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Abstract

The geometric electromagnetic particle-in-cell (GEMPIC) framework provides the foundation

for Vlasov–Maxwell solvers that preserve at the discrete level the non-canonical Hamilto-

nian structure. Preserving the structure of the kinetic equations enables stable numerical

methods for long time simulations. In this dissertation, the GEMPIC framework is extended

to curvilinear coordinates and perfect conductor boundary conditions. Several semi-implicit

time integrators based either on a Hamiltonian splitting or on an antisymmetric splitting of

the Poisson matrix are discussed and assessed regarding their conservation properties and

computational efficiency.

Zusammenfassung

Das geometrisch elektromagnetische particle-in-cell (GEMPIC) Rahmenkonzept legt die Grund-

lage für Vlasov–Maxwell Löser, die die nicht kanonische hamiltonische Struktur auf der dis-

kreten Ebene erhalten. Die Erhaltung der Struktur der kinetischen Gleichungen ermöglicht

stabile numerische Verfahren für Langzeitsimulationen. In dieser Dissertation wird das GEM-

PIC Rahmenkonzept um krummlinige Koordinaten und perfekte Leiter Randbedingungen

erweitert. Verschiedene semi-implizite Zeitintegratoren, die entweder auf einer Aufteilung

des Hamiltonianoperators oder auf einer antisymmetrischen Aufteilung der Poisson Matrix

basieren, werden behandelt und bezüglich ihrer Erhaltungseigenschaften und rechnerischen

Effizienz eingeschätzt.
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1 Introduction

1.1 Goal

Plasma simulation with numerical schemes that preserve the structure of the kinetic equa-

tions can provide new insights into the long time behaviour of fusion plasmas. However, there

are multiple challenges on the route towards real tokamak simulations such as the handling

of the geometry, the boundary conditions or the different time scales. During my doctoral

project, I have developed and implemented in the SeLaLib [1] an extension of the geomet-

ric electromagnetic particle-in-cell (GEMPIC) framework [56] to curvilinear coordinates and

perfect conductor boundary conditions.

1.2 Methods and Challenges in the GEMPIC Framework

The Vlasov-Maxwell (VM) system is a set of partial differential equations, which describe the

dynamic behaviour of a collisionless plasma and the coupled self-consistent electromagnetic

fields. The Vlasov equation governs the evolution of the plasma particle distribution func-

tion whereas Maxwell’s equations describe the propagation of the electromagnetic fields with

source terms given by the moments of the particle distribution function, namely the charge

and the current densities.

The particle-in-cell (PIC) method [51, 8, 23] is a common technique to solve these differential

equations. The solution is computed following the trajectories of macro-particles representing

the plasma particles. In [40], various PIC methods and their conservation properties are

described.

In GEMPIC, the electromagnetic fields are discretised in space with the finite element exterior

calculus (FEEC) framework developed by Arnold, Winther & Falk [3]. An important feature

of this general approach for the finite element discretisation of partial differential equations

is the compatibility with structure-preserving numerical methods. The basis functions for the

finite element spaces are constructed from B-splines, since they form a de Rham complex as

demonstrated in [12]. This formulation yields a semi-discrete Poisson system that satisfies the

Jacobi identity. A review of geometric integration methods for Hamiltonian systems exploiting

the Lagrangian and Poisson structure is given in [42].

For the discretisation in time, Poisson integrators as well as energy conserving time-stepping

schemes are considered. The former results in two semi-explicit Hamiltonian splittings based

on [45] and [21] whereas the latter is based on the discrete gradient method [36, 68] and

requires an antisymmetric splitting of the Poisson matrix. The discretisation with the discrete

gradient method leads to implicit systems, which have to be solved iteratively. Therefore,

the implicit methods are computationally more expensive than the semi-explicit schemes.

However, they are more suitable to the multi-scale nature of simulations with magnetohydro-

dynamic time scales because they do not suffer from the stability constraints that restrict the

Geometric PIC Methods on Mapped Grids 9



semi-explicit schemes to small time steps.

General curvilinear coordinates are introduced into the VM system using the basic notations

for the representation of scalar and vector functions in curvilinear coordinates in [79] and [27].

When radial mappings are introduced, real boundary conditions for the fields and particles

are required, since periodic boundary conditions are not feasible for the radial direction. For

the fields, perfect conductor boundary conditions as described in [41] can be used to model

a lossless metallic surface. Compatible particle boundary conditions include reflection and

absorption.

The multi-scale dynamics of a plasma occur due to the different magnitudes of the char-

acteristic lengths of the two particle species, the electrons and the ions. The difference in

the gyroradii, for example, depends on the square root of the mass ratio between ions and

electrons. Therefore, many simulations in realistic fusion devices lay focus on the ion motion

considering a quasi-neutral background with adiabatic electrons because this makes it possi-

ble to disregard the small time scales of the electrons. However, even in this simplified case,

noise reduction techniques have to be applied as proposed in [80, 84] to obtain meaningful

results with a reasonable number of particles.

1.3 Outline

The thesis is structured in the following way:

In the first part, a general coordinate transformation is introduced to the VM system. In

Chapter 2, the VM system and its Poisson structure and conservation properties are re-

viewed. Furthermore, the notation for curvilinear coordinate transformations is introduced

and applied to the electromagnetic fields. Chapter 3 approaches the structure-preserving

semi-discretisation based on the PIC method for the particle distribution function and FEEC

for the fields. Here, the discrete de Rham sequence in logical coordinates induces a de Rham

sequence on the physical domain. The semi-discrete Hamiltonian structure is presented in

Chapter 4, where the equations of motion are derived from the discrete Poisson matrix. Chap-

ter 5 is devoted to the Lagrangian formulation of the VM system in order to examine different

representations of the particle trajectories based on the potentials. In Chapter 6, we dis-

cretise the equations of motion in time and discuss the advantages and disadvantages of

the different discretisation schemes. Chapter 7 comments briefly on our sampling strategy

and the initialisation of the electric field. In Chapter 8, the new code is verified in numerical

experiments with periodic boundary conditions showing the conservation properties of the

respective time discretisation methods.

Part II treats the boundary conditions of the VM system. In Chapter 9, we focus on the field

boundary conditions. First, we examine the natural boundary conditions of the variational for-

mulation of Maxwell’s equation. Second, the boundary parts are represented in the B-spline

Geometric PIC Methods on Mapped Grids 10



basis and third, we apply the perfect conductor boundary conditions. Chapter 10 comments

on the handling of the particle boundary conditions. In Chapter 11, challenges occurring from

singular mappings are gathered. Chapter 12 discusses preconditioners for the conjugate gra-

dient solvers of the boundary mass matrices. The implementation of the boundary conditions

is verified in a numerical test case with various coordinate transformations in Chapter 13.

Part III presents the quasi-neutral model. In Chapter 14, the quasi-neutral equations with

adiabatic electrons are introduced into the GEMPIC framework. Chapter 15 contains the time

discretisation of the quasi-neutrality equations, which works analogously to Chapter 6, and

reviews the linearised δf method. Concluding, Chapter 16 shows the application of the quasi-

neutral model in two numerical test cases, the ion acoustic wave and the ion temperature

gradient instabilities.

In Part IV, background information on the physical units and the computation of the dispersion

relation is given. The normalisation of the VM system from physical units to dimensionless

quantities is presented in Chapter 17. Chapter 18 reviews the linearisation of the VM system

in order to compute the dispersion relation of the plasma waves simulated in the numerical

experiments.

Chapter 19 concludes the thesis with a short summary of the contributions for the GEMPIC

framework and an outlook to related open problems. In the appendix, useful definitions,

formulas and integrals are provided.

1.4 Related Work

1.4.1 Structure-preserving Framework

In recent years, various structure-preserving particle-in-cell (PIC) discretisations of the Vlasov–

Maxwell (VM) system have been developed as reviewed in [71] and [96]. The preservation

of the symmetry in the variational and Hamiltonian structure of the VM system is related to

the conservation of physical quantities such as charge, energy or momentum. This leads to

algorithms that feature long term accuracy and stability.

Early attempts of structure-preserving PIC codes for the VM system were made by Lewis [61,

62], where a general framework for the semi-discretisation of Low’s Lagrangian [64] based

on finite differences is given. Similarly, Shadwick, Stamm & Evstatiev described an energy

conserving variational semi-discretisation based on finite elements in [31, 77, 82]. For the

time discretisation an explicit symplectic integrator is used.

A fully-discrete structure-preserving PIC algorithm for the VM equations was proposed by

Squire, Qin & Tang [81] in 2012. Their variational formulation is based on a fully discrete

action principle applied to Low’s Lagrangian [64], where the electromagnetic fields are dis-

cretised using the discrete exterior calculus [26].

Geometric PIC Methods on Mapped Grids 11



In 2015, Crouseilles, Einkemmer & Faou [21] introduced a Hamiltonian splitting (HS) for the

continuous Poisson bracket introduced by Morrison in [69]. However, this bracket does not

satisfy the Jacobi identity so that the splitting is not Poisson structure conserving. A correction

was given by He, Qin, Sun, Xiao, Zhang & Liu [45], who discovered an alternative HS for the

corrected Poisson bracket described in [94, 65, 70]. Their HS leads to an explicit time discreti-

sation that preserves the Poisson structure. Using this time discretisation, Xiao, Qin, Liu, He,

Zhang & Liu [97] presented a discretisation of the non-canonical Poisson bracket for the VM

system. The variational formulation uses Whitney form interpolants [95], which preserve the

de Rham complex. Subsequently, He, Sun, Qin & Liu [46] published a structure-preserving

PIC method, where the non-canonical VM bracket is discretised based on first order finite

elements. In the following, Xiao, Qin, Liu & Zhang showed a local energy conservation law in

[98] and derived a fully discrete action principle in [96].

At the same time, Kraus, Kormann, Morrision & Sonnendrücker [56] introduced the system-

atic mathematical framework GEMPIC, the geometric electromagnetic particle-in-cell method.

The framework is based on two main building blocks, the semi-discretisation of the Poisson

bracket with finite element exterior calculus (FEEC) [3] and the time discretisation via the HS

introduced in [45]. The following work extends or elaborates on parts of this framework:

In 2021, Kormann & Sonnendrücker [55] presented two energy conserving time discretisa-

tions based on the discrete gradient method. [72] compared one of these time discretisations

in a 1D2V setting to a similar time discretisation proposed by Lapenta [59]. The mathematical

framework of GEMPIC coming from the Lagrangian formalism was investigated in [14]. In

this paper, Campos Pinto, Kormann & Sonnendrücker consider general basis functions for

the finite element spaces in the de Rham complex and investigate the duality of the varia-

tional formulation of Maxwell’s equations resulting in the choice between a weak or strong

formulation of Ampère’s, respectively Faraday’s equation. The application of this variational

framework to spectral methods was described in [13]. The spectral methods feature various

conservation properties such as energy, charge or momentum conservation extending the

particle-in-Fourier (PIF) ansatz developed by Ameres [2] to the GEMPIC framework.

There exist several possibilities to include collisions into the GEMPIC framework. In the case

of energy-preserving time integrators, it is natural to use metriplectic integrators because

they share the same time discretisation strategy. Specifically, Kraus, Hirvijoki & Burby [50]

examined the extension of the GEMPIC framework with a non-linear Landau collision opera-

tor. The metriplectic formulation of the collision operator is employed for a semi-discretisation

that conserves density, momentum and energy. Using the discrete gradient method for the

time discretisation guarantees energy conservation and a discrete H-theorem, i.e. a mono-

tonic dissipation of entropy and an unique equilibrium state.

In the case of a HS on the other hand, the microscopic description of collisions via stochastic

processes is better suited, since metriplectic integrators do not preserve the Hamiltonian
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structure. In [88], the variational formulation of the collisional VM system was investigated on

the continuous level as a coupling of a partial and a stochastic differential equation. Then,

the general formulation of stochastic variational integrators developed in [57] can be used

to discretise this formulation in order to include collisional effects in the GEMPIC framework

when using Hamiltonian or variational time discretisations.

Associated to the work on this framework, the following publications have been recently re-

leased: In 2019, Hirvijoki [48] proposed a drift kinetic PIC code for the VM system, which is

based on a discrete action principle and conserves charge. The work on the Landau collision

operator in the metriplectic formulation was continued in [49]. However, the new formulation

is no longer compatible with the conservation of the Poisson structure in the GEMPIC frame-

work. Holderied, Possaner & Wang [52] presented a hybrid MHD-kinetic code based on the

finite element exterior calculus providing an exact de Rham complex. However, the system

does not possess a discrete Poisson structure.

1.4.2 Curvilinear PIC Codes

So far, the geometric methods for the VM system have been limited to Cartesian geometry.

Yet, on the route to simulations in a fusion device, e.g. a tokamak or a stellarator, a realistic

geometry can only be described accurately with a multipatch of coordinate transformations.

Therefore, we review the state of the art of PIC codes with curvilinear coordinate transforma-

tions.

In 1995, Eastwood, Arter, Brealey & Hockney [30] presented the first electromagnetic PIC

code on a non-orthogonal grid based on a body-fitted finite element discretisation that con-

serves the charge. The equations of motion are derived from an action principle and the

particles are pushed in logical coordinates. Proceeding from this work, Wang, Kondrashov,

Liewer & Karmesin [90] introduced an electromagnetic PIC code called EMPIC. The code

features a finite volume discretisation and a hybrid particle pusher, which means that the ve-

locity is kept in physical coordinates. Simulations are performed on a sinusoidally distorted

grid and the energy error is bounded.

Fichtl, Finn & Cartwright [32] proposed an electrostatic 2D2V code in 2012. The fields are

discretised with the finite difference method and the particle position and velocity are both

pushed in logical coordinates. The code is momentum conserving and applies homogeneous

Neumann boundary conditions for the fields. Likewise, Delzanno et al. [25] described an

electrostatic 3D PIC code called CPIC with finite difference discretisation. The code uses

a hybrid particle pusher and allows for mesh refinement. Absorbing and reflecting particle

boundaries are tested on a sinusoidally distorted grid and on an annulus. For the fields

Neumann or Dirichlet boundary conditions can be applied.

In 2016, Chen & Chacón [16] published an electromagnetic 2D3V PIC code in curvilinear

Geometric PIC Methods on Mapped Grids 13



coordinates for the Vlasov–Darwin model. The fields are discretised with the finite difference

method and the time discretisation is fully implicit featuring charge and energy conservation.

While the particle position is pushed in logical coordinates, the velocity is kept in physical

coordinates leading to a hybrid particle pusher. A fluid preconditioner is used for acceleration

of the field solver and multispecies test cases are simulated on a sinusoidally distorted grid.

Complementary, the code was extended to perfect conductor boundary conditions and a

reflecting particle boundary in [17].

In 2019, Gonzalez-Herrero, Micera, Boella, Park & Lapenta [37] proposed a semi-implicit PIC

code in axially symmetric cylindrical coordinates, which uses a finite volume discretisation.

The code is based on the ECSIM code by Lapenta [59] and features energy conservation.

In [73], the GEMPIC framework was extended to general curvilinear coordinate transforma-

tions.

More recently, Xiao & Qin [54] extended their geometric PIC code [96] to orthogonal curvilin-

ear coordinate transformations maintaining the explicit time discretisation via a Hamiltonian

splitting. The explicit time splitting is obtained by the use of a logical velocity variable but

this is only possible for the special case of an orthogonal transformation. They apply perfect

electric conductor boundary conditions in two directions and periodicity in the third direction.

Particles hitting the boundary are removed from the simulation. A different approach was

taken by Wang, Qin, Sturdevant & Chang [91] using the structure-preserving framework to

build an electrostatic 2D PIC code on unstructured grids with fully kinetic ions and adiabatic

electrons. A de Rham complex is constructed with Whitney forms assuming homogeneous

Dirichlet boundary conditions for the fields and a reflecting boundary for the particles. This

setup allows for simulations of ion Bernstein waves in a 2D magnetized plasma.

Curvilinear coordinate transformations are also used with a variety of other methods such as

semi-Lagrangian [43], gyrokinetic [99] or MHD codes [52]. In 2011, Colella, Dorr, Hittinger

& Martin [19] used a finite volume discretisation of the Vlasov–Poisson system with Dirichlet

boundary conditions to perform simulations in a D-shaped annular geometry. In [66], this

code was extended to mapped multi block grids and tested on a sinusoidally distorted mesh

with advection problems. Vogman et al. [89] introduced a continuum code with finite vol-

ume discretisation for an electrostatic axisymmetric cylindrical Vlasov–Poisson system using

specular reflection as particle boundary conditions and Dirichlet boundary conditions for the

fields.
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Part I

Curvilinear Vlasov–Maxwell System
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2 The Vlasov–Maxwell System and Curvilinear
Coordinates

The Vlasov equation in physical phase-space coordinates (x,v) for a species s with charge

qs and mass ms reads

∂fs(x,v, t)

∂t
+ v · ∇xfs(x,v, t) +

qs
ms

(E(x, t) + v ×B(x, t)) · ∇vfs(x,v, t) = 0, (2.1)

where E and B denote the electromagnetic fields, which are evolved according to Maxwell’s

equations,

∂E(x, t)

∂t
= ∇x ×B(x, t)− J(x, t), (2.2a)

∂B(x, t)

∂t
= −∇x ×E(x, t), (2.2b)

∇x ·E(x, t) = ρ(x, t),

∇x ·B(x, t) = 0.

The system couples through the first two moments of the particle distribution function fs, the

charge and the current densities,

ρ(x, t) =
∑
s

qs

∫
fs(x,v, t) dv, J(x, t) =

∑
s

qs

∫
fs(x,v, t)v dv.

The equations (2.1), (2.2a), (2.2b) can be obtained by a bilinear, antisymmetric Poisson

bracket that satisfies Leibniz’ rule and the Jacobi identity. The following Poisson bracket

was introduced in [69] and corrected in [94, 65, 70]:

{F ,G}[fs,E,B] =
∑
s

∫ [
δF
δfs

,
δG
δfs

]
dxv

+
∑
s

qs
ms

∫
fs

(
∇v

δF
δfs
· δG
δE
−∇v

δG
δfs
· δF
δE

)
dxv

+
∑
s

qs
m2
s

∫
fsB ·

(
∇v

δF
δfs
×∇v

δG
δfs

)
dxv

+

∫ (
curl

δF
δE
· δG
δB
− curl

δG
δE
· δF
δB

)
dx,

where [f, g] = ∇xf · ∇vg −∇xg · ∇vf.

The time evolution of a functional F [fs,E,B] is expressed by

d

dt
F [fs,E,B] = {F ,H}, (2.3)

where the HamiltonianH equals the sum of the kinetic energy of the particles and the electric
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and magnetic field energies,

H =
∑
s

ms

2

∫
|v|2fs(x,v) dx dv +

1

2

∫
|E(x)|2 + |B(x)|2 dx. (2.4)

Equivalently, the equations of motion follow from the Lagrangian introduced by Low [64],

Lf =
∑
s

∫
fs(x,v)[qA(t,x) +mv] · ẋ− 1

2
mv2 − qΦ(t,x)] dx dv

+
1

2

∫
Ω

∣∣∣∣−∇Φ(t,x)− ∂A(t,x)

∂t

∣∣∣∣2 dx− 1

2

∫
Ω
|∇ ×A(t,x)|2 dx.

(2.5)

The Lagrangian is formulated with the scalar potential Φ and the vector potential A. Their

relation to the electromagnetic fields is given by

E(x, t) = −∇Φ(x, t)− ∂A(x, t)

∂t
,

B(x, t) = ∇×A(x, t).

2.1 Conservation Properties

Proposition 2.1. The Vlasov–Maxwell system features some conservation properties, which

are important for long term stability:

• Energy conservation

d

dt
H =

d

dt

(∑
s

ms

2

∫
|v|2fs(x,v) dx dv +

1

2

∫
|E(x)|2 + |B(x)|2 dx

)
= 0,

• Momentum conservation

d

dt
P =

d

dt

(∑
s

∫ ∫
msvfs dx dv +

∫
Ω

E×B dx

)
= 0.

Proof. The proof can be found in [78, Sec. 3.4.2].

From the Poisson bracket we obtain only Ampère’s (2.2a) and Faraday’s laws (2.2b) but the

conservation of the Gauss laws follows by taking the divergence of Ampère’s and Faraday’s
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laws,

∇ · ∂E

∂t
= ∇ · ∇x ×B−∇ · J⇒ d

dt
(∇ ·E− ρ) = 0,

∇ · ∂B

∂t
= −∇ · ∇x ×E⇒ d

dt
(∇ ·B) = 0.

The momentum is conserved if Gauss’ law is initially satisfied for both particle species and

conserved over time, since

dP
dt

= {P,H} =

∫
E(ρ− div E) dx.

So, when the conservation of Gauss’ law is lost, the conservation of the total momentum is

violated, too.

2.2 Differential Forms and the Structure of Maxwell’s
Equations

Maxwell’s equations for the electric and magnetic fields are given as

∂E(x, t)

∂t
= ∇x ×B(x, t)− J(x, t),

∂B(x, t)

∂t
= −∇x ×E(x, t),

∇x ·E(x, t) = ρ(x, t), ∇x ·B(x, t) = 0.

The structure of Maxwell’s equations can be understood by interpreting the fields as differen-

tial forms following [9, 6, 47, 92]. The spaces of electromagnetics form a de Rham complex,

which in terms of Sobolev spaces can be expressed as

H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)
grad curl div (2.6)

and is accompanied by the dual de Rham complex

L2?(Ω) H?(div,Ω) H?(curl,Ω) H1?(Ω)
grad curl div , (2.7)

where the notation ? is used to denote the dual of the corresponding spaces.

Definition 2.1. The Sobolev spaces are defined as

H1(Ω) :={ω ∈ L2(Ω)| dω ∈ L2(Ω)3},

H(curl,Ω) :={ω ∈ L2(Ω)3| curlω ∈ L2(Ω)3},

H(div,Ω) :={ω ∈ L2(Ω)3|divω ∈ L2(Ω)},

L2(Ω) :={ω ∈ Ω|〈ω, ω〉L2 <∞}.
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The complex must have the property that in each step the image of the operator is in the

kernel of the next operator. This complex property is satisfied, since curl grad Φ = 0 for all

Φ ∈ H1(Ω) and div curl A = 0 for all A ∈ H(curl,Ω).

For the interpretation of the field equations, there are two options: Either we choose E ∈
H(curl,Ω) and B ∈ H(div,Ω) and then, interpret the two equations of the first column,

Ampère’s law and the electric Gauss law, in the weak sense, and the two equations of the

second column, Faraday’s law and the magnetic Gauss law, in the strong sense, or vice versa.

We use the first option and consider the following mixed form of Maxwell’s equation with the

test functions ϕ ∈ H(curl,Ω) and ψ ∈ H1(Ω):∫
Ω
ϕ(x) · ∂E(x, t)

∂t
dx =

∫
Ω
∇x ×ϕ(x) ·B(x, t) dx− J?(ϕ)(t), (2.8a)

∂B(x, t)

∂t
= −∇x ×E(x, t), (2.8b)

−
∫

Ω
∇xψ(x) ·E(x, t) = ρ?(ψ)(t), (2.8c)

∇x ·B(x, t) = 0, (2.8d)

where J? ∈ H?(div,Ω) and ρ? ∈ L2?(Ω) are linear functionals defined as J?(ϕ)(t) =

〈ϕ,J〉L2 , ρ?(ψ)(t) = 〈ψ, ρ〉L2 . Note that we have assumed that the boundary terms van-

ish in (2.8a) and (2.8c). Further investigations regarding the boundary conditions are given in

Chapter 9.

2.3 Curvilinear Coordinates

2.3.1 Notation

Let us first introduce our notation for the curvilinear coordinates before discussing how these

can be consistently combined with differential forms. We consider a bijective coordinate trans-

formation from the logical space Ω̃ := [0, 1]3 to the physical space Ω, e.g. a Torus in spherical

coordinates. The transformation map is denoted by

F : Ω̃→ Ω ⊂ R3, ξ 7→ F (ξ) = x,

where ξ = (ξ1, ξ2, ξ3)>,x = (x1, x2, x3)> are the variables on the logical and physical mesh,

respectively.

The matrix of the partial derivatives, the Jacobian matrix, and its determinant are defined

as

(DF (ξ))ij =
∂Fi(ξ)

∂ξj
=
∂xi
∂ξj

,

JF (ξ) = det(DF (ξ)).
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We assume that the mapping is non-singular, i.e. JF (ξ) 6= 0 ∀ξ ∈ Ω̃, and therefore, the

Jacobian matrix is invertible. The case of singular mappings is discussed in Chapter 11.

Definition 2.1. The column vectors of the Jacobian matrix form the so-called covariant basis

of the tangent space,

ti =
∂F (ξ)

∂ξi
=
∂x

∂ξi
, DF = (t1|t2|t3)

whereas the columns of the transposed inverse Jacobian matrix form the dual basis, which is

called the contravariant basis of the cotangent space,

ni =
∂ξi
∂x

, DF (ξ)−> =: N(ξ) = (n1|n2|n3).

Proposition 2.2. The following relations hold between the covariant and the contravariant

basis vectors:

n1 =
1

JF
t2 × t3, n2 × n3 =

1

JF
t1,

n2 =
1

JF
t3 × t1, n3 × n1 =

1

JF
t2,

n3 =
1

JF
t1 × t2, n1 × n2 =

1

JF
t3.

Proof. The proof can be found in [79].

Definition 2.3. The coefficients of the metric Gm and its inverse are defined in the following

symmetric way:

Gm(ξ) = DF (ξ)>DF (ξ), G−1
m (ξ) = N(ξ)>N(ξ),

Gm =


t1 · t1 t1 · t2 t1 · t3

t2 · t1 t2 · t2 t2 · t3

t3 · t1 t3 · t2 t3 · t3


, G−1

m =


n1 · n1 n1 · n2 n1 · n3

n2 · n1 n2 · n2 n2 · n3

n3 · n1 n3 · n2 n3 · n3


.

2.3.2 Covariant and Contravariant Basis

There is a common notation of the covariant and contravariant basis vectors, which is de-

scribed in [27, 63].
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Definition 2.4. The basis vectors are defined as

ei =
∂x

∂ξi
, ei = ∇ξi =

(
∂ξi
∂x1

,
∂ξi
∂x2

,
∂ξi
∂x3

)>
, i = 1, 2, 3

so that the vectors ei are the columns of the Jacobian matrix DF and the vectors ei are the

columns of the transposed inverse of the Jacobian matrix N = DF−>.

Definition 2.5. The entries of the metric, gij = (Gm)ij , and its inverse, gij =
(
G−1
m

)
ij

, are

represented as

gij = ei · ej , gij = ei · ej .

Proposition 2.6. The following relation hold between the basis vectors:

ei · ej = δij ,

ei = gij ej ,

ei = gij ej .

Proof. For the differential elements we have the relations

dξi = ∇ξi · dx and dx =
∂x

∂ξ1
dξ1 +

∂x

∂ξ2
dξ2 +

∂x

∂ξ3
dξ3 = ej dξj .

Then, it follows that

dξi = ∇ξi · ej dξj ,

which leads to

∇ξi · ej = ei · ej = δij .

When we represent the basis vectors in the respective other basis, we get

ei = (ei · ej)ej = gije
j ,

ei = (ei · ej)ej = gijej .

We can represent every vector field either in the contravariant or in the covariant basis,

D = D1e
1 +D2e

2 +D3e
3 = D1e1 +D2e2 +D3e3, where Di = D · ei, Di = D · ei.
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However, in the context of differential forms, there is a proper choice, which facilitates the

computation of the exterior derivative. Therefore, a differential 1-form, which is for our choice

the electric field, is represented in the contravariant basis,

E = Eie
i = NẼ⇒ Ei = Ẽi, i = 1, 2, 3

whereas the differential 2-form, in this case the magnetic field, is represented in the covariant

basis,

B = Biei =
DF

JF
B̃⇒ Bi =

B̃i
JF

, i = 1, 2, 3. (2.9)

Note that for the representation in the contravariant basis, we need the covariant components

of the vector field and vice versa. We prove this assertions in the next section in Proposition

2.10.

Then, we take a look at the representation of the derivatives.

Proposition 2.7. With the definitions from above, we state the following relations for the

differential operators:

• The gradient of a scalar function is given by

∇Φ = N∇ξΦ̃. (2.10)

• The curl of a vector field A is transformed as

∇×A =
DF

JF
∇ξ × Ã. (2.11)

• The divergence of a vector field F is represented in curvilinear coordinates as

∇x · F =
1

JF
∇ξ ·

(
JFN

>F
)
. (2.12)

Proof. • We compute the gradient as

∇Φ = ∇ξi
∂φ

∂ξi
= ei

∂φ

∂ξi
= N∇ξΦ.

• We compute the curl of the vector field as

∇×A = ∇× (Aje
j) = Aj(∇×∇ξj) +∇Aj × ej =

∂Aj
∂ξi

ei × ej =
εijk

JF

∂Aj
∂ξi

∂x

∂ξk
,

where we used the relation ei × ej = εijk

JF (ξ)ek from [27]. Then, we prove the claim with
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our definition of the vector potential A = NÃ = Aie
i as a 1-form,

DF

JF
∇ξ × Ã =

DF

JF



∂Ã3
∂ξ2
− ∂Ã2

∂ξ3

∂Ã1
∂ξ3
− ∂Ã3

∂ξ1

∂Ã2
∂ξ1
− ∂Ã1

∂ξ2


=
εijk

JF

∂Aj
∂ξi

∂x

∂ξk
.

• We compute the divergence of the vector field as

∇x · F =
1

JF

∂

∂ξi
(
JFF

i
)

=
1

JF

∂

∂ξi
(
JFei · F

)
=

1

JF
∇ξ ·

(
JFN

>F
)
.

Lemma 2.8. The cross product between a vector field and a differential 2-form is represented

in curvilinear coordinates as

(v ×B) = N(N>v)× B̃.

Proof. We compute the covariant component of the cross product and obtain

(v ×B) = ek(v ×B)k = ekεijkJF v
iBj = ekεijke

i · vJFBj

= N(N>v)× B̃,

where we used the Definition 2.4 and the representation of the 2-form in (2.9).

2.3.3 Transformation of Differential Forms

We introduce curvilinear coordinates to the differential forms and show how they are trans-

formed in a consistent way as can be seen in [58].

Definition 2.9. For a scalar differential 0-form, g ∈ H1(Ω), we define g̃ ∈ H1(Ω̃) as

g̃(ξ) := g(F (ξ)) = g(x). (2.13)

Next, we consider the transformation of the other differential forms.
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Proposition 2.10. We have the following properties:

1. A vector function, E ∈ H(curl,Ω), corresponding to a differential 1-form, is transformed

by the covariant Piola transform,

E(x) = N(ξ)Ẽ(ξ) with Ẽ ∈ H(curl, Ω̃). (2.14)

2. A vector function, B ∈ H(div,Ω), corresponding to a differential 2-form, is transformed

by the contravariant Piola transform,

B(x) =
DF (ξ)

JF (ξ)
B̃(ξ) with B̃ ∈ H(div, Ω̃). (2.15)

3. A scalar differential 3-form, h ∈ L2(Ω), is related to h̃ ∈ L2(Ω̃) via

h(x) =
1

JF (ξ)
h̃(ξ).

Proof. 1. Given a scalar function, Φ̃(ξ), Φ̃ : Ω̃ → R, which is a 0-form, the result follows

from the transformation rule for the gradient of a scalar function in Proposition 2.7.

Then, the de Rham sequence (2.6) yields a representation of the gradient of a 0-form

as a 1-form, ∇xΦ(x) = E(x). We compute

∇xΦ(x)
(2.10)
= N(ξ)∇ξΦ̃(ξ)

and reformulate the result to get

E(x) = ∇xΦ(x) = N(ξ)∇ξΦ̃(ξ) = N(ξ)Ẽ(ξ), where Ẽ = ∇ξΦ̃(ξ).

2. A similar proof for differential 2-forms uses the transformation rule for the curl in Propo-

sition 2.7. Given a vector function, A : Ω → R3, which is a 1-form, it follows from the

de Rham sequence (2.6) that the curl of the function can be represented as a 2-form,

∇x ×A(x) = B(x). So, we obtain

∇x ×A(x)
(2.11)
=

DF (ξ)

JF (ξ)
∇ξ × Ã(ξ),

which leads to

B(x) =
DF (ξ)

JF (ξ)
B̃(ξ), where ∇ξ × Ã(ξ) = B̃(ξ).

3. The result for differential 3-forms is proven the same way with the formula for the diver-
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gence of a vector field in Proposition 2.7,

∇x ·B(x)
(2.12)
=

1

JF (ξ)
∇ξ · B̃(ξ).

For integrals we use the transformation formula∫
Ω
g(x) dx =

∫
Ω̃
g(F (ξ))|JF (ξ)|dξ. (2.16)

2.4 Curvilinear Vlasov and Maxwell’s Equations

We transform the Vlasov–Maxwell system using the curvilinear transformation rules for the

differential forms.

Proposition 2.1. Under the coordinate transformation F (ξ) = x,

1. the Vlasov equation (2.1) transforms to

∂f̃s(ξ,v, t)

∂t
+N(ξ)>v · ∇ξf̃s(ξ,v, t)

+
qs
ms

N(ξ)
(
Ẽ(ξ, t) + (N(ξ)>v)× B̃(ξ, t)

)
· ∇vf̃s(ξ,v, t) = 0;

2. Faraday’s (2.8b) and magnetic Gauss’ laws (2.8d) in strong form do not change, i.e.

∂B̃(ξ, t)

∂t
= −∇ξ × Ẽ(ξ, t), (2.17a)

∇ξ · B̃(ξ, t) = 0; (2.17b)

3. the weak formulation of Ampère’s (2.8a) and Gauss’ laws (2.8c) is transformed for all

ϕ̃ ∈ H(curl, Ω̃), ψ̃ ∈ H1(Ω̃) as

∂

∂t

∫
Ω̃
Nϕ̃ ·NẼ|JF |dξ =

∫
Ω̃

DF

JF
∇ξ × ϕ̃ ·

DF

JF
B̃|JF | dξ −

∫
Ω̃
Nϕ̃ ·N J̃|JF |dξ,

(2.18a)

−
∫

Ω̃
N∇ξψ̃ ·NẼ|JF | dξ =

∫
Ω̃
ψ̃ρ̃ |JF | dξ. (2.18b)

Proof. The equations are derived by inserting the coordinate transformation into the Vlasov

and the Maxwell equations and using Proposition 2.10.
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1. We insert the coordinate transformation x = F (ξ) into the Vlasov equation (2.1),

∂fs(F (ξ),v, t)

∂t
+ v · ∇ξfs(F (ξ),v, t)

+
qs
ms

(E(F (ξ), t) + v ×B(F (ξ), t)) · ∇vfs(F (ξ),v, t) = 0,

and use the Piola transformations (2.14) and (2.15) to obtain

∂f̃s(ξ,v, t)

∂t
+ v ·N(ξ)∇ξf̃s(ξ,v, t)

+
q

m
(N(ξ)Ẽ(ξ, t) + v × DF (ξ)

JF (ξ)
B̃(ξ, t)) · ∇vf̃s(ξ,v, t) = 0.

Then, we use the Lemma 2.8 to obtain the proposition.

2. Using the Piola transformation for differential 2-forms (2.15) and the chain rule in Fara-

day’s equation (2.8b) leads to

DF (ξ)

JF (ξ)

∂B̃(ξ, t)

∂t

(2.15)
=

∂B(x, t)

∂t
= −∇x ×E(x, t)

(2.11)
= −DF (ξ)

JF (ξ)
∇ξ × Ẽ(ξ, t).

Since DF (ξ) is invertible for any ξ, we arrive at (2.17a). With the transformation of the

divergence of a 2-form, we obtain for magnetic Gauss’ law (2.8d)

0 = ∇x ·B(x, t)
(2.12)
=

1

JF (ξ)
∇ξ · B̃(ξ, t). (2.19)

3. We use the transformation formula (2.16), the Piola formulas (2.14) and (2.15) and the

curvilinear curl (2.11) to insert the coordinate transformation into the weak formulation

of Ampère’s law (2.8a) and electric Gauss’ law (2.8c).

We note that the advection coefficient N(ξ)>v for the ξ advection in the curvilinear Vlasov

equation depends on ξ. Therefore, f̃s is no longer a conserved quantity but instead JF f̃s

(cf. [16, 43]) and the curvilinear Vlasov equation in conservative form reads

∂t(JF f̃s) +∇ξ · (N>vJF f̃s) +∇v ·
(
qs
ms

N(Ẽ + (N>v)× B̃)JF f̃s

)
= 0.
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3 Structure-preserving Discretisation in
Curvilinear Geometry

In this section, we will introduce a particle discretisation for the distribution function and a

compatible finite element discretisation of the fields extending the discretisation proposed in

[56] to the curvilinear case.

3.1 Discrete Particle Distribution Function

In order to define the charge and current densities in Maxwell’s equations, we need to define a

discrete particle distribution function from the positions xp and velocities vp of theNp particles

of all species s. We use a definition based on δ-functions in phase space,

fh(x,v, t) =

Np∑
p=1

ωpδ(x− xp(t))δ(v − vp(t)).

The δ-function defines the point evaluation in a convolution with another function. Therefore,

we need to scale by the inverse Jacobian determinant when the argument is transformed as

expressed in the following lemma:

Lemma 3.1. In curvilinear coordinates the delta distribution transforms with the inverse Ja-

cobian determinant,

δ(x− xp(t)) =
δ(ξ − ξp(t))
|JF (ξ)|

.

Proof. We choose Np points ξp ∈ Ω̃ so that F (ξp) = xp ∈ Ω ∀p ∈ {1, ..., Np} and use the

following ansatz:

∃γ ∈ R : δ(x− xp) = γδ(ξ − ξp) ∀p ∈ {1, ..., Np}.

Then, we integrate over Ω on both sides and use the transformation rule (2.16) on the right-

hand side, ∫
Ω
δ(x− xp) dx =

∫
Ω̃
γδ(ξ − ξp)|JF (ξ)|dξ ∀p ∈ {1, ..., Np}.

Since the left-hand side equals 1, we get

γ =
1

|JF (ξ)|
⇒ δ(x− xp) =

δ(ξ − ξp)
|JF (ξ)|

∀p ∈ {1, ..., Np}.
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Hence, the discrete distribution function in logical coordinates is defined as

f̃h(ξ,v, t) = fh(F (ξ),v, t) =

Np∑
p=1

ωp
δ(ξ − ξp(t))
|JF (ξ)|

δ(v − vp(t)). (3.1)

Upon inserting the discrete form of the particle distribution function, the current and the

charge densities take the following form:

J̃h(ξ) = DF>(ξ)
∑
s

∫
qsf̃hs(ξ,v, t)v dv = DF>(ξ)

Np∑
p=1

qpωp
δ(ξ − ξp)
|JF (ξ)|

vp, (3.2a)

ρ̃h(ξ) =
∑
s

∫
qsf̃hs(ξ,v, t) dv =

Np∑
p=1

qpωp
δ(ξ − ξp)
|JF (ξ)|

.‘ (3.2b)

Note that this representation is smooth enough, since we only consider the densities in weak

form and the Jacobian determinant from the transformation rule cancels out the inverse Ja-

cobian determinant.

Let us collect the logical positions of all particles and their velocities in the vectors Ξ :=

(ξ1, ..., ξNP )>,V := (v1, ...,vNP )>. Moreover, we use use the following notation: Wm :=

diag(ωpmp)⊗ I3,Wq := diag(ωpqp)⊗ I3,N := diag(N(ξp)),G := diag(Gm(ξp)), 1 ≤ p ≤ Np.

Hence, the equations for the characteristics of the particles are written as

Ξ̇ = N>(Ξ)V,

V̇ = W q
m
N(Ξ)

(
Ẽ(Ξ, t) + (N>(Ξ)V)× B̃(Ξ, t)

)
.

(3.3)

3.2 Finite Element Discretisation

3.2.1 Discrete de Rham Sequence

Arnold, Falk, and Winther [3] have developed a theoretical framework for the finite element

discretisation that respects the sequence properties of the de Rham complex. The idea is

to define discrete spaces that form the following commuting diagram with the continuous

spaces:

H1(Ω̃) H(curl, Ω̃) H(div, Ω̃) L2(Ω̃)

Ṽ0 Ṽ1 Ṽ2 Ṽ3

Π0

grad

Π1

grad

Π2 Π3

curl

curl

div

div

Geometric PIC Methods on Mapped Grids 28



The operators Πk, k = 0, 1, 2, 3, are projecting the corresponding differential forms to the

finite dimensional subspaces Ṽk with dimension,

dim Ṽk =


Nk if k = 0, 3,

3Nk if k = 1, 2,

i.e. Π0Φ̃ = Φ̃h ∈ Ṽ0,Π1Ẽ = Ẽh ∈ Ṽ1,Π2B̃ = B̃h ∈ Ṽ2.

The most common construction of such compatible finite element spaces is based on La-

grange finite elements for V0, Raviart–Thomas elements for V1, Nédélec elements for V2 and

discontinuous elements for V3. Moreover, a compatible sequence can be constructed from

splines of mixed order as proposed by Buffa, Sangalli, & Vázquez [12]. In our numerical

experiments, we apply the latter elements. We introduce basis functions for the finite dimen-

sional subspaces Ṽk, scalar functions Λ̃ki for k = 0, 3 and vector valued functions

Λ̃
k
i,1 = (Λ̃k,1i , 0, 0)>, Λ̃

k
i,2 = (0, Λ̃k,2i , 0)>, Λ̃

k
i,3 = (0, 0, Λ̃k,3i )> for k = 1, 2.

The de Rham structure can also be expressed on the level of matrices and vectors. For

ξ ∈ Ω̃, we collect the value of each basis function in a row vector as

Λ̃k(ξ) =
(

Λ̃k1(ξ), Λ̃k2(ξ), ..., Λ̃kNk(ξ)
)
∈ R1×Nk for k = 0, 3,

Λ̃k(ξ) =
(
Λ̃
k
1,1(ξ), Λ̃

k
2,1(ξ), ..., Λ̃

k
Nk,3

(ξ)
)
∈ R3×3Nk for k = 1, 2.

Then, the following relations hold for the basis functions:

∇ξΛ̃0(ξ) = Λ̃1(ξ)G,

∇ξ × Λ̃1(ξ) = Λ̃2(ξ)C,

∇ξ · Λ̃2(ξ) = Λ̃3(ξ)D

(3.4)

for some matrix G ∈ R3N1×N0 denoting the discrete gradient matrix, C ∈ R3N2×3N1 denot-

ing the discrete curl matrix and D ∈ RN3×3N2 denoting the discrete divergence matrix, all

independent of ξ. These matrices need to satisfy

DC = 0 and CG = 0 (3.5)

to mimic the complex properties div curl = 0 and curl grad = 0.

Examples of discrete spaces that satisfy these properties have been proposed in the literature

and are particularly easy to construct on a Cartesian geometry. Using the transformation

rules for differential forms, however, it is straightforward to construct a compatible basis in

curvilinear coordinates from a compatible basis on the logical mesh.
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Lemma 3.1. A de Rham sequence on the physical domain can be constructed from the de

Rham sequence on the logical mesh by

Λ0(x) = Λ̃0(ξ), Λ1(x) = N(ξ)Λ̃1(ξ), Λ2(x) =
DF (ξ)

JF (ξ)
Λ̃2(ξ), Λ3(x) =

1

JF (ξ)
Λ̃3(ξ).

Proof. The following computations show the assertions:

∇xΛ0(x) = N(ξ)∇ξΛ̃0(ξ) = N(ξ)Λ̃1(ξ)G = Λ1(x)G,

∇x ×Λ1(x) =
DF (ξ)

JF (ξ)
∇ξ × Λ̃1(ξ) =

DF (ξ)

JF (ξ)
Λ̃2(ξ)C = Λ2(x)C,

∇x ·Λ2(x) =
1

JF (ξ)
∇ξ · Λ̃2(ξ) =

1

JF (ξ)
Λ̃3(ξ)D = Λ3(x)D

for the same matrices G, C and D as on the logical mesh.

The mass matrices for the differential forms are defined as

(M̃0)ij =

∫
Ω̃

Λ̃0
i (ξ)Λ̃0

j (ξ)|JF (ξ)| dξ for 1 ≤ i, j ≤ N0,

(M̃1)IJ =

∫
Ω̃

Λ̃
1
I(ξ)>G−1

m (ξ)Λ̃
1
J(ξ)|JF (ξ)| dξ for 1 ≤ I, J ≤ 3N1,

(M̃2)IJ =

∫
Ω̃

Λ̃
2
I(ξ)>Gm(ξ)Λ̃

2
J(ξ)

1

|JF (ξ)|
dξ for 1 ≤ I, J ≤ 3N2,

(M̃3)ij =

∫
Ω̃

Λ̃3
i (ξ)Λ̃3

j (ξ)
1

|JF (ξ)|
dξ for 1 ≤ i, j ≤ N3.

(3.6)

3.2.2 Discretisation of the Curvilinear Maxwell Equations

To discretise Maxwell’s equations based on the compatible finite element spaces, we repre-

sent the electromagnetic fields with a finite number of degrees of freedom, ẽ ∈ R3N1×1, b̃ ∈
R3N2×1, as

Ẽh(ξ, t) = Λ̃1(ξ)ẽ(t) =

3N1∑
J=1

Λ̃
1
J(ξ)ẽJ(t), (3.7a)

B̃h(ξ, t) = Λ̃2(ξ)b̃(t) =

3N2∑
K=1

Λ̃
2
K(ξ)b̃K(t). (3.7b)

We recapitulate the Piola transforms (2.14) and (2.15) of the electromagnetic fields and intro-

duce the basis representation of the finite-dimensional subspaces,

Eh(x, t) = Eh(F (ξ), t) = N(ξ)Ẽh(ξ, t) = N(ξ)Λ̃1(ξ)ẽ(t),

Bh(x, t) = Bh(F (ξ), t) =
DF (ξ)

JF (ξ)
B̃h(ξ, t) =

DF (ξ)

JF (ξ)
Λ̃2(ξ)b̃(t).
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Proposition 3.2. The transformed discrete versions of Ampère’s and electric Gauss’ laws

take the following form in matrix notation:

M̃1
˙̃e = C>M̃2b̃−Wq�̃

1(Ξ)>N>(Ξ)V, (3.8a)

G>M̃1ẽ = −Wq�̃
0(Ξ)>1Np . (3.8b)

Proof. The Maxwell equations in weak formulation are discretised by approximating (E,B) ∈
H(curl, Ω̃)×H(div, Ω̃) with the discrete fields (Ẽh, B̃h) ∈ Ṽ1×Ṽ2 defined on finite-dimensional

subspaces with discrete test functions in Ṽ0 and Ṽ1.

For Ampère’s law, we insert (3.7a) and (3.7b) into (2.18a) and use the basis functions Λ̃1 ∈ Ṽ1

as test functions,

∂

∂t

∫
Ω̃

N(ξ)Λ̃1(ξ) ·N(ξ)Λ̃1(ξ)ẽ|JF (ξ)|dξ =

∫
Ω̃

DF (ξ)

JF (ξ)
∇ξ × Λ̃1(ξ) · DF (ξ)

JF (ξ)
Λ̃2(ξ)b̃|JF (ξ)|dξ

−
∫

Ω̃

N(ξ)Λ̃1(ξ) ·N(ξ)J̃h(ξ)|JF (ξ)|dξ.

Next, we use the relation (3.4) for the curl and insert the transformed current (3.2a),∫
Ω̃

Λ̃1(ξ)>N(ξ)>N(ξ)Λ̃1(ξ) ˙̃e|JF (ξ)|dξ =

∫
Ω̃

(Λ̃2(ξ)C)>DF (ξ)>DF (ξ)Λ̃2(ξ)b̃
1

|JF (ξ)|
dξ

−
∫

Ω̃

Λ̃1(ξ)>N(ξ)>
Np∑
p=1

qpωp
δ(ξ − ξp)
|JF (ξ)|

vp|JF (ξ)|dξ

⇔
∫

Ω̃

Λ̃1(ξ)>G−1
m (ξ)Λ̃1(ξ)|JF (ξ)|dξ ˙̃e = C>

∫
Ω̃

Λ̃2(ξ)>Gm(ξ)Λ̃2(ξ)
1

|JF (ξ)|
dξ b̃

−
Np∑
p=1

qpωpΛ̃
1(ξp)

>N(ξp)
>vp.

For Gauss’ law, we insert (3.7a) into (2.18b) and choose the basis functions Λ̃0 ∈ Ṽ0 as test

functions,

−
∫

Ω̃

(
N(ξ)∇ξΛ̃0(ξ)

)>
N(ξ)Λ̃1(ξ)ẽ|JF (ξ)| dξ =

∫
Ω̃

Λ̃0(ξ)>ρ̃h(ξ)|JF (ξ)| dξ.

Then, we use the relation (3.4) for the gradient and insert the transformed charge (3.2b),

∫
Ω̃

(Λ̃1(ξ)G)>N(ξ)>N(ξ)Λ̃1(ξ)ẽ|JF (ξ)| dξ = −
∫

Ω̃
Λ̃0(ξ)>

Np∑
p=1

qpωp
δ(ξ − ξp)
|JF (ξ)|

|JF (ξ)|dξ

⇔ G>
∫

Ω̃
Λ̃1(ξ)>G−1

m (ξ)Λ̃1(ξ)|JF (ξ)| dξ ẽ = −
Np∑
p=1

qpωpΛ̃
0(ξp)

>.

With the notation of the mass matrices (3.6) we obtain the equations in matrix notation.
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Proposition 3.3. The transformed discrete versions of Faraday’s and magnetic Gauss’ laws

take the following form in matrix notation:

˙̃
b = −Cẽ, (3.9a)

Db̃ = 0. (3.9b)

Proof. For Faraday’s law, we insert the discrete transformed fields and their basis represen-

tation (3.7a),(3.7b) into (2.17a),

∂(Λ̃2(ξ)b̃(t))

∂t
= −∇ξ × Λ̃1(ξ)ẽ(t).

Then, we use (3.4) to reformulate the curl,

Λ̃2(ξ)
˙̃
b(t) = −Λ̃2(ξ)Cẽ(t)

⇔ ˙̃
b(t) = −Cẽ(t).

For the magnetic Gauss law, we insert (3.7b) into (2.17b),

∇ξ · Λ̃2(ξ)b̃(t) = 0,

and use (3.4) to calculate the result,

Λ̃3(ξ)Db̃(t) = 0

⇔ Db̃(t) = 0.
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4 Semi-discrete Hamiltonian Structure
In the previous section, we have obtained a spatial semi-discretisation of the Vlasov–Maxwell

system. Let us now analyse the structure of this semi-discretisation.

4.1 Equations of Motion and Poisson Matrix

From the discretisation of the Vlasov–Maxwell system (3.3), (3.8a) and (3.9a) we get the

following equations of motion with hybrid particle push:

Ξ̇ = N>(Ξ)V,

V̇ = W q
m
N(Ξ)

(
�̃1(Ξ)ẽ + (N>(Ξ)V)× �̃2(Ξ)b̃

)
,

M̃1
˙̃e = C>M̃2b̃− �̃1(Ξ)>N>(Ξ)WqV,

˙̃
b = −Cẽ,

(4.1)

where we denote by �̃1(Ξ) the 3Np × 3N1 matrix with generic term Λ̃1
I(ξp) for 1 ≤ p ≤ Np

and 1 ≤ I ≤ 3N1. Furthermore, we introduce the Np × N0 matrix �̃0(Ξ) with generic term

Λ̃0
i (ξp) for 1 ≤ p ≤ Np, 1 ≤ i ≤ N0. �̃2(Ξ) and �̃3(Ξ) are defined accordingly.

The corresponding divergence constraints are discretised in (3.8b) and (3.9b) as

G>M̃1ẽ = −Wq�̃
0(Ξ)>1Np ,

Db̃ = 0.
(4.2)

Let us consider the semi-discrete Hamiltonian for the system (4.1).

Proposition 4.1. The semi-discrete Hamiltonian can be written in matrix notation as

H̃h =
1

2
V>WmV +

1

2
ẽ>M̃1ẽ +

1

2
b̃>M̃2b̃. (4.3)

Proof. We discretise the Hamiltonian of the Vlasov–Maxwell system (2.4) in curvilinear coor-
dinates,

H̃ =
∑
s

ms

2

∫
|v|2f̃s(ξ,v, t)|JF (ξ)| dξ dv +

1

2

∫ (
|N(ξ)Ẽ(ξ)|2 +

∣∣∣∣DF (ξ)

JF (ξ)
B̃(ξ)

∣∣∣∣2
)
|JF (ξ)|dξ,

by inserting the ansatz for the discrete particle distribution function (3.1) and the basis repre-
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sentation of the discrete fields (3.7a),(3.7b),

H̃h =

Np∑
p=1

mp

2
v2
p+

1

2

∫
ẽ>Λ̃1(ξ)>N(ξ)>N(ξ)Λ̃1(ξ)ẽ|JF (ξ)|dξ

+
1

2

∫
b̃>Λ̃2(ξ)>

DF (ξ)>

JF (ξ)

DF (ξ)

JF (ξ)
Λ̃2(ξ)b̃|JF (ξ)|dξ.

Afterwards, we use the definition of the mass matrices (3.6) to obtain the proposition.

Then, the derivative of the discrete Hamiltonian is computed as

DH̃h(ũ) = (0,WmV, M̃1ẽ, M̃2b̃)>.

Next, we consider the discretisation of the Poisson bracket, which is expressed as

{Fh(ũ),Gh(ũ)}d = DFh(ũ)>J(ũ)DGh(ũ), (4.4)

where J is the discrete Poisson matrix. In particular, setting Fh(ũ) = ũ and Gh(ũ) = H̃h, the

time evolution of the equations of motion is given by the discrete analogon of (2.3),

dũ

dt
= J(ũ)DH̃h. (4.5)

This should correspond to the equations of motion (4.1). Therefore, the Poisson matrix needs

to have the following form:

J =



0 N>(Ξ)W−1
m 0 0

−W−1
m N(Ξ) W q

m
N(Ξ)B̃(Ξ, b̃)N>(Ξ)W−1

m W q
m
N(Ξ)�̃1(Ξ)M̃−1

1 0

0 −M̃−1
1 �̃1(Ξ)>N>(Ξ)W q

m
0 M̃−1

1 C>

0 0 −CM̃−1
1 0


, (4.6)

where B̃(Ξ, b̃) is a 3Np × 3Np block matrix with generic block

ˆ̃Bh(ξp, t) =

N2∑
i=1


0 b̃i,3(t)Λ̃2,3

i (ξp) −b̃i,2(t)Λ̃2,2
i (ξp)

−b̃i,3(t)Λ̃2,3
i (ξp) 0 b̃i,1(t)Λ̃2,1

i (ξp)

b̃i,2(t)Λ̃2,2
i (ξp) −b̃i,1(t)Λ̃2,1

i (ξp) 0


. (4.7)
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4.2 Discrete Poisson Bracket

In this section, we show that, with this form of the Poisson matrix (4.6), (4.4) indeed defines

a discrete Poisson bracket.

Theorem 4.1. The differential operator {f, g}d = Df>JDg forms a discrete Poisson bracket.

Proof. The Poisson matrix J is obviously antisymmetric and the bilinearity and Leibniz’s rule

follow trivially from the form (4.4):

• Bilinearity: {c1f1 + c2f2, g}d = c1Df1JDg + c2Df2JDg = c1{f1, g}d + c2{f2, g}d,

• Leibniz’s rule: {f, gh}d = DfJD(gh) = DfJDgh+DfJDhg = {f, g}dh+ {f, h}dg.

So, it is only left to prove that the Poisson matrix satisfies the Jacobi identity.

The matrix J satisfies the Jacobi identity if and only if the following condition holds:

∑
l

(
∂Jij(ũ)

∂ul
Jlk(ũ) +

∂Jjk(ũ)

∂ul
Jli(ũ) +

∂Jki(ũ)

∂ul
Jll(ũ)

)
= 0 ∀i, j, k,

where i, j, k, l run from 1 to 6Np + 3N1 + 3N2. The Poisson matrix J has the following

block-structure:

J =



0 J12(Ξ) 0 0

J21(Ξ) J22(Ξ, b̃) J23(Ξ) 0

0 J32(Ξ) 0 J34

0 0 J43 0


.

Therefore, many combinations of indices are trivially zero. In particular, the matrix only

depends on Ξ and b̃ and hence the derivatives are only non-zero if l ∈ [1, 3Np] or l ∈
[6Np + 3N1 + 1, 6Np + 3N1 + 3N2]. Moreover, we need to find combinations of i, j, k (or per-

mutations of these) for which both Jij and Jl,k are non-vanishing. For l ∈ [1, 3Np], this only

leaves the options i, j, k ∈ [3Np+1, 6Np] and the option i ∈ [1, 3Np] and j, k ∈ [3Np+1, 6Np].

However, if l ∈ [6Np + 3N1 + 1, 6Np + 3N1 + 3N2], we only have i, j ∈ [3Np + 1, 6Np] and

k ∈ [6Np + 1, 6Np + 3N1]. Let us now consider each of these three non-trivial terms one-by-

one.
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Let first i ∈ [1, 3Np] and j, k ∈ [3Np + 1, 6Np]. Then, we obtain the condition

3Np∑
l=1

(
∂J12(Ξ)ij

∂Ξl
(J12)lk(Ξ) +

∂J21(Ξ)ki
∂Ξl

(J12)lj(Ξ)

)
= 0.

Inserting the expressions of the terms of the Poisson matrix, we get

3Np∑
l=1

(
∂(N>(Ξ)W−1

m )ij
∂Ξl

(N>(Ξ)W−1
m )lk +

∂(−W−1
m N(Ξ))ki
∂Ξl

(N>(Ξ)W−1
m )lj

)
.

Since N is a block diagonal matrix, the terms are only non-zero if all four indices belong to the

same particle. Additionally, we can leave out the Wm term because it is diagonal and has the

same entry for each component of one particle. Using the definition of the transpose inverse

Jacobian matrix, Nij =
∂Ξj
∂Xi

, we are left with the following expression:

3Np∑
l=1

(
∂

∂Ξl

∂Ξi
∂Xj

∂Ξl
∂Xk

− ∂

∂Ξl

∂Ξi
∂Xk

∂Ξl
∂Xj

)
=

∂2Ξi
∂Xk∂Xj

− ∂2Ξi
∂Xj∂Xk

= 0,

where we have used the symmetry of second derivatives by Schwarz’s theorem in the last

step.

Next, let i, j, k ∈ [3Np + 1, 6Np]. This yields the following expression to show:

3Np∑
l=1

(
∂J22(Ξ)ij

∂Ξl
J12(Ξ)lk +

∂J22(Ξ)jk
∂Ξl

J12(Ξ)li +
∂J22(Ξ)ki

∂Ξl
J12(Ξ)lj

)
= 0.

With the expressions of the Poisson matrix we obtain

3Np∑
l=1

[
∂(WqN(Ξ)B̃(Ξ, b̃)N>(Ξ))ij

∂Ξl
(N>(Ξ))lk

+
∂(WqN(Ξ)B̃(Ξ, b̃)N>(Ξ))jk

∂Ξl
(N>(Ξ))li

+
∂(WqN(Ξ)B̃(Ξ, b̃)N>(Ξ))ki

∂Ξl
(N>(Ξ))lj ].

Since Wm is a diagonal matrix, each term contains (W−1
m )ii(W−1

m )jj(W−1
m )kk, which therefore

is left out. Moreover, both N and B̃ are block-diagonal. So, the terms are only non-zero if

all four indices belong to the same particle. Let us denote the corresponding particle index

by p and introduce µ, ν, σ ∈ {1, 2, 3} as i − 3Np = 3(p − 1) + µ, j − 3Np = 3(p − 1) + ν,

k− 3Np = 3(p− 1) +σ. In this case, we also have (Wq)ii = (Wq)jj = (Wq)kk so that we can

leave out this matrix as well. Then, we use the definition of N> and the following identity for

the generic block B̃(ξp) of B̃:

B̂h = I×Bh = I× DF

JF
B̃h = N

(
(N>)× B̃h

)
= N ˆ̃BhN

>.
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This leaves us with

3∑
η=1

(
∂B̂h(xp)µν
∂ξp,η

∂ξp,η
∂xp,σ

+
∂B̂h(xp)νσ
∂ξp,η

∂ξp,η
∂xp,µ

+
∂B̂h(xp)σµ
∂ξp,η

∂ξp,η
∂xp,ν

)

=

(
∂B̂h(xp)µν
∂xp,σ

+
∂B̂h(xp)νσ
∂xp,µ

+
∂B̂h(xp)σµ
∂xp,ν

)
.

If µ = ν = σ, we get the diagonal terms that are zero and if two indices are the same, say

µ = ν, we get ∂B̂h(xp)µσ
∂xp,µ

+
∂B̂h(xp)σµ
∂xp,µ

= 0 due to the antisymmetry of B̂h. Last, if the three

indices are all different, we get

±

(
∂B̂h(xp)12

∂xp,3
+
∂B̂h(xp)23

∂xp,1
+
∂B̂h(xp)31

∂xp,2

)
= ±div Bh(xp).

Since div Bh = 0 is guaranteed over time by the construction of the discrete de Rham com-

plex when it is initially satisfied, this is also zero.

Finally, we consider the case that i, j ∈ [3Np + 1, 6Np], k ∈ [6Np + 1, 6Np + 3N1] yielding

3Np∑
l=1

(
∂J23(Ξ)ik

∂Ξl
J12(Ξ)lj +

∂J32(Ξ)kj
∂Ξl

J12(Ξ)li

)
+

3N2∑
A=1

(
∂J22(b̃)ij

∂b̃A
(J43)Ak

)
= 0.

With the expressions of the Poisson matrix, we obtain

3Np∑
l=1

(
∂(W q

m
(N�̃1)(Ξ)M̃−1

1 )ik

∂Ξl
(N>(Ξ)W−1

m )lj +
∂(−M̃−1

1 (N�̃1)>(Ξ)W q
m

)kj

∂Ξl
(N>(Ξ)W−1

m )li

)

+

3N2∑
A=1

(
∂(W q

m
N(Ξ)B̃(Ξ, b̃)N>(Ξ)W−1

m )ij

∂b̃A
(−CM̃−1

1 )Ak

)
.

We contract this with Wm for indices i, j, M̃1 on index k and W−1
q on index i,

3Np∑
l=1

∂((N�̃1)(Ξ))ik
∂Ξl

(N>(Ξ))lj −
∂((N�̃1)>(Ξ)Wq)kj

∂Ξl
(N>(Ξ)W−1

q )li

=

3N2∑
A=1

∂(N(Ξ)B̃(Ξ, b̃)N>(Ξ))ij

∂b̃A
(C)Ak.

This is possible as Wm,W−1
q and M̃1 are constant, symmetric and positive definite. Moreover,

we see again that i and j belong to the same particle due to the block-diagonal structure of

the terms. Therefore, we can also contract Wq on index j and W−1
q on index i. Let us introduce

again the corresponding particle index p and µ, ν ∈ {1, 2, 3} such that i−3Np = 3(p−1)+µ

and j−3Np = 3(p−1)+ν. For these index combinations, the sum over the particle positions
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breaks down to

3Np∑
l=1

(
∂((N�̃1)(Ξ))ik

∂Ξl
(N>(Ξ))lj −

∂((N�̃1)>(Ξ)Wq)kj
∂Ξl

(N>(Ξ)W−1
q )li

)

=
∂Λ1

k,µ(xp)

∂xp,ν
−
∂Λ1

k,ν(xp)

∂xp,µ

=



0 if µ = ν,

(curl Λ1(xp))σk if (µ, ν, σ) cyclic permutation of (1,2,3),

−(curl Λ1(xp))σk if (µ, ν, σ) non-cyclic permutation of (1,2,3),

where we used N�̃1 = �1 and the chain rule in the first equality. For the derivative with

respect to b̃, we use expression (4.7) for the block of B̃ belonging to particle p to find

3N2∑
A=1

∂ ˆ̃Bh(ξp)

∂b̃A
=

N2∑
A=1

ˆ̃ΛA(ξp),

where

ˆ̃ΛA(ξp) =


0 Λ̃2,3

A (ξp) −Λ̃2,2
A (ξp)

−Λ̃2,3
A (ξp) 0 Λ̃2,1

A (ξp)

Λ̃2,2
A (ξp) −Λ̃2,1

A (ξp) 0


.

It holds that Λ̂A = N ˆ̃ΛAN
> in the same way as ˆ̃Bh = N ˆ̃BhN

>. Hence, we get

3N2∑
A=1

∂(N(Ξ)B̃(Ξ, b̃)N>(Ξ))

∂b̃A
=

N2∑
A=1

�̂A(X).

Now, for i− 3Np = 3(p− 1) +µ and j− 3Np = 3(p− 1) + ν, we need the component (µ, ν),

which is zero if µ = ν and Λ2
A,σ if (µ, ν, σ) is a cyclic permutation of (1, 2, 3) (or the negative

if the permutation is non-cyclic). This yields

3N2∑
A=1

∂(N(Ξ)B̃(Ξ, b̃)N>(Ξ))ij

∂b̃A
(C)Ak =

N2∑
A=1

�̂A(X)ij(C)Ak

=



0 if µ = ν,

(Λ2(xp)C)σk if (µ, ν, σ) cyclic permutation of (1,2,3),

−(Λ2(xp)C)σk if (µ, ν, σ) non-cyclic permutation of (1,2,3).
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Hence, the term vanishes due to the de Rham sequence properties of the basis.

Since the conservation properties are tightly connected to the Poisson structure, preserving

the Jacobi identity with the numerical approximation results in numerical conservation laws.

4.3 Discrete Casimir Invariants

One class of functionals that are conserved over time in Hamiltonian systems are so-called

Casimir invariants, functionals that Poisson commute with all other functionals. In this section,

we consider the discrete Casimir invariants of our discrete Poisson structure (4.1), i.e. func-

tions C(ũ) of our discrete dynamic variables ũ = (Ξ,V, ẽ, b̃) that satisfy

{C,F} = 0⇔ J(ũ)DC(ũ) = 0 ∀F (ũ).

First, we derive a general form for such discrete Casimir invariants and second, we show that

the divergence constraints (4.2) are such discrete Casimir invariants and hence, conserved

over time in our discretisation.

Proposition 4.1. Let C(ũ) be a discrete Poisson invariant of the system (4.1) with Poisson

matrix (4.6). Then, there exist ē ∈ RN0 and b̄ ∈ RN3 such that

C(ũ) = ē>(�̃0(Ξ)>Wq1Np + G>M̃1ẽ) + b̄>Db̃. (4.8)

Proof. Let us consider the equation J(ũ)DC(ũ) = 0 line by line. The first line reads

N>(Ξ)W−1
m DVC = 0.

Therefore, C must be independent of V. Next, we consider the third line, already assuming

DVC = 0, which yields

M̃−1
1 C>Db̃C = 0.

Hence, it follows that Db̃C ∈ ker(C>). Due to the complex property of our de Rham se-

quence, there exist a b̄ ∈ RN3 such that Db̃C = D>b̄. Analogously, the fourth line,

CM̃−1
1 DẽC = 0, i.e. M̃−1

1 DẽC ∈ ker(C),

yields due to the complex property that there exists a ē ∈ RN0 such that DẽC = M̃1Gē.

Finally, the second line of the Poisson matrix yields the following expression for DΞC:

DΞC = Wq�̃
1(Ξ)M̃−1

1 DẽC = Wq�̃
1(Ξ)Gē = Wq grad �̃0(Ξ)ē, (4.9)

where we used again the complex property for the last equality. Putting everything together,
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we get the general form (4.8) of a discrete Casimir invariant.

As a consequence the divergence constraints (4.2) are conserved over time.

Corrolary 4.2. The discrete electric Gauss law, G>M̃1ẽ −Wq�̃0(Ξ)>1Np = 0, is conserved

over time if it is satisfied initially.

Proof. This follows immediately from Proposition 4.1 setting ē = 1N0 and b̄ = 0N3 , since this

leads to the discrete Casimir G>M̃1ẽ−Wq�̃0(Ξ)>1Np .

Remark 4.3. The discrete magnetic Gauss law, Db̃ = 0, follows from Proposition 4.1 for

ē = 0N0 and b̄ = 1N3 . It can be referred to as “pseudo-Casimir”, since it satisfies the

properties of a Casimir but it is a requirement for the Jacobi identity to hold.
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5 Lagrangian Formulation of the Vlasov–Maxwell
System in Curvilinear Coordinates

5.1 Equations of Motion

For this chapter, we consider the Lagrangian (2.5) for one species in discrete form,

Lfh =

∫
fh(x,v)[qAh(t,x) +mv] · ẋ− 1

2
mv2 − qΦh(t,x)] dx dv

+
1

2

∫
Ω

∣∣∣∣−∇Φh(t,x)− ∂Ah(t,x)

∂t

∣∣∣∣2 dx− 1

2

∫
Ω
|∇ ×Ah(t,x)|2 dx.

(5.1)

Theorem 5.1. The Lagrangian (5.1) under coordinate transformation leads to the same equa-

tions of motion as in (4.1) and (4.2).

Proof. We start by inserting the coordinate transformation, F (ξ) = x, into the discrete La-
grangian and use the transformation rule (2.16) for the integrals. The scalar potential Φ̃h is
described as a 0-form and the vector potential Ãh as a 1-form, for which we use the Piola
transform (2.14),

Lf̃h =

∫
f̃h(ξ,v)

[(
qN(ξ)Ãh(ξ, t) +mv

)
·DF (ξ)ξ̇ − 1

2
mv2 − qΦ̃h(ξ, t)

]
|JF (ξ)|dξ dv

+
1

2

∫ ∣∣∣∣∣−N(ξ)∇ξΦ̃h(ξ, t)−N(ξ)
∂Ãh(ξ, t)

∂t

∣∣∣∣∣
2

−
∣∣∣∣DF (ξ)

JF (ξ)
∇ξξ × Ãh(ξ, t)

∣∣∣∣2
 |JF (ξ)|dξ.

Next, we insert the discrete particle distribution function,

f̃h(ξ,v) :=

Np∑
p=1

ωp
δ(ξ − ξp)
|JF (ξ)|

δ(v − vp),

and obtain

L =

Np∑
p=1

ωp

[(
qpN(ξp)Ãh(ξp, t) +mpvp

)
·DF (ξp)ξ̇p −

1

2
mpv

2
p − qpΦ̃h(ξp, t)

]
+

1

2

∫ ∣∣∣−N(ξ)∇ξΦ̃h(ξ, t)−N(ξ) ˙̃Ah(ξ, t)
∣∣∣2 |JF (ξ)|dξ

+
1

2

∫
−
∣∣∣∣DF (ξ)

JF (ξ)
∇ξ × Ãh(ξ, t)

∣∣∣∣2 |JF (ξ)|dξ.

(5.2)
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Then, we use the finite element representation of the potentials in their respective basis,

Φ̃h = Λ̃0(ξ)φ̃(t), Ãh = Λ̃
1
(ξ)ã(t),

and the discrete derivative matrices from (3.4) to get

L =

Np∑
p=1

ωp

[(
qpN(ξp)Λ̃

1
(ξp)ã(t) +mpvp

)
·DF (ξp)ξ̇p −

1

2
mpv

2
p − qpΛ̃0(ξp)φ̃(t)

]
+

1

2

∫ ∣∣∣−N(ξ)Λ̃
1
(ξ)Gφ̃(t)−N(ξ)Λ̃

1
(ξ) ˙̃a(t)

∣∣∣2 |JF (ξ)| dξ

+
1

2

∫
−
∣∣∣∣DF (ξ)

JF (ξ)
Λ̃

2
(ξ)Cã(t)

∣∣∣∣2 |JF (ξ)|dξ.

Hence, the Lagrangian consists of three parts, L = Lp(ξp, ξ̇p,vp, φ̃, ã) +LE(φ̃, ˙̃a) +LB(ã).

The equations of motions are given by the Euler–Lagrange equations,

d

dt

∂L

∂q̇i
=
∂L

∂qi
,

for the particle positions in phase space and the degrees of freedom of the potentials, q =

(Ξ,V, φ̃, ã)>.

We start with the particle velocity vp for p = 1, .., Np,

∂L
∂vp

= ωpmpDF (ξp)ξ̇p − ωpmpvp,

∂L
∂v̇p

= 0.

Putting these two together yields

ξ̇p = N>(ξp)vp ∀p ∈ {1, ..., Np}. (5.3)

For the particle positions ξp, we use the Einstein notation for summation over double indices
to obtain

d

dt

∂L
∂ξ̇p

=
d

dt

(
ωp(qpN(ξp)Λ̃

1
(ξp)ã(t) +mpvp) ·DF (ξp)

)
= ωp

d

dt

(
qpΛ̃

1
(ξp)ã(t) +mpvp ·DF (ξp)

)
= ωp

(
qpΛ̃

1
(ξp)

˙̃a + qpDΛ̃
1
(ξp)ãξ̇p +mpDF

>(ξp)v̇p +mp
∂

∂ξp,i
v>p DF

>(ξp)ξ̇p,i

)
,

∂L
∂ξp

= ωp
(
qp(DΛ̃

1
(ξp)ã)>ξ̇p − qp∇ξΛ̃0(ξp)φ̃ +mp∇ξv

>
p DF (ξp)ξ̇p

)
.

Since ∂
∂ξp,i

v>p DF (ξp)ξ̇p,i = ∇ξv
>
p DF (ξp)ξ̇p, the Euler–Lagrange equation takes the follow-
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ing form:

qpΛ̃
1
(ξp) ˙̃a + qpDΛ̃

1
(ξp)ãξ̇p +mpDF

>(ξp)v̇p = qp(DΛ̃
1
(ξp)ã)>ξ̇p − qp∇ξΛ̃0(ξp)φ̃.

We solve for v̇p and insert the equation (5.3) for ξ̇p,

v̇p =
qp
mp

N(ξp)
(

(DΛ̃
1
(ξp)ã)>N>(ξp)vp −DΛ̃

1
(ξp)ãN

>(ξp)vp −∇ξΛ̃0(ξp)φ̃− Λ̃
1 ˙̃a
)
.

Furthermore, we use

(N>(ξp)v)×
(
∇ξ × Λ̃

1
(ξp)ã

)
=
(

(DΛ̃
1
(ξp)ã)> −DΛ̃

1
(ξp)ã

)
N>(ξp)v

and the discrete derivative matrices from (3.4),

v̇p =
qp
mp

N(ξp)
(

(N>(ξp)vp)×
(
∇ξ × Λ̃

1
(ξp)ã

)
− Λ̃

1
(ξp)Gφ̃− Λ̃

1
(ξp) ˙̃a)

)
⇔ v̇p =

qp
mp

N(ξp)
(

(N>(ξp)vp)×
(
Λ̃

2
(ξp)Cã

)
− Λ̃

1
(ξp)(Gφ̃+ ˙̃a)

)
.

Last, we introduce the electromagnetic fields, ẽ = − ˙̃a − Gφ̃, b̃ = Cã, to obtain the following

form of the Lorentz force:

v̇p =
qp
mp

N(ξp)
(
Λ̃

1
(ξp)ẽ(t) + (N>vp)× Λ̃

2
(ξp)b̃(t)

)
∀p ∈ {1, ..., Np}.

Next, we compute the Euler–Lagrange equations for ãJ , J = 1, ..., N1. We notice that only

LE depends on ˙̃aJ ,

d

dt

∂L
∂ ˙̃aJ

=
d

dt

∂LE
∂ ˙̃aJ

=
d

dt

∂

∂ ˙̃aJ

[
1

2

∫
(−N(ξ)Λ̃

1
(ξ)Gφ̃(t)−N(ξ)Λ̃

1
(ξ) ˙̃a(t))2 |JF (ξ)| dξ

]
= − d

dt

∫ (
N(ξ)Λ̃

1
J(ξ)

)
·N(ξ)Λ̃

1
(ξ)(−Gφ̃− ˙̃a) |JF (ξ)| dξ

= −
∫

(Λ̃
1
(ξ))>N>(ξ)N(ξ)Λ̃

1
J(ξ) ˙̃e |JF (ξ)|dξ ∀J ∈ {1, ..., N1}.

We write this in matrix form with the help of the mass matrix from (3.6),

d

dt

∂L
∂ ˙̃a

= −M̃1
˙̃e.
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Then, we see that only LB and Lp depend on ãJ . Let us start with Lp,

∂Lp
∂ãJ

=
∂

∂ãJ

[∑
p

ωp

((
qpN(ξp)Λ̃

1
(ξp)ã(t) +mpvp

)
·DF (ξp)ξ̇p −

1

2
mpv

2
p − qpΛ̃0(ξp)φ̃

)]
=
∑
p

ωpqpN(ξp)Λ̃
1
J(ξp) ·DF (ξp)ξ̇p =

∑
p

ωpqpΛ̃
1
J(ξp)

>N>(ξp)vp ∀J ∈ {1, ..., N1}.

From the particle part of the Lagrangian we got the discrete current. Now, we look at the

magnetic field part of the Lagrangian,

∂LB
∂ãJ

=
∂

∂ãJ

[
1

2

∫
−
∣∣∣∣DF (ξ)

JF (ξ)
Λ̃

2
(ξ)Cã(t)

∣∣∣∣2 |JF (ξ)|dξ

]

= −
∫ (

DF (ξ)

JF (ξ)
∇ξ × Λ̃

2
J(ξ)

)
· DF (ξ)

JF (ξ)
Λ̃

2
(ξ)Cã |JF (ξ)|dξ ∀J ∈ {1, ..., N1}

= −
∫

C>Λ̃
2
K(ξ)>

DF>(ξ)

JF (ξ)
· DF (ξ)

JF (ξ)
Λ̃

2
(ξ)b̃ |JF (ξ)| dξ ∀K ∈ {1, ..., N2}.

Introducing the mass matrix (3.6), this becomes in matrix notation

∂LB
∂ã

= −C>M̃2b̃.

Finally, we put the three parts together to get the weak form of Ampère’s law (3.8a),

M̃1
˙̃e = C>M̃2b̃−

∑
p

ωpqpΛ̃
1
(ξp)

>N>(ξp)vp.

Last, we look at the equations for φ̃I , I = 1, ..., N0. Since the Lagrangian has no dependency

on ˙̃
φI , the right-hand side of the Euler–Lagrange equations equals zero. Observing that LB

does not depend on φ̃, the left-hand side reduces to ∂Lp
∂φ̃I

+ ∂LE
∂φ̃I

. From Lp we obtain the
discrete charge,

∂Lp
∂φ̃I

=
∂

∂φ̃I

[∑
p

ωp

((
qpN(ξp)Λ̃

1
(ξp)ã(t) +mpvp

)
·DF (ξp)ξ̇p −

1

2
mpv

2
p − qpΛ̃0(ξp)φ̃(t)

)]
= −

∑
p

ωpqpΛ̃
0
I(ξp) ∀I ∈ {1, ..., N0},

whereas the equation for LE leads to

∂LE
∂φ̃I

=
∂

∂φ̃I

[
1

2

∫
(−N(ξ)Λ̃

1
(ξ)Gφ̃(t)−N(ξ)Λ̃

1
(ξ) ˙̃a(t))2 |JF (ξ)| dξ

]
= −

∫
(N(ξ)∇ξΛ̃0

I(ξ)) ·N(ξ)Λ̃
1
(ξ)(−Gφ̃− ˙̃a) |JF (ξ)| dξ ∀I ∈ {1, ..., N0}

= −
∫

G>Λ̃
1
J(ξ)>N>(ξ)N(ξ)Λ̃

1
(ξ) |JF (ξ)| dξẽ ∀J ∈ {1, ..., N1}.

We put this two parts together and use the mass matrix (3.6) to end up with the weak formu-

Geometric PIC Methods on Mapped Grids 44



lation of the electric Gauss law (3.8b),

G>M̃1e = −
∑
p

ωpqpΛ̃
0(ξp).

In conclusion, we obtained the following equations of motion from the Euler–Lagrange equa-

tions with the particle positions and velocities, Ξ = (ξ1, ..., ξNp)
>,V = (v1, ...,vNp)

>, and

the degrees of freedom of the electromagnetic fields, ẽ, b̃:

Ξ̇ = N>(Ξ)V,

V̇ = W q
m
N(Ξ)

(
Λ̃

1
ẽ + N>(Ξ)V × Λ̃

2
(Ξ)b̃

)
,

M̃1
˙̃e = C>M̃2b̃−Wq�̃

1(Ξ)>N>(Ξ)V,

G>M̃1ẽ = −Wq�̃
0(Ξ)>1Np .

Additionally, the relation between the potentials and the electromagnetic fields gives us the

missing two Maxwell equations

ẽ = −Gφ̃− ˙̃a⇒ −Cẽ = C ˙̃a =
˙̃
b,

b̃ = Cã⇒ Db̃ = 0.

5.2 Poisson Matrix

In this section, we introduce a generalised notation of the Lagrangian formalism by using the

general coordinate z = (Ξ,V, ẽ, ã)> with ẽ = − ˙̃a. Therefore, we use the temporal gauge

setting the scalar potential φ̃ to zero in order to simplify the scheme.

Then, the Lagrangian from (5.2) takes the following form:

L = γ(z) · ż− h(z)

with

γ(z) =
(
WqΛ̃

1(Ξ)ã + WmDF
>(Ξ)V, 0, 0,−M̃1ẽ

)>
,

h(z) =
1

2
Ṽ>WmṼ +

1

2
ẽ>M̃1ẽ +

1

2
(Cã)>M̃2Cã.

Definition 5.1. We define the Lagrangian matrix as Lij :=
∂γj
∂zi
− ∂γi

∂zj
.

Then, we review the following proposition taken from [10]:
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Proposition 5.2. The discrete Poisson matrix can be computed as the inverse of the La-

grangian matrix.

Proof. We take a look at the Euler–Lagrange equations, d
dt
∂L
∂ż = ∂L

∂z , and note that the

derivatives can be written in general form with Einstein summation as

d

dt

∂L(z)

∂żi
=

d

dt
γi(z) =

∂γi(z)

∂zj
żj ,

∂L(z)

∂zi
=
∂γj(z)

∂zi
żj −

∂h(z)

∂zi
.

So, the Euler–Lagrange equations are denoted by

∂γi
∂zj

żj =
∂γj
∂zi

żj −
∂h

∂zi
.

Solving this equation for ∂h
∂zi

leads to(
∂γj
∂zi
− ∂γi
∂zj

)
żj = Lij żj =

∂h

∂zi
.

With a Legendre transformation we realise that the Hamiltonian of this system is given by

Hh =
∂L
∂ż
· ż− L = γ(z) · ż− L = h(z).

Therefore, we write this equation as

L(z)
dz

dt
= DHh(z).

Assuming that the Lagrangian matrix is invertible, we see that its inverse is the discrete Pois-

son matrix as inverting the matrix leads to the same system as in (4.5),

dz

dt
= L−1(z)DHh.

For the Lagrangian (5.2), the Lagrangian matrix is a 4×4 block matrix with the following
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form:

L =



L1 −L2 0 −L3

L>2 0 0 0

0 0 0 −L4

L>3 0 L>4 0


. (5.4)

Hence, the inverse is computed as

L−1 =



0 L−>2 0 0

−L−1
2 L−1

2 L1L
−>
2 L−1

2 L3L
−1
4 0

0 −L−>4 L>3 L
−>
2 0 L−>4

0 0 −L−1
4 0


.

In this case, we have

L1 = WqB̃(Ξ, ã),

L2 = DF>(Ξ)Wm,

L3 = Wq�̃
1(Ξ),

L4 = M̃1,

which leads to an equivalent Poisson matrix to (4.6) considering b̃ = Cã,

J =



0 N>(Ξ)W−1
m 0 0

−W−1
m N(Ξ) W q

m
N(Ξ)B̃(Ξ, ã)N>(Ξ)W−1

m W q
m
N(Ξ)�̃1M̃−1

1 0

0 −M̃−1
1 (�̃1)>N>(Ξ)W q

m
0 M̃−1

1

0 0 −M̃−1
1 0


.

5.3 Logical Particle Velocity

Up to this point, we only considered a hybrid particle push as given in (4.1). Now, let us look

at the particle velocity in curvilinear coordinates. We note that there are two options for trans-

forming the particle velocity. Either we represent it in the covariant basis with contravariant
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components or vice versa,

v = eiv
i = DF (ξ)ṽ,

v = eivi = N(ξ)v̂.

Naturally, we have v = ẋ = DF (ξ)ξ̇ = eiẋ
i. So, if we choose the contravariant components

of the velocity, we get ξ̇ = ṽ whereas for the covariant components, we get ξ̇ = G−1
m (ξ)v̂.

For the contravariant velocity components ṽ, we obtain

z1 = Ξ, z2 = Ṽ, z3 = ẽ, z4 = ã,

γ1(Ξ, Ṽ, ã) = Wq�̃
1(Ξ)ã + WmGm(Ξ)Ṽ,

γ2 = γ3 = 0,

γ4(ẽ) = M̃1ẽ,

h(z) =
1

2
WmṼ>Gm(Ξ)Ṽ +

1

2
, ẽ>M̃1ẽ +

1

2
(Cã)>M̃2Cã.

For the covariant velocity components v̂, we get

z1 = Ξ, z2 = V̂, z3 = ẽ, z4 = ã,

γ1(Ξ, V̂, ã) = Wq�̃
1(Ξ)ã + WmV̂,

γ2 = γ3 = 0,

γ4(ẽ) = M̃1ẽ,

h(z) =
1

2
WmV̂>G−1

m (Ξ)V̂p +
1

2
ẽ>M̃1ẽ +

1

2
ã>C>M̃2Cã.

We divide the Lagrange matrix in the block matrices LIJ = ∂γJ
∂zI
− ∂γI

∂zJ
, I = 1, ..4, J = 1, .., 4.

Since γ1 does not depend on ẽ and γ2 and γ3 equal zero, we get L13 = L31 = L22 = L23 =

L32 = L33 = 0 and since γ4 only depends on ẽ, we obtain L24 = L42 = L44 = 0. Hence, the

only non-zero blocks are L11,L12,L21,L14,L41,L34 and L43. Let us begin with the parts that

are identical for both choices,

L14 = −L>41 = −∂γ1

∂ã
= −Wq�̃

1(Ξ),

L43 = −L>34 = −∂γ4

∂ẽ
= −M̃1.

Now, we look at the parts that are different. For the velocity ṽ, we get

L12 = −L>21 = −∂γ1

∂Ṽ
= −WmGm(Ξ)
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whereas for v̂, we obtain

L12 = −L>21 = −∂γ1

∂V̂
= −Wm.

Since term L11 is more complicated to compute, we look at it componentwise for each parti-

cle,

(L11)ij ξ̇j =

(
∂γ1,j

∂ξi
− ∂γ1,i

∂ξj

)
ξ̇j , i, j = 1, ..., 3Np.

For the contravariant components of the velocity, ṽ, we obtain(
∂γ1,j

∂ξi
− ∂γ1,i

∂ξj

)
ξ̇j = q

(
∂ξiÃj − ∂ξj Ãi

)
ξ̇j +m

(
∂ξi(Gm(ξ)ṽ)j − ∂ξj (Gm(ξ)ṽ)i

)
ξ̇j

= q
(
ξ̇ × (∇ξ × Ã)

)
i
+m

(
ξ̇ × (∇ξ ×Gmṽ)

)
i
.

Next, we introduce the matrix B̃(Ξ, ã) via

B̃(Ξ, ã)Ξ̇ =
(
Ξ̇× (�̃2(Ξ)Cã)

)
=
(
Ξ̇× (∇Ξ × �̃1(Ξ)ã)

)
.

Using Ξ̇ = Ṽ, this leads to

L11 = WqB̃(Ξ, ã) + Wm

(
∇ΞṼ>Gm(Ξ)− Ṽj∂ΞjGm(Ξ)

)
.

On the other hand, for the covariant components of the velocity, v̂, we get(
∂γ1,j

∂ξi
− ∂γ1,i

∂ξj

)
ξ̇j = q

(
∂ξiÃj − ∂ξj Ãi

)
ξ̇j = q

(
ξ̇ × (∇ξ × Ã)

)
i
.

We can write this part of the Lagrangian matrix as

L11 = WqB̃(Ξ, ã).

Now, we can build the Lagrangian matrix for ṽ and v̂ using the same structure as in (5.4).

Geometric PIC Methods on Mapped Grids 49



For ṽ, we get

L1 = WqB̃(Ξ, ã) + Wm

(
∇ΞṼ>Gm − Ṽj∂ΞjGm

)
,

L2 = G(Ξ)Wm,

L3 = Wq�̃
1(Ξ),

L4 = M̃1,

which leads to the Lagrangian matrix,

L =



WqB̃(Ξ, ã) + Wm∇ΞṼ>Gm −Wm∂ΞjGmṼj −Gm(Ξ)Wm 0 −Wq�̃1(Ξ)

WmGm(Ξ) 0 0 0

0 0 0 −M̃1

�̃1(Ξ)>Wq 0 M̃1 0


.

Then, we compute the Poisson matrix as

J =



0 G−1
m W−1

m 0 0

−W−1
m G−1

m G−1
m

(
W q

m
B̃(Ξ, ã) +∇ΞṼ>Gm − ∂ΞjGmṼj

)
G−1
m W−1

m W q
m
G−1
m �̃1M̃−1

1 0

0 −M̃−1
1 (�̃1)>G−1

m W q
m

0 M̃−1
1

0 0 −M̃−1
1 0


.

With the derivative of the Hamiltonian,

DH =

(
1

2
∇ΞṼ>WmGm(Ξ)Ṽ,WmGmṼ, M̃1ẽ,C

>M̃2Cã

)>
,

the equations of motion are given by

Ξ̇ =Ṽ,

˙̃V =G−1
m (Ξ)

(
W q

m
B̃(Ξ, ã) +

1

2
∇Ξ(Ṽ>Gm(Ξ))− Ṽj∂ΞjGMm(Ξ)

)
Ṽ

+G−1
m (Ξ)W q

m
�̃1(Ξ)ẽ,

˙̃e =− M̃−1
1 �̃1(Ξ)>WqṼ + M̃−1C>M̃2Cã,

C ˙̃a =− Cẽ.

(5.5)
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For v̂, we obtain

L1 = WqB̃(Ξ, ã),

L2 = Wm,

L3 = Wq�̃
1(Ξ),

L4 = M̃1.

So, the Lagrangian matrix has the following form:

L =



WqB̃(Ξ, ã) −Wm 0 −Wq�̃1(Ξ)

Wm 0 0 0

0 0 0 −M̃1

�̃1(Ξ)>Wq 0 M̃1 0


and the Poisson matrix is computed as the inverse of the Lagrangian matrix,

J =



0 W−1
m 0 0

−W−1
m W q

m
B̃(Ξ, ã)W−1

m W q
m
�̃1M̃−1

1 0

0 −M̃−1
1 (�̃1)>W q

m
0 M̃−1

1

0 0 −M̃−1
1 0


.

With the derivative of the Hamiltonian,

DH =

(
1

2
∇ΞV̂>WmG

−1
m (Ξ)V̂,WmG

−1
m V̂, M̃1ẽ,C

>M̃2Cã

)>
,

we obtain the following equations of motion:

Ξ̇ = G−1
m (Ξ)V̂,

˙̂
V = −1

2
∇ΞV̂>G−1

m (Ξ)V̂ + W q
m
B̃(Ξ, ã)G−1

m (Ξ)V̂ + W q
m
�̃1ẽ,

˙̃e = −M̃−1
1 (�̃1)>WqG

−1
m (Ξ)V̂ + M̃−1C>M̃2Cã,

C ˙̃a = −Cẽ.

(5.6)

Remark 5.1. When we compare the particle characteristics for the hybrid ansatz and the

two representations in logical coordinates, we see that for a non-orthogonal mapping the

equations of motion are non-linear. Only for the representation of the velocity in contravariant
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coordinates Ṽ, the position update can be solved explicitly, since

Ξ̇ = Ṽ = G−1
m (Ξ)V̂ = N>(Ξ)V.

However, for the velocity in logical coordinates, we get an additional part compared to the
hybrid case because the Hamiltonian is dependent on Ξ,

V̇ = W q
m
N(Ξ)

(
�̃1(Ξ)ẽ + (N>(Ξ)V)× �̃2(Ξ)b̃

)
,

˙̃V = W q
m
G−1
m (Ξ)

(
�̃1(Ξ)ẽ + Ṽ × �̃2(Ξ)b̃

)
+ G−1

m (Ξ)

(
1

2
∇Ξ(Ṽ>Gm(Ξ)Ṽ)− Ṽj∂ΞjGm(Ξ)Ṽ

)
,

˙̂
V = W q

m

(
�̃1(Ξ)ẽ + (G−1

m (Ξ)V̂)× �̃2(Ξ)b̃
)
− 1

2
∇ΞV̂>G−1

m (Ξ)V̂.

Generally, this leads to a non-linear velocity update with a quadratic velocity. Therefore, we

have chosen the hybrid particle push for our implementation.
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6 Time Discretisation of the Equations of Motion
For the GEMPIC method on Cartesian grids, two approaches for structure-preserving time

propagation schemes that exploit the form (4.5) have been proposed: In [56], the discrete

Hamiltonian (4.3) is split into five parts H̃h,i, i = 1, . . . , 5 so that each part of the equations
˙̃u = {ũ, H̃h,i} yields explicit equations of motion and the discretisation preserves Gauss’

law. This splitting was first proposed in [45, 97]. A second ansatz is to decouple system

(4.5) with an antisymmetric splitting of the Poisson matrix J. Then, the resulting subsystems

can be solved by a discrete gradient method yielding an energy-preserving time stepping

scheme. In [55], two schemes are constructed this way: a semi-implicit scheme that does not

preserve the electric Gauss law and a fully implicit scheme that preserves Gauss’ law. The

discrete gradient methods readily extend to the curvilinear case as we will show in Sections

6.2 and 6.3. However, for a general coordinate transformation an explicit Hamiltonian splitting

(HS) can no longer be constructed, since the coordinate directions do not decouple for non-

orthogonal mappings. Instead, we will construct two semi-explicit splittings that preserve

Gauss’ law in Section 6.1.

6.1 Charge Conserving Splittings

6.1.1 GEMPIC Hamiltonian Splitting

In this section, we consider an HS as in [56]; however, we only split into three parts,

H̃h = H̃p + H̃E + H̃B

with

H̃p =
1

2
V>WmV, H̃E =

1

2
ẽ>M̃1ẽ, H̃B =

1

2
b̃>M̃2b̃.

Thus, we obtain the three subsystems

u̇ = {u, H̃p}, u̇ = {u, H̃E}, u̇ = {u, H̃B}.

The subsystems for H̃E and H̃B are solved exactly and then, evaluated at the discrete time

steps tn = n∆t. Let us denote ũ(tn) =: ũn.
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For H̃E , the equations of motion are

Ξ̇ = 0,

V̇ = W q
m
N(Ξ)�̃1(Ξ)ẽ,

˙̃e = 0,

˙̃
b = −Cẽ

(6.1)

and the time discrete version reads

Ξn+1 = Ξn,

Vn+1 = Vn + ∆tW q
m
N(Ξn)�̃1(Ξn)ẽn,

ẽn+1 = ẽn,

b̃n+1 = b̃n −∆tCẽn.

For H̃B , we get
Ξ̇ = 0,

V̇ = 0,

M̃1
˙̃e = C>M̃2b̃,

˙̃
b = 0,

(6.2)

which leads to the discretisation

Ξn+1 = Ξn,

Vn+1 = Vn,

M̃1ẽ
n+1 = M̃1ẽ

n + ∆tC>M̃2b̃
n,

b̃n+1 = b̃n.

For H̃p, we obtain the following equations:

Ξ̇ = N>(Ξ)V,

V̇ = W q
m
N(Ξ)B̃(Ξ, b̃)N>(Ξ)V,

M̃1
˙̃e = −�̃1(Ξ)>N>(Ξ)WqV,

˙̃
b = 0.

(6.3)
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Here, we get the analytic solution

Ξ(∆t) = Ξ(0) +

∫ ∆t

0
N>(Ξ(t))V(t) dt,

V(∆t) = V(0) + W q
m

∫ ∆t

0
N(Ξ(t))B̃(Ξ(t), b̃(0))N>(Ξ(t))V(t) dt,

M̃1ẽ(∆t) = M̃1ẽ(0)−
∫ ∆t

0
�̃1(Ξ(t))>N>(Ξ(t))WqV(t) dt,

b̃(∆t) = b̃(0).

This system is implicit in the particle coordinates (Ξ,V) but decouples between different

particles. It is not possible to solve the resulting 6 × 6 systems explicitly. Therefore, the

kinetic energy part was further split into the three directions in [56]. Such a splitting yields

explicit equations only if the Jacobian matrix of the coordinate transformation is diagonal and

constant. Since this is generally not true, we keep the kinetic part together.

In order to solve the non-linearity caused by the dependence of N on Ξ, we need to introduce

an approximation that conserves the Poisson structure. In [55], it has been shown that a

Gauss-conserving discretisation can be obtained using the same constant velocity for both

the position and the current update. We solve the particle equations with the symplectic

midpoint method in a fixpoint iteration using a predictor-corrector scheme. Then, the current

for the update of the electric field is computed with a line integral for �̃1(Ξ(t)) and the velocity

from the position update. This results in the following system:

Ξn+1 =Ξn + ∆tN>
(
Ξ
)
V, (6.4a)

Vn+1 =Vn + ∆tW q
m
N
(
Ξ
)
B̃
(
Ξ, b̃n

)
N>
(
Ξ
)
V,

M̃1ẽ
n+1 =M̃1ẽ

n −
∫ tn+1

tn
�̃1(Ξ(τ))> dτWqN

> (Ξ)V, (6.4b)

b̃n+1 =b̃n,

where Ξ = Ξn+1+Ξn

2 ,V = Vn+1+Vn

2 and Ξ(τ) = (tn+1−τ)Ξn+(τ−tn)Ξn+1

∆t .

Proposition 6.1. For the proposed splitting, Gauss’ law is preserved over time if it is satisfied

initially and (6.3) is discretised as in (6.4).

Proof. First, we identify the two splitting steps in which the electric field is changed. In H̃B ,

the update of the electric field (6.2) multiplied by G> stays constant due to the discrete com-

plex property (3.5). For H̃p, we multiply (6.4b) with G>, plug in the position formula (6.4a)
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and use that dΞ
dτ = Ξn+1−Ξn

∆t is constant in time,

G>M̃1ẽ
n+1 − G>M̃1ẽ

n = −
∫ tn+1

tn
G>�̃1(Ξ(τ))> dτWq

Ξn+1 −Ξn

∆t

⇔ G>M̃1ẽ
n+1 − G>M̃1ẽ

n = −
∫ tn+1

tn
WqG

>�̃1(Ξ(τ))>
dξ(τ)

dτ
dτ.

Last, we use the chain rule, d�̃0(Ξ(τ))>

dτ 1Np = G>�̃1(Ξ(τ))> dξ(τ)
dτ , and obtain

G>M̃1ẽ
n+1 − G>M̃1ẽ

n = −
∫ tn+1

tn
Wq

d�̃0(Ξ(τ))>

dτ
1Np dτ

⇔ G>M̃1ẽ
n+1 − G>M̃1ẽ

n = −
(
Wq�̃

0(Ξn+1)>1Np −Wq�̃
0(Ξn)>1Np

)
.

Note that the source-free part of Maxwell’s equations is solved in separate splitting steps,

which causes a restriction on the time step (cf. [55, Appendix A.2]. Using the stability condition

for ∆t
∆x on Cartesian grids with the minimal cell size of the mapped grid provides a rough

estimate for the maximal time step. For the simulation results of this Hamiltonian splitting we

use the acronym HS.

In [54], the original explicit Hamiltonian splitting into five parts from [45] was constructed for

curvilinear coordinates with the velocity represented in covariant coordinates v̂ (5.6). How-

ever, this works only for orthogonal mappings, where the partial derivatives of the diagonal

entries of the inverse metric equal zero, i.e. ∂ξig
ii = 0, i = 1, 2, 3. In this case, the particle

update is componentwise independent, meaning ξ̇i does not depend on ξi and ˙̂vi does not

depend on v̂i for i = 1, 2, 3, which yields the following splitting:

H̃h = H̃p1 + H̃p2 + H̃p3 + H̃E + H̃B

with H̃pi = 1
2mpv̂ig

iiv̂i, i = 1, 2, 3, H̃E = 1
2 ẽ>M̃1ẽ, H̃B = 1

2C
>ã>M̃2Cã.

Then, with the notation from [27], gii = (Gm)−1
ii , the five operators are given by

H̃p1 :

ξ̇1 = g11(ξ2, ξ3)v̂1,

˙̂v2 = − q

m
g11(ξ2, ξ3)v̂1Λ̃2

3b̃3 −
1

2
∂ξ2g

11(ξ2, ξ3)v̂1,

˙̂v3 =
q

m
g11(ξ2, ξ3)v̂1Λ̃2

2b̃2 −
1

2
∂ξ3g

11(ξ2, ξ3)v̂2
1,

˙̃e1 = −qM̃−1
11 Λ̃1

1(ξ)>g11(ξ2, ξ3)v̂2
1.
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H̃p2 :

ξ̇2 = g22(ξ1, ξ3)v̂2,

˙̂v1 =
q

m
g22(ξ1, ξ3)v̂2Λ̃2

3b̃3 −
1

2
∂ξ1g

22(ξ1, ξ3)v̂2
2,

˙̂v3 = − q

m
g22(ξ1, ξ3)Λ̃2

1b̃1 −
1

2
∂ξ3g

22(ξ1, ξ3)v̂2
2,

˙̃e2 = −qM̃−1
12 Λ̃1

2(ξ)>g22(ξ1, ξ3)v̂2.

H̃p3 :

ξ̇3 = g33(ξ1, ξ2)v̂3,

˙̂v1 = − q

m
g33(ξ1, ξ2)v̂3Λ̃2

2b̃2 −
1

2
∂ξ1g

33(ξ1, ξ2)v̂2
3,

˙̂v2 =
q

m
g33(ξ1, ξ2)v̂3Λ̃2

1b̃1 −
1

2
∂ξ2g

33(ξ1, ξ2)v̂2
3,

˙̃e3 = −qM̃−1
13 Λ̃1

3(ξ)>g33(ξ1, ξ2)v̂3.

H̃E :

˙̂v =
q

m
Λ̃

1
ẽ,

˙̃
b = −Cẽ.

H̃B :

˙̃e = M̃−1
1 C>M̃2b̃.

Remark 6.2. Examples for orthogonal mappings that satisfy the additional condition are cylin-

drical and spherical coordinates,

x = (ξ1 cos(ξ2), ξ1 sin(ξ2), ξ3)>,x = (ξ1 sin(ξ2) cos(ξ3), ξ1 sin(ξ2) sin(ξ3), ξ1 cos(ξ2))>.

Examples for mappings that are orthogonal but do not satisfy the additional condition are the

cylindrical mapping with a square root of the radial direction,

x = (
√
ξ1 cos(ξ2),

√
ξ1 sin(ξ2), ξ3)>,

or an elliptical mapping,

x = (R cosh(ξ1) cos(ξ2), R sinh(ξ1) sin(ξ2), ξ3)>.

Other mappings such as the sinusoidally distorted mapping,

x = (ξ1 + α sin(ξ1) sin(ξ2), ξ2 + α sin(ξ1) sin(ξ2), ξ3)>,

are not even orthogonal so that the metric has non-diagonal entries. This prevents an explicit

time discretisation in form of a Hamiltonian splitting. In summary, we see that the explicit
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Hamiltonian splitting can only be constructed for a limited number of mappings. Therefore,

on the route towards realistic tokamak geometry, we focus on the semi-implicit time stepping

methods based on a hybrid particle push.

6.1.2 Alternative Splitting

The following splitting in three parts is taken from the paper of Crouseilles, Einkemmer &

Faou [21], where another bracket is used, which does not satisfy the Jacobi identity. The dis-

cretisation of this bracket yields a different matrix, which together with a Hamiltonian splitting

results in slightly different subsystems. In this splitting, the first subsystem takes the same

form as (6.1) in the GEMPIC splitting but the second subsystem is given as

Ξ̇ = 0,

V̇ = W q
m
N(Ξ)B̃(Ξ, b̃)N>(Ξ)V,

M̃1
˙̃e = C>M̃2b̃,

˙̃
b = 0.

Thus, only the update of the electric field can be solved exactly whereas the velocity equation
must be solved implicitly because the velocity directions cannot be decoupled. For the dis-
cretisation, the symplectic midpoint method is used. However, as this is only a 3×3 system
particle-wise, the direct computation of the inverse of

(
I− ∆t

2 W q
m
N(Ξn)B̃(Ξn, b̃n)N>(Ξn)

)
is most suitable. This leads to the following discrete equations:

Ξn+1 = Ξn,(
I− ∆t

2
W q

m
N(Ξn)B̃(Ξn, b̃n)N>(Ξn)

)
Vn+1 =

(
I +

∆t

2
W q

m
N(Ξn)B̃(Ξn, b̃n)N>(Ξn)

)
Vn,

M̃1ẽ
n+1 = M̃1ẽ

n + ∆tC>M̃2b̃
n,

b̃n+1 = b̃n.
(6.5)

For the third subsystem, the equations of motion read

Ξ̇ = N>(Ξ)V,

V̇ = 0,

M̃1
˙̃e = −�̃1(Ξ)>N>(Ξ)WqV,

˙̃
b = 0.

As in the GEMPIC splitting (6.4a),(6.4b), we solve the position update iteratively with the

symplectic midpoint method in a predictor-corrector scheme. Then, we compute the current
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with the same velocity and an exact line integral for �̃1(Ξ(t)),

Ξn+1 = Ξn + ∆tN>
(

Ξn+1 + Ξn

2

)
Vn,

Vn+1 = Vn,

M̃1ẽ
n = M̃1ẽ

n −
∫ tn+1

tn
�̃1(Ξ(τ))> dτWqN

>
(

Ξn+1 + Ξn

2

)
Vn,

b̃n+1 = b̃n.

(6.6)

Proposition 6.3. For the proposed splitting, Gauss’ law is preserved over time if it is satisfied

initially and the third system is discretised as in (6.6).

Proof. It applies the same proof of Proposition 6.1 with Ξn+1−Ξn

∆t = N>
(

Ξn+1+Ξn

2

)
Vn.

Although this splitting is not derived from our Poisson structure, it still conserves Gauss’ law

and is quite fast as we do not need to deal with the non-linear dependency of Ξ and V in the

H̃p step. Again the curl-part of Maxwell’s equations is split so that the scheme is subject to a

time step restriction. For the simulation results of this method, we use the acronym CEF.

6.2 Energy Conserving Antisymmetric Splitting

Next, we consider energy conserving time discretisations constructed as discrete gradients

[75]. First, we revise the idea of the discrete gradient method following [67].

Theorem 6.1. Let us consider a system of ordinary differential equations of the form

˙̃u = J (ũ)DH̃(ũ)

with a skew-symmetric matrix J . Then, the discrete gradient discretisation of the form

ũn+1 − ũn

∆t
= J̄ (ũn+1, ũn)DH̃h(ũn+1, ũn)

is energy conserving if J̄ (ũn+1, ũn) is skew-symmetric.

Proof. The energy variation in one time step is defined as

H̃n+1
h − H̃nh = DH̃h(ũn+1, ũn)>

(
ũn+1 − ũn

)
.
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Now, we insert the discretisation from above and use the skew-symmetry of J̄ (ũn+1, ũn),

H̃n+1
h − H̃nh = DH̃h(ũn+1, ũn)>

(
∆tJ̄ (ũn+1, ũn)DH̃h(ũn+1, ũn)

)
= −∆tDH̃h(ũn+1, ũn)>J̄ (ũn+1, ũn)DH̃h(ũn+1, ũn) = 0.

Several ways to construct discrete gradients have been proposed in the literature [53, 36, 15].

However, in our case the Hamiltonian is quadratic—and DH̃h linear—so that all methods

simplify to the second order midpoint rule. Hence, this leaves us with the choice of how to

discretise J . Moreover, we follow [55] and split the discrete Poisson matrix J, keeping its

skew-symmetry in each subsystem. So, we obtain the following four subsystems:

system 1: Ξ̇ = N>(Ξ)V,

system 2: V̇ = W q
m
N(Ξ)B̃(Ξ, b̃)N>(Ξ)V,

system 3: ˙̃
b = −Cẽ, M̃1

˙̃e = C>M̃2b̃,

system 4: V̇ = W q
m
N(Ξ)�̃1(Ξ)ẽ, M̃1

˙̃e = −�̃1(Ξ)>N>(Ξ)WqV.

(6.7)

In the first system, the element of the Poisson matrix N(Ξ)> is changing over time and needs

to be approximated. We use a Crank-Nicolson method to maintain second order accuracy

and solve the system iteratively with a predictor-corrector scheme,

Ξn+1 = Ξn + ∆t
N>(Ξn+1) + N>(Ξn)

2
Vn.

Note that the system is block-diagonal and hence, only couples the position of one particle at

a time.

In the other three systems, the Poisson matrix is constant over time and we use the midpoint

rule to discretise the DH̃h part. Then, the equation for the second system reads

Vn+1 −Vn

∆t
= W q

m
NB̃N>

Vn+1 + Vn

2

⇔
(
I− ∆t

2
W q

m
NB̃N>

)
Vn+1 =

(
I +

∆t

2
W q

m
NB̃N>

)
Vn,

(6.8)

where for every particle the inverse of the 3×3 matrix on the left-hand side can be exactly

calculated.
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With the same method, system 3 becomes

M̃1
ẽn+1 − ẽn

∆t
= C>M̃2

b̃n+1 + b̃n

2
,

b̃n+1 − b̃n

∆t
= −C ẽn+1 + ẽn

2
.

We write this in matrix form as M̃1 −∆t
2 C>M̃2

∆t
2 C I


ẽn+1

b̃n+1

 =

 M̃1
∆t
2 C>M̃2

−∆t
2 C I


ẽn

b̃n


and decouple the equation with the Schur complement S = M̃1 + ∆t2

4 C>M̃2C,

 M̃1 −∆t
2 C>M̃2

∆t
2 C I


−1

=

 I 0

−∆t
2 C I


S
−1 0

0 I


I ∆t

2 C>M2

0 I

 .

So, we get

ẽn+1 = S−1

(
(M̃1 −

∆t2

4
C>M̃2C)ẽn + ∆tC>M̃2b̃

n

)
,

b̃n+1 = b̃n − ∆t

2
C(ẽn+1 + ẽn).

(6.9)

Finally, system 4 is discretised as

Vn+1 −Vn

∆t
= W q

m
N�̃1 ẽn+1 + ẽn

2
,

M̃1
ẽn+1 − ẽn

∆t
= −(�̃1)>N>Wq

Vn+1 + Vn

2

and we use again the Schur complement to decouple the matrix form of the system, I −∆t
2 W q

m
N�̃1

∆t
2 (�̃1)>N>Wq M̃1


Vn+1

ẽn+1

 =

 I ∆t
2 W q

m
N�̃1

−∆t
2 (�̃1)>N>Wq M̃1


Vn

ẽn

 .

Then, the Schur complement has the following form: S = M̃1 + ∆t2

4 WqW q
m

(�̃1)>N>N�̃1,

which leads to the inverse I −∆t
2 W q

m
N�̃1

∆t
2 (�̃1)>N>Wq M̃1


−1

=

I ∆t
2 W q

m
N�̃1

0 I


I 0

0 S−1


 I 0

−∆t
2 (�̃1)>N>Wq I

 .
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Hence, we obtain the decoupled equations

ẽn+1 = S−1

(
(M̃1 −

∆t2

4
WqW q

m
M?)ẽn −∆t(�̃1)>N>WqV

n

)
,

Vn+1 = Vn +
∆t

2
W q

m
N�̃1(ẽn+1 + ẽn),

where we introduced the particle mass matrix, M? := (�̃1)>N>N�̃1, which is calculated com-
ponentwise for one particle as

(M?)ij :=


Λ̃1,1
i 0 0

0 Λ̃1,2
i 0

0 0 Λ̃1,3
i


G−1
m


Λ̃1,1
j 0 0

0 Λ̃1,2
j 0

0 0 Λ̃1,3
j


=


Λ̃1,1
i g11Λ̃1,1

j Λ̃1,1
i g12Λ̃1,2

j Λ̃1,1
i g13Λ̃1,3

j

Λ̃1,2
i g21Λ̃1,1

j Λ̃1,2
i g22Λ̃1,2

j Λ̃1,2
i g23Λ̃1,3

j

Λ̃1,3
i g31Λ̃1,1

j Λ̃1,3
i g32Λ̃1,2

j Λ̃1,3
i g33Λ̃1,3

j


for 1 ≤ i, j ≤ N1.

When we look at the charge conservation of the system, we notice that the conservation of

Gauss’ law gets lost if the current is not computed in the same splitting step as the position

update, which is pointed out in [55]. The simulation results of this energy conserving discrete

gradient method are labeled as DisGradE.

6.3 Energy and Charge Conserving Antisymmetric Splitting

In this section, we change the splitting and solve the systems 1 and 4 from the antisymmetric

splitting (6.7) together. Our goal is to devise a discrete gradient method that also preserves

Gauss’ law. The three subsystems are given as

system 1: Ξ̇ = N(Ξ)>V, V̇ = W q
m
N(Ξ)�̃1(Ξ)ẽ, M̃1

˙̃e = −�̃1(Ξ)>N(Ξ)>WqV,

system 2: V̇ = W q
m
N(Ξ)B̃(Ξ, b̃)N(Ξ)>V,

system 3: ˙̃
b = −Cẽ, M̃1

˙̃e = C>M̃2b̃.

For the first system, we have to construct a discretisation of the partial Poisson matrix that is

antisymmetric to maintain the energy conservation. Moreover, we are aiming at an approxi-

mation that preserves Gauss’ law. Both goals are achieved with the following discretisation:

Ξn+1 −Ξn

∆t
=

N>(Ξn+1) + N>(Ξn)

2

Vn+1 + Vn

2
,

Vn+1 −Vn

∆t
= W q

m

N(Ξn+1) + N(Ξn)

2

1

∆t

∫ tn+1

tn
�̃1(Ξ(τ)) dτ

ẽn+1 + ẽn

2
, (6.10a)

M̃1ẽ
n+1 − M̃1ẽ

n

∆t
= − 1

∆t

∫ tn+1

tn
�̃1(Ξ(τ))> dτ

N>(Ξn+1) + N>(Ξn)

2
Wq

Vn+1 + Vn

2
,

(6.10b)

b̃n+1 = b̃n.
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Since the system (6.10) is implicit, it has to be solved iteratively: First, we loop over the

particle position and velocity and second, update the electric field with the computed current.

Last, the whole system is looped over in a fixpoint iteration for the electric field.

The last two systems are still solved as in (6.8) and (6.9). Let us take a look at the conserva-

tion properties of this splitting.

Proposition 6.1. The splitting defined by (6.10), (6.8) and (6.9) conserves the discrete en-

ergy.

Proof. Since system 2 and 3 are still discretised with the discrete gradient method, they
trivially conserve the discrete energy. Therefore, we only have to check the discretisation of
the first system (6.10). The variation of the discrete energy in this splitting step is given by

H̃n+1
h − H̃nh =

1

2

(
(Vn+1)>WmVn+1 + (ẽn+1)>M̃1ẽ

n+1
)
− 1

2

(
(Vn)>WmVn + (ẽn)>M̃1ẽ

n
)

=
1

2

(
(Vn+1)>WmVn+1 − (Vn)>WmVn + (ẽn+1)>M̃1ẽ

n+1 − (ẽn)>M̃1ẽ
n
)
.

We multiply (6.10a) with (Vn+1 + Vn)>Wm to find after some reordering,

(Vn+1)>WmVn+1 − (Vn)>WmVn =(∫ tn+1

tn
�̃1(Ξ(τ))> dτ

N>(Ξn+1) + N>(Ξn)

2
Wq

Vn+1 + Vn

2

)>
(ẽn+1 + ẽn).

Using (6.10b) to express the right-hand side yields

(Vn+1)>WmVn+1 − (Vn)>WWmVn = −
(
M̃1ẽ

n+1 − M̃1ẽ
n
)>

(ẽn+1 + ẽn)

= −
(

(ẽn+1)>M̃1ẽ
n+1 − (ẽn)>M̃1ẽ

n
)
.

Proposition 6.2. The splitting defined by (6.10), (6.8) and (6.9) preserves Gauss’ law over

time if it is satisfied initially and system 1 is discretised as in (6.10).

Proof. This is proven in the same way as Proposition 6.1 with a constant term Ξn+1−Ξn

∆t =
N>(Ξn+1)+N>(Ξn)

2
Vn+1+Vn

2 in this step.

The simulation results of this charge and energy conserving discrete gradient method are

labeled as DisGradEC.
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Let us compare the building blocks of the DisGradEC method to the HS in terms of complex-

ity. Usually, the number of particles is much larger than the number of degrees of freedom

for the fields so that the most expensive step is the evaluation of the line integral for the

current deposition (cf. [55, Sec. 5.2.2.]). However, for DisGradEC, this evaluation needs to

be repeated in each non-linear iteration. Moreover, for the source-free Maxwell equations,

the computation of the Schur complement for DisGradEC is more expensive than the explicit

solution for HS.

The DisGradE scheme treats the source-free Maxwell equations in the same way as Dis-

GradEC. Computationally, the most expensive part is the assembly of the particle mass ma-

trix. Both the evaluation of the line integral and the particle mass matrix depend to the sixth

power on the order of the basis functions (cf. the discussion in [55]). In the case of DisGradEC

however, the constant depends both on the number of cells crossed by the particles in the

line integral and on the number of non-linear iterations. Therefore, a general comparison is

not possible.
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7 Particle and Field Initialisation

7.1 Particle Sampling

Proposition 7.1. When we sample uniformly in logical coordinates, the weights of the particle

distribution function are scaled with the Jacobian determinant.

Proof. The particle weights are defined as ωp = f̃
g̃ , where f̃ is the distribution function and g̃

the particle density function from which we sample. For the particle distribution function we

assume a small perturbation of an equilibrium function f0,

f(x,v, t = 0) =f̃(ξ,v, t = 0) = (1 + α cos(k · F (ξ))) f0(v),

f0(v) =
1

(
√

2πvTx)3
exp

(
−1

2

(v − v0)2

v2
Tx

)
, ξ ∈ [0, 1)3 = Ω̃,v ∈ R3.

When sampling uniformly in x, the particle density function g(x,v) is characterised via∫
R3

∫
Ω
g(x,v) dx dv = 1.

So, we choose

g̃(v) = g(v) =
1

vol(Ω)

1

(
√

2πvTx)3
exp

(
−1

2

(v − v0)2

v2
Tx

)
.

However, when we sample directly in ξ, the normalisation is transformed to∫
R3

∫
Ω
g(x,v) dx dv =

∫
R3

∫
Ω̃
g̃(ξ,v)|JF (ξ)|dξ dv = 1.

This leads to the choice

g̃(ξ,v) =
1

vol(Ω̃)|JF (ξ)|
1

(
√

2πvTx)3
exp

(
−1

2

(v − v0)2

v2
Tx

)
.

Since we defined the logical domain as Ω̃ = [0, 1]3, we obtain vol(Ω̃) = 1 and the weights

are computed as

ωp =
f̃(ξp,vp)

g̃(ξp,vp)
=
(
1 + α cos(k · F (ξp))

)
|JF (ξp)|.

Remark 7.2. If we sample uniformly in the physical domain, the inverse of the coordinate

transformation is needed to compute the logical coordinates. Therefore, this sampling strat-
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egy is only feasible if the inverse transformation can be computed analytically.

7.2 Poisson’s Equation

For the initial electric field we solve Poisson’s equation:

GT M̃1Gφ̃ = ρ̃,

ẽ = −Gφ̃.

When the kernel of the Poisson matrix is not equal to the zero vector, we have to compute the

whole nullspace in order to use a linear solver. The condition for the nullspace is given by∫
E(x) dx = ~0⇔

∫
N(ξ)Ẽ(ξ)JF (ξ) dξ = ~0⇔

∫
N(ξ)Λ̃

1
(ξ)JF (ξ) dξẽ = ~0.

The initial charge for the weak formulation of Poisson’s equation is accumulated as ρ̃ =

ρ̃electron + ρ̃ion, where

ρ̃e =

∫
Ω̃
ρ̃(ξ) · Λ̃0(ξ)|JF (ξ)| dξ = qe

∑
p

ωpΛ̃
0(ξp).

In this case, we use a constant ion background represented by

f̃i ≡ 1⇒ ρ̃i =

∫
Ω̃

Λ̃0(ξ)|JF (ξ)|dξ.

The integral is solved with Gauss quadrature points ξq and quadrature weights ωq as

ρ̃i = qi
∑
q

ωq∆ξΛ̃
0(ξq)|JF (ξq)|.
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Figure 1 Convergence rates for Sobol and random numbers.

To check the convergence of our sampling strategy in different domains, we sample a constant
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particle distribution function in ξ and measure the value of ρ̃electron + ρ̃ion in the L2 norm

for different numbers Np of particles. We use Sobol and random numbers on a Cartesian,

distorted and cylindrical grid and obtain the expected convergence rate of 1
Np

for Sobol and
1√
Np

for random numbers [5]. In Figure 1, we see the L2 error for the different grids together

with the expected convergence rate for Sobol and random numbers.
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8 Numerical Experiments
We have implemented the 3D3V propagators in curvilinear coordinates as part of the SeLaLib

library [1] with a finite element solver based on compatible splines (see [4, Appendix A] for

some details on the implementation). In this section, we reproduce two numerical test cases

from [56] in a three dimensional setting to validate the code. Additionally, we perform an

actual three dimensional (3D) simulation and compare the conservation properties of the

different schemes. All numerical simulations are performed for electrons with a neutralising

ion background. The particles are loaded with Sobol numbers and sampled uniformly in

logical configuration space. In the absence of a coordinate transformation, the mass matrices

are block-diagonal and can thus be inverted in Fourier space (cf. [55]). With a coordinate

transformation, this is no longer the case. Therefore, we use a conjugate gradient solver that

we precondition with the Fourier solver for the Cartesian case to invert the mass matrices.

The idea to use a direct solver on the Cartesian mesh as preconditioner for an iterative solver

on the curvilinear mesh was borrowed from [29]. Note that this yields a solution to machine

accuracy for the Cartesian case. Therefore, we switch off the preconditioner in this case

to show comparable accuracy in the conservation properties, which depends on the solver

tolerance.

8.1 Coordinate Transformation

We use two periodic coordinate transformations for our test cases, an orthogonal non-uniform

transformation and a sinusoidal transformation as defined in [19], which leads to a distorted

grid. The transformations are defined by the following functions:

Forth(ξ) =


L (ξ1 + ε sin(2πξ1))

L (ξ2 + ε sin(2πξ2))

Lξ3


, Fdist(ξ) =


L (ξ1 + ε sin(2πξ1) sin(2πξ2))

L (ξ2 + ε sin(2πξ1) sin(2πξ2))

Lξ3


.

We choose ε < 1
2π so that the inverse Jacobian matrix does not become singular. Figure 2

visualises the (x, y)-part of the corresponding grids for the distortion parameter ε = 0.1.

(a) Orthogonal non-uniform grid (b) Distorted grid

Figure 2 Orthogonal and distorted grid for distortion parameter ε = 0.1.
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8.2 Strong Landau Damping

First, we consider an electrostatic test case so that the equations of motion (4.1) simplify to

Ξ̇ = NT (Ξ)V,

V̇ = W q
m
N(Ξ)�̃1(Ξ)ẽ,

M1
˙̃e = −�̃1(Ξ)>N>(Ξ)WqV, (8.1a)

G>M̃1ẽ = ρ̃. (8.1b)

In the electrostatic case, the magnetic field is set to zero and Faraday’s law is excluded. The

electric field at initial time, E(x, t = 0), is calculated using Gauss’ law (8.1b) with the scalar

potential ẽ = −Gφ̃ and the propagation of the electric field is determined by Ampère’s law

(8.1a).

The initial distribution for the electrostatic Landau damping is given by

fe(x,v, t = 0) = (1 + α cos(k · x))
1

(2π)
3
2 v3
Tx

exp

(
−1

2

(
v2

v2
Tx

))
,x ∈ [0, L]3,v ∈ R3.

We choose the parameter as vTx = 1,k = (0.5, 0, 0)>, α = 0.5 and L = 2π
0.5 . For the

numerical resolution, we take 3,200,000 particles, 16×16×2 grid cells, spline degrees (3, 3, 1)

and a time step of ∆t = 0.05 and for the iterative solver a tolerance of 10−13. The tolerance

for the non-linear iteration in DisGradEC is set to 10−12, which leads on average to 6 iterations

per time step on the Cartesian grid and 13 on the distorted grid. Note that we normalised to

dimensionless quantities in terms of the electron Debye length λDe and the plasma frequency

ωpe.

These parameters embed the 1D2V setup from [56] in the 3D3V phase space.

0 10 20 30 40 50
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CEF
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DisGradEC

Damping rate

Growth rate

Figure 3 Landau damping on distorted grid: First component of the electric field energy for various integrators with time step
∆t = 0.05 and distortion parameter ε = 0.1 for the coordinate transformation.
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Figure 3 shows the first component of the electric energy for various integrators on the dis-

torted grid together with a 1D reference run on the Cartesian grid. All propagators yield

similar results, which match the damping and growth rate obtained from the 1D test case in

[56], where the damping rate is given as γ1 = −0.286 and the growth rate as γ2 = +0.087.

Table 1 Landau damping: Maximum error in Gauss’ law and in the total energy until time 500 for the semi-explicit and implicit
time integrators with time step ∆t = 0.05 and distortion parameter ε = 0.1 for the coordinate transformation.

Gauss Energy

Method Cartesian Distorted Cartesian Distorted

HS 3.1 · 10−13 5.3 · 10−11 1.0 · 10−4 1.0 · 10−4

CEF 2.9 · 10−13 5.3 · 10−11 1.0 · 10−4 1.0 · 10−4

DisGradE 7.4 · 10−3 2.9 · 10−2 3.1 · 10−14 2.5 · 10−14

DisGradEC 2.5 · 10−13 5.4 · 10−11 1.4 · 10−13 1.1 · 10−12

From Table 1 it becomes obvious that the constructed conservation properties are satisfied

numerically.

8.3 Weibel Instability

As an electromagnetic test case, we study the Weibel instability [93] as simulated in [56, 21]

with the 3D3V initial distribution

fe(x,v, t = 0) = (1 + α cos(k · x))
1

(2π)
3
2 vTxv2

Ty

exp

(
−1

2

(
v2
x

v2
Tx

+
v2
y + v2

z

v2
Ty

))
,

where x ∈ [0, L]3,v ∈ R3. The magnetic field is initially set to B(x, t = 0) = β cos(k · x)êz

and E(x, t = 0) is calculated from Poisson’s equation. We choose the parameters as vTx =
0.02√

2
, vTy =

√
12vTx,k = (1.25, 0, 0)>, α = 0, L = 2π

1.25 and β = 10−3. For the numerical

resolution, we take 800,000 particles, 16×16×2 grid cells, spline degrees (3, 3, 1) and a time

step of ∆t = 0.05 and for the iterative solver a tolerance of 10−13. The tolerance for the

non-linear iteration in DisGradEC is set to 10−12. Note that we normalised to dimensionless

quantities in terms of the electron Debye length λDe and the electron plasma frequency ωpe.

These parameters are comparable to the 1D2V settings in [56]. However, β is chosen one

magnitude larger so that the initial growth of the magnetic field is higher than the effects

caused by the particle noise at the chosen resolution.

Remark 8.1. For the 1D2V Weibel instability, we look only at the waves given by Dyy = 0 in
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the dispersion relation (18.14). In dimensionless coordinates, this takes the following form:

D(ω, k) = ω2 − k2 − 1 +

(
vTy
vTx

)2

[1 + ζZ (ζ)] , ζ =
ω√

2kvTx
.

From the dispersion relation the growth rate of the magnetic field is computed as γ =

0.02784.
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Figure 4 Weibel instability: Magnetic field energy for various integrators with time step ∆t = 0.05 and distortion parameter
ε = 0.1 for the coordinate transformation.

Figure 4a shows the magnetic field energy as a function of time for different propagators on

the orthogonal non-uniform grid and Figure 4b shows the same quantity on the distorted grid.

In both cases, a 1D reference run with an explicit HS on Cartesian coordinates is given for

comparison using the 1D Weibel distribution from [56] with β = 10−3.

Next, we set the wave vector to k = (1.25, 1.25, 1.25)> and α = 0.1 so that we have a

perturbation in every x-component. For the numerical resolution, we take 1,600,000 particles,

8 grid cells in every direction and spline degrees (3, 3, 3). The other parameters remain

unchanged.

We run the HS scheme with different distortion parameters ε of the transformation. Therefore,

we take ε = 0 as a reference and go from ε = 0.01 up to ε = 0.1 to study the effect of the

coordinate transformation. The time step is taken as ∆t = 0.01 to obey the CFL-condition for

all choices of ε. The initial distribution is sampled in logical coordinates. Hence, the number

of particles per cell is approximately constant. The larger the distortion of the grid, the larger

cells appear and parts of the domain become more and more underresolved and the quality of

the solution decreases. Note that the considered coordinate transformations are artificial with

the goal to validate our method. Problem-specific coordinate systems and sampling methods

should be designed such that they yield a resolution that is as homogeneous as possible.

In Figure 5a, we see that for decreasing ε the magnetic field growth rate converges to the

scaling case with ε = 0, which coincides with the run without transformation.
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Figure 5 Weibel instability on distorted grid: Third component of the magnetic field energy and energy error for HS with time
step ∆t = 0.01 and different values of the distortion parameter ε for the coordinate transformation.

Last, we look at the conservation properties of our propagators. Therefore, the time step is

set to ∆t = 0.05 and the distortion parameter to ε = 0.05 so that all methods run stably.

For the fully implicit step in DisGradEC we need on average 4 iterations per time step on the

Cartesian grid, 7 on the orthogonal non-uniform grid and 8 on the distorted grid.

Table 2 Weibel instability: Maximum error in Gauss’ law and in the total energy until time 500 for the semi-explicit and implicit
time integrators with time step ∆t = 0.05 and distortion parameter ε = 0.05 for the coordinate transformation.

Method Cartesian Orthogonal Distorted

Gauss

HS 1.9 · 10−11 5.9 · 10−10 6.8 · 10−10

CEF 1.9 · 10−11 5.8 · 10−10 6.9 · 10−10

DisGradE 1.1 · 10−6 1.7 · 10−6 1.6 · 10−6

DisGradEC 3.8 · 10−13 6.4 · 10−10 8.6 · 10−10

Energy

HS 1.1 · 10−4 1.8 · 10−4 1.6 · 10−3

CEF 1.1 · 10−4 1.8 · 10−4 1.6 · 10−3

DisGradE 3.2 · 10−10 1.4 · 10−10 4.2 · 10−10

DisGradEC 6.0 · 10−12 1.6 · 10−10 4.2 · 10−10

In Table 2, we see the difference between the energy and the charge conserving methods. As

expected, the discrete gradient methods (DisGradE, DisGradEC) conserve the total energy

whereas for the HS scheme the energy is not conserved but the error is bounded as can be

seen in Figure 5b. As proven in Chapter 4, the charge conserving discrete gradient method

(DisGradEC) and the semi-explicit schemes (HS, CEF) conserve Gauss’ law. Note that all

conservation properties are up to the tolerance of the solver times the condition number of

the mass matrices.
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8.4 Jean’s Instability

8.4.1 Introduction Stellar Dynamics

It is also possible to simulate the dynamics of a stellar system in the GEMPIC framework.

Therefore, we consider the dimensionless Vlasov–Ampère system with f representing the

distribution function for the stellar particles and E representing the gravitational energy. The

sign in Ampère’s law is flipped compared to the plasma physics case because two masses

attract each other while charged particles of the same species repel each other,

∂tf + v · ∇xf + E · ∇vf = 0,

Ė = J− Jmean (8.2)

with J = q
∫

vf dv. To check that we still have a Hamiltonian system, we consider the total

energy

H =
m

2

∫
v2f(x,v) dv dx− 1

2

∫
‖E‖2 dx,

which takes the following form at the semi-discrete level:

Hh =
1

2
V>WmV − 1

2
e>M1e.

Then, its derivative is computed as DHh = (0,WmV,−M1e)> and the discrete Poisson

matrix can be written as

J =


0 W−1

m 0

−W−1
m 0 −W q

m
Λ1(X)M−1

1

0 M−1
1 Λ1(X)>W q

m
0


.

Thus, the equations of motion are given by

u̇ = JDHh,
Ẋ

V̇

ė


=


V

W q
m

Λ1(X)e

M−1
1 Λ1(X)>WqV


.

We discretise in time with the explicit Hamiltonian splitting (HS) scheme and the energy con-

serving discrete gradient method (DisGradE).
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8.4.2 Single Species

As a first 1D test case we consider the Jeans instability from [35, 18] and adapt the setup to

our 1D2V GEMPIC code. The initial distribution is given by

f0 = (1 + α cos(kx)
1√

2πvTx
exp

(
−
v2
x + v2

y

2v2
Tx

)
, x ∈

[
0,
L

k

]
,v ∈ R2

with α = 0.01, vTx = 1 and L = 2π. The first component of the gravitational field, E1, is

computed initially via
∂2
xΦ = ρ− 1,

E1 = −∂xΦ,
(8.3)

where ρ = q
∫
f dv. E2 is set to zero initially and stays zero, since J2 is zero as well. For

the weak Jeans instability, we consider the wavenumber k = 0.8 and simulate with N = 64

grid cells, cubic splines, Np = 1,000,000 particles and a time step of ∆t = 0.05 until time

T = 100. The strong instability is computed with the wavenumber k = 0.1.

An average current arises from this instability in the Ampère equation, which causes the sim-

ulation to become unstable. In the case of a non-zero average current, the Vlasov–Ampère

and Vlasov–Poisson system are no longer equivalent. Therefore, we subtract Jmean in (8.2)

forcing the average current to stay zero over time in order to guarantee a stable simulation.

The dispersion relation for the stellar Vlasov–Ampère system is taken from [7],

D(k, ω) =
k2

k2
J

− [1 + ξZ(ξ)] with ξ =
ω√

2vTxk
.

In the dimensionless case, the Jeans wavenumber is set to kJ = 1 so that the Jeans length

λJ = 2π
kJ

becomes 2π. From the 1D dispersion relation, we compute a growth rate of 0.304 for

the weak Jeans instability and a growth rate of 0.985 for the strong Jeans instability. In Figure
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(a) Weak Jeans instability
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(b) Strong Jeans instability

Figure 6 Jeans instability: First component of the gravitational energy for various integrators with time step ∆t = 0.05 with
analytical growth rates.
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6b, we see the gravitational energy together with the analytical growth rates for the weak

and the strong Jeans instabilities. In both cases, the ascent of the electric field matches

the analytical rate. In Table 3, the Maximum error in Gauss’ law and in the total energy are

Table 3 Jeans instability: Maximum error in Gauss’ law and in the total energy until time 100 for the semi-explicit and implicit
time integrators with time step ∆t = 0.05.

Gauss Energy

Method Weak Strong Weak Strong

HS 1.4 · 10−15 5.2 · 10−14 2.4 · 10−5 2.9 · 10−2

DisGradE 1.2 · 10−3 4.5 · 10−2 5.9 · 10−14 1.3 · 10−11

displayed for the explicit HS scheme and the implicit DisGradE method. As expected, the

DisGradE method conserves the total energy whereas the HS scheme conserves Gauss’

law.

8.4.3 Two Species

Next, we simulate a multispecies test case for hot and cold stellar particles with the same

mass. Then, the initial distributions are given by

f01 = δ(1 + α cos(kx)
1√

2πvTx1

exp

(
−
v2
x + v2

y

2v2
Tx1

)
,

f02 = (1− δ)(1 + α cos(kx)
1√

2πvTx2

exp

(
−
v2
x + v2

y

2v2
Tx2

)
, x ∈

[
0,
L

k

]
,v ∈ R2

with α = 0.01, vTx1 = 1, vTx2 = 0.1, δ ∈ [0, 1] and L = 2π. The first component of the
gravitational energy is initially computed by Poisson’s equation (8.3) and E2 is initially zero
and stays zero over time. For the weak Jeans instability, we take again a wavenumber of
k = 0.8. We simulate with N = 64 grid cells, cubic splines, Np = 1,000,000 particles and
a time step of ∆t = 0.05 until time T = 45. We simulate for δ = 0.25, 0.5, 0.75, 0.9, 1.0 and
the dispersion relation is taken again from [7] but adapted to our multispecies simulation with
dimensionless coordinates,

D(ω) = 1− 1

k2

[
δ (1 + ξ1Z (ξ1)) +

v2
Tx1

v2
Tx2

(1− δ) (1 + ξ2Z (ξ2))

]
with ξ1 = ω

k
√

2vTx1
, ξ2 = ω

k
√

2vTx2
.

Table 4 displays the analytical growth rates computed from the dispersion relation together

with the simulated growth rates, which were fitted to the curves of the gravitational energy, for

different values of δ. In Figure 7, we see the first component of the gravitational energy for

the different values of δ together with the analytical growth rates. As expected, the growth of

the gravitational energy matches the analytical rates. Figures 8-11 show the time evolution of
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Table 4 Weak Jeans instability: Analytical and simulated growth rates for different values of δ.

δ Analytical growth rate Simulated growth rate

0.25 0.83 0.83

0.50 0.73 0.72

0.75 0.60 0.60

0.90 0.47 0.46

1.00 0.30 0.30
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Figure 7 Two species weak Jeans instability: First component of the gravitational energy for HS with time step ∆t = 0.05 for
different values of δ together with the analytical growth rates.

the phase space distribution (X,V1) of the hot particles colored in red and the cold particles

colored in blue until T = 35.
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Figure 8 Two species weak Jeans instability with δ = 0.75 at time T = 0, 5.
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Figure 9 Two species weak Jeans instability with δ = 0.75 at time T = 10, 15.
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Figure 10 Two species weak Jeans instability with δ = 0.75 at time T = 20, 25.
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Figure 11 Two species weak Jeans instability with δ = 0.75 at time T = 30, 35.
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Part II

Boundary Conditions
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9 Field Boundary Conditions
In the first part, we have introduced a general coordinate transformation into the structure-

preserving GEMPIC framework. However, we assumed periodic boundary conditions, which

also limits the coordinate transformation to periodic mappings. In Part II, we extend our

system to real boundary conditions enabling the use of radial grids such as a cylindrical or an

elliptical grid.

9.1 Weak Formulation of Maxwell’s Equations

In the weak formulation of Maxwell’s equations in (2.8a) and (2.8c), we have assumed that the

boundary terms vanish, which is the case for the chosen periodic boundary conditions. Now,

we take a closer look at these natural boundary conditions. Using the cross product form

of the Divergence theorem (A.7), Ampère’s law tested with ϕ ∈ H(curl,Ω) can be rewritten

as

∂

∂t

∫
Ω
ϕ ·E dx =

∫
Ω
∇x ×ϕ ·B dx +

∫
∂Ω

(B×ϕ) · n dσ −
∫

Ω
ϕ · J dx.

For Gauss’ law tested with ψ ∈ H1(Ω) we take the scalar form of the divergence theorem

(A.6) to obtain ∫
∂Ω
ψ(E · n) dσ −

∫
Ω
∇ψ ·E dx =

∫
Ω
ψρdx.

Generally, we have to decide between the following two kinds of boundary conditions:

• Dirichlet boundary: ϕ|∂Ω = f with a known function f at the boundary ∂Ω,

• Neumann boundary: (∇ϕ · n)|∂Ω = f with a known function f at the boundary ∂Ω.

For realistic Tokamak geometry, we consider some kind of cylindrical or spherical coordinates

with one radial direction and two periodic angles. So without loss of generality, we consider

real boundary conditions in the first direction and periodic ones in the other two.

Then, the normal vector to the boundary in logical coordinates is given as ñ = ±(1, 0, 0)>.

Since the normal vector transforms with the covariant Piola transform (2.14), it takes the

following form in physical coordinates:

n =
N(ξ)ñ

‖N(ξ)ñ‖
= ± n1

‖n1‖
.

In the following, we only show the terms for ñ = (1, 0, 0)> because in the other case the signs

are just flipped. To compute the boundary part of Ampère’s law tested with ϕ in curvilinear
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coordinates, we insert the Piola transforms for the electromagnetic fields and the test function,

(2.14) and (2.15), and use dσ = ‖t2 × t3‖dσ̃,∫
∂Ω̃

(
DF

JF
B̃×Nϕ̃

)
·N ñ

‖t2 × t3‖
‖N ñ‖

dσ̃.

We note that the scalar triple product permutes,
(
DF
JF

B̃×Nϕ̃
)
·N ñ = (Nϕ̃×N ñ) · DFJF B̃,

and insert the notation from Definition 2.1 for the columns of the Jacobian matrix to facilitate

the computation of the vector operations,∫
∂Ω̃

((n1ϕ̃1 + n2ϕ̃2 + n3ϕ̃3)× n1) · (t1B̃1 + t2B̃2 + t3B̃3)
‖t2 × t3‖
JF ‖n1‖

dσ̃.

Then, we make use of the vector identities from Proposition 2.2 to obtain∫
∂Ω̃

(
−ϕ̃2

t3

JF
+ ϕ̃3

t2

JF

)
· (t1B̃1 + t2B̃2 + t3B̃3) dσ̃. (9.1)

Using the same formulas for the boundary part of Gauss’ law gives us∫
∂Ω̃
ψ̃

(
NẼ · n1

‖n1‖

)
‖t2 × t3‖dσ̃ =

∫
∂Ω̃
ψ̃
(
n1Ẽ1 + n2Ẽ2 + n3Ẽ3

)
· n1JF dσ̃. (9.2)

9.2 Poynting Flux

We also have to account for the field energy that crosses the boundary. In Poynting’s theorem

[74] this dynamic is described.

Theorem 9.1. The energy balance of the field energy, HEB , is given by

dHEB
dt

= −
∫
∂Ω

(E×B) · n dσ −
∫

Ω
J ·E dx. (9.3)

Proof. The total field energy is defined as HEB = 1
2

∫
Ω E · E + B · B dx and so the time

derivative of this term gives us

d

dt
HEB =

∫
Ω

Ḃ ·B + Ė ·E dx.

We insert Ampère’s and Faraday’s laws,

Ė = ∇×B− J,

Ḃ = −∇×E,
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to see ∫
Ω

Ḃ ·B + Ė ·E dx =

∫
Ω
−(∇×E) ·B + (∇×B− J) ·E dx

=−
∫

Ω
∇ · (E×B) dx−

∫
Ω

J ·E dx.

Then, the result follows from the divergence theorem (A.7).

Remark 9.2. The term
∫
∂Ω(E×B) ·n dσ, which gives the field energy crossing the boundary,

is called Poynting’s flux.

We transform Poynting’s flux to curvilinear coordinates by inserting the Piola transforms for

the electromagnetic fields (2.14) and (2.15),∫
∂Ω̃

(
NẼ× DF

JF
B̃

)
· n1

‖n1‖
‖t2 × t3‖ dσ̃.

Next, we use the permutation property of the scalar triple product and write the equation with

the notation from Definition 2.1 for the columns of the Jacobian matrix and its inverse,∫
∂Ω̃

(
n1 × (n1Ẽ1 + n2Ẽ2 + n3Ẽ3)

)
· (t1B̃1 + t2B̃2 + t3B̃3)

‖t2 × t3‖
JF ‖n1‖

dσ̃.

Last, we use the vector identities from Proposition 2.2 to obtain∫
∂Ω̃

(
t3

JF
Ẽ2 −

t2

JF
Ẽ3

)
· (t1B̃1 + t2B̃2 + t3B̃3) dσ̃. (9.4)

9.3 Spline Boundary Conditions

In this section, we review the construction of spline basis functions with real boundary condi-

tions. First, we review general properties of the basis splines given in [24], which we will use

further on.

Let us start with the knot vector T = {tj}1−p≤j≤N+p+1, which is a non-decreasing sequence

of points. In our case, we have chosen the equidistant grid points ξj of our Nx cells for the

knot sequence so that ξj+1 − ξj = ∆ξ.

In Part I, we have worked with basis splines that are defined on a periodic knot sequence,

which has the following form:

T = {ξN−p+1, ..., ξN , ξ1, ξ2, ..., ξN−1, ξN , ξ1, ..., ξp+1}.

From this knot sequence the N splines of degree p are defined according to the following

formula:
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Definition 9.1. The j-th basis spline is computed via the recursion formula

Spj (ξ) =
ξ − tj
tj+p − tj

Sp−1
j (ξ) +

tj+p+1 − ξ
tj+p+1 − tj+1

Sp−1
j+1 (x), (9.5)

where the spline of degree zero is defined as S0
j (x) = χ[tj ,tj+1]. Furthermore, the derivative

of the j-th spline is calculated as

dSpj (ξ)

dξ
= p

(
Sp−1
j (ξ)

tj+p − tj
−

Sp−1
j+1 (ξ)

tj+p+1 − tj+1

)
. (9.6)

Here, the spline values are collected in a vector as Sp(ξ) = (Sp1(ξ), ..., SpN (ξ)).

Now, for non-periodic boundary conditions, we consider clamped splines. Therefore, we

duplicate the outer grid points p times so that they have multiplicity p + 1. Note that without

assuming periodicity we have N + 1 grid points for N cells. Then, the knot sequence is given

by

T = {ξ1, ..., ξ1, ξ2, ..., ξN , ξN+1, ..., ξN+1}.

From this knot sequence the N + p splines of degree p are defined again via the recursion

formula (9.5), where for dimensionality reasons we need to consider an additional first and

last zero spline of degree p− 1.

In our convention, we denote the spline starting in the first cell as Sp1 . Accordingly, the first

spline and last spline of degree p are computed via (9.5) as

Sp1−p(ξ) =
t2 − ξ

t2 − t2−p
Sp−1

2−p(ξ) =
ξ2 − ξ

∆ξ
Sp−1

2−p(ξ),

SpN (ξ) =
ξ − tN

tN+p − tN
Sp−1
N (ξ) =

ξ − ξN
∆ξ

Sp−1
N (ξ).

Since the other splines equal zero at the boundary, we obtain

Spj (0) =

 1 when j = 1− p,

0 else ,
Spj (1) =

 1 when j = N,

0 else .

This leads to the following evaluation of the product of two splines at the boundary:

[Sp−1
i Spj ]10 = Sp−1

i (1)Spj (1)− Sp−1
i (0)Spj (0) =


−1 when i = 1− (p− 1) ∧ j = 1− p,

1 when i = j = N,

0 else .
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We collect the spline values in a vector as Sp? (ξ) = (Sp1−p(ξ), ..., S
p
N (ξ)) and write the spline

derivative in matrix vector form with the help of the discrete 1D derivative matrix D? defined

via d
dξS

p
? (ξ) = Sp−1

? (ξ)D?. The entries of the matrix are computed using the formula for the

spline derivative (9.6),

dSp1−p(ξ)

dξ
= − p

∆ξ
Sp−1

2−p(ξ),

dSpj−p(ξ)

dξ
=

p

∆ξ

(
Sp−1
j−p (ξ)

j − 1
−
Sp−1
j+1−p(ξ)

j

)
for 2 ≤ j ≤ p,

dSpj (ξ)

dξ
=

1

∆ξ

(
Sp−1
j (ξ)− Sp−1

j+1 (ξ)
)

for 1 ≤ j ≤ N − p,

dSpN−j(ξ)

dξ
=

p

∆ξ

(
Sp−1
N−j(ξ)

j + 1
−
Sp−1
N−j+1(ξ)

j

)
for 1 ≤ j ≤ p− 1,

dSpN (ξ)

dξ
=

p

∆ξ
Sp−1
N (ξ).

Then, the matrix is given by

D? ∈ R(N+p)×(N+p), D? =
1

∆ξ



0 0 0 0 0 0 0 0 0 0

−p1
p
1 0 0 0 0 0 0 0 0

0
. . .

. . . 0 0 0 0 0 0 0

0 0 − p
p−1

p
p−1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0

...
...

...
. . .

. . .
. . .

. . .
...

...
...

0 0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 − p
p−1

p
p−1 0 0

0 0 0 0 0 0 0
. . .

. . . 0

0 0 0 0 0 0 0 0 −p1
p
1



,

where the first row accounts for the one spline less we have with degree p− 1.

The 3D spline basis for differential 0-forms is constructed as a tensor product of the 1D

splines,

Λ̃0(ξ) = Sp? (ξ1)⊗ Sp(ξ2)⊗ Sp(ξ3). (9.7)

Without loss of generality, let us assume clamped splines in the first direction and periodic
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splines in the other two directions. Then, we build the 3D derivative matrices accordingly,

G =


D1

D2

D3


,C =


0 −D3 D2

D3 0 −D1

−D2 D1 0


,D = G>, (9.8)

where the block matrices D1,2,3 are constructed as the tensor product of 1D derivative ma-

trices via D1 = D? ⊗ I ⊗ I, D2 = I ⊗ D ⊗ I, D3 = I ⊗ I ⊗ D. Here, I stands for the

identity matrix and the periodic derivative matrix is computed via d
dξS

p(ξ) = Sp−1(ξ)D,

D = 1
∆ξ



1 0 ... 0 −1

−1 1 0 ... 0

0 −1 1 0
...

... 0
. . . . . . 0

0 ... 0 −1 1


.

Then, the 3D spline basis functions for the differential 1-,2- and 3-forms are defined as

Λ̃
1
(ξ) =


Λ̃1,1(ξ) 0 0

0 Λ̃1,2(ξ) 0

0 0 Λ̃1,3(ξ)


, Λ̃

2
(ξ) =


Λ̃2,1(ξ) 0 0

0 Λ̃2,2(ξ) 0

0 0 Λ̃2,3(ξ)


,

Λ̃3(ξ) = Sp−1
? (ξ1)⊗ Sp−1(ξ2)⊗ Sp−1(ξ3).

(9.9)

with

Λ̃1,1(ξ) = Sp−1
? (ξ1)⊗ Sp(ξ2)⊗ Sp(ξ3), Λ̃2,1(ξ) = Sp? (ξ1)⊗ Sp−1(ξ2)⊗ Sp−1(ξ3),

Λ̃1,2(ξ) = Sp? (ξ1)⊗ Sp−1(ξ2)⊗ Sp(ξ3), Λ̃2,2(ξ) = Sp−1
? (ξ1)⊗ Sp(ξ2)⊗ Sp−1(ξ3),

Λ̃1,3(ξ) = Sp? (ξ1)⊗ Sp(ξ2)⊗ Sp−1(ξ3), Λ̃2,3(ξ) = Sp−1
? (ξ1)⊗ Sp−1(ξ2)⊗ Sp(ξ3).

Proposition 9.2. The spline basis functions Λ̃0, Λ̃
1
, Λ̃

2
, Λ̃3 defined in (9.7) and (9.9) form a
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discrete de Rham sequence with the derivative matrices G,C,D (9.8),

∇ξΛ̃0 = Λ̃
1
G,

∇ξ × Λ̃
1

= Λ̃
2
C,

∇ξ · Λ̃
2

= Λ̃3D.

(9.10)

Proof. Since we defined the derivative matrices to reproduce the partial derivatives of the

splines on the level of the degrees of freedom, (9.10) holds by construction. Additionally, we

have to check that CG = 0 and DC = 0. We compute the former block-wise as

CG =


−D3D2 +D2D3

D3D1 −D1D3

−D2D1 +D1D2


.

Then, the Kronecker product structure of the derivative matrices guarantees that the matrices

commute because the identity matrix commutes with every matrix, e.g.

D3D1 = (I⊗ I⊗D)(D? ⊗ I⊗ I) = D? ⊗ I⊗D = (D? ⊗ I⊗ I)(I⊗ I⊗D) = D1D3.

Therefore, the matrix multiplication equals zero. Analogously, we can verify the same result

for DC = 0.

9.4 Boundary Matrices

We insert the spline representation of the magnetic field, (3.7b), into the boundary part of

Ampère’s law (9.1) and test with the respective spline basis function ϕ̃ = Λ̃
1

to obtain∫
∂Ω̃

(
0,−Λ̃1,2 t3

JF
, Λ̃1,3 t2

JF

)
· (t1Λ̃2, 1, t2Λ̃2,2, t3Λ̃2,3) dσ̃b̃.

Then, we define the boundary matrix

M̃1
b =

∫ 1

0

∫ 1

0


1

JF


0 0 0

−t3 · t1Λ̃1,2Λ̃2,1 −t3 · t2Λ̃1,2Λ̃2,2 −t3 · t3Λ̃1,2Λ̃2,3

t2 · t1Λ̃1,3Λ̃2,1 t2 · t2Λ̃1,3Λ̃2,2 t2 · t3Λ̃1,3Λ̃2,3




∣∣∣∣1
ξ1=0

dξ2 dξ3.

Analogously, we use the spline representation of the electric field, (3.7a), to rewrite the bound-
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ary part of Gauss’ law (9.2) and test with the respective spline basis function ψ̃ = Λ̃0,∫
∂Ω̃

Λ̃0
(

(n1Λ̃1,1,n2Λ̃1,2,n3Λ̃1,3) · n1

)
JF dσ̃ẽ.

Then, the 0-form boundary matrix is defined as

M̃0
b =

∫ 1

0

∫ 1

0

(
Λ̃0
(
n1 · n1Λ̃1,1,n1 · n2Λ̃1,2,n1 · n3Λ̃1,3

)
JF

) ∣∣∣∣1
ξ1=0

dξ2 dξ3.

Inserting the spline representations of the fields (3.7), the Poynting flux (9.4) takes the follow-

ing form:

ẽ>
∫
∂Ω̃

1

JF


0 0 0

t3 · t1Λ̃1,2Λ̃2,1 t3 · t2Λ̃1,2Λ̃2,2 t3 · t3Λ̃1,2Λ̃2,3

−t2 · t1Λ̃1,3Λ̃2,1 −t2 · t2Λ̃1,3Λ̃2,2 −t2 · t3Λ̃1,3Λ̃2,3


dσ̃b̃ = −ẽ>M̃1

b b̃.

(9.11)

9.5 Perfect Conductor Boundary Conditions

Looking for a physically meaningful boundary condition, we end up with the perfect conductor

boundary condition as described in [41],

Ẽ× ñ = 0, (9.12)

This also implies that with matching initial conditions

˙̃B · ñ = 0. (9.13)

This can be seen by taking the scalar product of Faraday’s law (2.17a) with the normal vec-

tor,

∂

∂t
B̃ · n = −(∇ξ × Ẽ) · ñ = −∇ξ · (Ẽ× ñ) = 0,

since ñ is constant in our case. Hence, we have found our pair of boundary conditions for the

electromagnetic fields.

Since in our case the normal vector simplifies to ñ = (±1, 0, 0)>, the perfect conductor

boundary conditions translate to (Ẽ × (±1, 0, 0)>)

∣∣∣∣
∂Ω̃

= ±
(

(0, Ẽ3(ξ),−Ẽ2(ξ))>
) ∣∣∣∣

∂Ω̃

= 0

and
(
∂B̃
∂t · (±1, 0, 0)>

) ∣∣∣∣
∂Ω̃

= ± ˙̃B1(ξ)

∣∣∣∣
∂Ω̃

= 0.
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To satisfy the boundary conditions (9.12), the differential 1-forms have to be in the constrained

Sobolev space H0(curl, Ω̃) := {ω ∈ L2(Ω̃)3| curlω ∈ L2(Ω̃)3 ∧ (ω × ñ)

∣∣∣∣
∂Ω̃

= 0}. Addition-

ally, the 2-forms have to be in H0(div, Ω̃) := {ω ∈ L2(Ω̃)3|divω ∈ L2(Ω̃) ∧ (ω · ñ)

∣∣∣∣
∂Ω̃

= 0}

to satisfy the derived boundary conditions (9.13).

For our discretisation with spline finite elements, we impose the boundary conditions (9.12)

as essential boundary conditions. This yields the following conditions on the spline basis

functions:

Λ̃1,2(ξ)

∣∣∣∣
∂Ω̃

= 0, Λ̃1,3(ξ)

∣∣∣∣
∂Ω̃

= 0, Λ̃2,1(ξ)

∣∣∣∣
∂Ω̃

= 0. (9.14)

Note that the constrained spline finite element spaces resulting from imposed Dirichlet bound-

ary conditions are given in [12, Sec. 3.3].

Consequently, the boundary term from Ampère’s equation vanishes for the perfect conductor
boundary conditions, since the 1-form boundary matrix equals zero,

M̃1
b =

∫ 1

0

∫ 1

0


1

JF


0 0 0

−t3 · t1Λ̃1,2Λ̃2,1 −t3 · t2Λ̃1,2Λ̃2,2 −t3 · t3Λ̃1,2Λ̃2,3

t2 · t1Λ̃1,3Λ̃2,1 t2 · t2Λ̃1,3Λ̃2,2 t2 · t3Λ̃1,3Λ̃2,3




∣∣∣∣
∂Ω̃

dξ2 dξ3 = 0.

(9.15)

This means that the Poynting flux (9.11) equals zero, too. Therefore, we do not have field

energy exchange over the boundary and the system is closed.

In Proposition 9.2, we have proven that the clamped basis splines by construction satisfy a

discrete de Rham sequence. Now, we assume perfect conductor boundary conditions (9.14)

for the spline basis functions and have to check that (9.10) still holds at the boundary. A

compatibility condition is given by the following proposition:

Proposition 9.1. Assuming perfect conductor boundary conditions, the clamped basis splines

constructed in Section 9.3 form a discrete de Rham sequence at the boundary if and only if

they satisfy the condition

Sp? (ξ1)

∣∣∣∣
∂Ω̃

= 0. (9.16)

Proof. We want to show that the B-splines still form a discrete de Rham sequence as in

(9.10). This sequence consists of three lines. We start with the first line stating

∇ξΛ̃0 = Λ̃
1
G.
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Then, for a 0-form Φ̃ = Λ̃0(ξ)φ̃, we obtain at the boundary

(
∇ξΛ̃0(ξ)

) ∣∣∣∣
∂Ω̃

φ̃ =



∂ξ1S
p
? (ξ1)

∣∣∣∣
∂Ω̃

⊗ Sp(ξ2)⊗ Sp(ξ3)

Sp? (ξ1)

∣∣∣∣
∂Ω̃

⊗ ∂ξ2Sp(ξ2)⊗ Sp(ξ3)

Sp? (ξ1)

∣∣∣∣
∂Ω̃

⊗ Sp(ξ2)⊗ ∂ξ3Sp(ξ3)


φ̃

!
=


Λ̃1,1(ξ)

∣∣∣∣
∂Ω̃

D1φ

0

0


(9.14)
= Λ̃

1
(ξ)

∣∣∣∣
∂Ω̃

Gφ̃.

This is satisfied non-trivially if and only if Sp? (ξ1)

∣∣∣∣
∂Ω̃

= 0.

Next, for the second line of (9.10), we look at the rotation of a 1-form Ã = Λ̃
1
ã at the

boundary,

(∇ξ × Λ̃
1
)

∣∣∣∣
∂Ω̃

ã =



Sp? (ξ1)

∣∣∣∣
∂Ω̃

⊗ ∂ξ2Sp(ξ2)⊗ Sp−1(ξ3)− Sp? (ξ1)

∣∣∣∣
∂Ω̃

⊗ Sp−1(ξ2)⊗ ∂ξ3Sp(ξ3)

Sp−1
? (ξ1)

∣∣∣∣
∂Ω̃

⊗ Sp(ξ2)⊗ ∂ξ3Sp(ξ3)− ∂ξ1S
p
? (ξ1)

∣∣∣∣
∂Ω̃

⊗ Sp(ξ2)⊗ Sp−1(ξ3)

∂ξ1S
p
? (ξ1)

∣∣∣∣
∂Ω̃

⊗ Sp−1(ξ2)⊗ Sp(ξ3)− Sp−1
? (ξ1)

∣∣∣∣
∂Ω̃

⊗ ∂ξ2Sp(ξ2)⊗ Sp(ξ3)


ã

!
=


0

Λ̃2,2(ξ)

∣∣∣∣
∂Ω̃

(D3ã1 −D1ã3)

Λ̃2,3(ξ)

∣∣∣∣
∂Ω̃

(D1ã2 −D2ã1)


(9.14)
= Λ̃

2
(ξ)

∣∣∣∣
∂Ω̃

Cã.

This leads again to the compatibility condition Sp? (ξ1)

∣∣∣∣
∂Ω̃

= 0.

Since there are no boundary conditions on the differential 3-form basis, the third line of (9.10)

is also satisfied at the boundary,(
∇ξ · Λ̃

2
(ξ)
) ∣∣∣∣

∂Ω̃

= Λ̃3(ξ)

∣∣∣∣
∂Ω̃

D,

which concludes the proof.

From this proposition, it follows that also the boundary part from Gauss’ law vanishes, since

the 0-form boundary matrix equals zero,

M̃0
b =

∫ 1

0

∫ 1

0

(
Λ̃0
(
n1 · n1Λ̃1,1,n1 · n2Λ̃1,2,n1 · n3Λ̃1,3

)
JF

) ∣∣∣∣
∂Ω̃

dξ2 dξ3 = 0.

We already showed that the initial boundary condition B̃ · ñ = C for the magnetic field is
conserved over time because the magnetic field is updated with the curl of the electric field.

Geometric PIC Methods on Mapped Grids 88



Assuming that the basis functions form a de Rham sequence and that B̃ is computed from
the 1-form potential Ã, we have B̃ · ñ = 0, since

(
B̃(ξ) · ñ

) ∣∣∣∣
∂Ω̃

=
(
∇ξ × Λ̃

1 · ñ
) ∣∣∣∣

∂Ω̃

ã

=Sp? (ξ1)

∣∣∣∣
∂Ω̃

⊗ ∂ξ2Sp(ξ2)⊗ Sp(ξ3)− Sp? (ξ1)

∣∣∣∣
∂Ω̃

⊗ Sp(ξ2)⊗ ∂ξ3Sp(ξ3)ã = 0.
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10 Particle Boundary Conditions

10.1 Introduction

When the particle trajectories hit the boundary, we also need to impose some boundary

conditions on them. Note that we avoid a possible singularity by excluding the pole on the

physical mesh as can be seen exemplarily in Figure 14. Therefore, on the logical mesh, we

have an inner boundary at ξ1 = 0 and an outer boundary at ξ1 = 1. Following [17], we

consider reflecting boundaries. We make use of the normal vector n = N(ξ)ñ = n1 to

compute the reflection at the boundary as

• Inner boundary at ξ1 = 0: ξ1 = −ξ1,v = v − 2(n · v) n
‖n‖2 = v − 2(n1 · v) n1

‖n1‖2 ,

• Outer boundary at ξ1 = 1: ξ1 = 2− ξ1,v = v − 2(n1 · v) n1
‖n1‖2 .

The particle weight is kept constant. The reflecting boundary prevents heat fluxes and cur-

rents at the boundary and ensures exact energy conservation.

In this study, we additionally consider a constant in- and outflow of particles: A particle of

identical weight is reinserted at the opposite boundary with the same velocity, which can be

considered as periodic particle boundary conditions,

• Inner boundary at ξ1 = 0: ξ1 = ξ1 + 1,v = v,

• Outer boundary at ξ1 = 1: ξ1 = ξ1 − 1,v = v.

This choice again conserves mass, energy and magnetic momentum. This second boundary

conditions mimics a periodic behaviour and is considered here as an intermediate step for

verification purposes rather than being physically motivated.

10.2 Conservation Properties

10.2.1 Charge Monitoring

In both semi-explicit time discretisation schemes, the charge conservation depends on the

exact solution of the particle trajectory in the following part:

M̃1
ẽn+1 − ẽn

∆t
= −

∫ tn+1

tn
�̃1(Ξ(τ))> dτWq

Ξn+1 −Ξn

∆t
.

Since the particle update is computed iteratively, it is important that we impose the boundary

conditions after computing the midpoint Ξ̄ = Ξn+1+Ξn

2 in (6.4) and (6.6). In the case of a

particle trajectory crossing the boundary, we solve this part with a split line integral. First,

we compute the point of intersection of the particle trajectory with the boundary and compute

the line integral up to that point. Second, we reflect the particle position and velocity at this

point and compute the line integral between the point of intersection and the new particle
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position.

10.2.2 Energy Monitoring

The energy conservation of the implicit time discretisation methods depends on the solution

of the antisymmetric subsystems. Therefore, the DisGradE method stays energy conserv-

ing because the particle position is updated independently of the particle velocity and the

electromagnetic fields provided that the number of particles is constant.

However, if the position is updated in the same step as the velocity and the electric field, which

is the case for the DisGradEC method, it is crucial that the electric and the kinetic energies

balance out. So, when a particle crosses the boundary and is reflected back, we need to

update the electric field with the new velocity. Solving this system iteratively leads to the

problem that the reflection can flip the sign of the particle velocity in iteration, which prevents

the convergence. Therefore, the reflection boundary conditions are only implemented for the

DisGradE and not for the DisGradEC method.
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11 Challenges with Singular Coordinate
Transformations

When dealing with a mapping that contains a singularity, there are two main challenges. The

first challenge is the construction of smooth basis functions at the pole. However, Toshniwal

et al. [87, 86] recently presented an instruction for constructing such basis functions. The

second challenge is the evaluation of the electromagnetic fields in an environment around

the pole.

Let us consider a radial mapping with a pole at ξ1 = 0 such as the two examples given in

(13.2) for r0 = 0. Then, we review a solution for the evaluation of the electric field, which is

found in [100]. For a differential 1-form E, the adequate representation is given by the Piola

transform (2.14) so that E(t,x) = N(ξ)Ẽ(t, ξ). This holds for all ξ1 > 0 but for ξ1 = 0 the

transposed inverse Jacobian matrix becomes singular. Thus, we search for an expression of

the electric field in physical coordinates at the pole. Therefore, we rewrite the representation

of the electric field by multiplying both sides with the transposed Jacobian matrix, Ẽ(ξ) =

DF>(ξ)E(x). Componentwise, we can write this out as

Ẽ1(ξ) =
∂F1(ξ)

∂ξ1
E1(x) +

∂F2(ξ)

∂ξ1
E2(x),

Ẽ2(ξ) =
∂F1(ξ)

∂ξ2
E1(x) +

∂F2(ξ)

∂ξ2
E2(x),

Ẽ3(ξ) = LzE3(x).

At the pole, the third component of the electric field in physical coordinates is given trivially

by E3(0, 0, z) = 1
Lz
Ẽ3(0, ξ2, ξ3). For the first two components of the electric field, we focus

on the first line because the partial derivatives in the second line equal zero,

∂F1(0, ξ2)

∂ξ2
=
∂F2(0, ξ2)

∂ξ2
= 0 ∀ξ2.

Thus, we obtain

Ẽ1(0, ξ2, ξ3) = E1(0, 0, z)
∂F1(0, ξ2)

∂ξ1
+ E2(0, 0, z)

∂F2(0, ξ2)

∂ξ1
.

Then, the components of the electric field in physical coordinates can be calculated from the

given field in logical coordinates at the left-hand side for two linear independent angles ξ2.

For the cylindrical coordinates in (13.2), two independent angles would be ξ2 = 0 and ξ2 = 1
4

so that the linear system simplifies to

Ẽ1(0) = E1(0), Ẽ1

(
0,

1

4
, 0

)
= E2(0).

We get the same result for every pair of independent angles because the values of the two
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components E1, E2 need to be constant at the pole. With this expression, we can evaluate

the electric field in a small ε-environment around the pole, x = 0. For ‖x‖ < ε, we obtain

E(x) = (1− ξ1

ε
)E(0, 0, z) +

ξ1

ε
N(ε, ξ2, ξ3)Ẽ(ε, ξ2, ξ3).

Let us transfer this idea to the evaluation of the magnetic field. The magnetic field is trans-

formed by the Piola transform form for 2-forms (2.15), which has the following form:

B(t,x) =
DF (ξ)

JF (ξ)
B̃(t, ξ).

At the pole, this representation is not possible because the Jacobian determinant equals zero.

Multiplying by the inverse of the Jacobian matrix divided by the Jacobian determinant does

not help, since the inverse Jacobian matrix is singular, too.

However, for the magnetic part of the Lorentz force, we only need the cross product of the

velocity and the magnetic field,

v ×B = v × DF

JF
B̃.

This term can be reformulated as in (2.8),

v × DF

JF
B̃ = N

(
ṽ × B̃

)
,

where we introduced the logical velocity ṽ = N>(ξ)v. Finally, we only need a representation

of ṽ at the pole. We can compute the logical velocity as the discrete time derivative of the

position, ṽn = ξn+1−ξn
∆t . However, this works only if there is an analytical inverse of the

coordinate transformation, since in this case, we can compute the particle push in physical

coordinates avoiding the singularity in the inverse Jacobian matrix, N>(ξ),

ξn+1 = F−1(F (ξn) + ∆tvn).

Then, we use the same method that we used for the electric field, to obtain(
ṽ × B̃(0, ξ2)

)
1

=
∂x

∂ξ1
(0, ξ2)(v ×B)1(0) +

∂y

∂ξ1
(0, ξ2)(v ×B)2(0),(

ṽ × B̃(0, ξ2)
)

3
= (v ×B(0))3 .

Subsequently, the Lorentz force in a small ε-environment around the pole is calculated as

q

m

((
1− ξ1

ε

)
(E(0, 0, z) + v ×B(0, 0, z)) +

ξ1
ε
N(ε, ξ2, ξ3)(Ẽ(ε, ξ2, ξ3) + ṽ × B̃(ε, ξ2, ξ3)

)
.
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12 Preconditioner
The condition number of the B-spline finite element mass matrices (3.6) increases exponen-

tially with the degree p of the B-splines as explained in [29]. Therefore, the use of ordinary

iterative solvers such as the conjugate gradient (CG) solver becomes computationally expen-

sive and inefficient. Donatelli et al. [29] review several possibilities for fast solvers such as

preconditioned conjugate gradient (PCG), h-multigrid or multi-iterative methods. Alternatively,

the p-multigrid method is investigated in [85].

In our framework, we use a PCG method to solve the linear equations with the finite element

mass matrices M̃1,2 because there are several options for the preconditioner. Our precondi-

tioner is based on the fact that circulant matrices are diagonal in Fourier space and hence,

can be cheaply inverted based on the Fast Fourier Transform (FFT). On a periodic tensor

product grid without coordinate transformations, the finite element matrices are circulant so

that the linear equation systems can be solved directly after Fourier transformation yielding

a very efficient solver compared to iterative solvers in this case. We refer to [55] for a de-

tailed description of this solution strategy. Since the structure of the mass matrices with real

boundary conditions is still close enough to a circulant matrix, we choose such an eigenvalue

solver, Pfft, as preconditioner. Furthermore, its building block is already implemented in the

SeLaLib [1].

Observing the structure of the mass matrices for clamped splines of degree p, we notice

that only the first and last p + 2 rows differ from the mass matrix for periodic splines of the

same degree. This observation motivates the alternative idea to use the eigenvalues of the

periodic matrix only for the middle part that is identical to a periodic mass matrix, except for

the periodicity at the boundary, and invert the boundary part, which consists of the first and

last p+ 2 rows of the mass matrix, separately.

Figure 12 shows the eigenvalues of the 1D mass matrix with clamped splines for the two

preconditioner ideas. We see that both methods improve the distribution of the eigenvalues

of the preconditioned matrix. Since we are only interested in the ratio between the lowest and

the highest eigenvalue, we decide to use the eigenvalue solver on the whole mass matrix,

which has a lower condition number κ = eigvalmax
eigvalmin

.

However, in the case of a singular mapping, we need an additional part for the preconditioner

to lift the singularity in the mass matrix M̃ as investigated in [28, Sec. 3.2]. Assuming for

instance that the entries of M̃ are of minimal order O
(

1
ξ1

)
, we want to precondition with a

matrix which has entries of maximal order O(ξ1) and is close to an inverse of M̃.

We start by looking for a matrix whose maximal eigenvalue is similar to the one of M̃ and

that is easily invertible. Two possible choices are the diagonal row lumped mass (M̃2
lump)ii =∑

j M̃ij or the main diagonal matrix (D2)ii = M̃ii. If the entries of the lumped mass become
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Figure 12 Analytical eigenvalues of the 1D preconditioned mass matrix for different spline degrees.

very small or even negative, there are two options. Either we define a positive lower limit for

the sum of the row or we use the main diagonal matrix instead because the diagonal elements

are always positive.

Then, the preconditioner consists of the inverse of the lumped mass or the main diagonal

matrix and the eigenvalue preconditioner Pfft, which is used on the now uniform system. In

order not to destroy the symmetry of the matrix, we construct the preconditioner as

P = M̃−1
lumpPfftM̃

−1
lump or P = D−1PfftD

−1,

where the entries of the inverse matrices can easily be computed as (M̃−1
lump)ii = 1√∑

j M̃ij

and (D−1)ii = 1√
M̃ii

.
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Table 5 shows the maximum number of iterations for the CG and PCG solver of the mass

matrices. The numbers are taken from the simulation of the electromagnetic Weibel instability

in Chapter 13 on various grids with a time step of ∆t = 0.01 and a solver tolerance of 10−13.

Note that for a lower tolerance the CG solver would not converge without the preconditioner. It

can be seen that our preconditioner largely reduces the number of iterations and the iteration

count only moderately increases with increasing spline order.

Table 5 Number of iterations for the CG and PCG solver of the mass matrices for spline degree p.

Grid

Number of iterations CG solver

px = 2 px = 3

Nx = 8 Nx = 32 Nx = 8 Nx = 32

Cartesian 426 451 740 772

Distorted 498 502 797 818

Cylindrical 1626 2977 2583 4807

Elliptical 2270 2881 3805 4678

Grid

Number of iterations PCG solver

px = 2 px = 3

Nx = 8 Nx = 32 Nx = 8 Nx = 32

Cartesian 8 8 11 11

Distorted 18 18 23 22

Cylindrical 10 10 13 14

Elliptical 14 16 21 22
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13 Numerical Experiments

13.1 Coordinate Transformation

A new class of mappings is introduced that operate on a deformed domain. For the sinusoidal

transformation the mapping is modified to

Fdist(ξ) =


Lx (ξ1 + ε sin(Lpξ1) sin(2πξ2))

Ly (ξ2 + ε sin(Lpξ1) sin(2πξ2))

Lzξ3


. (13.1)

Figure 13 visualises the (x, y)-part of the sinusoidally distorted grid on a square domain with

(a) Square domain (b) Deformed domain

Figure 13 Distorted grids on different domains for distortion parameter ε = 0.05.

Lp = 2π and on a deformed domain with Lp = π
2 for the distortion parameter ε = 0.05.

Furthermore, we introduce two radial mappings, a cylindrical and an elliptical transforma-

tion,

Fcyl(ξ) =


(r0 + Lrξ1) cos(2πξ2)

(r0 + Lrξ1) sin(2πξ2)

Lzξ3


, Fell(ξ) =


Lr cosh(ξ1 + r0) cos(2πξ2)

Lr sinh(ξ1 + r0) sin(2πξ2)

Lzξ3


. (13.2)

Figure 14 visualises the (x, y)-part of the corresponding grids, where the pole is excluded for

r0 > 0 avoiding a singularity in the mapping.
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(a) Cylindrical grid

(b) Elliptical grid

Figure 14 Cylindrical grid with r0 = 0.5 and elliptical grid with r0 = 0.05.

13.2 Test case

Motivated by the results in [17], we test the implementation of the perfect conductor bound-

ary and the reflecting particle boundary conditions with a simulation of the Weibel instability

[93]. The instability is excited by an anisotropy in the thermal velocity and amplified with the

initialisation of the corresponding component of the magnetic field. The initial distribution is

given by

f(x,v, t = 0) = (1 + α cos(k · x))
1

(2π)
3
2 vTxvTyvTz

exp

(
−1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

))
,

where x ∈ [0, L]3,v ∈ R3. We can choose between the following three scenarios that trigger

the instability:

• k = 1.25êx, vTx < vTy,z, where we initialise

B2(x) = β cos(kxx) or B3(x) = β cos(kxx),

• k = 1.25êy, vTy < vTx,z, where we initialise

B1(x, y) = β cos(kyy) sin

(
πx

Lx

)
or B3(y) = β cos(kyy),

• k = 1.25êz, vTz < vTx,y, where we initialise

B1(x, z) = β cos(kzz) sin

(
πx

Lx

)
or B2(z) = β cos(kzz).
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The remaining two components of the magnetic field are initialised with zero.

We set vT i = 0.02√
2

=
vTj√

12
= vTk√

12
, where (i, j, k) = (x, y, z), (y, z, x) or (z, x, y). To start

above the particle noise, we set β = 10−3 for the initial magnetic field. The initial electric field

is calculated from Poisson’s equation and the initial perturbation in space is set to zero with

α = 0.

For the numerical resolution, we take 2,048,000 particles, 8×8×8 grid cells, cubic splines and

a time step of ∆t = 0.1. The tolerance of the iterative solvers for the DisGradE method is set

to 10−13 and the tolerance of the PCG solver for the mass matrices is set to 10−14. Note that

we normalised to dimensionless quantities in terms of the electron Debye length λDe and the

plasma frequency ωpe.

13.2.1 Comparison to Periodic Boundary Conditions

We start by comparing simulation results with the perfect conductor boundary conditions to

the simulation results with periodic boundary conditions.
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Periodic particle boundary

Reflecting particle boundary

(a) Initialisation of B2(x) = β cos(kxx)
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Periodic field & particle boundary

Periodic particle boundary

Reflecting particle boundary

(b) Initialisation of B3(x) = β cos(kxx)

Figure 15 Weibel instability with k = 1.25êx: Magnetic field energy for HS with time step ∆t = 0.1 on a Cartesian grid with
different boundary conditions.

Figures 15, 16 and 17 show the magnetic field energy on a Cartesian grid for the three

different choices of the wave vector k = 1.25êi, i ∈ {x, y, z}. Additionally, there are two

different components of the magnetic field in each scenario that can be initialised to start the

Weibel instability right away. Since the results coincide for the three time integrators, we show

only the simulation of the semi-explicit HS scheme with a time step of ∆t = 0.1. Displayed are

the simulation results for the perfect conductor boundary conditions with periodic or reflecting

particle boundaries and a simulation with periodic field and particle boundary conditions for

comparison.

When initialising the second and third component of the magnetic field, we see in Figures 15,
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(a) Initialisation of B1(x, y) = β sin
(
πx
Lx

)
cos(kyy)
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(b) Initialisation of B3(y) = β cos(kyy)

Figure 16 Weibel instability with k = 1.25êy : Magnetic field energy for HS with time step ∆t = 0.1 on a Cartesian grid with
different boundary conditions.
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(a) Initialisation of B1(x, z) = β sin
(
πx
Lx

)
cos(kzz)
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(b) Initialisation of B2(z) = β cos(kzz)

Figure 17 Weibel instability with k = 1.25êz : Magnetic field energy for HS with time step ∆t = 0.1 on a Cartesian grid with
different boundary conditions.
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(a) Sum of first and third component of the magnetic field
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(b) Second component of the magnetic field

Figure 18 Weibel instability with k = 1.25êz and initialisation of B2: Different components of the magnetic field energy for HS
with time step ∆t = 0.1 on a Cartesian grid with different boundary conditions.

16b and 17b that the growth of the magnetic field in the simulation with the periodic particle

boundary coincides with the growth of the magnetic field in the simulation with periodic field
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and particle boundary conditions. However, the reflecting particle boundary leads to a lower

growth rate and even delays the beginning of the growth in the magnetic field in the two

cases displayed in Figures 16b and 17b. We will try to explain this behaviour exemplarily for

the latter case. In Figure 18b, we see that the second component of the magnetic field, which

was initialised to start the instability right away, shows no signs of the expected growth for the

reflecting boundary conditions. This component is updated as Ḃ2 = ∂zE1−∂xE3 in Faraday’s

law (2.8b). Normally, the anisotropy in the velocity causes a discrepancy between the partial

derivatives of these two components of the electric field resulting in the growth of the magnetic

field. However, the reflecting boundary conditions prevent a current through the boundary,

which seems to level the values of the two components of the electric field. Therefore, the

growth of the second component of the magnetic field is suppressed. Nevertheless, Figure

18a shows that the instability arises in the first and third component of the magnetic field.

However, the growth is delayed, since these two components were not initialised.

On a Cartesian domain, the physical and the logical fields only differ by a constant scaling.

Therefore, the perfect conductor boundary conditions on the logical fields ensure E2, E3 and

B1 to be zero at the boundary. This is why, we initialise the first component of the magnetic

field with B1(x) = β sin
(
πx
L

)
cos(kyy+kzz). In this case, the growth rates of the periodic and

reflecting particle boundary conditions coincide, which are lower than the one with periodic

field and particle boundary conditions as can be seen in Figures 16a and 17a.

13.2.2 Domain Deformation

Next, we are interested in the behaviour on a deformed mapped grid. Therefore, we apply

the sinusoidal coordinate transformation (13.1) with Lp = π
2 . Again the results for the three

time integrators coincide so that we only show the results of the semi-explicit CEF scheme

with a time step of ∆t = 0.1.
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(a) Initialisation of B2(x) = β cos(kxx)
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(b) Initialisation of B3(x) = β cos(kxx)

Figure 19 Weibel instability with k = 1.25êx: Magnetic field energy for CEF with time step ∆t = 0.1 on a distorted grid with
distortion parameters ε = 0, 0.05 for the coordinate transformation.

Figures 19, 20 and 21 show the magnetic field energy on the distorted grid with distortion
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(a) Initialisation of B1(x, y) = β sin
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cos(kyy)

0 100 200 300 400 500
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

(b) Initialisation of B3(y) = β cos(kyy)

Figure 20 Weibel instability with k = 1.25êy : Magnetic field energy for CEF with time step ∆t = 0.1 on a distorted grid with
distortion parameters ε = 0, 0.05 for the coordinate transformation.
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(a) Initialisation of B1(x, z) = β sin
(
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cos(kzz)
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(b) Initialisation of B2(z) = β cos(kzz)

Figure 21 Weibel instability with k = 1.25êz : Magnetic field energy for CEF with time step ∆t = 0.1 on a distorted grid with
distortion parameters ε = 0, 0.05 for the coordinate transformation.

parameters ε = 0, which is equal to the Cartesian grid, and ε = 0.05 for the three different

choices of the wave vector k = 1.25êi, i ∈ {x, y, z}. Displayed are the simulation results for

the perfect conductor boundary conditions with periodic and with reflecting particle bound-

aries. Figure 19 shows that the domain deformation effects the growth of the magnetic field

especially in the beginning. In Figure 20, we see that the coordinate transformation couples

the coordinate directions, which leads to the initial steep growth in the magnetic field. In

Figure 21b, the reflecting particle boundary still delays the growth of the magnetic field but it

starts earlier on the deformed grid. For the periodic particle boundary, the domain deforming

transformation leads to a steeper growth in the beginning, which can be seen in Figures 21a

and 21b. Figure 21a shows only minor differences for the simulation with a reflecting particle

boundary on the Cartesian or on the deformed grid.

Since the coordinate transformation mixes the first two directions of the logical coordinates

in the computation of x and y, z is the only periodic coordinate direction left. Therefore,

we focus on the scenario with the wave vector k = 1.25êz. Since the instability is delayed
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under coordinate transformation when we initialise the second component of the magnetic

field, we look at the case, where the first component of the magnetic field is initialised with

B1(x, z) = β sin
(
πx
Lx

)
cos(kzz).

As a next step, we investigate the effect of the distortion parameter ε and compare the dis-

torted grid (13.1) on a square mapped grid with Lp = 2π to the deformed mapped grid with

Lp = π
2 .
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Figure 22 Weibel instability with k = 1.25êz : Magnetic field energy for CEF with time step ∆t = 0.1 on a distorted grid with
different values of the distortion parameter ε for the coordinate transformation.

In Figure 22, the magnetic field energy on the distorted grid is displayed for different values

of the distortion parameter ε. We present only the simulation results of the HS scheme with a

time step of ∆t = 0.1 because all three schemes show the same behaviour of the magnetic

field. We see that for the square mapped grid, the coordinate transformation does not change

the growth of the magnetic field even for a high distortion parameter of ε = 0.1. However,

for the domain deforming coordinate transformation the higher distortion parameter ε = 0.1

leads to a slightly different growth of the magnetic field. Additionally, after the saturation all

the curves drift apart, especially with the periodic particle boundary conditions.

13.2.3 Radial Grids

Let us extend the Weibel instability to the radial grids given by the coordinate transformations

in (13.2), where we set r0 = 0.01 to prevent a singularity at ξ1 = 0 and choose Lr = L− r0.

From now on, we consider the particles to be reflected at the boundary, since this is an

expected physical behaviour. Additionally, we double the resolution in the radial and angular

directions to 16×16×8 grid cells in order to see the impact of the time step constraints on the

semi-explicit integrators.

Figure 23 shows the first component of the magnetic field energy on a cylindrical and an

elliptical grid with reflecting particle boundary conditions. Due to the stability constraints, we
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(b) Elliptical grid

Figure 23 Weibel instability with k = 1.25êz : First component of the magnetic field energy for various integrators with time
steps ∆t = 0.01, 0.1 on cylindrical and elliptical grids with r0 = 0.01.

have to choose a lower time step of ∆t = 0.01 for the semi-explicit schemes whereas the

implicit method shows comparable results with a time step of ∆t = 0.2 or higher. The stability

constraints arise from the smaller cells near the pole, where the semi-explicit schemes have

problems, when particles cross too many cells in one time step. Although the semi-implicit

DisGradE method takes roughly about seven to ten times longer for a time step than the semi-

explicit HS or CEF schemes, it seems that it is more suitable to this type of domain deforming

mappings, since its simulation results show the same behaviour of the magnetic field as the

semi-explicit schemes while requiring at most one-twentieth of the time steps.
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Figure 24 Weibel instability with k = 1.25êz : First component of the magnetic field energy for DisGradE with time step
∆t = 0.1 for various domain deforming mappings.

In Figure 24, we see the first component of the magnetic field initialised with B1(x, z) =
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β sin
(
πx
Lx

)
cos(kzz) for various domain deforming mappings. The simulation results are ob-

tained by the DisGradE method with a time step of ∆t = 0.1. For all mappings, we see

a growth in the magnetic field. However, the growth rates differ as well as the lengths of

the linear phase, especially for the elliptical grid, where the saturation happens much later

compared to the other cases.

13.2.4 Conservation Properties

Conclusively, let us take a look at the conservation properties of the different time integrators

on the deformed mapped grids. Table 6 shows the conservation properties of the three time

Table 6 Weibel instability with perfect conductor boundary conditions: Maximum error in Gauss’ law and in the total energy
until time 500 for the semi-explicit and implicit time integrators on various grids.

Method Cartesian Distorted Cylindrical Elliptical

Gauss

HS 1.8 · 10−11 5.2 · 10−10 6.3 · 10−10 5.8 · 10−10

CEF 1.8 · 10−11 5.2 · 10−10 6.4 · 10−10 5.6 · 10−10

DisGradE 3.4 · 10−4 4.0 · 10−4 2.1 · 10−3 4.7 · 10−3

Energy

HS 1.8 · 10−4 1.5 · 10−4 1.5 · 10−6 2.0 · 10−6

CEF 1.8 · 10−4 3.7 · 10−3 1.8 · 10−6 7.0 · 10−7

DisGradE 2.0 · 10−11 9.2 · 10−12 5.0 · 10−12 1.1 · 10−11

integrators until T = 500 with a time step of ∆t = 0.1 except for the semi-explicit schemes on

the radial grids, where stability constraints restrict to a time step of ∆t = 0.01. The distortion

parameter is chosen as ε = 0.05. We see the difference between the energy and the charge

conserving methods. As expected, the implicit DisGradE method conserves the total energy

whereas for the semi-explicit HS and CEF schemes the energy is not conserved. Though,

the error is bounded for the semi-explicit schemes. In contrast, the semi-explicit HS and CEF

schemes conserve Gauss’ law, which is not conserved for the implicit DisGradE method.

Note that all conservation properties are up to the tolerance of the solver times the condition

number of the mass matrices.
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Part III

Quasi-neutral Model
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14 Introduction
In several interesting test cases with realistic physical applications, we are only interested in

the ion motion, which happens at a time scale about two orders of magnitude greater than the

one of the electrons. However, in a full kinetic model, we need to solve for the time scale of

the electrons, which requires too much computing power to obtain reasonable results. In this

part, we introduce the quasi-neutral model, where we get rid of the stability constraint of the

electron time scale by considering a neutralising background density of adiabatic electrons.

In an electrostatic setting, the density of the adiabatic electrons is given by the Maxwell–

Boltzmann distribution,

ne(t,x) = n0e(x)e
qeΦ(t,x)
Te(x) .

Since the exponent is assumed to be small, this can be approximated by

ne(t,x) = n0e(x)

(
1 +

qeΦ(t,x)

Te(x)

)
.

Starting from a quasi-neutral setting, where ni = ne, we obtain

ρ = qe(ne − n0e) =
q2
en0e

Te
Φ. (14.1)

Furthermore, we use the continuity equation to get

∂ρ

∂t
=
q2
en0e

Te

∂Φ

∂t
= −∇ · J. (14.2)

Then, the weak form of the quasi-neutrality equations (14.1) and (14.2) tested with ψ ∈
H1(Ω) is given by ∫

Ω

q2
en0e

Te
ψΦ dx =

∫
Ω
ψρdx,

∂

∂t

∫
Ω

q2
en0e

Te
ψΦ dx =

∫
Ω
∇ψ · J dx−

∫
∂Ω
ψ(n · J) dσ.

(14.3)

Geometric PIC Methods on Mapped Grids 107



Proposition 14.1. Under the coordinate transformation F (ξ) = x the weak formulation of

the quasi-neutrality equations (14.3) is transformed and discretised as

M̃0eφ̃ =

Np∑
p=1

qpωpΛ̃
0(ξp)

>, (14.4)

M̃0e
˙̃
φ = G>

Np∑
p=1

qpωpΛ̃
1
(ξp)

>N(ξp)
>vp. (14.5)

Proof. First, we insert the coordinate transformation and use the transformation formula

(2.16) to obtain∫
Ω̃

q2
en0e

Te
ψ̃Φ̃|JF (ξ)|dξ =

∫
Ω̃
ψ̃ρ̃|JF (ξ)|dξ,

∂

∂t

∫
Ω̃

q2
en0e

Te
ψ̃Φ̃|JF (ξ)|dξ =

∫
Ω̃
N∇ξψ̃ ·N J̃|JF (ξ)| dξ −

∫
∂Ω̃
ψ̃(N ñ ·N J̃)|JF (ξ)| dσ̃.

Then, we discretise with the finite element method and insert the representation of the scalar

potential, which can be written as Φ̃ = Λ̃0(ξ)φ̃. Furthermore, we choose the basis function

Λ̃0 ∈ Ṽ0 as test function,∫
Ω

q2
en0e

Te
Λ̃0(ξ)>Λ̃0(ξ)φ̃|JF (ξ)|dξ =

∫
Ω

Λ̃0(ξ)>ρ̃h|JF (ξ)|dξ,

∂

∂t

∫
Ω̃

q2
en0e

Te
Λ̃0(ξ)>Λ̃0(ξ)φ̃|JF (ξ)|dξ =

∫
Ω̃

(
N(ξ)∇ξΛ̃0(ξ)

)>
N(ξ)J̃h|JF (ξ)|dξ

−
∫
∂Ω̃

Λ̃0(ξ)(n1 ·N(ξ)J̃h)|JF (ξ)| dσ̃

When we assume periodic or perfect conductor boundary conditions as in Section 9.5, the

boundary term vanishes.

Next, we use the PIC representation of the transformed densities (3.2b) and (3.2a) and insert

the derivative matrix for the gradient (3.4),

∫
Ω

q2
en0e

Te
Λ̃0(ξ)>Λ̃0(ξ)|JF (ξ)|dξφ̃ =

∫
Ω

Λ̃0(ξ)>
Np∑
p=1

qpωp
δ(ξ − ξp)
|JF (ξ)|

|JF (ξ)|dξ,

∫
Ω̃

q2
en0e

Te
Λ̃0(ξ)>Λ̃0(ξ)|JF (ξ)|dξ ˙̃

φ =

∫
Ω̃

(
N(ξ)Λ̃

1
(ξ)G

)> Np∑
p=1

qpωp
δ(ξ − ξp)
|JF (ξ)|

vp|JF (ξ)| dξ.

Introducing the mass matrix M̃0e :=
∫

Ω̃
q2
en0e

Te
Λ̃0(ξ)>Λ̃0(ξ)|JF (ξ)| dξ yields the proposition.
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15 Time Discretisation
We consider a magnetised plasma with a background field B0 that is constant in time. Then,

the equations of motion take the following form:

Ξ̇ = N>(Ξ)V,

V̇ = W qi
mi

N(Ξ)
(
−�̃1(Ξ)Gφ̃+ B̃(Ξ, b̃0)N>(Ξ)V

)
,

M̃0e
˙̃
φ = G>�̃1(Ξ)>N>(Ξ)WqiV.

The Hamiltonian for this electrostatic setting is given by

H̃h =
1

2
V>WmiV +

1

2
φ̃
>
M̃0eφ̃

and the discrete Poisson matrix corresponding to the equations of motion is obtained as

J(Ξ, b̃0) =


0 N>(Ξ)W−1

mi 0

−W−1
miN(Ξ) W qi

mi

N(Ξ)B̃(Ξ, b̃0)N>(Ξ)W−1
mi −W qi

mi

N(Ξ)�̃1(Ξ)GM̃−1
0e

0 M̃−1
0e G

>�̃1(Ξ)>N>(Ξ)W qi
mi

0


.

15.1 Hamiltonian Splitting

In this section, we consider a Hamiltonian splitting, where we split the Hamiltonian in two

parts H̃h = H̃p + H̃Φ and denote the corresponding subsystems.

The operator H̃p collects the equations, where the quantities are updated by the particle

velocity,

Ξ̇ = N>(Ξ)V,

V̇ = W qi
mi

N(Ξ)B̃(Ξ, b̃0)N>(Ξ)V,

M̃0e
˙̃
φ = G>�̃1(Ξ)>N>(Ξ)WqiV.

Then, the system for the operator H̃Φ consists of the following equation:

V̇ = −W qi
mi

N(Ξ)�̃1(Ξ)Gφ̃. (15.1)

As in Subsection 6.1.1, the equations for H̃p are discretised in time with the symplectic mid-
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point rule in a fixpoint iteration,

Ξn+1 =Ξn + ∆tN>
(
Ξ
)
V,

Vn+1 =Vn + ∆tW qi
mi

N
(
Ξ
)
B̃
(
Ξ, b̃0

)
N>
(
Ξ
)
V,

M̃0eφ̃
n+1

=M̃0eφ̃
n

+ G>
∫ tn+1

tn
�̃1(Ξ(τ))> dτWqiN

> (Ξ)V,

where Ξ = Ξn+1+Ξn

2 ,V = Vn+1+Vn

2 and Ξ(τ) = (tn+1−τ)Ξn+(τ−tn)Ξn+1

∆t . Furthermore,

the equation of operator H̃Φ can be solved explicitly resulting in the charge conserving HS

scheme,

Vn+1 = Vn −∆tW qi
mi

N(Ξn)�̃1(Ξn)Gφ̃
n
.

Remark 15.1. The alternative CEF scheme can be constructed corresponding to Subsection

6.1.2 by computing the velocity update with the static magnetic field in a separate step as in

(6.5).

15.2 Discrete Gradient Method

Splitting the discrete Poisson matrix into three antisymmetric parts leads to the following

subsystems:

system 1: Ξ̇ = N>(Ξ)V,

system 2: V̇ = W qi
mi

N(Ξ)B̃(Ξ, b̃0)N>(Ξ)V,

system 3: V̇ = −W qi
mi

N(Ξ)�̃1(Ξ)Gφ̃, M̃0e
˙̃
φ =

(
N(Ξ)�̃1(Ξ)G

)>
WqiV.

For the DisGradE method, the first two systems can be discretised as in Section 6.2,

system 1: Ξn+1 = Ξn + ∆t
N>(Ξn+1) + N>(Ξn)

2
Vn,

system 2:
(
I− ∆t

2
W q

m
NB̃N>

)
Vn+1 =

(
I +

∆t

2
W q

m
NB̃N>

)
Vn.

For system 3, we use the discrete gradient method,

Vn+1 −Vn

∆t
= −W qi

mi

N(Ξn)�̃1(Ξn)G
φ̃
n+1

+ φ̃
n

2
,

M̃0e
φ̃
n+1 − φ̃n

∆t
=
(
N(Ξn)�̃1(Ξn)G

)>
Wqi

Vn+1 + Vn

2
.
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We write this in matrix form as I ∆t
2 W qi

mi

N�̃1G,

−∆t
2 (N�̃1G)>Wqi M0e


Vn+1

Φn+1

 =

 I −∆t
2 W qi

mi

N�̃1G,

∆t
2 (N�̃1G)>Wqi M0e


Vn

Φn


and decouple the equations with the Schur complement

S+ = M0e +
∆t2

4
WqiW qi

mi

G>(�̃1)>G−1
m �̃1G.

Then, the inverse of the matrix on the left-hand side can be computed as I ∆t
2
W qi

mi

N�̃1G,

−∆t
2

(N�̃1G)>Wqi M0e


−1

=

I −∆t
2
W qi

mi

N�̃1G

0 I


I 0

0 S−1
+


 I 0

∆t
2

(N�̃1G)>Wqi I

 .

Hence, we obtain the decoupled equations,

φ̃
n+1

= S−1
+

(
S−Φn + ∆tG>�̃1(Ξn)>N>(Ξn)WqiV

n
)
,

Vn+1 = Vn − ∆t

2
W qi

mi

N(Ξn)�̃1(Ξn)G(Φn+1 + Φn).

When we solve system 1 and 3 together as in Section 6.3, we get the DisGradEC method

with the two subsystems

system 1: Ξ̇ = N(Ξ)>V, V̇ = −W qi
mi

N(Ξ)�̃1(Ξ)Gφ̃, M̃0e
˙̃
φ =

(
N(Ξ)�̃1(Ξ)G

)>
WqiV,

system 2: V̇ = W qi
mi

N(Ξ)B̃(Ξ, b̃0)N(Ξ)>V.

While system 2 can be solved as above, we discretise system 1 analogously to (6.10) yielding

an energy and charge conserving scheme,

Ξn+1 −Ξn

∆t
=

N>(Ξn+1) + N>(Ξn)

2

Vn+1 + Vn

2
,

Vn+1 −Vn

∆t
= W qi

mi

N(Ξn+1) + N(Ξn)

2

1

∆t

∫ tn+1

tn
�̃1(Ξ(τ)) dτG

φ̃
n+1

+ φ̃
n

2
,

M̃0eφ̃
n+1 − M̃0eφ̃

n

∆t
= − 1

∆t
G>
∫ tn+1

tn
�̃1(Ξ(τ))> dτ

N>(Ξn+1) + N>(Ξn)

2
Wqi

Vn+1 + Vn

2
.

15.3 Linearised δf Method

The quasi-neutral model induces major problems with particle noise. Therefore, we rely on

noise reduction techniques to obtain satisfying results even though we loose the conservation

properties.
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In [84, 83], a linear δf method for the quasi-neutral Vlasov system is described based on the

linearised electrostatic Vlasov equation for ions,

d

dt
δf̃i =

∂δf̃i
∂t

+N>(ξ)v · ∇ξδf̃i +
qi
mi

v ×B0 · ∇vδfi = − qi
mi
N(ξ)δẼ · ∇vf0i,

with the equilibrium function

f̃0i(ξ,v) =
n0i

(
√

2πvTx)3
exp

(
−
v2
x + v2

y + v2
z

2v2
Tx

)
.

So, the unperturbed particle characteristics are given as

ξ̇p = N(ξp)vp,

v̇p =
qi
mi

vp ×B0

and the weights for the linear δf̃ method, wp(ξp,vp, t) =
δf̃i(ξp,vp,t)

f̃0i(ξp,vp)
JF (ξp), are updated as

dwp
dt

=
d

dt

δf̃i

f̃0i

JF (ξp) = − qi
mi
N(ξp)δẼ(ξp) · ∇vp f̃0i(ξp,vp)

JF (ξp)

f̃0i(ξp,vp)
. (15.2)

The scalar potential and with it the electric field are still advanced by the quasi-neutrality

equation (14.2).

The linear δf̃ method can be simply integrated in the semi-explicit time stepping schemes

given in Section 15.1 by replacing (15.1) in operator H̃Φ with equation (15.2). In this case,

the weight update can be discretised explicitly in time. In the implicit schemes given in Section

15.2, the use of the linear δf method would break down the antisymmetric structure of the

system leading to a different discretisation of the equations of motion. Therefore, we only use

the linear δf method for the semi-explicit schemes.
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16 Numerical Experiments

16.1 Ion Acoustic Wave

In [84], the setup for a periodic ion acoustic wave is given. This is an electrostatic test case

with constant external magnetic field, B = B0êz, and the following initial distribution:

fi(x,v, t = 0) = (1 + α cos(k · x))
1

(2π)
3
2 v3
T i

exp

(
−1

2

(
v2

v2
T i

))
,x ∈ [0,L],v ∈ R3.

The scalar potential at initial time, Φ(x, t = 0), is calculated from the quasi-neutrality equation

(14.4). We choose the parameters as B0 = 1, α = 0.5, Te = 5, vT i =
√

Ti
mi

=
√

1
1 = 1,

k =
(
0, 0.3, 2π

1000

)>
, Lx = Ly = 2π

0.3 and Lz = 1000. For the numerical resolution, we

take 1,024,000 particles, 2×8×16 grid cells, spline degrees (1, 3, 3) and a time step of ∆t =

0.1. The tolerance of the iterative solvers for the DisGradE method is set to 10−13 and the

tolerance of the PCG solver for the mass matrices is set to 10−14. The tolerance for the

non-linear iteration in DisGradEC is set to 10−10. Note that we normalised to dimensionless

quantities in terms of the ion gyroradius ρi and the ion cyclotron frequency ωci.

Adapting the dispersion relation from (18.22) to this test case and introducing the dimension-

less quantities yields

D(k, ω) = 1 +
Te
Ti

ω√
2kzvT i

[
1 +

∞∑
n=−∞

Z

(
ω − n√
2kzvT i

)
Λn

((
kyvT imi

B0qi

)2
)]

.

For our parameters, we obtain on the one hand ω = 0.0168− 0.0024i and on the other hand

ω = 1.1859 + 0.0i. The former represents an ion acoustic wave with a a damping rate of

γ = −0.0024 and a wave period of T = 2π
0.0168 = 373.86 whereas the latter stands for an

undamped Bernstein wave with a period of T = 2π
1.1859 = 5.2982.

In Figure 25, we see that the damping rate computed by the dispersion relation is only

matched in the beginning. Afterwards, the constant Bernstein wave suppresses further damp-

ing, which is also observed in the paper of Sturdevant et al. [84].

Table 7 Ion acoustic wave: Maximum error in Gauss’ law and in the total energy until time 1000 for the semi-explicit and
implicit time integrators with time step ∆t = 0.1.

Gauss Energy

HS 7.0 · 10−12 6.3 · 10−4

CEF 7.5 · 10−12 3.8 · 10−4

DisGradE 5.1 1.9 · 10−12

DisGradEC 6.1 · 10−12 1.2 · 10−8
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Figure 25 Ion acoustic wave: Scalar potential energy for various integrators with time step ∆t = 0.1 and analytical damping
rate.
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Figure 26 Ion acoustic wave: Energy error for the semi-explicit time integrators with various time steps.

We have started with this periodic 2D test case embedded in 3D on the one hand to compare

to the test case in [84] and on the other hand to show the compatibility of the ansatz with

adiabatic electrons with the structure-preserving framework. In Table 7, we see the maximum

error in Gauss’ law and in the total energy for the different time integrators. As expected, the

semi-explicit HS and CEF schemes as well as the fully implicit DisGradEC method conserve

Gauss’ law whereas the implicit DisGradE and DisGradEC methods conserve the total en-

ergy. We check the error in the total energy and Gauss’ law for different time steps ∆t to

see if the errors are bounded by the time step size. Figure 26 shows the maximum error in

the total energy for the semi-explicit schemes HS and CEF whereas Figure 27b shows the

maximum error in Gauss’ law for the implicit DisGradE scheme. For the DisGradEC method,

the energy error depends on the tolerance of the non-linear iteration and on the time step as

can be seen in Figure 27a.
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Figure 27 Ion acoustic wave: Energy and Gauss’ law error for the implicit time integrators with various time steps.

16.2 Ion Temperature Gradient Instability

The test case for an ion temperature gradient instability (ITG) in slab geometry is taken from

[83]. However, we consider a 3D setting with perfect conductor boundary conditions for the

fields and reflecting particle boundary conditions. In this case, we have to use the linear δf

method reviewed in Section 15.3 to reduce the particle noise. Additionally, we introduce the

field-line-following coordinate R =
(
x+

mivy
qiB0

, y − mivx
qiB0

, z
)>

to obtain an initial steady state

solution of the electrostatic Vlasov equation, where the external magnetic field is given by

B = B0êz.

Then, the initial distribution with a gyrotrope initial perturbation takes the following form:

fi(R,x,v) =

[
1 + α sin

(
πx

Lx

)(
cos(k ·R) +

1

2
cos(k · x) exp

(
−
Ti(Rx)mi(k

2
x + k2

y)

2

))]
f0i(Rx,v),

f0i(Rx,v) =
1(√

2π Ti(Rx)
mi

)3 exp

(
− miv

2

2Ti(Rx)

)
,x ∈ [0,L],v ∈ R3.

The initial scalar potential Φ(x, t = 0) is computed from the quasi-neutrality equation (14.4).

We choose the parameters as α = 0.1, Te = 4,mi = 1,k = (0, 0.2, 0.002)>, Lx = Ly = 2π
ky

and Lz = 2π
kz

. For the numerical resolution, we take Np = 8,192,000 particles, Nx = 8×8×16

grid cells, cubic splines and a time step of ∆t = 0.125. The tolerance of the PCG solver for

the mass matrices is set to 10−14. Note that we normalised to dimensionless quantities in

terms of the ion gyroradius ρi0 =

√
kB T̄imi
qiB0

and the ion cyclotron frequency ωci0 = qiB0

mi
.

Since Sturdevant et al. refer to [76] for the test case, we assume the ion temperature profile

and its gradient to be given as

Ti(Rx) = T̄i

[
1− κTiωTiLx tanh

(
Rx

ωTiLx

)]
, (16.1a)

T ′i (Rx) = − T̄iκTi

cosh2
(

Rx
ωTiLx

) , (16.1b)
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where T̄i = 1 and ωTi , κTi are varied. Note that we have to choose ωTi in such a way that the

temperature profile stays positive. Figure 28 shows the temperature profile and gradient for

various values of κTi and ωT i.
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Figure 28 Temperature profile and gradient for various values of κTi
and ωTi.

The velocity gradient of the initial distribution function f0i, which is used in the linear δf

method, can be computed as

∇vf0i =

(
− miv

Ti(Rx)
+ êy

mi

qiB0

(
miv

2

2Ti(Rx)
− 3

2

)
T ′i (Rx)

Ti(Rx)

)
f0i.

Following [83], we start by approximating the temperature and its gradient with the constant

values at Rx = 0, Ti(Rx = 0) = T̄i = 1 and T ′i (Rx = 0) = −κTi T̄i so that the velocity

gradient simplifies to

∇vf0i =

(
−miv

T̄i
− êy

mi

qiB0

(
miv

2

2T̄i
− 3

2

)
κTi

)
f0i.

Furthermore, these are the same approximations used in Chapter 18 to derive the dispersion

relation (18.22). Then, we compute the growth rates for various choices of κTi from this

dispersion relation,

D =1 +
Te
T̄i

[
1 + ζ0

∞∑
n=−∞

(Z(ζn)Λn(ξ)−

kyκTi
2B0ω

[Z(ζn)Λn(ξ)− 2ζn(1 + ζnZ(ζn))Λn(ξ)− 2ξZ(ζn)Λ′n(ξ)]

)]
,

where ξ =
mik

2
yT̄i

q2
iB

2
0
, ζn = ω−n√

2kz
√

T̄ i
mi

.

In Table 8, we see the analytical growth rates computed from the dispersion relation above

together with the ones obtained from the simulations by fitting growth rates to the curves

during the linear phase. Figure 29 shows the simulation results of the ITG in slab geometry

for the different values of κTi together with the analytical growth rates. All runs are computed
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Table 8 Ion temperature gradient instability in slab geometry: Analytical and simulated growth rates for the approximated and
varying temperature profiles and gradients for different values of κTi.

κTi
Analytical growth rate Simulated growth rate

constant profile constant profile varying profile

0.12 4.3 · 10−3 4.4 · 10−3 3.9 · 10−3

0.10 3.9 · 10−3 3.9 · 10−3 3.7 · 10−3

0.08 3.4 · 10−3 3.4 · 10−3 3.2 · 10−3

0.06 2.8 · 10−3 2.7 · 10−3 2.2 · 10−3

0.04 2.0 · 10−3 1.9 · 10−3 1.3 · 10−3

Figure 29 Ion temperature gradient instability in slab geometry: Scalar potential energy for CEF with time step ∆t = 0.125 for
various values of κTi

with approximated temperature profiles and gradients and analytical growth rates.

with the linear δf method for the approximated temperature profiles and gradients. We show

only the simulation results of the alternative Hamiltonian splitting scheme CEF, since the HS

scheme yields comparable results. The computed growth rates are matched in the linear

phase. However, for values of κTi ≥ 0.1, we see the beginning of a steeper growth after

T = 1200. This can be explained by the interaction with higher modes.
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Figure 30 Ion temperature gradient instability in slab geometry: Scalar potential energy for CEF with time step ∆t = 0.125 for
various values of κTi

and ωTi with varying temperature profiles and gradients and analytical growth rates.

While the simulations with approximated temperature profiles and gradients yield good re-

sults compared to the dispersion relation that used the same approximations, we are also

interested in the results with varying temperature profiles. Figure 30 shows the simulation

of the ITG in slab geometry with the temperature profiles and gradients given in (16.1a) and

(16.1b). All simulations are performed with the linear δf method for the CEF method. We see

that the instability starts later and the growth rate is lower when we use the varying profiles.

As a next step, we want to simulate the ITG on a cylindrical grid. The test case is taken from

[60], where the MEDIUM test case from [20] is simulated, and adapted to our framework. We

still consider an constant external magnetic field in z−direction, B = B0êz, and the initial

distribution is given by

f(r, θ, z,v, t = 0) =

[
1 + α sin

(
π(r − r0)

r1 − r0

)
cos

(
mθ +

n

R0
z

)]
f0i(Rx,v),

(r, θ, z) ∈ [r0, r1]× [0, 2π]× [0, 2πR0],v ∈ R3

with the equilibrium Maxwellian

f0i(Rx,v) =
n0i(Rx)(√
2π Ti(Rx)

mi

)3 exp

(
− miv

2

2Ti(Rx)

)
.
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The parameters are chosen as α = 0.1, Te = Ti,mi = 1, (m,n) = (15, 1), r0 = 0.1, r1 =

14.5, R0 = 239.8081535 and B0 = 1. For the numerical resolution, we take Np = 8,192,000

particles, Nx = 8×16×16 grid cells, cubic splines and a time step of ∆t = 0.1. The tolerance

of the PCG solver for the mass matrices is set to 10−14 and the normalisation to dimen-

sionless quantities is still in terms of the ion gyroradius ρi0 and the ion cyclotron frequency

ωci0.

The profiles for the temperature and the density are given as

Ts(r) = T̄s exp

(
−κTsωTs tanh

(
r − r̄
ωTs

))
, s ∈ {i, e},

n0(r) = n̄0 exp

(
−κn0ωn0 tanh

(
r − r̄
ωn0

))
,

where r̄ = r0+r1
2 and the parameters are chosen as T̄i = 1.0, κTi = 0.27586, ωTi =

1.45, n̄0 = r1−r0∫ r1
r0

exp
(
−κn0ωn0 tanh

(
r−r̄
ωn0

))
dr
≈ 0.99, κn0 = 0.055, ωn0 = 2.9.

The velocity gradient of the initial distribution function f0i can be computed as

∇vf0i =

(
− miv

Ti(Rx)
+ êy

mi

qiB0

[
n′0i(Rx)

n0i(Rx)
+

(
miv

2

2Ti(Rx)
− 3

2

)
T ′i (Rx)

Ti(Rx)

])
f0i.

Analogously to the test case in slab geometry, we approximate the profiles and their gradients

with constant values at r = r̄, Ti(r = r̄) = T̄i = 1, n0(r = r̄) = n̄0 ≈ 0.99, T ′i (r = r̄) =

−κTi T̄i = 0.27586, n′0(r = r̄) = −κn0 n̄0 ≈ 0.054. These approximations are necessary to

use the linear δf method, since we lack a representation of the field-line-following coordinate

Rx in the cylindrical geometry. Figures 31 and 32 show the density and temperature profiles

together with these approximations.

Then, the velocity gradient of the initial distribution function simplifies to

∇vf0i =

(
−miv

T̄i
− êy

mi

qiB0

[
κn0 +

(
miv

2

2T̄i
− 3

2

)
κTi

])
f0i.

In Figure 33, we see the simulation results of the semi-explicit time integrators with time

step ∆t = 0.1. Both simulations are performed with the linear δf method. Fitting a linear

growth rate to the curves yields a growth rate of γ ≈ 0.02 whereas in [60] a growth rate of

γ ≈ 3.8 · 10−3 is computed. This shows that the constant approximations of the density and

temperature profiles and their gradients lead to a higher growth rate.

Since the linear δf simulations of the ITG instability lack conservation properties, the next

goal would be going to full f simulations that yield the conservation properties of our structure-
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Figure 31 Density profile and gradient for the ITG simulation in cylindrical geometry.
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Figure 32 Temperature profile and gradient for the ITG simulation in cylindrical geometry.
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Figure 33 Ion temperature gradient instability in cylindrical geometry: Scalar potential energy for the semi-explicit time
integrators with time step ∆t = 0.1 with approximated density and temperature profiles and gradients.

preserving framework. Therefore, we have to deal with the following challenges:
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• First, we need to investigate different temperature profiles for the ITG in slab geometry.

For example, variation of the parameter ωTi leads to different growth rates.

• Second, we want to verify the growth rates that follow from the varying temperature pro-

files. However, the alterations for the dispersion relation to deal with a varying temperature

profile are not trivial. One solution could be to compare to reference simulations made with

gyrokinetic codes, where dispersion relations already exist for simplified models.

• Last, the problems with the particle noise imply that we need a huge amount of particles

to get the necessary resolution for the instability to happen. We have to try out different

amounts of particles unless we find a way to verify the conservation properties with δf

methods.

For the ITG in cylindrical geometry, the additional problem arises that we need to find a

field-line-following coordinate Rx so that f0(Rx,v) is an steady state solution of the Vlasov

equation. A solution for the δf method is described in [44, Sec.5], where an extra source

term is used to account for the case when f0 is not an kinetic equilibrium. Moreover, we lack

a dispersion relation for cylindrical coordinates so that we rely on reference solutions and the

computed growth rates of gyrokinetic models.
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Part IV

Physical Units and Dispersion Relation
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17 Normalisation

17.1 Vlasov–Maxwell Equations in SI Units

In SI units the Vlasov equation for particle species s is given as

∂tfs + v · ∇xfs +
qs
ms

(E + v ×B) · ∇vfs = 0 (17.1)

and Maxwell’s equations as

∇×E = −∂B

∂t
, (17.2a)

∇×B = µ0

(
J + ε0

∂E

∂t

)
, (17.2b)

∇ ·E =
ρ

ε0
, (17.2c)

∇ ·B = 0. (17.2d)

The equations are coupled by the source terms, namely the charge

ρ =
∑
s

q

∫
fs dv

and the current

J =
∑
s

q

∫
vfs dv.

The total energy of the system is given by the Hamiltonian in SI units,

H =
∑
s

ms

2

∫
|v|2fs dx dv +

ε0

2

∫
‖E‖2 dx +

1

2µ0

∫
‖B‖2 dx. (17.3)

17.2 Physical Parameters of a Plasma

In the following, we use a number of physical constants:

• Vacuum permeability µ0 = 1.2566370621219 ∗ 10−6 N
A2 ,

• Vacuum permittivity ε0 = 8.854187812813 ∗ 10−12 As
V m ,

• Boltzmann constant κB = 1.380649 ∗ 10−23 J
K ,

• Elementary charge q = 1.602176634 ∗ 10−19C,

• Electron mass me = 9.109383701528 ∗ 10−31kg,

• Proton mass mp = 1.6726219236951 ∗ 10−27kg,
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• Neutron mass mn = 1.6749274980495 ∗ 10−27kg.

A plasma, which consist of ionised particles, is characterised by the temperature T , density n

and mass m of the negative charged electrons and the positive charged ion kernels. Mostly,

we consider electrons and ions with the same temperature and density, Ti = Te = TK , ne =

ni = n. Although the SI unit for the temperature Tk is Kelvin, we usually give the energy TE
instead, which is calculated from the temperature via the formula TE = TkkB . Furthermore,

the energy is often given in electron volt, which has the value of the elementary charge,

1ev = 1.602176634 ∗ 10−19J .

Since the plasma in the fusion reactor consists of Deuterium and Tritium, we assume that the

ion mass is given by the sum of the mass of one proton and one neutron, which build the

kernel of Deuterium. It is quite common not to use the real mass ratio from electrons and

ions, which is denoted as M = mi/me = 3670.5, but to set an artificial value, for example

M = 200. We will see the practicality of this setting later on.

Additionally, we need the initial magnetic field B to compute the following simulation parame-

ters:

• Thermal velocity
[
m
s

]
: vTs =

√
kBTs
ms

,

• Plasma frequency
[
s−1
]

: ωps =
√

nsq2
s

ε0ms
,

• Debye length [m] : λDs = vTe
ωps

=
√

ε0kBTs
nsq2

s
,

• Cyclotron frequency
[
s−1
]

: ωcs = |qs|B
ms

,

• Gyroradius [m] : ρs = vTs
ωcs

=
√
kBTsms
|qs|B ,

• Plasma beta
[

NJ
A2m3T 2

]
: βs = µ0nsTskB

B2 .

In Table 9, we state the parameters from above for the specific settings of different fusion

devices.

17.3 Dimensionless Parameters

For numerical simulations, the equations are normalised such that the resulting dimension-

less quantities are of order one. For the normalisation, the following quantities are fixed: nref ,

Tref , mref , qref and ωref or Lref . First, the species, ions or electrons, is chosen and then,

the frequency or length such as the cyclotron frequency and the gyroradius or the plasma

frequency and the Debye length.

From these initial values, we define the following quantities:

• The reference velocity vref =
√

TrefkB
mref

,
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Table 9 Parameters for different fusion devices.

Devices Wendelstein 7x Asdex Upgrade ITER

Major radius R0[m] 5.5 1.6 6.2

Minor radius a[m] 0.53 0.8 2.0

Magnetic field B[T ] 2.5 3.9 5.3

Average particle density n[m−3] 1.89 · 1020 2.0 · 1020 1.0 · 1020

Average thermal energy T [keV ] 5.0 8.7 8.8, 8.0

Thermal velocity
vTe[ms

−1] 3 · 107 3.9 · 107 3.9 · 107

vT i[ms
−1] 4.9 · 105 6.5 · 105 6.2 · 105

Larmor radius
ρe[m] 6.7 · 10−5 5.7 · 10−5 4.0 · 10−5

ρi[m] 4.1 · 10−3 3.5 · 10−3 2.4 · 10−3

Cyclotron frequency
ωce[s

−1] 4.4 · 1011 6.9 · 1011 9.3 · 1011

ωci[s
−1] 1.2 · 108 1.9 · 108 2.5 · 108

Debye length
λDe[m] 3.8 · 10−5 4.9 · 10−5 7.0 · 10−5

λDi[m] 3.8 · 10−5 4.9 · 10−5 6.6 · 10−5

Plasma frequency
ωpe[s

−1] 7.8 · 1011 8.0 · 1011 5.6 · 1011

ωpi[s
−1] 1.3 · 1010 1.3 · 1010 9.3 · 109

• The reference length or frequency Lref = vref
ωref

, ωref = vref
Lref

,

• The reference epsilon εref =
q2
refnref

ω2
refmref

,

• The reference beta βref = µ0ε0v
2
ref .

There are two obvious choices for the reference frequency, either the plasma frequency or

the gyrofrequency. For the choice ωref = ωps, we get εref = q2
sns

ω2
psms

= ε0 and it follows

that βref =
µ0v2

Tsqsns
ω2
psms

, s = e, i. On the other hand, if we choose ωref = ωcs, we get βref =

µ0kBTsns
B2 = βs, s = e, i, which is the definition of the plasma beta.

Based on the reference values, we define the following rescaled quantities:

• T̂s = kBTs
Tref

, q̂s = qs
qref

, m̂s = ms
mref

, n̂s = ns
nref

, s = i, e,

• t̂ = tωref , L̂ = L
Lref

, x̂ = x
Lref

, k̂ = kLref , v̂ = v
vref

,

• f̂ =
v3
ref
nref

f , ρ̂ = ρ
qrefnref

, Ĵ = J
nrefvrefqref

,
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• φ̂ = qref
Tref

φ, Ê = Lref

v2
ref

qref
mref

E, B̂ = Lref
vref

qref
mref

B,

• Ĥ =
ω3

ref

mrefv
5
refnref

H.

17.3.1 Vlasov-Maxwell System

Proposition 17.1. The dimensionless Vlasov–Maxwell system takes the following form:

∂t̂f̂s + v̂ · ∇x̂f̂s +
q̂

m̂

(
Ê + v̂ × B̂

)
· ∇v̂f̂s = 0,

∂B̂

∂t̂
= −∇x̂ × Ê, ∇x̂ · Ê =

εref

ε0
ρ̂,

∂Ê

∂t̂
=

1

βref
∇x̂ × B̂− εref

ε0
Ĵ, ∇x̂ · B̂ = 0

with the source terms

ρ̂ =
∑
s

q̂s

∫
f̂s dv̂, Ĵ =

∑
s

q̂s

∫
v̂f̂s dv̂.

Proof. First, we rescale the Vlasov equation in SI units (17.1) with the dimensionless quanti-

ties. Note that we can approximate the partial derivatives as

∂g

∂t
=
gn+1 − gn

∆t
, ∇xg =

gn+1 − gn

∆x
, ∇vg =

gn+1 − gn

∆v
,

which leads to the scaling ∂t = ∂t̂ωref ,∇x = ∇x̂L
−1
ref ,∇v = ∇v̂v

−1
ref . Then, the Vlasov

equation can be written as

nrefωref

v3
ref

∂t̂f̂s +
nrefvref

v3
refLref

v̂ · ∇x̂f̂s +
nref

v3
refvref

qref

mref

q̂s
m̂s

(
v2

ref

Lref

mref

qref
Ê + vref

vref

Lref

mref

qref
v̂ × B̂

)
· ∇v̂f̂s = 0.

Next, we multiply the equation with v3
ref

nrefωref
and use the definition ωref = vref

Lref
to get the

dimensionless Vlasov equation

∂t̂f̂s + v̂ · ∇x̂f̂s +
q̂s
m̂s

(
Ê + v̂ × B̂

)
· ∇v̂f̂s = 0.

Additionally, we review the definition of the source terms,

ρ =
∑
s

qref q̂s

∫
nref

v3
ref

f̂sv
3
ref dv̂, J =

∑
s

qref q̂s

∫
vref

nref

v3
ref

v̂f̂s dv̂.
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We see that the definition of the dimensionless source terms as ρ̂ = 1
qrefnref

ρ, Ĵ = 1
qrefnrefvref

J

is the obvious choice.

Second, we consider the electric Gauss law (17.2b) with dimensionless variables,

v2
refmref

L2
refqref

∇x̂ · Ê =
qrefnref

ε0
ρ̂.

In this case, we use εref =
q2
refnref

ω2
refmref

and are left with the factor εref
ε0

,

∇x̂ · Ê =
q2

refnref

ω2
refmrefε0

ρ̂ =
εref

ε0
ρ̂.

Since the right-hand side of the magnetic Gauss law (17.2d) equals zero, this equation scales

perfectly,

L−1
ref

vref

Lref

mref

qref
∇x̂ · B̂ = 0

⇔ ∇x̂ · B̂ = 0.

In Faraday’s law (17.2c) the partial time and position derivatives cancel out together with the

normalisation factors of the electric and magnetic field,

L−1
ref

v2
ref

Lref

mref

qref
∇x̂ × Ê = −ωref

vref

Lref

mref

qref

∂B̂

∂t̂
.

We multiply both sides with qrefL
2
ref

mrefv
2
ref

and obtain

∇x̂ × Ê = − ∂B̂

∂t̂
.

Last, we insert the dimensionless quantities in Ampère’s law (17.2a),(
vrefmref

L2
refqref

)
∇x̂ × B̂ = µ0

(
nrefvrefqref Ĵ + ε0

v2
refmrefωref

Lrefqref

∂Ê

∂t̂

)
.

We multiply both sides with L2
refqref

v2
refmref

and use the εref and ωref definitions from above to get

∇x̂ × B̂ =

(
L2

refqref

vrefmref

)
µ0

(
εref

v3
refmref

L2
refqref

Ĵ + ε0
v3

refmref

L2
refqref

∂Ê

∂t̂

)

⇔ ∇x̂ × B̂ = µ0v
2
refε0

(
εref

ε0
Ĵ +

∂Ê

∂t̂

)
.
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Then, we solve for the time derivative of the electric field and introduce the reference beta

βref = µ0ε0v
2
ref ,

1

βref
∇x̂ × B̂− εref

ε0
Ĵ =

∂Ê

∂t̂
.

Proposition 17.2. The dimensionless Hamiltonian takes the following form:

Ĥ =
∑
s

m̂s

2

∫
|v̂|2f̂s dx̂ dv̂ +

ε0

εref

1

2

∫
‖Ê‖2 dx̂ +

1

µεrefv
2
ref

1

2

∫
‖B̂‖2 dx̂.

Proof. We insert the dimensionless quantities in the Hamiltonian in SI units (17.3),

H =
∑
s

mrefm̂s

2

∫
v2

ref |v̂|2
nref

v3
ref

f̂sL
3
ref dx̂v3

ref dv̂

+
ε0

2

∫ (
v2

refmref

Lrefqref

)2

‖Ê‖2L3
ref dx +

1

2µ0

∫ (
vrefmref

Lrefqref

)2

‖B̂‖2L3
ref dx̂.

Multiplying the equation with ω3
ref

mrefv
5
refnref

yields

Ĥ =
∑
s

ω3
ref

mrefv
5
refnref

mrefL
3
refv

2
refnref

m̂s

2

∫
|v̂|2f̂s dx̂ dv̂

+
ω3

ref

mrefv
5
refnref

ε0v
4
refLrefm

2
ref

q2
ref

1

2

∫
‖Ê‖2 dx +

ω3
ref

mrefv
5
refnref

v2
refLrefm

2
ref

µ0q2
ref

1

2

∫
‖B̂‖2 dx̂.

Last, we use the definition of ωref and εref to obtain

Ĥ =
∑
s

m̂s

2

∫
|v̂|2f̂s dx̂ dv̂ +

ε0

εref

1

2

∫
‖Ê‖2 dx̂ +

1

µεrefv
2
ref

1

2

∫
‖B̂‖2 dx̂.

17.3.2 Quasi-neutral Vlasov System

Proposition 17.3. The coupling of the Vlasov equation (17.1) with the quasi-neutrality equa-

tions (14.1) and (14.2) rescales perfectly to dimensionless quantities.

Proof. We have already shown that the Vlasov equation rescales perfectly. Hence, we only

consider the quasi-neutrality equations and its Hamiltonian. Let us start with the quasi-

neutrality equations in SI units,

q2ne
Te

φ = ρ− qne,
q2ne
Te

∂tφ = −∇x · J.
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When we insert the dimensionless variables, we see that both equations scale perfectly,

q2
refnref

Tref

Tref

qref

q̂2n̂e

T̂e
φ̂ = qrefnref ρ̂− q̂qref n̂enref ,

⇔ q̂2n̂e

T̂e
φ̂ = ρ̂− q̂n̂e,

q2
refnref

Tref

Tref

qref
ωref

q̂2n̂e

T̂e
∂t̂φ̂ = −L−1

refnrefvrefqref∇x̂ · Ĵ,

⇔ q̂2n̂e

T̂e
∂t̂φ̂ = −∇x̂ · Ĵ.

Then, we look at the total energy for the system and insert the dimensionless quantities,

H =
∑
s

ms

2

∫
|v|2fs dx dv +

1

2

∫
q2ne
Te
‖Φ‖2 dx

=
∑
s

mrefm̂s

2

∫
v2

ref |v̂|2
nref

v3
ref

f̂sL
3
ref dx̂v3

ref dv̂ +
1

2

∫
q2

refnref

Tref

q̂2n̂e

T̂e

T 2
ref

q2
ref

‖φ̂‖2L3
ref dx̂.

We multiply the equation with ω3
ref

mrefv
5
refnref

and use the definition of ωref and Ĥ from above as

well as the fact that we can write Tref as v2
refmref to obtain

Ĥ =
∑
s

ω3
ref

mrefv5
refnref

mrefL
3
refv

2
refnref

m̂s

2

∫
|v̂|2f̂s dx̂ dv̂ +

ω3
ref

mrefv5
refnref

nrefTrefL
3
ref

∫
q̂2n̂e

T̂e
‖φ̂‖2dx̂

=
∑
s

m̂s

2

∫
|v̂|2f̂s dx̂ dv̂ +

1

2

∫
q̂2n̂e

T̂e
‖φ̂‖2dx̂.
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18 Dispersion Relation

18.1 Linearised Vlasov Equation

In this section, we search for analytical solutions of a simplified Vlasov–Maxwell system.

Proposition 18.1. The linearised Vlasov equation takes the following form:

∂δf

∂t
+ v · ∇xδf +

q

m
(E0 + v ×B0) · ∇vδf = − q

m
(δE + v × δB) · ∇vf0. (18.1)

Proof. We look for a normalised steady state solution f0(x,v) of the collisionless Vlasov

equation,

∂f0

∂t
+ v · ∇xf0 +

q

m
(E0 + v ×B0) · ∇vf0 = 0

⇔ v · ∇xf0 = − q

m
(E0 + v ×B0) · ∇vf0.

Lemma 18.2. Assuming zero steady state fields, a Maxwellian distribution in v is an equilib-

rium function for the Vlasov equation,

f0(v) =
n0

(
√

2π)3vTxvTyvTz
exp

(
−1

2

(
(vx − v̄x)2

v2
Tx

+
(vy − v̄y)2

v2
Ty

+
(vz − v̄z)2

v2
Tz

))
. (18.2)

Proof. The steady state electric field satisfies Gauss’ law,

∇ ·E0 = q

(∫
f0 dv − n0

)
= 0,

where n0 =
∫
f0 dv. Hence, E0 is a constant and we have chosen it to be zero. Since

we assumed that the magnetic field B0 equals zero as well, it follows that v · ∇xf0 = 0.

Therefore, the equilibrium function only depends on v. Last, we want f0 to be normalised in

the sense that
∫
f0(v) dv = 1. Thus, the Maxwellian distribution is a feasible choice for the

steady state solution of the Vlasov equation.

Lemma 18.3. Considering only a magnetic steady state field, the equilibrium function can be

written as

f0(v⊥, v‖) =
n0(√

2π
)3
v2
T⊥
vT‖

exp

(
−

v2
⊥

2v2
T⊥

−
v2
‖

2v2
T‖

)
. (18.3)

Proof. Without loss of generality, we assume that the background field lies in z-direction,
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B0 = êzB0. Then, we choose the following cylindrical coordinates for the velocity:

v = (v⊥ sin(θ), v⊥(cos(θ), v‖)
>

and compute

(v ×B0) · ∇f0(v⊥, v‖) =


v⊥ cos θ

−v⊥ sin θ

0


·


−v⊥ sin θ

vT⊥

−v⊥ cos θ
vT⊥

− v‖
vT‖


B0f0 = 0.

Consequently, we have

v · ∇xf0 = v ×B0 · ∇vf0 = 0,

which shows that f0(v⊥, v‖) is a steady state solution of the Vlasov equation.

Lemma 18.4. When the density, N(Rx), or the temperature, T (Rx), are position dependent,

an equilibrium function is given by

f0(N,T,K) =
N(Rx)(√
2π T (Rx)

mi

)3 exp

(
− K(v)

T (Rx)

)
. (18.4)

Proof. Assuming that the electric field E0 still equals zero, we obtain from the steady state

equation that

v · ∇xf0 = − q

m
v ×B0 · ∇vf0.

Without loss of generality, we assume that the magnetic field lies in the z-direction, B0 =

êzB0. Let us introduce the kinetic energyK = mv2

2 and the new field-line-following coordinate

R = (x +
vy
Ω0
, y − vx

Ω0
, z)>, where Ω0 = qB0

m denotes the gyrofrequency of the background

field. Note that for B0 →∞ this system converges to the guiding centre model.

Then, we perform a linear Taylor expansion of f0 in x,

f0(Rx,v) = f0(x,v) +
vy
Ω0

∂f0(x,v)

∂x
+O

((
vy
Ω0

)2
)
,

to show that the Maxwellian is still normalised,∫
f0(Rx,v) dv =

∫
f0(x,v) dv +

∫
vy
Ω0

∂f0(x,v)

∂x
dv = n0(x).
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The partial derivatives of the distribution function are computed as

∂vxf0(Rx,K) = − vxm
T (x)

f0(x,v), ∂vzf0(Rx,K) = − vzm
T (x)

f0(x,v),

∂vyf0(Rx,K) = − vym
T (x)

f0(x,v) +
∂xf0(x,v)

Ω0
,

∂xf0(x,v) =
∂f0

∂N

∂N

∂x
+
∂f0

∂T

∂T

∂x
=

[
d

dxn0(x)

n0(x)
+

(
mv2

2T (x)
− 3

2

) d
dxT (x)

T (x)

]
f0(x).

Next, we insert the computed derivatives into the condition for the steady state solution and
obtain

vx∂xf0(x,v) =v · ∇xf0(Rx,K) = − q

m
v ×B0 · ∇vf0(Rx,K) = − q

m
(vyB0∂vxf0 − vxB0∂vyf0)

=
q

m

(
vxmvyB0

T (x)
f0(x,v)− vymvxB0

T (x)
f0(x,v) + vxB0

∂xf0(x,v)

Ω0

)
= vx∂xf0(x,v).

Let us consider a small perturbation of the equilibrium state for the fields and the particle

distribution function, f = f0+εδf,E = E0+εδE,B = B0+εδB and insert this representation

into the Vlasov equation,

∂(f0 + εδf)

∂t
+ v · ∇x(f0 + εδf) +

q

m
((E0 + εδE)v × (B0 + εδB) · ∇v(f0 + δf) = 0.

Then, we use the fact that f0 is a steady state solution and expand the terms to

ε

(
∂δf

∂t
+ v · ∇xδf +

q

m
(E0 + v ×B0) · ∇vδf + ε

q

m
(δE + v × δB) · ∇vδf

)
= −ε q

m
(δE + v × δB) · ∇vf0.

Keeping only linear terms in ε leads to (18.1).

18.2 Transformed Field Equations

Proposition 18.1. The Fourier–Laplace transformed Maxwell equations take the following

form:

δ̂B =
k× δ̂E
ω

, (18.5a)

µ0ε0ω
2δ̂E− k2δ̂E + k(k · δ̂E) = −iµ0ωδ̂J, (18.5b)

k · δ̂E = −i δ̂ρ
ε0
,

k · δ̂B = 0,
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Proof. Let us take a look at Maxwell’s equations,

µ0ε0
∂E

∂t
= ∇x ×B− µ0J, ∇x ·E =

ρ

ε0
,

∂B

∂t
= −∇x ×E, ∇x ·B = 0.

We linearise Maxwell’s equations and take the Fourier–Laplace ansatz from (A.1) for the

perturbed fields,

δE(x, t) =

∫
δ̂E(k, ω) exp (−iωt+ ik · x) dk dω,

δB(x, t) =

∫
δ̂B(k, ω) exp (−iωt+ ik · x) dk dω.

Inserting this ansatz into the linearised equations leads to

ωδ̂B = k× δ̂E, (18.6a)

µ0ε0ωδ̂E = −k× δ̂B− iµ0δ̂J, (18.6b)

k · δ̂E = −i δ̂ρ
ε0
,

k · δ̂B = 0.

We use Faraday’s equation (18.6a) to cancel out δ̂B in the Ampère equation (18.6b). This

gives us

µ0ε0ωδ̂E = −k× 1

ω
(k× δ̂E)− iµ0δ̂J,

⇔ µ0ε0ω
2δ̂E− k2δ̂E + k(k · δ̂E) = −iµ0ωδ̂J,

where we denote k · k as k2.

The source terms are defined as

δ̂J = q

∫
vδ̂fv, δ̂ρ = q

∫
δ̂fv.

Proposition 18.2. The transformed Poisson equation is given by

k2δ̂Φ =
δ̂ρs
ε0
. (18.7)
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Proof. The Poisson equation for one species s has the following form:

−∇ · ∇Φ =
qs
ε0

(∫
δfs dv − n0

)
.

It is linearised as

k2δ̂Φ =
qs
ε0

∫
δ̂fs dv,

where we inserted the Fourier–Laplace ansatz from (A.1) for the scalar potential and the

distribution function,

fs(x, t) =

∫
δ̂fs(k, ω) exp (−iωt+ ik · x) dk dω,

δΦ(x, t) =

∫
δ̂Φ(k, ω) exp (−iωt+ ik · x) dk dω.

Here, the charge density term is defined as

δ̂ρs = qs

∫
δ̂fsv. (18.8)

Proposition 18.3. The transformed quasi-neutrality equations are given by

q2n0eδ̂Φ

Te
= δ̂ρi, (18.9)

ω
q2n0eδ̂Φ

Te
= k · δ̂Ji.

Proof. The quasi-neutrality equations have the following form:

q2n0eΦ

Te
= qi

∫
fi dv + qen0e,

q2n0e

Te

∂Φ

∂t
= −∇ ·

(
qi

∫
vfi dv

)
,

where we assume n0e = n0i = n0.

For the background potential, we obtain

Φ0 =
Te
qn0

(∫
f0 dv − n0

)
= 0.
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Then, the linearised quasi-neutrality equations take the following form:

q2n0δ̂Φ

Te
= qi

∫
δ̂f i dv,

−iω q
2n0δ̂Φ

Te
= −ik ·

(
qi

∫
vδ̂f i dv

)
,

where we used the Fourier–Laplace ansatz from (A.1),

fi(x, t) =

∫
δ̂f i(k, ω) exp (−iωt+ ik · x) dk dω,

δΦ(x, t) =

∫
δ̂Φ(k, ω) exp (−iωt+ ik · x) dk dω.

The source terms are defined as

δ̂Ji = qi

∫
vδ̂f iv, δ̂ρi = qi

∫
δ̂f iv.

18.3 1D Dispersion Relation

In this chapter, we consider a one dimensional (1D) plasma wave without background fields,

i.e. E0 = B0 = 0. Without loss of generality we assume k = (k, 0, 0)>. For the perturbed

quantities we consider the Fourier and Laplace transformations introduced in (A.1),

δf(x, t) =

∫
δ̂f(k, ω) exp (−iωt+ ikx) dk dω,

δΦ(x, t) =

∫
δ̂Φ(k, ω) exp (−iωt+ ikx) dk dω,

δE(x, t) =

∫
δ̂E(k, ω) exp (−iωt+ ikx) dk dω,

δB(x, t) =

∫
δ̂B(k, ω) exp (−iωt+ ikx) dk dω.

Inserting this representation into (18.1) and solving for δ̂f leads to

δ̂f = i
q

m

δ̂E + v × δ̂B
kvx − ω

· ∇vf0. (18.10)

18.3.1 Electrostatic Dispersion

A general formulation of this setting can be found in [78, Sec. 3.3].

Proposition 18.1. In an electrostatic setting, the linearised 1D charge density for a species
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s is computed as

δ̂ρs = −δ̂Φ q2n0s

msv2
Ts

[1 + ζsZ(ζs)] , (18.11)

where ζs = ω−kv̄x
k
√

2vTs
.

Proof. We consider an electrostatic setting, where δB = 0 and δE = −∇xδΦ. For the

Fourier–Laplace coefficients, this gives us

δ̂E = −ikδ̂Φ.

Then, the representation of δ̂f in (18.10) simplifies to

δ̂f =
q

m

kδ̂Φ

kvx − ω
∂vxf0.

Inserting this representation into (18.8) yields the linearised charge density,

δ̂ρs =
q2

ms

∫
kδ̂Φ

kvx − ω
∂vxf0 dv.

Next, we insert the equilibrium function f0s(v) from (18.2) adapted to 1D,

δ̂ρs = −δ̂Φ q2n0s

msv2
Ts

∫
k(vx − v̄x)

kvx − ω
1√

2πvTs
exp

(
−(vx − v̄x)2

2v2
Ts

)
dvx.

Afterwards, we substitute vx − v̄x =
√

2vTsσ,

δ̂ρs = −δ̂Φ q2n0s

msv2
Ts

1√
π

∫
σ

σ − ω−kv̄x
k
√

2vTs

exp
(
−σ2

)
dσ.

Finally, we set ζs = ω−kv̄x
k
√

2vTs
and expand the integral to

δ̂ρs = −δ̂Φ q2n0s

msv2
Ts

[
1 + ζs

1√
π

∫
exp

(
−σ2

)
σ − ζs

dσ

]
.

Then, we use Definition A.2 of the Zeta function to obtain the proposition.

Corrolary 18.2. The dispersion relation of the 1D Vlasov–Poisson system for a species s
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takes the following form with ζs = ω−kv̄x
k
√

2vTs
:

D(k, ω) = 1 +
ω2
ps

k2v2
Ts

[1 + ζsZ(ζs)] . (18.12)

Proof. In this case, we couple the electrostatic Vlasov equation to the Poisson equation.

Thus, we insert the representation of δ̂ρs given by (18.11) into the linearised Poisson equation

(18.10),

k2δ̂Φ = −δ̂Φ q2n0s

ε0msv2
Ts

[1 + ζsZ(ζs)] .

Then, we solve for the form D(k, ω)δ̂Φ = 0 and use the definition of the plasma frequency,

ωps =
√

q2n0s

msε0
, to obtain

(
1 +

ω2
ps

k2v2
Ts

[1 + ζsZ(ζs)]

)
δ̂Φ = 0.

Corrolary 18.3. The multispecies dispersion relation of the 1D Vlasov–Poisson system is

given by

D(k, ω) = 1 +
ω2
pe

k2v2
Te

[1 + ζeZ(ζe)] +
ω2
pi

k2v2
T i

[1 + ζiZ(ζi)]

with ζe = ω−kv̄x
k
√

2vTe
, ζi = ω−kv̄x

k
√

2vTi
.

Proof. We take the dispersion relation for one species (18.12) and set f = fe + fi.

Corrolary 18.4. The dispersion relation of the 1D quasi-neutral Vlasov system takes the

following form with ζi = ω−kv̄i
k
√

2vTi
:

D(k,w) = 1 +
Ten0i

Tin0e
[1 + ζiZ(ζi)] . (18.13)

Proof. For this system, we couple the electrostatic Vlasov equation for ions with the quasi-

neutrality equations. Therefore, we insert the representation of δ̂ρi taken from (18.11) into

the linearised quasi-neutrality equation (18.9),

q2n0eδ̂Φ

Te
= −δ̂Φ q2n0i

miv2
T i

[1 + ζiZ(ζi)] .
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Then, we solve for the form D(k, ω)δ̂Φ = 0,(
1 +

Ten0i

Tin0e
[1 + ζiZ(ζi)]

)
δ̂Φ = 0.

18.3.2 Electromagnetic Dispersion

Proposition 18.5. The dispersion relation of the 1D Vlasov–Maxwell system takes the fol-

lowing form:

det (D(k, ω)) = Dxx(k, ω)Dyy(k, ω)Dzz(k, ω) (18.14)

with ζ = ωx
k
√

2vTx
and

Dxx(k, ω) = 1 + 2
ω2
p

ω2
ζ2[1 + ζZ(ζ)],

Dyy(k, ω) = 1− k2

µ0ε0ω2
+
ω2
p

ω2

(
v2
Ty

v2
Tx

[1 + ζZ(ζ)]− 1

)
,

Dzz(k, ω) = 1− k2

µ0ε0ω2
+
ω2
p

ω2

(
v2
Tz

v2
Tx

[1 + ζZ(ζ)]− 1

)
.

Proof. We couple the Vlasov equation to Maxwell’s equations via the source terms

ρ =
∑
s

qs

∫
f dv, J =

∑
s

qs

∫
fv dv.

First, we substitute δ̂B in (18.10) via (18.5a),

δ̂f = i
q

m

δ̂E + v × k×δ̂E
ω

kvx − ω
· ∇vf0.

Second, we insert this representation of δf into the linearised Ampère equation (18.5b),

(µ0ε0ω
2 − k2)δ̂E + k(k · δ̂E)− ωµ0

q2

m

∫
δ̂E + v × k×δ̂E

ω

kvx − ω
· ∇vf0v dv = 0.

Then, we reformulate v × k×δ̂E
ω as (v · δ̂E)k

ω − (v · k) δ̂Eω and insert our choice for the wave

Geometric PIC Methods on Mapped Grids 138



vector, k = (k, 0, 0)>,
ω2δ̂Ex(

ω2 − k2

µ0ε0

)
δ̂Ey(

ω2 − k2

µ0ε0

)
δ̂Ez


− ω

k

q2

mε0

∫
v

vx − ω
k


δ̂Ex + k

ω (vy δ̂Ey + vz δ̂Ez)

(1− k
ωvx)δ̂Ey

(1− k
ωvx)δ̂Ez


·


∂vxf0

∂vyf0

∂vzf0


dv = 0.

The system can be written as

D(k, ω)δ̂E = 0.

Thus, we need to compute the determinant of the matrix D(k, ω) to find a solution for k and

ω. To simplify the expression, we assume v̄ = 0 and introduce the representation of the

equilibrium function f0(v) from (18.2) to compute the velocity gradient in the matrix entries,

Dxx = ω2 +
ω

k
ω2
p

∫
vx

vx − ω
k

vx
v2
Tx

e
− 1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

)

(
√

2π)3vTxvTyvTz
dv,

Dxy =
ω

k
ω2
p

∫
vx

vx − ω
k

(
k
ωvx

v2
Tx

+
1− k

ωvx

v2
Ty

)
vy

e
− 1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

)

(
√

2π)3vTxvTyvTz
dv,

Dxz =
ω

k
ω2
p

∫
vx

vx − ω
k

(
k
ωvx

v2
Tx

+
1− k

ωvx

v2
Tz

)
vz

e
− 1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

)

(
√

2π)3vTxvTyvTz
dv,

Dyx =
ω

k
ω2
p

∫
vy

vx − ω
k

vx
v2
Tx

e
− 1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

)

(
√

2π)3vTxvTyvTz
dv,

Dyy = ω2 − k2

µ0ε0
+
ω

k
ω2
p

∫
v2
y

vx − ω
k

(
k
ωvx

v2
Tx

+
1− k

ωvx

v2
Ty

)
e
− 1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

)

(
√

2π)3vTxvTyvTz
dv,

Dyz = Dzy =
ω

k
ω2
p

∫
vy

vx − ω
k

(
k
ωvx

v2
Tx

+
1− k

ωvx

v2
Tz

)
vz

e
− 1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

)

(
√

2π)3vTxvTyvTz
dv,

Dzx =
ω

k
ω2
p

∫
vz

vx − ω
k

vx
v2
Tx

e
− 1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

)

(
√

2π)3vTxvTyvTz
dv,

Dzz = ω2 − k2

µ0ε0
+
ω

k
ω2
p

∫
v2
z

vx − ω
k

(
k
ωvx

v2
Tx

+
1− k

ωvx

v2
Tz

)
e
− 1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

)

(
√

2π)3vTxvTyvTz
dv.
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Using (A.5b), we compute

∫ ∞
−∞

vy
e
− 1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

)

(
√

2π)3vTxvTyvTz
dvy =

∫ ∞
−∞

vz
e
− 1

2

(
v2
x

v2
Tx

+
v2
y

v2
Ty

+
v2
z

v2
Tz

)

(
√

2π)3vTxvTyvTz
dvz = 0

to see that all off-diagonal entries of the matrix equal zero. Therefore, the determinant of the

matrix breaks down to the product of the diagonal entries,

det (D(k, ω)) = Dxx(k, ω)Dyy(k, ω)Dzz(k, ω) = 0.

Then, we use (A.5c) to compute

∫ ∞
−∞

v2
y

e
− 1

2

v2
y

v2
Ty

(
√

2π)vTy
dvy = v2

Ty,

∫ ∞
−∞

v2
z

e
− 1

2

v2
z

v2
Tz

(
√

2π)vTz
dvz = v2

Tz

and obtain the following diagonal entries:

Dxx(k, ω) = ω2 +
ω

k
ω2
p

∫
v2
x

vx − ω
k

1

v2
Tx

e
− 1

2

v2
x

v2
Tx

√
2πvTx

dvx,

Dyy(k, ω) = ω2 − k2

µ0ε0
+ ω2

p

∫
1

vx − ω
k

(
vx
v2
Tx

+
ω
k − vx
v2
Ty

)
v2
Ty

e
− 1

2

v2
x

v2
Tx

√
2πvTx

dvx,

Dzz(k, ω) = ω2 − k2

µ0ε0
+ ω2

p

∫
1

vx − ω
k

(
vx
v2
Tx

+
ω
k − vx
v2
Tz

)
v2
Tz

e
− 1

2

v2
x

v2
Tx

√
2πvTx

dvx.

Next, we substitute vx =
√

2vTxσ to solve the integral over vx,

Dxx(k, ω) = ω2 + 2
ω

k
√

2vTx
ω2
p

∫
σ2

σ − ω
k
√

2vTx

e−σ
2

√
π

dσ

Dyy(k, ω) = ω2 − k2

µ0ε0
+ ω2

pv
2
Ty

∫
1

σ − ω
k
√

2vTx

(
σ

v2
Tx

+

ω
k
√

2vTx
− σ

v2
Ty

)
e−σ

2

√
π

dσ,

Dzz(k, ω) = ω2 − k2

µ0ε0
+ ω2

pv
2
Tz

∫
1

σ − ω
k
√

2vTx

(
σ

v2
Tx

+

ω
k
√

2vTx
− σ

v2
Tz

)
e−σ

2

√
π

dσ.
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Last, we expand these integrals and introduce ζ = ω
k
√

2vTx
,

Dxx(k, ω) = ω2 + 2ζω2
p

[
0 + ζ

(
1 +

ζ√
π

∫
e−σ

2

σ − ζ
dσ

)]

Dyy(k, ω) = ω2 − k2

µ0ε0
+ ω2

p

[
v2
Ty

v2
Tx

(
1 +

ζ√
π

∫
e−σ

2

σ − ζ
dσ

)

+

(
ζ√
π

∫
e−σ

2

σ − ζ
dσ −

(
1 +

ζ√
π

∫
e−σ

2

σ − ζ
dσ

))]
,

Dzz(k, ω) = ω2 − k2

µ0ε0
+ ω2

p

[
v2
Tz

v2
Tx

(
1 +

ζ√
π

∫
e−σ

2

σ − ζ
dσ

)

+

(
ζ√
π

∫
e−σ

2

σ − ζ
dσ −

(
1 +

ζ√
π

∫
e−σ

2

σ − ζ
dσ

))]
,

where we used (A.5a) and (A.5b).

Inserting the Zeta-function (A.2) leads to

Dxx(k, ω) = ω2 + 2ω2
pζ

2 (1 + ζZ(ζ)) ,

Dyy(k, ω) = ω2 − k2

µ0ε0
+ ω2

p

(
v2
Ty

v2
Tx

(1 + ζZ(ζ))− 1

)
,

Dzz(k, ω) = ω2 − k2

µ0ε0
+ ω2

p

(
v2
Tz

v2
Tx

(1 + ζZ(ζ))− 1

)
.

Dividing the determinant by ω2 yields (18.14).

18.4 2D Dispersion Relation

The general procedure is taken from [22] whereas the treatment of the temperature gradient

is reviewed in [11]. Since we want to use the dispersion relations for a curvilinear setting,

where we only have two periodic coordinate directions, we focus on a two dimensional wave

vector. Conventionally, we consider the second and third coordinate directions as periodic

angles. Thus, without loss of generality, we assume that k = (0, k⊥, kz)
>.

Let us consider an external electric that equals zero, E0 = 0, a constant external magnetic

field B0 = êzB0 and an equilibrium function f0(x, v⊥, vz), where v⊥ =
√
v2
x + v2

y . We can

write the linearised Vlasov equation (18.1) as the total time derivative of δf with a source

term on the right-hand side,

d

dt
δf =

(
∂t + v · ∇x +

q

m
(v ×B0) · ∇v

)
δf = − q

m
(δE + v × δB) · ∇vf0.

With the method of characteristics, which is described in the appendix A, we solve for δf by
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integrating along the particle characteristics,

δf = − q

m

∫
(δE(x′, t′) + v′(t′)× δB(x′, t′)) · ∇v′f0(v′) dt′. (18.15)

We consider the unperturbed particle characteristics

ẋ′(t′) = v′(t′),

v̇′(t′) = v′(t′)×B0

with the initial conditions x′(t) = x,v′(t) = v.

These trajectories are integrated as

x′(t′) = x +


−v⊥

Ω0
(cos(θ + Ω0(t′ − t))− cos θ)

v⊥
Ω0

(sin(θ + Ω0(t′ − t))− sin θ)

vz(t
′ − t)


, (18.16)

v′(t′) =


v⊥ sin(θ + Ω0(t′ − t))

v⊥ cos(θ + Ω0(t′ − t))

vz


, (18.17)

where Ω0 = qB0

m is the gyrofrequency of the magnetic background field. For the perturbed

quantities, we make an ansatz with a Fourier–Laplace transformation as in (A.1),

δf(x, t) =

∫
δ̂f(k⊥, kz, ω) exp (−iωt+ i(k⊥y + kzz)) dk⊥ dkz dω,

δE(x, t) =

∫
δ̂E(k⊥, kz, ω) exp (−iωt+ i(k⊥y + kzz)) dk⊥ dkz dω,

δB(x, t) =

∫
δ̂B(k⊥, kz, ω) exp (−iωt+ i(k⊥y + kzz)) dk⊥ dkz dω.

First, we insert the Fourier–Laplace representation into (18.15) and solve for δ̂f ,

δ̂f = − q

m

∫ t

−∞
(δ̂E + v′ × δ̂B) · ∇v′f0 exp(i(k⊥(y′ − y) + kz(z

′ − z))− ω(t′ − t)) dt′.

Second, we substitute τ = (t′ − t) to use the solution of the particle position characteristics
(18.16),

δ̂f = − q

m

∫ 0

−∞

(
δ̂E + v′ × δ̂B

)
· ∇v′f0 exp

(
ik⊥v⊥

Ω0
(sin(θ + Ω0τ)− sin(θ)) + i(kzvz − ω)τ

)
dτ.

(18.18)
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Furthermore, we transform the velocity derivative and insert the solution of the velocity tra-

jectory (18.17). Therefore, we assume an equilibrium function f0 as in (18.4), where we

approximate the temperature and density profiles and their gradients with constant values for

simplification,

∂f0

∂v′x
=
∂f0

∂v⊥

∂v⊥
∂v′x

= ∂v⊥f0
v′x
v⊥

= sin(θ + Ω0τ)∂v⊥f0,

∂f0

∂v′y
=

1

Ω0

∂f0

∂x
+
∂f0

∂v⊥

∂v⊥
∂v′y

=
∂xf0

Ω0
+ ∂v⊥f0

v′y
v⊥

=
∂xf0

Ω0
+ cos(θ + Ω0τ)∂v⊥f0.

Then, we rearrange the integral using the definition of the Bessel function (A.3). Additionally,

we use the exponential representations of cosine and sinus,

cos(θ + Ω0τ) =
ei(θ+Ω0τ) + e−i(θ+Ω0τ)

2
,

sin(θ + Ω0τ) =
ei(θ+Ω0τ) − e−i(θ+Ω0τ)

2i
,

to calculate the following terms:

cos(θ + Ω0τ) exp

(
ik⊥v⊥

Ω0
(sin(θ + Ω0τ)− sin(θ))

)
=

ei(θ+Ω0τ) + e−i(θ+Ω0τ)

2

∞∑
n,n′=−∞

Jn

(
k⊥v⊥

Ω0

)
Jn′

(
k⊥v⊥

Ω0

)
ei(n−n

′)θ+inΩ0τ

=
∞∑

n,n′=−∞
Jn

(
k⊥v⊥

Ω0

)
Jn′

(
k⊥v⊥

Ω0

)
ei((n+1)−n′)θ+i(n+1)Ω0τ + ei((n−1)−n′)θ+i(n−1)Ω0τ

2

=
∞∑

n,n′=−∞

Jn−1

(
k⊥v⊥

Ω0

)
+ Jn+1

(
k⊥v⊥

Ω0

)
2

Jn′

(
k⊥v⊥

Ω0

)
ei(n−n

′)θ+inΩ0τ ,

sin(θ + Ω0τ) exp

(
ik⊥v⊥

Ω0
(sin(θ + Ω0τ)− sin(θ))

)
=

ei(θ+Ω0τ) − e−i(θ+Ω0τ)

2i

∞∑
n,n′=−∞

Jn

(
k⊥v⊥

Ω0

)
Jn′

(
k⊥v⊥

Ω0

)
ei(n−n

′)θ+inΩ0τ

=

∞∑
n,n′=−∞

Jn

(
k⊥v⊥

Ω0

)
Jn′

(
k⊥v⊥

Ω0

)
ei((n+1)−n′)θ+i(n+1)Ω0τ − ei((n+1)−n′)θ+i(n+1)Ω0τ

2i

=
∞∑

n,n′=−∞

Jn−1

(
k⊥v⊥

Ω0

)
− Jn+1

(
k⊥v⊥

Ω0

)
2i

Jn′

(
k⊥v⊥

Ω0

)
ei(n−n

′)θ+inΩ0τ .
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Last, we set b = k⊥v⊥
Ω0

and use the identities (A.3) and (A.2) to obtain

cos(θ + Ω0τ) exp

(
ik⊥v⊥

Ω0
(sin(θ + Ω0τ)− sin(θ))

)
=

∞∑
n,n′=−∞

n

b
Jn(b)Jn′ (b) ei(n−n

′)θ+inΩ0τ ,

sin(θ + Ω0τ) exp

(
ik⊥v⊥

Ω0
(sin(θ + Ω0τ)− sin(θ))

)
=

∞∑
n,n′=−∞

i
d

db
Jn(b)Jn′ (b) ei(n−n

′)θ+inΩ0τ .

Then, we insert the result into the integral term (18.18),

δ̂f = − q

m

∫ 0

−∞

∞∑
n,n′=−∞

(
δ̂E + v′ × δ̂B

)
·



∂f0
∂v⊥

i d
db
Jn(b)

( ∂xf0
Ω0

+ ∂f0
∂v⊥

n
b

)Jn(b)

∂f0
∂vz

Jn(b)


Jn′ (b) ei(n−n

′)θ+i(nΩ0+kzvz−ω)τ dτ.

(18.19)

18.4.1 Electrostatic Dispersion

Proposition 18.1. In an electrostatic setting, the linearised charge density for a species s is

computed as

δ̂ρs = −δ̂Φ q2N

m2
sv

2
Ts

(
1 +

(
1−

ω′T
ω

)
ζ0

∞∑
n=−∞

Z(ζn)Λn(ξ)

)
, (18.20)

where ζn = ω−nΩ0

kz
√

2vTs
and ξ =

k2
⊥v

2
Ts

Ω2
0

.

Proof. Let us assume an electrostatic system. Therefore, we set δ̂B = 0 and the electric

field is computed as E = −∇Φ, from which follows δ̂E = −ikδ̂Φ.

Then, we can solve the time integral from (18.19),

δ̂f = − q

m

∞∑
n,n′=−∞

−ikδ̂Φ ·



∂f0s

∂v⊥
i ddbJn(b)

(∂xf0s

Ω0
+ ∂f0s

∂v⊥

n
b )Jn(b)

∂f0s

∂vz
Jn(b)


Jn′ (b)

ei(n−n
′)θ

i(nΩ0 + kzvz − ω)

=
q

m

∞∑
n,n′=−∞

(
k⊥
Ω0

∂f0s

∂x
+
k⊥n

b

∂f0s

∂v⊥
+ kz

∂f0s

∂vz

)
Jn(b)Jn′(b)e

i(n−n′)θ

nΩ0 + kzvz − ω
δ̂Φ.
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We compute the linearised charge density from (18.8) by inserting the representation of δ̂f ,

δ̂ρs =
q2

ms
δ̂Φ

∫ ∞∑
n,n′=−∞

(
k⊥
Ω0

∂f0s

∂x
+
k⊥n

b

∂f0s

∂v⊥
+ kz

∂f0s

∂vz

)
Jn(b)Jn′(b)e

i(n−n′)θ

nΩ0 + kzvz − ω
dv.

To solve the velocity integral, first, we insert the initial distribution f0s from (18.4) with the con-
stant approximations of the temperature and density profiles and their gradients and compute
the partial velocity derivatives,

δ̂ρ = δ̂Φ
q2

ms

∫ ∞∑
n,n′=−∞

(
ms

Ts
ω′Tsf0s −

k⊥n

b

msv⊥
Ts

f0s − kz
mvz
Ts

f0s

)
Jn(b)Jn′(b)ei(n−n

′)θ

nΩ0 + kzvz − ω
dv,

where ω′Ts = k⊥Ts
qsB0

(
dN
dx ∂N + dT

dx ∂T
)
. Second, we transform the velocity integral to cylindrical

coordinates via ∫
R3

dv =

∫ ∞
0

∫ 2π

0

∫ ∞
−∞

v⊥ dv⊥ dθ dvz.

The double sum breaks down due to the integral∫ 2π

0
exp(i(n− n′)θ) dθ = 2πδn,n′

and setting vTs =
√

Ts
ms

we obtain

δ̂ρ = −δ̂Φ q2

m2
sv

2
Ts

∫ ∞∑
n=−∞

J2
n

(
k⊥v⊥

Ω0

)
nΩ0 − ω′T + kzvz
nΩ0 + kzvz − ω

2πv⊥N(√
2πvTs

)3 e
− (v2
⊥+v2

z)

2v2
Ts dv⊥ dvz.

For the integral over vz, we substitute vz√
2vTs

= τ and for the integral over v⊥, v⊥√
2vTs

= σ,
which leads to

δ̂ρ = −δ̂Φ 2q2N

m2
sv

2
Ts

√
π

∞∑
n=−∞

∫ ∞
0

σe−σ
2

J2
n

(
k⊥
√

2vTsσ

Ω0

)
dσ

∫ ∞
−∞

nΩ0 − ω′T + kz
√

2vTsτ

nΩ0 + kzτ
√

2vTs − ω
e−τ

2

dτ.

Then, the integral over σ is computed with (A.4a) as

∫
σe−σ

2
J2
n

(
k⊥
√

2vTsσ

Ω0

)
dσ =

1

2
Λn (ξ) ,

where ξ =
k2
⊥v

2
Ts

Ω2
0

and Λn(ξ) is the modified Bessel function of the first kind. Next, we define
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ζn = ω−nΩ0

kz
√

2vTs
and compute the integral over τ as

∫ ∞
−∞

nΩ0 − ω′T + kz
√

2vTsτ

nΩ0 + kz
√

2vTsτ − ω
e−τ

2
dτ =

∫ ∞
−∞

τ +
nΩ0−ω′T
kz
√

2vTs

τ − ω−nΩ0

kz
√

2vTs

e−τ
2

dτ

=

∫ ∞
−∞

e−τ
2

dτ +
ω − ω′T
kz
√

2vTs

∫ ∞
−∞

e−τ
2

τ − ω−nΩ0

kz
√

2vTs

dτ

=
√
π

(
1 +

(
1−

ω′T
ω

)
ζ0Z(ζn)

)
.

Putting these results together, we obtain

δ̂ρ = −δ̂Φ q2N

m2
sv

2
Ts

∞∑
n=−∞

(
1 +

(
1−

ω′T
ω

)
ζ0Z(ζn)

)
Λn(ξ).

Observing that
∑∞

n=−∞ Λn(ξ) = 1 ∀ξ ∈ R yields the proposition.

Corrolary 18.2. The dispersion relation of the electrostatic Vlasov–Poisson system for one

species s takes the following form with ζn = ω−nΩ0

kz
√

2vTs
and ξ =

k2
⊥v

2
Ts

Ω2
0

:

D = k2
⊥ + k2

z +
ω2
ps

v2
Ts

(
1 +

(
1−

ω′T
ω

)
ζ0

∞∑
n=−∞

Z(ζn)Λn(ξ)

)
. (18.21)

Proof. We couple the electrostatic collisionless Vlasov equation with the Poisson equation.

Thus, we insert the representation of δ̂ρ from (18.20) into the linearised Poisson equation

(18.7),

k2δ̂Φ = −δ̂Φ q2N

ε0m2
sv

2
Ts

(
1 +

(
1−

ω′T
ω

)
ζ0

∞∑
n=−∞

Z(ζn)Λn(ξ)

)
.

We solve the equation for δ̂Φ and get the form D(k, ω, x)δ̂Φ = 0 with

D(k, ω, x) = k2 +
ω2
ps

v2
Ts

(
1 +

(
1−

ω′T
ω

)
ζ0

∞∑
n=−∞

Z(ζn)Λn(ξ)

)
.

Corrolary 18.3. The dispersion relation of the quasi-neutral Vlasov system can be written as

D(k⊥, kz, ω) =
N

Te
+
N

Ti

(
1 +

(
1−

ω′T
ω

)
ζ0

∞∑
n=−∞

Z(ζn)Λn(ξ)

)
, (18.22)

Geometric PIC Methods on Mapped Grids 146



where ζn = ω−nΩ0

kz

√
2Ti
mi

and ξ =
k2
⊥Ti

Ω2
0mi

.

Proof. We couple the electrostatic collisionless Vlasov equation for ions with the quasi-neutrality

equations. Therefore, we insert the representation of δ̂ρi from (18.20) into the linearised

quasi-neutrality equation (18.9),

q2Nδ̂Φ

Te
= −δ̂Φq

2N

Ti

(
1 +

(
1−

ω′T
ω

)
ζ0

∞∑
n=−∞

Z(ζn)Λn(ξ)

)
.

We solve this for δ̂Φ and get the form D(k, ω, x)δ̂Φ = 0, which leads to (18.22).

Remark 18.4. We can expand the dispersion relation to

D(k⊥, kz, ω) =
N

Te
+
N

Ti

[
1 + ζ0

∞∑
n=−∞

(
Z(ζn)Λn(ξ)− k⊥TiκTi

qiB0ω
∂Ti(ζ0Z(ζn)Λn(ξ))

)]
,

where we assume dN
dt = 0 and the temperature derivative is computed as

∂Ti (ζ0Z(ζn)Λn(ξ)) = − ζ0

2Ti

[(
Z(ζn) + ζnZ

′(ζn)
)

Λn(ξ)− 2ξZ(ζn)Λ′n(ξ)
]
.

This leads to

D =
N

Te
+
N

Ti

[
1 + ζ0

∞∑
n=−∞

(Z(ζn)Λn(ξ)

+
k⊥

2qiB0ω

dTi
dx

[(Z(ζn) + ζnZ
′(ζn))Λn(ξ)− 2ξZ(ζn)Λ′n(ξ)]

)]
.

We insert the derivative of the Zeta function to obtain

D =
N

Te
+
N

Ti

[
1 + ζ0

∞∑
n=−∞

(Z(ζn)Λn(ξ)

+
k⊥

2qiB0ω

dTi
dx

[Z(ζn)Λn(ξ)− 2ζn(1 + ζnZ(ζn))Λn(ξ)− 2ξZ(ζn)Λ′n(ξ)]

)]
.

For a small argument ξ � 1, the sum is dominated by the 0−th Bessel function Λ0. Therefore,

we break down the sum to n = 0. Additionally, we have

lim
ξ→0

Λ0(ξ) = 1− ξ.
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This leads to the following simplified dispersion relation:

D =
N

Te
+
N

Ti

(
1 + ζ0Z(ζ0) +

k⊥
2qiB0ω

dTi
dx

ζ0 [Z(ζ0)− 2ζ0(1 + ζ0Z(ζ0))]

)
.

18.4.2 Electromagnetic Dispersion

Proposition 18.5. For a constant temperature and density, the current has the following

entries

Jxx =− iε0ω
2
ps

∞∑
n=−∞

ζ0

ω
Z(ζn)

(
−2G(n− 1, n+ 1, 3,

√
2ξ)

× ξ

4

[
Λn+2(ξ) +

(
4√
2ξ
− 2

)
Λn+1(ξ) + 2Λn(ξ) +

(
4√
2ξ
− 2

)
Λn−1(ξ) + Λn−2(ξ)

])
,

Jxy =− ε0ω
2
ps

∞∑
n=−∞

√
2nΩ0

vT⊥k⊥

ζ0

ω
Z(ζn)

(
G(n− 1, n, 2,

√
2ξ)−G(n+ 1, n, 2,

√
2ξ)
)
,

Jxz =− ε0ω
2
ps

∞∑
n=−∞

2vT⊥
vTz

ζ0

ω
[1 + ζnZ(ζn)]

(
G(n− 1, n, 2,

√
2ξ)−G(n+ 1, n, 2,

√
2ξ)
)
,

Jyx =− Jxy,

Jyy =− iε0ω
2
ps

∞∑
n=−∞

n2Ω2
0

ωv2
T⊥
k2
⊥

Λn(ξ)ζ0Z(ζn),

Jyz =− iε0ω
2
ps

∞∑
n=−∞

nΩ0

v2
Tzkzk⊥

Λn(ξ)[1 + ζnZ(ζn)],

Jzx =−
v2
Tz

v2
T⊥

Jxz,

Jzy =
v2
Tz

v2
T⊥

Jyz,

Jzz =− i2ε0ω
2
ps

∞∑
n=−∞

Λn(ξ)
ζ0

ω
ζn[1 + ζnZ(ζn)],

where ξ =
k2
⊥v

2
T⊥

Ω2
0

and ζn = ω−nΩ0

kz
√

2vTz
.

Proof. Let us assume that the temperature and density profiles are constant. This leads to
∂xf0 = 0 and

δ̂f = − q

m

∫ 0

−∞

∞∑
n,n′=−∞

(
δ̂E + v′ × δ̂B

)
·



∂f0
∂v⊥

idJn(b)
db

∂f0
∂v⊥

n
b Jn(b)

∂f0
∂vz

Jn(b)


Jn′ (b) ei(n−n

′)θ+i(nΩ0+kzvz−ω)τ dτ.
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In the Lorentz force, we can substitute the magnetic field for the electric field via (18.5a) and

solve for it,

δ̂f =− q

m

∞∑
n,n′=−∞

Jn′(b)e
i(n−n′)θ

∫ 0

−∞
ei(nΩ0+kzvz−ω)τ dτ

(
iJ ′n(b)

[
∂v⊥f0 +

kz
ω

(v⊥∂vzf0 − vz∂v⊥f0)

]
Êx

+
n

b
Jn(b)

[
∂v⊥f0 +

kz
ω

(v⊥∂vzf0 − vz∂v⊥f0)

]
Êy

+ Jn(b)

[
∂vzf0 −

nk⊥
bω

(v⊥∂vzf0 − vz∂v⊥f0)

]
Êz

)
.

Then, we solve the time integral and obtain

δ̂f = − q

m

∞∑
n,n′=−∞

Jn′ (b)
ei(n−n

′)θ

i(nΩ0 + kzvz − ω)(
iJ ′n(b)

[
∂v⊥f0 +

kz
ω

(v⊥∂vzf0 − vz∂v⊥f0)

]
Êx

+
n

b
Jn(b)

[
∂v⊥f0 +

kz
ω

(v⊥∂vzf0 − vz∂v⊥f0)

]
Êy

+ Jn(b)

[
∂vzf0 −

nk⊥
bω

(v⊥∂vzf0 − vz∂v⊥f0)

]
Êz

)
.

Now, we are able to compute the source term δ̂J for Ampère’s equation. Therefore, we

transform the integral over v into the integral over v⊥, θ, vz,

δ̂J = q

∫
R3

vδ̂f dv = q

∫ ∞
0

∫ 2π

0

∫ ∞
−∞

vδ̂fv⊥ dv⊥ dθ dvz.

As before, we write the velocity in cylindrical coordinates and use the identity

∞∑
n′=−∞

Jn′(b)

∫ 2π

0
ei(n−n

′)θ


v⊥ sin θ

v⊥ cos θ

vz


dθ = 2π

∞∑
n=−∞


−iv⊥J ′n(b)

nv⊥
b Jn(b)

vzJn(b)


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given in [22] to obtain

δ̂J =i
q2

m

∫ ∞
0

∫ ∞
−∞

∞∑
n=−∞

2π

nΩ0 + kzvz − ω


−iv⊥J ′n(b)

nv⊥
b Jn(b)

vzJn(b)


(
iJ ′n(b)

[
∂v⊥f0 +

kz
ω

(v⊥∂vzf0 − vz∂v⊥f0)

]
Êx

+
n

b
Jn(b)

[
∂v⊥f0 +

kz
ω

(v⊥∂vzf0 − vz∂v⊥f0)

]
Êy

+ Jn(b)

[
∂vzf0 −

nΩ0

v⊥ω
(v⊥∂vzf0 − vz∂v⊥f0)

]
Êz

)
v⊥ dv⊥ dvz.

Assuming an equilibrium function as in (18.3), we can compute the velocity gradient as

∂v⊥f0 = − v⊥
v2
T⊥

f0,

∂vzf0 = − vz
v2
Tz

f0

and following from that:

v⊥∂vzf0 − vz∂v⊥f0 = 0.

In this case, the current simplifies to

δ̂J =− iq
2

m

∫ ∞
0

∫ ∞
−∞

∞∑
n=−∞

2π

nΩ0 + kzvz − ω


−iv⊥J ′n(b)

nv⊥
b Jn(b)

vzJn(b)


(
v⊥
v2
T⊥

iJ ′n(b)Êx +
v⊥
v2
T⊥

n

b
Jn(b)Êy +

vz
v2
Tz

Jn(b)Êz

)
f0v⊥ dv⊥ dvz.
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We write this as the matrix vector product δ̂J = Jδ̂E with the matrix entries

Jxx =− i q
22π

mv2
T⊥

∫ ∞
0

∫ ∞
−∞

∞∑
n=−∞

v3
⊥

nΩ0 + kzvz − ω
J ′n(b)2f0 dv⊥ dvz,

Jxy =− Jyx = − q22π

mv2
T⊥

∫ ∞
0

∫ ∞
−∞

∞∑
n=−∞

nΩ0

k⊥

v2
⊥

nΩ0 + kzvz − ω
J ′n(b)Jn(b)f0 dv⊥ dvz,

Jxz =−
v2
T⊥

v2
Tz

Jzx = − q
22π

mv2
Tz

∫ ∞
0

∫ ∞
−∞

∞∑
n=−∞

vzv
2
⊥

nΩ0 + kzvz − ω
J ′n(b)Jn(b)f0 dv⊥ dvz,

Jyy =− i q
22π

mv2
T⊥

∫ ∞
0

∫ ∞
−∞

∞∑
n=−∞

n2Ω2
0

k2
⊥

v⊥
nΩ0 + kzvz − ω

Jn(b)2f0 dv⊥ dvz,

Jyz =
v2
T⊥

v2
Tz

Jzy = −i q
22π

mv2
Tz

∫ ∞
0

∫ ∞
−∞

∞∑
n=−∞

nΩ0

k⊥

v⊥vz
nΩ0 + kzvz − ω

Jn(b)2f0 dv⊥ dvz,

Jzz =− i q
22π

mv2
Tz

∫ ∞
0

∫ ∞
−∞

∞∑
n=−∞

v2
zv⊥

nΩ0 + kzvz − ω
Jn(b)2f0 dv⊥ dvz.

Inserting f0 from (18.3) yields

Jxx =− in0q
22π

mv2
T⊥

∞∑
n=−∞

∫ ∞
0

v3
⊥

2πv2
T⊥

e
− v2

⊥
2v2

T⊥ J ′n(b)2 dv⊥

∫ ∞
−∞

e
− v2

z
2v2

Tz

√
2πvTz

1

kzvz − ω + nΩ0
dvz,

Jxy =− n0q
22π

mv2
T⊥

∞∑
n=−∞

nΩ0

k⊥

∫ ∞
0

v2
⊥

2πv2
T⊥

e
− v2

⊥
2v2

T⊥ J ′n(b)Jn(b) dv⊥

∫ ∞
−∞

e
− v2

z
2v2

Tz

√
2πvTz

1

kzvz − ω + nΩ0
dvz,

Jxz =− n0q
22π

mv2
Tz

∞∑
n=−∞

∫ ∞
0

v2
⊥

2πv2
T⊥

e
− v2

⊥
2v2

T⊥ J ′n(b)Jn(b) dv⊥

∫ ∞
−∞

e
− v2

z
2v2

Tz

√
2πvTz

vz
kzvz − ω + nΩ0

dvz,

Jyy =− in0q
22π

mv2
T⊥

∞∑
n=−∞

∫
n2Ω2

0

2πv2
T⊥
k2
⊥
v⊥e

− v2
⊥

2v2
T⊥ Jn(b)2 dv⊥

∫
e
− v2

z
2v2

Tz

√
2πvTz

1

kzvz − ω + nΩ0
dvz,

Jyz =− in0q
22π

mv2
Tz

nΩ0

k⊥

∞∑
n=−∞

∫ ∞
0

v⊥
2πv2

T⊥

e
− v2

⊥
2v2

T⊥ Jn(b)2 dv⊥

∫ ∞
−∞

e
− v2

z
2v2

Tz

√
2πvTz

vz
kzvz − ω + nΩ0

dvz,

Jzz =− in0q
22π

mv2
Tz

∞∑
n=−∞

∫ ∞
0

v⊥
2πv2

T⊥

e
− v2

⊥
2v2

T⊥ Jn(b)2 dv⊥

∫ ∞
−∞

e
− v2

z
2v2

Tz

√
2πvTz

v2
z

kzvz − ω + nΩ0
dvz.

We substitute vz√
2vTz

= τ and v⊥√
2vT⊥

= σ and insert the recursion formula for the derivative
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of the Bessel function (A.3) to get

Jxx =− in0q
2

m

∞∑
n=−∞

∫ ∞
0

σ3e−σ
2 (
Jn−1(βσ)2 + Jn+1(βσ)2 − 2Jn−1(βσ)Jn+1(βσ)

)
dσ

× 1

kz
√

2vTz

∫ ∞
−∞

e−τ
2

√
π

1

τ − ω−nΩ0

kz
√

2vTz

dτ,

Jxy =− n0q
2

m

∞∑
n=−∞

√
2nΩ0

k⊥vT⊥

∫ ∞
0

σ2e−σ
2
(Jn−1(βσ)− Jn+1(βσ))Jn(βσ) dσ

× 1

kz
√

2vTz

∫ ∞
−∞

e−τ
2

√
π

1

τ − ω−nΩ0

kz
√

2vTz

dτ,

Jxz =− n0q
2

m

∞∑
n=−∞

2vT⊥
vTz

∫ ∞
0

σ2e−σ
2
(Jn−1(βσ)− Jn+1(βσ))Jn(βσ) dσ

× 1

kz
√

2vTz

∫ ∞
−∞

e−τ
2

√
π

τ

τ − ω−nΩ0

kz
√

2vTz

dτ,

Jyy =− in0q
2

m

∞∑
n=−∞

2n2Ω2
0

k2
⊥v

2
T⊥

∫ ∞
0

σe−σ
2
Jn(βσ)2 dσ

1

kz
√

2vTz

∫ ∞
−∞

e−τ
2

√
π

1

τ − ω−nΩ0

kz
√

2vTz

dτ,

Jyz =− in0q
2

m

∞∑
n=−∞

2
√

2nΩ0

vTzk⊥

∫ ∞
0

σe−σ
2
Jn(βσ)2 dσ

1

kz
√

2vTz

∫ ∞
−∞

e−τ
2

√
π

τ

τ − ω−nΩ0

kz
√

2vTz

dτ,

Jzz =− in0q
2

m

∞∑
n=−∞

4

∫ ∞
0

σe−σ
2
Jn(βσ)2 dσ

1

kzvTz
√

2

∫ ∞
−∞

e−τ
2

√
π

τ2

τ − ω−nΩ0

kz
√

2vTz

dτ,

where β =
k⊥
√

2vT⊥
Ω0

.

Next, we define ξ =
k2
⊥v

2
T⊥

Ω2
0

and ζn = ω−nΩ0

kz
√

2vTz
and use the integral formulas for the Bessel

functions (A.4a), (A.4b) and (A.4c) as well as the definition of the Zeta function A.2 to obtain

the proposition.

From the linearised Ampère equation (18.5b), we obtain


ω2 − k2

⊥+k2
z

µ0ε0
0 0

0 ω2 − k2
z

µ0ε0
k⊥kz
µ0ε0

0 k⊥kz
µ0ε0

ω2 − k2
⊥

µ0ε0


+ i

ω

µ0ε0
J


δ̂E = 0.
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Then, the dispersion relation is obtained by computing the determinant of

D(k⊥, kz, ω) =


ω2 − k2⊥+k2z

µ0ε0
+ i ω

µ0ε0
Jxx i ω

µ0ε0
Jxy i ω

µ0ε0
Jxz

i ω
µ0ε0

Jyx ω2 − k2z
µ0ε0

+ i ω
µ0ε0

Jyy
k⊥kz
µ0ε0

+ i ω
µ0ε0

Jyz

i ω
µ0ε0

Jzx
k⊥kz
µ0ε0

+ i ω
µ0ε0

Jzy ω2 − k2⊥
µ0ε0

+ i ω
µ0ε0

Jzz


.
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19 Summary and Outlook
In this thesis, we have derived a geometric particle-in-cell method on mapped grids based

on a discretisation of the fields with finite element exterior calculus [3]. After examining dif-

ferent representations of the particle trajectories, we have decided to use a hybrid particle

pusher. Our formulation yields a semi-discrete Poisson system that satisfies the Jacobi iden-

tity. For the discretisation in time, we have constructed charge conserving schemes based

on a Hamiltonian splitting as well as energy conserving schemes based on an antisymmetric

splitting of the Poisson matrix and the discrete gradient method.

In the first part, we have restricted ourselves to test problems with periodic boundary condi-

tions in order to investigate the influence of the coordinate transformation in an easier setting.

This has also limited the coordinate transformations to the class of periodic mappings. For

our standard test cases, we have shown numerical results matching the analytical growth

and damping rates and verified the expected conservation properties of the different time

integrators.

In the second part, we have investigated the natural boundary conditions of the weak for-

mulation of Maxwell’s equations and constructed new basis functions from clamped basis

splines that form a discrete de Rham sequence. Furthermore, we have presented a fast and

efficient preconditioner based on a Fourier solver for the conjugate gradient solvers of the

boundary mass matrices. Then, we have applied perfect conductor boundary conditions for

the fields and reflecting boundary conditions for the particles enabling the use of domain de-

forming coordinate transformations such as cylindrical or elliptical mappings. As a last point,

we have reviewed the challenges arising from singular mappings and proposed an idea on

how to handle the transformation of the Lorentz force near a singularity. In a simulation of the

Weibel instability, which was inspired by a similar approach in [17], we have studied the effect

of the deformed mapped grids and verified the compatibility of the boundary conditions with

the conservation properties of the structure preserving discretisations.

Following the recent publication of Toshniwal & Hughes [86], as future work, it would be

possible to construct smooth spline basis functions that form a de Rham complex at the pole.

The implementation of such basis functions for the GEMPIC framework would enable the use

of radial grids with a singularity.

In the third part, we have introduced the quasi-neutrality ansatz with adiabatic electrons into

the GEMPIC framework. This ansatz allows us to choose time steps at the time scale of

the ion motion, which makes it possible to simulate ion driven instabilities such as the ion

temperature gradient instability. After discretising the quasi-neutrality equations in time with

the established charge or energy conserving methods, we have verified their conservation

properties in a simulation of an ion acoustic wave. For the ion temperature gradient instability,

test cases from Sturdevant et al. [83] in a slab geometry and from Latu et al. [60] in a cylinder
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have been adapted to our framework. We have used the linear δ f method to reduce the

particle noise and matched the numerical results with the growth rates computed by the

dispersion relation.

For future work, it would be interesting to go to non-linear δf and full f simulations with vary-

ing temperature gradients extending the approximations we used for the linear δf method.

The overall goal should be the comparison of simulations with the full kinetic code to refer-

ence simulations by gyrokinetic codes such as Gysela [39] or Gygles [34].
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A Appendix

Method of Characteristics

The method of characteristics is among others described in [33]. In our case, we start with a

differential equation of the following form:

∂f(t,x,v)

∂t
+ P (t,x,v)∇xf(t,x,v) +Q(t,x,v)∇vf(t,x,v) = 0,

where x(t),v(t) are time dependent. Then, we use the chain rule to write this as

df

dt
=
∂f

∂t
+
∂f

∂x

∂x

∂t
f +

∂f

∂v

∂v

∂t
= 0.

In this case, we obtain the characteristics

∂x

∂t
= P (t,x,v),

∂v

∂t
= Q(t,x,v),

along which f stays constant, since df
dt = 0 for this choice of P andQ. This defines a solution

of the differential equation for f .

For the Vlasov equation this leads to the well known particle equations of motion with

P = v, Q =
q

m
(E + v ×B) .

Fourier and Laplace Transformation

Proposition A.1. A space and time dependent function f(x, t) that has a periodic domain in

space, can be represented with a Fourier transformation in space and a Laplace transforma-

tion in time in the following form:

f(x, t) =

∫
f̂(k, ω) exp (−iωt+ ik · x) dk dω. (A.1)

Zeta Function

Definition A.2. The Zeta function is defined as

Z(ζ) =
1√
π

∫
exp(−x2)

x− ζ
dx =

√
π exp(−ζ2)[i− erfi(ζ)],

where the derivative is given by

Z ′(ζ) = −2(1 + ζZ(ζ)).
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Bessel Function

The formulas are taken from the fifth edition of [38, Sec.6.633] and are adapted for our pur-

pose.

Definition A.3. The Bessel functions are defined as

exp(ib sin(a)) =

∞∑
n=−∞

Jn(b) exp(ina).

It follows that the Bessel function can be expressed as

n

x
Jn(x) =

Jn−1(x) + Jn+1(x)

2
, (A.2)

and the derivative can be written as

dJn(x)

dx
=
Jn−1(x)− Jn+1(x)

2
. (A.3)

The Bessel functions can be integrated via the following formulas:∫ ∞
0

xe−x
2
J2
n(βx) dx =

1

2
e−

β2

2 In

(
β2

2

)
=

1

2
Λn

(
β2

2

)
, (A.4a)∫ ∞

0
x3e−x

2
J2
n(βx) dx =

β2

8

[
Λn+1

(
β2

2

)
+

(
4

β2
− 2

)
Λn

(
β2

2

)
+ Λn−1

(
β2

2

)]
, (A.4b)

∫ ∞
0

xpe−x
2
Jq(βx)Jr(βx) dx = 2−(q+r+1)βq+r

Γ
(
p+q+r+1

2

)
Γ(q + 1)Γ(r + 1)

(A.4c)

× 3F3

[
q + r + 1

2
,
q + r + 2

2
,
p+ q + r + 1

2
; q + 1, r + 1, q + r + 1;−β2

]
where the scaled Bessel function is defined as Λn(ξ) = In(ξ) exp(−ξ) and its derivative is

given by Λ′n(ξ) = −Λn(ξ) + Λn+1(ξ)+Λn−1(ξ)
2 . The general hypergeometric function can be

written as

3F3(a1, a2, a3; b1, b2, b3; z) =

∞∑
k=0

3∏
i=1

Γ(k + ai)

Γ(ai)

3∏
j=1

Γ(bj)

Γ(k + bj)

zk

k!
=: G(q, r, p, β).
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Useful Integrals

For the computation of the dispersion relation in Chapter 18, we use the following integrals:

∫ ∞
−∞

e−
σ2

α2

√
πα

dσ = 1, (A.5a)

∫ ∞
−∞

σ
e−

σ2

α2

√
πα

dσ = 0, (A.5b)

∫ ∞
−∞

σ2 e−
σ2

α2

√
πα

dσ =
α2

2
. (A.5c)

Divergence Theorem

Proposition A.4. For the integration by parts, we use the divergence theorem in the following

forms:

• The standard form for a scalar function g and a vector field F,∫
Ω
∇ · (Fg) dx =

∫
Ω
g(∇ · F) dx = −

∫
Ω
∇g · F dx +

∫
∂Ω
g(F · n) dσ, (A.6)

• The cross product form for vector fields, F,G,∫
Ω
∇× (F ·G) dx =

∫
Ω

G · (∇× F) dx−
∫

Ω
(∇×G) · F dx =

∫
∂Ω

(F×G) · n dσ.

(A.7)
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Equations of Motion in Cylindrical Coordinates

Let us exemplarily take a look at the equations of motion in cylindrical coordinates. Therefore,

we use the following mapping:

F (ξ) =


Lrξ1 cos(2πξ2)

Lrξ1 sin(2πξ2)

Lzξ3


, DF (ξ) =


Lr cos(2πξ2) −2πLrξ1 sin(2πξ2) 0

Lr sin(2πξ2) 2πLrξ1 cos(2πξ2) 0

0 0 Lz


,

F−1(x) =



√
x2

1+x2
2

Lr

atan2(x2, x1)

x3
L


, DF−1(ξ) =



cos(2πξ2)
Lr

sin(2πξ2)
Lr

0

− sin(2πξ2)
2πLrξ1

cos(2πξ2)
2πLrξ1

0

0 0 1
L


,

Gm(ξ) =


L2
r 0 0

0 4π2L2
rξ

2
1 0

0 0 L2
z


, G−1

m (ξ) =



1
L2
r

0 0

0 1
4π2L2

rξ
2
1

0

0 0 1
L2
z


, JF (ξ) = Lz2πL

2
rξ1.

The cylindrical coordinate transformation is an orthogonal mapping so that the metric is a
diagonal matrix and the mass matrices are block diagonal,

M̃1 = diag
(
M̃11, M̃12, M̃13

)
= diag

(∫
Λ̃1

1(ξ)>Λ̃1
1(ξ)2πLzξ1 dξ,

∫
Λ̃1

2(ξ)>Λ̃1
2(ξ)

Lz
2πξ1

dξ,

∫
Λ̃1

3(ξ)>Λ̃1
3(ξ)

2πL2
rξ1

Lz
dξ

)
,

M̃2 = diag
(
M̃21, M̃22, M̃23

)
= diag

(∫
Λ̃2

1(ξ)>Λ̃2
1(ξ)

1

Lz2πξ1
dξ,

∫
Λ̃2

2(ξ)>Λ̃2
2(ξ)

2πξ1
Lz

dξ,

∫
Λ̃2

3(ξ)>Λ̃2
3(ξ)

Lz
2πL2

rξ1
dξ

)
.

We write out the equations for the following particle pushers, where the derivative matrices

Di, i = 1, 2, 3 are taken from (9.8):
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• Hybrid particle pushing with the velocity v in physical coordinates,
ξ̇1

ξ̇2

ξ̇3


=



cos(2πξ2)
Lr

vx + sin(2πξ2)
Lr

vy

− sin(2πξ2)
2πLrξ1

vx + cos(2πLrξ2)
2πξ1

vy

vz
Lz


=:


ṽ1

ṽ2

ṽ3


,


v̇x

v̇y

v̇z


=

q

m



cos(2πξ2)
Lr

− sin(2πξ2)
2πLrξ1

0

sin(2πξ2)
Lr

cos(2πξ2)
2πLrξ1

0

0 0 1
Lz




Λ̃1

1(ξ)ẽ1 + ṽ2Λ̃2
3(ξ)b̃3 − ṽ3Λ̃2

2(ξ)b̃2

Λ̃1
2(ξ)ẽ2 + ṽ3Λ̃2

1(ξ)b̃1 − ṽ1Λ̃2
3(ξ)b̃3

Λ̃1
3(ξ)ẽ3 + ṽ1Λ̃2

2(ξ)b̃2 − ṽ2Λ̃2
1(ξ)b̃1


,


˙̃e1

˙̃e2

˙̃e3


=


M̃−1

11

(
D>3 M̃22b̃2 − D>2 M̃23b̃3 − qΛ̃1

1(ξ)>ṽ1

)
M̃−1

12

(
D>1 M̃23b̃3 − D>3 M̃21b̃1 − qΛ̃1

2(ξ)>ṽ2

)
M̃−1

13

(
D>2 M̃21b̃1 − D>1 M̃22b̃2 − qΛ̃1

3(ξ)>ṽ3

)


,



˙̃
b1

˙̃
b2

˙̃
b3


= −


−D3ẽ2 +D2ẽ3

D3ẽ1 −D1ẽ3

−D2ẽ1 +D1ẽ2


.
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• Logical particle pushing for the contravariant components of the velocity, ṽ,
ξ̇1

ξ̇2

ξ̇3


=


ṽ1

ṽ2

ṽ3


,


˙̃v1

˙̃v2

˙̃v3


=



q
m(Λ̃1

1(ξ)ẽ1 + ṽ2Λ̃2
3(ξ)b̃3 − ṽ3Λ̃2

2(ξ)b̃2) + ṽ2
2ξ1

q
m

Λ̃1
2(ξ)ẽ2+ṽ3Λ̃2

1(ξ)b̃1−ṽ1Λ̃2
3(ξ)b̃3

4π2ξ2
1

− 2 ṽ1ṽ2
ξ1

q
m

Λ̃1
3(ξ)ẽ3+ṽ1Λ̃2

2(ξ)b̃2−ṽ2Λ̃2
1(ξ)b̃1

L2
z


,


˙̃e1

˙̃e2

˙̃e3


=


M̃−1

11

(
D>3 M̃22b̃2 −D>2 M̃23b̃3 − qΛ̃1

1(ξ)>ṽ1

)
M̃−1

12

(
D>1 M̃23b̃3 −D>3 M̃21b̃1 − qΛ̃1

2(ξ)>ṽ2

)
M̃−1

13

(
D>2 M̃21b̃1 −D>1 M̃22b̃2 − qΛ̃1

3(ξ)>ṽ3

)


,



˙̃
b1

˙̃
b2

˙̃
b3


= −


−D3ẽ2 +D2ẽ3

D3ẽ1 −D1ẽ3

−D2ẽ1 +D1ẽ2


.
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• Logical particle pushing for the covariant components of the velocity v̂,
ξ̇1

ξ̇2

ξ̇3


=


v̂1

1
4π2L2

rξ
2
1
v̂2

v̂3
L2
z


,


˙̂v1

˙̂v2

˙̂v3


=

q

m


Λ̃1

1(ξ)ẽ1 + v̂2

4π2L2
rξ

2
1
Λ̃2

3(ξ)b̃3 − v̂3
L2
z
Λ̃2

2(ξ)b̃2
mv̂2

2

q4π2L2
rξ

3
1

Λ̃1
2(ξ)ẽ2 + v̂3

L2
z
Λ̃2

1(ξ)b̃1 − v̂1Λ̃2
3(ξ)b̃3

Λ̃1
3(ξ)ẽ3 + v̂1Λ̃2

2(ξ)b̃2 − v̂2

4π2L2
rξ

2
1
Λ̃2

1(ξ)b̃1


,


˙̃e1

˙̃e2

˙̃e3


=


M̃−1

11

(
D>3 M̃22b̃2 −D>2 M̃23b̃3 − qΛ̃1

1(ξ)>v̂1

)
M̃−1

12

(
D>1 M̃23b̃3 −D>3 M̃21b̃1 −

qΛ̃1
2(ξ)>v̂2

4π2L2
rξ

2
1

)
M̃−1

13

(
D>2 M̃21b̃1 −D>1 M̃22b̃2 − qΛ̃1

3(ξ)> 1
L2
z
v̂3

)


,



˙̃
b1

˙̃
b2

˙̃
b3


= −


−D3ẽ2 +D2ẽ3

D3ẽ1 −D1ẽ3

−D2ẽ1 +D1ẽ2


.

As mentioned in Section 6.1, the latter equations of motion with the covariant components

of the velocity v̂ yield an explicit Hamiltonian splitting because the velocity directions are

decoupled.
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