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Abstract

Estimating the 6D object pose is one of the most fundamental problems in Computer Vision
as it is essential for various applications, including robotic grasping and autonomous driving.
Thereby, the 6D object pose describes the orientation and position of the object in 3D space
and is often a key step-stone for further 3D reasoning and manipulation.

Given its importance, it is not surprising that 6D pose estimation is a well researched field.
Nonetheless, despite great advances, the accuracy is still not satisfactory when it comes
to real applications. Moreover, there are still many open challenges which are oftentimes
neglected in literature. Exemplary, many learning driven methods severely suffer from the
lack of real labeled data and the very limited number of objects they can simultaneously
handle. In addition, most related works used to rely on depth data in order to estimate
accurate 6D pose information. While possessing depth significantly simplifies the task, it also
induces several problems. First, depth sensors are usually expensive and, second, they are
often not capable of obtaining depth for certain surfaces (e.g. glass).

Due to its high relevance for many applications, this dissertation focuses on the problem
of 6D pose estimation. Nonetheless, as depth is often not provided nor completely reliable,
this dissertation puts a particular emphasize on inferring the orientation and translation
from monocular data alone. Since monocular 6D pose estimation is a difficult ill-posed
problem, there are several open challenges. In fact, this dissertation is concerned with three
different aspects for estimating the 6D pose. First, this dissertation introduces one of the
first deep learning based method for fast and reliable inference and tracking/refining of the
6D object pose from RGB images. Second, several external factors which can complicate
inference are investigated. Exemplary, repetitive patterns or occlusion can lead to ambiguities
in pose (i.e. multiple poses are equivalent under perspective projection), depraving learning.
Furthermore, also changes in illumination can further deteriorate performance. Third, most
prior works only deal with a single object at a time, in fact, often even limiting the 6D pose
space to only cover objects standing on a plane. While this allows proper reasoning at fast
speed, it is an unrealistic assumption and cannot comply many applications. Therefore,
generative models are paired with 6D pose estimation to enable metric reconstruction of the
objects of interest.
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Zusammenfassung

Die Schätzung der 6D Pose von Objekten ist eines der grundlegendsten Probleme in der
Computer Vision, da sie für verschiedene Anwendungen, wie z.B. das Greifen von Robotern
und autonomes Fahren, unerlässlich ist. Die 6D Pose beschreibt die Orientierung und Position
des Objekts im 3D-Raum und ist oft ein wichtiger Schritt für weitere Schlussfolgerungen in
3D und für Manipulations Aufgaben von Objekten.

Angesichts ihrer Bedeutung ist es nicht verwunderlich, dass die Schätzung der 6D Pose ein
gut erforschtes Gebiet ist. Trotz großer Fortschritte ist die Genauigkeit jedoch immer noch
nicht zufriedenstellend, wenn es um reale Anwendungen geht. Außerdem gibt es noch viele
offene Herausforderungen, die in der Literatur oft vernachlässigt werden. Zum Beispiel
leiden viele lernende Methoden stark unter dem Mangel an echten annotierten Daten und
der sehr begrenzten Anzahl von Objekten, die sie gleichzeitig handhaben können. Darüber
hinaus sind die meisten verwandten Arbeiten auf Tiefendaten angewiesen, um genaue
6D Posen zu schätzen. Während die Verwendung von Tiefendaten die Aufgabe erheblich
vereinfacht, bringt sie auch einige Probleme mit sich. Erstens sind Tiefensensoren in der
Regel teuer und zweitens sind sie oft nicht in der Lage, die Tiefe für bestimmte Oberflächen
(z.B. Glas) zu erfassen.

Aufgrund der hohen Relevanz für viele Anwendungen konzentriert sich diese Dissertation
auf das Problem der Schätzung von der 6D Pose. Da die Tiefeninformation jedoch oft nicht zur
Verfügung steht und auch nicht vollständig zuverlässig ist, wird in dieser Arbeit ein beson-
derer Schwerpunkt auf die Ableitung von Orientierung und Position aus rein monokularen
Daten gelegt. Da die monokulare 6D Posensschätzung ein schwieriges, in der Tat ein sogar
unlösbares Problem ist, gibt es mehrere offene Herausforderungen. Tatsächlich befasst sich
diese Dissertation mit drei verschiedenen Aspekten für die Schätzung der 6D Pose. Erstens
wird in dieser Dissertation eine der ersten Deep-Learning basierte Methode zur schnellen
und zuverlässigen Inferenz und Tracking/Verfeinerung der 6D-Objektpose aus RGB-Bildern
vorgestellt. Zweitens werden mehrere externe Faktoren, die die Inferenz erschweren können,
untersucht. Exemplarisch können wiederholende Muster oder Verdeckungen zu Mehrdeu-
tigkeiten in der Pose führen (i.e. mehreren Posen sind unter perspektivischer Projektion
äquivalent), was das Lernen erschwert. Außerdem können Änderungen in der Beleuchtung
die Päzision weiter verschlechtern. Drittens befassen sich die meisten früheren Arbeiten
jeweils nur mit einem einzigen Objekt und beschränken den 6D-Raum oft sogar nur auf
Objekte, die auf einer waagrechten Ebene stehen. Dies ermöglicht zwar eine genaue Be-
stimmung der Pose bei hoher Geschwindigkeit, ist aber eine unrealistische Annahme und
kann vielen Anwendungen nicht gerecht werden. Daher werden generative Modelle mit der
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6D Poseschätzung gepaart, um eine metrische Rekonstruktion aller präsenten Objekte zu
ermöglichen.
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1Introduction

Figure 1.1. Exemplary Applications of 6D Pose Estimation. Left: The Toyota HSR robot is grasping the object of
interest leveraging the estimated 6D object pose [10][©2019 IEEE]. Right: Coherent augmentations are
applied to the lion object using the inferred 6D pose information.

1.1 Motivation and Main Objective

How much of an object can a human infer from a single RGB image? As humans we are
constantly interacting with objects in the 3D world. In fact, the interactions range from
grasping objects to steering cars as well as playing the guitar and much further. All these
interactions, however, require a good understanding of the objects in the 3D world. In
particular, we need to comprehend the 3D geometry as well as orientation and position of the
object in order adequately manipulate it within the environment. Exemplary, when playing
the guitar it is vital to understand its size and orientation so to play the correct strings. While
driving it is crucial to be capable of estimating all 3D properties for each traffic participant to
safely navigate through the streets.

Since humans possess binocular vision, they can naturally infer 3D information from the
disparity of the sensed images [11]. Nonetheless, despite having stereo vision available,
humans are even capable of interacting with the environment using only monocular input [12].
This can be easily demonstrated when grasping an object having one eye closed. Surprisingly,
humans can accomplish this task without any efforts [13]. This can be contributed to the fact
that we establish priors of the world, allowing us to estimate 3D properties despite this being
an inherent ill-posed problem.

Being capable of accurately estimating these object shapes and 6D poses (i.e. orientation and
translation), also drives many applications within other domains [14, 6, 15]. In particular,
many tasks can be broken down into estimating the pose of the object and then adequately
interacting with it.
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Chapter 1: Introduction

Exemplary, the task of most industrial robots typically requires to grasp parts for assembling
objects such as cars. Successful grasping of the object, however, relies on having a notion of the
pose [16, 15]. Especially, when assembling the objects, the individual parts need to plugged
together precisely, therefore, a high confidence in the pose of the object in hand is crucial.
While there are methods that directly output grasping instructions for any geometry [17, 18],
higher accuracy and level of interaction can be achieved when estimating the full 6D pose for
a known 3D model [15, 19].

Many companies are currently aiming at developing service robots for various different
use cases [20, 21, 22]. Thereby, one very important sector for service robots resides in, for
instance, healthcare. Due to increasingly older societies, there is a lack of qualified specialist
to take care of them. Therefore, service robots are developed which can help elderly people
to accomplish basic tasks of their daily life. Toyota recently introduced the human support
robot (HSR) [23], which is a omnidirectional moving robot equipped with an RGB-D camera
and a gripper for manipulation (c.f. Figure 1.1 [left]). HSR can fulfill several diverse tasks
such as tidying the room or bringing objects to the patient. Both tasks require knowledge of
the pose and object in some form. Of course, there are various other disciplines in healthcare
that profit from estimating the 6D pose. A prime example would be computer aided surgery,
e.g. surgical tool detection/tracking [24, 25, 26]

Augmented reality is a relevant area which also benefits from 6D pose estimation [14]. It is a
particular hot field due to the introduction of many novel head-mounted displays such as
Microsoft Holelens [27] or Magic Leap [28]. Essentially, as illustrated in Figure 1.1, coherent
augmentations of objects can be employed by means of the 6D pose and the associated 3D
CAD model [10]. Moreover, virtual interactions with real objects can be accomplished via
knowledge of the object’s position and orientation.

Certainly, autonomous driving is another very important field which is highly dependant
on estimating the pose of all traffic participants [29, 30]. As very precise pose estimates are
required, it is still questionable if fully autonomous driving can be achieved from monocular
data alone. Nevertheless, driver assistance systems oftentimes do not require this high level
of precision. Hence, estimating the 6D pose allows to add new safety components by simply
attaching a camera to the car [31, 32].

Similar to humans also these fields heavily rely on specific sensors which allow to capture
the 3D world [33, 34]. Fairly accurate consumer depth cameras have basically become part of
the standard equipment for any robot [23]. Even most mobile phones are nowadays relying
on depth sensors, enabling many applications such as face identification or metric room
planing [35]. Certainly, also autonomous vehicles capture 3D information by means of Lidar
sensors [30, 36].

Although depth sensors enable so many applications, they also exhibit several downsides [37].
In essence, most sensors cannot retrieve measurements for very dark or bright structures.
Moreover, surfaces such as glass leads to scattering of the laser for certain sensors, resulting
in no depth information [38, 39]. Stereo sensors, on the other hand, can be noisy due to wrong
matching of the left and right image parts and the uncertainty arising from triangulation
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1.2 Structure of this Dissertation

for objects far away [40]. Finally, Lidar sensors also have difficulties measuring depth when
dealing with strong snow or rain which is of course a crucial ability. Moreover, Lidar sensors
only provide sparse 3D data in form of point clouds and are fairly expensive [41, 42].

Grounded on these drawbacks, it is only natural to investigate if the task of 6D pose estimation
can be achieved only from monocular RGB images alone. Remember that humans are
capable of approaching all these tasks only based on the information from a single eye using
learned priors. Similarly, early works in depth prediction have demonstrated that also neural
networks (NNs) are able to learn such priors and can estimate depth reliably from monocular
images, despite being an ill-posed problem [43, 44]. Analogously, in this thesis we aim at
studying the problem of 6D pose estimation from monocular input using deep learning.
Thereby, we show how ideas from 2D object detection can be harnessed to also estimate the
6D pose at high inference speed. Afterwards, we focus on tackling particular challenges in
6D pose estimation, such as ambiguities due to repetitive patterns and geometry as well as
extending pose estimation to deal with previously unseen objects.

1.2 Structure of this Dissertation

This section briefly outlines the structure of this dissertation.

Chapter 2: Theory and Fundamentals. Estimating the 6D object pose requires a good
understanding of many fields in Computer Vision. This chapter introduces all concepts
which are leveraged within this dissertation. Thereby, I briefly introduce basics in Computer
Vision 2.1 and Deep Learning 2.2 as these are heavily harnessed throughout all works.
Moreover, as 6D pose estimation typically requires to first localize the object in 2D image
space, I will also briefly discuss current works in the field of 2D object detection in Section 2.3.
In the following, I will take a look at more advanced topics, in particular, I will explain the
idea of Generative Adversarial Networks (GANs) and Differentiable Rendering in Section 2.4 and
2.5, respectively.

Chapter 3: Monocular 6D Object Pose Estimation. This chapter serves to introduce relevant
concepts from the field of 6D pose estimation. Essentially, I will introduce the problem
statement and highlight common choices for representation of the 6D pose. Afterwards, the
evaluation protocol is presented, including all employed datasets and metrics.

Chapter 4: Recent History of 6D Pose Estimation. Driven by deep learning, estimating the
6D pose from monocular data received an incredible amount of attention and the number of
works within this field has increased at a vast speed. Hence, in this section, I will give an
overview of the recent history after deep-learning has entered the realm. Thereby, I will first
talk about works devoted to instance-level 6D pose estimation in section 4.1. Afterwards, I
will discuss works for class-level 7D pose estimation in Section 4.2, before diving into the
very recent field of class-level full 9D pose estimation in Section 4.3.

Chapter 5: Summary of Contributions. In this chapter the contributions of our works will be
presented. Essentially, I will talk about general 6D pose estimation and the first deep-learning
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Chapter 1: Introduction

based approach in Section 5.1. The following sections of the chapter are devoted to individual
challenges that can have a significant impact on the pose accuracy.

Chapter 6: Summary and Findings. This section summaries the contributions from chapter 5
and concludes on the findings.

Chapter 7: Future Work and Discussion. The last chapters serves to give an outlook on
remaining open problems. Moreover, some first explorations to tackle these problems are
presented.

Appendix. Contains abstracts of all publications which have not been discussed within the
scope of this dissertation.
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2Theory and Fundamentals

2.1 Computer Vision

2.1.1 The Pinhole Camera Model

Figure 2.1. The Pinhole Camera Model describes the relationship between 3D points and their perspective projec-
tion on the camera’s image plane.

The pinhole camera model describes the relationship between a 3D point P “ pX, Y,ZqT
and its associated image point p “ pu, vqT on the image plane I of the camera centered at C
under perspective projection [45]. Leveraging the focal length, defined as the distance from
the pinhole to the image plane, the following pinhole camera equations can be established
v

f
“ Y

Z
from which v can be inferred as v “ fY

Z
(c.f. Figure 2.1 [right]). Similarly, u can be

computed according to u “ fX
Z

. Notice that in literature homogeneous coordinates are often
employed to simplify notation. Thereby, a fourth coordinate is appended to a 3D point
P “ pX, Y,Z, 1qT . Further, all points P “ p�X, �Y, �Z, �qT with � ‰ 0 denote the same point
in 3D space. All points that can be represented by such quadruples live in the projective
space P3. The actual 3D point can be simply inferred via division by the fourth coordinate
pX, Y,Z,kqT ” pX

k
, Y

k
, Z

k
qT , except when k “ 0, describing 3D points which lie at infinity.

Projective spaces can thus explain points at infinity, while euclidean spaces are not able
to. Using the homogeneous representation, the perspective projection turns into a linear
system

p “

»

————–

u

v

1

fi

����fl
“

»

————–

fX
Z

fY
Z

1

fi

����fl
”

»

————–

fX

fY

Z

fi

����fl
“

»

————–

f 0 0 0

0 f 0 0

0 0 1 0

fi

����fl

»

————————–

X

Y

Z

1

fi

��������fl

. (2.1)
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Chapter 2: Theory and Fundamentals

Most current image systems define the origin as the top-left corner of the image. Therefore,
the points after projection are additionally shifted by the optical center o “ pox,oyqT

p “

»

————–

u

v

1

fi

����fl
“

»

————–

fX
Z

` ox

fY
Z

` oy

1

fi

����fl
”

»

————–

fX ` oxZ

fY ` oyZ

Z

fi

����fl
“

»

————–

f 0 ox 0

0 f oy 0

0 0 1 0

fi

����fl

»

————————–

X

Y

Z

1

fi

��������fl

“ KP. (2.2)

The matrix K, describing the perspective projection, is commonly known as camera in-
trinsics matrix. Noteworthy, the camera commonly also possesses extrinsics parameters T ,
representing its position and orientation within the 3D world which turns p “ KP into
p “ KTP. However, since the object pose is estimated with respect to the camera, the camera
is assumed to be always centered at the origin of the world coordinate system with T “ I

being the identity matrix and can be hence neglected within the scope of this dissertation
p “ KTP “ KIP “ KP.

2.2 Deep Learning

In this section, I first want to give a brief overview about the history of deep learning.
Afterwards, I will introduce the most important principles required to understand this
dissertation. Finally, I will conclude by introducing the most important building blocks of
the utilized neural networks.

2.2.1 Brief historical overview on Deep Learning

Due to its recent hype, deep learning seems to be an idea which has just very recently emerged.
In fact, it has already existed under different terms, i.e. cybernetics and connectionism, since
the 1940s [46]. Ever since then there have been three noticeable waves of deep learning, with
the latter one still prevailing.

The first wave (cybernetics) was motivated from a neuroscientific perspective, attempting to
model the brain function (c.f. Figure 2.2 [left]). In 1943, McCulloch and Pitts [48] introduced
the artificial neuron, which was essentially a linear function (c.f. Figure 2.2 [right]). The
artificial neuron was harnessed to recognize two different categories by discriminating if the
value of the linear function fpx,wq “ ∞

wixi turns out positive or negative. Noteworthy, the
weights had to be set correctly, which could be accomplished by a human operator. In 1958,
Rosenblatt [47] introduced the perceptron, the first implementation that allowed learning of a
single neuron from given samples via potentiometers. However, it soon became clear that
linear models have several limitations – the most famous being that they are not capable of
learning the XOR function [49]. In the following these findings led then to the first winter of
AI.
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Figure 2.2. The Neuron. Left: An illustration of a neuron or nerve cell, the main component of the nervous
system within humans. A neuron is an electrically excitable cell that communicates with other cells via
specialized connections called synapses (source: Wikipedia, license: https://creativecommons.
org/licenses/by-sa/3.0/deed.en). Right: A depiction of the rosenblatt perceptron [47]. The
rosenblatt perceptron is a simple linear function, which can be optimized to learn a separation line for
classification tasks. The perceptron can be considered as the artificial analogy to a neuron of the brain.

The second wave started around the 1980s from a movement know as connectionism, postulat-
ing the idea of describing a complex model via a connected network of simple computational
units. Noteworthy, various concepts that are still leveraged today were introduced during the
connectionism movement. One main contribution was the idea of distributed representation [50].
Instead of employing role-specific neurons for each individual target, Hinton et al. proposed
to learn shared concepts (i.e. colors, objects), significantly reducing the required number of
neurons. Another major contribution was the introduction of the back-propagation algorithm,
allowing to efficiently train deep neural networks [51]. As of today, back-propagation is still
the gold standard for training of deep learning based methods. Despite all the progress
during the connectionism movement, in the mid-1990s the second winter of AI emerged as
the unrealistically high ambitions of AI ventures could not be fulfilled.

Finally, the third wave of neural network research, which is still persisting, started with
a break-trough in 2006. Hinton et al. [52] showed that deep belief networks could be
efficiently trained using greedy layer-wise pre-training. Moreover, due to strong increase
in computational resources, deeper networks could be successfully explored, eventually
giving it the name deep learning. The biggest revolution in neural network research and
probably even within Computer Vision as a whole, then arrived with the introduction of
AlexNet [53]. AlexNet is a deep convolutional neural network (simultaneously trained
on two GPUs), which was capable of surpassing all competing methods on the ImageNet
challenge by a vast margin. In particular, AlexNet was able to reduce the top-5 error for
image classification from 26.1% to 15.3%. Ever since then deep learning driven methods
keep consistently improving, even exceeding human performance on this task [54, 55, 56,
57]. Moreover, AlexNet started a huge trend of applying neural networks to almost every
discipline within Computer Vision, ranging from object detection [58, 59] over image style
transfer [60] to 3D object reconstruction [61, 62] and way beyond.
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2.2.2 Principles of Deep Learning

As aforementioned, the most simple network is a single-layer perceptron, which accumulates
all the information from the input, adds a bias, and predicts the output as a weighted sum
fpx,wq “ ∞

wixi ` bi. Multiple outputs can be obtained by means of simply stacking a
set of perceptrons (e.g. for two outputs py1,y2qT “ p∞

wi,1xi,1 ` bi,1,
∞

wi,2xi,2 ` bi,2qT ). For
easier notation, the matrix representation is utilized in the following with fpx,Wq “ Wx ` b,
where W P R

dxˆdy and b P R
dy . Since perceptrons exhibit severe limitations such as

not being capable of modeling non-linear functions, in the following deeper models were
proposed [51]. Yet, as any combination of linear function results again in a linear function
fpW1,W2, xq “ W2pW1xq “ W3x, non-linearities (also known as activation functions) �p¨q are
required to gain depth via stacking of multiple layers fpW1,W2, xq “ W2�pW1pxqq.

Efficient Gradient Computation Using Backpropagation. In a supervised setup, we typi-
cally have a network consisting of parameters ⇥ and a set of input-output pairs (xi, yi) with
xi P R

dx , yi P R
dy and i P t1, ...,Nu. In the following, from this set we want to learn the

mapping f⇥ : X Ñ Y from an input space X to the associated output space Y. This is achieved
by finding the optimal parameter ⇥˚ minimizing the error between the predictions f⇥pxq
and their associated ground truths y

⇥˚ “ argmin
⇥

ÿ

i

Lpf⇥pxiq,yiq. (2.3)

Despite there are many different common loss functions for L existing, for the following
example the Euclidean norm (l2 loss) is employed as it is a very common function for many
regression problems with l2pŷ,yq “ ||ŷ´y||2. Notice that finding an appropriate loss function
is crucial to learn a good mapping, yet, as long as the loss function is differentiable with
respect to ⇥, the whole network can be optimized referring to stochastic gradient descent.
Further, in this example a two-layer neural network is leveraged, i.e. ⇥ “ tW1,W2,b1,b2u
with f⇥pxq “ W2�pW1x ` b1q ` b2. In summary, we want to minimize the error of

Lp⇥, x,yq “
Nÿ

i“1

||W2�pW1xi ` b1q ` b2 ´ yi||2 (2.4)

with respect to the model parameters ⇥. To optimize this loss using gradient descent, we are
required to calculate the gradients of the loss with respect to ⇥

BL
B⇥ “ B

B⇥
Nÿ

i“1

||W2�pW1xi ` b1q ` b2 ´ yi||2 (2.5)

The first important observation that can be made is, that the function of the neural network
can be dissected into its employed layers. In other words, the mapping f⇥pxq “ gphpxqq is
composed of the functions of the two underlying layers hpxq “ �pW1x ` b1q and gpxq “
pW2x ` b2q. The objective function can be thus rewritten as Lpx,yq “ l2pgphpxqq,yq. Let’s
now take the derivative of L with respect to W2 and W1

BL
BW2

“ Bl2

Bg
Bg

BW2
,

BL
BW1

“ Bl2

Bg
Bg
Bh

Bh
BW1

. (2.6)
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What can be observed is that parts of the computation of the derivatives of the inner layer
with respect to W1 are shared with the previous layer with respect to W2. Similarly, we can
also compute the derivatives for the bias terms b2 and b1

BL
Bb2

“ Bl2

Bg
Bg
Bb2

,
BL
Bb1

“ Bl2

Bg
Bg
Bh

Bh
Bb1

, (2.7)

and make the same observation. In fact also the derivatives for weights and biases have
shared terms. Hence, back-propagation is a simple way to compute the partial derivatives
for each parameter in a very efficient manner, by avoiding to re-compute terms that have
been already calculated before. Due to the nature of the chain rule, the gradients of a layer
typically share terms with the gradients of its following layers, including the derivative with
respect to the objective function. Therefore, during optimization we typically have two steps:
a forward pass in which we compute the final loss with respect to the network output, and a
backward pass in which we propagate the gradients from the last layers to the first layers.
Hence, the name back-propagation.

Optimization Techniques. While optimization techniques harnessing second order deriva-
tives are commonly more stable, due to the large number of parameters it is not yet feasible
to employ them. In fact, computing and storing the Hessian matrix exceeds current memory
limits by far. Therefore, all training methods are currently variants of gradient descent

⇥t`1 “ ⇥t ´ �
BL
B⇥ . (2.8)

Thereby, � refers to the step-size, also known as learning rate, and the parameters ⇥0 are
randomly initialized. In theory, one would like to simultaneously optimize over all N samples
from the dataset, however, this is typically not feasible due to memory limitations and the
associated computational complexity. As consequence, stochastic gradient descent is instead
employed. The actual step is thereby approximated using a small mini-batch of selected
samples. The size of the batch is typically referred to as batch-size and oftentimes a very
important hyper-parameter [63, 64].

Notice that barely any method directly applies stochastic gradient descent, but instead
relies on improved variants. The most prominent being stochastic gradient descent with
momentum [65]

gt “ �gt´1 ` �
BL
B⇥ (2.9)

⇥t`1 “ ⇥t ´ gt. (2.10)

Thereby, the final gradient step gt is a combination of the current gradients BL
B⇥ and the

gradients gt´1 from the previous iteration, with � being the momentum factor. Momentum
serves two main functions: First, it accelerates training when subsequent gradients point
towards the same direction. Second, it dampens oscillation when the optimization reaches
close to the minimum. Nesterov momentum [66] leverages the knowledge of the anticipated
gradient direction �gt´1 and attempts to look ahead by approximating the next position

13



Chapter 2: Theory and Fundamentals

⇥ ´ �gt´1. Harnessing the gradient at the probable next position can correct potential
mistakes and helps stabilizing training

gt “ �gt´1 ` �
BLp⇥t ´ �gt´1q

B⇥ (2.11)

⇥t`1 “ ⇥t ´ gt. (2.12)

While these optimizers rely on a single learning rate for all parameters, adaptive optimizers,
such as Adagrad [67], Adadelta [68] and Adam [69], leverage adaptive learning rates for each
parameter. These optimizers are particularly suited for problems with sparse input data and
can almost eliminate the need for hyper-tuning of the learning rate. For more information, I
kindly refer the reader to the review from [70].

2.2.3 Basic Building Blocks of a Neural Network.

This section briefly introduces the most important building blocks of deep neural networks.

Fully-connected Layer. The most basic block is the multi-layer perceptron (MLP), i.e. a
fully connected linear layer. As previously discussed, a fully connected layer computes the
weighted sum of all input parameters and adds a bias to the output according to f “ Wx ` b

with W P R
dxˆdy and b P R

dy .

Convolutional Layer. The convolutional layer is the core layer of any Convolutional Neural
Network (CNN) [71]. Since fully-connected layers take each individual input into account, it
can soon become very expensive when dealing with high dimensional input data. Moreover,
many input modalities such as RGB images are locally structured. This local structures allows
to share parameters within local neighborhoods, enabling to save a lot of parameters. This
can be achieved via convolutions.

A convolution is a set of N local filters with Wi P R
dxˆmˆn and i P t1, ...,Nu, denoting the

parameters of the convolutional layer. Thereby, dx is the depth of the input volume and
m ˆ n corresponds to the window size of the employed filter. During a forward pass, each
filter is then convolved across the width and height of the input volume, computing the
dot product between the entries of the filter and the input volume in order to produce a
2-dimensional activation map. Finally, by stacking all N activation maps onto each other, one
can receive the output volume for this layer. Noteworthy, a first variant of a convolutional
neural network dates back to 1980, when Fukushima [72] introduced the Neocognitron.

Pooling Layer. Pooling layers [71] are responsible for down-sampling the input volume.
Since the locations of the key points are generally not very relevant, it is often sufficient to
only maintain the relative locations. Thus, pooling layer can progressively reduce the spatial
size of the output volume, leading too less parameters and faster convergence. Thereby, each
feature map is individually convolved with a filter of size m ˆ n, and only the strongest
(max-pooling) or the average (mean-pooling) response within the filter is forwarded. Notice
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that since maxp¨q is a non-differentiable operation, the gradient is simply set to flow through
the input having the maximum value.

Feature Normalization. A core problem of CNNs resides in the vanishing gradient problem.
Due to the chain rule, the repetitive multiplication of mostly small terms (i.e. rij †“ 1) leads
to increasingly smaller step sizes for earlier layers. Feature normalization is a way to tackle
this problem. Thereby, the gradient is kept at a stable range by means of normalizing the
output of the preceding layer to possess zero mean and unit standard deviation. In addition,
the authors of [63] claim that it also helps to mitigate the covariate shift. Without normalization,
subsequent layers have to anticipate the output of the previous layer in order to properly
process the input. Hence, normalizing the output allows layers to learn independently.

The first normalization technique, known as Local Response Normalization (LRN), was intro-
duced in AlexNet [53]. Nevertheless, Batch Normalization (BatchNorm) is the currently most
used technique [63]. BatchNorm computes moments through the batch dimension, which are
then leveraged to track an exponential moving average and an exponential moving standard
deviation. Noteworthy, as shown in [64], BatchNorm does not work well in a low batch-size
regime. To this end, Wu and He [64] propose GroupNorm, computing the mean and standard
deviation through the channels dimension (i.e. the number of feature maps) in groups of a
given size k.

Activation Functions. As aforementioned, activation functions � are usually applied after
each fully connected or convolutional layer and are required to employ deeper networks.
Common choices for �p¨q involve "S"-shape functions such as sigmoid �pxq “ 1

1`exp´x and

tanh �pxq “ expx ´ exp´x

expx ` exp´x or a variant of the Rectifier linear unit (ReLu) �pxq “ maxpx, 0q. Since
ReLu is not only faster to compute, but partially also helps to mitigate the vanishing gradient
problem, almost all current networks are relying on a variant of it. Nevertheless, as any
negative output is mapped to zero, weight updates can occasionally cause a neuron to never
activate again. Further, since the gradient is always 0 for any x † 0, this state cannot be left
anymore (dying Relu problem). Hence, most methods employ variants of ReLu such as ELu
or LeakyReLu, which allow small gradients for negative values.

Residual Connections. Residual connections are another important technique to tackle the
vanishing gradient problem [56]. Thereby, instead of directly learning a mapping H “ fpxq,
He et al. propose to learn the residual mapping H “ x` fpxq. On the one hand, this optimizes
the gradient flow as gradients can take a shortcut through the skip connection around it, and,
on the other hand, the authors claim that learning of a small residual fpxq is an easier task
than directly learning the whole mapping H. In fact, in their work the authors were capable
of training extremely deep networks with more than 1000 layers. In this dissertation, we
employ ResNets having around 10 ´ 50 layers.
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Figure 2.3. 2D Object Detection. While single-stage methods, such as FCOS [73] [©2019 IEEE], directly output the
2D object detections [left], two-stage methods, such as Faster R-CNN [74] [©2017 IEEE], first compute
region proposals which are subsequently scored by a classifier [right].

2.3 Localizing Objects 2D Image Space

Localizing the object in 2D is oftentimes the first step towards 6D object pose estimation,
and can be achieved in many different ways. The most important lines of works can be
separated into two categories. In particular, into single-stage [59, 73, 75] and two-stage [74,
76] detectors. While two-stage approaches first produce candidate boxes which are then
scored by a second learning-based method, single-stage methods instead directly return the
final bounding box together with associated object ID. Notice that single-stage detectors can
be further subdivided into anchor-based [58] and anchor-free detectors [77, 78, 73, 79]. An
example for a single-shot [59] and a two-stage detector [74] is depicted in Figure 2.3.

For two-stage methods, the proposal generation can be either grounded on classical method-
ologies such as Exhaustive Search [80, 81] or generated by another deep network [74, 76].
When leveraging a neural network for region proposal generation, multiple anchor boxes
with different aspect ratios are commonly distributed at different levels of the network to
cover objects at different scales. Boxes having a high IoU overlap (e.g. IoU ° 0.7) with
any ground truth are then considered as positive anchors, while boxes having a low IoU
overlap (e.g. IoU † 0.3) are defined as negatives. The region proposal network is trained via
minimizing a variant of the following loss

Lpppi,pti, spi,stiq “ 1
Ncls

ÿ

i

Lclspppi, spiq ` �
1

Nreg

ÿ
Lregppti,stiq. (2.13)

Thereby, Lcls measures if any object is present in the associated anchor box i with ppi and
spi denoting the predicted and ground truth label of i (i.e. spi “ 1 if an object is present in
i, otherwise spi “ 0). Further, for all Nreg assigned anchors (spi “ 1), Lreg measures the
offset from anchor box to the tight bounding box with pti and sti being the predicted and
ground truth box offsets. Commont choices for Lcls and Lreg are the binary cross-entropy
loss and the l1-loss, respectively. The outgoing refined proposals are then cropped using RoI-
Pooling [74] or RoI-Align [76] and forwarded to a classifier in order to retrieve the associated
class for the detected object.
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While two-stage methods tend to be more accurate, they are also significantly slower. Exem-
plary, with current hardware Faster R-CNN [74] runs at approximately 10 frames per second.
In contrast, single-stage methods such as Single-Shot MultiBox Detector (SSD) [59] can often
achieve real-time performance. As a major difference, each anchor usually directly infers
the class of the encapsulated object (spi “ class id) , instead of only predicting if an object is
present. The loss is, thus, a combination of the losses from Faster R-CNN with a classification
loss (i.e. cross-entropy loss Lceppp, spq “ 1

N

∞
i

spilogpppiq) for Lcls to simultaneously score
and label each anchor box. Since all these methods place anchor boxes at different levels
of the network, the corresponding feature maps are representing different aspects of the
image. In fact, while early anchor boxes rely on low-level features, later bounding boxes only
have access to high-level features. As consequence, RetinaNet proposes to leverage Feature
Pyramid Networks (FPNs) as backbone, fusing low- and high-level features before scoring of
anchor boxes [75]. In addition, Lin et al. also propose the focal loss as scoring function. The
focal loss basically re-weights the cross-entropy loss to tackle the class imbalance problem in
object detection by down-weighting contributions of very confident anchors

Lfocalppp, spq “ 1
N

ÿ

i

spip1 ´ ppiq�logpppiq. (2.14)

Thereby, � is a hyper-parameter controlling how strongly confident predictions are down-
weighted. The authors empirically propose to use � “ 2. Noteworthy, while also being
grounded on anchor boxes, Yolo [58] further segments the image into 7 ˆ 7 superpixels from
which it infers the class of each refined and scored anchor box.

To densely cover the whole image, a lot of anchor boxes are required, which is computa-
tionally costly. In addition, even when leveraging many anchors at different scales, it is not
possible to cover all possible arrangements, thus, the detectors can exhibit blind spots. This
is not the case for anchor-free approaches. For example, CornerNet regresses the top-left and
bottom-right corners of the tight bounding box [77]. Thereby, for each pixel, Law et al. classify
if a corner is present using a variant of the focal loss. To retrieve the final bounding box,
these corners are eventually aggregated by means of feature descriptor matching harnessing
metric learning. CenterNet extends CornerNet to also consider the center of the bounding box
and enforcing additional constraints [78]. Finally, FCOS assigns the object class to each pixel
in the image, based on the encapsulating ground truth bounding box. In the following, FCOS
predicts the offset of each assigned center pixels to the left, right, bottom and top edge of the
ground truth bounding box. Since pixels far from the center seem to produce less precise
bounding boxes, Tian et al. additionally attempt to suppress predictions based on how far
they are from the center of the box [73].

2.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [82] (c.f. Figure 2.4) have been recently adopted to
generate plausible results for a variety of Computer Vision tasks, including image inpainting
[83, 84], image editing [85], style transfer [86, 87, 88], super-resolution [89] and 3D object
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Figure 2.4. Generative Adversarial Networks (GAN). A GAN is composed of two individual networks, a genera-
tor G and a discriminator D. Thereby, the generator aims to generate samples from given noise which
cannot by distinguished from real data by D. In contrast, D attempts to discriminate if the sample
originates from the real domain or was generated by G. Training both networks with these adversarial
objectives converges in G generating data which cannot be distinguished from real data anymore.

generation [90]. In essence, a GAN is composed of two networks, a generator G and a
discriminator D, which are trained with conflicting objectives. In particular, G is fed with a
noise vector z sampled from a gaussian distribution z „ Npµ,�q and attempts to generate
data, which is indistinguishable from real data of a target domain X. On the contrary, D tries
to discriminate if a given sample is taken from the real data distribution x P X or generated
by the generator Gpzq R X. Inspired by game theory, these two networks are then trained in a
min-max fashion, in which both networks keep improving at their respective task, i.e. while D

improves at determining the origin of the data, G improves at generating data which cannot
be differentiated from real data by D. Eventually, this optimization ends in an equilibrium in
which G produces samples that cannot be distinguished from real data of X anymore

G˚ “ argmin
G

max
D

ExrlogDpxqs ` Ezrlogp1 ´ DpGpzqqqs. (2.15)
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(y, x)
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Figure 2.5. Conditional Generative Adversarial Networks. As for Conditional GANs, the generator is condi-
tioned on a sample x and enforced to learn a mapping that transfers x from the source domain X to
the target domain Y. On the other hand, the discriminator ensures that the sample is indistinguishable
from a real sample in Y and an appropriate translation of x to Y.

While Goodfellow et al. [82] have shown that GANs are capable of generating new data from
a distribution X, GANs have been also very successfully applied to domain transfer tasks,
mapping from source domain X to the target domain Y [87]. Thereby, the GAN is typically
conditioned on priors x P X and has to generate a sample which properly translates x to
Y [91, 92, 87]. On the other hand, the discriminator has to discriminate if the sample is a real
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sample from Y and a correct counterpart to x. In this formulation, the optimization can be
expressed as

LcGAN “ Ex,yrlogDpx,yqs ` Ex,zrlogp1 ´ Dpx,Gpx, zqqqs. (2.16)

Thereby, x P X represents the conditioned input, y P Y the associated target sample, and z is
again a sampled noise vector which is supposed to capture the nature of the one-to-many
mapping from x to Y. Notice that this is a particular strength of Conditional GANs (cGAN)
over other domain transfer methods leveraging a reconstruction loss, as the discriminator D
does only evaluate correct domain transfer and is therefore agnostic to ambiguities (e.g. when
colorizing a car blue instead of red the reconstruction loss would be high despite correct
transfer). An illustration of cGANs can be also found in Figure 2.5.

Isola et al. [87] propose a general–purpose Conditional GAN (cGAN) that can be used for
a variety of image translation tasks, such as labels to street image, black and white to color
photography, edges to photo, incomplete to full image etc. While the authors acknowledge
the advantage of cGANs being agnostic to ambiguities, their results have demonstrated that a
combination of l1-loss for reconstruction together with a GAN-loss leads to the best results

G˚ “ argmin
G

max
D

LcGAN ` �||py ´ Gpx, zqq||1, (2.17)

with � being a weighting factor. Notice that many different priors have been utilized in
literature, including lower resolution images [89], normal maps [93], incomplete image [83],
text [94], labels [95], and illumination variations [2].

2.5 Differentiable Rendering

Figure 2.6. Differentiable Rendering. Right: Computing analytical gradients is oftentimes not useful due to the
rasterization step, as rasterization simply assigns the color of the closest triangle for each pixel [©2019
IEEE]. Left: As the white triangle is the closest towards the camera, the color cvp of pixel vp will be
simply set to 1, even when using barycentric coordinates. Since the assigned color cvp is a constant, the
derivative of the pixel color towards any vertex or model parameter is always zero.

In 3D Computer Vision, one typically aims at inferring 3D properties from a 2D image
or scene. Thereby, supervision generally requires some form of knowledge about the 3D
scene. Nevertheless, acquiring appropriate annotations is a difficult and time-consuming
task. Interestingly, there exist a vast amount of large and labeled datasets of RGB images [53,
96]. Being capable of supervising 3D properties by means of RGB images is, thus, very
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intriguing as it enables many potential applications [97, 98]. Notice that perceiving the
3D scene onto the 2D image plane is known as rendering and has been extensively studied
in Computer Graphics [99]. Consequently, when backpropagating the error through the
rendering function, reasoning about 3D information could be theoretically learned from 2D
images alone.

A rendering function R commonly takes as input a 3D model M, camera parameters C, mate-
rial parameters M, and lighting parameters L to output a color image I, and/or depth image
D. While there are different representations for shape such as voxels [100], pointclouds [101],
or implicit functions [61], in this dissertation I focus on 3D meshes (M “ pV ,Eq consisting of
the model vertices V and the model triangles E) as 6D pose estimation commonly assumes
the presence of a 3D CAD model.

For most traditional rendering pipelines it is difficult to utilize analytical gradients due to
the rasterization step, as rasterization simply assigns the color of the closest triangle to each
pixel (c.f. Figure 2.6 [right]) [102, 103]. Exemplary, in Figure 2.6 [left] there are two black
triangles tb1 “ tvb0 , vb1 , vb2 u and tb2 “ tvb1 , vb2 , vb3 u, and one white triangle tw1 “ tvw0 , vw1 , vw2 u.
As the white triangle is located closer towards the camera, the color cvp of pixel vp will be
simply set to 1, even when using barycentric coordinates cvp “ ∞

wiv
w

i
“ 1 with

∞
wi “ 1.

Therefore, since the assigned color cvp is a constant, the derivative of the pixel color towards
any model parameter  “ tM,C,M,Lu is always Bcvp

B i
“ 0. In addition, if vp lies outside of

any triangle, the gradients amount again to 0.

As consequence, a few works have recently been proposed to circumvent the hard assignment
in order to re-establish the gradient flow [103]. Notice that, while the gradient with respect
to each vertex is 0, moving vw0 to the right will eventually change the color of vp to black.
Hence, altering vertices can impact the assigned color of pixels. Using this knowledge, one
can compute gradients by allowing neighboring triangles to affect the color of vp. In fact,
there are two common strategies for re-establishing the gradient flow based on this idea.
On the one hand, some works aim at approximating a "useful" gradient [104, 105], whereas
others instead approximate the rendering itself [106, 107]. Notice that both directions have
their advantages as well as disadvantages. For instance, while the latter works are capable of
leveraging analytical gradients, this also comes with a cost in image quality.

As for approximating gradients, one of the first works, named OpenDr by Loper and Black
[104], utilize approximated spatial gradients. Leveraging differential filters (such as the Sobel
filter), the derivative for pixel vp can be computed as Bcvp

Bvp
“ p Bcvp

Bx , Bcvp

By qT . Hence, since
background triangles also contribute to the gradient at vp, the gradient does not necessarily
amount to 0. Unfortunately, these gradients are only applied locally and not tailored towards
the objective function of the given task. To deal with this dilemma, Kato et al. [105] propose
to model the gradient for cvp by the potential change a vertex vi can prompt to the pixel.
Assuming the intensity of cvp changes from c0

vp
to c1

vp
when moving the x-coordinate xi

of vi along the x-axis from x0
i

to x1
i
. Thereby, x0

i
is the current location and x1

i
describes the

position where the edge of the associated triangle collides with vp, thus, inducing an intensity
change. Since this a sudden intensity change, the gradient is not defined at this location. To
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this end, Kato et al. replace the sudden with a gradual change, approximating Bcvp

Bxi
. Thereby,

Bcvp

Bxi
“ �

cvp

�
xi

between x0
i

and x1
i

with �cvp “ c1
vp

´ c0
vp

and �xi “ x1
i

´ x0
i
.

Since [104, 105] leverage standard rendering pipelines, they cannot let gradients flow into
occluded triangles to properly optimize the z-component of these triangles. Therefore, the
authors of SoftRas conduct rendering by aggregating the probabilistic contributions ci “∞

j
wi

j
ci
j

` wi

b
cb of each mesh triangle with respect to the rendered pixels [106]. Thereby, cb

controls the background color. The weights wj satisfy
∞

j
wi

j
` wb “ 1 following the softmax

operator according to wi

j
“ D

i
jexppzi

j{�q∞
k Di

kexppzi
k{�q`expp✏{�q . Thereby, zi

j
denotes the normalized

inverse depth of the 3D point on the triangle ei whose 2D projection is pi, ✏ denotes a
small constant allowing the usage of a background color and � controls the sharpness of
the aggregate function. In addition, Di

j
models the influence of the triangle ej on pi, with

Di

j
“ sigmoidp�i

j
¨ d

2pi,jq


q. Here  controls again the sharpness, d2 denotes the euclidean
distance and �i

j
is a indicator function signalizing if pi is covered (�i

j
“ 1) by ei or not

(�i
j

“ ´1). To summarize, the closer the triangle ej is located towards pi the larger its
contribution to the output color ci. Remember that the color ci is thus only an approximation
of the real color at pixel i. Nevertheless, the gradient of pi flows into every triangle and,
thus, also flows into every vertex. DIB-R builds on top of SoftRas by considering foreground
and background pixels independently [107]. For foreground pixels (i.e. all pixels that are
covered by at least one face), DIB-R simply computes the color as barycentric interpolation of
the closest triangle in an effort to avoid blurry outputs. In contrast, for background pixels
DIB-R leverages a distance-based aggregation similar to [106]. In our work called Self6D,
we further adjust DIB-R to additionally render the associated depth map. Since each depth
value is calculated as a weighted sum of depth values from the vertices of the closest triangle,
we can simply compute the analytic gradient without any approximation [4].

Noteworthy, similar ideas for optimization through rendering have also been proposed
for voxels [108, 109], pointclouds [110, 111] and implicit functions [112, 113]. Moreover,
while differentiable rendering resorts to well established principles from Computer Graphics,
another line of works known as neural rendering instead aims at learning the whole rendering
process via convolutional neural networks. These networks can then be leveraged to retrieve
gradients via backpropagation [114].
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Methodology





3Monocular 6D Object Pose Estimation

Figure 3.1. Monocular 6D Object Pose Estimation. Monocular object pose estimation aims at estimating all six
degrees-of-freedom of an object M, required to transform the object from object to the camera space.
The 6D object pose consists of the object’s 3D orientation R and translation t.

3.1 Problem Definition

Monocular object pose estimation describes the task of estimating the 3D rotation R “
p�X,�Y ,�Zq, denoting yaw, pitch and role, and 3D translation t “ ptx, ty, tzq from a single
RGB image, transforming the detected object M from object space to the camera space.
An illustration of the 6D object pose is provided in Figure 3.1. The object M is typically
represented by 3D CAD model, consisting of 3D vertices V “ tv1, ..., vNu, with vi P R

3 and
V P R

3ˆN, and triangles E “ te1, ..., eMu with ei P R
3 and with E P R

3ˆM connecting the
vertices. Further, in the multi-object scenario we want to detect and estimate the pose of
all objects Mi from a set of N known objects O “ tM1, ...,MNu, being currently present in
the image I. As this requires to estimate six parameters (or degrees-of-freedom) for each
detection, i.e. 3 for translation and 3 for rotation, this task is also often referred to 6 DoF/6D
object pose estimation. Estimating the 6D pose is particularly challenging as it requires
the inference of 3D information from 2D data. Moreover, inferring 3D information from
2D data is an ill-posed problem, as information is lost due to the nature of the perspective
projection (c.f. Section 2.1.1). While there is no mathematical solution to the under-constrained
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problem, the possession of the CAD model helps disambiguating the pose to some extent.
Nevertheless, due to symmetries, repetitive pattern as well as occlusion, estimating the
6D pose can still be highly ambiguous [5]. Deep learning has recently demonstrated to be
particularly suited for ill-posed problems such as monocular depth estimation, as they are
able to exploit learned priors to infer absolute scales [43, 44]. Grounded on this success,
we present new methodologies for estimating the 6D object pose using neural networks in
Chapter 5.

Figure 3.2. Model-free 3D Object Detection. Left: As no 3D CAD model is provided, model-free 3D object
detection attempts to estimate a 3D bounding box tightly encapsulating the object of interest. Right:
Computing a tight 3D bounding box from monocular data alone is even more challenging due to the
presence of the scale-distance ambiguity. As illustrated the same object at different scales and distances
can lead to the same image after perspective projection.

In many real life scenarios it is not really tractable to conduct instance-level pose estimation
as the number of objects is simply too large. Exemplary, in autonomous driving there are
thousands of different cars in the real-world. Also household robots that can only cope with
a small number of particular objects are not very applicable, as each household typically
has their own set of objects. Therefore, being capable of dealing with previously unseen
objects is another very important aspect of 6D pose estimation. As this a very challenging
problem, these objects are commonly instances of a known class, which allows to leverage
and learn priors about object and pose. Exemplary, in autonomous driving most works
estimate the size of cars as their deviation from the mean size [115, 6]. Further, notice that
unseen in this scenario means that this particular sample has not been seen before, even
though the network might have observed a different instance having the same or similar
attributes. As illustrated in Figure 3.2 [left], in model-free pose estimation, the pose is usually
parameterized by the 3D bounding box B P R

3ˆ8, which tightly encapsulates the object of
interest [116, 117]. Noteworthy, many fields, such as autonomous driving, assume the object
to be always resting on the ground plane, reducing the degrees-of-freedom for rotation to 1
angle around the object’s Y axis [118, 115, 119]. Nonetheless, this task is significantly more
difficult, as one still needs to compute 3 additional parameters for the 3D scale s “ pw,h, lq of
the object. Moreover, model-free pose estimation is also highly ambiguous. Let’s assume we
have an object Mi in two different scales, i.e. large Mlarge and small Msmall. The perspective
projection on the image plane for Mlarge far away from the camera can be identical to
Msmall close by (c.f. Figure 3.2 [right]). Notice that as these requires to estimate in total 7
parameters, it is also often referred to as 7DoF/7D pose estimation. On another note, while

26



3.2 Representing the 6D Pose

for some tasks estimating the 3D bounding box is sufficient, for other tasks such as object
manipulation a full 3D representation is crucial. Hence, a few methods even go beyond the
3D bounding box scenario and additionally estimate the object shape, increasing again the
degrees-of-freedom [6, 3].

3.2 Representing the 6D Pose

The 3D translation is commonly represented by 3 scalars for the object’s position along the
X,Y, and Z axis of the camera. Direct regression of these values in 3D space is in practice,
however, not very favorable due to the perspective projection. Therefore, several works
instead represent the translation as the 2D projection c “ pcx, cyq of the object’s 3D centroid
and its distance z towards the image plane [9, 120]. While z is not given from a single image,
there are several ways to recover it including RGB-D sensors or deep learning [44, 121]. Using
projective geometry the 3D translation can be then inferred according to t “ K´1zpcx, cy, 1qT
(c.f. Section 2.1.1). This significantly simplifies the problem, as two parameters can be com-
puted in 2D space [5, 120]. Finally, moving the object from object to camera coordinate system
can by achieved by simply adding t to the object vertices V

V 1 “ V ` t. (3.1)

As aforementioned, the 3D rotation also has 3D degrees-of-freedom for rotating the object
around its X,Y, and Z axis. Thereby, rotating the vertices V of M by � around its X axis can
be, for instance, achieved by multiplying V with the rotation matrix Rx according to

V 1 “ Rxp�qV with Rxp�q “

¨

˚̊
˚̊
˝

1 0 0

0 cosp�q ´sinp�q

0 sinp�q cosp�q

˛

‹‹‹‹‚
. (3.2)

Similarly, the matrices Ry and Rz rotate M around the Y and Z axis, respectively with

Ryp�q “

¨

˚̊
˚̊
˝

cosp�q 0 sinp�q

0 1 0

´sinp�q 0 cosp�q

˛

‹‹‹‹‚
and Rzp�q “

¨

˚̊
˚̊
˝

cosp�q ´sinp�q 0

sinp�q cosp�q 0

0 0 1

˛

‹‹‹‹‚
. (3.3)

Notice that applying Rx and Ry back to back V 1 “ Ryp�yqRxp�xqV , rotates M first by �x

around its X axis and afterwards by �y around its Y axis. Consequently, the rotation matrix
R which describes the full rotation in 3D space can be obtained as a product of individual
rotations R “ RzRyRx. Further, every series of rotations can be also described by a single
rotation matrix, e.g. RcV “ R3R2R1V with Rc “ R3R2R1. It is important to understand that
the coordinate system of M is rotated together with the object when applying Rx. Therefore,
changing the order in which the rotation matrices are applied, also changes the out-coming
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rotation (i.e. in most cases R1R2 ‰ R2R1). In other words, rotations are non-commutative
operations. The most standard order for the individual rotations first rotates around X, then
Y, and finally Z (R “ RzRyRx). All possible rotations of the 3-dimensional Euclidean space
(R3) form a natural manifold known as special orthogonal group SOp3q, whose columns form
a basis in R

3. In particular, these orthogonal matrices are denoted as special as they have a
determinant of 1 and thus preserve the orientation of the space.

It is worth mentioning that there are several different ways to represent the 3D rotation
of an object and minds diverge a lot when it comes to choosing the right one. Rotation
matrices are thereby not a very common choice since the same rotation can be achieved via
different combinations of Euler angles (�x,�y,�z). Additionally, Euler angles also suffer
from gimbal lock connoting that two or more rotation axes collapse. To this end, a lot of
works utilize unit quaternions of the H algebra to represent the gimbal-lock free rotation
in SOp3q [120]. A quaternion is given by q “ q1 ` q2i ` q3j ` q4k “ pq1,q2,q3,q4q with
pq1,q2,q3,q4q P R

4 and i2 “ j2 “ k2 “ ijk “ ´1. Rotating V with respect to q can be
conducted using V 1 “ q ¨ V ¨ q´1, with ¨ denoting the hamilton product and q´1 being the
quaternion conjugate q´1 “ pq1, ´q2, ´q3, ´q4q. Using this representation there are still two
quaternions q ” ´q that represent the same rotation R

3. Yet, this can be avoided when,
for instance, restricting all quaternions to reside on the upper hemisphere of the q1 “ 0
plane [5]. Due to its uniqueness, in most of our works, we leverage quaternions to represent
the rotation [7, 5, 6, 4, 3]. Interestingly, notice that [122] has very recently shown that all
common representations for the rotation in SOp3q exhibit discontinuities with respect to
the 3D rotation. Moreover, they also demonstrated that the accuracy of neural networks
for many tasks such as human pose estimation significantly decreases when being close
to any discontinuity within the employed representation. Since SOp3q does not embed
in R

d for any d † 5, there exist no according homeomorphism which is required for a
continuous mapping. Hence, there is no continuous space for rotations R

d with d † 5. As
consequence, they propose a novel parameterizations having 5 or more parameters to resolve
this issue. This representation has already been successfully applied to the domain of 6D
pose estimation with great results [123, 1]. Consider that it is very easy to move between
different representation for the 3D rotation.

When using homogeneous coordinates in P4 the rigid body motion T of the Special Euclidean
group T P SEp3q that brings the object from object to camera space, i.e. rotating M with respect
to R and translating it by t, can be expressed by a single transformation matrix

VCamera “ TVObject “

¨

˚̊
˚̊
˚̊
˚̊
˝

r11 r12 r13 t1

r21 r22 r13 t2

r31 r32 r33 t3

0 0 0 1

˛

‹‹‹‹‹‹‹‹‚

VObject “

¨

˚̋ R t

0 1

˛

‹‚VObject (3.4)

Although all works included in this dissertation rely on directly regressing R and t from
the image I, a large group of related works instead employ an intermediate representation,
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3.2 Representing the 6D Pose

simultaneously encoding rotation and translation [10, 124, 125]. In fact, these works usually
regress the 2D projection p P R

2ˆN of N assigned 3D keypoints P P R
3xN. In the following a

variant of the Perspective-n-Point (PnP) [124, 126] algorithm is employed to solve for R and
t, minimizing the reprojection error

PnPpp,P,Kq “ argmin
R,t

1
N

Nÿ

i“1

||pi ´ ⇡ppRPi ` tq,Kq||22, (3.5)

with ⇡ representing the perspective projection (c.f. Section 2.1.1, Equation 2.2) and K being
the camera intrinsics matrix. To improve robustness towards bad correspondences, PnP
is commonly coupled with RANSAC [127]. These works argue that it is easier to solely
infer 2D properties when working on images and, additionally, this representation for pose
is invariant to changes of the viewpoint which are caused by a pure translation in 3D.
Noteworthy, some methods also combine both ideas, i.e. while using keypoints to infer the
3D rotation, translation is instead directly regressed [128].

Figure 3.3. Allocentric v.s. Egocentric Pose. Left: As for the egocentric rotation, a mere 3D translation of the object
leads to a different appearance on the image plane. Right: In contrast, the allocentric representation is
viewpoint invariant under 3D translation.

Allocentric v.s. Egocentric Pose Representation Under perspective projection, a mere 3D
translation of the object lateral to the image plane, leads to different object appearance.
Therefore, for the same visual structure on the image plane, the network has to estimate
different 3D rotations depending on the translation. This is obviously an undesired situation,
which becomes particular challenging when cropping into the image [76, 81], as the prediction
heads lose the spatial context. To tackle this issue, Kundu et al. [129] propose to utilize the
allocentric rotation, which is agnostic towards the 3D translation. Knowing the allocentric
rotation, one can easily obtain the egocentric rotation.

Given the object’s estimated allocentric rotation Ra, the 2D projection of the centroid c, and
the camera matrix K, the rotation Rc between the camera principal axis l “ r0, 0, 1sT and the
ray through the object center projection o “ K´1c “ t

||t|| is computed. Essentially, Rc takes
vector l to align with vector o according to

Rc “ I3 ` psin↵qrasX ` p1 ´ cos↵qras2
X

. (3.6)
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with I3 representing the identity matrix in R
3ˆ3, a “ lˆo

||lˆo|| being the axis between the object
ray o and the optical center ray l, ↵ “ arccos pl ¨ oq describing the angle between them, and
r¨sX computing the skew-symmetric matrix according to

rasX “

¨

˚̊
˚̊
˝

0 ´a3 a2

a3 0 ´a1

´a2 a1 0

˛

‹‹‹‹‚
. (3.7)

The final egocentric rotation can be derived as R “ RcRa.

3.3 Evaluation

The following will give a brief introduction to all relevant datasets and metrics, leveraged
in the works of this dissertation. Notice that s̈ always depicts the ground truth for the
corresponding predicted parameter p̈. Exemplary, sR and pR reflect the ground truth and
predicted 3D rotation, respectively.

In the last years a lot of methods for solving the 6D pose have been proposed. However, the
employed evaluation protocols in terms of datasets and metrics do often not align very well
with each other. Furthermore, while some methods use synthetic data alone [9, 130], others
make additionally use of a few real samples so to close the domain gap [10, 128].

Hence, in an attempt to unify evaluation and, thus, simplify future comparison, Hodan et
al. [8] recently established the Benchmark for Object Pose (BOP) challenge. BOP encompasses
11 datasets with 7 datasets constituting the core challenge datasets. Thereby, each method
has to be evaluated on all core datasets in order to participate in the challenge. Moreover, all
methods have to utilize the same synthetic-only training data. The authors essentially argue
that annotating a large dataset for each object is infeasible in the real world.

3.3.1 Datasets for Evaluating The Object Pose

Model-based 6DoF pose estimation. Table 3.1 presents an overview of the most important
dataset in 6D pose estimation. It is worth mentioning that all datasets are also included in
the BOP benchmark [8]. As there are too many datasets to discuss each of them in detail, in
the following, the focus lies on the datasets that are most relevant within the scope of this
dissertation.

For monocular 6D pose, LineMod (LM) [131], LineMod-Occluded (LM-O) [132] and YCB-
Video (YCB-V) [120] are probably the most utilized datasets for evaluation. Thereby, LM is
a single-object per image dataset, consisting of 15 sequences with each possessing « 1.2k
images, possessing clutter and mild occlusion. As LM is a rather simple dataset and results
start to saturate at over 90% in ADD (c.f. 3.3.1 and [128, 139]), most approaches additionally
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Train. im. Val im. Test im. Test ins.

Dataset BOP Core Objects Real Synth. Real All Used All Used

LM [131] 15 – 50000 – 18273 3000 18273 3000

LM-O [132] X 8 – 50000 – 1214 200 9038 1445

T-LESS [133] X 30 37584 50000 – 10080 1000 67308 6423

ITODD [134] X 28 – 50000 54 721 721 3041 3041

HB [135] X 33 – 50000 4420 13000 300 67542 1630

YCB-V [120] X 21 113198 50000 – 20738 900 98547 4123

RU-APC [136] 14 – – – 5964 1380 5964 1380

IC-BIN [137] X 2 – 50000 – 177 150 2176 1786

IC-MI [138] 6 – – – 2067 300 5318 800

TUD-L [8] X 3 38288 50000 – 23914 600 23914 600

TYO-L [8] 21 – – – 1670 1670 1670 1670

Table 3.1. Datasets for 6D Pose Estimation. The table compares the most important datasets for evaluating the
6D object pose. All datasets are also contained in the BOP challenge [8]. The datasets encompass
different challenges such as occlusions (LM-O, YCB-V), illumination changes (TUD-L, TYO-L), or
symmetries and repetitive patterns (T-LESS). Furthermore, each dataset that is included in the BOP
Core challenge also comes with 50k synthetic training images.

evaluate on LM-O or YCB-V since they are significantly more challenging. In particular,
for LM-O, Brachmann et al. [132] extend one sequence of LM by additionally annotating
the pose of 8 other objects being present within this sequence. In contrast to LM, LM-
O is therefore a multi-object per image dataset in which objects often undergo medium
occlusion. Similarly, YCB-V also exhibits multiple objects per image and possesses medium
occlusion. Notice that the results on YCB-V have to be taken with a pinch of salt, since
the pose annotations are occasionally not very accurate compared to most other datasets.
In particular, YCB-V provides short video sequence, thereby, always annotating the first
frame and propagting the labels through the sequence by means of camera tracking. Thus,
as the error from camera tracking accumulates over time, the pose quality of later frames
degrades due to the drift. Despite occlusion, there are many more challenges aggravating
pose estimation. One being ambiguities arising from symmetries. For instance, IC-MI [138]
consists of 6 objects with at least 5 being partially symmetric. Thereby, due to symmetries
poses can easily become ambiguous when not exposing enough textural information, which
can significantly complicate the given task (c.f. Section 5.2.1). T-Less [133] consists of many,
oftentimes symmetric, simple industrial parts with little texture and a high amount of
occlusion. Hence, the lack of textures coupled with object symmetries make it even further
challenging than IC-MI. Besides occlusions also other external factors can impede estimating
the pose. In fact, changes in illumination can have significant impact on the inferred results.
Exemplary, nearby refrigerators the contrast ratio can go beyond 1:1000. TUD Light (TUD-L)
and Toyota Light (TYO-L) [8] are trying to tackle this exact problem. While the datasets are
rather simple in the geometry of objects and the amount of occlusion, several light sources
are added to measure pose accuracy in different illumination setups.
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KITTI [30] NuScene [140] Argoverse [141] Waymo [142] Lyft Level 5 [36]

Scenes 22 100 113 1150 366

Ann. Lidar Fr. 15K 40K 22K 230K 46K

Hours 1.5 5.5 1 6.4 2.5

3D Boxes 80K 1.4M 993k 12M 1.3M

2D Boxes 80K – – 9.9M 323K

Lidars 1 1 2 5 3

Cameras 4 6 9 5 7

Avg Points/Frame 120K 34K 107K 177K –

Maps No Yes Yes No Yes

Visited Area (km2) – 5 1.6 76 –

Table 3.2. Datasets for 7D Pose Estimation. The table compares the most important datasets for evaluating 3D
object detection from monocular data. The main difference resides in the sensor setup and the amount
of labeled images. While KITTI was released in 2012 with 80K labeled 3D boxes, new large-scale
datasets with millions of annotated instances are now available.

Model-free 7D pose estimation. Table 3.2 shows an overview of important datasets for 7D
pose estimation. The most prominent being the KITTI3D benchmark [30] released in 2012. In
the following, KITTI3D was for a long time the only public dataset available for evaluating
3D object detection. Only very recently, new large-scale datasets with millions of annotated
object instances were released, starting with NuScenes [140] announced in 2018. As collecting
and annotating these large datasets is extremely expensive, companies such as Waymo [142]
or Lyft [36] are mostly supporting these new datasets. Noteworthy, as these datasets are
deliberately large and all related methods used to evaluate on KITTI3D, the transition is still
happening at a very low pace. In fact, most works, including ours [6], are purely evaluated
on KITTI3D [119, 97].

KITTI3D consists of 7481 training images and 7518 test images recorded while driving in
Germany. KITTI3D includes urban as well as high-way scenes, collected in mostly sunny
weather. The dataset possesses 3D annotation for 80K instances, involving Cars, Pedestrians,
Cyclists, and Vans. Chen et al. [118] further splits the training images into training and
validation with each split composed of around 3.5K samples. The KITTI3D benchmark
suite relies on three different difficulties: easy, moderate, hard dependant on the amount of
occlusion the size of the 2D bounding box in pixel space.

3.3.2 Evaluation Metrics

Model-based 6D pose estimation. In [131], Hinterstoisser et al. proposed the Average Dis-
tance of Distinguishable Model Points (ADD) metric which is still to date the most utilized metric
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for 6D pose estimation. ADD measures whether the average deviation ✏ of the transformed
model points V is less than 10% of the object’s diameter

✏ADD “ avg
vPV

}ppRv ` ptq ´ psRv ` stq}2. (3.8)

Since ADD leverages direct correspondences, it does not work well under symmetries as
multiple poses can reflect the same correct transformation [5]. Thus, for symmetric objects
the Average Distance of Indistinguishable Model Points (ADD-S) metric is commonly employed.
ADI measures the error as the average distance to the closest model point [131, 143].

✏ADI “ avg
v2PV

min
v1PV

}ppRv1 ` ptq ´ psRv2 ` stq}2. (3.9)

Additionally, Hodan et al. [143] introduced the Visible Surface Discrepancy (VSD) metric,
arguing that ADI cannot cover all kinds of visual ambiguities. Let’s assume that the handle
of a cup is self-occluded. While visually predicting a correct pose, the handle could still point
in a different direction, hence, canceling out a good pose estimates according to ADD or ADI.
Therefore, VSD leverages only the visual surface to measure pose quality

✏VSDp pD, sD, pA, sAq “ avg
jP pAY sA

$
&

%
0 if j P pA X sA ^ | pDpjq ´ sDpjq| † ⌧

1 otherwise.
(3.10)

Thereby, pD and sD depict the predicted and ground truth depth map, obtained from rendering
M with the predicted pose ppR|ptq and the ground truth pose psR|stq, respectively. Further, pA and
sA illustrate the respective visible surface, computed via comparing pD and sD with the depth
map from the sensor DS (e.g. pAj is equal to 1 if pDj § DS

j
and 0 otherwise), and j denotes the

pixel location in I. The parameter ⌧ constitutes the misalignment tolerance.

Since for many applications in augmented reality it is sufficient to have a high visual overlap,
i.e. depth perfect results are not required, the Visible Surface Similarity (VSS) metric relaxes
VSD by only considering the visual overlap [9, 7]

✏VSSppA, sAq “ avg
jP pAY sA

$
&

%
0 if j P pA X sA

1 otherwise.
(3.11)

Thereby, a pose is accepted as correct if the error ✏VSS is below 0.5.

Model-free 7D pose estimation. The performance of 3D object detectors is commonly
measured referring to the intersection of union (IoU) metric. Thereby, the 2D IoU with respect
to the 2D bounding boxes in the image space and the 3D IoU with respect to the 3D bounding
boxes in 3D space are measured [30].

The IoU of two bounding boxes is defined as the area of intersection over the area of union.

IoUppS, sSq “ Sintersection

Sunion

“
pS X sS
pS Y sS

. (3.12)
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Given the predicted and ground truth 2D bounding box pB2D and sB2D, we first calculate the
respective area pS2D and sS2D for each bounding box. From this the 2D IoU is computed as
IoUppS2D, sS2Dq. The 3D IoU follows the same principle, however, computes the IoU with
respect to the volume pS3D and sS3D of the 3D bounding boxes pB3D and sB3D according to
IoUppS3D, sS3Dq.

Since it is not crucial to know the exact height of other traffic participants to drive safely,
most works additionally leverage the 2D IoU with respect the 3D box as perceived from
the bird’s eye view (BEV). The BEV IoU is computed by means of an orthogonal projection
B2D
BEV

“ ⇡orthopB3Dq of the 3D bounding box onto the y “ 0 plane with piorthoppX, Y,ZqT q “
pX,ZqT . Finally, the 2D IoU is computed on the resulting 2D bounding boxes after projection
IoUppS2D

BEV
, sS2D

BEV
q, with pS2D

BEV
and sS2D

BEV
denoting the predicted and ground truth area in 2D

of the projected 3D boxes pB2D
BEV

and sB2D
BEV

, respectively.

For all metrics a prediction is considered as positive if the associated IoU is larger than a
threshold ⌧. Exemplary, the default for ⌧ is set to 0.7 for KITTI3D [30]. Furthermore, for each
metric the average precision (AP) is reported, computing the area underneath the precision-
recall curve [144]. While recall computes the ratio of all correctly predicted samples over all
positive samples within the dataset, precision measures the ratio of all correct predictions
over all casted predictions (i.e. true and false positives).
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4Recent History of Monocular Object
Pose Estimation

Estimating the object pose is a very active field of research and, in fact, is still growing
rapidly [8]. In this chapter an overview over published methods related to this dissertation is
provided. There are many ways to disentangle the field of 6D pose estimation. Exemplary,
in this dissertation, the works are separated according to the amount of degrees-of-freedom
they are estimating. Thereby, while the first section covers instance-level 6D pose estima-
tion, the latter two sections tackle the problem of model-free 7D and 9D pose estimation,
respectively.

Traditionally, monocular object pose estimation methods are ground on local image features
such SIFT [145, 146] or template matching [147]. With the advent of consumer RGB-D cameras,
the focus shifted more towards conducting object pose estimation from RGB-D data. While
some works again propose to utilize template matching [131], others leverage handcrafted 3D
descriptors such as point pair features [148, 149] or rely on learning-based methods [132, 150]
in order to predict the 6D pose. Nonetheless, depth data also comes with limitations such
as restricted field of view or high power consumption. Recently, CNN-based methods have
demonstrated promising results for the task of monocular 6D pose estimation [8]. Hence,
in the following, the focus will be on deep learning based methods as these are the most
relevant within the scope of this dissertation.

4.1 Full Model-based 6D Pose Estimation

The field of monocular 6D pose estimation can be again divided into three different sub-areas.
While the first line of works directly regress or classify the 6D pose, the latter either learn
a latent embedding for subsequent retrieval or establish 2D-3D correspondences prior to
estimating the 6D pose.

4.1.1 Direct Regression of The 6D Pose

As for the first branch, in our work SSD-6D [9], we extend SSD [59] to also retrieve the pose
of the object, turning the regression into a classification problem. Thereby, we discretize the
3D rotation through binning of viewpoint and in-plane rotation and infer the 3D translation
from the perspective ratio of the detection bounding box and the rendered bounding box. In
our follow-up work [5], we adopt SSD-6D to implicitly deal with ambiguities by means of
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Method
Class

Method Input
Data

Backbone Loss function

Direct Re-
gression

SSD-6D [9] RGB Incpetion-V4 [57] Viewpoint and in-plane classification

PoseCNN [120] RGB VGG-16 [54] Average distance of closest 3D model
points

Deep-6D-
Pose [151]

RGB Mask R-CNN [76] L2 norm with rotation parameterized
with Li algebra

MHP [5] RGB Incpetion-V4 [57] Extended SSD-6D with loss for multiple
hypotheses

Latent Em-
bedding

Wohlhart [152] RGB-D Global Patches Triplet-Pairs loss

Kehl [153] RGB-D Local Patches Auto-Encoder

Zakharov [154] RGB-D Global Patches Triplet-Pairs loss with dynamic margin

AAE [130] RGB Global Patches
from SSD [59]

Auto-Encoder

MP AAE [155] RGB Global Patches
from Mask

R-CNN [76]

Mutipath Auto-Encoder

Corres-
pondence
driven

Brachmann [132] RGB-D Random Forest Dense 3D-3D

Brachmann [156] RGB Random Forest Dense 2D-3D

BB-8 [10] RGB VGG-16 [54] Sparse 2D-3D from BBox

Yolo-6D [124] RGB Yolo [58] Sparse 2D-3D from Bbox

Oberweger [157] RGB Unet-like CNN
with residuals

Sparse 2D-3D from Bbox

PVNet [158] RGB ResNet-18 [55] Sparse 2D-3D from farthest point

CDPN [125] RGB Modified
ResNet [55]

Dense 2D-3D from uv-texture

Pix2Pose [159] RGB U-Net [160] Dense 2D-3D with GAN loss

CDPN [128] RGB Tiny Yolov3 [161] Dense 2D-3D with translation regression

Hu [162] RGB ResNet [55] &
PointNet [101]

Sparse 2D-3D with learned PnP from
PointNet-like architecture

GDR-Net [1] RGB Faster-RCNN [74]
& FCOS [73]

Dense 2D-3D with learned PnP using a
CNN

Hybrid-
Pose [139]

RGB ResNet [55] Sparse 2D-3D with edge and symmetry
features

EPOS [163] RGB DeepLabV3 [164] Dense 2D-3D using fragments

Table 4.1. Related Works on Monocular 6D Object Pose Estimation. The methods are coarsely divided into
3 branches and mostly differ in the employed backbone and loss functions. Notice that also some
works from the RGB-D realm are shown as they served as inspiration for subsequent works within the
category.

multiple hypotheses. The work of Xiang et al. [120] instead localizes the object in 2D image
space using semantic segmentation paired with hough voting, and regresses the remaining
parameters via minimization of a point matching loss. Similarly, also Li et al. [165] employ
the point matching loss for the task of object pose refinement. Thereby, the authors propose
to leverage a disentangled representation for 3D orientation and 3D translation to improve
robustness to change in viewpoint induced by mere translation in 3D. Inspired by [165],
Labbé et al. [123] estimate the pose by means of pose refinement using the point matching
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loss. In the following they match estimates from different views and recover a consistent
scene model via global refinement of object and camera poses.

4.1.2 Latent Embeddings for 6D Pose Retrieval

The second line of works harnesses latent embeddings for pose and occasionally object to
recover the 6D pose. Wohlhart and Lepetit [152] leverage ideas from metric learning to
attain a robust descriptor for object and pose from RGB-D data. In particular, they employ a
triplet-pairs loss to map each input to the appropriate location in feature space. Thereby, the
triplet loss ensures that the same object in a similar pose is mapped close together in feature
space, whereas a different object or the same object in a different pose is pushed far away from
each other. In addition, the pairs loss is responsible to make the approach more robust with
respect to noise and other distracting artifacts such as illumination. The work of Zakharov et
al. [154] further adjusts [152] with a dynamic margin for the triplets term to enhance the class
separation of the manifold. Rather than metric learning, Kehl et al. [166] instead leverage
an AutoEncoder to learn a latent embedding from local RGB-D patches. Afterwards, they
sample patches in a sliding window fashion and cast votes for object and pose via k-nearest
neighbor look-up in an precomputed codebook. In the following, nearby votes for the same
object are clustered and mean shift with a flat kernel is employed to recover the final pose.
Following this line of works, Sundermeyer et al. [130] similarly employ an AutoEncoder for
pose estimation. In order to make it robust to noise as well as occlusion and illumination, the
authors propose to feed the AutoEncoder with augmented input samples, yet, compute the
loss with respect to the clean version of the given input. Thus, the network is forced to map
the same object and pose to the same location even under external impairments. Further,
instead of using a sliding window based approach, they first localize the object in image
space using SSD [59]. Afterwards, similar to [166], they conduct look-up in feature space
with respect to a pre-computed codebook, to retrieve the 3D rotation. Following our work [9],
they also estimate the object depth by means of bounding box ratios. The final 3D translation
is then computed via backprojection of the 2D centroid given the camera intrinsics and the
inferred depth. In their follow up work [155], the authors propose the use of a single shared
encoder for multiple objects, while utilizing object specific decoders. As consequence, objects
sharing similar features are not forced to be disentangled within the feature space, improving
the scalability to multiple instances, categories and datasets. They also demonstrate that their
"multi-path" training is particularly suited for synthetic to the real domain transfer.

4.1.3 Correspondence-driven 6D Pose Estimation

Finally, the most popular branch is based on establishing 2D-3D correspondences, which
are then further processed to solve for the 6D pose using a variant of the PnP & RANSAC
paradigm [127, 126]. Inspired by [132, 156], Rad and Lepetit [10] propose to regress the 2D
projection of the 3D bounding box corners. Leveraging these correspondences, PnP [126]
allows to solve for the 6D pose by minimizing the 2D reprojection error. To this end, the
authors employ VGG [54] to detect the object of interest by means of semantic segmentation.
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Thereafter, they crop the object from the image and leverage another VGG instance in order
to regress the aforementioned 2D projections of the 3D bounding box corners in image
space. Oberweger et al. [157] predict heatmaps from multiple small patches to improve
robustness towards occlusion. To reduce the computation burden and thus enhance inference
speed, the authors of [124] instead rely on Yolo [58] to regress the same control points as
BB-8 in a single-shot fashion, enabling real-time complexity at higher accuracy. Noteworthy,
Tekin et al. [124] add the projection of the 3D centroid as an additional control point to
further stabilize pose inference. Unfortunately, as pointed out in [167], occlusion and other
external factors can deteriorate the accuracy of individual correspondences, which has direct
negative impact on the final pose estimate. Therefore, et al. [167] propose to cast multiple
hypotheses for pose, in the form of 2D projections. In the core, YoloV3 [161] is adopted to
segment the input image into S ˆ S superpixels, with each segmented pixel casting votes
for the 2D coordinates of the bounding box corners. After clustering, the best n “ 10
predictions for each correspondence are eventually utilized together with PnP and RANSAC
to obtain the final pose. In the following, there was a strong trend towards establishing
2D-3D correspondences with respect to the object model rather than the bounding box
corners. Exemplary, Peng et al. [158] argue that keypoints farther away from the object
surface introduce larger errors, and thus instead propose to use farthest point sampling
on the object model to retrieve 8 keypoints for each object. In addition, instead of directly
predicting these keypoints, the authors employ pixel-wise segmentation. Thereby, each
segmented pixel predicts unit vectors pointing towards each keypoint. Via sampling of
two vectors a candidate for each correspondence can be generated. Moreover, repeatedly
sampling further enables to estimate the uncertainty within each correspondence based on
the covariance of these samples. These obtained uncertainties are then exploited within PnP
to enhance robustness in pose. Hu et al. [162] also compute multiple predictions for each 2D-
3D correspondence, however, leverage a PointNet-like architecture to recover the final pose.
As shown in their experiments, the learned PnP formulation is more robust towards noise
than standard PnP with RANSAC or the uncertainty-driven variant from [158]. Similarly,
GDR-Net also attempts to learn the PnP paradigm, yet, employs a common CNN instead
of PointNet [1]. HybridPose leverages multiple intermediate representations to estimate the
6D pose. Besides 2D-3D correspondences, Song et al. [139] also infer edge vectors and
symmetry correspondences to exploit more and diverse features to strengthen the robustness
in case one representation fails due to e.g. occlusion. Most recent works, however, rely on
dense pixel-level correspondences [125, 128, 159, 163]. Exemplary, provided the 3D model
of interest, Zakharov et al. [125] apply a correspondence texture to the object. The resulting
correspondence model is then employed to render groundtruth uv-maps with respect to
model and pose. Similar to [9], the authors relax the regression problem by turning it into
a classification task. In particular, the groundtruth uv-maps are discretized into 256 bins
and optimized via cross-entropy loss with respect to each channel of the uv-map. Park et
al. [159] instead predict the 3D model coordinate for each visible object pixel. Thereby, they
first localize the object in 2D using a modified Faster R-CNN [74] framework, grounded on
ResNet-101 [56]. Afterwards, they crop the object and feed them to an AutoEncoder with skip
connections [160] to estimate dense correspondences. The core novelty of this work lies inside
the employed GAN architecture and the simultaneous estimation of an correspondence error
map. Alternately feeding the discriminator with real and predicted correspondence maps,
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the discriminator has to learn to distinguish between real and fake, which in turn forces
the predictor to estimate coherent maps, i.e. neighboring pixel have to map to similar 3D
coordinates. An error map is additionally employed to filter bad correspondences, thus,
returning more reliable poses. In [163], Hodan et al. tackles the problem of ambiguities within
correspondence-driven methods. Thereby, they disassemble the objects into fragments. In
the following, for each visible object pixel the network attempts to classify on which object
fragment it is residing. Furthermore, they also regress an offset to estimate the exact location
of the keypoint within the fragment. Training this approach with cross-entropy loss allows to
retrieve the actual underlying distribution under ambiguities. In essence, all fragments that
are visually equal due to ambiguities are supposed to be scored with the same probability.
Leveraging an efficient variant of the PnP & RANSAC [168, 169] paradigm, the final pose
can be estimated despite the presence of ambiguities. Finally, CDPN also leverages dense
correspondences, yet, disentangles rotation and translation [128]. In fact, correspondences
from the regressed coordinates map are employed to only retrieve the 3D rotation. On the
other hand, a second branch infers directly the scale-invariant translation, estimating the
object depth relative to the resize ratio of the RoI.

4.2 Model-free 7D Pose Estimation.

Works in monocular 3D object detection attempt to regress a tight 3D bounding box for each
object of interest. The objects are thereby not arbitrary but rather stem from known classes.
Due to the ground-plane assumption the task involves the estimation of 7 degrees-of-freedom
(i.e. 3 for translation, 3 for object extents, 1 for rotation) (c.f. Section 3.1). Monocular 3D
object detection can be roughly divided into methods leveraging an extra module for depth
estimation [6, 119] and methods directly outputting 3D detections [118, 117]. Approaches
relying on depth prediction can be further partitioned into works which utilize pseudo-lidar
representations [170, 171] and works that simply feed the predicted depth map as an extra
input channel [6].

4.2.1 Direct 7D Pose Estimation

In 2016, Chen et al. [118] introduced Mono3D which is one of the pioneering works in the field.
Mono3D instantiates 3D proposals based on multiple hand-crafted features grounded on
semantic segmentation, location and spatial context. Afterwards, a simple CNN is employed
to score each proposal and regress its extents and orientation. GS3D predicts 2D bounding
boxes together with an orientation angle [172]. In addition, 3D guidance is established
leveraging the training data distribution. Finally, surface features are extracted from the 3D
guidance and employed to refine the 3D proposal in order to get the final estimate. Kundu et
al. [129] predict pose and shape of cars employing a render-and-compare loss. Using PCA,
a ten-dimensional shape basis SB P R

nˆ10 is calculated based on truncated signed distance
fields (TSDF). As standard rendering is not differentiable, Kundu et al. approximate gradients
by means of finite differences. Noteworthy, poses are estimated only up-to-scale. Simonelli et
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al. [117] employ an extended RetinaNet [75] together with a signed IoU loss for 2D and our
corner loss for 3D [6]. As these losses exhibit instabilities during training, they propose a new
disentanglement strategy. Thereby, the loss is computed for each component individually,
harnessing the ground truth for the remaining terms. In [173], the authors further improve
their approach by means of virtual cameras. Thereby, they argue that covering the whole 3D
space requires a lot of training data. In addition, when a car appears at an under-represented
position, the network will most likely perform poorly. To this end, Simonelli et al. place virtual
cameras such that each camera at least fully shows one object and the distance towards the
virtual camera is always within a well-represented range. Ku et al. [174] leverage instance-
centric 3D proposals and local shape reconstruction. Instance point clouds are estimated
to recover local shape and scale, and to enforce 2D-3D consistency. Brazil and Liu [175]
employ a shared 2D-3D space by means of 2D-3D anchors, which are based on pre-computed
statistics from the training data. They further introduce the idea of depth-aware convolutions.
Thereby, Brazil and Liu bin the height of the feature map into b individual bins with each
bin possessing its own set of filters. According to the authors, the depth levels of a scene in
autonomous driving can be roughly described by such binning. The predicted 3D bounding
boxes from the associated anchors are then postprocessed enforcing 2D-3D consistencies.
Monopair attempts to improve monocular 3D object detection by considering mutual spatial
relationships of objects [176]. Essentially, besides each 3D bounding box, Chen et al. also
predict the distance between the individual cars. In a second step, bounding boxes are
globally optimized from a graph perspective in respect of the pair-wise constraints.

4.2.2 7D Pose Estimation With Depth Module

The second branch of works additionally leverages depth prediction to improve robustness.
As aforementioned, this branch can be further subdivided into works that directly process the
predicted depth map and approaches which instead utilize pseudo-liar representations. As
for the former line of works, Xu and Chen [115] localize objects in 2D using Faster R-CNN [74]
with VGG-16 backbone [54]. Afterwards, MonoDepth [121] is employed to estimate depth. The
3D data is then fused at multiple levels to regress the final output. In our work RoI-10D [6],
we similarly use Faster R-CNN with a ResNet-34 [55] backbone for 2D detection, however,
obtain depth from SuperDepth [177]. The cropped detections are then concatenated with the
predicted depth maps using RoI-Align [76] and lifted to 3D bounding box and shape. To this
end, a 3D AutoEncoder is trained on-top of TSDFs. Since weighting different loss terms is
difficult and often leads to inferior results, we introduce a novel 3D lifting loss measuring
the metric misalignment of the 3D bounding box corners. MonoGRNet utilizes instance-
level depth together with a progressive scheme to localize the object in 3D [178]. Finally,
the 3D rotation is recovered estimating local 3D corners with respect to the 3D centroid.
Beker et al. [97] leverage differentiable rendering to optimize for the 3D bounding box. In
essence, using the neural mesh renderer by Kato et al. [105](c.f. Section 2.5), the authors
iteratively optimize pose and shape by comparing the rendering against the detections from
an off-the-shelf Mask R-CNN detector [76] and the depth map from an off-the-shelf depth
predictor [179]. Ding et al. [180] extend the idea of depth-aware convolutions from [175].
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However, the authors learn the filters and receptive field from the depth maps, as estimated
by DORN [181]. Thereby, different pixels of different images can employ different filters.

In regard of the second partition, one of most prominent works is known as Pseudo-lidar
from [170]. In particular, Wang et al. [170] introduce the concept of pseudo-lidar obtained
from backprojection of the depth map produced by DORN [181]. Eventually, an off-the-shelf
3D object detector [182, 29] is harnessed to retrieve the final 3D predictions. Similarly, Ma et
al. [171] also estimate pseudo-lidar based on DORN [29]. Subsequently, they use a PointNet-
like [101] backbone for segmentation and pose estimation, leveraging our 3D corner loss [6].
In their follow-up work, Ma et al. [119] again compute pseudo-lidar, however, argue that a
PointNet-style architecture is not the preferable choice as it does not consider the fact that
pseudo-lidar point clouds are organized with respect to the image plane. Hence, they instead
apply standard 2D convolutions producing superior results.

4.3 Model-free 9D Pose Estimation.

Despite the focus being on monocular methods, there are only RGB-D methods for the
domain of full model-free 9D pose estimation. Yet, since it is a very recent field which is
fairly related to 6D pose estimation, I want to briefly outline the most important works.
Similar to 7D pose estimation, the task involves the prediction of a tight 3D bounding box,
however, the ground-plane assumption is not valid anymore, making it a problem with 9
degrees-of-freedom (c.f. Section 3.1).

Wang et al. [116] recently proposed the first method for class-level object detection together
with full 9D pose estimation. Using an extended Mask R-CNN [76] backbone, the authors
predict a 2D map constituting the projection of the Normalized Object Coordinate Space
(NOCS). NOCS essentially depicts a 3D space spanned by a unit cube. All objects from a
certain category are normalized to lie within the NOCS space and each vertex is assigned
its 3D location within the cube. The predicted 2D NOCS map is then backprojected, using
the associated depth map, to establish 3D-3D correspondences. Leveraging these correspon-
dences together with the Umeyama algorithm [183], enables the estimation of both 6D pose
and metric scale for previously unseen objects. Chen et al. [184] instead conducts class-level
object pose and size estimation without the need for correspondences. They learn a canonical
shape space (CASS) from 3D pointclouds using a variational AutoEncoder (VAE) grounded
on PointNet [101, 19]. In the following, leveraging the input RGB-D data, Chen et al. predict
the latent representation to infer shape and metric size. Further, after fusing geometric with
photometric features, the 3D rotation and translation is estimated using the point-matching
loss between predicted and groundtruth shape. Similarly, Tian et al. [185] also compute pose
and the 3D shape of the object as pointcloud. To this end, Tian et al. leverage a PointNet-based
AutoEncoder to compute a template shape for each class, obtained as the mean of all training
shapes. During inference this mean shape is then deformed using a 3D deformation field to
obtain the precise full 3D model. Further, based on NOCS, a correspondence matrix is learned
to establish 3D-3D correspondences between the input pointcloud and the reconstruction.
Finally, as in [116], pose and scale can be estimated harnessing the Umeyama algorithm [183].
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Recently, Park et al. [186] propose the first method for 6D object pose estimation of fully
unseen objects without any prior information (i.e. no category information is utilized). Taking
multiple RGB-D views as input, a 2D-3D U-Net is leveraged to fuse the input into a latent
object. Afterwards, harnessing neural rendering the latent object can be rendered from novel
views. These views are than iteratively compared with the input data and the error is back-
propagated to the pose parameters. Noteworthy, LatentFusion requires to compute gradients
during inference which is typically slow and does not allow real-time performance.
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5Summary of Contributions

This chapter summarizes the main contributions and additionally provides the associated
publication for each work. Thereby, Section 5.1 presents one of the first deep learning
driven methods for monocular 6D pose estimation and refinement. Afterwards, Section 5.2
demonstrates different challenges and solutions when estimating the 6D pose. Finally,
in Section 5.3 we tackle the problem of class-level object pose and shape estimation for
previously unseen instances.

5.1 Fast and Reliable 6D Pose Estimation

This section presents our works for estimating the 6D object pose from monocular data alone.
As poses are oftentimes noisy, most works typically rely on ICP for pose refinement [131].
Since we attempt at avoiding the use of depth data, we are not able to harness ICP. Hence,
we additionally proposed one of the first methods for 6D pose refinement from monocular
data employing deep learning.

5.1.1 SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation

Great Again (ICCV Oral 2017)

Figure 5.1. Single-Shot Monocular 6D Pose Estimation. Left: We turn the regression of the rotation into a
classification problem via binning of viewpoint and in-plane rotation. Right: The associated 3D
translation can be inferred comparing the predicted bounding box diagonal with the corresponding
diagonal from the associated object rendered at a canonical distance of 0.5m.

In this work, we introduce one of the very first deep learning based approach for monocular
6D object pose estimation [9]. Essentially, building on top of recent advances in 2D object
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detection [74, 59, 76], we extend the Single Shot MultiBox Detector (SSD) [59] to classify
viewpoint and in-plane rotation. As aforementioned in Section 2.3, SSD distributes anchor
boxes at different scales over the image, which are then classified in a single pass. Thus,
in contrast to other region proposal based approaches such as Faster R-CNN[74] or Marsk
R-CNN[76] which run at a frame rate of approximately 7Hz, SSD can process images in real-
time. During training we assigned all anchor boxes, having an IoU overlap (c.f. Section 3.3.1)
larger than 0.5 with the ground truth box, with the corresponding label.

To relax the problem of directly regressing the 3D rotation, we turn it into a classification
problem, via decomposition of rotation into viewpoint and in-plane rotation. As demon-
strated in Figure 5.1 [left], we sample equidistant viewpoints on a unit sphere around the
object. Similarly, we also sample discrete in-plane rotations with a step size of 5°. Afterwards,
for a given rotation we compute the corresponding viewpoint & in-plane representation
and map them to the closest discrete bin. Finally, we add two loss terms for classification of
viewpoint Lview and in-plane rotation Linplane to [59]

LpPos,Negq :“
ÿ

bPNeg

Lclass `
ÿ

bPPos
pLclass ` ↵Lfit ` �Lview ` �Linplaneq. (5.1)

Thereby, Pos and Neg depict occupied and unoccupied anchor boxes, respectively. We further
employ the cross-entropy loss for Lview and Linplane, and the l1-loss for Lfit which refine
the 2D bounding boxes to obtain a tight fit. During inference we can thus easily obtain the 3D
rotation from the retrieved viewpoint and in-plane rotation ID. To recover the 3D translation,
we render the rotated object at a canonical centroid distance of zr “ 0.5m. We then estimate
the depth z from the perspective ratio of the rendered bounding box diagonal lr and the
diagonal of the detected bounding box ls according to z “ zr

ls
lr (c.f. Figure 5.1 [right]). The 3D

translation is then simply computed via backprojection of the 2D centroid using the camera
intrinsics together with the estimated distance t “ K´1z px,y, 1qT .

While other methods require substantial computation to infer the pose information and
oftentimes limit the pose space, our method runs at 10Hz and is capable of even handling
the full pose space. Moreover, we only rely on synthetic data, hence, do not require any
large annotated dataset, which is another typical limitation for many deep learning driven
methods [135, 8]. Our approach competes or surpasses state-of-the-art methods that leverage
RGB-D data on multiple challenging datasets such as LM [131] and IC-MI [138] with respect
to ADD and VSS.

Together with the work from Rad et al. [10], our approach started a still ongoing hype
for the field monocular 6D pose estimation, constantly pushing the envelope of 6D pose
estimation [120, 124, 128, 123].

Contributions I proposed and implemented the method for extending SSD with loss terms
for 6D pose estimation. I also ran all evaluations on LM and IC-MI. Wadim Kehl implemented
the pose refinement in 2D and 3D and helped conducting the experiments, especially for
LM-(O).
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Abstract

We present a novel method for detecting 3D model in-
stances and estimating their 6D poses from RGB data in
a single shot. To this end, we extend the popular SSD
paradigm to cover the full 6D pose space and train on syn-
thetic model data only. Our approach competes or sur-
passes current state-of-the-art methods that leverage RGB-
D data on multiple challenging datasets. Furthermore, our
method produces these results at around 10Hz, which is
many times faster than the related methods. For the sake
of reproducibility, we make our trained networks and detec-
tion code publicly available.1

1. Introduction
While category-level classification and detection from

images has recently experienced a tremendous leap forward
thanks to deep learning, the same has not yet happened for
what concerns 3D model localization and 6D object pose es-
timation. In contrast to large-scale classification challenges
such as PASCAL VOC [9] or ILSVRC [26], the domain of
6D pose estimation requires instance detection of known 3D
CAD models with high precision and accurate poses, as de-
manded by applications in the context of augmented reality
and robotic manipulation.

Most of the best performing 3D detectors follow a view-
based paradigm, in which a discrete set of object views
is generated and used for subsequent feature computation
[31, 14]. During testing, the scene is sampled at discrete
positions, features computed and then matched against the
object database to establish correspondences among train-
ing views and scene locations. Features can either be an
encoding of image properties (color gradients, depth val-
ues, normal orientations) [12, 16, 18] or, more recently, the
result of learning [4, 29, 5, 6, 17]. In either case, the accu-
racy of both detection and pose estimation hinges on three
aspects: (1) the coverage of the 6D pose space in terms of
viewpoint and scale, (2) the discriminative power of the fea-

1https://wadimkehl.github.io/
* The first two authors contributed equally to this work.

tures to tell objects and views apart and (3) the robustness
of matching towards clutter, illumination and occlusion.

CNN-based category detectors such as YOLO [25] or
SSD [22] have shown terrific results on large-scale 2D
datasets. Their idea is to inverse the sampling strategy such
that scene sampling is not anymore a set of discrete input
points leading to continuous output. Instead, the input space
is dense on the whole image and the output space is dis-
cretized into many overlapping bounding boxes of varying
shapes and sizes. This inversion allows for smooth scale
search over many differently-sized feature maps and simul-
taneous classification of all boxes in a single pass. In order
to compensate for the discretization of the output domain,
each bounding box regresses a refinement of its corners.

The goal of this work is to develop a deep network for
object detection that can accurately deal with 3D models
and 6D pose estimation by assuming an RGB image as
unique input at test time. To this end, we bring the con-
cept of SSD over to this domain with the following contri-
butions: (1) a training stage that makes use of synthetic 3D
model information only, (2) a decomposition of the model
pose space that allows for easy training and handling of
symmetries and (3) an extension of SSD that produces 2D
detections and infers proper 6D poses.

We argue that in most cases, color information alone can
already provide close to perfect detection rates with good
poses. Although our method does not need depth data, it is
readily available with RGB-D sensors and almost all recent
state-of-the-art 3D detectors make use of it for both fea-
ture computation and final pose refinement. We will thus
treat depth as an optional modality for hypothesis verifica-
tion and pose refinement and will assess the performance of
our method with both 2D and 3D error metrics on multiple
challenging datasets for the case of RGB and RGB-D data.

Throughout experimental results on multiple benchmark
datasets, we demonstrate that our color-based approach is
competitive with respect to state-of-the-art detectors that
leverage RGB-D data or can even outperform them, while
being many times faster. Indeed, we show that the prevalent
trend of overly relying on depth for 3D instance detection is
not justified when using color correctly.

https://wadimkehl.github.io/


Figure 1: Schematic overview of the SSD-style network prediction. We feed our network with a 299 ⇥ 299 RGB image
and produce six feature maps at different scales from the input image using branches from InceptionV4. Each map is then
convolved with trained prediction kernels of shape (4 + C + V + R) to determine object class, 2D bounding box as well as
scores for possible viewpoints and in-plane rotations that are parsed to build 6D pose hypotheses. Thereby, C denotes the
number of object classes, V the number of viewpoints and R the number of in-plane rotation classes. The other 4 values are
utilized to refine the corners of the discrete bounding boxes to tightly fit the detected object.

2. Related work

We will first focus on recent work in the domain of 3D
detection and 6D pose estimation before taking a closer look
at SSD-style methods for category-level problems.

To cover the upper hemisphere of one object with a small
degree of in-plane rotation at multiple distances, the authors
in [14] need 3115 template views over contour gradients
and interior normals. Hashing of such views has been used
to achieve sub-linear matching complexity [18, 16], but this
usually trades speed for accuracy. Related scale-invariant
approaches [16, 4, 29, 6, 17] employ depth information as
an integral part for either feature learning or extraction, thus
avoiding scale-space search and cutting down the number
of views by around an order of magnitude. Since they re-
quire depth to work, they can fail when depth is missing or
erroneous. While scale can be inferred with RGB-D data,
there has not been yet any convincing work to eradicate the
requirement of in-plane rotated views. Rotation-invariant
methods are based on local keypoints in either 2D [32] or
3D [7, 3, 30] by explicitly computing or voting for an ori-
entation or a local reference frame, but they fail for objects
of poor geometry or texture.

Although rarely mentioned, all of the view-based meth-
ods cover only a very small, predefined 6D pose space.
Placing the object differently, e.g. on its head, would lead

to failure if this view had not been specifically included
during training. Unfortunately, additional views increase
computation and add to overall ambiguity in the matching
stage. Even worse, for all discussed methods, scene sam-
pling is crucial. If too coarse, objects of smaller scale can
be missed whereas a fine-grained sampling increases com-
putation and often leads to more false positive detections.
Therefore, we explore a path similar to works on large-scale
classification where dense feature maps on multiple scales
have produced state-of-the-art results. Instead of relying on
classifying proposed bounding boxes [10, 11, 21], whose
performance hinges on the proposals’ quality, recent single-
shot detectors [25, 22] classify a (large) discrete set of fixed
bounding boxes. This streamlines the network architecture
and gives freedom to the a-priori placement of boxes.

As for works regressing the pose from RGB images,
the related works of [24, 23] recently extended SSD to in-
clude pose estimates for categories. [23] infers 3D bound-
ing boxes of objects in urban traffic and regresses 3D box
corners and an azimuth angle whereas [24] introduces an
additional binning of poses to express not only the category
but also a notion of local orientation such as ’bike from the
side’ or ’plane from below’. The difference to us is that they
train on real images to predict poses in a very constrained
subspace. Instead, our domain demands training on syn-
thetic model-based data and the need to encompass the full



6D pose space to accomplish tasks such as grasping or AR.

3. Methodology
The input to our method is an RGB image that is pro-

cessed by the network to output localized 2D detections
with bounding boxes. Additionally, each 2D box is pro-
vided with a pool of the most likely 6D poses for that in-
stance. To represent a 6D pose, we parse the scores for
viewpoint and in-plane rotation that have been inferred from
the network and use projective properties to instantiate 6D
hypotheses. In a final step, we refine each pose in every
pool and select the best after verification. This last step can
either be conducted in 2D or optionally in 3D if depth data
is available. We present each part now in more detail.

3.1. Network architecture
Our base network is derived from a pre-trained Incep-

tionV4 instance [27] and is fed with a color image (re-
sized to 299 ⇥ 299) to compute feature maps at multiple
scales. In order to get our first feature map of dimen-
sionality 71 ⇥ 71 ⇥ 384, we branch off before the last
pooling layer within the stem and append one ’Inception-
A’ block. Thereafter, we successively branch off after the
’Inception-A’ blocks for a 35 ⇥ 35 ⇥ 384 feature map, af-
ter the ’Inception-B’ blocks for a 17 ⇥ 17 ⇥ 1024 feature
map and after the ’Inception-C’ blocks for a 9 ⇥ 9 ⇥ 1536
map.2 To cover objects at larger scale, we extend the net-
work with two more parts. First, a ’Reduction-B’ followed
by two ’Inception-C’ blocks to output a 5⇥ 5⇥ 1024 map.
Second, one ’Reduction-B’ and one ’Inception-C’ to pro-
duce a 3⇥ 3⇥ 1024 map.

From here we follow the paradigm of SSD. Specifically,
each of these six feature maps is convolved with predic-
tion kernels that are supposed to regress localized detections
from feature map positions. Let (ws, hs, cs) be the width,
height and channel depth at scale s. For each scale, we train
a 3⇥3⇥cs kernel that provides for each feature map location
the scores for object ID, discrete viewpoint and in-plane ro-
tation. Since we introduce a discretization error by this grid,
we create Bs bounding boxes at each location with different
aspect ratios. Additionally, we regress a refinement of their
four corners. If C, V,R are the numbers of object classes,
sampled viewpoints and in-plane rotations respectively, we
produce a (ws, hs, Bs⇥(C+V +R+4)) detection map for
the scale s. The network has a total number of 21222 pos-
sible bounding boxes in different shapes and sizes. While
this might seem high, the actual runtime of our method is re-
markably low thanks to the fully-convolutional design and
the good true negative behavior, which tend to yield a very
confident and small set of detections. We refer to Figure 1
for a schematic overview.

2We changed the padding of Inception-B s.t. the next block contains a
map with odd dimensionality to always contain a central position.

Figure 2: Exemplary training images for the datasets used.
Using MS COCO images as background, we render object
instances with random poses into the scene. The green
boxes visualize the network’s bounding boxes that have
been assigned as positive samples for training.

Viewpoint scoring versus pose regression The choice
of viewpoint classification over pose regression is deliber-
ate. Although works that do direct rotation regression exist
[19, 28], early experimentation showed clearly that the clas-
sification approach is more reliable for the task of detecting
poses. In particular, it seems that the layers do a better job at
scoring discrete viewpoints than at outputting numerically
accurate translations and rotations. The decomposition of a
6D pose in viewpoint and in-plane rotation is elegant and al-
lows us to tackle the problem more naturally. While a new
viewpoint exhibits a new visual structure, an in-plane ro-
tated view is a non-linear transformation of the same view.
Furthermore, simultaneous scoring of all views allows us to
parse multiple detections at a given image location, e.g. by
accepting all viewpoints above a certain threshold. Equally
important, this approach allows us to deal with symmetries
or views of similar appearance in a straight-forward fashion.

3.2. Training stage
We take random images from MS COCO [20] as back-

ground and render our objects with random transformations
into the scene using OpenGL commands. For each rendered
instance, we compute the IoU (intersection over union) of
each box with the rendered mask and every box b with IoU
> 0.5 is taken as a positive sample for this object class.
Additionally, we determine for the used transformation its



Figure 3: Discrete 6D pose space with each point repre-
senting a classifiable viewpoint. If symmetric, we use only
the green points for view ID assignment during training
whereas semi-symmetric objects use the red points as well.

closest sampled discrete viewpoint and in-plane rotation as
well as set its four corner values to the tightest fit around the
mask as a regression target. We show some training images
in Figure 2.

Similar to SSD [22], we employ many different kinds of
augmentation, such as changing the brightness and contrast
of the image. Differently to them, though, we do not flip the
images since it would lead to confusion between views and
to wrong pose detections later on. We also make sure that
each training image contains a 1:2 positives-negatives ra-
tio by selecting hard negatives (unassigned boxes with high
object probability) during back-propagation.

Our loss is similar to the MultiBox loss of SSD or
YOLO, but we extend the formulation to take discrete views
and in-plane rotations into account. Given a set of positive
boxes Pos and hard-mined negative boxes Neg for a train-
ing image, we minimize the following energy:

L(Pos,Neg) :=
X

b2Neg

Lclass +

X

b2Pos

(Lclass + ↵Lfit + �Lview + �Linplane) (1)

As it can be seen from (1), we sum over positive and
negative boxes for class probabilities (Lclass). Addition-
ally, each positive box contributes weighted terms for view-
point (Lview) and in-plane classification (Linplane), as well
as a fitting error of the boxes’ corners (Lfit). For the clas-
sification terms, i.e., Lclass, Lview, Linplane, we employ a
standard softmax cross-entropy loss, whereas a more robust
smooth L1-norm is used for corner regression (Lfit).

Dealing with symmetry and view ambiguity Our ap-
proach demands the elimination of viewpoint confusion for

Figure 4: For each object we precomputed the perfect
bounding box and the 2D object centroid with respect to
each possible discrete rotation in a prior offline stage. To
this end, we rendered the object at a canonical centroid
distance zr = 0.5m. Subsequently, the object distance
zs can be inferred from the projective ratio according to
zs = lr

ls
zr, where lr denotes diagonal length of the pre-

computed bounding box and ls denotes the diagonal length
of the predicted bounding box on the image plane.

proper convergence. We thus have to treat symmetrical or
semi-symmetrical (constructible with plane reflection) ob-
jects with special care. Given an equidistantly-sampled
sphere from which we take our viewpoints, we discard
positions that lead to ambiguity. For symmetric objects,
we solely sample views along an arc, whereas for semi-
symmetric objects we omit one hemisphere entirely. This
approach easily generalizes to cope with views which are
mutually indistinguishable although this might require man-
ual annotation for specific objects in practice. In essence,
we simply ignore certain views from the output of the con-
volutional classifiers during testing and take special care of
viewpoint assignment in training. We refer to Figure 3 for a
visualization of the pose space.

3.3. Detection stage
We run a forward-pass on the input image to collect

all detections above a certain threshold, followed by non-
maximum suppression. This yields refined and tight 2D
bounding boxes with an associated object ID and scores for
all views and in-plane rotations. For each detected 2D box
we thus parse the most confident views as well as in-plane
rotations to build a pool of 6D hypotheses from which we
select the best after refinement. See Figure 5 for the pooled
hypotheses and Figure 6 for the final output.

3.3.1 From 2D bounding box to 6D hypothesis

So far, all computation has been conducted on the image
plane and we need to find a way to hypothesize 6D poses
from our network output. We can easily construct a 3D ro-
tation, given view ID and in-plane rotation ID, and can use
the bounding box to infer 3D translation. To this end, we



Figure 5: Prediction output and 6D pose pooling of our
network on the Tejani dataset and the multi-object dataset.
Each 2D prediction builds a pool of 6D poses by parsing
the most confident views and in-plane rotations. Since our
networks are trained with various augmentations, they can
adapt to different global illumination settings.

render all possible combinations of discrete views and in-
plane rotations at a canonical centroid distance zr = 0.5m
in an offline stage and compute their bounding boxes. Given
the diagonal length lr of the bounding box during this of-
fline stage and the one predicted by the network lr, we can
infer the object distance zs =

lr
ls
zr from their projective ra-

tio, as illustrated in Figure 4. In a similar fashion, we can
derive the projected centroid position and back-project to a
3D point with known camera intrinsics.

3.3.2 Pose refinement and verification

The obtained poses are already quite accurate, yet can in
general benefit from a further refinement. Since we will re-
gard the problem for both RGB and RGB-D data, the pose
refinement will either be done with an edge-based or cloud-
based ICP approach. If using RGB only, we render each
hypothesis into the scene and extract a sparse set of 3D con-
tour points. Each 3D point Xi, projected to ⇡(Xi) = xi,
then shoots a ray perpendicular to its orientation to find the
closest scene edge yi. We seek the best alignment of the 3D
model such that the average projected error is minimal:

argmin
R,t

X

i

✓
||⇡(R ·Xi + t)� yi||2

◆
. (2)

We minimize this energy with an IRLS approach (simi-
lar to [8]) and robustify it using Geman-McLure weighting.
In the case of RGB-D, we render the current pose and solve
with standard projective ICP with a point-to-plane formu-
lation in closed form [2]. In both cases, we run multiple

rounds of correspondence search to improve refinement and
we use multi-threading to accelerate the process.

The above procedure provides multiple refined poses for
each 2D box and we need to choose the best one. To this
end, we employ a verification procedure. Using only RGB,
we do a final rendering and compute the average deviation
of orientation between contour gradients and overlapping
scene gradients via absolute dot products. In case RGB-
D data is available, we render the hypotheses and estimate
camera-space normals to measure the similarity again with
absolute dot products.

4. Evaluation
We implemented our method in C++ using TensorFlow

1.0 [1] and cuDNN 5 and ran it on a i7-5820K@3.3GHz
with an NVIDIA GTX 1080. Our evaluation has been con-
ducted on three datasets. The first, presented in Tejani et
al. [29], consists of six sequences where each sequence
requires the detection and pose estimation of multiple in-
stances of the same object in clutter and with different lev-
els of mild occlusion. The second dataset, presented in [14],
consists of 15 sequences where each frame presents one in-
stance to detect and the main challenge is the high amount
of clutter in the scene. As others, we will skip two se-
quences since they lack a meshed model. The third dataset,
presented in [4] is an extension of the second where one
sequence has been annotated with instances of multiple ob-
jects undergoing heavy occlusions at times.

Network configuration and training To get the best re-
sults it is necessary to find an appropriate sampling of the
model view space. If the sampling is too coarse we either
miss an object in certain poses or build suboptimal 6D hy-
potheses whereas a very fine sampling can lead to a more
difficult training. We found an equidistant sampling of the
unit sphere into 642 views to work well in practice. Since
the datasets only exhibit the upper hemisphere of the ob-
jects, we ended up with 337 possible view IDs. Addition-
ally, we sampled the in-plane rotations from -45 to 45 de-
grees in steps of 5 to have a total of 19 bins.

Given the above configuration, we trained the last layers
of the network and the predictor kernels using ADAM and
a constant learning rate of 0.0003 until we saw convergence
on a synthetic validation set. The balancing of the loss term
weights proved to be vital to provide both good detections
and poses. After multiple trials we determined ↵ = 1.5,
� = 2.5 and � = 1.5 to work well for us. We refer the
reader to the supplementary material to see the error devel-
opment for different configurations.

4.1. Single object scenario
Since 3D detection is a multi-stage pipeline for us, we

first evaluate purely the 2D detection performance between



(a) 2D Detections (b) Unrefined (c) RGB refinement (d) RGB-D refinement

Figure 6: After predicting 2D detections (a), we build 6D hypotheses and run pose refinement and a final verification. While
the unrefined poses (b) are rather approximate, contour-based refinement (c) produces already visually acceptable results.
Occlusion-aware projective ICP with cloud data (d) leads to a very accurate alignment.

Sequence LineMOD [12] LC-HF [29] Kehl [17] Us
Camera 0.589 0.394 0.383 0.741
Coffee 0.942 0.891 0.972 0.983

Joystick 0.846 0.549 0.892 0.997
Juice 0.595 0.883 0.866 0.919
Milk 0.558 0.397 0.463 0.780

Shampoo 0.922 0.792 0.910 0.892
Total 0.740 0.651 0.747 0.885

Table 1: F1-scores on the re-annotated version of [29]. Al-
though our method is the only one to solely use RGB data,
our results are considerably higher than all related works.

our predicted boxes and the tight bounding boxes of the ren-
dered groundtruth instances on the first two datasets. Note
that we always conduct proper detection and not localiza-
tion, i.e. we do not constrain the maximum number of al-
lowed detections but instead accept all predictions above
a chosen threshold. We count a detection to be correct
when the IoU score of a predicted bounding box with the
groundtruth box is higher than 0.5. We present our F1-
scores in Tables 1 and 2 for different detection thresholds.

It is important to mention that the compared methods,
which all use RGB-D data, allow a detection to survive af-
ter rigorous color- and depth-based checks whereas we use
simple thresholding for each prediction. Therefore, it is eas-
ier for them to suppress false positives to increase their pre-
cision whereas our confidence comes from color cues only.

On the Tejani dataset we outperform all related RGB-D
methods by a huge margin of 13.8% while using color only.
We analyzed the detection quality on the two most diffi-
cult sequences. The ’camera’ has instances of smaller scale
which are partially occluded and therefore simply missed
whereas the ’milk’ sequence exhibits stronger occlusions
in virtually every frame. Although we were able to detect
the ’milk’ instances, our predictors could not overcome the
occlusions and regressed wrongly-sized boxes which were
not tight enough to satisfy the IoU threshold. These were

counted as false positives and thus lowered our recall3.
On the second dataset we have mixed results where we

can outperform state-of-the-art RGB-D methods on some
sequences while being worse on others. For larger feature-
rich objects like ’benchvise’, ’iron’ or ’driller’ our method
performs better than the related work since our network can
draw from color and textural information. For some objects,
such as ’lamp’ or ’cam’, the performance is worse than the
related work. Our method relies on color information only
and thus requires a certain color similarity between syn-
thetic renderings of the CAD model and their appearance in
the scene. Some objects exhibit specular effects (i.e. chang-
ing colors for different camera positions) or the frames can
undergo sensor-side changes of exposure or white balanc-
ing, causing a color shift. Brachmann et al. [5] avoid this
problem by training on a well-distributed subset of real se-
quence images. Our problem is much harder since we train
on synthetic data only and must generalize to real, unseen
imagery.

Our performance for objects of smaller scale such as
’ape’, ’duck’ and ’cat’ is worse and we observed a drop
both in recall and precision. We attribute the lower recall to
our bounding box placement, which can have ’blind spots’
at some locations and consequently, leading to situations
where a small-scale instance cannot be covered sufficiently
by any box to fire. The lower precision, on the other hand,
stems from the fact that these objects are textureless and
of uniform color which increases confusion with the heavy
scene clutter.

4.1.1 Pose estimation

We chose for each object the threshold that yielded the high-
est F1-score and run all following pose estimation experi-
ments with this setting. We are interested in the pose accu-
racy for all correctly detected instances.

3We refer to the supplement for more detailed graphs.



ape bvise cam can cat driller duck box glue holep iron lamp phone
Our method 76.3 97.1 92.2 93.1 89.3 97.8 80.0 93.6 76.3 71.6 98.2 93.0 92.4
Kehl [17] 98.1 94.8 93.4 82.6 98.1 96.5 97.9 100 74.1 97.9 91.0 98.2 84.9

LineMOD [14] 53.3 84.6 64.0 51.2 65.6 69.1 58.0 86.0 43.8 51.6 68.3 67.5 56.3
LC-HF [29] 85.5 96.1 71.8 70.9 88.8 90.5 90.7 74.0 67.8 87.5 73.5 92.1 72.8

Table 2: F1-scores for each sequence of [14]. Note that the LineMOD scores are supplied from [29] with their evaluation
since [14] does not provide them. Using color only we can easily compete with the other RGB-D based methods.

Sequence IoU-2D IoU-3D VSS-2D VSS-3D
Camera 0.973 0.904 0.693 0.778
Coffee 0.998 0.996 0.765 0.931

Joystick 1 0.953 0.655 0.866
Juice 0.994 0.962 0.742 0.865
Milk 0.970 0.990 0.722 0.810

Shampoo 0.993 0.974 0.767 0.874
Total 0.988 0.963 0.724 0.854

Table 3: Average pose errors for the Tejani dataset.

RGB
Ours Brachmann 2016 [5] LineMOD [13]

IoU 99.4 % 97.5% 86.5%
ADD [12] 76.3% 50.2% 24.2%

RGB-D
Ours Brachmann 2016 [5] Brachmann 2014 [4]

IoU 96.5 % 99.6% 99.1%
ADD [12] 90.9% 99.0% 97.4%

Table 4: Average pose errors for the LineMOD dataset.

Error metrics To measure 2D pose errors we will com-
pute both an IoU score and a Visual Surface Similarity
(VSS) [15]. The former is different than the detection IoU
check since it measures the overlap of the rendered masks’
bounding boxes between groundtruth and final pose esti-
mate and accepts a pose if the overlap is larger than 0.5.
VSS is a tighter measure since it counts the average pixel-
wise overlap of the mask. This measure assesses well the
suitability for AR applications and has the advantage of be-
ing agnostic towards the symmetry of objects. To measure
the 3D pose error we use the ADD score from [14]. This as-
sesses the accuracy for manipulation tasks by measuring the
average deviation between transformed model point clouds
of groundtruth and hypothesis. If it is smaller than 1

10 th of
the model diameter, it is counted as a correct pose.

Refinement with different parsing values As men-
tioned, we parse the most confident views and in-plane ro-
tations to build a pool of 6D hypotheses for each 2D de-
tection. Here, we want to assess the final pose accuracy

Figure 7: Average VSS scores for the ’coffee’ object for
different numbers of parsed views and in-plane rotations as
well as different pose refinement options.

when changing the number of parsed views V and rotations
R for different refinement strategies We present in Figure
7 the results on Tejani’s ’coffee’ sequence for the cases of
no refinement, edge-based and cloud-based refinement (see
Figure 6 for an example). To decide for the best pose we
employ verification over contours for the first two cases and
normals for the latter. As can be seen, the final poses with-
out any refinement are imperfect but usually provide very
good initializations for further processing. Additional 2D
refinement yields better poses but cannot cope well with
occluders whereas depth-based refinement leads to perfect
poses in practice. The figure gives also insight for vary-
ing V and R for hypothesis pool creation. Naturally, with
higher numbers the chances of finding a more accurate pose
improve since we evaluate a larger portion of the 6D space.
It is evident, however, that every additional parsed view V
gives a larger benefit than taking more in-plane rotations R
into the pool. We explain this by the fact that our viewpoint
sampling is coarser than our in-plane sampling and thus re-
veals more uncovered pose space when parsed, which in
turn helps especially depth-based refinement. Since we cre-
ate a pool of V · R poses for each 2D detection, we fixed
V = 3, R = 3 for all experiments as a compromise between
accuracy and refinement runtime.



Figure 8: Left: Detection scores on the multi-object dataset
for a different global threshold. Right: Runtime increase for
the network prediction with an increased number of objects.

Performance on the two datasets We present our pose
errors in Tables 3 and 4 after 2D and 3D refinement. Note
that we do not compute the ADD scores for Tejani since
each object is of (semi-)symmetric nature, leading always
to near-perfect ADD scores of 1. The poses are visually ac-
curate after 2D refinement and furthermore are boosted by
an additional depth-based refinement stage. On the second
dataset we are actually able to come very close to Brach-
mann et al. which is surprising since they have a huge ad-
vantage of real data training. For the case of pure RGB-
based poses, we can even overtake their results. We provide
more detailed error tables in the supplement.

4.2. Multiple object detection
The last dataset has annotations for 9 out of the 15 ob-

jects and is quite difficult since many instances undergo
heavy occlusion. Different to the single object scenario,
we have now a network with one global detection threshold
for all objects and we present our scores in Figure 8 when
varying this threshold. Brachmann et al. [5] can report an
impressive Average Precision (AP) of 0.51 whereas we can
report an AP of 0.38. It can be observed that our method de-
grades gracefully as the recall does not drop suddenly from
one threshold step to the next. Note again that Brachmann
et al. have the advantage of training on real images of the
sequence whereas we must detect heavily-occluded objects
from synthetic training only.

4.3. Runtime and scalability
For a single object in the database, Kehl et al. [17] re-

port a runtime of around 650ms per frame whereas Brach-
mann et al. [4, 5] report around 450ms. Above methods
are scalable and thus have a sublinear runtime growth with
an increasing database size. Our method is a lot faster than
the related work while being scalable as well. In particular,
we can report a runtime of approximately 85ms for a sin-
gle object. We show our prediction times in Figure 8 which
reveals that we scale very well with an increasing number

Figure 9: One failure case where incorrect bounding box
regression, induced by occlusion, led to wrong 6D hypoth-
esis creation. In such cases a subsequent refinement cannot
always recover the correct pose anymore.

of objects in the network. While the prediction is fast, our
pose refinement takes more time since we need to refine ev-
ery pose of each pool. On average, given that we have about
3 to 5 positive detections per frame, we need a total of an
additional 24ms for refinement, leading to a total runtime of
around 10Hz.

4.4. Failure cases
The most prominent issue is the difference in colors be-

tween synthetic model and scene appearance, also including
local illumination changes such as specular reflections. In
these cases, the object confidence might fall under the de-
tection threshold since the difference between the synthetic
and the real domain is too large. A more advanced augmen-
tation would be needed to successfully tackle this problem.
Another possible problem can stem from the bounding box
regression. If the regressed corners are not providing a tight
fit, it can lead to translations that are too offset during 6D
pose construction. An example of this problem can be seen
in Figure 9 where the occluded milk produces wrong off-
sets. We also observed that small objects are sometimes
difficult to detect which is even more true after resizing the
input to 299⇥299. Again, designing a more robust training
as well as a larger network input could be of benefit here.

Conclusion
To our knowledge, we are the first to present an SSD-

style detector for 3D instance detection and full 6D pose
estimation that is trained on synthetic model information.
We have shown that color-based detectors are indeed able
to match and surpass current state-of-the-art methods that
leverage RGB-D data while being around one order of mag-
nitude faster. Future work should include a higher ro-
bustness towards color deviation between CAD model and
scene appearance. Avoiding the problem of proper loss term
balancing is also an interesting direction for future research.
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5.1 Fast and Reliable 6D Pose Estimation

5.1.2 Deep Model-based 6D Pose Refinement in RGB (ECCV Oral 2018)

Figure 5.2. Visual Proxy Loss for 6D Pose Refinement. Inspired by ideas from contour tracking, we refine the
6D pose by means of contour alignment in 2D. Therefore, we sample contour points on the rendered
hypothesis, which we then backproject to 3D to apply our predicted pose update. Subsequently, we
project these points onto the distance transform of the target contour to enforce an optimal alignment
between both contours.

During evaluation of SSD-6D, we realized that we can compete with state-of-the-art harness-
ing depth data, however, our performance still significantly improved when additionally
employing ICP [187] refinement. Moreover, after [9] and [10], a lot of new methods for
monocular 6D pose estimation were proposed [124, 120]. Nevertheless, yet again all these
methods gained significantly in performance when employing ICP.

Thus, in this work we anticipated to close the gap between RGB and RGB-D based methods.
In particular, using deep learning we learn object pose refinement/tracking from RGB data
alone, leveraging a new fully differentiable visual proxy loss (c.f. Figure 5.2). Inspired by
ideas from perspective edge tracking [188, 189, 190], we directly align contours in 2D on the
basis of the predicted 3D update rotation and translation. As collecting appropriate training
data is very labor intensive, we decided to fully rely on synthetic samples. Therefore, we
sample a random pose R, t and a random pose perturbation sR�, st�. Afterwards, we render
the associated image for the scene S “ RpR, tq and pose hypothesis H “ RpsR´1

�
R, t ´ st�q on

top of images taken from ImageNet [53]. Our deep network is then fed with the renderings
S and H and runs the first five, on ImageNet pre-trained and frozen, InceptionV4 [57]
blocks to extract low level features from S and H. Pre-training was crucial as the early
layers are mostly responsible for extracting low-level features, suffering the most from the
synthetic-to-real domain gap. The features from both images are then concatenated and fed
through a very shallow network to estimate the perturbation in rotation pR� and translation
pt�. During training we then sample 2D contour points VH from the rendered depth map
of the hypothesis and warp them onto the distance transform DS of the scene contours to
compute our visual proxy loss as

LppR�,pt�,DS,VHq “
ÿ

vPVH

“ DS

”
⇡ppR�⇡´1pvq ` pt�q

ı
(5.2)

Thereby, ⇡p¨q and ⇡´1p¨q denote the perspective projection and backprojection, respectively.
Further, note that we utilize quaternions pq to represent pR P SOp3q (c.f. Section 3.1). Minimizing
the above loss encourages a step towards the 0-level set of the distance transform. We basically
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Chapter 5: Summary of Contributions

tune the network weights to rotate and translate the object in 6D so to maximize the projected
contours overlap.

Noteworthy, our new formulation avoids typical pitfalls of hand-crafted methods such as
tedious hyper-parameter tuning. In addition, our approach can handle ambiguities induced
by symmetries and does not depend on hyptertuning the individual pose components using
argminpq�,pt� ||sq�´ pq�

||pq�||2
||2`�¨||st�´pt�||2 as in [191]. Extensive experiments on LM [131] and

IC-MI [138] demonstrate that our approach can surpass all other related RGB methods [189],
does not suffer from ambiguities [191], and is almost on par with ICP refinement. In fact,
we outperform ICP for five degrees-of-freedom, however, due to nature of the perspective
projection, estimating z is particularly challenging. Nevertheless, our method is still very
applicable to the domains of AR and robotics.

Contributions. I proposed and implemented our method using deep learning to learn
monocular 6D pose refinement using a projective proxy loss. I also conducted our evaluations
on LM(-O), IC-MI and Choi. Wadim Kehl extended the loss formulation to sample contour
points. He also implemented the related work to enable proper comparison with state-of-the-
art and ran the respective experiments.
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Abstract. We present a novel approach for model-based 6D pose re-
finement in color data. Building on the established idea of contour-based
pose tracking, we teach a deep neural network to predict a translational
and rotational update. At the core, we propose a new visual loss that
drives the pose update by aligning object contours, thus avoiding the def-
inition of any explicit appearance model. In contrast to previous work our
method is correspondence-free, segmentation-free, can handle occlusion
and is agnostic to geometrical symmetry as well as visual ambiguities.
Additionally, we observe a strong robustness towards rough initializa-
tion. The approach can run in real-time and produces pose accuracies
that come close to 3D ICP without the need for depth data. Further-
more, our networks are trained from purely synthetic data and will be
published together with the refinement code to ensure reproducibility.1

Keywords: Pose Estimation, Pose Refinement, Tracking

1 Introduction

The problem of tracking CAD models in images is frequently encountered in con-
texts such as robotics, augmented reality (AR) and medical procedures. Usually,
tracking has to be carried out in the full 6D pose, i.e. one seeks to retrieve both
the 3D metric translation as well as the 3D rotation of the object in each frame.
Another typical scenario is pose refinement, where an object detector provides a
rough 6D pose estimate, which has to be corrected in order to provide a better
fit (Figure 1). The usual di�culties that arise include viewpoint ambiguities, oc-
clusions, illumination changes and di↵erences in appearance between the model
and the object in the scene. Furthermore, for tracking applications the method
should also be fast enough to cover large inter-frame motions.

Most related work based on RGB data can be roughly divided into sparse
and region-based methods. The former methods try to establish local correspon-
dences between frames [1, 2] and work well for textured objects, whereas latter

1 http://campar.in.tum.de/Main/FabianManhardt.
* The first two authors contributed equally to this work.
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(a) Input image (b) Initial pose hypotheses (c) Poses after 10 iterations

Fig. 1: Exemplary illustration of our method. While a) depicts an input RGB
frame, b) shows our four initial 6D pose hypotheses. For each obtained frame we
refine each pose for a better fit to the scene. In d) we show the final results after
convergence. Note the rough pose initializations as well as the varying amount
of occlusion the objects of interest undergo.

ones exploit more holistic information about the object such as shape, contour
or color [3–6] and are usually better suited for texture-less objects. It is worth
mentioning that mixtures of the two sets of methods have been proposed as well
[7–10]. Recently, methods that use only depth [11] or both modalities [12–14]
have shown that depth can make tracking more robust by providing more clues
about occlusion and scale.

This work aims to explore how RGB information alone can be su�cient to
perform visual tasks such as 3D tracking and 6-Degree-of-Freedom (6DoF) pose
refinement by means of a Convolutional Neural Network (CNN). While this has
already been proposed for camera pose and motion estimation [15–18], it has
not been well-studied for the problem at hand.

As a major contribution we provide a di↵erentiable formulation of a new vi-
sual loss that aligns object contours and implicitly optimizes for metric transla-
tion and rotation. While our optimization is inspired by region-based approaches,
we can track objects of any texture or shape since we do not need to model global
[3, 5, 13] or local appearance [19, 6]. Instead, we show that we can do away with
these hand-crafted approaches by letting the network learn the object appear-
ance implicitly. We teach the CNN to align contours between synthetic object
renderings and scene images under changing illumination and occlusions and
show that our approach can deal with a variety of shapes and textures. Ad-
ditionally, our method allows to deal with geometrical symmetries and visual
ambiguities without manual tweaking and is able to recover correct poses from
very rough initializations.

Notably, our formulation is parameter-free and avoids typical pitfalls of hand-
crafted tracking or refinement methods (e.g. via segmentation or correspondences
+ RANSAC) that require tedious tuning to work well in practice. Furthermore,
like with depth-based approaches such as ICP, we are robust to occlusion and
produce results which come close to RGB-D methods without the need for depth
data, making it thus very applicable to the domains of AR, medical and robotics.
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2 Related work

Since the field of tracking and pose refinement is vast, we will only focus here
on works that deal with CAD models in RGB data. Early methods in this field
used either 2D-3D correspondences [20, 7] or 3D edges [21–23] and fit the model
in an ICP fashion with iterative, projective update steps. Successive methods
in this direction managed to obtain improved performance [8, 9]. Additionally,
other works focused on tracking the contour densely via level-sets [24, 4].

Based on these works, [3] presented a new approach that follows the pro-
jected model contours to estimate the 6D pose update. In a follow-up work [25],
the authors extended their method to simultaneously track and reconstruct a
3D object on a mobile phone in real-time. The authors from [5] improved the
convergence behavior with a new optimization scheme and presented a real-time
implementation on a GPU. Consequently, [6] showed how to improve the color
segmentation by using local color histograms over time. Orthogonally, the work
[13] approximates the model pose space to avoid GPU computations and en-
ables real-time performance on a single CPU core. All these approaches share
the property that they rely on hand-crafted segmentation methods that can
fail in the case of sudden appearance changes or occlusion. We instead want to
entirely avoid hand-crafting manual appearance descriptions.

Another set of works tries to combine learning with simultaneous detection
and pose estimation in RGB. The method presented in [26] couples the SSD
paradigm [27] with pose estimation to produce 6D pose pools per instance which
are then refined with edge-based ICP. On the contrary, the approach from [28]
uses auto-context Random Forests to regress object coordinates in the scene
that are used to estimate poses. In [29] a method is presented that instead
regresses the projected 3D bounding box and recovers the pose from these 2D-
3D correspondences whereas the authors in [30] infer keypoint heatmaps that
are then used for 6D pose computation. Similarly, the 3D Interpreter Network
[31] infers heatmaps for categories and regresses projection and deformation to
align synthetic with real imagery. In the work [14], a deep learning approach is
used to track models in RGB-D data. Their work goes along similar grounds but
we di↵er in multiple ways including data generation, energy formulation and
their use of RGB-D data. In particular, we show that a naive formulation of
pose regression does not work in the case of symmetry which is often the case
for man-made objects.

We also find common ground with Spatial Transformer Networks in 2D [32]
and especially 3D [33], where the employed network architecture contains a sub-
module to transform the 2D/3D input via a regressed a�ne transformation on
a discrete lattice. Our network instead regresses a rigid body motion on a set of
continuous 3D points to minimize the visual error.

3 Methodology

In this section we explain our approach to train a CNN to regress a 6D pose
refinement from RGB information alone. We design the problem in such a way
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Fig. 2: Schematic overview of the full pipeline. Given input image and pose hy-
pothesis (R, t), we render the object, compute the center of the bounding box
of the hypothesis (green point) and then cut out a scene patch S and a render
patch H. We resize both to 224x224 and feed them separately into pre-trained
InceptionV4 layers to extract low-level features. Thereafter, we concatenate and
compute high-level features before diverging into separate branches. Eventually,
we retrieve our pose update as 3D translation and normalized 4D quaternion.

that we supply two color patches (S and H) to the network in order to infer
a translational and rotational update. In Figure 2 we depict our pipeline and
show a typical scenario where we have a 6D hypothesis (coming from a detector
or tracker) that is not correctly aligned. We want to estimate a refinement such
that eventually the updated hypothesis overlaps perfectly with the real object.

3.1 Input patch sampling

We first want to discuss our patch extraction strategy. Provided a CAD model
and a 6D pose estimate (R, t) in camera space, we create a rendering and compute
the center of the associated bounding box of the hypothesis around which we
subsequently extract S and H. Since di↵erent objects have varying sizes and
shapes it is important to adapt the cropping size to the spatial properties of the
specific object. The most straightforward method would be to simply crop S and
H with respect to a tight 2D bounding box of the rendered mask. However, when
employing such metric crops, the network loses the ability to robustly predict
an update along the Z-axis: indeed, since each crop would almost entirely fill
out the input patch, no estimate of the di↵erence in depth can be drawn. Due
to this, we explicitly calculate the spatial extent in pixels at a minimum metric
distance (with some added padding) and use this as a fixed-size ’window’ into
our scene. In particular, prior to training, we render the object from various
di↵erent viewpoints, compute their bounding boxes, and take the maximum
width or height of all produced bounding boxes.

3.2 Training stage

To create training data we randomly sample a ground truth pose (R⇤, t⇤) of the
object in camera coordinates and render the object with that pose onto a random
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background to create a scene image. To learn pose refinement, we perturb the
true pose to get a noisy version (R, t) and render a hypothesis image. Given those
two images, we cut out patches S and H with the strategy mentioned above.

The naive approach Provided these patches, we now want to infer a separate
correction (R�, t�) of the perturbed pose (R, t) such that

R⇤ = R� ·R , t⇤ = t+ t�. (1)

Due to the di�culty of optimizing in SO(3) we parametrize via unit quaternions
q⇤, q, q� to define a regression problem, i.e. similar to what [34] proposed for
camera localization or [14] for model pose tracking:

min
q�,t�

����q⇤ � q�
||q�||

����+ � ·
����t⇤ � t�

���� (2)

In essence, this energy weighs the numerical error in rotation against the one in
translation by means of the hyper-parameter � and can be optimized correctly
when solutions are unique (as is the case, e.g., of camera pose regression). Un-
fortunately, the above formulation only works for injective relations where an
input image pair gets always mapped to the same transformation. In the case of
one-to-many mappings, i.e. an image pair can have multiple correct solutions,
the optimization does not converge since it is pulled into multiple directions
and regresses the average instead. In the context of our task, visual ambiguity
is common for most man-made objects because they are either symmetric or
share the same appearance from multiple viewpoints. For these objects there is
a large (sometimes infinite) set of refinement solutions that yield the same visual
result. In order to regress q� and t� under ambiguity, we therefore propose an
alternative formulation.

Proxy loss for visual alignment Instead of explicitly minimizing an ambigu-
ous error in transformation, we strive to minimize an unambiguous error that
measures similarity in appearance. We thus treat our search for the pose refine-
ment parameters as a subproblem inside another proxy loss that optimizes for
visual alignment. While there are multiple ways to define a similarity measure,
we seek one that fulfills the following properties: 1) invariant to symmetric or
indistinguishable object views, 2) robust to color deviation, illumination change
and occlusion as well as 3) smooth and di↵erentiable with respect to the pose.

To fulfill the first two properties we propose to align the object contours.
Tracking the 6D pose of objects via projective contours has been presented be-
fore [13, 5, 3] but, to the best of our knowledge, has not so far been introduced
in a deep learning framework. Contour tracking allows to reduce the di�cult
problem of 3D geometric alignment to a simpler task of 2D silhouette match-
ing by moving through a distance transform, avoiding explicit correspondence
search. Furthermore, a physical contour is not a↵ected by deviations in coloring
or lighting which makes it even more appealing for pure RGB methods. We refer
to Figure 3 for a training example and the visualization of the contours we align.
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(a) Synthetic scene
input image S

(b) 6D hypothesis
rendering H

(c) Pose estimate at
initial training state

(d) Refinement after
convergence

Fig. 3: Visualization of our training procedure. In (a) and (b) we show the two
image patches that constitute one training sample and the input to our net-
work. We highlight for the reader the contours for which we seek the projective
alignment from white to red. In (c) we see the initial state of training with no
refinement together with the distance transform of the scene DS and the projec-
tion of 3D sample points VH from the initial 6D hypothesis. Finally, in (d) we
can see the refinement after convergence.

Fulfilling smoothness and di↵erentiability is more di�cult. An optimization
step for this energy requires to render the object with the current pose hypoth-
esis for contour extraction, estimate the similarity with the target contour and
back-propagate the error gradient such that the refined hypothesis’ projected
contour is closer in the next iteration. Unfortunately, back-propagating through
a rendering pipeline is non-trivial (due to, among others, z-bu↵ering and ras-
terization). We therefore propose here a novel formulation to drive the network
optimization successfully through the ambiguous 6D solution space. We employ
an idea, introduced in [13], that allows us to use an approximate contour for
optimization without iterative rendering. When creating a training sample, we
use the depth map of the rendering to compute a 3D point cloud in camera space
and sample a sparse point set on the contour, denoted as V := {v 2 R3

}. The
idea is then to transform these contour points with the current refinement esti-
mate (q�, t�), followed by a projection into the scene. This mimics a rendering
plus contour extraction at no cost and allows for back-propagation.

For a given training sample with input patch pair (S,H), a distance transform
of the scene contour DS and hypothesis contour points VH, we define the loss

L(q�, t�,DS , VH) :=
X

v2VH

DS


⇡
�
q� · v · q�1

� + t�
��

(3)

with q�1
� being the conjugate quaternion. With the formulation above we also

free ourselves from any �-balancing issue between quaternion and translation
magnitudes as in a standard regression formulation.

Minimizing the above loss with a gradient descent step forces a step towards
the 0-level set of the distance transform. We basically tune the network weights
to rotate and translate the object in 6D to maximize the projected contour
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overlap. While this works well in practice, we have observed that for certain
objects and stronger pose perturbations the optimization can get stuck in local
minima. This occurs when our loss drives the contour points into a configuration
where the distance transform allows them to settle in local valleys. To remedy
this problem we introduce a bi-directional loss formulation that simultaneously
aligns the contours of hypothesis as well as scene onto each other, coupled and
constrained by the same pose update. We thus have an additional term that runs
into the opposite direction:

L := L(q�, t�,DS , VH) + L(q�1
� ,�t�,DH, VS). (4)

This final loss L does not only alleviate the locality problem but has also shown to
lead to faster training overall. We therefore chose this energy for all experiments.

3.3 Network design and implementation

We give a schematic overview of our network structure in Figure 2 and pro-
vide here more details. In order to ensure fast inference, our network follows
a fully-convolutional design. The network is fed with two 224 ⇥ 224 ⇥ 3 input
patches representing the cropped scene image S and cropped render image H.
Both patches run in separate paths through the first levels of an InceptionV4
[35] instance to extract low-level features. Thereafter we concatenate the two fea-
ture tensors, down-sample by employing max-pooling as well as a strided 3⇥ 3
convolution, and concatenate the results again. After two Inception-A blocks we
branch o↵ into two separate paths for the regression of rotation and translation.
In each we employ two more Inception-A blocks before down-sampling by an-
other strided 3 ⇥ 3 convolution. The resulting tensors are then convolved with
either a 6⇥6⇥4 kernel to regress a 4D quaternion or a 6⇥6⇥3 kernel to predict
a 3D update translation vector.

Initial experiments showed clearly that training the network from scratch
made it impossible to bridge the domain gap between synthetic and real images.
Similarly to [26, 36] we found that the network focused on specific appearance
details of the rendered CAD models and the performance on real imagery col-
lapsed drastically. Synthetic images usually possess very sharp edges and clear
corners. Since the first layers learn low-level features they overfit quickly to this
perfect rendered world during training. We therefore copied the first five convo-
lutional blocks from a pre-trained model and froze their parameters. We show
the improvements in terms of generalization to real data in the supplement.

Further, we initialize the final regression layers such that the bias equals
identity quaternion and zero translation whereas the weights are given a small
Gaussian noise level of � = 0.001. This ensures that we start refinement from a
neutral pose, which is crucial for the evaluation of the projective visual loss.

While our approach produces very good refinements in a single shot we de-
cided to also implement an iterative version where we run the pose refinement
multiple times until the regressed update falls under a threshold.
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4 Evaluation

We implemented our method with TensorFlow 1.4 [37] and ran it on a i7-
5820K@3.3GHz with an NVIDIA GTX 1080. For all experiments we ran the
training with 100k iterations, a batch size of 16 and ADAM with a learning rate
of 3 · 10�4. Furthermore, we fixed the number of 3D contour points per view
to |VS | = |VH| = 100. Additionally, our method is real-time capable since one
iteration requires approximately 25ms during testing.

To evaluate our method, we carried out experiments on three, both synthetic
and real, datasets and will convey that our method can come close to RGB-D
based approaches. In particular, the first dataset, referred to as ’Hinterstoisser’,
was introduced in [38] and consists of 15 sequences each possessing approximately
1000 images with clutter and mild occlusion. Only 13 of these provide water-
tight CAD models and we therefore, like others before us, skip the other two
sequences. The second one, which we refer to as ’Tejani’, was proposed in [39]
and consists of six mostly semi-symmetric, textured objects each undergoing
di↵erent levels of occlusion. In contrast to the first two real datasets, the latter
one, referred to as ’Choi’ [40], consists of four synthetic tracking sequences.

In essence, we will first conduct some self-evaluation in which we illustrate our
convergence properties with respect to di↵erent degrees of pose perturbation on
real data. Then we show our method when applied to object tracking on ’Choi’.
As a second application, we compare our approach to a variety of other state-of-
the-art RGB and RGB-D methods by conducting experiments in pose refinement
on ’Hinterstoisser’, the ’Occlusion’ dataset and ’Tejani’. Finally, we depict some
failure cases and conclude with a qualitative category-level experiment.

4.1 Pose perturbation

We study the convergence behavior of our method by taking correct poses, ap-
plying a perturbation by a certain amount and measure how well we can refine
back to the original pose. To this end, we use the ’Hinterstoisser’ dataset since
it provides a lot of variety in terms of both colors and shapes. For each frame of
a particular sequence we perturb the ground truth pose either by an angle or by
a translation vector. In Figure 4 we illustrate our results for the ’ape’ and the
’bvise’ objects and kindly refer the reader to the supplement for all graphs. In
particular, we report our results for increasing degrees of angular perturbations
from 5�to 45�and for increasing translation perturbations from 0 to 1 relative to
the object’s diameter. We define divergence if the refined rotation is above 45�in
error or the refined translation larger than half of the object’s diameter and we
employ 10 iterative steps to maximize our possible precision.

In general, our method can recover poses very robustly even under strong
perturbations. Even for the extreme case of rotating the ’bvise’ with 45�we can
refine back to an error less than 5�in more than 60% of all trials, and to an
error less than 10�in more than 80% of all runs. Additionally, our approach
only diverged for less than 1%. However, for the more di�cult ’ape’ object our
numbers worsen. In particular, in almost 50% of the cases we were not able
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Perturbation Refinement Perturbation Refinement

Fig. 4: Top: Perturbation results for two objects from [38] for increasing rotation
and translation levels. Bottom: Qualitative results from the same experiment.

to rotate back the object to an error of less than 10%. Yet, this can be easily
explained by the object’s appearance. The ’ape’ is a rather small object with poor
texture and non-distinctive shape, which does not provide enough information
to hook onto whereas the ’bvise’ is large and rich in appearance. It is noteworthy
that the actual divergence behavior in rotation is similar for both and that the
visual alignment for the ’ape’ is often very good despite the error in pose.

The translation error correlates almost linearly between initial and final pose.
We also observe an interesting tendency starting from perturbation levels at
around 0.6 after which the results can be divided up into two distinct sets:
either the pose diverges or the error settles on a certain level. This implies that
certain viewpoints are easy to align as long as they have a certain visual overlap
to begin with, rather independent of how strong we perturb. Other views instead
are more di�cult with higher perturbations and diverge from some point on.
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PCL C&C Krull Tan Kehl Tjaden Ours

(a
)
K
in
e
c
t
B
o
x tx 43.99 1.84 0.8 1.54 0.76 55.75 1.46

ty 42.51 2.23 1.67 1.90 1.09 70.57 2.28
tz 55.89 1.36 0.79 0.34 0.38 402.14 10.61
↵ 7.62 6.41 1.11 0.42 0.17 42.61 1.84
� 1.87 0.76 0.55 0.22 0.18 27.74 2.09
� 8.31 6.32 1.04 0.68 0.20 38.979 1.23

(b
)
M
il
k

tx 13.38 0.93 0.51 1.23 0.64 39.21 3.89
ty 31.45 1.94 1.27 0.74 0.59 48.13 4.25
tz 26.09 1.09 0.62 0.24 0.24 332.11 57.68
↵ 59.37 3.83 2.19 0.50 0.41 45.54 38.74
� 19.58 1.41 1.44 0.28 0.29 26.37 27.62
� 75.03 3.26 1.90 0.46 0.42 21.72 42.68

(c
)
O
r
a
n
g
e
J
u
ic
e tx 2.53 0.96 0.52 1.10 0.50 2.29 0.65

ty 2.20 1.44 0.74 0.94 0.69 2.85 0.69
tz 1.91 1.17 0.63 0.18 0.17 48.61 6.49
↵ 85.81 1.32 1.28 0.35 0.12 8.46 1.5
� 42.12 0.75 1.08 0.24 0.20 5.95 0.68
� 46.37 1.39 1.20 0.37 0.19 2.24 0.39

(d
)
T
id
e

tx 1.46 0.853 0.69 0.73 0.34 1.31 1.74
ty 2.25 1.37 0.81 0.56 0.49 0.83 0.74
tz 0.92 1.20 0.81 0.24 0.18 12.49 10.71
↵ 5.15 1.78 2.10 0.31 0.15 2.03 1.78
� 2.13 1.09 1.38 0.25 0.39 1.56 1.64
� 2.98 1.13 1.27 0.34 0.37 1.39 0.80

(a) Errors on ’Choi’ in respect to others. (b) Tracking quality compared to [5].

Fig. 5: Left: Translation (mm) and rotation (degrees) errors on Choi for PCL’s
ICP, Choi and Christensen (C&C)[40], Krull[12], Tan[11], Kehl[13], Tjaden[5]
and our method. Right: Comparing [5] (left) to us (right) using only RGB.

4.2 Tracking

As a first use case we evaluated our method as a tracker on the ’Choi’ benchmark
[40]. This RGB-D dataset consists of four synthetic sequences and we present
detailed numbers in Figure 5. Note that all other methods utilize depth informa-
tion. We decided for this dataset because it is very hard for RGB-only methods:
it is poor in terms of color and the objects are of (semi-)symmetric nature. To
provide an interesting comparison we also qualitatively evaluated against our
tracker implementation of [5]. While their method is usually robust for texture-
less objects it diverges on 3 sequences which we show and for which we provide
reasoning2 in Figure 5 and in the supplementary material. In essence, except
for the ’Milk’ sequence we can report very good results. The reason why we
performed comparably bad on the ’Milk’ resides in the fact that our method
already treats it as a rather symmetric object. Thus, sometimes it rotates the
object along its Y-axis, which has a negative impact on the overall numbers. In
particular, while already being misaligned, the method still tries to completely
fill the object into the scene, thus, it slightly further rotates and translates the
object. Referring to the remaining objects, we can easily outperform PCL’s ICP
for all objects and also Choi and Christensen [40] for most of the cases. Com-

2 The authors acknowledged our conclusions in correspondence.
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ape bvise cam can cat driller duck box glue holep iron lamp phone total

No Refinement 0.64 0.65 0.71 0.72 0.63 0.62 0.65 0.64 0.64 0.69 0.71 0.63 0.69 0.66
2D Edge-based ICP 0.73 0.67 0.73 0.76 0.68 0.67 0.72 0.73 0.72 0.71 0.74 0.67 0.70 0.71
3D Cloud-based ICP 0.86 0.88 0.91 0.87 0.87 0.85 0.83 0.84 0.75 0.77 0.85 0.84 0.81 0.84

Ours 0.83 0.83 0.75 0.87 0.79 0.85 0.87 0.88 0.85 0.82 0.85 0.80 0.83 0.83

Table 1: VSS scores for each sequence of [38] with poses initialized from SSD-6D
[26]. The first three rows are provided by [26]. We evidently outperform 2D-based
ICP by a large margin and are on par with 3D-based ICP.

Rot. Error [�] Transl. Error [mm] ADD [%]

No Ref. 27.96 9.75, 9.33, 71.09 7.4
3D ICP 17.62 10.42, 10.56, 27.31 90.9
Ours 16.17 4.9, 5.87, 42.69 34.1
[29] – – 43.6
[28] – – 50.2

Rot. Error [�] Transl. Error [mm] ADD [%]

No Ref. 34.42 13.7, 13.4, 77.5 6.2
Ours 24.36 8.5, 9.0, 49.1 27.5

(a) Absolute pose errors on [38] and [42].

Sequence Ours MSE Loss Kehl [13] Tjaden [5]

Camera 0.803 0.562 0.493 0.385
Co↵ee 0.848 0.717 0.747 0.170
Joystick 0.850 0.746 0.773 0.298
Juice 0.828 0.613 0.523 0.205
Milk 0.766 0.721 0.580 0.514

Shampoo 0.804 0.700 0.648 0.250

Total 0.817 0.676 0.627 0.304

(b) VSS scores for each sequence of [39].

Table 2: Refinement scores with poses initialized from SSD-6D [26]. Left: Average
ADD scores on ’Hinterstoisser’ [38] (top) and ’Occlusion’ [42] (bottom). Right:
VSS scores on ’Tejani’. We compare our visual loss to naive pose regression as
well as two state-of-the-art trackers for the case of RGB [5] and RGB-D [13].

pared to Krull [12], which is a learned RGB-D approach, we perform better for
some values and worse for others. Note that our translation error along the Z-
axis is quite high. Since the di↵erence in pixels is almost nonexistent when the
object is moved only a few millimeters, it is almost impossible to estimate the
exact distance of the object without leveraging depth information. This has also
been discussed in [41] and is especially true for CNNs due to pooling operations.

4.3 Detection refinement

This set of experiments analyzes our performance in a detection scenario where
an object detector will provide rough 6D poses and the goal is to refine them. We
decided to use the results from SSD-6D [26], an RGB-based detection method,
that outputs 2D detections with a pool of 6D pose estimates each. The authors
publicly provide their trained networks and we use them to detect and create
6D pose estimates which we feed into our system. Tables 1, 2b and 2a depict our
results for the ’Hinterstoisser’, ’Occlusion’ and the ’Tejani’ dataset using di↵erent
metrics. We maximally ran 5 iterations of our method, yet, we also stopped if the
last update was less than 1.5�and 7.5mm. Since our method is particularly strong
at recovering from bad initializations, we employ the same RGB-verification
strategy as SSD-6D. However, we apply it before conducting the refinement,
since in contrast to them, we can also deal with imperfect initializations, as long
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Fig. 6: Comparison on Tejani between (from left to right) our visual loss, mean
squared error loss, the RGB-D tracker from [13] and the RGB tracker from [5].

as they are not completely misaligned. We report our errors with the VSS metric
(which is VSD from [43] with ⌧ = 1) that calculates a visual 2D error as the
pixel-wise overlap between the renderings of ground truth pose and estimated
pose. Furthermore, to compare better to related work, we also use the ADD
score [38] to measure a 3D metrical error as the average point cloud deviation
between real pose and inferred pose when transformed into the scene. A pose is
counted as correct if the deviation is less than a 1

10 th of the object diameter.

Referring to ’Hinterstoisser’ with the VSS metric, we can strongly improve
the state-of-the-art for most objects. In particular, for the case of RGB only, we
can report an average VSS score of 83%, which is an improvement of impressive
and can thus successfully bridge the gap between RGB and RGB-D in terms of
pose accuracy.

Except for the ’cam’ and the ’cat’ object our results are on par with or even
better than SSD-6D + 3D refinement. ICP relies on good correspondences and
robust outlier removal which in turn requires very careful parameter tuning.
Furthermore, ICP is often unstable for rougher initializations. In contrast, our
method learns refinement end-to-end and is more robust since it adapts to the
specific properties of the object during training. However, due to this, our method
requires meshes of good quality. Hence, similar to SSD-6D we have especially
problems for the ’cam’ object since the model appearance strongly di↵ers from
the real images which exacerbates training. Also note that their 3D refinement
strategy uses ICP for each pose in the pool, followed by a verification over depth
normals to decide for the best pose. Our method instead uses a simple check
over image gradients to pick the best.

With respect to the ADD metric we fall slightly behind the other state-of-the-
art RGB methods [28, 29]. We got the 3D-ICP refined poses from the SSD-6D
authors and analyzed the errors in more detail in Table 2a. We see again that we
have bigger errors along the Z-axis, but less errors along X and Y. Unfortunately,
the ADD metric penalizes this deviation overly strong. Interestingly, [28, 29]
have better scores and we reason this to come from two facts. The datasets are
annotated via ICP with 3D models against depth data. Unfortunately, inaccurate
intrinsics and the sensor registration error between RGB and D leads to an
inherent mismatch where the ICP 6D pose does not always align perfectly in
RGB. Purely synthetic RGB methods like ours or [26] su↵er from (1) a domain
gap in terms of texture/shape and (2) the dilemma that better RGB performance
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Fig. 7: Qualitative category-level experiment where we train our network on a
specific set of mugs and bowls and track hitherto unseen models. The first frame
depicts very rough initialization while the next frames show some intermediate
refined poses throughout the sequence. The supplement shows the full video.

can worsen results when comparing to that ’true’ ICP pose. We suspect that [28,
29] can learn this registration error implicitly since they train on real RGB cut-
outs with associated ICP pose information and thus avoid both problems. We
often observe that our visually-perfect alignments in RGB fail the ADD criterion
and we show examples in the supplement. Since our loss actually optimizes a
form of VSS to maximize contour overlap, we can expect the ADD scores to go
up only when perfect alignment in color equates perfect alignment in depth.

Eventually, referring to the ’Occlusion’ dataset, we can report a strong im-
provement compared to the original numbers from SSD-6D, despite the presence
of strong occlusion. In particular, while the rotational error decreased by approx-
imately 8 degrees, the translational error dropped by 4mm along ’X’ and ’Y’ axes
and by 28mm along ’Z’. Thus, we can increase ADD from 6.2% up to 28.5%,
which demonstrates that we can deal with strong occlusion in the scene.

For ’Tejani’ we decided to show the improvement over networks trained with
a standard regression loss (MSE). Additionally, we re-implemented the RGB
tracker from [5] and were kindly provided with numbers from the authors of the
RGB-D tracker from [13] (see Figure 6). Since the dataset mostly consists of
objects with geometric symmetry, we do not measure absolute pose errors here
but instead report our numbers with the VSS metric. The MSE-trained networks
constantly underperform since the dataset models are of symmetric nature which
in turn leads to a large di↵erence of 14% in comparison to our visual loss. This
result stresses the importance of correct symmetry entangling during training.
The RGB tracker was not able to refine well due to the fact that the color
segmentation was corrupted by either occlusions or imperfect initialization. The
RGB-D tracker, which builds on the same idea, performed better because it uses
the additional depth channel for segmentation and optimization.

4.4 Category-level tracking

We were curious to find out whether our approach can generalize beyond a spe-
cific CAD model, given that many objects from the same category share similar
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Fig. 8: Two prominent failure cases: Occlusion (left pair) and objects of very
similar colors and shapes (right pair) can negatively influence the regression.

appearance and shape properties. To this end, we conducted a final qualitative
experiment (see Figure 7) where we collected a total of eight CAD models of
cups, mugs and a bowl and trained simultaneously on all. During testing we
then used this network to track new, unseen models from the same category. We
were surprised to see that the approach has indeed learned to metrically track
previously unseen but nonetheless similar structures. While the poses are not as
accurate as for the single-instance case, it seems that one can indeed learn the
projective relation of structure and how it changes under 6D motion, provided
that at least the projection functions (i.e. camera intrinsics) are constant. We
show the full sequence in the supplementary material.

4.5 Failure cases

Figure 8 illustrates two known failure cases where the left image of each pair
represents initialization and the right image the refined result. Although we train
with occlusion certain occurrences can worsen our refinement nonetheless. While
two ’milk’ instances were refined well despite occlusion, the left ’milk’ instance
could not be recovered correctly. The network assumes the object to end at
the yellow pen and only maximizes the remaining pixel-wise overlap. Besides
occlusion, objects of similar color and shape can in rare cases lead to confusion.
As shown in the right pair, the network mistakenly assumed the stapler, instead
of the cup, to be the real object of interest.

5 Conclusion

We believe to have presented a new approach towards 6D model tracking in
RGB with the help of deep learning and we demonstrated the power of our
approach on multiple datasets and for the scenarios of pose refinement and for
instance/category tracking. Future work will include investigation towards gen-
eralization to other domains, e.g. the suitability towards visual odometry.

Acknowledgments We would like to thank Toyota Motor Corporation for
funding and supporting this work.
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5.2 Challenges in 6D Pose Estimation

While the accuracy of 6D pose estimation from RGB data keeps increasing [8], there are
still many limitations which are not well addressed in literature. Exemplary, occlusion
usually significantly deteriorates performance [123]. Similarly, also ambiguities in pose [163]
and other external factors such as illumination [2] can have a significant impact on the
detection results. This is particularly challenging, since in contrast to other tasks such as
image classification, there are no large-scale datasets explaining all the variation within these
parameters.

Therefore, this section is devoted to shed light on these challenges. Thereby, Section 5.2.1
focuses on how to tackle different kinds of ambiguities in pose and Section 5.2.2 approaches
the problem of lighting variations.

5.2.1 Explaining The Ambiguity of Object Detection And 6D Pose From

Visual Data (ICCV 2019)

Figure 5.3. Ambiguities in Pose. Left: Different poses can have the same visual appearance due to symmetries
and occlusion. Exemplary, the bowl is visually identical when observed from any of the three poses
Ti, Tj and Tk, despite Ti ‰ Tj ‰ Tk. Learning to estimate the pose causes the network to predict the
canonical mean of all poses that are identical under ambiguities. However, the canonical mean pose
does not need to represent a visually correct solution. Right: Therefore, we tackle the problem by means
of casting multiple pose hypotheses for a detection. Optimizing only for the best hypothesis enforces a
Voronoi tessellation of the output space, which can be leveraged to recover a visually plausible pose
despite ambiguities.

Inferring the 6D pose from monocular data can be a highly ambiguous task. As illustrated
in Figure 5.3 [left], symmetries and occlusion can lead to multiple plausible poses under
perspective projection. Rupprecht et al. [192] have recently shown that ambiguities can
have a strong negative impact on the performance of a network, as the model is prone to
predict the canonical mean over the underlying multi-model distribution. Similarly, na:ıve
optimization for pose with

✓˚ “ argmin
✓

1
N

Nÿ

i“0

L̂ppT , sTq, (5.3)
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Chapter 5: Summary of Contributions

encourages to infer poses that explain all plausible poses equally well, which does not work
well under ambiguities.

In this work we model the 6D pose by means of multiple hypotheses as a way to approximate
the underlying distribution (c.f. Figure 5.3). To this end, for a given input image I, we predict
N hypotheses for pose. During learning we then only backpropagate the best pose within all
hypotheses, rewriting L̂ as

L “ min
i,...,N

L̂ppTi, sTq. (5.4)

As only the best pose with respect to the ground truth is optimized, the different hypotheses
spread out, fragmenting the output space similar to a Voronoi tessellation. Notice that all
hypotheses collapse to a single pose in case no ambiguity is present. The new formulation
enables robust pose estimation under ambiguities, as well as further reasoning about the
ambiguity itself. In particular, we are capable of understanding the type of ambiguity and
can exploit this information to further enhance pose quality. To this end, we apply Principle
Component Analysis (PCA) to the hypotheses to infer if there is an ambiguity present and if
the hypotheses span a continuous pose space. Subsequently, if an ambiguity is found, we
leverage clustering together with mean shift as a robust estimator to obtain the final output
pose. Otherwise, if no ambiguity could be detected, we merge all hypotheses to increase
the pose robustness and additionally harness the hypotheses as a way to characterize the
uncertainty in pose. In particular, we compute the standard deviation � over the set of
hypotheses tpT1, ..., pTNu and utilize it as a measurement for reliability.

Experiments on LM [131] and T-LESS [133] demonstrate that for symmetric objects our
ambiguity-aware pose formulation significantly improves over the single-hypothesis baseline.
Nevertheless, also when no ambiguity is present, our robust averaging can easily surpass the
single-hypothesis approach. Further, while lowering the threshold for � the pose accuracy
keeps increasing, proofing the potential of using multiple hypotheses to measure uncertainty.
Noteworthy, the new formulation for pose allows to robustly infer pose under the presence
of ambiguity, without requiring any additional labels.

Contributions. I proposed the idea to utilize multiple hypotheses as a mean to deal with
pose ambiguities and Diego Martin Arroyo implemented the first version of the method and
ran some initial experiments. I extended the initial version then with our final Inception-
V4 backbone and the respective heads for multiple rotation and depth regression. I also
conducted all the evaluations. Christian Rupprecht contributed to the implementation of
the multiple hypotheses loss. Benjamin Busam helped analyzing the ambiguities and Tolga
Birdal assisted the Bingham distribution visualizations.
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Abstract

3D object detection and pose estimation from a single im-

age are two inherently ambiguous problems. Oftentimes,

objects appear similar from different viewpoints due to

shape symmetries, occlusion and repetitive textures. This

ambiguity in both detection and pose estimation means that

an object instance can be perfectly described by several

different poses and even classes. In this work we propose

to explicitly deal with these ambiguities. For each object

instance we predict multiple 6D pose outcomes to estimate

the specific pose distribution generated by symmetries and

repetitive textures. The distribution collapses to a single

outcome when the visual appearance uniquely identifies

just one valid pose. We show the benefits of our approach

which provides not only a better explanation for pose

ambiguity, but also a higher accuracy in terms of pose

estimation.

1. Introduction
Driven by deep learning, image-based object detection

has recently made a tremendous leap forward in both accu-
racy as well as efficiency [39, 16, 31, 38]. An emerging re-
search direction in this field is the estimation of the object’s
pose in 3D space over the existing 6-Degrees-of-Freedom
(DoF) rather than on the 2D image plane [24, 37, 46, 51,
34, 29, 49, 33]. This is motivated by a strong interest in
achieving robust and accurate monocular 6D pose estima-
tion for applications in the field of robotic grasping, scene
understanding and augmented/mixed reality, where the use
of a 3D sensor is not feasible [36, 26, 50, 45].

Nevertheless, 6D pose estimation from RGB is a chal-
lenging problem due to the intrinsic ambiguity caused by
visual appearance of objects under different viewpoints and
occlusion. Indeed, most common objects exhibit shape am-
biguities and repetitive patterns that cause their appearance

* The first two authors contributed equally to this work.

Figure 1: Pose ambiguities. External or self-occlusion can
cause the 6DoF pose of an object to become ambiguous.
Our method is able to detect and predict these ambiguities
automatically without additional supervision. The antipo-
dally symmetric Bingham distributions show that the model
has understood the full range of valid poses.

to be very similar under different viewpoints, thus rendering
pose estimation a problem with multiple correct solutions.
Furthermore, also occlusion (from the same object or from
others) can cause pose ambiguity.

For example, as illustrated in Figure 1, the cup is identi-
cal from every viewpoint in which the handle is not visible.
Thus, from a single image, it is impossible to univocally es-
timate the current object pose. Moreover, object symmetry
can also induce visual ambiguities leading to multiple poses
with the same visual appearance. However, most datasets
do not reflect this ambiguity, as the ground truth pose anno-
tations are mostly uniquely defined at each frame. This is
problematic for a proper optimization of the rotation, since
a visually correct pose still results in a high loss. Thus,
many recent 3D detectors avoid regressing the rotation di-
rectly and, instead, explicitly model the solution space in an
unambiguous fashion [37, 24].

Essentially, in [24], the authors train their convolutional



Figure 2: Overview. We predict M hypotheses for the pose
to approximate the distribution in the solution space. Each
hypothesis is visually identical from the current viewpoint.

neural network (CNN) by mapping all possible pose solu-
tions for a certain viewpoint onto an unambiguous arc on the
view sphere. Rad et al. [37] employ a separate CNN solely
trained to classify the symmetry in order to resolve these
ambiguities. However, this simplification exhibits several
downsides, such as the explicit inclusion of information
about certain symmetries in each trained object. Moreover,
this is not always easy to model, as e.g. in the case of par-
tial view ambiguity. Further, all these approaches rely on
prior knowledge and annotation of the object symmetries
and aim to solve the ambiguity by providing a single out-
come in terms of estimated pose and object. Added to this,
these methods are also unable to deal with ambiguities gen-
erated by other common factors such as occlusion.

On the contrary, Sundermeyer et al. [42] and Corona et

al. [7] recently proposed novel methods to conduct pose
estimation in an ambiguity-free manner. In the core, both
learn a feature embedding solely based on visual appear-
ance. Nonetheless, although [42] is able to deal with am-
biguities implicitly, it does not model their detection and
description explicitly. In contrast, [7] also learns to classify
the order of rotational symmetry, in particular the number
of equivalent views around an axis of rotation. However,
they require explicit hand-annotated labels and, in addition,
cannot deal with ambiguities aside from these symmetry
classes such as (self-) occlusion.

In this paper we propose to model the ambiguity of the
object detection and pose estimation tasks directly by al-
lowing our learned model to predict multiple solutions, or
hypotheses, for a given object’s visual appearance (Fig 2).
Inspired by Rupprecht et al. [40] we propose a novel ar-
chitecture and loss function for monocular 6D pose esti-
mation by means of multiple predictions. Essentially, each
predicted hypothesis itself corresponds to a 3D translation
and rotation. When the visual appearance is ambiguous,
the model predicts a point estimate of the distribution in 3D
pose space. Conversely, when the object’s appearance is
unique, the hypotheses will collapse into the same solution.
Importantly, our model is capable of learning the distribu-

tion of these 6D hypotheses from one single ground truth
pose per sample, without further supervision.

Besides providing more insight and a better explanation
for the task at hand, the additional knowledge gained from
rotation distributions can be exploited to improve the accu-
racy of the pose estimates. In essence, analyzing the distri-
bution of the hypotheses enables us to classify if the current
perceived viewpoint is ambiguous and to compute the axis
of ambiguity for that specific object and viewpoint. Subse-
quently, when ambiguity is detected, we can employ mean
shift [6] clustering over the hypotheses in quaternion space
to find the main modes for the current pose. A robust av-
eraging in 3D rotation space for each mode then yields a
highly accurate pose estimate. When the view is ambiguity-
free, we can improve our pose estimates by robustly averag-
ing over all 6D hypotheses, and by taking advantage of the
predicted pose distribution as a confidence measure.

Our contributions are threefold:

• We propose a novel method for 6DoF pose estimation,
which can deal with the inherent ambiguities in pose
by means of multiple hypotheses.

• Explicit detection of rotational ambiguities and char-
acterization of the uncertainty in the problem without
further annotation or supervision.

• A mechanism to measure the reliability and to increase
the robustness of the unambiguous 6D pose prediction.

2. Related Work
We first review recent work in object detection and pose

estimation from 2D and 3D data. Afterwards, we discuss
common grounds and main differences with approaches
aimed at symmetry detection for 3D shapes.

Object Detection and Pose Estimation. Almost all cur-
rent research focus on deep learning-based methods.

[48, 25, 7] employ CNNs to learn an embedding space
for the pose and class from RGB-D data, which can sub-
sequently be utilized for retrieval. Notably, the majority
of most recent deep learning based methods focus on RGB
as input [24, 37, 8, 46, 51, 42]. Since utilizing pre-trained
networks often accelerates convergence and leads to better
local minima, these methods are usually grounded on state-
of-the-art backbones for 2D object detection, such as Incep-
tion [44] or ResNet [16]. In particular, Kehl et al. [24] em-
ploy SSD [31] with an InceptionV4 [43] backbone and ex-
tend it to also classify viewpoint and in-plane rotation. Sim-
ilarly, Sundermeyer et al. [42] also use SSD for localization,
but employ an augmented auto-encoder for the unambigu-
ous retrieval of the associated 6D pose. Rad et al. [37] uti-
lize VGG [41] and augment it to provide the 2D projections



of the 3D bounding box corners. A similar approach is cho-
sen by [46], based on YOLO [38]. Afterwards, both apply
PnP to fit the associated 3D bounding box into the regressed
2D projections, in order to estimate the 3D pose of the de-
tection. In [51], Xiang et al. compute a shared feature em-
bedding for subsequent object instance segmentation paired
with pose estimation. Finally, Do et al. [8] extend Mask-
RCNN [15] with a third branch, which provides the 3D ro-
tation and the distance to the camera for each prediction.

Object Symmetry Detection Oftentimes, object pose
ambiguity arises from symmetric shapes. We review rel-
evant methods that extract symmetry from 3D models to
outline commonalities and differences with our approach.

To our knowledge, [7] is the only method which esti-
mates both: the 6D pose, and the symmetry of the perceived
object. In particular, the network is trained to also predict
the rotational order (i.e. the number of identical views), pos-
ing it as a classification task.

Generally, most methods for symmetry detection are
found in the shape analysis community. Among the dif-
ferent kinds of symmetries, axial symmetries are of partic-
ular interest, and multiple approaches have been proposed.
Most methods rely on feature matching or spectral analysis:
[9] treat the problem as a correspondence matching task be-
tween a series of keypoints on an object, determining the re-
flection symmetry hyperplane as an optimization problem.
Elawady et al. [10] rely on edge features extracted using a
Log-Gabor filter in different scales and orientations coupled
with a voting procedure on the computed histogram of lo-
cal texture and color information. In addition, [5] and [35]
are also grounded on wavelet-based approaches. Recently,
neural network approaches have also been proposed. Ke et

al. [23] adapt an edge-detection architecture with multiple
residual units and successfully apply it to symmetry detec-
tion using real-world images.

Notably, all these approaches aim at detecting symme-
tries of 3D shapes alone, while our focus is to model the am-
biguity arising from objects under specific viewpoints with
the goal of improving and explaining pose estimation.

3. Methodology
In this section we describe our method for handling sym-

metries and other ambiguities for object detection and pose
estimation in detail. We will first define what we understand
as an ambiguity.

3.1. Ambiguity in Object Detection and Pose Esti-
mation

We describe the rigid body transformations SE (3) via
the semi-direct product of SO (3) and R

3. While for the
latter, we use Euclidean 3-vectors, the algebra H1 of unit

quaternions is used to model the spatial rotations in SO (3).
A quaternion is given by

q = q11 + q2i + q3j + q4k = (q1, q2, q3, q4) , (1)

with (q1, q2, q3, q4) 2 R
4 and i2 = j2 = k2

= ijk = �1.
We regress quaternions above the q1 = 0 hyperplane and,
thus, omit the southern hemisphere, such that any possible
3D rotation can be expressed by only one single quaternion.

Under ambiguities, a direct naive regression of the rota-
tion as a quaternion will lead to poor results, as the network
will learn to predict a rotation that is closest to all results
in the symmetry group. This prediction can be seen as the
(conditional) mean rotation. More formally, in a typical su-
pervised setting we associate images Ii with poses pi in a
dataset (Ii, pi) where i 2 {1, . . . , N}. To describe symme-
tries, we define for a given image Ii, the set S(Ii) of poses
p that all have an identical image

S(Ii) = {pj |Ij = Ii} . (2)

Note that in the case of non-discrete symmetries the set
S will contain infinitely many poses, which in turn trans-
forms the sums of S in the following to integrals. For the
sake of a simpler notation and a finite training set in prac-
tice, we chose to continue with a notion of a finite |S|. The
naive model f(I, ✓), that directly regresses a pose p

0 from
I , optimizes a loss L(p, p0) by minimizing

✓
⇤
= argmin

✓

NX

i=1

L(f✓(Ii), pi) (3)

over the training set. However, due to symmetry, the map-
ping from I to p is not well defined and cannot be modeled
as a function. By minimizing Equation 3, f is learned to
predict a pose p̃ approximating all possible poses for this
image equally well.

f(Ii, ✓
⇤
) = p̃ = min

p

|S(Ii)|X

j=1

L(p, pj) (4)

This is an unfavorable result since p̃ is chosen to mini-
mize the sum of all losses towards the different symmetries.
In the following section, we will describe how we model
these ambiguities inside our method.

3.1.1 Multiple Pose Hypotheses

The key idea behind the proposed method is to model the
ambiguity by allowing multiple pose predictions from the
network. In order to predict M pose hypotheses from f ,
we extend the notation to f✓(I) = (f

(1)
✓ (I), . . . , f

(M)
✓ (I))

where f now returns M pose hypotheses for each image I .



For training, the idea is not to punish all hypotheses
given the current pose annotation, since they might be cor-
rect under ambiguities. Thus, we use a loss that optimizes
only one of the M hypotheses for each annotation. The
most intuitive choice is to pick the closest one. We adapt
the meta loss M from [40] that operates on f ,

✓
⇤
= argmin

✓

NX

i=1

M(f✓(Ii), pi), (5)

while we use the original pose loss L for each f
(j)

M̂(f✓(I), p) = min
j=1,...,M

L(f (j)
✓ (I), p). (6)

However, the hard selection of the minimum in equation
6 does not work in practice as some of the hypothesis func-
tions f (j)

✓ (I) might never be updated if they are initialized
far from the target values. We relax M̂ to M by adding the
average error for all hypotheses with an epsilon weight:

M(f✓(I), p) =

✓
1� ✏

M

M � 1

◆
M̂(f✓(I), p) +

✏

M � 1

MX

j=1

L(f (j)
✓ (I), p).

(7)

The normalization constants before the two components are
designed to give a weight of (1 � ✏) to M̂ and ✏ to the
gradient distributed over all other hypotheses. When ✏ ! 0,
M ! M̂. This is necessary since the average in the second
term already contains the minimum from the first one.

3.2. Architecture

We employ SSD-300 [31] with an extended Incep-
tionV4 [43] backbone and adjust it to also provide the 6D
pose along with each detection. In particular, we append
two more ’Reduction-B’ blocks to the backbone. Essen-
tially, we branch off after each dimensionality reduction
block and place in total 6.099 anchor boxes to cover objects
at different scales. Moreover, to include the unambiguous
regression of the 6D pose, we modify the prediction kernel
such that it provides C+M ·P outputs for each anchor box.
Thereby, C denotes the number of classes, M denotes the
number of hypotheses, and P denotes the number of param-
eters to describe the 6D pose. In our case, for each of the
M predicted hypotheses, we regress P = 5 values to char-
acterize the 6D pose, composed of an explicitly normalized
4D quaternion for the 3D rotation and the object’s distance
towards the camera. We can estimate the remaining two
degrees-of-freedom by back-projecting the center of the 2D
bounding box using the inferred depth.

Additionally, in line with [32, 24] we conduct hard neg-
ative mining to deal with foreground-background imbal-
ances. Thus, given a set of positive boxes Pos and hard-
mined negative boxes Neg for a training image, we mini-
mize the following energy function:

L(Pos,Neg) :=

X

b2Neg

Lclass+

X

b2Pos

(Lclass + ↵Lfit + �M(f✓(I), p)).

(8)

For the class and the refinement of the anchor boxes, we em-
ploy the cross-entropy loss Lclass and the smooth L1-norm
Lfit, respectively. In order to compare the similarity of two
quaternions, we compute the angle between the estimated
rotation and the ground truth rotation according to

Lrotation(q, q
0
) = arccos

�
2hq, q0i2 � 1

�
. (9)

Additionally, we employ the smooth L1-norm as loss for
the depth component Ldepth. Altogether, we define the final
loss for each hypothesis j and input image I as follows

L(f (j)
✓ (I)) = Lrotation(q

(j)
, q

0
)+�Ldepth(d

(j)
, d

0
). (10)

3.3. Processing Multiple Hypotheses
During inference we further analyze the predicted mul-

tiple hypotheses in order to determine whether the pose of
the object is ambiguous. Notice that prior to this, we first
map all hypotheses to reside on the upper hemisphere. If we
detect an ambiguity, we additionally exploit the multiple hy-
potheses to estimate the view-dependent axes of ambiguity.

Detection of Visual Ambiguities in Scenes. We analyze
the distribution of predicted hypotheses in quaternion space
to determine whether the pose exhibits an ambiguity. To this
end, Principal Component Analysis (PCA) is performed on
the quaternion hypotheses qi. The singular value decom-
position of the data matrix indicates the ambiguity: if the
dominant singular values �1/2 � 0 (�i > �i+1 8i), an am-
biguity in the pose prediction is likely, while small singular
values imply a collapse to a single unambiguous solution.

We determine the existence of ambiguity by thresholding
the value of �2. Empirically, we find the criteria �2 > 0.8 to
offer good estimations for ambiguity. It is noteworthy that
we can learn to detect ambiguities without further supervi-
sion, directly from standard datasets.

Estimation of the Axis of Ambiguity. As mentioned,
very prominent representatives for visual ambiguities are
symmetries in the objects of interest, as illustrated in Fig. 3
(left) and (mid). Nevertheless, for other objects such as



Figure 3: Examples of pose ambiguity. Left: Rotational
ambiguity. Mid: Two different possible poses for each side.
Right: Ambiguity around an arc through (self-) occlusion.

cups, also (self-) occlusion can induce ambiguities in ap-
pearance (right).

To calculate a viewpoint dependant ambiguity axis, we
take a closer look at the following scenario. A rotation
qi = (qi1, qi2, qi3, qi4) rotates the camera c0 to ci around
the rotation axis

ai = (qi2, qi3, qi4) /

q
q2i2 + q2i3 + q2i4. (11)

All these rotation axes lie in the same plane which is perpen-
dicular to the ambiguity axis s ? ai 8i. Thus, if we stack
the rotation axes A =

�
a
T
1 , a

T
2 , · · · , aTn

�
, we can formulate

the overdetermined linear equation system A
T
s = 0. The

ambiguity axis can be found as the solution to the optimiza-
tion problem

min
s2R3

��AT
s
��
p
, (12)

which we solve for p = 2 using SVD.

3.4. From Multiple Hypotheses to 6D Pose
After analyzing the distribution of the hypotheses, we

can robustly compute the associated 6D pose for each case.

Unambiguous Object Pose. In case of an unambiguous
object pose, we utilize the multiple hypotheses as an input
for a geometric median (geodesic L1-mean [14]) to improve
robustness of the overall estimation

qgm = argmin
q2H1

X

i

dgeo (qi, q) . (13)

The iterative calculation follows the Weiszfeld algo-
rithm [47, 13] in the tangent spaces to the quaternion hy-
persphere [4]. From a statistical perspective, our rotation
measures are treated as inputs for an L1-estimator to ro-
bustly detect the geometric median where dgeo gives the
geodesic distance on the quaternion hypersphere. Note that
Gramkow [12] showed that locally, using the Euclidean dis-
tance in the ambient, quaternion space well approximates
the Riemannian one. In addition, we compute the median
depth of all hypotheses. Afterwards, we utilize the center
of the 2D detection and backproject it into 3D to obtain the
translation and therewith the full 6D pose of the detection.

Ambiguous Object Pose. As the number of possible 3D
rotations is finite yet unknown, we employ mean shift [6]
to cluster the hypotheses in quaternion space. Specifically,
we use the the angular distance of the quaternion vectors
to measure similarity and the Weiszfeld algorithm to merge
clusters inside mean shift. This yields either one cluster
(if the poses are connected) or multiple (if they are uncon-
nected) as illustrated in Fig. 3. For each cluster we compute
a median rotation and the median depth to retrieve the asso-
ciated 3D translation. Note that we only consider the depths
of the hypotheses, which contributed to the corresponding
cluster. We apply simple contour checks [24] to find the
best fitting cluster from which we extract the final 6D pose.

Synthetic Data. As noted in [19], domain adaptation be-
tween synthetically generated data samples and real-world
images trivializes the collection of training data. We render
CAD models in random poses and add a series of augmen-
tations, such as illumination changes, shadows and blur, as
well as background images taken from the MS COCO [30].

4. Evaluation
In this section, we first introduce our experimental setup.

Following that, we clearly demonstrate the benefits of our
method compared to typical pose estimation systems on
a toy dataset. Next, we show robustness in determining
whether a view exhibits an ambiguity. Fourth, we report
our 6D pose estimation accuracy for the unambiguous and
the ambiguous case on common benchmark datasets. Fi-
nally, we demonstrate how we can model reliability in pose
estimation by analyzing the variance across hypotheses.

4.1. Experimental Setup
Evaluation metrics. In order to properly assess the 6D
pose performance, we distinguish between potentially am-
biguous and non-ambiguous objects. When dealing with
non-ambiguous objects, we report the absolute error for
the 3D rotation in degrees and 3D translation in millime-
ters. We also show our accuracy using the Average Distance
of Distinguishable Model Points (ADD) metric from [18],
which measures if the average deviation of the transformed
model points is less than 10% of the object’s diameter.

For ‘ambiguous’ objects we rely on the Average Dis-
tance of Indistinguishable Model Points (ADI) metric,
which extends ADD for ambiguity, measuring error as the
average distance to the closest model point [21, 17].

We also show our results for the Visual Surface Similar-
ity (VSS) metric. As [24], we define VSS similar to the Vi-
sual Surface Discrepancy (VSD) [21], however, set ⌧ = 1.
Hence, we measure the pixel-wise overlap of the rendered
ground truth pose and the rendered prediction, which is not
subject to ambiguities.



Figure 4: Synthetic toy dataset. Top: Contours of the rendered poses for the naive SH (M=1) model in red and our MH

(M=30) model in blue. Bottom: Bingham distributions for each pose cluster, together with the ground truth quaternion in
green and the SH predicted quaternion in red. Our model is not only correct in both cases but can also predict the full range
of valid poses. SH fails on the cube example.

Object Ambiguity SH MH

VSS [%] ADI [%] VSS [%] ADI [%]

Cup (Self-) Occlusion 97.0 100 98.1 100
Cube Plane Symmetries 87.4 15.6 98.6 100

Table 1: Synthetic results. for the naive SH (M = 1) and
our MH (M = 30) model on the synthetic toy dataset.

Bingham Distributions. In order to visually analyze the
multi-hypotheses output of our network, we inspect the un-
derlying rotation distributions. A Bingham distribution [1]
(BD) is a special equivalent to a Gaussian distribution on
a hypersphere. BDs represent a probability distribution
on S

d with antipodal symmetry well suited to study poses
parametrized by quaternions, where q and �q 2 H1 rep-
resent the same element in SO (3). In line with previous
works [28, 11, 2], we visualize an equatorial projection of
the closest distribution to our pose output using BDs.

4.2. Synthetic Ambiguity Evaluation
We render a simple synthetic dataset of a rotating cup

and cube. We compare the baseline with M = 1 hypothe-
sis and our method with M = 30 hypotheses. The results
are shown in Fig. 4, Tab.1, and the supplement. For the
cup, both methods yield an ADI score of 100%. The single
hypothesis approach SH is indeed able to compute visually
correct poses even though it cannot model the pose distri-
bution along an arc. It has learned the conditional mean
pose where the handle is exactly opposite of the camera.
Nonetheless, this is only one of the infinitely many possi-
ble solutions. In contrast, our method is able to predict the
whole distribution as seen in the Bingham plots. This is es-
sential for tasks such as next-best-view prediction or robotic
manipulation. When there is no ambiguity, both methods
predict only the one correct pose.

Figure 5: Real data. The red frustums visualize (M = 30)

pose hypotheses. The blue frustum constitutes the median,
which determines the predicted 3D bounding box. In the
unambiguous case (left) the hypotheses agree. However,
partial symmetries and occlusion lead to multiple possible
outcomes on the right, which meaningfully reflect to the
Bingham distribution of hypotheses.

For the cube object, SH fails (red outline) with an ADI of
only 15.6%. Here, the conditional mean is not inside the set
of correct poses. Our method is again able to estimate the
underlying distribution and can correctly estimate all four
modes of correct poses. This yields a perfect ADI of 100%.

When applying our method to real data (Fig. 5), we
achieve similar results. If there is a unique solution, the
method is able to robustly estimate the correct pose. For
ambiguous views, we retrieve the governing distribution as
depicted by the viewpoint frustums and spherical plots.

4.3. Real World Datasets
To conduct evaluations on real data, we build two

datasets addressing both unambiguous and ambiguous



Figure 6: Ambiguity detection. Symmetry axis (green
line) estimation. Notice that one screw was classified to
be unambiguous (i.e. no axis), because the ambiguity could
be resolved through the texture.

cases. In particular, for the former, we use the popular
‘LineMOD’ [18] and ‘LineMOD Occlusion’ dataset [27].
The authors of [27] selected one sequence from the orig-
inal ‘LineMOD’ dataset and labeled eight additional ob-
jects. Nevertheless, we moved the ‘glue’ and ‘eggbox’ ob-
ject to the ambiguous dataset, since both exhibit several
views (mostly from the top), which are not unique. Ad-
ditionally, following [24, 37] we removed the ‘cup’ and
‘bowl’ objects, because no watertight CAD models are pro-
vided for them. We also discard the ‘lamp’ since the CAD
model does not possess correct normal vectors for proper
rendering. To the latter, the ambiguous dataset, besides the
‘glue’ and ‘bowl’ objects, we added several models from
T-LESS [20] to cover different types of ambiguities. In
essence, T-LESS mostly consists of symmetric and texture-
less industrial objects. For our experiments we choose a
subset that covers both cases: complete rotational symme-
try along an axis (object 4) and objects with more than one
rotational symmetry (object 5, 9, 10).

4.4. Ambiguity Detection Analysis

To evaluate the ability of our model to learn pose dis-
tributions, we manually labeled for each validation image
of the ambiguous dataset, whether the current object view
exhibits ambiguity based on the visible object texture and
shape. This ground truth is used to quantitatively assess our
capability of detecting pose ambiguity. Additionally, we
compute the ground truth symmetry axis for each object. It
is important to note that we do not conduct object symmetry
detection, instead, we describe the perceived pose ambigu-
ity in terms of a symmetry axis. These annotations are only
used for evaluation and not during training.

For each detected ambiguity, we compute the aver-
age discrepancy of the computed symmetry axis from the
ground truth annotation. For the ambiguity-free case, we
achieve to report an accuracy of more than 99%, while for
the ambiguous case we can also state a high accuracy of
82% correctly classified views. Furthermore, the mean axis
only deviates by 24�, which shows that our formulation is
able to precisely explain the perceived ambiguity.

Rot. [�] Trans. [mm] VSS [%] ADD [%] F1

SSD-6D [24] 28.0 72.4 67.4 9.4 88.8
[42] – – – 22.1 –

SH (M = 1) 17.9 45.6 76.8 31.2 91.6
MH(M = 5) 17.4 39.5 78.2 35.3 93.4

Table 2: Pose errors of unambiguous objects with syn-
thetic training data. Comparison with [42], [24]. Results
of [24] from their released models and code.

ape can cat dril duck holep mean

Tekin [46] 2.5 17.5 0.7 7.7 1.1 5.5 5.8
MH(M = 5) 5.9 22.4 4.2 32.0 12.2 17.0 15.6

BB-8 [37] Tekin [46] MH(M = 5)

ADD [%] 45.9 47.9 44.4

Table 3: Pose errors of unambiguous objects with real
training data split from [3]. Top: Comparison with [46]
on LineMOD Occlusion. Bottom: Comparison with [37]
and [46] on LineMOD. Results of [46] from their released
models and code.

In Fig. 6, we respectively show one sample of estimated
ambiguity axis from ‘LineMOD’ and ‘T-LESS’. For each
detection, we draw the estimated axis in red, while the green
line denotes the hand-annotated groundtruth axis.

4.5. Comparison to State-of-the-Art
Unambiguous Pose Estimation. In Tab 2 and Tab 3, we
report our results for the unambiguous subset for training
with synthetic data and with the train data split from [3].
Since the number of predicted hypotheses M is a hyperpa-
rameter, we will show an ablation in the supplement and
only report our best results with M = 5 here.

For the case of synthetic training only, even for the sin-
gle hypothesis case, our approach outperforms SSD-6D by
more than 35% of relative error while also being more ro-
bust in terms of 2D detection. Comparing with Sunder-
meyer et al. [42] we can report a relative improvement of
approximately 50% referring to ADD. In addition, our aver-
aging over all hypotheses leads to more robustness towards
outliers and, thus, another improvement of all metrics.

When also employing real data, we can improve our re-
sults by approximately 9% to 44.4% and are on par with the
state-of-the-art methods from [37] and [46], even though
we employ no crop and paste augmentations. Further, when
using the more challenging ‘LineMOD Occlusion’ dataset,
we can exceed Tekin et al. [46] for all objects and overall
almost triple their ADD score from 5.8% to 15.6%.

Ambiguous Pose Estimation. Referring to Tab 4, for the
ambiguous ‘LineMOD’ objects, we attain a VSS score of
79% and an ADI score of 55%, which is a relative im-
provement of approximately 13% and 145% compared to



VSS [%] ADI [%] F1
MH SH [24] MH SH [24] MH SH [24]

eggbox 83.1 78.5 76.3 55.7 56.0 26.3 98.0 83.0 93.7
glue 74.6 74.0 65.1 54.6 58.7 17.6 90.1 74.0 76.8

mean 78,9 76.3 70.7 55.2 57.4 22.0 94.1 78.5 85.5

VSS [%] ADI [%]
Scene MH SH [42] MH SH [42]

obj 04 5, 9 70.8 68.6 78.5 19.7 14.1 15.2
obj 05 2, 3, 4 87.6 82.8 88.8 78.0 48.3 76.3
obj 09 5, 11 84.4 79.1 86.5 69.9 54.5 77.3
obj 10 5, 11 82.0 78.5 82.3 57.9 29.4 31.9

mean 81.2 77.3 84.0 56.4 36.6 50.6

Table 4: Ambiguous dataset. (top: ‘LineMOD’) (bottom:
T-LESS). We compare our multiple hypotheses MH (M =

30) results and the same predictor trained to output a single
hypothesis SH (M = 1) with [42]1 and SSD-6D [24].

SSD-6D. In the 6D setting, the multiple hypothesis detector
overall achieves similar performance as the single hypoth-
esis predictor. However, for the 2D detection case, we are
able to increase the accuracy from 79% to 94%. As con-
stituted, only a few views are ambiguous for these objects.
Investigating the results, we discovered that the single hy-
pothesis predictor is not able to understand exactly these
views and tends to simply discard them. In contrast, the
multiple hypotheses predictor is indeed able to understand
these views and yields reliable pose predictions.

For all ambiguous ‘T-LESS’ objects (Tab 4), our multi-
ple hypotheses approach surpasses the single hypothesis es-
timator, which, when trained and evaluated under the same
conditions, is not able to capture the ambiguities in pose.
Thus, the single hypothesis predictor is not able to produce
equally accurate results, being only capable of computing
precise poses for unambiguous views.Comparing with [42],
we report similar performance in pose. Our ADI improves
with 56.4% compared to 50.6% while VSS falls slightly be-
hind by 2.8%. For fairness, we only compare the 6D pose
accuracy for correctly detected objects (i.e. IoU  0.5)
since [42] trained their 2D detector for T-LESS on real data.

4.6. Measuring Reliability

To the best of our knowledge, there is no prior work ca-
pable of modelling the confidence in the continuous pose
estimate. Yet, this information can highly improve the over-
all robustness and accuracy. In our case, we can utilize the
different hypotheses to first determine whether the current
view is unambiguous and subsequently employ them as a
confidence measurement in the unambiguous 6D pose. To
quantify the effect of this, we report our test results on the
unambiguous subset of ‘LineMOD’ in Fig. 7 (top), where
we compute a confidence measure via the standard devia-
tion with respect to the Karcher mean [22].

STD � Rot. [�] Trans. [mm] VSS [%] ADD [%] Rejects [%]
< 0.05 11.8 39.4 80.0 37.7 32.6
< 0.075 13.8 41.3 79.1 35.5 18.2
< 0.10 15.5 43.0 78.3 34.3 10.5
< 0.15 17.3 44.0 77.7 33.4 4.0
< 1 19.2 44.8 77.3 32.7 0.0

Figure 7: Reliability. Top: results for different bins for the
standard deviation over all hypotheses for the poses. Bot-
tom: pose with the lowest (left) and the highest (right) stan-
dard deviation in the hypotheses. GT pose in blue, predicted
pose in red. The red frustums illustrate the hypotheses.

Naturally, a lower standard deviation means more accu-
rate poses. By only allowing poses with � < 0.1, all metrics
improve, while only losing about 10.5% of all estimates.
The rotational error decreases by approximately 20% and
the translation error drops from 44.8mm to 43.0mm. Ac-
cordingly, using an even lower threshold (e.g. � < 0.05)
gives another significant improvement for pose (especially
in rotation), however, at the cost of rejecting more estimates.
The qualitative example image in Fig. 7 also confirms these
results. The pose with the lowest standard deviation for the
‘driller’ is very accurate, and the one with the highest is
rather imprecise. We experience the same behavior for all
unambiguous ‘LineMOD’ objects.

5. Conclusion
We propose a new approach for pose estimation that im-

plicitly models ambiguities without requiring any input pre-
processing as well as the feasibility of domain adaptation
between synthetic and real data. In addition, we can es-
timate the axis of rotational ambiguity and perform pose
refinement based on clustering without knowing the num-
ber of clusters in advance. Our experiments show that our
method is suitable for detecting both challenging objects
with multiple rotational symmetries and datasets with lit-
tle ambiguity. Lastly, we argue that our method constitutes
a metric of reliability for the 6D pose.

In conclusion, we believe that the new formulation of
the pose detection problem from images as an ambiguous
task paves the way towards interesting applications in the
domain of robotic interactions and automation.
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5.2 Challenges in 6D Pose Estimation

5.2.2 DB-GAN: Boosting Object Recognition Under Strong Lighting Con-

ditions (WACV 2021)

Figure 5.4. Image Normalization for Object Detection. Our model is trained to normalize the input image in
terms of lighting. To this end, we leverage recent advances in GANs to generate a high quality recon-
struction of the input, whilst removing any variations in light. To further improve the normalization,
we tailor the reconstruction to work particularly well for the task at hand. To this end, we add a detec-
tion term in which we propagate the loss, with respect to the given ground truth, from a pre-trained
SSD(-6D) [59, 9] instance to the image normalization network. Due to this, the network is forced to
reconstruct the image such that detection is optimized.

The real world has a vast amount of different illumination conditions, which can have a
significant impact on object detection. For example, strong directional light from the side can
easily lead to misdetections or misclassifications. Moreover, most methods and benchmark
datasets only evaluate in well lit setups, which is unrealistic in the real world [131, 120].
While collecting appropriate large-scale datasets is difficult and time-consuming, training
on synthetic samples alone introduces a significant domain gap as modeling real light is
challenging and requires a lot of computation. In this work, we investigate how an image can
be normalized in terms lighting that training on synthetic data is possible without suffering
from the domain gap.

There have been several works proposed, attempting at normalizing lighting conditions.
Difference of Gaussians based approaches proved to be effective, however, remove most
textural information in the process [193]. Other works harnessing GANs either require prior
knowledge of the input image [194] or normalize lighting by means of color constancy and
image enhancement [195, 196]. Noteworthy, none of these approaches consider the final
application to tailor image manipulation. Therefore, we instead propose a novel pipeline
which takes an unnormalized RGB image as input and returns a respective normalized
image which is optimized to particularly work in the domain of object detection and pose
estimation.

In the core, we leverage a GAN-based architecture (c.f. Section 2.4) to normalize the input
image I to possess uniform lighting sI. Our generator G follows an encoder-decoder architec-
ture transforming any input image into the lighting normalized domain with pI “ GpIq. To
learn the mapping from the unnormalized to the normalized lighting space, we employ an
L1-loss Lrecons for reconstruction and harness two discriminators Lgan to ensure high qual-
ity and proper domain transfer [159]. We additionally employ a perceptual loss Lperceptual

to enforce feature level similarity between the prediction and the ground truth [197]. Never-
theless, while this allows proper domain transfer, the images are not yet tailored towards
the actual task. As the goal is to improve object detection and pose estimation, we harness
an associated detector and pre-train it on synthetic images without exposing the detector
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Chapter 5: Summary of Contributions

to any variations in lighting. Afterwards, during training of the GAN, we feed the detector
with the reconstructed images pI and backpropagate the loss of the detector through G. This
encourages the network to produce images from the lighting normalized domain in order to
re-enable detection

LppI,sIq “ LreconsppI,sIq ` �1LperceptualppI,sIq ` �2LganppI,sIq ` �3LdetppIq. (5.5)

In practice, we paired our GAN with SSD [59] for 2D object detection and SSD-6D for 6D
pose estimation [9] (c.f. Section 5.1.1), replacing Ldet with the respective objective function.

Another contribution of our work is the release of Toyota TrueBlue, a novel dataset for
object detection under white balance variations. Our dataset comes with 11 scenes, each
of which recorded under 11 different and quantified color temperatures. We provide an-
notations with a precise CAD model for 5 objects. We made TrueBlue publicly available at
https://forms.gle/5LYFrQAqzAzFKVwj9. We tested an adaptation of DB-GAN on TrueBlue
showing the effectiveness of our approach at dealing with color temperature variations.

We performed experiments on the TYO-L and TUD-L datasets from the BOP challenge
2019 [8]. Thereby, our method outperforms all existing works from lighting normalization,
most often by a large margin. In addition, the loss study confirms the effectiveness of our
detection loss. Finally, we explored how the method can cope with respect to different
contrast ratios. It turns out that while the accuracy without normalization varies significantly,
our method produces similar results across all contrast ratios, always outperforming the
baseline.

Contributions. I proposed and implemented the idea to tailor illumination normalization
towards the actual task of 2D object detection by extending a GAN with a 2D object detection
loss. Luca Minciullo then extended the initial implementation for the task of 6D pose
estimation. Luca Minciullo, Kei Yoshikawa and Sven Meier recorded the TrueBlue dataset
and conducted the experiments on TYO-L and TUD-L.
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Abstract

Driven by deep learning, object recognition has recently

made a tremendous leap forward. Nonetheless, its accuracy

often still suffers from several sources of variation that can

be found in real-world images. Some of the most challeng-

ing variations are induced by changing lighting conditions.

This paper presents a novel approach for tackling bright-

ness variation in the domain of 2D object detection and 6D

object pose estimation. Existing works aiming at improv-

ing robustness towards different lighting conditions are of-

ten grounded on classical computer vision contrast normal-

isation techniques or the acquisition of large amounts of an-

notated data in order to achieve invariance during training.

While the former cannot generalise well to a wide range of

illumination conditions, the latter is neither practical nor

scalable. Hence, We propose the usage of Generative Ad-

versarial Networks in order to learn how to normalise the

illumination of an input image. Thereby, the generator is

explicitly designed to normalise illumination in images so

to enhance the object recognition performance. Extensive

evaluations demonstrate that leveraging the generated data

can significantly enhance the detection performance, out-

performing all other state-of-the-art methods. We further

constitute a natural extension focusing on white balance

variations and introduce a new dataset for evaluation.

1. Introduction

Due to its wide range of applications, localising objects
in natural images is one of the most studied fields in com-

∗These authors contributed equally to this work
†Federico Tombari is now working at Google

Figure 1. Detection under strong lighting variations. Although

the input image is subject to strong light from the side, we can

still detect almost all objects taken from Toyota Light [12] (top).

Similarly, we are able to robustly detect these objects when little

light is available (bottom). In each row the input image is shown

on the left, while SSD detections are shown on the right.

puter vision [41, 55, 26, 20, 52, 12, 13]. Recently, driven by
deep learning and the accessibility of large-scale datasets
such as ImageNet [6] or Open Images [22], there has been
tremendous improvement in terms of detection accuracy as
well as the number of objects that can be recognized simul-
taneously [25, 27, 36, 10, 20, 33, 24]

Despite the undeniable advances, several open chal-
lenges still remain to be solved. Some of the most promi-
nent being robustness towards illumination [17, 35, 51],
viewpoint changes [28], occlusion, as well as handling the



synthetic-to-real domain gap [13, 46].

Real-world environments commonly possess a large
variation of illumination conditions. For instance, applica-
tions involving outdoor scenes are often exposed to strong
changes in illumination. In autonomous driving, cars often-
times operate in extreme scenarios such as direct strong sun-
light during the day or almost no light at night. Similarly,
indoor vision systems often suffer from challenging lighting
conditions. Noteworthy, nearby windows or inside refrig-
erators the contrast ratio be 1000:1 or higher. These chal-
lenges commonly go unnoticed when training on large scale
datasets. However, many practical applications deal with
objects categories or instances that are not part of bench-
mark datasets. Therefore, training data needs to be collected
from scratch and the acquisition of data with the required
variation is problematic. This is particularly true for 6D
pose estimation, since annotating the 6D pose of an object
is very difficult, time consuming, and error-prone [13]. For
this reason, increasing the capability of models leveraging
only synthetic data is of high interest [20, 46, 13, 44]. As a
consequence, in this work we focus on robustness towards
brightness and color with a particular focus on synthetic
data.

In this paper we introduce our novel method to improve
2D object detection and 6D object pose estimation, which
we call Detector-Boost GAN(DB-GAN) - a GAN-based
architecture for illumination normalisation (c.f . Figure 1).
Our method is essentially trained to perform illumination
normalisation by means of generating images tailored to the
capabilities of the object detector. By back-propagating the
detection loss, DB-GAN learns to eradicate the weaknesses
of the detector and strengthen its performance. Our method
does not need prior information on the input image and is
able to automatically recover normalised texture under dark,
bright as well as non-uniform light conditions. DB-GAN is
capable of outperforming all related state-of-the-art meth-
ods on two standard benchmark datasets, TUD Light and
Toyota Light [12]. We also introduce a new dataset named
Toyota TrueBlue, aimed at assessing robustness to white
balance changes. Our approach is able to achieve signif-
icant mAP improvements on all datasets compared to our
baseline detectors and other existing works. Noteworthy,
despite focusing on improving detectors, our method can
be potentially leveraged to enhance performance of various
computer vision tasks.

In summary, we make the following contributions. i) We
propose a novel architecture which learns to generate im-
ages in order to facilitate further detection under strong il-
lumination changes. ii) We introduce Toyota TrueBlue, a
new dataset focusing explicitly on robustness to change in
white balance and iii) experimentally demonstrate that DB-
GAN significantly enhances performance both in 2D and
3D, outperforming all related methods.

2. Related Work

In this section we provide an overview on previous works
in illumination normalisation. Since we employ Genera-
tive Adversarial Networks (GANs) to normalize images, we
also briefly outline the most important works in the GAN
literature.

2.1. Generative Adversarial Networks

Generative Adversarial Networks(GANs) [8] are one
of most important recent advances in generative models.
GANs train in alternation two deep learning architectures: a
generator and a discriminator. While the generator produces
realistically looking images, the discriminator attempts to
distinguish images coming from the generator from im-
ages sampled from the true distribution. The networks are
trained jointly in a min-max game fashion, converging in
an equilibrium in which the discriminator is not capable of
distinguishing real from fake. Inspired by [8], Isola et al.
employ Conditional GANs [30] for image translation be-
tween two domains [14]. Here the generated samples are
also conditioned on the input sample, meaning that the dis-
criminator always receives a pair of images. Accordingly,
the discriminator is required to distinguish whether the gen-
erated output is consistent with the input and correctly trans-
lates to the target domain. Similarly, Cycle-GAN, proposed
in [59] also carries out domain translation, but without the
need for paired data. SINGAN [39] leverages a sequence
of generators learning to reconstruct texture at different res-
olutions and can be trained using a single high resolution
training image.

Some existing GAN based works have been introduced
in the context of object detection. While, Wang et al. [49]
leverage GANs for knowledge distillation, Bai et al. [2] fo-
cuses on improving the detection of small objects. In [58],
the authors propose to use weakly supervised object dis-
covery for the detection of vehicles in high resolution re-
mote sensing images. Wang et al. [50] propose an adver-
sarial mask generation approach to improve occlusion and
deformation robustness in object detection. Finally, other
works [7, 15] use GAN generators to produce instance level
segmentation masks for either weakly supervised [7] or un-
paired data based object detection [15].

Nevertheless, to the best of our knowledge, none of the
mentioned works have been used to improve illumination
robustness.

2.2. Illumination Normalisation

In this section we specifically cover illumination nor-
malization, image enhancement and color constancy ap-
proaches with a special focus on GAN-based solutions.

Local Contrast Normalization [16], was introduced as a
pre-processing step to mimic the behaviour of the V1 cells



in the cortical area of the brain. A few deep-learning ap-
proaches for robustness towards illumination changes have
also been proposed. Krizhevsky et al. [21] introduce Lo-
cal Response Normalization as a brightness normalisation
module to be applied after non-linearities in deep archi-
tectures. Rad et al. [35] propose to learn the parameters
of a generalization of the Difference-of-Gaussians(DoG)
method using CNNs. Thereby, the DoG parameters are
learned end-to-end with respect to object detection and 6D
object pose estimation. Nonetheless, this method is inher-
ently restricted by the capacity of DoGs for normalisation.
Other works [23, 48] perform illumination estimation for
modality fusion of thermal and color inputs [23] and image
enhancement [48]. Several additional approaches have been
introduced for general image enhancement [53, 54, 9, 31].

GAN-based approaches In [42], the authors leverage
GANs (i.e. Angular-GAN) to remove light and shadows
from RGB images. Their method is fully-supervised and
uses synthetic training samples generated with GTA-V.
Jiang et al. propose EnlightenGAN[17] for transforming
dark into bright images and vice-versa. The architecture
is inspired by Cycle-GAN[59], hence, eradicating the need
for paired images during training. However, prior knowl-
edge on whether the input image is too dark or too bright is
required. Furthermore, this method assumes that the input
image is acquired under uniform lighting, which is rarely
the case in practical scenarios. Wei et al. recently introduce
Retinex-Net[51], an end-to-end trainable architecture for
low-light image enhancement. [51] decomposes the image
into reflectance and illumination, prior to adjusting illumi-
nation. Nonetheless, they require paired low-light/normal-
light data for training. Zhang et al. [57] propose a GAN
base architecture to deal with illumination robustness in
face recognition. They learn a illumination invariant la-
tent space by means of adversarial training. Sakkos et al.
[38] use two GAN generators to produce both low-light and
bright images and then perform semantic segmentation on
the difference image in a multi-task setting. Finally, Chen et

al. [4] propose a GAN-based image enhancement approach.

3. Methodology

In this work, we propose a novel method for illumination
normalisation in RGB images. The network is grounded
on an Encoder-Decoder architecture, leveraging recent ad-
vances in GANs to further enhance the reconstruction qual-
ity. The core novelty of this work lies in the additional
back-propagation of a detection loss, while training the
GAN. This implicitly forces the network to generate im-
ages, which simplify latter object detection despite contrary
conditions such as very strong illumination. Unlike previ-
ous works [17, 51] our method does not require prior knowl-
edge of the input image as well as any real data for training.

In this section, we explain the technical details of our
proposed method.

3.1. DB-GAN for Detection-Driven Reconstruction

Let I be any image space and Ī be the subset of I whose
elements possess uniform lighting. Assumed an acquired
set of image pairs (I , Ī), where I ∈ I, and Ī ∈ Ī, the illu-
mination normalised version of I. In addition, we assume
that all objects of interest are annotated in the form of either
bounding boxes or 6D poses. In the following sections we
describe how we construct a dataset with these characteris-
tics without any human labelling.

We want to learn a mapping from the domain I to the
illumination-free domain Ī. To this end, we employ a GAN
based architecture, following recent success of adversarial
models at image generation tasks[59, 39, 14, 42]. To avoid
losing details in the reconstructed image [14, 17, 3, 19],
our generator G is based on an encoder-decoder architec-
ture with skip connections [37]. Given an image pair (I ,
Ī) the generator has to learn to normalise the input image
according to

Î = G(I). (1)

Since we assume pairs of images, we can learn the map-
ping from I to Ī in a fully supervised fashion, using a re-
construction loss on the target Ī and the prediction Î with

Lrecons := ||Î − Ī||1. (2)

To prevent the generator from predicting blurry outputs
we adopt the perceptual loss [18]. In particular, to ensure
high and low-level similarity, we extract features φl at mul-
tiple levels L from a VGG16 [43] network trained on Ima-
geNet. We employ the first five (|L| = 5) different layers
and calculate the perceptual loss using

Lperceptual :=
1

|L|

∑

l∈L

||φl(Î)− φl(Ī)||1. (3)

We additionally use an adversarial loss to improve fine-
grained reconstruction and ensure proper domain transfer.
In particular, we use a discriminator which assesses if a
sample in fact originates from the illumination-free domain.
In our implementation we use both a global D and a local
discriminator LD as proposed in [14]. While the global
discriminator encourages better translation to the target do-
main, the local discriminator operates on small patches in
order to enforce the preservation of details. We use binary
cross entropy loss for both discriminators. Following com-
mon practice [14, 30, 32] we condition the output on input
according to I ⊕ Î or I ⊕ Ī , where ⊕ denotes horizontal
concatenation [30].

During generator training, we feed the conditioned im-
ages to both discriminators for teaching the generator to



Figure 2. Training scheme of DB-GAN for Object Detection. Our loss is based on three different blocks, all intended to optimize

detection under high lighting variations. First, a reconstruction term for high quality reconstruction of the normalized target scene Ī .

Thereby, we incorporate two discriminators ensuring consistency at different scales. Second, a perceptual term to enforce feature similarity

between the prediction Î and the target Ī . Finally, a detection term in which we propagate the loss, with respect to the given ground truth

(green arrow), from a pre-trained SSD instance to the image normalization network. Due to this, the network is forced to reconstruct the

image Ī such that detection is optimized.

produce realistic images that seem to originate from the uni-
form lighting domain. Again, we use binary cross entropy
loss for optimization. We denote these two loss term as
LfoolD and LfoolLD

.
Unique to this work is the training of the generator with

a additional detection loss (Detection Optimization as de-
picted in Fig 2). In essence, we encourage the GAN to not
only create realistic illumination normalised images, but to
also optimize the image for detection. To this end, we pre-
train the detector on synthetic data without any illumination
changes and freeze its weights. When training DB-GAN,
we additionally back-propagate the loss with respect to the
trained detector. DB-GAN is consequently required to ad-
equately adjust lighting in order to optimize detection. To
test out the proposed architecture, we use SSD [27] for 2D
object detection and SSD6D [20] for 6D object pose estima-
tion. For both detectors we use the original loss terms LDet,
as reported in the corresponding papers. Given a set of pos-
itive Pos and hard-mined negative Neg anchor boxes, we
minimize the following

LDet(Pos,Neg) :=
∑

b∈Pos

(Lclass + αLfit)+
∑

b∈Neg

Lclass.

(4)
with respect to SSD, and for SSD6D according to

LDet(Pos,Neg) :=
∑

b∈Neg

Lclass +
∑

b∈Pos

(Lclass+

αLfit + βLview + γLinplane).

(5)

Thereby Lclass denotes the cross-entropy loss applied to
each anchor and Lfit denotes the L1 loss which measures
the misalignment of the corners in order to provide a tight
fit. Further, SSD6D decouples 3D rotation into viewpoint
and in-plane rotation. Thereby viewpoint describes the per-
ceived surface and inplane rotation describes how this sur-
face is rotated on the image-plane. To increase stability,
SSD6D bins viewpoint and in-plane rotation and conducts
classification referring again to the cross-entropy loss for
Lview and Linplane.

The final loss for the generator is then comprised of a
weighted sum over all individual contributions

L :=Lrecons + λ1LGAN + λ2Lperceptual + λ3LfoolD+

λ4LfoolLD
+ λ5LDet

(6)

We empirically found that good choices for the above
hyper-parameters are: λ1 = λ2 = λ3 = 1, λ4 = 0.5 and
λ5 = 0.01.

3.2. Image Enhancement Using DB-GAN

The aim of our approach is to use the trained DB-GAN
to generate a new training set enhancing the detector’s ro-
bustness towards different lighting conditions.

PHOS Dataset. In line with [35], we use the PHOS
dataset [47] to train our DB-GAN for illumination robust-
ness. Contrary to [35], we only use PHOS to extract back-
ground images. The PHOS dataset [47], contains 15 real



scenes, captured under 15 different lighting conditions: one
correct exposure, 8 images under uniform lighting (i.e. 4
underexposed samples and 4 overexposed samples) and 6
samples with non-uniform lighting.

Baseline Detector Data Generation. As we want to
back-propagate the detector loss, we need to first train a de-
tector instance capable of detecting all objects of interest.
Since we focus on training with synthetic data, we follow
standard procedure [20, 29] and render 3D object models
with random poses on top of random backgrounds, drawn
from the Microsoft Coco dataset [26, 11]. Afterwards, we
use the generated data to train the initial detector.

DB-GAN Data Generation. While the background vari-
ability in PHOS is limited, it exposes a very high per im-
age resolution of (4256 × 2832). Considering the input
resolution of modern deep learning architectures, this en-
ables the sampling of numerous diverse patches. We use
256×256 as sample size, since it correlates to the input res-
olution of the DB-GAN generator. We use Laplacian checks
to ensure only patches with sufficient textural variation are
used. To generate our DB-GAN training data, we render
the object models on these PHOS patches. Therefore, we
randomly sample an image I from any lighting condition
and utilize the matching image with the correct exposure as
ground truth Ī . We apply several light perturbations on the
object model with respect to different OpenGL functionali-
ties and render the result on I . We then re-render the same
objects and poses onto the target image, however, without
employing any perturbations. We demonstrate two exam-
ple training examples in the supplementary material. Once
the detector baseline and DB-GAN are trained, the detector
training data is passed to the generator. The resulting output
images form the new, normalised, training data. Finally, a
new detector instance is trained on the normalised data.

3.3. Toyota TrueBlue dataset

TrueBlue is a new dataset which specifically targets to
assess object detection robustness to white balance errors.
Existing image datasets focusing on color temperature [5,
40, 34] do not quantify the illuminant and do not contain
household objects with ground truth bounding boxes and
3D object models. We believe this dataset to be the first to
be acquired with known light source color temperature and
camera settings and, thus, enables quantification of detector
performance under erroneous white balance conditions1.

Toyota TrueBlue (see Figure 3) consists of 11 image
sets of 3 different scenes with daily household objects with
3D model, distractor objects and also the MacBeth Color

1Toyota Trueblue can be downloaded free-of-
charge for non-commercial use by filling the form at
https://forms.gle/ZX1aWPiu9HoetKcG9.

Figure 3. Example of two color images from the Toyota True-

Blue dataset. The image on the left has a 2500K color tem-

perature, while the image on the right depicts the same scene at

10000K. More examples can be found in the supplementary mate-

rial.

Checker chart. Each scene was illuminated from above by a
set of three lights of different types, e.g. LED, incandescent,
compact fluorescent, daylight and mixture of different light
sources. 11 images were acquired of each scene using a
Nikon D750 with Nikon 24-70mm f/2.8 lens with 11 differ-
ent white balance settings, ranging from 2500K to 10000K.
More details on how the dataset was acquired can be found
in the supplementary material.

4. Evaluation

In this section, we introduce the implementation details,
and the datasets used for evaluation. Then we demonstrate
the results of our experiments.

4.1. Implementation Details

We generate 50000 training images for both the GAN
and the two SSD instances and 100000 training images for
SSD6D since it is a more complex task. We train all detec-
tors for 50 epochs. Due to the different number of objects
we trained DB-GAN for 10 epochs on the TUD Light ob-
jects and for 30 epochs on the Toyota Light objects, with
a batch size of 1. The initial learning rate is set to 0.0003
with an exponential update rule. To stabilise training, we
do not back-propagate the detector loss until the reconstruc-
tions are fairly realistic. Empirically, we found that 30000
iterations are sufficient for this. The experiments were im-
plemented with Tensorflow [1] and run on a single Nvidia
TitanXp GPU.

Generator implementation. The generator follows an
encoder-decoder architecture using skip connections sim-
ilar to [37]. We use a 5 × 5 filter size and leaky
ReLU(LReLU) [56], with a 0.2 slope on the negative side,
as activation function. The generator consists of eight con-
volutional layers with stride equal to 2 in the encoder as
well as eight deconvolutional layers in the decoder. Each
convolutional layer of the encoder is followed by batch nor-
malisation. Further, the encoder has an input image size of
256 × 256. We use unpooling with zero padding for up-



sampling. The final up-sampling layer is followed by a hy-
perbolic tangent activation function to squeeze the output
between 0-1 for all channels.

Discriminators implementation. The global discrimina-
tor is composed of four convolutional layers. Each convolu-
tional layer is followed by a batch normalisation layer with
LReLU activation. Finally, a fully connected layer with sig-
moid activation is applied.

The local discriminator first applies a convolutional
layer. Afterwards, we extract 64 non-overlapping patches
of size 32×32. Each of them is processed by two more con-
volutional layers followed by a fully connected layer with
sigmoid activation. This enforces the output to be also lo-
cally consistent within each patch.

Detectors. Our SSD and SSD6D detectors work at 299×
299 resolution with an InceptionV4 backbone [45] using
6099 anchor boxes. For viewpoint classification in 6D we
use 89 view vertices and 36 inplane angles.

4.2. Evaluation Protocol

To assess the performance of our method, we performed
experiments on the Benchmark for 6D Object Pose Es-
timation (BOP) 2019 challenge version [12] of both the
Toyota Light and the TUDLight datasets. For the 6D ex-
periments on the Toyota Light dataset we trained all de-
tectors on 4 objects, namely objects 6,9,14 and 15 that
we believe well represent the dataset in terms of shape
and appearance variation. Note that for all experiments
we do not use any of the datasets images during training,
but rather train our networks fully from synthetic render-
ings of the 3D model data. We compare the performance
of our approach against the SSD or SSD6D baselines.
We additionally compare against three illumination nor-
malisation/image enhancement approaches: the Difference
of Gaussians (DoG), EnlightenGAN[17], RetinexNet[51]
and Deep Upe[48]. Among classical computer vision ap-
proaches DoG still provides top performance on image nor-
malisation for object detection and 6D object pose estima-
tion [35]. In our experiments we used two Gaussian ker-
nels of size 5 and 3 pixels. For all DoG, EnlightenGAN,
RetinexNet and Deep Upe we pre-processed the training
dataset as well as the input images at inference time.

Finally, we show the effectiveness of our approach at in-
creasing object detection robustness against white balance
variation. To achieve this we manually perturbe the hue
value of the GAN training images. The hue range [−15, 15]
was divided into 4 intervals of equal length. Then a random
hue value was sampled in each interval and added uniformly
to each image pixel producing 4 new GAN training images.
The task of DB-GAN was to reconstruct the original im-
ages.

Toyota Light dataset. The Toyota Light dataset [12] con-
tains 21 rigid household objects, captured under 5 different
lighting conditions. Noteworthy, the annotation for each in-
put sample includes the actual light conditions at the acqui-
sition time. Two lighting levels are reported. The first is
ambient light which is a diffuse overhead light source. The
intensity of the incident light on the object was kept con-
stant at 200lx for all samples. The second is the intensity
of a directional light source oriented at 90 degrees to the
scene. This feature makes this dataset suitable to evaluate
non-uniform lighting robustness.

TUD Light Dataset. The TU Dresden Light dataset con-
tains training and test image sequences that show three
moving objects under 8 different lighting conditions. The
object poses were annotated by manually aligning the 3D
object model with the first frame of the sequence and prop-
agating the initial pose through the sequence using ICP.

Metrics. All 2D experiments are evaluated following the
standard metric for 2D detection, i.e. mean Average Preci-
sion(mAP) with a 0.5 IOU threshold. The 6D experiments
are evaluated using the BOP 19 challenge toolkit. We re-
port the average recall and report the recall according to all
individual BOP metrics in the supplementary materials.

4.3. Qualitative Results

Figure 4 shows qualitative results of our approach for 2D
object detection. Both in challenging dark and bright con-
ditions DB-GAN is able to recover images that look almost
identical. The SSD trained on DB-GAN generated images
can detect a larger number of object instances compared to
the SSD baseline. Qualitative comparisons among the dif-
ferent approaches are presented in the supplementary mate-
rial.

4.4. Quantitative Results

Here we provide a quantitative evaluation of our detec-
tion boosting approach compared with existing works.

4.4.1 2D Object Detection

Toyota Light & TUD Light. Table 1 shows the 2D re-
sults on the Toyota Light and TUD Light datasets. Our
method achieves a mAP of 0.72 on the Toyota Light dataset
and 0.66 on the TUD Light dataset, outperforming the SSD
baseline as well as all the other approaches. In more de-
tail, we surpass the best existing approach by 0.43 (Deep
Upe and EnlightenGAN) on the Toyota Light and by 0.04
(RetinexNet) on TUD Light.
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Figure 4. Comparison of the SSD baseline with our GAN optimized SSD on objects taken from Toyota Light. Thereby, the second

column depicts the results using only SSD and the fourth column shows the corresponding detection employing DB-GAN. It can be

easily deduced that our approach significantly improves detection even under difficult lightning conditions. Further, notice that almost all

directional light is canceled by the GAN, as illustrated in the intermediate DB-GAN representations (3rd column).

Toyota Light TUD Light
SSD with mAP ↑ mAP ↑

DoG 0.20 0.36
enlightenGAN[17] 0.29 0.43
Retinex-Net[51] 0.28 0.62
Deep Upe [48] 0.29 0.47

baseline 0.27 0.18
DB-GAN 0.72 0.66

Table 1. DB-GAN 2D Object Detection results on the Toyota

Light and TUD Light datasets. Our method outperforms the

SSD baseline as well all other state-of-the-art approaches for il-

lumination normalisation.

Losses used mAP ↑

L1 0.55
+ Perceptual 0.67
+ Global Discriminator 0.66
+ Local Discriminator 0.60
+ SSD Loss 0.72

Table 2. DB-GAN loss ablation study on Toyota Light.. These

results show that the best performance is achieved when using the

proposed combination of loss terms.

Ablation Study. The ablation study was performed on the
Toyota Light dataset for 2D object detection. We added the
loss terms one by one and report the corresponding mAP.
Table 2 shows the results of our ablation study with respect
to each loss contribution. Noteworthy, each loss term helps

SSD with Toyota TrueBlue mAP ↑

baseline 0.39
baseline w/ augmentation 0.54
DB-GAN 0.73

Table 3. DB-GAN results on the Toyota TrueBlue dataset. Our

method outperforms the baseline as well as SSD when leveraging

color augmentations.

to improve the overall detection performance. Importantly,
our main contribution, i.e. the back-propagation of the de-
tector loss, constitutes again a significant leap forward in
performance, overall giving the best results.

Toyota TrueBlue. Table 3 shows our results on color ro-
bustness. We compared our method against the SSD base-
line. We additionally compared with standard color aug-
mentation by training a SSD instance on perturbed images.
In practice, we perturbed the hue channel of the training im-
ages by sampling a random value in the interval [−15, 15]
and adding that amount. The results show that our approach
achieves a mAP of 0.73, improving on the SSD baseline by
almost a factor of two and performing 0.19 better than color
augmentation. The supplementary material provides visual
examples of detection results for each color temperature.

4.4.2 6D Object Pose Estimation

Toyota Light & TUD Light Table 4 reports the results of
our DB-GAN experiments for 6D object pose estimation.



Figure 5. Examples from the evaluation on TUD Light. The

pair shows a TUD Light image with the corresponding GAN aug-

mentation. Notice how the GAN especially focused on the objects

of interest. Nevertheless, the method is also capable of recovering

structure in the background, which was almost completely lost due

to bad illumination.

Toyota Light TUD Light
SSD6D with w\o ICP w\ICP w\o ICP w\ICP

DoG 0.35 0.37 0.14 0.19
enlightenGAN[17] 0.30 0.34 0.157 0.21
Retinex-Net[51] 0.32 0.36 0.13 0.19
Deep Upe [48] 0.34 0.38 0.12 0.18

baseline 0.23 0.32 0.159 0.155
DB-GAN 0.42 0.44 0.164 0.25

Table 4. Results for DB-GAN for 6D object pose estimation

on Toyota Light and TUD Light. Our method outperforms the

SSD6D baseline as well all other state-of-the-art approaches for

illumination normalisation.

Similar to 2D object detection, our approach improves on
the baseline detector as well as all alternative approaches,
by a margin of 7.2% on the Toyota Light and 0.5% on the
TUD Light. Furthermore, our approach is the only one that
significantly improves performance over the baseline on the
TUD Light dataset. Additionally, we applied an ICP step to
refine the predicted poses. Notice that our approach stays
the most competitive. Furthermore, with ICP the gap be-
tween our approach and existing methods on TUD Light
significantly increases.

4.4.3 Additional Experiments.

Figure 6 shows the performance of the SSD baseline and
our boosted SSD on the entire Toyota Light dataset (both
train and test sets) as a function of the contrast ratio. Here,
contrast ratio is defined as the ratio of the intensity of inci-
dent light from the directional light source with respect to
the overhead diffuse light source mentioned previously. We
observe that the SSD baseline particularly struggles to de-
tect objects in low and high contrast, while after boosting,
SSD has become more light invariant, showing roughly the
same level of performance for each setting. This shows that
our approach is able to improve detection accuracy for both
uniform lighting (Contrast Ratio=0) as well as non-uniform
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Figure 6. Comparison between the SSD baseline and the

boosted SSD with respect to different contrast ratios in the im-

ages. We report mAP for each contrast ratio value in the Toyota

Light dataset. Our approach can deal with both uniform (Contrast

Ratio=0) as well as non-uniform lighting (Contrast Ratio=1-10).

lighting (Contrast Ratio=1-10).

DB-GAN pre-processing during inference. While pre-
processing training images greatly improves performance,
we also want to investigate the use of DB-GAN for pre-
processing input images prior to inference. From our ex-
periments we found that in almost all cases this further en-
hanced the models’ capabilities. Nonetheless, when refer-
ring to Toyota Light, we surprisingly reveal a small drop in
performance. Repetitive textural patterns as well as large
flat areas oftentimes degrade the domain transfer capabili-
ties of the GAN, since these samples are eminently different
to our training distribution. A qualitative example is shown
in Figure 5.

5. Conclusion & Future Work

We presented DB-GAN, a GAN based approach which
is able to boost object detection and 6D object pose esti-
mation performance under challenging lighting conditions.
The evaluation shows that our method clearly outperforms
both the baseline detectors as well as all other state-of-the-
art approaches. Further, our method for image normalisa-
tion is fully data-driven and neither requires large manually
annotated datasets, nor prior knowledge of the input image.
Furthermore, our approach is able to deal with non-uniform
lighting and does not need prior knowledge of the input im-
age. In the future we want to explore how to expand our
methods towards a more diverse set of tasks.
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5.3 Category-level 6D Object Pose Estimation

5.3 Category-level 6D Object Pose Estimation

Whilst the performance of 6D pose estimation keeps steadily increasing, contemporary
methods can only cope with a handful of specific object instances. In fact, most methods even
train separate networks for each individual object [120, 9], or greatly relax the problem as for
instance estimating pose only up-to-scale [129]. This naturally hampers possible applications
as, for instance, robots seamlessly integrated into everyday processes necessarily require the
ability to work with hundreds of different objects in metric scale.

5.3.1 ROI-10D: Monocular Lifting of 2D Detection to 6D Pose And Metric

Shape (CVPR 2019)

Figure 5.5. Lifting 2D Objects to 6D Pose and Metric Scale. Left: After lifting our 2D detections to 6D pose
and metric scale, we instantiate the associated 3D bounding box and directly compare it against the
associated groundtruth box. This avoids common pitfalls due to weighting different loss terms and
directly optimizes for the desired goal, the best alignment in 3D. Right: After learning a shape space of
cars using a 3D Convolutional AutoEncoder, we autolabel all images from the KITTI3D dataset and
leverage the annotations for coherent synthesis of new training images.

For autonomous driving it is crucial to reliably estimate the pose of all actors without relying
on any given mesh. To accomplish this, most works leverage Lidar sensors to provide a 3D
representation of the world as additional input to the pose estimator [182, 198]. Unfortunately,
as illustrated in Section 1.1, Lidar sensors are expensive and do not work well for certain
scenarios (e.g. snow can reflect the outgoing laser). Thus, in this work we want to explore the
potential of estimating the 7D pose from monocular data alone. We further want to infer a
full 3D representation of all actors in the scene by additionally reconstructing the shape of
each object.

Our 2D backbone is based on RetinaNet using a Feature Pyramid Network together with Focal
Loss [75]. Grounded on the 2D detections X, parameterized as the 4 corners of the detection
bounding box, we propose a novel fully differentiable lifting function F : R

4x2 Ñ R
8x3,

which directly maps from 2D Region of Interest (RoI) to the corresponding 3D bounding box
B :“ tB1, ...,B8u. Given RoI X, our lifting module FpXq applies RoIAlign [76] at X, followed
by individual heads to retrieve the allocentric rotation qa, described as 4D quaternion, 2D
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centroid px,yqT , depth z and metric extents pw,h, lqT . Afterwards we calculate the associated
8 corners Bi according to

Bi :“ q ¨

¨

˚̊
˚̊
˝

˘w{2

˘h{2

˘l{2

˛

‹‹‹‹‚
¨ q´1 ` K´1

¨

˚̊
˚̊
˝

x ¨ z

y ¨ z

z

˛

‹‹‹‹‚
, (5.6)

with K being the camera intrinsic matrix and q denoting the egocentric rotation after
conversion as described in Section 3.2. Our differentiable lifting thus allows to directly
measure the misalignment in 3D with respect to the ground truth box sB as following
LppB, sBq “ 1

8
∞

iPt1,...,8u ||pBi ´ sBi||. The 3D alignment loss is visualized on the left of Fig-
ure 5.5. Our ablative study on the KITTI3D validation set [30, 118] suggest that this new
formulation, leads to more robust results than classical weighting of the individual loss
terms, even when additionally learning these hyperparameters [199]. Noteworthy, a couple
of follow-up works are grounded on our bounding box loss [200, 117]. Exemplary, Simonelli
et al. extend this paradigm proposing a disentangled formulation, which further stabilizes
learning [117].

A second major contribution is the simultaneous retrieval of textured 3D meshes, enabling
further data augmentation by coherent synthesis of new images. Given a set of 3D CAD
models, we compute their associated TSDF representations � of size 128 ˆ 128 ˆ 256. We
subsequently train a 3D Convolutional AutoEncoder on � to learn a low-dimensional shape
space using LpE,D,�q “ |DpEp�qq ´ �| ` |p||Ep�q|| ´ 1q| ` |rDpEp�qq|, with E denoting the
Encoder and D describing the Decoder of the network, and r penalizing jumps on the output
level set via total variation. In contrast to other methods relying on PCA [129], our results
advocate that an AutoEncoder is capable of capturing more details of the models. Eventually,
the shape groundtruth of KITTI3D [30] is labeled in a separate offline stage minimizing a
reprojection loss. Therefore, the shape prediction head can be trained in a fully supervised
fashion. As aforementioned annotating real data is very costly and additionally leveraging
synthetic data comes with a significant loss in performance due to the domain shift. Hence,
we propose to harness our previously extracted meshes, which we colorize by projecting their
vertices onto the image plane, and render them on top of images extracted from KITTI. As
the meshes and scenes are obtained from the real domain, we keep the domain gap as small
as possible. To generate new unseen poses and decrease overfitting, we move the meshes in
3D without manipulating their viewpoint and apply minor rotational perturbations in 3D.
An example of a synthesized training image is illustrated on the right of Figure 5.5.

Eventually, leveraging our proposed strategy for synthesizing new training data together
with our 3D bounding box loss, we were able to double the accuracy of current state-of-the-art
methods on the hidden KITTI3D test set, increasing the AP with respect to the 3D IoU metric
from 7.08%, 5.18%, 4.68% to 12.30%, 10.30%, 9.39% for easy, medium and hard. Moreover,
our qualitative results show that our predicted shapes well align with the corresponding
object.
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Contributions. Wadim Kehl implemented the ResNet-34 backbone for 2D object detection
and the 3D auto-encoder for learning of a latent shape space. I extended the 2D detector
with branches for pose and shape and implemented our proposed 3D bounding box loss. I
also automatically labeled the training data with shape annotations. I ran all ablations and
evaluated on KITTI3D together with the aid from Wadim Kehl.
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Abstract

We present a deep learning method for end-to-end

monocular 3D object detection and metric shape retrieval.

We propose a novel loss formulation by lifting 2D detec-

tion, orientation, and scale estimation into 3D space. In-

stead of optimizing these quantities separately, the 3D in-

stantiation allows to properly measure the metric misalign-

ment of boxes. We experimentally show that our 10D lift-

ing of sparse 2D Regions of Interests (RoIs) achieves great

results both for 6D pose and recovery of the textured met-

ric geometry of instances. This further enables 3D synthetic

data augmentation via inpainting recovered meshes directly

onto the 2D scenes. We evaluate on KITTI3D against other

strong monocular methods and demonstrate that our ap-

proach doubles the AP on the 3D pose metrics on the official

test set, defining the new state of the art.

1. Introduction

How much can one understand a scene from a single
color image? Using large annotated datasets and deep neu-
ral networks, the Computer Vision community has steadily
pushed the envelope of what was thought possible, not just
for semantic understanding but also in terms of 3D prop-
erties of scenes and objects. In particular, Deep learning
methods on monocular imagery have proven competitive
with multi-sensor approaches for important ill-posed in-
verse problems like 3D object detection ([3, 31, 20, 34, 24],
6D pose tracking [30, 40], depth prediction [9, 11, 13, 42,
33], or shape recovery [18, 23]. These improvements have
been mainly accomplished by incorporating strong implicit
or explicit priors that regularize the underconstrained out-
put space towards geometrically-coherent solutions. Fur-
thermore, these models benefit directly from being end-to-
end trainable in general. This leads to increased accuracy,
since networks are discriminatively tuned towards the target
objective instead of intermediate outputs followed by non-
trainable post-processing heuristics. The main challenge,

⇤ Equal contribution. This work was part of an internship stay at TRI.

Figure 1. Top (from left to right): our 2D detections, 3D boxes, and
meshed shapes inferred from a single monocular image in one for-
ward pass. Middle: our predictions on top of a LIDAR point cloud,
demonstrating metric accuracy. Bottom: example well-localized,
metrically-accurate, textured meshes predicted by our network.

though, is to design a model and differentiable loss function
that lend itself to well-behaved minimization.

In this work we introduce a new end-to-end method for
metrically accurate monocular 3D object detection, i.e. the
task of predicting the location and extent of objects in 3D
using a single RGB image as input. Our key idea is to
regress oriented 3D bounding boxes by lifting predicted 2D
Regions of Interest (RoIs) using a monocular depth net-
work. Our main contributions are:

• an end-to-end multi-scale deep network for monocu-
lar 3D object detection, including a differentiable 2D
to 3D RoI lifting map that internally regresses all re-
quired components for 3D box instantiation;



• a loss function that aligns those 3D boxes in metric
space, directly minimizing their error with respect to
ground truth 3D boxes;

• an extension of our model to predict metric textured
meshes, enabling further 3D reasoning, including 3D-
coherent synthetic data augmentation.

We call our method ”ROI-10D”, as it lifts 2D regions of in-
terests to 3D for prediction of 6 degrees of freedom pose
(rotation and translation), 3 DoF spatial extents, and 1 or
more DoF shape. Experiments on the KITTI3D [12] bench-
marks show that our approach enables accurate predictions
from a single RGB image. Furthermore, we show that our
monocular 3D poses are competitive or better than the state
of the art.

2. Related Work

Since the amount of work on object detection has ex-
panded significantly over the last years, we will narrow our
focus to recent advances among RGB-based methods for
3D object detection. 3DOP from Chen et al. [4] use KITTI
[12] stereo data and additional scene priors to create 3D ob-
ject proposals followed by a CNN-based scoring. In their
follow-up work Mono3D [3], the authors replace the stereo-
based priors by exploiting various monocular counterparts
such as shape, segmentation, location, and spatial context.
Mousavian et al. [31] propose to couple single-shot 2D de-
tection with an additional binning of azimuth orientations
plus offset regression. Similarly, SSD-6D from Kehl et

al. [20] introduces a structured discretization of the full ro-
tational space for single-shot 6D pose estimation. The work
from Xu et al. [41] incorporates a monocular depth module
to further boost the accuracy of inferred poses on KITTI.

Instead of discretizing SO(3), [34, 37] formulate the 6D
estimation problem as a regression of the 2D projections of
the 3D bounding box. These methods assume the scale of
the objects to be known and can therefore use a perspective-
n-point (PnP) variant to recover poses from 2D-3D corre-
spondences. Grabner et al. [14] present a mixed approach
where they regress 2D control points and absolute scale to
recover pose and, subsequently, the object category. In ad-
dition, Rad et al. [34] empirically show the superiority of
this proxy loss over standard regression of the 6 degrees
of freedom. In contrast, [40, 24, 30] directly encode the 6D
pose. In particular, Xiang et al. [40] first regress the rotation
as Euler angles and the 3D translation as the backprojected
2D centroid. Thereafter, they transform the 3D mesh into
the camera frame and measure the average distance of the
model points [16] towards the ground truth. Similarly, [24]
also minimizes the average distance of model points for 6D
pose refinement. Manhardt et al. [30] also conduct 6D pose
refinement but regress a 4D update quaternion to describe
the 3D rotation. Their proxy loss samples and transforms

3D contour points to maximize projective alignment.
Notably, all these direct encoding methods require

knowledge of the precise 3D model. However, when work-
ing at a category-level the 3D models are usually not avail-
able, and these approaches are not designed to handle intra-
class 3D shape variations (for instance between different
types of cars). We therefore propose a more robust way
of lifting to 3D that only requires bounding boxes. Thereby,
the extents of these bounding boxes can also be of variable
size. Similar to us, [7] use RoIs to lift 2D detections, but
their pipeline is not trained end-to-end and reliant on RGB-
D input for 3D box instantiation.

In terms of monocular shape recovery, 3D-RCNN from
Kundu et al. [23] uses an RPN to estimate the orientation
and shape of cars on KITTI with a render-and-compare
loss. Kanazawa et al. [18] predict instance shape, texture,
and camera pose using a differentiable mesh renderer [19].
While these methods show very impressive results as part of
their synthesis error minimization, they recover shapes only
up to scale. Furthermore, our approach does not require dif-
ferentiable rendering or approximations thereof.

3. Monocular lifting to 10D for pose and shape

In this section we describe our method of detecting ob-
jects in 2D space and consequently, computing their 6D
pose and metric shape from a single monocular image.
First, we give an overview of our network architecture. Sec-
ond, we explain how we lift the loss computation to 3D
in order to improve pose accuracy. Third, we describe our
learned metric shape space and its use for 3D reconstruction
from estimated shape parameters. Finally, we describe how
our shape estimation enables 3D-coherent data augmenta-
tion to improve detection.

3.1. End-to-end Monocular Architecture

Our architecture (Figure 2) follows a two-stage ap-
proach, similar to Faster R-CNN [36], where we first pro-
duce 2D region proposals and then run subsequent pre-
dictions for each. For the first stage we employ a Reti-
naNet [26] that uses a ResNet-34 backbone with FPN struc-
ture [25] and focal loss weighting. For each detected and
precise 2D object proposal, we then use the RoIAlign oper-
ation [15] to extract localized features for each region.

In contrast to the aforementioned related works, we do
not directly regress 3D information independently for each
proposal from these localized features. Predicting this infor-
mation from monocular data, in particular absolute trans-
lation, is ill-posed due to scale and reprojection ambigui-
ties, which the lack of context exacerbates. In contrast, net-
works that aim to predict global depth information over the
whole scene can overcome these ambiguities by leveraging
geometric constraints as supervision [11]. Consequently,
we use a parallel stream based on the state-of-the-art Su-



Figure 2. We process our input image with a ResNet-FPN architecture for 2D detection and a monocular depth prediction network. We use
the predicted Regions of Interest (RoI) to extract fused feature maps from the ResNet-FPN and depth network via a RoIAlign operation
before regressing 3D bounding boxes, a process we call RoI lifting.

perDepth network [33], which predicts per-pixel depth from
the same monocular image.

We use these predicted depth maps to support distance
reasoning in the subsequent 3D lifting part of our network.
Besides the aforementioned localized feature maps from our
2D RPN, we also want to include the corresponding re-
gions in the predicted depth map. For better localization
accuracy, we furthermore decided to include a 2D coordi-
nates map [27]. We thus propagate all the information to
our fusion module, which consists of two convolutional lay-
ers with Group Normalization [39] for each input modal-
ity. Finally, we concatenate all features, use RoIAlign and
run into separate branches for the regression of 3D rotation,
translation, absolute (metric) extents, and object shape, as
described in the following sections.

3.2. From Monocular 2D Instance to 6D Pose

Formally, our approach towards the problem is to define
a fully-differentiable lifting mapping F : R4 ! R8⇥3 from
a 2D RoI X to a 3D box B := {B1, ..., B8} of eight or-
dered 3D points. We chose to encode the rotation as a 4D
quaternion and the translation as the projective 2D object
centroid (similar to [31, 20, 40]) together with the associ-
ated depth. In addition, we describe the 3D extents as the
deviation from the mean extents over the whole data set.

Given RoI X , our lifting F(X ) runs RoIAlign at that po-
sition, followed by separate prediction heads to recover ro-
tation q, RoI-relative 2D centroid (x, y), depth z and metric
extents (w, h, l). From this we build the 8 corners Bi:

Bi := q ·

0

@
±w/2
±h/2
±l/2

1

A · q�1 +K
�1

0

@
x · z
y · z
z

1

A (1)

with K
�1 being the inverse camera intrinsics. We build the

points Bi in a defined order to preserve absolute orientation.
We depict the instantiation in Figure 3.

Our formulation is reminiscent of 3D anchoring (as
MV3D [5], AVOD [22]). However, our 2D instantiation
of those 3D anchors is sparse and works over the whole im-

Figure 3. Our lifting F regresses all components to estimate a 3D
box B (blue). From here, our loss minimizes the pointwise dis-
tances towards the ground truth B⇤ (red). We visualize three of
the eight correspondences in green.

age plane. While such 3D anchors explicitly provide the
object’s 3D location, our additional degree of freedom also
requires the estimation of the depth.

Lifting Pose Error Estimation to 3D When estimating
the pose from monocular data only, little deviations in pixel-
space can induce big errors in 3D. Additionally, penalizing
each term individually can lead to volatile optimization and
is prone to suboptimal local minima. We propose to lift
the problem to 3D and employ a proxy loss describing the
full 6D pose. Consequently, we do not force to optimize
all terms equally at the same time, but let the network de-
cide its focus during training. Given a ground truth 3D box
B⇤ := {B⇤

1 , ..., B
⇤
8} and its associated 2D detection X in

the image, we run our lifting map to retrieve the 3D predic-
tion F(X ) = B. The loss itself is the mean over the eight
corner distances in metric space:

L(F(X ),B⇤) =
1

8

X

i2{1..8}

||F(X )i � B⇤
i||. (2)

We depict some of the 3D-3D correspondences that the loss
is aligning as green lines in Figure 3.



Figure 4. Comparison between egocentric (top) and allocen-
tric (bottom) poses. While egocentric poses undergo viewpoint
changes towards the camera when translated, allocentric poses al-
ways exhibit the same view, independent of the object’s location.

When deriving the loss, the chain rule leads to

rF(X )

rq
,
rF(X )

r(x, y)
,
rF(X )

rz
,
rF(X )

r(w, l, h)

�
rL(·)
rF(X )

L(·)

(3)
and shows clearly the individual impact that each lift-
ing component contributes towards 3D alignment. Simi-
lar to work that employ projective or geometric constraints
[29, 30], we observe that we require a warm-up period to
bring regression into proper numerical regimes. We there-
fore train with separate terms until we reach a stable 3D box
instantiation and switch then to our lifting loss.

We also want to stress that our parametrization allows
for general 6D pose regression. Although the object anno-
tations in KITTI3D exhibit only changing azimuths, many
driving scenarios and most robotic use cases require solving
for all 6 degrees of freedom.

Allocentric Regression and Egocentric Lifting Multi-
ple works [31, 23] emphasize the importance of estimat-
ing the allocentric pose for monocular data, especially for
larger fields of view. The difference is depicted in Figure
4 where the relative object translation with respect to the
camera changes the observed viewpoint. Accordingly, we
follow the same principle since RoIs lose the global con-
text. Therefore, rotations q are considered allocentric dur-
ing regression inside F and then corrected with the inferred
translation to build the egocentric 3D boxes.

3.3. Object Shape Learning & Retrieval

In this section we explain how we extend our end-to-
end monocular 3D object detection method to additionally
predict meshes and how to use them for data augmentation.

Learning of a Smooth Shape Space Given a set of 50
commercially available CAD models of cars, we created
projective truncated signed distances fields (TSDF) �i of
size 128 ⇥ 128 ⇥ 256. We initially used PCA to learn a
low-dimensional shape, similar to [23]. During experimen-
tation we found the shape space to be quickly discontinuous
away from the mean, inducing degenerated meshes. Using
PCA to generate proper shapes requires to evaluate each di-
mension according to its standard deviation. To avoid this

Figure 5. Top: Median of each category in the learned shape space.
Bottom: Smooth interpolation on the latent hypersphere between
two categories.

tedious process, we instead trained a 3D convolutional au-
toencoder, consisting of encoder E as well as decoder D,
and enforced different constraints on the output TSDF. In
particular, we employed 4 convolutional layers with filter
sizes of 1,8,16,32 for both E and D. In addition, we used a
fully-connected layer of 6 to represent the latent space. Dur-
ing training we further map all latent representations on the
unit hypersphere to ensure smoothness within the embed-
ding. Furthermore, we penalize jumps in the output level
set via total variation, which regularizes towards smoother
surfaces. The final loss is the sum of all these components:

Ltsdf (E,D,�) =

|D(E(�))� �|+ |(||E(�)||� 1)|+ |rD(E(�))|
(4)

We additionally classified each CAD model as either ’Small
Car’, ’Car’, ’Large Car’ or ’SUV’. Afterwards, we com-
puted the median shape over each class, and all cars to-
gether, using the Weiszfeld algorithm [38], as illustrated
in Fig. 5 (top). Below, we show our ability to smoothly
interpolate between the median shapes in the embedding.
We observed that we could safely traverse all intermedi-
ate points on the embedding without degenerate shapes and
found a six-dimensionsal latent space to be a good compro-
mise between smoothness and detail.

Ground truth shape annotation. To avoid gradient ap-
proximation through central differences as [23], we labeled
the KITTI3D car instances offline. Running greedy search
initialized from every median, we seek for the minimal pro-
jective discrepancy in LIDAR and segmentation from [15].

For the shape branch of our 3D lifter, we measure the
similarity between predicted shape s and ground truth shape
s
⇤ as the angle between the two points on the hypersphere.

Lshape(s, s
⇤) = arccos

�
2hs, s⇤i2 � 1

�
(5)

During inference we predict the low-dimensional latent
vector and feed it to the decoder to obtain its TSDF rep-
resentation. We can also compute the 3D mesh from the
TSDF employing marching cubes [28].



Simple mesh texturing. Since our method computes ab-
solute scale and 6D pose, we conduct projective texturing of
the retrieved 3D mesh. To this end, we project each vertex
that faces towards the camera onto the image plane and as-
sign the corresponding pixel value. Afterwards, we mirror
the colors along the symmetry axis for completion.

3.4. Synthetic 3D data augmentation

Since annotating monocular data with metrically accu-
rate 3D annotations is usually costly and difficult, many re-
cent works leverage synthetic data [10, 8, 2, 1] to train their
methods [20, 17, 35]. Nevertheless, this often comes with
a significant drop in performance due to the domain gap.
This is especially true for KITTI3D, since it is a very small
dataset with only around 7k images (or 3.5k images for train
and val respectively with the split from [3]). This can easily
result in severe overfitting to the training data distribution.

An interesting solution to this domain gap, proposed by
Alhaija et al. [1], consists in extending the dataset by in-
painting 3D synthetic renderings of objects onto real-world
image backgrounds. Inspired by this Augmented Reality
type of approach, we propose to utilize our previously ex-
tracted meshes in order to produce realistic renderings. This
allows for increased realism and diversity, in contrast to us-
ing a small set of fixed CAD models as in [1]. Further-
more, we do not use strong manual or map priors to place
the synthetic objects in the scene. Instead, we employ the
allocentric pose to move the object in 3D without chang-
ing the viewpoint. We apply some rotational perturbations
in 3D to generate new unseen poses and decrease overfit-
ting. Fig. 6 illustrates one synthetically generated training
sample. While the red bounding boxes show the original
ground truth annotations, the green bounding boxes depict
the synthetically added cars and their sampled 6D pose.

3.5. Implementation details

The method was implemented in PyTorch [32] and we
employed AWS p3.16xlarge instances for training. We used
SGD with momentum, a batch size of 8 and a learning rate
of 0.001 with linear warm-up. We ran a total of 200k it-
erations and decayed the learning rate after 120k and 180k
steps by 0.1. We employed both scale-jittering and hori-
zontal flipping to augment the dataset. For the synthetic
car augmentations, we extracted in total 140 meshes from
the training sequences, which we textured using the cor-
responding ground truth poses. We then augmented each
input sample with up to 3 different cars by shooting rays
in random directions and sampling a 3D translation along
the ray. Additionally, we employed the original allocen-
tric rotation to avoid textural artifacts, however, perturbed
the rotations up to 10 degrees in order to always produce
new unseen 6D poses. Our shape space is six-dimensional
although smaller dimensionality can lead to well-behaving

Figure 6. Synthetically generated training sample. Top: Green
bounding boxes show original ground truth cars and poses. In con-
trast, red boxes illustrate the rendered meshes from a sampled 6D
pose. Bottom: Augmented depth map from SuperDepth [33]. No-
tice that we utilized the annotated meshes, which we colored using
the ground truth pose and our projective texturing.

spaces, too. We show qualitative results in the supplement.
During testing, we resize the shorter side of the image to
600 and run 2D detection. We filter the detections with 2D-
NMS at 0.65 before RoI-lifting. The resulting 3D boxes
are then processed by a very strict Bird’s Eye View-NMS at
0.05 that prevents physical intersections.

4. Evaluation

In this section, we describe our evaluation protocol, com-
pare to the state of the art for RGB-based approaches, and
provide an ablative analysis discussing the merits of our in-
dividual contributions.

4.1. Evaluation Protocol

We use the standard KITTI3D benchmark [12] and its
official evaluation metrics. We evaluate our method on three
different difficulties: easy, moderate, hard. Furthermore, as
suggested we also set the IoU threshold to 0.7 for both 2D
and 3D. For the pose, we compute the average precision
(AP) in the Bird’s eye view, which measures the overlap of
the 3D bounding boxes projected on the ground plane. We
also compute the AP for the full 3D bounding box.

4.2. Comparison to Related Work

We compare ourselves on the train/validation split from
[3] and on the official test set against state-of-the-art RGB-
based methods on KITTI3D, namely (stereo-based) 3DOP
[4], Mono3D [3], and Xu et al. [41] which also uses a depth
module for better reasoning. Note that, although slightly
lower in 2D AP, our model using synthetic data provides
the best pose accuracy among our trained networks and we
chose this model to compete against the others. As can be
seen in Table 1 and 2, our method performs worse in 2D



Method Type Bird Eye View AP [val / test] 3D Detection AP [val / test]
Easy Moderate Hard Easy Moderate Hard

Mono3D [3] Mono 5.22 / – 5.19 / – 4.13 / – 2.53 / – 2.31 / – 2.31 / –
3DOP [4] Stereo 12.63 / – 9.49 / – 7.59 / – 6.55 / – 5.07 / – 4.10 / –

Xu et al. [41] Mono 22.03 / 13.73 13.63 / 9.62 11.60 / 8.22 10.53 / 7.08 5.69 / 5.18 5.39 / 4.68
ROI-10D Mono 10.74 / – 7.46 / – 7.06 / – 7.79 / – 5.16 / – 3.95 / –

ROI-10D (Syn.) Mono 14.50 / 16.77 9.91 / 12.40 8.73 / 11.39 9.61 / 12.30 6.63 / 10.30 6.29 / 9.39

Table 1. 3D detection performance on KITTI3D validation [3] and official KITTI3D test set. We report our AP for Bird’s eye view and 3D
IoU at the official IoU threshold of 0.7 for each metric. Note that we only evaluated the synthetic ROI-10D version on the online test set.

Method 2D Detection AP [val /test]
Easy Moderate Hard

Mono3D [3] 93.89 / 92.33 88.67 / 88.66 79.68 / 78.96
3DOP [4] 93.08 / 93.04 88.07 / 88.64 79.39 / 79.10

Xu et al. [41] – / 90.43 – / 87.33 – / 76.78
ROI-10D 89.04 / – 88.39 / – 78.77 / –

ROI-10D (Syn.) 85.32 / 75.33 77.32 / 69.64 69.70 /61.18
Table 2. 2D AP performance on KITTI3D validation [3] and offi-
cial test set at official IoU threshold of 0.7.

due to our strict 3D-NMS, but we are by far the strongest in
the Bird’s Eye View and the 3D AP. This underlines the
important aspect of of proper data analysis to counteract
overfitting. On the official test set, we get around twice the
3D AP of our closest monocular competitor. It is notewor-
thy that [41] trained their depth module on both KITTI3D
and Cityscapes [6] for better generalization whereas the
SuperDepth model we use has been pre-trained on KITTI
data only. Interestingly, they have a strong drop in num-
bers when moving from the validation set onto the test set
(e.g. from 22.03% to 13.73% or 10.53% to 7.08%), which
suggests aggressive tuning towards the validation set with
known ground truth. We want to mention that the evalua-
tion protocol forces the 3D AP and Bird’s eye view AP to be
bounded from above by the 2D detection AP since missed
detections in 2D always reflect negatively on the pose met-
rics. This strengthens our case further since our pose metric
numbers would be even higher if we were to correct them
with a 2D AP normalization.

4.3. Ablative Analysis

In the ablative analysis we want to first investigate how
our new loss specifically minimizes the alignment problem.
Additionally, we will identify where and why certain poses
in KITTI3D are so much more difficult to estimate right.
Finally, we analyze our method in respect to different inputs
and how well our loss affects the quality of the poses.

Lifting Loss We run a controlled experiment where, iso-
lating one instance with ground truth RoI X and 3D box
B

⇤, we solely optimize the lifting module F with randomly
initialized parameters. The step-wise improvement in align-
ment between F(X ) and B

⇤ is depicted in Figure 7 and

we refer to the supplementary material for the full anima-
tions. Independent of initialization, we can observe that
our loss always converges smoothly towards the global op-
timum. We also show the magnitude of each Jacobian com-
ponent from Eq. 3 and can see that the loss focuses strongly
on depth while steadily increasing importance towards ro-
tation and 2D centroid position. Since our scale regression
recovers deviation from the average car size, it was mostly
neglected during optimization since the original error in ex-
tents was minimal. Without manually enforcing any princi-
pal direction during optimization or scaling the magnitudes,
the loss steers the impact of each component quite well.

Pose Recall vs. Training Data To better understand our
strengths and weaknesses, in Fig. 8 we show our recall for
different bins for depth and rotation on the train/val split
from [3]. We accept a detection if the Bird’s Eye View IoU
is larger than 0.5. Note that we followed the KITTI con-
vention, such that an angle of 0 degrees corresponds to an
object facing to the right. Since the dataset is rather small
for deep learning methods, we also plot the training data
distribution to understand if there is a correlation between
sample frequency and pose quality.

For translation we did not discover any connection be-
tween the number of occurrences in the training data and the
pose results. Nevertheless, closer objects are in general sig-
nificantly better localized in 3D than objects further away.
This can be explained by the fact that the network strongly
relies on the predicted depth map to estimate the distance.
However, the uncertainty of our monocular depth estima-
tion also grows with distance. Very interestingly, utilizing
our synthetic data generation improves the results across all
bins. This confirms that, since the variety of scenes is lim-
ited, the network learns biases quickly and risks over-fitting
without our proposed augmentation.

Our synthetic approach also clearly leads to better ro-
tation estimates. In contrast to translation, we can find a
strong correlation between the training data distribution and
pose quality. While our method achieves good results on
frequent viewpoints, the recall naturally drops when objects
are seen from an underrepresented angle.



Method 2D Detection AP [0.7] Bird’s Eye View AP [0.5 / 0.7] 3D Detection AP [0.5 / 0.7]
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

No Weighting 88.95 87.54 78.68 40.17 / 11.85 27.85 / 7.32 24.49 / 7.22 33.95 / 7.47 22.53 / 4.83 21.78 / 3.76
Multi-Task Weighting [21] 88.20 83.81 74.87 36.22 / 10.00 26.82 / 6.60 23.02 / 5.84 31.40 / 6.70 21.04 / 4.64 17.32 / 3.63

ROI-10D (w/o depth) 78.57 73.44 63.69 36.21 / 14.04 24.90 / 3.69 21.03 / 3.56 29.38/ 10.12 19.80 / 1.76 18.04 / 1.30
ROI-10D 89.04 88.39 78.77 42.65 / 10.74 29.80 / 7.46 25.03 / 7.06 36.25 / 7.79 23.00 / 5.16 22.06 / 3.95

ROI-10D (Syn.) 85.32 77.32 69.70 46.85 / 14.50 34.05 / 9.91 30.46 / 8.73 37.59 / 9.61 25.14 / 6.63 21.83 / 6.29

Table 3. Different weighting strategies and input modalities on the train/validation split from [3]. We report our AP referring to 2D
detection, the bird’s eye view challenge and 3D IoU. Besides the official IoU threshold of 0.7, we also report for a softer threshold of 0.5.

Figure 7. Controlled lifting loss experiment with given 2D RoI X
over multiple runs with different seeding. Top: Visualizing F(X )
during optimization in camera and bird’s eye view. Bottom: Gradi-
ent magnitudes of each lifting component, averaged over all runs.
We refer to the supplement for the full animations.

Loss and input data We trained networks with different
loss and data configurations on the train/validation [3] split
to incrementally highlight our contributions. In the first
two rows of Table 3 we ran training with separate regres-
sion terms instead of our lifting loss. While the first row
shows the results with uniform weighting of all terms of F
(similar to the approach of Xu et al. [41]), the second row
shows training with the adaptive multi-task weighting from
Kendall et al. [21]. Interestingly, we were not able to see
an improvement with the adaptive weighting. We believe
it comes from the fact that each term’s magnitude is not
at all comparable: while the (x, y) centroid moves in RoI-
normalized image coordinates, the depth z is metric, the ex-

Figure 8. Recall of orientation and depth against the ground truth
split distributions. Evidently, there exists a strong correlation be-
tween model performance and sample distribution. Synthetically
augmenting underrepresented bins leads to overall better results.

tents (w, h, l) are multiples of standard deviation from the
mean extent, and the rotation q moves on a 4D unit sphere.
Any uninformed weighting about the actual 3D instantia-
tion has no means to properly assess the relative importance
apart from numerical magnitude, thus comparing apples to
oranges. Our formulation (row 4) avoids these problems
and is either equal or better across all metrics.

Table 3 also presents results of a trained variant without
monocular depth (row 3) and results for our method using
depth without (rows 4) and with (row 5) synthetic augmen-
tation. The results without depth cues are clearly worse,
but we nonetheless get respectable numbers for the Bird’s
eye view and 3D AP. Unfortunately, our aggressive 3D-
NMS discarded some correct solutions because of wrongly-
regressed overlapping z-values, reducing our 2D AP sig-
nificantly. Our synthetic data training shows strong im-



Figure 9. Qualitative results on the test (left) and validation (right) set. Noteworthy, we only trained on the train split to ensure that we
never saw any of these images. For the validation samples, we additionally depict the ground truth poses in red. To get a proper estimate
of the accuracy of the poses, we also plot the Bird’s eye view (right) where we show clearly that we can recover accurate poses and proper
metric shapes for unseen data, even at a distance.

provement on the pose metrics since we reduced the rota-
tional data sample imbalance. By inspecting the drop in
2D AP, we realized that we designed our augmentations to
be occlusion-free to avoid unrealistic intersections with the
environment. In turn, this led to a weaker representation of
strongly-occluded instances and to another introduced bias.
We also show some qualitative results in Figure 9.

5. Conclusion

We proposed a monocular deep network that can lift 2D
detections in 3D for metrically accurate pose estimation and
shape recovery, optimizing directly a novel 3D loss formu-
lation. We found that maximizing 3D alignment end-to-
end for 6D pose estimation leads to very good results since
we optimize for exactly the quantity we seek. We provided
some insightful analysis on pose distributions in KITTI3D
and how to leverage this information with recovered meshes
for synthetic data augmentation. We found this reflection to
be very helpful and quite important to improve the pose re-

call. Non-maximum-suppression in 2D and 3D is, however,
a major influence on the final results and should to be ad-
dressed in future work, too.
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6Summary and Findings

This dissertation introduced the problem of 6D pose estimation from monocular data and
its accompanying challenges. Solutions grounded on deep learning are further proposed to
tackle them fast and reliably. We essentially leverage recent advents in 2D object detection
and tailor known backbones to the task of pose estimation. Our new single-stage formulation
is one of the first ever deep learning based method, surpassing all related works in run-time
and accuracy. Moreover, in contrast to almost all existing methods at the time, our method
is capable of processing the full 6D pose space as well as multiple objects at more than 10
frames per second. We further show that we can almost fully close the gap towards methods
harnessing depth data via learning the well known ICP paradigm in an unambiguous fashion.
Leveraging well-established ideas from edge alignment, we enforce a novel visual proxy
loss to align the object in 6D. As the approach is fully data-driven, our 6D refinement is not
dependant on precise hyper-tuning and is considerably less prone to fall for unpleasant local
minima.

Nevertheless, several limitations and challenges can negatively impact the final pose out-
comes. Some of the most prominent challenges involve different illumination settings,
ambiguities in pose, and processing previously unseen objects. Each challenge can be, how-
ever, tackled employing appropriate design choices when modeling the problem. First,
we addressed the problem of lighting variation by means image normalization employing
Generative Adversarial Networks (GANs). When encouraging the GAN to generate images
which are tailored to the associated down-stream task (e.g. 2D or 6D pose estimation), the
network is forced to implicitly transfer the object from the input domain to the "light-free"
domain. Our data-driven approach is invariant to excessive light variations, and can also
handle non-uniform lighting. Finally, opposed to most related works, neither a particular
large dataset is required, nor is prior knowledge of the input data assumed. Second, we deal
with ambiguities in pose harnessing multiple hypotheses. Our novel formulation does nei-
ther require any input pre-processing nor particular annotations for ambiguities. Moreover,
analyzing these multiple hypotheses enables dealing adequately with ambiguous situations
as well as understanding the particular kind of ambiguity. In addition, the predicted hy-
potheses can be also leveraged as a metric of reliability for the 6D pose. Finally, to handle
previously unseen objects, we simultaneously estimate metric poses and shapes for each
object of a given class. Thereby, we propose to measure the metric misalignment in 3D as
objective function. Our evaluation has shown that directly optimizing for the final goal leads
to superior results as it avoids explicit weighting of different loss terms. In addition, we
demonstrate that synthesizing additional training data from 3D reconstructions of real cars
can help to prevent overfitting.
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Chapter 6: Summary and Findings

While our works tackle problems of high importance within the field of 6D pose estimation,
computing the precise pose using only RGB data is still far from being solved. As for robotics
manipulation, only for very simple scenes and limited objects, poses estimated by monocular
methods can be sufficiently accurate to enable grasping. A main problem simply resides in
the lack of respective data. Thereby, improving the generation of synthetic data and finding
new and better ways to self-supervise pose estimation are two of the most important key
problems to solve. This is especially true when it comes to class-level full 9D pose estimation
as annotating data becomes even more difficult. The next chapter emphasizes a little more
these open tasks and also show some explorations towards these problems.
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7Future Work and Discussion

While the interest in category-level 9D pose estimation just recently started to increase, there
is still only little work devoted to this topic. This can be contributed to the fact that this
task is significantly more complicated than computing the 6D or 7D pose. In particular,
9D pose estimation requires to estimate all 3 degrees-of-freedom for 3D rotation and, most
importantly, there is almost no real data available for this task. Moreover, training on synthetic
data is rather complicated due to the scale-distance ambiguity. Similar to monocular depth
estimation [43, 44], it is indeed possible to exploit geometric priors to resolve the scale-
distance ambiguity, however, this requires the possession of synthetic data which follows real
physical constraints. A few methods have been proposed to tackle this problem, however,
all of them assume depth data as additional input modality [116, 184, 185]. Whereas this
allows to address the scale-distance ambiguity, these methods depend on the possession of
an expensive depth sensor.

To summarize, since collecting real data for each object of interest is intractable and only
handling a few objects significantly limits applications, we believe there a three major
directions to investigate. Essentially, the direction of self-supervised learning for 6D and
9D pose estimation should be further explored as this allows training on real data without
requiring any annotations [4]. Further, as self-supervision is highly dependant on good
initialization, generating high quality and physically correct synthetic images is another
important aspect [201]. Finally, current object pose estimators should be extended to also
work with unseen objects, even from monocular data [6].

7.1 Improving the Quality of Synthetic Training Data

In terms of synthetic data for 6D pose estimation, a few works for physically correct and
high quality renderings using ray-tracing have been recently proposed [201, 202]. Thereby,
physically plausible constellation are achieved by dropping CAD models into 3D scenes by
means of physics-engines. Leveraging ray-tracing highly realistic images can be generated as
appropriate sampling of the rays allows to take probabilistic illumination models into account.
These high quality images led to impressive results with respect to the BOP challenge, as
the accuracy of most methods more than doubled when using PBR renderings rather than
OpenGL renderings [8]. Unfortunately, the utilized data still exhibits several weaknesses.
In the core, the whole scene needs to be rendered which is slow and leads to overly clear
images, fairly different from real data. As for the BOP challenge, the objects were dropped
into cubes with HD textures. While this enabled higher rendering speed, the scenes were
rather simple in terms of geometry.
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Figure 7.1. Physically Plausible Renderings in Real Worlds. To obtain physically plausible 6D poses, we drop
3D CAD models from the objects of interest into reconstructions of real scenes, using a physics engine.
We then render the objects on top of images taken during the reconstruction of the scene.

Figure 7.2. Comparison With [201]. While [201] renders the whole synthetic environment which is slow and
unrealistic [left] [©2019 IEEE], we instead leverage a mixed-reality approach to generate data which is
as realistic as possible [right]. For example, notice how the phone is placed correctly on the nightstand
next to the bed.

To circumvent these issues, we recently explored the idea of fast physically plausible render-
ing with as little rendering involved as possible. Essentially, we render objects physically
correct on top of real images, yet, consider light and reflections from the scene. Hence, since
we only ray-trace the objects, the algorithm can produce almost completely real data at high
speed. In practice, we drop objects into 3D scans from the large-scale 3RScan dataset [203]
using the NVidia PhysX engine (similar to [201]) and render all objects with AppleSeed
from the camera poses of the accompanying RGB-D images. The rendered RGB-D image is
then blended with the real RGB-D image. We further employ ambient occlusion for realistic
contact shadows and self-shadowing. Notice that if the ray hits an object with reflective
surface, the ray is further traced against the scene mesh to incorporate realistic reflections.
As 3RScan possess 478 separate scenes, pose estimation is less prone to overfitting compared
to [201] having only 7 scenes. Exemplary renderings and a small qualitative comparison
with [201] are respectively shown in Figure 7.1 and Figure 7.2.
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7.2 Class-level Monocular 9D Object Pose Estimation and

the Effect of Self-supervised Learning

Figure 7.3. Estimating Metric Pose and Shape From Monocular Imagery. Top left: We feed our detector with a
monocular image to estimate the 9D pose and geometric properties of unseen objects from a particular
class. In particular, we show each object’s inferred shape on the bottom and additionally rendered them
into the associated scene on the top center. Top Right: We also demonstrate our estimated results from
a different viewpoint in an effort to constitute that our method is able to infer all parameters in correct
metric scale.

In regard of monocular 9D pose estimation, combining ideas from the aforementioned work
from Section 5.3.1 [6] with our work on self-supervised 6D pose estimation, which removes
the need for real pose labels [4], we introduce the task of class-level monocular 6D pose
paired with metric shape estimation. Leveraging synthetic data, we propose a novel fully
differentiable end-to-end pipeline for 6D object pose and shape estimation, which directly
aligns the predicted mesh with the scene in 3D. Due to aforementioned limitations, i.e. the
scale-distance ambiguity and the lack of labeled real data, the initial output poses are not
yet very reliable as depth estimation is noisy. Therefore, we adjust our self-supervision from
Self6D [4] to bring it to the domain of class-level 9D pose estimation, in an effort to allow
training on real data and thus strengthen the predictions by decreasing the domain gap.

Similar to Section 5.3.1 [6], we first learn a low-dimensional shape space. Instead of using
TSDFs, we rely on AtlasNet [62] as differentiable rendering for self-supervision requires the
possession of 3D meshes. AtlasNet is an AutoEncoder based on PointNet [101], which takes a
pointcloud V P R

3ˆN as input and produces a global shape descriptor e. In the following the
shape can be inferred feeding the Decoder Datlas with e and 2D locations sampled from a 2D
uv-map. Since Datlas is a continuous mapping from 2D to 3D, the triangles Etriangles can
be simply derived from the sampling. As before, we employ RetinaNet with Focal loss [75]
and append different heads for the regression of the allocentric 3D rotation as 4D quaternion
qa, the 3D translation t “ K´1z px,y, 1qT as well as the shape encoding e, the scale pw,h, lq,
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Figure 7.4. 3D Pointcloud Alignment. We first infer the detected object’s shape using AtlasNet. We then scale it to
metric size and transform it to camera space by means of the estimated rotation and translation. Finally,
we leverage the chamfer distance to seek for an optimal alignment in 3D.

and the visible object mask MP. We then leverage the individual predictions to compute the
associated point cloud and transform it to the 3D camera space
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with K being again the camera intrinsic matrix and q denoting again the egocentric rotation
after conversion. We then fully supervise the model with the groundtruth pointcloud sV3D

using the chamfer distance according to

L3D :“ 1
| pV3D|

ÿ

pvP pV3D

min
svP sV3D

||pv ´ sv||2 ` 1
| sV3D|

ÿ

svP sV3D

min
pvP pV3D

||pv ´ sv||2. (7.2)

An illustration of our proposed pointcloud loss can be found in Figure 7.4.

While the network is capable of predicting the 6D pose and 3D mesh of each object, the
quality is still not very satisfactory. Therefore, we recorded over 30k unlabeled RGB-D images
to enable self-supervision on this task. We made the recorded data publicly available at
https://forms.gle/E89Asu3YDkL1WJEj6. Two exemplary samples from the dataset can
be found in Figure 7.5 a). To conduct self-supervision we use our modified differentiable
renderer R from [4] to render the visible object mask MR and depth map DR with pMR,DRq “
Rpq, t,Mq and M “ pDatlaspeq,Etrianglesq. As our meshes are not colorized, in contrast to
Self6D, we only use the mask loss Lmask for visual supervision

Lmask :“ ´ 1
|N`|

ÿ

jPN`

MP

j
logMR

j
´ 1

|N´|
ÿ

jPN´

logp1 ´ MR

j
q, (7.3)
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a) Data for self-supervision

b) Results on the real NOCS dataset

Figure 7.5. Recorded data for self-supervision and qualitative results on NOCS. a) Two recorded RGB-D sam-
ples, utilized during self-supervision. b) Qualitative results on the real NOCS test split. From left to
right: Predicted 3D bounding boxes rendered on top of the input image, estimated 3D shapes rendered
on top of the input image using the predicted 6D pose, predicted 3D bounding boxes from a different
view to demonstrate that the method can cope with the scale-distance ambiguity.

with N` and N´ denoting foreground and background pixels, respectively. Remember that
MP refers to the predicted masks from our network after training on synthetic data. As
predicting the visible 2D object mask is a fairly easy task that well translates to real data,
we employ the predicted masks as a weak supervision signal. Our experiments in [4] have
demonstrated that only the mask loss has considerable influence on the pose, whereas the
other terms for visual alignment only have minor impact.

As 3D supervision we then again employ the chamfer distance between the backprojected
visible points VR and VS from the rendered and raw depth map with

⇡´1pD,M,Kq “ tK´1

¨

˚̊
˚̊
˝

xj

yj

1

˛

‹‹‹‹‚
¨ Dj | @j P M ° 0 u (7.4)

VS :“ ⇡´1pDS,MP,Kq VR :“ ⇡´1pDR,MR,Kq. (7.5)
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Nonetheless, as our initial prediction are not as accurate as those from [4], we first align the
visible centroids cR “ 1

|VR|
∞

vRPVR vR and cS “ 1
|VS|

∞
vSPVS vS according to �c “ cS ´ cR.

The final loss for geometric alignment can then be compute as follows

Lgeom :“ 1
|VS|

ÿ

vSPvS

min
vRPVR

}vS ´ vR ` �c}2 ` 1
|VR|

ÿ

vRPVR

min
vSPVS

}vS ´ vR ` �c}2 ` ||�c||2. (7.6)

We experimentally prove that our self-supervision L “ Lmask `⌫Lgeom significantly further
enhances performance on real data with respect to the NOCS dataset [116] (e.g. AP of 14.0
without self-supervision vs. 17.7 with self-supervision for 3D IoU at a threshold of 0.5),
even on par with methods using RGB-D data in the pure synthetic setting. Moreover, when
leveraging ICP, we can also achieve similar results on the real test split as state-of-the-art
RGB-D methods relying on real labeled data [116, 184]. Qualitative results are provided in
Figure 7.5 b). For more information we kindly refer the reader to [3]
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AAbstracts of Publications not
Discussed in this Dissertation

BOP: Benchmark For 6D Object Pose Estimation

Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl, Anders Glent Buch, Dirk Kraft,
Bertram Drost, Joel Vidal, Stephan Ihrke, Xenophon Zabulis, Caner Sahin, Fabian Manhardt,

Federico Tombari, Tae-Kyun Kim, Jiri Matas, Carsten Rother

Proceedings of the European Conference on Computer Vision (ECCV), Munich 2018

Abstract. We propose a benchmark for 6D pose estimation of a rigid object from a single RGB-D
input image. The training data consists of a texture-mapped 3D object model or images of the object
in known 6D poses. The benchmark comprises of: i) eight datasets in a unified format that cover
different practical scenarios, including two new datasets focusing on varying lighting conditions,
ii) an evaluation methodology with a pose-error function that deals with pose ambiguities, iii) a
comprehensive evaluation of 15 diverse recent methods that captures the status quo of the field, and iv)
an online evaluation system that is open for continuous submission of new results. The evaluation
shows that methods based on point-pair features currently perform best, outperforming template
matching methods, learning-based methods and methods based on 3D local features. The project
website is available at bop.felk.cvut.cz.
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Self6D: Self-Supervised Monocular 6D Object Pose
Estimation

Gu Wang˚, Fabian Manhardt˚, Jianzhun Shao, Xiangyang Ji, Nassir Navab, Federico
Tombari

Proceedings of the European Conference on Computer Vision (ECCV), Glasgow 2020

Abstract. Estimating the 6D object pose is a fundamental problem in computer vision. Convolutional
Neural Networks (CNNs) have recently proven to be capable of predicting reliable 6D pose estimates
even from monocular images. Nonetheless, CNNs are identified as being extremely data-driven, yet,
acquiring adequate annotations is oftentimes very time-consuming and labor intensive. To overcome
this shortcoming, we propose the idea of monocular 6D pose estimation by means of self-supervised
learning, which eradicates the need for real data with annotations. After training our proposed network
fully supervised with synthetic RGB data, we leverage recent advances in neural rendering to further
self-supervise the model on unannotated real RGB-D data, seeking for a visually and geometrically
optimal alignment. Extensive evaluations demonstrate that our proposed self-supervision is able to
significantly enhance the model’s original performance, outperforming all other methods relying on
synthetic data or employing elaborate techniques from the domain adaptation realm.
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GDR-Net: Geometry-Guided Direct Regression Network For
Monocular 6D Object Pose Estimation

Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Nashville 2021

Abstract. 6D pose estimation from a single RGB image is a fundamental task in computer vision. The
current top-performing deep learning-based methods rely on an indirect strategy, i.e. , first establishing
2D-3D correspondences between the coordinates in the image plane and object coordinate system, and
then applying a variant of the PnP/RANSAC algorithm. However, this two-stage pipeline is not
end-to-end trainable, thus is hard to be employed for many tasks requiring differentiable poses. On
the other hand, methods based on direct regression are currently inferior to geometry-based methods.
In this work, we perform an in-depth investigation on both direct and indirect methods, and propose
a simple yet effective Geometry-guided Direct Regression Network (GDR-Net) to learn the 6D pose
in an end-to-end manner from dense correspondence-based intermediate geometric representations.
Extensive experiments show that our approach remarkably outperforms state-of-the-art methods on
LM, LM-O and YCB-V datasets. Code is available at https://git.io/GDR-Net.
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3.2 Model-free 3D Object Detection. Left: As no 3D CAD model is provided,
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3.3 Allocentric v.s. Egocentric Pose. Left: As for the egocentric rotation, a mere
3D translation of the object leads to a different appearance on the image plane.
Right: In contrast, the allocentric representation is viewpoint invariant under
3D translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Single-Shot Monocular 6D Pose Estimation. Left: We turn the regression of
the rotation into a classification problem via binning of viewpoint and in-plane
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associated object rendered at a canonical distance of 0.5m. . . . . . . . . . . . 43
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5.3 Ambiguities in Pose. Left: Different poses can have the same visual appearance
due to symmetries and occlusion. Exemplary, the bowl is visually identical
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the input image in terms of lighting. To this end, we leverage recent advances in
GANs to generate a high quality reconstruction of the input, whilst removing
any variations in light. To further improve the normalization, we tailor the
reconstruction to work particularly well for the task at hand. To this end, we add
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5.5 Lifting 2D Objects to 6D Pose and Metric Scale. Left: After lifting our 2D
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estimated results from a different viewpoint in an effort to constitute that our
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AtlasNet. We then scale it to metric size and transform it to camera space by
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distance to seek for an optimal alignment in 3D. . . . . . . . . . . . . . . . . . 132

7.5 Recorded data for self-supervision and qualitative results on NOCS. a) Two
recorded RGB-D samples, utilized during self-supervision. b) Qualitative results
on the real NOCS test split. From left to right: Predicted 3D bounding boxes
rendered on top of the input image, estimated 3D shapes rendered on top of the
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3.1 Datasets for 6D Pose Estimation. The table compares the most important
datasets for evaluating the 6D object pose. All datasets are also contained
in the BOP challenge [8]. The datasets encompass different challenges such as
occlusions (LM-O, YCB-V), illumination changes (TUD-L, TYO-L), or symme-
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3.2 Datasets for 7D Pose Estimation. The table compares the most important
datasets for evaluating 3D object detection from monocular data. The main
difference resides in the sensor setup and the amount of labeled images. While
KITTI was released in 2012 with 80K labeled 3D boxes, new large-scale datasets
with millions of annotated instances are now available. . . . . . . . . . . . . . 32

4.1 Related Works on Monocular 6D Object Pose Estimation. The methods are
coarsely divided into 3 branches and mostly differ in the employed backbone
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