use a hybrid particle
pusher. Our formulation yields a semi-discrete Poisson system that satisfies the Jacobi iden-
tity. For the discretisation in time, we have constructed charge conserving schemes based
on a Hamiltonian splitting as well as energy conserving schemes based on an antisymmetric
splitting of the Poisson matrix and the discrete gradient method.

In the first part, we have restricted ourselves to test problems with periodic boundary condi-
tions in order to investigate the influence of the coordinate transformation in an easier setting.
This has also limited the coordinate transformations to the class of periodic mappings. For
our standard test cases, we have shown numerical results matching the analytical growth
and damping rates and verified the expected conservation properties of the different time
integrators.

In the second part, we have investigated the natural boundary conditions of the weak for-
mulation of Maxwell's equations and constructed new basis functions from clamped basis
splines that form a discrete de Rham sequence. Furthermore, we have presented a fast and
efficient preconditioner based on a Fourier solver for the conjugate gradient solvers of the
boundary mass matrices. Then, we have applied perfect conductor boundary conditions for
the fields and reflecting boundary conditions for the particles enabling the use of domain de-
forming coordinate transformations such as cylindrical or elliptical mappings. As a last point,
we have reviewed the challenges arising from singular mappings and proposed an idea on
how to handle the transformation of the Lorentz force near a singularity. In a simulation of the
Weibel instability, which was inspired by a similar approach in [17], we have studied the effect
of the deformed mapped grids and verified the compatibility of the boundary conditions with
the conservation properties of the structure preserving discretisations.

Following the recent publication of Toshniwal & Hughes [86], as future work, it would be
possible to construct smooth spline basis functions that form a de Rham complex at the pole.
The implementation of such basis functions for the GEMPIC framework would enable the use
of radial grids with a singularity.

In the third part, we have introduced the quasi-neutrality ansatz with adiabatic electrons into
the GEMPIC framework. This ansatz allows us to choose time steps at the time scale of
the ion motion, which makes it possible to simulate ion driven instabilities such as the ion
temperature gradient instability. After discretising the quasi-neutrality equations in time with
the established charge or energy conserving methods, we have verified their conservation
properties in a simulation of an ion acoustic wave. For the ion temperature gradient instability,
test cases from Sturdevant et al. [83] in a slab geometry and from Latu et al. [60] in a cylinder
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have been adapted to our framework. We have used the linear § f method to reduce the
particle noise and matched the numerical results with the growth rates computed by the
dispersion relation.

For future work, it would be interesting to go to non-linear ¢ f and full f simulations with vary-
ing temperature gradients extending the approximations we used for the linear § f method.
The overall goal should be the comparison of simulations with the full kinetic code to refer-
ence simulations by gyrokinetic codes such as Gysela [39] or Gygles [34].
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A Appendix

Method of Characteristics

The method of characteristics is among others described in [33]. In our case, we start with a
differential equation of the following form:

of(t,x,v)

Y + P(t,x,v)Vxf(t,x,v) + Q(t,x,v)Vy f(t,x,v) =0,
where x(t), v(t) are time dependent. Then, we use the chain rule to write this as

ﬂ af of ox af ov

ot Toxar! Tavar ="

In this case, we obtain the characteristics

ox
n = P(t,x,v),
ov
a Q(tv X, V),

along which f stays constant, since df = 0 for this choice of P and (). This defines a solution
of the differential equation for f.

For the Vlasov equation this leads to the well known particle equations of motion with

P=v,QQ=—(E+vxB).

4
m

Fourier and Laplace Transformation

Proposition A.1. A space and time dependent function f(x,t) that has a periodic domain in
space, can be represented with a Fourier transformation in space and a Laplace transforma-
tion in time in the following form:

flx,t) = /f(k,w) exp (—iwt + ik - x) dk dw. (A1)

Zeta Function

Definition A.2. The Zeta function is defined as

-~ / XD(=%) 40— rexp(—C2)fi — erfi(C)],

where the derivative is given by

Z'(¢) = —2(1+¢Z(())-
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Bessel Function

The formulas are taken from the fifth edition of [38, Sec.6.633] and are adapted for our pur-
pose.

Definition A.3. The Bessel functions are defined as

exp(ibsin(a Z Jn(b) exp(ina).

n=—oo

It follows that the Bessel function can be expressed as

? () = @) S (@) (A.2)
€T 2

and the derivative can be written as
dJ,(x) _ In—1(z) — Jn+1(ac). (A3)

dx 2

The Bessel functions can be integrated via the following formulas:

o) 2 0 1 —7 62 1 ﬁQ
/0 xe ¥ JI(Bx)dx = =3¢ I, ( 5 > §An <2) , (A.4a)

o0 2 2 2 2

/0 23e™ J2(Bz) dz = i [Am_l (6 ) (ﬁQ — 2) A, (é ) + A1 <ﬁ2 )] , (A.4b)
T (erq;rJrl)

T(q+ O0(r +1)

/ h 2P J,(Bx)Jy(Bz) dw = 2~ (ot gatr (A.4c)
0

Yr41 q4r+2 prqgrr+1
a 5 4 5 P q2 ;q+1,¢+1,q+7‘+1;—52]

X 3F3[

where the scaled Bessel function is defined as A,,(§) = I,,(§) exp(—£) and its derivative is
given by A/, () = —An(§) + M The general hypergeometric function can be
written as

L'k + a;) 3 (b 2k
3F5(a1, az, as; by, b, bs; 2) kZOZl_Il T(a)) Erk+b =:G(q,r,p, ).
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Useful Integrals
For the computation of the dispersion relation in Chapter 18, we use the following integrals:

02
/ © " do =1, (A.5a)
oo VT
0_2
o7z
/ Uﬁa do =0, (A.5b)
2
0 —ﬁ 2
028 —do = % (A.5¢)

Divergence Theorem
Proposition A.4. For the integration by parts, we use the divergence theorem in the following

forms:

The standard form for a scalar function g and a vector field F',

/ V- (Fg)dx = / g(V-F)dx = —/ Vg-Fdx+/ g(F -n)do, (A.6)
Q Q Q o0
The cross product form for vector fields, F', G,
/Vx (F-G)dX:/G-(VXF)dX—/(VXG)-Fdx:/ (F x G)-ndo.
Q Q Q o9
(A7)
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Equations of Motion in Cylindrical Coordinates

Let us exemplarily take a look at the equations of motion in cylindrical coordinates. Therefore,

we use the following mapping:

L, & cos(2m&a) L, cos(2m&) —2mL,& sin(21&) 0

F(&) = | L& sin2r&) | PF€) = | Losin(2r&)  27L,& cos(2n&) 0 |

L:&3 0 0 L.
xg jzg cos(gzrgg) sin(z:riz) 0
F_l(x) = atan?(xg,:cl) ) DF_l(é) = —bg;(ifgf) Cgi(ijgf) 01
2 0 0 1
2 0 0 2 0 0
Gn® = | 0 amr2e 0 | ale) =1 o m o |,Jr(&) = L.2nL2¢.
0o o0 L2 0o 0 5

The cylindrical coordinate transformation is an orthogonal mapping so that the metric is a
diagonal matrix and the mass matrices are block diagonal,

M; = diag (Mlla M2, '\7'13)
- - . . L, . ~ L?
—ding | RO AN@2nL.6 ae. [ RO TRY@) 525 ae, [ Ri@TRNO T ae).

27‘(’1

—ding (| R(OTAHO T de. [ 2300 TR©O T ae, [ R(OTAO 55 ).

We write out the equations for the following particle pushers, where the derivative matrices

D;,i=1,2,3 are taken from (9.8):
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Hybrid particle pushing with the velocity v in physical coordinates,

& cos(Zrty) | sin(2n), 5
b | = | -l 4 ey, | = |5 |

&3 = U3

i el el 0| [ A©a + 02439)bs - 5:A3(6)h
by | = | ome) o | | Ad()es + sARE)h — mAR(ED |
b, 0 0 =] \AL(&)és + 51A3(&)by — 12A3(€)by

é M (D3 Waobs — DI Maghs — gAL(€) o1 )

& | = | M (D] Mashs — D Manby — qAb(€)T5s) |

&) \ Wl (DI Waiby — D] Whosh, — gR}(€) 5s)

31 —D3zés + Daés

by | = | Dséy—Dies

bs — D1 + Diés
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Logical particle pushing for the contravariant components of the velocity, v,

& U1

AR

&3 U3

o L(AL(&)ér + DaAR(€)bs — D3A3(€)b2) + 036
5| = %]\%(€)é2+53/~\££2§gi;’1—171]\%(&)53 _9 }fz ,
5y %Aé(s>é3+ﬁlﬁégéa—M%@)Bl

& M7 (D?TMQQBQ — D] Masbs — q]\%(g)ﬂsl)

b | = | Mz (DI Whashs — DI Maiby — gAL()T5) |-
és M3 <D2T|\~/|2151 — D{ Masbs — CJA%,(S)T%)

1;1 —D3éa + Doés

by | == | Dser— Dies

by Doy + D1
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Logical particle pushing for the covariant components of the velocity v,

& 01

|~ mﬁz ’

&3 B

& M€ + 1 M (©)bs — BA3©h Bk
o e B C1P CAEE CT0S A V11
03 AL(&)és + 01A3(&)by — 5 222 AL (€)b1

& M (D:,,T Masbs — DJ Mazbs — q[\%(g)%)

b | = | M (DI Waghs — DI Wby — 928 22) |
é3 M (D2T|\~/|21l~>1 — D Magby — q]\zlg(ﬁ)TL%@:a)

51 —D3éz + Daé3

bo | == | Dsér— Diés

by —Dyéy + D1

As mentioned in Section 6.1, the latter equations of motion with the covariant components
of the velocity ¥ yield an explicit Hamiltonian splitting because the velocity directions are
decoupled.
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