
maximilian soelch

U N C O V E R I N G DY N A M I C S

Learning and Amortized Inference for State-Space Models

Technische Universität München

Fakultät für Informatik

U N C O V E R I N G DY N A M I C S

Learning and Amortized Inference for State-Space Models

maximilian johannes georg sölch

Vollständiger Abdruck der von der promotionsführenden Einrichtung
Fakultät für Informatik der Technischen Universität München zur
Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Daniel Cremers

Prüfer der Dissertation: 1. Prof. Dr. Patrick van der Smagt

2. apl. Prof. Dr. Georg Groh

Die Dissertation wurde am 11. Mai 2021 bei der Technischen Univer-
sität München eingereicht und durch die promotionsführende Einrich-
tung Fakultät für Informatik am 30. August 2021 angenommen.

Maximilian Soelch
Uncovering Dynamics: Learning and Amortized Inference for State-Space
Models (May 2021)

This thesis is typeset using LATEX 2ε, due to Donald Knuth, Leslie Lam-
port, and Frank Mittelbach, and based upon the classicthesis style
and the ArsClassica package by André Miede and Lorenzo Pantieri,
with minor modifications. Text and bold mathematical symbols are
set in Palatino, other mathematical expressions in Euler, both courtesy
of Hermann Zapf. Headlines are set in Iwona by Janusz M. Nowacki.
All figures were created using TikZ by Till Tantau and matplotlib by
John D. Hunter.

May this serve as evidence.

A B S T R A C T

Understanding the dynamics that drive a system over time is a central
pillar of many domains, such as physics or engineering. Uncovering
these dynamics from data is thus immediately appealing, and this
thesis provides two major contributions towards this goal.

Firstly, we efficiently learn sequential latent-variable models directly
from data without supervision. We then highlight how this learning
algorithm can be readily transferred to a concrete task such as tracking
objects by casting it as an inference problem.

Secondly, we dissect our own as well as several closely related algo-
rithms and models. We discover systematic theoretical and empirical
failure scenarios in inference and learning caused by common practi-
cally motivated design choices. We provide intuitions for these failure
cases and suggest practical strategies to avoid them.

Dynamics in this thesis are represented by state-space models due to
their widespread appeal in adjacent disciplines. Learning state-space
models becomes practical by amortizing costly state inference with
learnable models, in our case neural networks.

Learned state-space models allow reliable predictions about the
future based on past observations from the system. This leads from
simply uncovering the dynamics to eventually planning, adjusting,
and even controlling the system based on posterior beliefs. In our
algorithms, these beliefs are represented by sets of samples.

This motivates the third and last main contribution of this thesis,
a study of learnable set functions. Again, we empirically show that
practical model design choices lead to models that are sensitive to
different test scenarios or hyper-parameters, and we provide a variety
of model components that alleviate this sensitivity.

vii

Z U S A M M E N FA S S U N G

Eine der zentralen Säulen vieler Disziplinen, wie bspw. der Physik
oder Ingenieurswissenschaften, ist es, die Dynamik zu verstehen,
aufgrund der sich ein System über die Zeit entwickelt. Daher ist es
von unmittelbarer Bedeutung, diese Dynamiken auf Basis von Daten
freizulegen. Diese Arbeit steuert zwei wesentliche Aspekte zu diesem
Ziel bei.

Erstens wird gezeigt, dass sequenzielle Modelle mit latenten Va-
riablen effizient und unüberwacht direkt aus Daten gelernt werden
können. Zudem wird herausgearbeitet, wie dieser Lernalgorithmus
direkt auf konkrete Anwendungen, in diesem Fall das Tracking von
Objekten, übertragen werden kann, indem Tracking als Bayes’sche
Inferenz formuliert wird.

Zweitens werden die in dieser und verwandten Arbeiten vorge-
schlagenen Algorithmen und Modelle einer genauen Untersuchung
unterzogen. Dabei wird theoretisch wie empirisch gezeigt, dass übli-
che anwendungsorientierte Modellannahmen zu systematischen Feh-
lern in der Inferenz und dadurch beim Lernen führen. Um diese zu
vermeiden, werden Intuitionen der Fehlfunktionen sowie praktische
Strategien entwickelt.

Dynamiken werden im Rahmen dieser Arbeit aufgrund ihrer brei-
ten Nutzung in angrenzenden Disziplinen durch Zustandsraummo-
delle repräsentiert. Zustandsraummodelle zu lernen wird dadurch
ermöglicht, dass die Kosten für Zustandsinferenz mit Hilfe lernbarer
Modelle, in diesem Falle neuronaler Netze, amortisiert werden.

Gelernte Zustandsraummodelle ermöglichen verlässliche Vorher-
sagen über die Zukunft auf Basis vergangener Beobachtungen des
Systems. Dies führt dazu, dass nach erfolgreicher Freilegung der
Dynamik schlussendlich Planung, Anpassung und Regelung des Sys-
tems gemäß A-posteriori-Wahrscheinlichkeiten möglich werden. Diese
Wahrscheinlichkeiten werden in den vorgestellten Algorithmen mittels
Mengen von Stichproben dargestellt.

Dadurch motiviert werden als dritter Beitrag dieser Arbeit lern-
bare Funktionen auf Mengen untersucht. Wie zuvor wird gezeigt,
dass anwendungsorientierte Modellannahmen dazu führen, dass die
resultierenden Modelle sehr sensitiv auf Änderungen der Testumge-
bung oder der Hyperparameter reagieren. Es werden Modellbausteine
vorgeschlagen und diskutiert, die diese Sensitivität verringern.

P U B L I C AT I O N S

This thesis is based on ideas that have appeared previously in the
following publications and working papers:

Karl, Maximilian, Maximilian Soelch, Justin Bayer, and Patrick van
der Smagt (2017). “Deep Variational Bayes Filters: Unsupervised
Learning of State Space Models from Raw Data.” In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net. url:
https://openreview.net/forum?id=HyTqHL5xg.

Akhundov, Adnan, Maximilian Soelch, Justin Bayer, and Patrick van
der Smagt (2019). Variational Tracking and Prediction with Generative
Disentangled State-Space Models. arXiv: 1910.06205 [cs, stat]. url:
http://arxiv.org/abs/1910.06205.

Soelch, Maximilian, Adnan Akhundov, Patrick van der Smagt, and
Justin Bayer (2019). “On Deep Set Learning and the Choice of Aggre-
gations.” In: Artificial Neural Networks and Machine Learning - ICANN
2019: Theoretical Neural Computation - 28th International Conference on
Artificial Neural Networks, Munich, Germany, September 17-19, 2019,
Proceedings, Part I. Ed. by Igor V. Tetko, Vera Kurková, Pavel Karpov,
and Fabian J. Theis. Vol. 11727. Lecture Notes in Computer Science.
Springer, pp. 444–457. isbn: 978-3-030-30487-4. doi: 10.1007/978-3-
030-30487-4\\ 35.

Bayer, Justin, Maximilian Soelch, Atanas Mirchev, Baris Kayalibay, and
Patrick van der Smagt (2021). “Mind the Gap When Conditioning
Amortised Inference in Sequential Latent-Variable Models.” In: 9th
International Conference on Learning Representations, ICLR 2021. Open-
Review.net. url: https://openreview.net/forum?id=a2gqxKDvYys.

The author’s contribution to each paper is discussed on the preface
page before the respective part.

The author has further contributed to the following papers. These pa-
pers will be mentioned in passing as related work where appropriate,
but not discussed as a contribution of this thesis.

Soelch, Maximilian, Justin Bayer, Marvin Ludersdorfer, and Patrick
van der Smagt (2016). Variational Inference for On-Line Anomaly Detec-
tion in High-Dimensional Time Series. arXiv: 1602.07109 [cs, stat].
url: http://arxiv.org/abs/1602.07109.

Karl, Maximilian, Maximilian Soelch, Philip Becker-Ehmck, Djalel Ben-
bouzid, Patrick van der Smagt, and Justin Bayer (2017). Unsupervised
Real-Time Control through Variational Empowerment. arXiv: 1710.05101

[stat]. url: http://arxiv.org/abs/1710.05101.

ix

https://openreview.net/forum?id=HyTqHL5xg
https://arxiv.org/abs/1910.06205
http://arxiv.org/abs/1910.06205
https://doi.org/10.1007/978-3-030-30487-4_35
https://doi.org/10.1007/978-3-030-30487-4_35
https://openreview.net/forum?id=a2gqxKDvYys
https://arxiv.org/abs/1602.07109
http://arxiv.org/abs/1602.07109
https://arxiv.org/abs/1710.05101
https://arxiv.org/abs/1710.05101
http://arxiv.org/abs/1710.05101

Mirchev, Atanas, Baris Kayalibay, Maximilian Soelch, Patrick van der
Smagt, and Justin Bayer (2019). “Approximate Bayesian Inference
in Spatial Environments.” In: Robotics: Science and Systems XV, Uni-
versity of Freiburg, Freiburg Im Breisgau, Germany, June 22-26, 2019.
Ed. by Antonio Bicchi, Hadas Kress-Gazit, and Seth Hutchinson.
doi: 10.15607/RSS.2019.XV.083.

https://doi.org/10.15607/RSS.2019.XV.083

A C K N O W L E D G M E N T S

Special thanks are due to three people without whom my course
would have been different:

Christian, you ignited the flame.

Justin, you taught me how to handle it.

Patrick, you always trusted me more than I did. You helped me thrive.
Except for about five seconds in Steinheil, and I know you enjoyed
that!

I would also like to thank my lab mates and students, first at TUM,
later with Volkswagen MLRL: Adam, Adnan, Agneta, Alex, Alexan-
dros, Alexej, Atanas, Baris, Benedikt, Botond, Daniela, Djalel, Eileen,
Eva, Felix, Grady, Karolina, Markus, Marvin, Max, Nutan, Philip,
Rachel, Richard, Sebastian, Simon, and Stephan.

I feel extremely fortunate to have been part of this amazing environ-
ment of support, creativity, and companionship.

Wiebke, you could close off that list of lab mates, but that would not
do you justice. Thank you.

I would like to thank Steffen Seitz at TU Dresden for his collaboration
and hospitality.

A special thanks goes to my family, my parents Hannelore and Wil-
helm as well as my brother Alexander, for your continuous support.
You did not question me once despite my repeated failure to relay
what I was really working on all those years.

Sushi, thank you for always being there, no matter what. As this
chapter closes, I am looking forward to our next one.

Little Roman, you won the race by a few days. I am glad you are here.

xi

C O N T E N T S

introduction 1

i background
1 learning and sampling 5

1.1 Learning Distributions 5

1.2 Sampling Distributions 9

2 latent-variable models 15

2.1 Definitions and Concepts 15

2.2 Variational Inference 17

2.3 Variational Auto-Encoders 18

2.4 Inference Gaps 22

2.5 VAEs as a Framework 24

3 sequential latent-variable models 27

3.1 State-Space Models 28

3.2 Sequential Bayesian Posteriors 29

3.3 Inference in State-Space Models 31

3.4 The Sequential ELBO 43

ii auto-encoding state-space models
4 neural state-space models 47

4.1 Sequential Variational Auto-Encoders 48

4.2 Deep Variational Bayes Filters 50

4.3 Concurrent and Later Models 58

4.4 Critical Discussion 64

5 case study: variational tracking 69

5.1 Scene Understanding 70

5.2 Tracking as Inference 73

5.3 Experiments 78

5.4 Discussion 82

iii learning by smoothing
6 the conditioning gap 87

6.1 A New Inference Suboptimality 88

6.2 Understanding the Conditioning Gap 90

6.3 Empirical Study 97

6.4 Discussion 103

7 approximate neural smoothing 105

7.1 Faithful Approximate Smoothing 105

7.2 Estimating the Sequential ELBO 108

7.3 A Linear Gaussian Example 111

7.4 Further Experiments and Discussion 113

xiii

xiv contents

iv set-valued neural functions
8 aggregation functions in deep set learning 123

8.1 A Motivating Example 123

8.2 State of the Art 125

8.3 The Choice of Aggregation 130

8.4 Experiments 134

8.5 Discussion 139

conclusion 141

appendices
a background 145

a.1 Details on VAE on MNIST Example 145

a.2 Renyi Divergences and Bounds 146

a.3 Bayesian Updates, Fusion, Uncertainty 147

a.4 A Matrix Identity for Kalman Filters 148

b auto-encoding state-space models 149

b.1 Moving MNIST Data Set 149

c learning by smoothing 153

c.1 Optimal Partially-Conditioned Posteriors 153

c.2 Proof of Suboptimal Generative Model 153

c.3 Details on the Example Linear Gaussian System 154

c.4 Linear Gaussian Backward Filter 156

c.5 Details on Row-Wise MNIST Experiments 159

d set-valued neural functions 161

d.1 Details on Motivating Example 161

bibliography 163

A C R O N Y M S

AIR Attend, Infer, Repeat

ANS approximate neural smoothing

AVI amortized variational inference

cdf cumulative distribution function

CNN convolutional neural network

DDPAE decompositional disentangled predictive auto-encoder

DKF deep Kalman filter

DKS deep Kalman smoother

DMM deep Markov model

DN density network

DSAE disentangled sequential auto-encoder

DVBF deep variational Bayes filter

ELBO evidence lower bound

EM expectation maximization

ESS effective sample size

E2C embed to control

FIVO filtering variational objective

GMM Gaussian mixture model

GRU gated recurrent unit

i. i. d. independent and identically distributed

IS importance sampling

IWAE importance-weighted auto-encoder

KDE kernel density estimate

KL Kullback-Leibler divergence

KVAE Kalman variational auto-encoder

LGS linear Gaussian system

LSTM long short-term memory network

LVM latent-variable model

MC Monte Carlo

MCO Monte Carlo objective

MLP multi-layer perceptron

NASMC neural adaptive sequential Monte Carlo

xv

xvi acronyms

NN neural network

pdf probability density function

RL reinforcement learning

RNN recurrent neural network

SGD stochastic gradient descent

SIR sequential importance resampling

SIS sequential importance sampling

SQAIR sequential Attend, Infer, Repeat

SRNN stochastic recurrent neural network

SSM state-space model

STORN stochastic recurrent network

SUS stochastic universal sampling

SVI stochastic variational inference

UAV unmanned aerial vehicle

VAE variational auto-encoder

VI variational inference

VRNN variational recurrent neural network

VTSSI variational tracking and state-space inference

N OTAT I O N

x a scalar

x a vector

X a matrix or tensor

X a set, typically the space of, e. g., all x

xa:b an ordered sequence (xa, xa+1, . . . , xb) with integers a,b;
if b < a, then xa:b ≡ ∅ is empty

xt the t-th element in the sequence x1:T
xi the i-th element in the vector x

x(i) the i-th element in the (unordered) set
{
x(1), . . . , x(N)

}
x
(n)
t,ij the element at row i, column j of matrix X(n)

t from the
sequence X(n)

1:T from the set
{

X(n)
1:T

∣∣∣ n = 1, . . . ,N
}

p(x)

p(x | z)

p(x, z)

marginal, conditional, joint distribution over respective
(conditional) random variables;
p also denotes the probability density (mass) function;
a distinction between random variable x and sample
(realization) x is only made where necessary in context

x ∼ p(x) the random variable x follows the distribution p(x)
or the value x was sampled according to distribution p(x)

pθ(·) a distribution parametrized by a set of parameters θ

Ep(x)[·] the expected value w. r. t. the distribution p(x)

N(µ,Σ) the Gaussian distribution with mean µ and covariance Σ

N(x | µ,Σ) the corresponding probability density function

U[a,b] the uniform distribution on the interval [a,b],a < b

Reserved letters:

x observations, emissions

z latent variables, states

u control inputs

D a data set

t an integer index for some arbitrary time step

T an integer index for the last time step: the sequence length

p(·) a model (generative) distribution or the true distribution

q(·) an approximate (posterior) distribution

π(·) a proposal distribution

xvii

I N T R O D U C T I O N

Neural networks are everything and nothing to this thesis.
Which begs the question: what are neural networks, really? In the

recent advent of interest—and hype—around artificial intelligence,
neural networks play a central role. From neural networks reaching
human capabilities in pattern recognition (Cireşan et al., 2011a,b;
Krizhevsky et al., 2012; Schmidhuber, 2017) almost a decade ago,
to beating the reigning Go world champion (Silver et al., 2016), to
neural language models (Devlin et al., 2019) taking over Google’s
query processing within a year (Nayak, 2019; Schwartz, 2020), the
feats continue to impress.

In this sense, neural networks have pushed the perception of what
is possible, replacing and outperforming intricate hand-crafted algo-
rithms by learning from data. And yet, the neural networks found in
this thesis are rarely deep in the modern sense. Three feed-forward
layers often do the trick! Neural networks in the following chapters
can often be reduced to a mere footnote.1

Two common threads weave through the models and algorithms
presented in this thesis.

The first thread is structured data. Where at least the early successes
of deep learning were based on the availability of large amounts of
independent and identically distributed (i. i. d.) data, the data sets in this
thesis violate independence in one way or the other: with sequential
data we explicitly want to understand the dependencies across time.
Similarly, the assumption of set-valued inputs, i. e., data sets consisting
of sets, the inherent symmetries in the data force conventional neural
networks over their limits.

Which leads to the second thread: algorithms define networks. The
neural networks found in this thesis are not meant to replace algo-
rithms. Instead, known algorithms—or even theorems—are the solid
foundation. Only then do we carefully replace selected components
of these algorithms with neural building blocks. The intent is to get
the best of both worlds: the algorithm serves as inductive bias for the
neural network, the neural network enhances the algorithm.

These two threads are presented in four parts. Part I recalls the neces-
sary basics to understand the contributions of this thesis. Part II shows
how sequential Bayesian posterior algorithms can be turned into un-
supervised learning algorithms for sequential latent-variable models
in general and state-space models in particular; these algorithms are
then applied to learn a neural state-space model for tracking. Part III
shines a sobering light on some flaws in the early designs of inference

1 Maybe they should rather be called stacked function approximators (Clark, 2017)?

1

2 introduction

models for sequential latent-variable models—ironically, these flaws
are a consequence of leaning into neural networks too much—and
presents possible remedies, including a learning algorithm based on
particle smoothing. Lastly, part IV investigates how neural models can
be applied to set-valued data, where a mathematical categorization of
all set functions is leveraged.

Without neural networks, this thesis would not be. Without neural
networks, the algorithms could still be.

Part I

B A C KG R O U N D

This part serves as a recap of the background knowledge
required for the remainder of this thesis: basics of learning
and sampling distributions in chapter 1, latent-variable mod-
els (LVMs) and variational inference (VI) in chapter 2, and
sequential LVMs in chapter 3.

Supplementary material is collected in appendix A.

Much of the material was collected and honed as part of
tutorials by the author for his peers and students.

It is largely based on textbooks (MacKay, 2002; Bishop,
2007; K. P. Murphy, 2012; Owen, 2013), particularly the
most excellent summary on sequential Bayesian inference
by Sarkka (2013). Other resources include Babb (2015),
Doersch (2016), Dykeman (2016), and Blei et al. (2017).
Original publications are referenced within the text.

The author has attributed original sources to maximal
extent allowed by the eclectic nature of this part.

1 L E A R N I N G A N D S A M P L I N G

1.1 learning distributions

A common thread throughout this thesis is learning parametrized
probabilistic models from data. This section covers the basic techniques
for implementing and learning such models.

1.1.1 Learning and Optimization

A central vehicle of this thesis are parametric models. In this space
of models defined by all possible parameter sets θ, our goal is to
infer ideal parameters for a certain scenario. This is formalized as an
optimization problem

arg min
θ

Ep(x)[f(x, θ)]. (1.1)

The scenario of interest is codified by the distribution p(x). The ideal
parameters are codified by the objective function f.

We refer to the process of inferring the ideal parameters as learning
or fitting, where the former is usually understood as learning a model
and the latter as fitting the parameters, two sides of the same coin. The
frequently-used synonymous term inference is in this thesis henceforth
exclusively reserved for Bayesian inference to avoid confusion between
these concepts.

The distribution p(x) is most often represented by a finite data
set D, which is typically thought of as independent and identically
distributed (i. i. d.) samples of p(x), i. e.,

D =
{

x(i)
∣∣∣ i = 1, . . . ,N}, x(i) ∼ p(x). (1.2)

Since p(x) is only available through the data set, we approximate
eq. (1.1) as

arg min
θ

N∑
i=1

f
(

x(i), θ
)

. (1.3)

This is called empirical risk minimization.
Our means of tackling the learning problem, eq. (1.1), is to use

optimization techniques—most often first-order methods based on
stochastic gradient descent (SGD)—on the best available approximation,
the empirical risk minimization, eq. (1.3).

5

6 learning and sampling

Neural Networks and Optimization

The models and algorithms presented in this thesis are in most cases
implemented by neural networks. Yet, in almost all cases they are
entirely abstracted, e. g., by density networks (DNs), section 1.1.4. That is,
algorithms are not tied to specific neural architectures, or even neural
networks to begin with, and can be discussed without considering
them at all.

In this light, we assume a basic familiarity with neural network
architectures, point the reader to introductory textbooks, e. g., Good-
fellow et al. (2016), and refrain from further discussion. Insofar as
specifics are relevant, they will be discussed in the respective sections.

In terms of nomenclature, neural network (NN) will serve as a general
umbrella term for a neural architecture. We will call the vanilla feed-
forward architecture—consecutive layers of affine transformations
followed by point-wise nonlinearities—multi-layer perceptrons (MLPs).
Similarly, recurrent neural network (RNN) is an umbrella term for vanilla
RNNs as well as special variants like bidirectional RNNs (Schuster
and Paliwal, 1997), long short-term memory networks (LSTMs; Hochreiter
and Schmidhuber, 1997), or gated recurrent units (GRUs; Cho et al.,
2014).

In a similar vein, we assume basic familiarity with stochastic gradient
descent (SGD; Bottou, 2010). In particular, this includes the backprop-
agation algorithm and modern adaptive, moment-based first-order
optimization algorithms such as Adam (Kingma and Ba, 2015).

In practice, these considerations are largely abstracted by software
packages for automatic differentiation (Abadi et al., 2015; Al-Rfou
et al., 2016; Paszke et al., 2019).

1.1.2 Monte Carlo Integration

In probabilistic learning problems, we often encounter expected values
of some function g w. r. t. some distribution p(z),

Ep(z)[g(z)] =
∫
p(z)g(z)dz. (1.4)

Most objective functions in this thesis include one or several such
expectations. Typically, these are not analytically tractable. Instead, we
will use Monte Carlo (MC) integration to get estimates of the respective
quantities.

The core idea behind MC integration is to approximate expected
values by averaging N ∈N sample evaluations,

Ep(z)[g(z)] ≈
1

N

N∑
i=1

g
(

z(i)
)

, z(i) ∼ p(z). (1.5)

Here, g is some arbitrary function. We call p(z) the target distribution.
This estimate is unbiased.

1.1 learning distributions 7

1.1.3 Graphical Models

Often, we model systems where various quantities {x1, . . . , xN} and
their dependencies are at least partially known. For any such set, the
joint distribution p(x1, . . . , xN) factorizes as

p(x1, . . . , xN) =
N∏
i=1

p(xi | x1:i−1), (1.6)

but any permutation of the ordering of random variables is mathemat-
ically valid.

Graphical models are a useful tool to model structure and outside
knowledge about the relation between the quantities. A graphical
model is a joint probability distribution over a set of random vectors
V = {x1, . . . , xN} with an associated directed, acyclic graph G = (V,E).
The graph represents conditional dependencies in the sense that

p(x1, . . . , xN) =
N∏
i=1

p(xi | P(xi)), (1.7)

where P(xi) denotes the set of variables corresponding to parent nodes
of xi in the graph. This is well-defined because the graph is acyclic.
Note that the graph is not unique. In particular, by eq. (1.6) any fully-
connected graph trivially yields a correct factorization of the joint
according to eq. (1.7). We implicitly assume the graph is minimal—we
spare a detailed discussion of minimal here and point out that for our
purposes the graph is usually the starting point.

Beyond being a useful tool to conceptualize models, the most salient
feature of graphical models within this thesis is that certain graph
configurations translate to (conditional) independence between the
respective nodes. This will be useful when discussing sequential LVMs
in chapter 3 and parts II and III.

1.1.4 Density Networks

Graphical models are largely defined in terms of conditional distri-
butions p(x | z). Here, we present a simple but common strategy to
implement such distributions with deterministic functions (or function
approximations) such as NNs.

First, we choose some parametric family of distributions, i. e., a set
of distributions where each distribution can be described by a set of
fixed distribution parameters ϑ. The most commonly used example in
this thesis are Gaussian distributions N(µ,Σ), parametrized by mean µ
and covariance (matrix) Σ so that ϑ = {µ,Σ}.

Then, a function fθ, where θ is the set of all learnable function
parameters, e. g., weight matrices and biases for NNs, can now be

8 learning and sampling

leveraged to implement p(x | z) by mapping the input z to a set of
valid distribution parameters, e. g.,

(µ,Σ) = fθ(z) p(x | z) = N(µ,Σ). (1.8)

Depending on the application, some or all distribution parameters
are constants in z, and these constants may themselves be learnable
parameters. Examples are priors (which have no input), or likelihood
models with a shared variance modeling sensor noise.

In notation, all of these scenarios are often shortened to pθ(x | z) (or
even just p(x | z)) with no explicit mention of fθ or ϑ. In fact, θ will
often include all learnable parameters. This conflates the notion of
the learnable function parameters θ and the functionally dependent,
non-learnable distribution parameters ϑ = fθ(z).1

For mixtures of Gaussians, this concept was suggested by Bishop
(1994) and dubbed mixture density networks. Following this, we refer
to this slightly wider concept as density networks (DNs) in this thesis.2

1.1.5 Reparametrization

With density networks at hand, we need to be able to compute gradi-
ents for learning. As mentioned in section 1.1.2, we often encounter
expected values of type

Epθ(z)[g(z)] (1.9)

with some function g in our objectives. For SGD on such objectives we
need to compute gradients

∇θEpθ(z)[g(z)]. (1.10)

Since the expectation is typically not analytically solvable, analytic
gradients are equally unavailable. This is particularly true when pθ(z)
is a sophisticated density network.

MC approximation with a parametrized distribution on the other
hand faces two challenges: firstly, in general gradients w. r. t. distribu-
tion parameters and expectations are not interchangeable:

∇θEpθ(z)[g(z)] = ∇θ
∫
pθ(z)g(z)dz (1.11)

=

∫
∇θpθ(z)g(z)dz +

∫
pθ(z)∇θg(z)dz︸ ︷︷ ︸
=Epθ(z)[∇θ g(z)]

(1.12)

=⇒ ∇θEpθ(z)[g(z)] 6= Epθ(z)[∇θg(z)]. (1.13)

1 We will use the terms weights and parameters for learnable function parameters
interchangeably, even outside a neural context.

2 The author acknowledges that neither is the output of a density network a density
but a distribution or its parameters nor are we restricted to (neural) networks. With
this naming convention we choose consistency with the literature over precision.

1.2 sampling distributions 9

Secondly, a sample z depends on θ but ∇θg(z) is generally not well-
defined.

The key is to require the distribution pθ(z) to permit reparametriza-
tion. A distribution is reparametrizable if its sampling process can
be rewritten as a deterministic function r of the distribution param-
eters ϑ and a random sample ε from an arbitrary base distribution
p(ε) independent of ϑ, i. e.,

z = r(ε, ϑ), ε ∼ p(ε) =⇒ z ∼ pϑ(z). (1.14)

Arguably the most frequently used example3 is the Gaussian distribu-
tion z ∼ N(µ,Σ): for distribution parameters ϑ =

{
µ,Σ = LL>

}
, where

L is a lower triangular matrix, e. g., from a Cholesky decomposition,
and the standard Gaussian base distribution ε ∼ N(0, I), one can
sample via

z = r(ε,µ, L) = µ+ Lε =⇒ z ∼ N(µ,Σ). (1.15)

Such reparametrization makes gradients ∇ϑg(z) well-defined since
g(z) = g(r(ε, ϑ)) is a deterministic function in ϑ. This is particularly
useful for SGD on MC estimates. Reparametrization allows rewriting
expectations and thus gradients:

Epϑ(z)[g(z)] = Ep(ε)[g(r(ε, ϑ))] (1.16)

=⇒ ∇ϑEpϑ(z)[g(z)] = Ep(ε)[∇ϑg(r(ε, ϑ))]. (1.17)

The right-hand side can now be estimated without bias by MC inte-
gration. The extension to conditional distributions with functionally
dependent distribution parameters ϑ = fθ(z) as found in density
networks follows from standard rules of multivariate calculus.

1.2 sampling distributions

1.2.1 Importance Sampling

In many interesting cases, the target distribution is intractable, cf.
Bayesian posteriors in section 3.2. In such cases, even samples are
hard to obtain, rendering Monte Carlo integration impossible. Here,
importance sampling (IS) can be of help. The basic idea is to resort to a
proposal distribution π(z) that can be sampled easily and rephrase

Ep(z)[g(z)] =
∫
p(z)

π(z)
π(z)

g(z)dz = Eπ(z)

[
p(z)
π(z)

g(z)
]

. (1.18)

Provided we can evaluate the probability density functions (pdfs) p(z)
and π(z), eq. (1.18) is now a special case of eq. (1.4), with new objective
function ĝ = p·g/π, and can be estimated without bias as in eq. (1.5).

3 A helpful overview of other examples is due to Mohamed (2015).

10 learning and sampling

We can even use importance sampling when p can only be evaluated
up to a normalizing constant Z > 0, i. e.,

p(z) =
r(z)
Z

. (1.19)

The unknown normalizing constant can also be estimated by means
of importance sampling:

Z =

∫
r(z)dz = Eπ(z)

[
r(z)
π(z)

]
. (1.20)

The ratio of unnormalized target pdf and proposal pdf is the (unnor-
malized) weight function

ŵ(z) ≡ r(z)
π(z)

> 0. (1.21)

The notion of weights gives rise to the alternative interpretation of
eq. (1.18) as weighted samples: for a given set of samples

{
z(i)
}

, compute
their unnormalized weights

ŵ(i) = ŵ
(

z(i)
)

, (1.22)

and then self-normalize to get the normalized weights

w(i) =
ŵ(i)∑N
j=1 ŵ

(j)
∈ [0, 1]

[
=⇒

N∑
i=1

w(i) = 1

]
. (1.23)

Despite being sampled from the proposal, the set of pairs of normal-
ized weights and samples{(

w(i), z(i)
) ∣∣∣ z(i) ∼ π(z)

}
i=1,...,N

(1.24)

can be viewed as a set of weighted samples from the target distribution
p(z). Starting from eq. (1.18), one can show

Ep(z)[g(z)] (1.25)

=Eπ(z)

[
p(z)
π(z)

g(z)
]
=
1

Z
Eπ(z)

[
r(z)
π(z)

g(z)
]

(1.26)

=
Eπ(z)

[
r(z)
π(z)g(z)

]
Eπ(z)

[
r(z)
π(z)

] ≈
1
N

∑N
i=1 ŵ

(i)g
(
z(i)

)
1
N

∑N
j=1 ŵ

(j)
(1.27)

=

N∑
i=1

w(i)g
(

z(i)
)

. (1.28)

The approximation in eq. (1.27) is based on approximating numerator
and denominator independently by MC integration.

The vanilla MC integration by averaging as in eq. (1.5) has been
replaced by a weighted average in eq. (1.28).

1.2 sampling distributions 11

Remarks on Importance Sampling

The further loosening of assumptions on the target distribution comes
at a cost: the estimator in eq. (1.28) is only asymptotically unbiased. This
is due to eq. (1.27), where we estimated numerator and denominator
separately with unbiased importance sampling, but Jensen’s inequality
tells us that

E

[
1

h(z)

]
>

1

E[h(z)]
, (1.29)

i. e., inverting the unbiased denominator estimate introduces bias.
An important observation is that the weighted samples, eq. (1.24),

are independent of the objective function g. This is another reason why
they can be viewed as representing the target distribution p. In fact, the
act of producing representative samples can be completely decoupled
from an objective function. We will revisit this concept with sequential
importance sampling (SIS) and sequential importance resampling (SIR), e. g.,
in section 3.3.2.2 when we introduce particle filters.

Technically, importance sampling works for any combination of
target and proposal distribution, provided the support of the target
distribution is a subset of the support of the proposal and the number
of samples N grows sufficiently large. In practice however, for an IS
estimator to be useful the proposal should be close to the target to
supply representative samples.

To understand this, consider the random variable y ∼ p(y), which
has some variance σ2. The average of N i. i. d. copies y(i) has variance

Var

[
1

N

N∑
i=1

y(i)

]
=
σ2

N
. (1.30)

On the other hand, a (self-normalized) weighted average4 has variance

Var

[∑N
i=1 ŵ

(i)y(i)∑N
j=1 ŵ

(j)

]
=

∑N
i=1

[
ŵ(i)

]2
σ2[∑N

j=1 ŵ
(j)
]2 =

N∑
i=1

[
w(i)

]2
σ2. (1.31)

Equating both right-hand sides, we see that the variance of a weighted
average is equivalent to that of an unweighted average computed with

PESS ≡
1∑N

i=1

[
w(i)

]2 ∈ [1,N] (1.32)

samples—typically referred to as the effective sample size (ESS).
For our purposes, we can set

y = g(z). (1.33)

4 This weighted average assumes fixed, independent weights.

12 learning and sampling

Figure 1.1: Example of importance sampling (IS): the target is a Gaussian
distribution N(0.6, 0.1), the proposal is the uniform distribution U[0, 1]. The
probability density functions (pdfs) on the unit interval are shown. Ten proposal
samples are drawn i. i. d., with self-normalized weights depicted by bars
below the samples. The effective sample size (ESS) is roughly 3.9—less than
half the sample size since the proposal disproportionally covers the tails of
the target. N. B.: for illustration purposes the proposal does not cover the full
support of the target, an IS estimate would have a small bias.

That is, when making an IS estimate withN samples from the proposal,
the ESS estimates how many samples from the target distribution
would yield a hypothetical MC estimate with equally high variance.

Observing that the effective sample size is at most N, this implies
that an IS estimator has higher variance compared to the correspond-
ing, usually intractable MC estimator. The extreme cases highlight this
notion: when the proposal distribution is the target distribution, then
w(i) = 1/N and the ESS is indeed N; when the proposal distribution
is so off that a single sample dominates, i. e., the weights are one-hot,
the ESS is indeed 1.

An illustrative example for IS and ESS is given in fig. 1.1.

1.2.2 Ancestral Sampling

In this thesis we are often interested in sampling joint distributions
of variables. A general strategy for sampling such joint distributions
is ancestral sampling. It builds upon any factorization of the joint
distribution, e. g.,

p(x1, x2, x3) = p(x3 | x2, x1)p(x2 | x1)p(x1). (1.34)

Then we can sample from the joint distribution by sampling, in order,

x1 ∼ p(x1), x2 ∼ p(x2 | x1), x3 ∼ p(x3 | x2, x1). (1.35)

Despite being sampled individually from conditionals, the triplet
(x1, x2, x3) is now distributed according to the joint distribution.

Ancestral sampling is more of a sampling strategy than a technique.
Its usefulness depends on how simple sampling from the conditionals
is.

The term ancestral sampling highlights the connection to graphical
models. Graphical models dictate the factorization of the joint distri-
bution, and the joint distribution can then be sampled via ancestral

1.2 sampling distributions 13

sampling in topological order of the graph, i. e., starting from par-
ent nodes and then child nodes as soon as all their ancestor nodes
have been sampled. This strategy will be particularly useful when
discussing latent-variable models (LVMs) later on.

In this context, it is also worth pointing out that, in addition to being
distributed according to the joint distribution, each of the vectors of
the triplet is also distributed according to its respective marginal
distribution, i. e.,

(x1, x2, x3) ∼ p(x1, x2, x3) (1.36)

=⇒ x1 ∼ p(x1), x2 ∼ p(x2), x3 ∼ p(x3). (1.37)

The converse is generally not true. This is a potentially computationally
wasteful way of obtaining marginal samples, especially if we do not
require samples from all marginals for the task at hand. However, this
observation is useful when analyzing posteriors of a sequential LVM.

2 L AT E N T-VA R I A B L E M O D E L S

Throughout this thesis, we will learn probabilistic models for and
from sequential data.

Our goal is to learn a distribution p(x) of some random vector x from
a data set of some N ∈ N samples D =

{
x(i)

∣∣ i = 1, . . . ,N}, where
each x(i) ∈ Rdx .1 This puts us firmly into the realm of unsupervised
learning, i. e., we only assume some representative data D but no
supervision signals y(i) such as classification labels.

The method of choice for learning these so-called generative mod-
els p(x) in this thesis are latent-variable models (LVMs), a class of
probabilistic models. For alternatives such as stochastic processes,
auto-regressive models, or direct density estimation via maximum
likelihood, we refer the reader to, e. g., K. P. Murphy (2012).

While the bulk of this thesis discusses sequential models, it is worth
studying non-sequential models first.

2.1 definitions and concepts

An LVM assumes that, beyond the observation x, there also exists a la-
tent random variable z ∈ Rdz . Together, they follow a joint distribution

p(x, z) = p(x | z)p(z), (2.1)

where we call p(z) the prior distribution and p(x | z) the likelihood
distribution. From the joint distribution, a model for data p(x) can be
obtained via marginalization,

p(x) =
∫
p(x, z)dz. (2.2)

It is worth noting that many joint distributions lead to the same
marginal distribution; trivially, any model where z and x are indepen-
dent, p(x, z) = p(z)p(x), will have the appropriate marginal.

Thus, LVMs serve a conceptual purpose not immediately reflected
by the definition: the essence of data is captured in the latent variable z
and the corresponding prior distribution p(z); the likelihood model
p(x | z) captures how this essence is translated into an observation.
The line between these concepts is often blurry yet drives the design
of models and algorithms.

1 As is common in the literature, our notation will not distinguish between the random
variable or vector x and the value it takes on unless specifically required from context.

15

16 latent-variable models

Figure 2.1: Per-pixel average digit of the MNIST test data set. The entire data
set on the left, categorized by class label on the right.

As an example, consider the ubiquitous MNIST data set (LeCun
et al., 2010), a data set of gray-scale images of handwritten digits. Fig-
ure 2.1 shows on the left the entire test set averaged, an approximation
of the first moment of p(x). Beyond being centered on the canvas,
most information about the underlying data is lost in this statistic. It
is unlikely to serve well as a building block of a useful model.

Contrast this with the right-hand side, which shows the average of
the test set samples after they were categorized by their respective
class labels. Here, the mean for each digit k would be more suitable
grounds for the respective likelihood model p(x | z = k). This simple
example illustrates one of the appeals of LVMs. By composing simple
distributions—e. g., a Categorical distribution for the class label as well
as a conditional Gaussian distribution for each digit class—we quickly
arrive at a rich marginal distribution, a Gaussian mixture model (GMM).

The class membership is only one possible factor of variation to be
modeled by a latent variable. Others might include the thickness of
the strokes or the rotation of the digit. Which of these to model—and
how—is a choice by the user or the learning algorithm that trades off
faithfulness, complexity, and scalability of the resulting model. As the
saying goes: “All models are wrong but some are useful.” (Box, 1976,
1979) We will explore such trade-offs in the upcoming chapters of this
thesis.

In learning LVMs from data, we face two core challenges.
Firstly, learning algorithms for the model: by design latent variables

are missing during the learning process. It is thus not possible to learn
the model via a standard maximum likelihood objective,

arg max
θ

EpD(x)[lnpθ(x, z)], (2.3)

as the data set D does not contain latent variables. Here, pD(x) denotes
the data distribution, which may be empirical, and pθ(x, z) denotes a
so far non-descript parametrized model with learnable parameters θ.

Likewise, it is frequently not possible to learn via maximum likeli-
hood of the marginal model

arg max
θ

EpD(x)[lnpθ(x)] = arg max
θ

EpD(x)

[
ln
∫
pθ(x, z)dz

]
. (2.4)

While this objective is at least well-defined in the sense that D does not
need to contain latent variables, it requires solving the often intractable
marginalization integral.

This leads to the second challenge for learning LVMs from data:
inference. If the latent variables are not available in D, can we at least

2.2 variational inference 17

infer a belief in them? This may help with the learning process, and
given that z is interpreted as the essence of the respective observation x,
it is an interesting challenge in its own right.

Bayes’ rule hands us a principled way of inferring the latent variable
as the posterior

p(z | x) =
p(x, z)
p(x)

. (2.5)

This brings the challenge full circle. Bayes’ deceptively simple formula
cannot hide the fact that the denominator is the same intractable
marginal distribution that makes it challenging to learn an LVM.

2.2 variational inference

As it turns out, a key to solving these cyclically linked challenges of
LVMs is approximate inference: the unavailable true posterior p(z | x)
is replaced by a surrogate distribution q(z)—the approximate posterior.
Now, one can show that

lnp(x) > lnp(x) − KL(q(z) || p(z | x))︸ ︷︷ ︸
>0

(2.6)

= Eq(z)

[
ln
p(x, z)
q(z)

]
(2.7)

= Eq(z)[lnp(x | z)] − KL(q(z) || p(z)) ≡ LELBO. (2.8)

Since lnp(x) is referred to as evidence in Bayesian terminology, either
right-hand side expression in eqs. (2.6) to (2.8) defines the evidence
lower bound (ELBO).

Given that we want to learn a model p(x, z), the joint pdf can
typically be evaluated much more easily than the posterior. The ap-
proximate posterior q(z) is likewise a model choice and thus tractable
at least by MC integration. As a consequence, the ELBO is tractable
even in scenarios where neither the marginal p(x) nor the posterior
p(z | x) are.

Further, the gap between evidence and ELBO is interpretable, it is
precisely the posterior Kullback-Leibler divergence (KL)

KL(q(z) || p(z | x)) ≡
∫
q(z) ln

q(z)
p(z)

dz. (2.9)

The gap can be tightened by finding better and better approximations
to the intractable posterior. Conveniently, the posterior KL divergence
in eq. (2.6) is bounded from below and lnp(x) is constant in q, so that
for any x

arg min
q∈Q

KL(q(z) || p(z | x)) = arg max
q∈Q

LELBO(q, x). (2.10)

18 latent-variable models

Here, Q is the set of available distributions for q. This set is called
the variational family. If p(z | x) ∈ Q, then and only then the gap will
vanish, and the ELBO is in fact tight.

The ELBO can thus address the challenges we have identified with
LVMs: per eq. (2.10), we can find good approximate posteriors by
maximizing the tractable ELBO in q; in doing so, by eq. (2.6) the
ELBO becomes a good proxy to maximum likelihood.

Classical inference by Bayes’ rule is replaced by optimization in the
space of distributions. This is a so-called variational problem, hence
the term variational inference (VI) for this class of methods (Jordan et al.,
1999; MacKay, 2002).

For an excellent, recent introduction and review of the vast field of
VI, the reader is referred to Blei et al. (2017).

We will limit ourselves to the recently popularized approach of
stochastic variational inference (SVI; Hoffman et al., 2013), predomi-
nantly to contrast it with the framework introduced in the following
section. SVI leverages stochastic optimization: in its simplest form,
for every data sample x(i) ∈ D a respective approximate posterior
qi(z) is determined via SGD on the ELBO. Conceptually simple in
this sense, it is a fairly flexible method, provided stochastic gradients
of the ELBO can be obtained. This allows using more flexible approx-
imate posteriors and generative models, especially compared to the
previously predominant approaches.

While Hoffman et al. (2013) showed how to scale the method to “big”
data sets in the order millions of samples, an inherent disadvantage
remains: the parameters for each approximate posterior qi(z) either
have to be stored or computed anew.

2.3 variational auto-encoders

A recent approach that leverages the scalability of neural networks
for learning generative models is the variational auto-encoder (VAE),
independently and concurrently developed by Kingma and Welling
(2014) and Rezende et al. (2014). We will briefly discuss the two main
ingredients to VAEs: amortization and reparametrization.

amortization A downside of the VI approaches as described in
section 2.2 is scalability in the size of the data set: the respective ap-
proximate posterior for each data sample x(i) needs to be computed
individually in a possibly costly optimization procedure. This is par-
ticularly costly if the model parameters θ are updated: after every
update, the approximate posteriors have to be optimized anew. This
lack of scalability is the motivation for VAEs.

VAEs replace approximate inference via optimization with a density
network with weights φ. In this work, we refer to it as the inference

2.3 variational auto-encoders 19

network though it is also known as the recognition model. The density
network is shared between all samples; as discussed in section 1.1.4,
it returns a member q ∈ Q as a function of a sample x(i), usually by
returning parameters of a distribution in a parametric family, e. g.,
mean and covariance for Gaussians. To reflect the shared nature of
computations we write qφ

(
z
∣∣ x(i)

)
instead of qi(z) as above.

The VAE derives its name from deterministic auto-encoders, a neural
architecture consisting of two subnetworks, encoder and decoder,
linked via a low-dimensional representation. The inference network
can be viewed as an encoder, with the low-dimensional representation
being replaced with a stochastic latent variable. The role of the decoder
is played by the likelihood pθ(x | z), which can also be implemented by
a density network. From this lens, the prior pθ(z) serves as regularizer
of the auto-encoder.

It is worth noting that density networks do not render the approx-
imate posteriors more flexible or accurate even when implemented
via neural networks. In fact, a thought experiment reveals we might
expect the opposite. Suppose we had an oracle optimizer: it would
always return the optimal member of the variational family in sample-
wise optimization. The same oracle optimizer might also provide us
with the optimal network weights that minimize the ELBO on average.
Even this optimal network can only return solutions as good as the
optimal oracle approximations since both are constrained to the same
variational family. Unless we also assume that the neural network can
approximate the sample-wise process arbitrarily well, we must expect
it to perform worse at least on some samples. We will formalize this
intuition in section 2.4 and chapter 6.

The benefit is found elsewhere: density networks can exploit pat-
terns among samples and their posteriors to arrive at approximate
posteriors that are empirically good enough with a comparatively low—
and fixed—amount of computation. All samples benefit from an im-
proved set of network weights. On top, neural networks are well-suited
for parallelization across large batches of samples. This approach is
referred to as amortization.

reparametrization The scalability of amortized variational inference
(AVI) stands and falls with the scalability of the underlying density
networks. The VAE framework thus requires another ingredient: an
objective function that can be optimized via SGD. The ELBO is the
natural candidate. For SGD, we need to compute or estimate

∇φEqφ(z|x(i))

[
ln

pθ(x, z)
qφ
(
z
∣∣ x(i)

)]. (2.11)

As before, the expectation is typically not analytically solvable. This
is particularly true if we implement the generative likelihood model
pθ(x | z) with density networks.

20 latent-variable models

0

5

1

6

2

7

3

8

4

9

Figure 2.2: Latent space of a VAE with two latent dimensions trained on
MNIST. For each posterior qφ(z | x(i)) with x(i) from the test set, a single
sample colored by class label is shown. For four test set digits, the respective
approximate posterior (red), optimal variational family member (green), and
true posterior (black) are displayed. See section 2.3 for more details.

Overcoming this obstacle is the second building block of the VAE
framework. The key observation is that we have to restrict the vari-
ational family Q to distributions that permit reparametrization, as
discussed in section 1.1.5. With the help of reparametrization, the
ELBO gradient in eq. (2.11) can be estimated without bias, and the
entire VAE, inference network and generative model, can be trained
jointly with SGD on the ELBO, end-to-end. VAEs are typically trained
with just a single sample per posterior per gradient update.

example: vae on mnist For a better understanding of VAEs, we
explore a simple example on the MNIST data set. The inference model
is a density network that returns Gaussians with restricted, diagonal
covariance matrices. The likelihood model is a density network that
returns independent Bernoullis per pixel. See appendix A.1 for details.

It should be noted that this is an illustrative example. The VAE
was trained to convergence, but model and hyper-parameters were
not tuned for optimal performance. Most notably, the latent space is
constrained to two dimensions to facilitate visualization. Figure 2.2
shows one latent-space sample for each test set digit, colored by the
respective class label.

2.3 variational auto-encoders 21

The samples are spread unevenly, with more samples clustered in
the center and a wider spread moving outwards. The samples can be
viewed as representative samples from the mixture distribution

1

|D|

|D|∑
i=1

qφ

(
z
∣∣∣ x(i)

)
, x(i) ∈ D. (2.12)

This aggregate posterior is regularized towards the prior since the infer-
ence network approximates the true posteriors and

pθ(z) =
∫
pθ(z | x)pθ(x)dx ≈ 1

|D|

|D|∑
i=1

pθ

(
z
∣∣∣ x(i)

)
. (2.13)

The similarity between eqs. (2.12) and (2.13) explains the spread of
samples roughly according to the prior, a standard Gaussian.

Yet, particularly between the clusters of classes we also see areas
with lower number of samples than the prior would warrant. In these
areas of low density of the aggregate posterior, the likelihood network
would have to interpolate between digits from different classes. Where
the likelihood density network is unable to do so because the interpola-
tion would be too non-smooth, the VAE learns to avoid the respective
latent-space regions. The notion of smoothness of the likelihood model
has been explored further by N. Chen et al. (2018, 2019).

In a related manner, we see that clusters of similar digits, e. g., 4s
and 9s, are located in similar regions of latent space. This is because
the likelihood MLP can then interpolate smoothly, as is highlighted
by the generative samples from the model depicted in fig. 2.3. These
representative samples are generated to reflect the latent space as
depicted in fig. 2.2, see appendix A.1 for details. These samples exhibit
different factors of variation, such as boldness or orientation within
class cluster, interpolation between classes with ambiguous hybrid
samples, as well as spurious samples from the regions of low density
of the aggregate posterior.

Figure 2.2 further shows four example digits. For each of these
digits x, the amortized approximate posterior qφ(z | x) is computed
and displayed in red. In green, the optimal member of the variational
family of diagonal Gaussians as determined by SVI is shown. These
examples exhibit imperfect inference via density networks to varying
degree. Moreover, due to the low dimension of the latent space, the
true posterior can be probed by exhaustive importance sampling.
It is depicted in black. We observe that while on the one hand the
true posteriors are not Gaussian, cf. the 6, the Gaussian assumption
overall is fairly accurate. To some extent, this can be expected: through
learning, the model pθ(x, z) can adjust to the variational family and be
learned such that the corresponding posteriors can be approximated
well enough by Gaussians. Conversely though, this is an implicit
constraint to learning a more accurate model.

22 latent-variable models

Figure 2.3: Representative generative mean samples from a VAE trained
on MNIST. The samples cluster like the latent states in fig. 2.2 from the
same model. One can observe factors of variation within a class cluster and
similarity of samples on the border of class clusters. Further, some samples
do not show a clear digit. Their respective latent states fall into a valley of
the aggregate approximate posterior in fig. 2.2.

In the following section 2.4, we will take a more formal look at the
inference gaps caused by the variational family and amortization.

2.4 inference gaps

A central topic in VI are inference gaps. Loosely speaking, inference
gaps characterize different modes of inference suboptimality of ap-
proximate inference. Several gaps are known in the literature and will
be discussed here. We will discuss a new gap later in chapter 6.

2.4.1 Approximation Gap

The best possible approximate inference distribution for a sample
observation x(i) is the optimum

q∗i (z) = arg min
q∈Q

KL
(
qi(z)

∣∣∣∣∣∣ p(z
∣∣∣ x(i)

))
(2.14)

within the variational family Q.

2.4 inference gaps 23

The variational family is an assumption. Immediately, if the true
posterior is not a member of the variational family, p

(
z
∣∣ x(i)

)
/∈ Q, the

posterior divergence cannot vanish,

KL
(
q∗i (z)

∣∣∣∣∣∣ p(z
∣∣∣ x(i)

))
> 0. (2.15)

This irreducible gap between ELBO and log evidence lnp
(
x(i)

)
is

called approximation gap.
The approximation gap can be lowered by choosing a larger vari-

ational family. This choice has to trade off greater flexibility for the
increased complexity of the optimization to obtain the optimum within
the family as well as the practicability of the members of the varia-
tional family. We discuss the popular concept of normalizing flows in
section 2.5.1

2.4.2 Amortization Gap

Amortization adds an additional gap on top of the approximation gap.
Crucially, the optimization eq. (2.14) is per sample observation x(i).
Amortized variational inference replaces per-sample optimization with
a typically neural function with learnable parameters φ that maps a
sample observation x(i) onto a member qφ

(
z
∣∣ x(i)

)
of the variational

family. This immediate functional relationship is reflected by notation:
qφ
(
z
∣∣ x(i)

)
instead of qi(z). The latter is only indirectly informed

by x(i) through optimization.
This leads to the expected ELBO

arg min
φ

Ep(x)
[
KL
(
qφ(z | x)

∣∣∣∣ p(z | x)
)]

(2.16)

as the objective, where instead of optimizing the member of the vari-
ational family for one specific observation x(i) as in eq. (2.14), the
function parameters φ of the approximate inference model are opti-
mized such that on average the posterior KL is low. By definition, for
an arbitrarily flexible function this would be the case if for all x(i)

qφ

(
z
∣∣∣ x(i)

)
= arg min

q∈Q
KL
(
q(z)

∣∣∣∣∣∣ p(z
∣∣∣ x(i)

))
= q∗i (z). (2.17)

In general, one cannot expect a function approximation to solve
eq. (2.14) accurately. The gap towards the log evidence widens:

KL
(
qφ

(
z
∣∣∣ x(i)

) ∣∣∣∣∣∣ p(z
∣∣∣ x(i)

))
> KL

(
q∗i (z)

∣∣∣∣∣∣ p(z
∣∣∣ x(i)

))
. (2.18)

This phenomenon was first discussed by Cremer et al. (2018), and the
additional gap

KL
(
qφ

(
z
∣∣∣ x(i)

) ∣∣∣∣∣∣ p(z
∣∣∣ x(i)

))
−KL

(
q∗i (z)

∣∣∣∣∣∣ p(z
∣∣∣ x(i)

))
> 0 (2.19)

is called the amortization gap.

24 latent-variable models

The amortization gap is independent of the approximation gap
in that a vanishing approximation gap does not imply vanishing
amortization gap and vice versa. They have different causes: the
variational family on the one hand and the limited capacity of the
amortization model on the other.

Reducing the amortization gap can be achieved by, e. g., either using
wider and deeper NNs for the inference network. Alternatively, the
network design can be informed by inductive biases that make the
network more suitable to amortize inference. We will see examples of
this approach in parts II and III.

2.5 vaes as a framework

VAEs can be viewed as a framework rather than an isolated model.
It provides a very generic way to combine LVMs with auto-encoding
and amortized inference in a principled yet scalable fashion. Any
application that can be framed as an LVM immediately lends itself
to this framework. This flexibility has spawned a host of subsequent
research into improving and extending it, of which we will highlight
three main threads of relevance to the remainder of the thesis.

2.5.1 Normalizing Flows

Motivated by lowering the approximation gap, an immediate can-
didate for extending the framework is the variational family. For
simplicity, the family of Gaussians is often the default choice. It is
tempting to utilize the flexibility of neural networks to overcome this
restriction. A key observation is that learning a VAE does not require
a closed-form distribution. Samples and pdf evaluations are sufficient
to estimate gradients.

A natural idea is to use neural networks for a change of variables, i. e.,
using an invertible and differentiable function f and simply mapping
samples ε from a simple distribution p(ε) to obtain samples z = f(ε)

of a more complicated distribution.
In order to be useful for VAEs, we need to be able to at least evaluate

the pdf of this new distribution. For a change of variables we know

p(z) = p(ε)
∣∣∣∣det

∂f

∂ε

∣∣∣∣−1. (2.20)

The latter factor denotes the inverse determinant of the Jacobian matrix
of f w. r. t. ε.

Being able to obtain samples and evaluate the pdf in this fashion
would allow us to estimate the ELBO using a potentially richer varia-
tional family. Two challenges to employ neural networks for f remain.
The function f is required to be invertible, which neural networks are

2.5 vaes as a framework 25

not by default, and computing the Jacobian and its determinant in a
naive way has cubic complexity for an arbitrary function.

Rezende and Mohamed (2015) suggested restricted neural layers
that are invertible by default and their determinant can be computed
in linear complexity. They call these constructs normalizing flows. Since
then, a host of normalizing flows has been suggested (Kingma et al.,
2016; Dinh et al., 2017; Papamakarios et al., 2017). Recent, comprehen-
sive reviews are provided by Papamakarios et al. (2019) and Kobyzev
et al. (2020).

2.5.2 Flexible Priors

Normalizing flows were initially developed to improve the flexibility
of the variational family. In principle, they can be used just as well
to devise more flexible priors. If the marginal distribution p(x) is
the object of interest, this option is of less interest since the added
flexibility can equally well be represented by a flexible likelihood
model p(x | z).

A more flexible prior is advisable in scenarios where the prior
is of interest itself. Sequential LVMs, as discussed throughout this
thesis, are such a case. More recent approaches provide flexible priors
by introducing hierarchies of latent variables (Sønderby et al., 2016;
Klushyn et al., 2019; Child, 2020). Their detailed discussion is beyond
the scope of this thesis.

2.5.3 Alternative Bounds

Another pillar of research on the VAE framework is tweaking or
replacing the ELBO as the learning objective. Monte Carlo objectives
(MCOs) are a general strategy to derive lower bound objectives to the
log marginal likelihood lnp(x) (Mnih and Rezende, 2016). Starting
from an unbiased statistical estimator p̂(x) of p(x), i. e.,

E[p̂(x)] = p(x), (2.21)

one can derive an MCO by applying Jensen’s inequality:

lnp(x) = ln E[p̂(x)] > E[ln p̂(x)]. (2.22)

The ELBO is an example of an MCO. With

p̂(x) =
p(x, z)
q(z)

, z ∼ q(z), (2.23)

we obtain the ELBO via

Eq(z)

[
p(x, z)
q(z)

]
= p(x) =⇒ Eq(z)

[
ln
p(x, z)
q(z)

]
6 lnp(x). (2.24)

26 latent-variable models

Another important example are importance-weighted auto-encoders
(IWAEs), due to Burda et al. (2016).2 IWAEs are identical to VAEs, ex-
cept they use a different MCO as the objective. Instead of the estimator
in eq. (2.23), they use the natural, equally unbiased but less variant
multi-sample estimator

p̂(x) =
K∑
k=1

p
(
x, z(k)

)
q
(
z(k)

) , z(k) ∼ q(z), (2.25)

which leads to the MCO

Eq(z)

[
ln

K∑
k=1

p
(
x, z(k)

)
q
(
z(k)

)]. (2.26)

The estimator is familiar to us from importance sampling, cf. sec-
tion 1.2.1, hence the naming. As should be expected, for K = 1 we
recover the ELBO. Moreover, one can show that the bound is monoton-
ically non-decreasing in K, i. e., the bound is guaranteed to get tighter
with growing number of samples.

It should be noted that instead of interpreting IWAEs as suggesting
a tighter bound as the objective, it may also be seen as enriching the
variational family while sticking to the ELBO as the objective (Cremer
et al., 2017).

Further bounds based on different divergences have been discussed,
cf. appendix A.2, but will not be used throughout this thesis. Similarly,
we briefly mention β-VAEs (Higgins et al., 2017), a variant of VAEs that
scale the likelihood term to obtain better latent representations. An
interesting intuition was later provided by Alemi et al. (2018) in terms
of a Pareto frontier of models that trade off the complexity of latent
representation z for the complexity of the likelihood model p(x | z). We
refrain from further discussion but point out that balancing the terms
of the ELBO—even online during learning—is an active direction of
research (Klushyn et al., 2019).

2 Historically, IWAEs were suggested before (or at least independent of) MCOs.

3 S E Q U E N T I A L
L AT E N T-VA R I A B L E M O D E L S

We now turn our attention to the study of dynamical systems. Here, this
broad term denotes entities or collections thereof and their dynamic
evolution over time as observed through sensors.

Such systems lend themselves to be modeled with LVMs: by dis-
tinguishing between observable and latent aspects of the dynamics,
LVMs provide the tools for principled Bayesian inference about the
state of a system.

We thus extend the theory discussed in chapter 2 to sequences of
length T ∈N to obtain sequential LVMs. We discuss sequences of la-
tent variables z1:T = (z1, . . . , zT) and observations x1:T = (x1, . . . , xT),
respectively. Similar to the non-sequential (static) case, we are now
interested in models of sequences of observations x1:T ,

p(x1:T) =
∫
p(x1:T , z1:T)dz1:T , (3.1)

after marginalization of the sequence of latent variables z1:T .

remarks and nomenclature

1. In this thesis, we will only discuss models with discrete time
and fixed time interval ∆t between subsequent steps in time.

2. Being such a vast field with widespread applications, differ-
ent nomenclatures have evolved. Observations xt are often also
called measurements, emphasizing, e. g., the sensor setup, or emis-
sions that are merely glimpses into and emitted by the underlying
latent system. Likewise, latent variables—or just latents—zt are
also called (latent) states, to emphasize that they capture the
actual state of the system as opposed to noisy, distorted, or
projected measurements.

3. Systems are often studied with the intent to control them by
means of control inputs ut to the system (also called actions or
more generally inputs or conditions). This changes the distribu-
tions of interest to, e. g., p(x1:T | u1:T) or p(x1:T , z1:T | u1:T). The
theory presented throughout this thesis is largely unaffected by
presence or absence of control signals. For notational brevity, we
will discuss the control-free versions by default and consider
control inputs where appropriate.

From one perspective, sequential LVMs are a special case of the theory
presented in chapter 2. For instance, we can argue in terms of a prior

27

28 sequential latent-variable models

p(z1:T), a likelihood model p(x1:T | z1:T), or a posterior p(z1:T | x1:T).
All considerations from the static case apply.

At the same time, the joint distribution of a sequence can be factor-
ized in a larger variety of interesting ways according to the chain rule
of probability, e. g.,

p(x1:T , z1:T) (3.2)

=p(x1:T | z1:T)p(z1:T) (3.3)

=

T∏
t=1

p(xt, zt | x1:t−1, z1:t−1) (3.4)

=

T∏
t=1

p(xt | z1:t, x1:t−1)p(zt | x1:t−1, z1:t−1). (3.5)

Where eq. (3.3) emphasizes the prior-likelihood nature of the model,
eqs. (3.4) and (3.5) shed more light on the sequential nature of the
model: in accordance with our notion of time and causality, later time
steps are conditioned on earlier time steps; and the observation xt at
time t depends on the latent state zt.

All of these factorizations are equally true and of use in different
situations. Any such choice sheds a different light on the model at
hand. A particular choice of factorization becomes interesting once
we impose assumptions on the model, typically by assuming indepen-
dence of certain variables. For instance, we might assume that—given
current and past latent states—the randomness of observations is only
caused by sensor noise. The mathematical model could reflect this as
independence of observations given states, and eq. (3.5) would become

T∏
t=1

p(xt | z1:t,���x1:t−1)p(zt | x1:t−1, z1:t−1), (3.5a)

or even
T∏
t=1

p(xt | z1:t)p(zt |���x1:t−1, z1:t−1) (3.5b)

if we also assume that the independent sensor noise does not feed
back into the latent system.

3.1 state-space models

Equations (3.5), (3.5a), and (3.5b) are three examples of valid factor-
izations with increasingly stronger model assumptions. Upon closer
inspection, we observe that all three factorizations consist of 2T unique
factors. Despite imposing assumptions, we would still be required to
specify a probabilistic model for each of the 2T factors, i. e., with in-
creasing sequence length the number of model components increases
linearly.

3.2 sequential bayesian posteriors 29

z

x

Figure 3.1: Graphical model of a state-space models (SSMs).

This is caused by all factors depending on an increasingly longer
past. It is thus common to impose Markov assumptions—given the
present, past and future are assumed independent. Two such Markov
assumptions lead from eq. (3.5) to state-space models (SSMs):

p(xt | z1:t, x1:t−1) = p(xt | zt), (3.6)

p(zt | x1:t−1, z1:t−1) = p(zt | zt−1). (3.7)

Plugging back into eq. (3.5), this leads to the simplified factorization

p(x1:T , z1:T) = p(z1)
T−1∏
t=1

p(zt+1 | zt)
T∏
t=1

p(xt | zt). (3.8)

We call p(z1) the initial state (prior) distribution, p(zt+1 | zt) the transi-
tion model, and p(xt | zt) the emission model, and xt synonymously
either emissions or observations. By further sharing both transition
and emission model across time, we have reduced the modeling effort
from 2T components to a fixed three components, independent of the
length of sequences.1

In an SSM, the state zt plays a powerful role: both the future
state zt+1 and the current observation xt depend solely on zt, i. e., it
must encompass all relevant information about the underlying sys-
tem to predict the observations as well as the future. This is also
reflected in the graphical model shown in fig. 3.1: the present state zt
blocks all paths between past (x1:t−1, z1:t−1), present (xt), and future
(xt+1:T , zt+1:T), rendering them conditionally independent.

3.2 sequential bayesian posteriors

Much like the factorization of the joint distribution is more nuanced,
the notion of “the” posterior is less obvious than in the static case. The
joint posterior

p(z1:T | x1:T) =
p(z1:T , x1:T)
p(x1:T)

∝ p(z1:T , x1:T) (3.9)

is theoretically available by Bayes’ rule. One could obtain more specific
inferences by appropriate marginalizations. Even if these operations

1 In the literature, there exists the notion of time-variant systems, where transition or
emission model are not or only partially shared across time. In this work, we will
only study time-invariant SSMs.

30 sequential latent-variable models

Figure 3.2: Raw satellite signals xt observe the true position with a coarse
accuracy of several meters. Consumer devices can reduce this error by orders
of magnitude by various filtering techniques. With an accurate motion model,
this error can be reduced further (Banville and Diggelen, 2016).

1

2 3

Figure 3.3: Filtering vs. smoothing for indoor localization. The agent per-
ceives distances to walls in all directions, xt, akin to Lidar sensors. The true
position is part of the latent state zt. The agent starts at position 1 at time
t = 1 and subsequently moves to positions 2 and 3. The left and right room
are indistinguishable due to symmetry, the filtering posterior p(z1 | x1) is
thus bimodal. Observations x2 and x3 break the symmetry by observing the
entire hallway at the bottom, the smoothing posterior p(z1 | x1:3) is unimodal.
Note that filtering and smoothing posterior from t = 2 onwards collapse to
the same mode once the symmetry-breaking observation x2 arrives. Situa-
tions in which the same observation can be caused by very different latent
states, like x1 in this example, are often called perceptual aliasing.

are tractable, this approach is not advisable as its computational time
and space requirements are often prohibitive.

Considering the outstanding role of the state in SSMs, we are of-
ten interested in narrower inferences. This leads to the notions of
(Bayesian) filtering and smoothing.

filtering Filtering asks the question: given all observations made
so far, x1:t, what is my (posterior) belief in the current latent state zt
of the system? We are trying to determine

p(zt | x1:t). (3.10)

Filtering is relevant in systems where accurate estimates of the latent
state of the system are required ad hoc, e. g., because downstream
decisions need to be made online based on everything that has been
observed so far. Filtering is thus very common in engineering disci-
plines (Julier and Uhlmann, 2004). A classic example is tracking as
depicted in fig. 3.2.

3.3 inference in state-space models 31

smoothing Smoothing tackles a similar question but with the ben-
efit of hindsight: where filtering neglects the additional information
provided by future observations xt+1:T (assuming t < T), smoothing
asks the question what our post-hoc belief in the latent state zt given
all available observations x1:T is,

p(zt | x1:T). (3.11)

The benefit of hindsight can rule out hypotheses for zt that were
still credible in the filtering scenario. This comes at the cost of the
mandatory delay to gather future observations (relative to zt).

A minimal example showcasing the relation between filtering and
smoothing is depicted in fig. 3.3.

In many scenarios, additional information to a posterior like the
additional observations for a smoother compared to a filter will lead to
a “more certain” belief in terms of, e. g., variance or entropy, as is true
for the example in fig. 3.3. This is not generally true, only on average.
This subtle misconception is further discussed in appendix A.3.

3.3 inference in state-space models

3.3.1 Building Blocks of SSM Posteriors

In trying to understand the extensions of the VAE as presented later in
parts II and III, it is worth dissecting the joint, filtering, and smoothing
posteriors, eqs. (3.9) to (3.11). Expressing them in terms of the basic
building blocks of an SSM, the initial state distribution, the transition,
and the emission model can inform the design of algorithms and
approximations.

forward filter The first building block is the forward filter

αt(zt) ≡ p(zt | x1:t), (3.12)

as encountered in eq. (3.10). It follows a recursive structure:

α1(z1) = p(z1 | x1) =
p(x1 | z1)p(z1)

p(x1)
(3.13)

∝ p(x1 | z1)p(z1), (3.14)

αt(zt) =
p(xt, zt | x1:t−1)
p(xt | x1:t−1)

(3.15)

=
p(xt | zt)

p(xt | x1:t−1)

∫
p(zt | zt−1)p(zt−1 | x1:t−1)︸ ︷︷ ︸

αt−1(zt−1)

dzt−1 (3.16)

∝ p(xt | zt)
∫
p(zt | zt−1)αt−1(zt−1)dzt−1. (3.17)

32 sequential latent-variable models

Crucially, all elements in this recursive definition only make use
of initial state distribution, transition, and emission model—up to
normalizing constants.

Equation (3.17) hints at a general skeleton for Bayesian filtering
algorithms: the prediction-update cycle. The integral factor predicts
with the transition model, based on the previous belief.2 The emis-
sion model factor then updates the prediction according the latest
observation to arrive at the new filtered belief. We will revisit the
prediction-update cycle later.

backward filter A second building block for analyzing Bayesian
posteriors in SSMs is the backward filter

βt(zt) ≡ p(xt+1:T | zt), (3.18)

i. e., the likelihood of future observations given the current state. Sim-
ilar to the forward filter, it follows a recursive structure, this time
starting from the back of the sequence:

βT−1(zT−1) = p(xT | zT−1) =

∫
p(xT | zT)p(zT | zT−1)dzT , (3.19)

βt(zt) =
∫
p(xt+1:T , zt+1 | zt)dzt+1 (3.20)

=

∫
βt+1(zt+1)p(xt+1 | zt+1)p(zt+1 | zt)dzt+1. (3.21)

Again, each recursive equation can be expressed using only the three
SSM building blocks. Beyond the model components of an SSM, for-
ward and backward filter are key tools for analyzing other interesting
posterior quantities, as we will do in the following sections.

smoother With forward and backward filter, we can express the
smoother

p(zt | x1:T) (3.22)

as known from eq. (3.11). From Bayes’ rule, we get

p(zt | x1:T) =
p(zt | x1:t)p(xt+1:T | zt)

p(xt+1:T | x1:t)
(3.23)

∝ αt(zt)βt(zt). (3.24)

From the perspective of eq. (3.24), forward and backward filter act
analogous to prior and likelihood for Bayesian posterior estimation
of zt.

2 This marginalization of zt−1 is also called Chapman-Kolmogorov equation.

3.3 inference in state-space models 33

consecutive-state joint posterior In the VAE framework, it
is important that models and posteriors or their approximations are
easy to sample. We thus investigate posterior transitions, which could
allow us to sample the posterior step-wise via ancestral sampling:

p(z1:T | x1:T) =
T∏
t=1

p(zt+1 | zt, xt+1:T). (3.25)

Here, the independence from past observations x1:t on the right-hand
side is a direct consequence of the SSM assumptions. Given the state zt,
future and past are independent. This can also be deduced from the
graphical model.

An intermediate quantity for understanding the transitions is the
posterior joint distribution of two consecutive states,

p(zt, zt+1 | x1:T). (3.26)

We can compute it as

p(zt, zt+1 | x1:T) =
p(zt, zt+1, xt+1:T | x1:t)

p(xt+1:T | x1:t)
(3.27)

∝p(xt+2:T |���xt+1, zt+1,��zt,��x1:t) (βt+1(zt+1))

· p(xt+1 | zt+1,��zt,��x1:t) (p(xt+1 | zt+1))

· p(zt+1 | zt,��x1:t) (p(zt+1 | zt))

· p(zt | x1:t). (αt(zt))

The cancellations follow from the SSM assumptions: the remaining
conditions block the path to the canceled conditions in the graphical
model. As before, we have expressed the joint posterior distribution
as a product of known distributions up to a normalizing constant.

posterior forward transition Given the consecutive-state joint
posterior and the smoother marginal, we can now compute the poste-
rior forward transition

p(zt+1 | zt, xt+1:T) (3.28)

with Bayes’ rule and inserting the previous results:

p(zt+1 | zt, xt+1:T)=
p(zt, zt+1 | x1:T)
p(zt | x1:T)

(3.29)

=
βt+1(zt+1)
βt(zt)

p(zt+1 | zt)p(xt+1 | zt+1). (3.30)

It is worth noting that (i) the above is exact since the normalizing con-
stants of numerator and denominator are identical, compare eqs. (3.23)
and (3.27), and (ii) βt(zt) is a normalizing constant as the forward
transition is a density in zt+1. This is a very interesting result: the pos-
terior transition is the same as the prior transition up to reweighting
that accounts for future observations.

34 sequential latent-variable models

These insights into the posterior forward transition will be the
building block for a novel design of an approximation of eq. (3.28) in
chapter 7.

posterior backward transition For completeness, the back-
ward transition

p(zt | zt+1, x1:T) (3.31)

follows a similar pattern:

p(zt | zt+1, x1:T) =
p(zt, zt+1 | x1:T)
p(zt+1 | x1:T)

(3.32)

∝ αt(zt)
αt+1(zt+1)

p(zt+1 | zt)p(xt+1 | zt+1), (3.33)

with normalization constant

p(xt+2:T | x1:t+1). (3.34)

We will not use the backward transition further throughout this thesis,
but it emphasizes the important role of forward and backward filter
along with the three building blocks to understand posterior analysis
of SSMs.

3.3.2 Kalman and Particle Filters

Since applications of SSMs are ubiquitous, there exists a vast body of
literature solving or approximating posterior quantities for various
scenarios and assumptions. In the following, we will give a brief intro-
duction to Kalman filters (Kalman, 1960) and particle filters (Del Moral,
1996). Arguably two of the most popular algorithms for Bayesian filter-
ing, they serve as a solid foundation for understanding the algorithms
presented in parts II and III. Our discussion will be limited to the
basics necessary for these discussions. For a more thorough introduc-
tion to a wide variety of related algorithms, the interested reader is
referred to the excellent reference by Sarkka (2013).

3.3.2.1 Kalman Filters

Kalman filters are a special case of filtering for a restricted class of
SSMs, so-called linear Gaussian systems (LGSs). LGSs assume

p(z1) ∼ N(µ1,Σ1), µ1 ∈ Rdz ,Σ1 ∈ Rdz×dz , (3.35)

p(zt | zt−1) ∼ N(Azt−1, Q), A, Q ∈ Rdz×dz , (3.36)

p(xt | zt) ∼ N(Hzt, R), H ∈ Rdx×dz , R ∈ Rdx×dx , (3.37)

3.3 inference in state-space models 35

with Σ1, Q, and R symmetric and positive semidefinite. The transition
and the emission model in eqs. (3.36) and (3.37) can be rephrased
equivalently as

zt = Azt−1 + εt−1, εt−1 ∼ N(0, Q), (3.38)

xt = Hzt + δt, δt ∼ N(0, R). (3.39)

That is, in an LGS all involved random variables are Gaussian, and
all conditional distributions are linear in their conditions. We call
A, Q, and ε transition matrix, covariance, and noise, respectively. Cor-
respondingly, H, R and δ are called emission matrix, covariance, and
noise, respectively. Within this work, we further assume that the ma-
trices and covariances are time-invariant, i. e., they remain constant
over time. Similarly, we assume transition and emission noises to be
independent from each other and i. i. d. across time.

LGSs are a very friendly special case of SSMs in the sense that a
lot of interesting posterior quantities are tractable and can be com-
puted efficiently. The Kalman filter—the Bayesian filter algorithm for
p(zt | x1:t)—is arguably a wide-spread example.

The purpose of this section is thus less to review and dissect Kalman
filters, as has been done numerous times over the past half-century,
but to offer a perspective that helps understanding new concepts in
parts II and III.

Recall the prediction-update cycle, eq. (3.17), which we rewrite as
two equations:

p(zt | x1:t−1) =
∫
p(zt | zt−1)αt−1(zt−1)dzt−1, (prediction)

αt(zt) ∝ p(xt | zt)p(zt | x1:t−1). (update)

Both equations can be solved in closed form for LGSs, and the resulting
algorithm is the Kalman filter.

prediction Since the initial state distribution is Gaussian and the
filter is defined recursively, we can conclude by induction through
time that for any LGS the filter distribution is also Gaussian,

αt−1(zt−1) ∼ N
(
µ
(f)
t−1,Σ(f)

t−1

)
, (3.40)

for some mean µ(f)t−1 and covariance Σ(f)
t−1.

Then, inserting into eq. (3.38), standard rules for multivariate Gaus-
sian distributions tell us that for zt−1 ∼ αt−1(zt−1)

zt = Azt−1 + εt−1 ∼ N
(

Aµ(f)t−1︸ ︷︷ ︸
≡µ(p)

t

, AΣ(f)
t−1A>+ Q︸ ︷︷ ︸
≡Σ(p)

t

)
. (3.41)

Adding Q, the prediction step usually increases uncertainty—unless
A contracts strongly, i. e., has eigenvalues of absolute values much
smaller than 1. Figure 3.4 depicts this as the transition in state space
from αt−1(zt−1) to Eαt−1 [p(zt | zt−1)].

36 sequential latent-variable models

z(1)

z(2)

x(1)

x(2)

x̂t

αt−1(zt−1)

αt(zt)

Eαt−1
[p(zt | zt−1)]

N(x̂t, R)

1) predict

2) update

2a) project

2b) fuse

2c) project back

Figure 3.4: The prediction-update cycle of Kalman filters. Gaussian distribu-
tions are represented by ellipses around the means corresponding to 50%
of probability mass. Starting from the current filtering posterior αt−1(zt−1),
a prediction Eαt−1 [p(zt | zt−1)] is made in state space (left) according to
eq. (3.41). The prediction is updated with the observation x̂t to obtain αt(zt)
according to eq. (3.42). If the emission matrix H is square and invertible,
the update step can be broken down into (a) projecting the prediction into
observation space (right), (b) fusion with the noisy observation N(xt, R), and
(c) undoing the projection. Correspondence via projection between state and
observation space is indicated by matching colors of the ellipses.

update The update step

αt(zt) ∝ p(xt | zt)p(zt | x1:t−1) (3.42)

is often tackled in one of two ways:

1. inserting the Gaussian pdfs and completing the square to nor-
malize the right-hand side; or

2. noticing that the right-hand side is a joint Gaussian pdf in zt
and xt and computing the marginal in zt according to standard
rules for multivariate Gaussians.

Both ways lead to closed-form solutions of eq. (3.42) and numerically
stable Kalman filter implementations but are rather pedestrian. In
the following, we will trade the generality of these solutions for a
more intuitive derivation that will prove helpful in understanding the
design decisions in section 4.2. The derivation is accompanied by the
visualization in fig. 3.4.

To this end, we now additionally assume that the emission matrix H
is square and invertible. Often, this is not the case, for instance with
redundant sensors (dx > dz) or higher-order state components that
are not measured by a sensor (dx < dz).

The motivation for this additional assumption is that we can now
start from the back—the desired distribution αt(zt) ∼ N

(
µ
(f)
t ,Σ(f)

t

)
—

and project into observation space by a change of variables, which

3.3 inference in state-space models 37

requires the invertible H. At this point, µ(f)t and Σ(f)
t are unknown,

but the projection follows the distribution

xt = Hzt ∼ N
(

Hµ(f)t , HΣ(f)
t H>

)
, zt ∼ αt(zt). (3.43)

We can find equations for the missing parameters by combining in-
formation from two sources: the (projected) prediction, cf. eq. (3.41),

xt = Hzt ∼ N
(

Hµ(p)t , HΣ(p)
t H>

)
, zt ∼ N

(
µ
(p)
t ,Σ(p)

t

)
, (3.44)

and the noisy measurement3

xt ∼ N(x̂t, R). (3.45)

The fusion of these two sources of information is performed by multi-
plying the respective densities, as is depicted in fig. 3.4.

The product of densities of two Gaussian distributions N(µa,Σa)
and N(µb,Σb) is proportional to the density of another Gaussian
distribution N(µc,Σc), with

µc = µa +Σa(Σa +Σb)
−1(µb − µa), (3.46)

Σc =
(
Σ−1
a +Σ−1

b

)−1
(3.47)

= Σa(Σa +Σb)
−1Σb. (3.48)

By identifying N(µc,Σc) with the projected filter, eq. (3.43), and the
two sources of information with N(µa,Σa) and N(µb,Σb), respec-
tively, eqs. (3.46) and (3.47) provide us with a system of equations that
we can solve for the missing parameters µ(f)t and Σ(f)

t :

Hµ(f)t = Hµ(p)t + HK
(

x̂t − Hµ(p)t
)

(3.49)

= H
(
µ
(p)
t + K

(
x̂t − Hµ(p)t

))
(3.50)

HΣ(f)
t H>=

((
HΣ(p)

t H>
)−1

+ R−1

)−1

(3.51)

= H
(
Σ
(p)
t − KHΣ(p)

t

)
H> (3.52)

with

K ≡ Σ(p)
t H>

(
HΣ(p)

t H>+ R
)−1

. (3.53)

The step in eqs. (3.51) and (3.52) is detailed in appendix A.4.
Since H is invertible, we can immediately solve eqs. (3.50) and (3.52)

by multiplying with appropriate inverses from left and right:

µ
(f)
t = µ

(p)
t + K

(
x̂t − Hµ(p)t

)
, (3.54)

Σ
(f)
t = Σ

(p)
t − KHΣ(p)

t . (3.55)

Put together, eqs. (3.53) to (3.55) form the update step of the Kalman
filter. Combined with the prediction step, eq. (3.41), this yields the
Kalman filter algorithm summarized in algorithm 1.

3 Here, the notation distinguishes the random variable xt from the measured value x̂t.

38 sequential latent-variable models

Algorithm 1: Kalman Filter.
Input: observations x̂1:T ;

LGS parameters: initial state distribution parameters
µ1,Σ1, matrices A, Q, H, R, cf. eqs. (3.35) to (3.37)

Output: filter distributions αt(zt) ∼ N
(
µ
(f)
t ,Σ(f)

t

)
Initialize µ(f)0 = µ1,Σ(f)

0 = Σ1.
for t = 1, . . . , T do

Predict

µ
(p)
t = Aµ(f)t−1,

Σ
(p)
t = AΣ(f)

t−1A>+ Q.
Compute Kalman gain

K = Σ
(p)
t H>

(
HΣ(p)

t H>+ R
)−1

.

Update

µ
(f)
t = µ

(p)
t + K

(
x̂t − Hµ(p)t

)
,

Σ
(f)
t = Σ

(p)
t − KHΣ(p)

t .
end

a minimal example To shed some more light on the Kalman filter,
it is worth looking at a minimal example, a scalar latent random walk
with white noise in the emission model:

p(zt | zt−1) = N
(
zt
∣∣ zt−1,σ2p

)
, (3.56)

p(xt | zt) = N
(
xt
∣∣ zt,σ2e). (3.57)

That is, A = H = 1. Then eqs. (3.41) and (3.53) to (3.55) translate to

µ
(p)
t = µt−1, (3.58)

σ2t,(p) = σ
2
t−1 + σ

2
p, (3.59)

k =
σ2t−1 + σ

2
p

σ2t−1 + σ
2
p + σ

2
e

∈ [0, 1], (3.60)

µt = µt−1 + k(xt − µt−1) = (1− k)µt−1 + kxt, (3.61)

σ2t = σ
2
t−1 − k(σ

2
t−1 + σ

2
p). (3.62)

With k ∈ [0, 1], we see that the updated mean µt is a convex combi-
nation of the previous updated mean µt−1 and the observation xt.
The factor k measures how much to trust the prediction vs. the new
observation by relating the respective variances σ2p and σ2e. If σ2p � σ2e,
i. e., the emission is much more trustworthy than the prediction, then
k→ 1, and conversely if σ2p � σ2e then k→ 0.

further remarks K is the so-called Kalman gain. Its name is
rooted in the control community where the Kalman filter originates.

3.3 inference in state-space models 39

Loosely speaking, a gain matrix quantifies the magnitude of effect a
control input has on the system. Analogously, the Kalman gain quan-
tifies how much effect the deviation x̂t − Hµ(p)t between observation
and predicted observation has on the belief update, as is indicated by
eq. (3.54) and highlighted by the scalar example.

It is worth stressing again that the detour to observation space is
not necessary to arrive at this solution from a purely algebraic point of
view. However, the concept of fusing different sources of information
by multiplying their densities gives a good intuition of the Kalman
filtering algorithm. It applies to similar scenarios: for instance, if there
is no prediction but several independent sensor measurements of the
same quantity, each with their individual noise model, principled
sensor fusion can be achieved by multiplying the respective densities
according to the same rules. This yields a weighted mean of the sensor
readings, weighted with the relative trust in the individual sensors.
This concept of fusion will be a building block of deep variational Bayes
filters (DVBFs) in section 4.2.

The Kalman filter has been extended to nonlinear scenarios, most
notably by the extended Kalman filter (Mc Gee et al., 1962) and the
unscented Kalman filter (Julier and Uhlmann, 1997). Further, each of
these algorithms can be extended to the smoothing scenario, pioneered
by Rauch et al. (1965). The interested reader is once again referred to
Sarkka (2013).

3.3.2.2 Particle Filters

Kalman filters fall on one end of the spectrum of Bayesian posterior
algorithms in that they introduce strong assumptions, but deliver
closed-form solutions to usually intractable inference problems. Parti-
cle filters in some sense fall on the opposite end of this spectrum. They
attempt to reduce assumptions on the system to a minimum while
still providing posterior samples and estimates.

Once again, we revisit the prediction-update recursion, eq. (3.17),

αt(zt) ∝ p(xt | zt)
∫
p(zt | zt−1)αt−1(zt−1)dzt−1 (3.63)

= p(xt | zt)Eαt−1(zt−1)[p(zt | zt−1)]. (3.64)

Particle filters are built upon the following idea: the filter αt is recur-
sively known up to a normalizing constant, and in general we cannot
sample it. In section 1.2.1, we found how to obtain weighted samples
via importance sampling in such a scenario.

basic algorithm Since the unnormalized pdf of the filter depends
on an expectation w. r. t. the previous filter, eq. (3.64), we sample
recursively. We start from a weighted batch of particles representing α1.
Then we perform particle-wise prediction, which corresponds to an
IS estimate of Eαt−1(zt−1)[p(zt | zt−1)]. Last we update the weights

40 sequential latent-variable models

Algorithm 2: Particle Filter.
Input: observations x1:T ; number of particles P;

SSM initial, transition, and emission distribution;
proposal distributions π(zt | z1:t−1, x1:t);
resampling criterion and technique

Output: filtered, weighted state particle trajectories{{(
w

(p)
t , z(p)1:t

)}
p=1,...,P

}
t=1,...,T

Initialize w(p)
0 = 1/P,p = 1, . . . ,P

for t = 1, . . . , T do
for p = 1, . . . ,P do

Proposals z(p)t ∼ π
(

zt
∣∣∣ z(p)1:t−1, x1:t

)
Updates γ(p)t = p

(
xt
∣∣∣z(p)t)

p
(

z(p)t
∣∣∣z(p)t−1)/π(z(p)t

∣∣∣z(p)1:t−1,x1:t
)

Unnorm. weights ŵ(p)
t = w

(p)
t−1γ

(p)
t

end

Renormalize weights w(p)
t = ŵ

(p)
t /
∑P
r=1 ŵ

(r)
t

if criterion is met then{(
w

(p)
t , z(p)1:t

)}
= resample

({(
w

(p)
t , z(p)1:t

)})
end

end

def resample
({(

w
(p)
t , z(p)1:t

)})
:

Save temporary copy ẑ(p)1:t = z(p)1:t
Updated particle indexes {ip} = technique

({
w

(p)
t

})
for p = 1, . . . ,P do

Set w(p)
t = 1/P

Overwrite trajectories z(p)1:t = ẑ(ip)1:t

end

with the emission model. A more technical description is presented in
algorithm 2.4

The particle filter is an implementation of a more general class of
algorithms, sequential importance sampling (SIS). In this context, the
samples z(i)t are referred to as particles, hence particle filters.

Since we assumed nothing beyond tractability of all pdfs of all
components of the SSM and proposals that can be sampled, particle
filters are a very versatile example of a Bayesian posterior algorithm.
This versatility comes with strings attached, which we will discuss in
the following.

4 We will not cover actual implementation details, such as operating in log space and
making use of the logsumexp function.

3.3 inference in state-space models 41

normalizing constants Part of the appeal of particle filters is
that we only need to know the filtering distribution up to a nor-
malizing constant. At the same time, section 3.3 informs us that the
normalizing constant Zt of the filter αt(zt) is p(xt | x1:t−1) so that

T∏
t=1

Zt = p(x1:T). (3.65)

In eq. (1.20), we saw that the normalizing constant can be estimated as
the average unnormalized weight. One can thus obtain an unbiased
estimator of the joint marginal likelihood of the observations as a
byproduct of particle filtering via

p(x1:T) ≈
T∏
t=1

P∑
p=1

ŵ
(p)
t︸ ︷︷ ︸

≈Zt

. (3.66)

A more detailed discussion of this estimator including a proof of
unbiasedness even in the case of resampling can be found in Maddison
et al. (2017).

particle degeneration Algorithm 2 assumes a generic proposal
π(zt | z1:t−1, x1:t). Often, this is simplified to π(zt | zt−1, xt) to guar-
antee an efficient online algorithm. It is even possible to implement a
so-called bootstrap particle filter, which uses the prior transition model
as a proposal. Many of the caveats of importance sampling transfer to
sequential importance sampling. In particular, a successful implemen-
tation of a particle filter depends on a suitable proposal distribution.

This leads to the phenomenon of particle degeneration. Empirically,
the set of particles tends to collapse after a certain time horizon, in
the sense that only a small fraction of particles have a non-negligible
weight. That implies a low ESS, which in turn is connected to high-
variance estimators. To counter this phenomenon, SIS incorporates
optional resampling steps. Generally speaking, the resampling step
discards particles with negligible weights in favor of copies of parti-
cles with non-negligible weight. SIS with resampling is often called
sequential importance resampling (SIR).

resampling techniques In this work, we make use of two dif-
ferent resampling techniques. The first and arguably most common
technique is Categorical resampling. The particles are resampled by
drawing P indexes i. i. d. from a Categorical distribution with prob-
abilities equal to the normalized weights. This way, particles with
negligible weight are unlikely to survive.

The second technique is called stochastic universal sampling (SUS;
Baker, 1987). Again, we draw P random indexes, this time not i. i. d.
but correlated: where Categorical resampling allows the improbable

42 sequential latent-variable models

1/3 2/3

w(1) w(2) w(3)

u(3) u(1) u(2)

v(1)

∼ U[0, 1/3]

v(2) v(3)

Figure 3.5: Categorical vs. stochastic universal sampling (SUS) with P = 3

particles. Weightsw(i) correspond to their block length. Categorical sampling
draws three i. i. d. samples u(i) ∼ U[0, 1]. The third particle is not resampled
despite having twice the weight of the first particle. SUS samples only one
random sample v(1) = u ∼ U[0, 1/3], then adds 1/3 and 2/3 to arrive at v(2)

and v(3), respectively. Particles with weight larger than 1/3 survive.

Algorithm 3: Categorical Resampling.

Input: current weights
{
w

(p)
t

}
p=1,...,P

Output: resampled indexes {ip}p=1,...,P

for p = 1, . . . ,P do
Sample u(p)t ∼ U[0, 1].
Set ip = arg minK∈{1,...,P}

∑K
k=1w

(k)
t > u

(p)
t .

end

scenario that, e. g., the particle with highest weight is not among the
resampled, SUS guarantees that every particle with w(p)

t > K/P for
some K ∈N is at least K times among the resampled particles.

The two techniques are shown in fig. 3.5 and algorithms 3 and 4.

resampling strategies Beyond the technique, we need to specify
a criterion upon which to resample. An easy default would be to
resample at every step, but this suffers from at least two drawbacks.

Firstly, resampling may be costly, so it may be advisable to limit
resampling to a necessary minimum.

Secondly, particle filters have to maintain a posterior belief with
a finite amount of particles. That is, if the belief contains multiple
modes, each mode is in turn represented by an even lower amount of
particles. Assume the following thought experiment: a particle filter
with two particles (P = 2, arguably an audacious choice) and weights
w

(1)
t = w

(2)
t = 1/2. Each particle represents a distinct mode of the

posterior belief. Categorical resampling will delete one of the modes
with a probability of 50%. More generally, resampling too frequently
can run the risk of deleting modes without need.

In this extreme scenario, the ESS is at its maximum P, which indi-
cates that particle degeneration does not show. Indeed, a very common

3.4 the sequential elbo 43

Algorithm 4: Stochastic Universal Sampling (Baker, 1987).

Input: current weights
{
w

(p)
t

}
p=1,...,P

Output: resampled indexes {ip}p=1,...,P

Sample u ∼ U[0, 1/P].
for p = 1, . . . ,P do

Set v(p)t = u+ (p−1)/P.
Set ip = arg minK∈{1,...,P}

∑K
k=1w

(k)
t > v

(p)
t .

end

default criterion is for the ESS to drop below a threshold, often P/2.
Empirically, this has shown to be a good compromise that avoids
particle degeneration on the one hand and unprompted mode collapse
on the other.

SIR tends to suffer less from particle degeneration.

3.4 the sequential elbo

The following two parts of this thesis revolve around applying the
principles of VAEs to sequential LVMs. While we save the details
of these adaptations to the later chapters, it is worth inspecting the
natural objective function, the sequential ELBO

Eq(z1:T |x1:T)[lnp(x1:T | z1:T)] − KL(q(z1:T | x1:T) || p(z1:T)), (3.67)

as the basis for all later discussion. It is superficially very similar to the
static ELBO discussed in chapter 2. Since all three joint distributions
in eq. (3.67) factorize differently, however, we inspect the ELBO closer
under SSM assumptions as discussed in the previous sections.

log likelihood

Eq(z1:T |x1:T)[lnp(x1:T | z1:T)] (3.68)

=

T∑
t=1

Eq(z1:T |x1:T)[lnp(xt | zt)] (by eq. (3.6)) (3.69)

=

T∑
t=1

Eq(zt|x1:T)[lnp(xt | zt)]. (3.70)

The marginal in the last step is explained by the observation

Ep(x,y)[f(x)] =
∫∫
p(x, y)f(x)dy dx (3.71)

=

∫
p(x)f(x)

∫
p(y | x)dy dx =

∫
p(x)f(x)dx (3.72)

= Ep(x)[f(x)] (3.73)

44 sequential latent-variable models

for in this case arbitrary random variables x and y. That is, if variables
in the joint distribution are not used in the function f, one may revert
to an appropriate marginal. This is a general observation that does
not impose assumptions on q.

Typically, we do not compute the expectations in closed form; rather,
we estimate them with Monte Carlo sampling. Samples from the
marginal can always be obtained by sampling the joint and dropping
the superfluous variables. Thus, a simplification to the marginal is
interesting only if samples of the marginal are in some way easier to
obtain, e. g., with lower computational effort.

The likelihood is sometimes also called reconstruction error. This is
motivated by the often-used Gaussian likelihood model. The mean
µ(zt) can be interpreted as a reconstruction of the original input xt,
and the Gaussian log pdf is essentially a Mahalanobis distance error
between reconstruction and datum.

prior divergence

KL(q(z1:T | x1:T) || p(z1:T)) (3.74)

=Eq(z1:T |x1:T)

[∑
t

ln
q(zt+1 | zt, xt+1:T)

p(zt+1 | zt)

]
(3.75)

=
∑
t

Eq(zt,zt+1|x1:T)

[
ln
q(zt+1 | zt, xt+1:T)

p(zt+1 | zt)

]
(3.76)

=
∑
t

Eq(zt|x1:T)[KL(q(zt+1 | zt, xt+1:T) || p(zt+1 | zt))]. (3.77)

Here, the second line assumes that q(z1:T | x1:T) decomposes like the
true posterior of an SSM. The prior KL thus decomposes into a sum
of expected transition KLs.5

Even this very elemental analysis of the sequential ELBO hints at
many different possible estimators. As we will see in parts II and III,
further assumptions on the approximate posterior q(z1:T | x1:T) will
lead to different algorithm designs.

Jointly looking at eqs. (3.70) and (3.77), we observe that the sequen-
tial ELBO decomposes into what can be described as step-wise ELBOs.
Particularly the divergence term comes with an additional expectation,
though. The widespread use of single-sample MC estimates of such
expectations further blurs this distinction.

We examined the ELBO under SSM assumptions; similar principles
apply under different assumptions of the LVM, cf. chapter 4.

5 For brevity, we have not considered t = 1 separately in eqs. (3.74) to (3.77). Due to
the lack of ancestors, it is not an expected KL.

Part II

A U TO - E N C O D I N G S TAT E -S PA C E M O D E L S

This part is based on ideas that have appeared previously
in the following publications and working papers:

Karl, Maximilian, Maximilian Soelch, Justin Bayer, and
Patrick van der Smagt (2017). “Deep Variational Bayes
Filters: Unsupervised Learning of State Space Models
from Raw Data.” In: 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. url:
https://openreview.net/forum?id=HyTqHL5xg.

Akhundov, Adnan, Maximilian Soelch, Justin Bayer, and
Patrick van der Smagt (2019). Variational Tracking and
Prediction with Generative Disentangled State-Space Models.
arXiv: 1910 .06205 [cs, stat]. url: http://arxiv.org/
abs/1910.06205.

The former is a shared contribution between Maximilian
Karl and the author. Where his thesis (Karl, 2020) explained
the more algorithmic implementation side, chapter 4 will
complement the relation to prior and concurrent related
work.

The latter is a collaboration between Adnan Akhundov
and the author. Concept and model were conceived by the
author. Experimental setup and execution along with mod-
ifications to the original model resulted in Adnan’s Master
thesis (Akhundov, 2018). Chapter 5 will focus on the con-
nections between the two papers and the conclusions they
allow for future work.

Direct quotes from the publications are highlighted in gray
font color. Minor adaptations of the quotes to the style of
this thesis are not explicitly highlighted.

Supplementary material is collected in appendix B.

https://openreview.net/forum?id=HyTqHL5xg
https://arxiv.org/abs/1910.06205
http://arxiv.org/abs/1910.06205
http://arxiv.org/abs/1910.06205

4 N E U R A L S TAT E -S PA C E
M O D E L S

In part I, we discussed VAEs and how to use them for unsupervised
learning of generative LVMs. Then we discussed the peculiarities of
sequential LVMs, in particular SSMs. In this chapter, we combine these
ideas to understand how to learn SSMs with unsupervised algorithms,
only from sampled observations

D =
{

x(i)1:T
}
i=1,...,N

. (4.1)

In VAEs, we assumed some relatively simple prior distribution p(z)
along with a likelihood density network p(x | z). Taken together, they
form the LVM p(x, z). In the following, we will adapt this approach to
sequential LVMs p(x1:T , z1:T), with a strong focus on SSMs.

In some sense, this can be considered a special case of VAEs. As
chapter 3 has shown, sequential LVMs add additional wrinkles over
LVMs, in particular in relation to Bayesian inference. These require
careful adaptation in the VAE framework.

Where the prior p(z) in VAEs is typically fixed to a simple distribu-
tion and we only learn p(x | z) to complete the LVM, with sequential
LVMs we are also interested in the prior p(z1:T). For instance, for
SSMs the prior captures the entire dynamics of the system, so it is
arguably even the more interesting component to be learned from
data compared to the emission model

p(x1:T | z1:T) =
T∏
t=1

p(xt | zt). (4.2)

extended graphical models In this chapter, we will discuss
several neural implementations of sequential LVMs, often with an as-
sociated figure showing the graphical model, figs. 4.1, 4.2, 4.4, and 4.7
to 4.10. The pure graphical model, cf. section 1.1.3, is often insufficient
to highlight important implementation aspects. We thus extend the
graphical model by additional nodes: circular nodes () represent ran-
dom variables or vectors; diamond nodes () represent deterministic
quantities like hidden variables of RNNs. The pure graphical model
can be recovered by purging the deterministic nodes and adding edges
between circular nodes if there existed a directed path between them
via only deterministic nodes. We distinguish between the generative
model p(x1:T , z1:T) and the inference model q(z1:T | x1:T) by using
solid graph edges () for the former and dotted edges () for the
latter. If parts of the generative model are reused in the inference
model, the respective edges in the inference model will also be solid.

47

48 neural state-space models

z

x

(a) Graphical model.

z

x

(b) Inference.

z

h

x
(c) Graphical model extended
with computational nodes.

z

h

x
(d) Inference model extended
with computational nodes.

Figure 4.1: Top: graphical LVM of stochastic recurrent networks (STORNs). Bot-
tom: extended graphical models, with hidden states h of the RNN included.
The hidden states between inference and generation are not shared.

4.1 sequential variational auto-encoders

Shortly after the introduction of VAEs—and before tackling SSMs—
variants using recurrent networks were proposed to handle sequential
data. The first to do so were Bayer and Osendorfer (2014) with stochastic
recurrent networks (STORNs).

STORNs are arguably best understood as the most immediate trans-
lation of the auto-encoding approach to inference from the static to
the dynamic case: the feed-forward NNs of VAEs are replaced with
RNNs. The inference density network is interpreted to return the
approximation

q(z1:T | x1:T) =
T∏
t=1

q(zt | x1:T) (4.3)

or, if the inference RNN is not bidirectional,

q(z1:T | x1:T) =
T∏
t=1

q(zt | x1:t). (4.4)

That is, the states are assumed independent across time given observa-
tions. This constitutes a fairly strong assumption but makes maximally
efficient use of standard RNN architectures for inference.

The learned LVM exploits RNN architectures equally efficient. The
prior again assumes independence across time1,

p(z1:T) =
T∏
t=1

p(zt). (4.5)

1 More flexible priors have later been suggested by the author (Soelch et al., 2016).

4.1 sequential variational auto-encoders 49

In analogy to VAEs, the individual priors p(zt) are assumed to be
simple i. i. d. Gaussian distributions, usually with diagonal or even
isotropic covariance.

The emission model is then implemented by a unidirectional RNN
which at each time step takes the current state zt and the previous
emission xt−1 as input and returns the conditional

p(xt | z1:t, x1:t−1) (4.6)

so that

p(x1:T , z1:T) =
T∏
t=1

p(zt)p(xt | z1:t, x1:t−1). (4.7)

The conditional in eq. (4.6) is best understood in terms of the (deter-
ministic) hidden states h1:T of the RNN , i. e.,

p(xt | z1:t, x1:t−1) = p(xt | ht(zt, xt−1, ht−1)). (4.8)

The graphical model and its extended version are depicted in fig. 4.1.
From this lens, STORNs may be viewed as step-wise VAEs where

the encoders and decoders are linked through respective recurrent
cells. The largest deviation from this point of view is a short-cut
connection used only at training time. The feedback of emission xt−1
in eq. (4.8) is replaced by feeding the true observation from the data
set to guide learning.

This notion of step-wise VAEs is further stressed by the the observa-
tion that the ELBO decomposes into step-wise terms. This is particu-
larly true when using single-sample MC estimates of expectations, as
is custom in the field, cf. also section 3.4.

For further details, the reader is also referred to the thesis by Bayer
(2015).

4.1.1 Variational Recurrent Neural Networks

STORNs are an interesting bridge in the history of ideas from VAEs on
the one side and SSMs on the other. They have been discussed as such
in the previous section. For the remainder of this thesis STORNs are
of lesser interest. We close their discussion by briefly acknowledging
further non-SSM LVMs that have been presented and applied in the
wake of Bayer and Osendorfer (2014).

Most notably, Chung et al. (2015) suggest variational recurrent neural
networks (VRNNs). VRNNs additionally make the prior depend on
the hidden state of the generative RNN,

p(z1:T) =
T∏
t=1

p(zt | ht(zt−1, xt−1, ht−1)), (4.9)

50 neural state-space models

z

h

x
(a) Graphical model extended
with computational nodes.

z

h

x
(b) Inference model extended
with computational nodes.

Figure 4.2: Graphical and inference models of variational recurrent neural
networks (VRNNs) extended with deterministic hidden RNN states. The
hidden states between inference and generation are shared, as indicated by
the solid lines.

cf. fig. 4.2. In terms of connectivity in the graphical model, this is the
most general sequential LVM possible. Further, the inference network
and the generative RNN share weights. This coupling can be seen as
an inductive bias for learning but prevents bidirectional inference as
in STORNs, as has been addressed by Goyal et al. (2017).

4.2 deep variational bayes filters

In the previous section, we have highlighted attempts at learning mod-
els that strike a balance between widespread applicability—reflected
by the near-complete graphical models—and efficient computability,
exploiting RNNs to maximal extent. A disadvantage of this approach
is that it is nigh impossible to separate the LVM as a probabilistic
model on the one hand from its concrete neural implementation on
the other hand, as is highlighted by the extended graphical models in
figs. 4.1 and 4.2.

Considering their widespread use in control theory and the en-
gineering disciplines, it was only a matter of time before the VAE
framework would be applied to SSMs. The first attempt is due to Wat-
ter et al. (2015), dubbed embed to control (E2C). E2C attempts to learn
a useful latent-space transition for subsequent control. The learning
algorithm is inspired by VAEs, but the learned model is not strictly
an SSM and the objective function needs to be augmented by several
regularizing terms.

From the start, the motivation behind our contribution, deep vari-
ational Bayes filters (DVBFs), was a possible application to model-
predictive control.2 This dictates a core goal: learning a good prior,
specifically a good transition density network p(zt | zt−1). The state
needs to carry all relevant information so as to devise good policies. It
is the prior that matters to us.

2 This would later be realized in Karl et al. (2017b), Becker-Ehmck et al. (2020), and
Karl (2020).

4.2 deep variational bayes filters 51

Figure 4.3: Pendulum example data as used in Karl et al. (2017a). Each row
shows the observations x1:15 of a single training sequence from left to right.

In the literature preceding DVBFs, in particular STORN, VRNN,
or E2C, we notice two patterns that hinder this. The first is the use
of RNNs. Since RNNs have their own deterministic hidden states
h1:T , the responsibility for carrying all relevant information is split
between z1:T and h1:T . The fact that the latter are not regularized by,
e. g., the prior KL term of the ELBO undermines the role of the latent
states z1:T .

The second pattern is that the prior and with it the transition only
occur in the prior KL term of the ELBO. This means that the prior can
only learn dynamics from data if the approximate posterior also does—
otherwise more accurate dynamics increase the prior KL. Unfortunately,
this is not guaranteed as the approximate posterior may focus on intra-
step correlations, which may be sufficient for maximizing the ELBO.

To understand this, consider the synthetic pendulum camera data as
depicted in fig. 4.3 (Karl et al., 2017a). The state space of the pendulum
consists of two quantities, angle and angle velocity. The observation
space even at this very moderate image resolution consists of 256
dimensions. An ill-posed model

p(x1:T) =
T∏
t=1

p(xt) =
T∏
t=1

∫
p(xt, zt)dzt, (4.10)

i. e., a frame-wise i. i. d. LVM, is very capable of representing the frames
well (Klushyn et al., 2019). The angle alone is sufficient to describe the
essence of each frame. The marginal benefit in terms of the ELBO of
uncovering the dynamics in the form of the angular velocity is slim.
Such a local minimum is hard to escape even for dynamic models.

These two patterns dictate two core design principles of DVBFs:

1. The approximate posterior q(z1:T | x1:T) should reuse the transi-
tion p(zt | zt−1).

2. To consolidate their singular role, the latent states z1:T should
be the only variables passing information through time.

The second point in particular dictates that the respective density
networks should not be stateful in the sense that they involve deter-
ministic dynamic hidden variables ht like recurrent cells that would
dilute the central role of the state zt. As section 4.3 shows, this is
a common technique in concurrent and later approaches. Further,

52 neural state-space models

the downstream use in a control scenario motivated using a filtering
approximate posterior,

q(z1:T | x1:T) =
T∏
t=1

q(zt | zt−1, xt). (4.11)

Here, the factors have already been simplified according to SSM as-
sumptions. This is a technically incorrect assumption motivated by
the application. We discuss its ramifications in sections 4.2.3 and 4.4,
and we later deconstruct it in chapter 6. Inserting into the sequential
ELBO, eq. (3.67), we get

T∑
t=1

Eq(z1:T |x1:T)[lnp(xt | zt) − KL(q(zt | zt−1, xt) || p(zt | zt−1))].

(4.12)

As is custom, the expectation is approximated by MC integration
with a single sample, obtained via ancestral sampling according to
eq. (4.11). Estimating the ELBO thus adds the two design constraints
already known from VAEs: firstly, sampling the posterior, in this case
the conditional distributions q(zt | zt−1, xt); secondly, evaluating its
pdf so as to at least estimate the prior KL term.

This sets us up to discuss deep variational Bayes filters. There exist
two major variants, residual DVBFs and fusion DVBFs.3

4.2.1 Residual DVBF

The core idea of residual DVBFs is a residual formulation

zt = f(zt−1) + εt(zt−1) (4.13)

of the latent transition p(zt | zt−1) with a deterministic function f and
centered noise variables εt that are independent across time. They are
usually either identically distributed, εt ∼ N(0,Σ), or covariances are a
function of the previous state, εt(zt−1) ∼ N(0,Σ(zt−1)). The transition
is implicitly defined as

p(zt | zt−1) ∼ N(f(zt−1),Σt). (4.14)

This formulation has the advantage that the approximate posterior
transition q(zt | zt−1, xt) can also be defined implicitly via a residual
formulation:

zt = f(zt−1) + εt, εt ∼ q(εt | zt−1, xt). (4.15)

3 This chapter is based on residual DVBFs (Karl et al., 2017a). Fusion DVBFs were
developed later in Karl et al. (2017b). The author’s contributions to the latter paper
are out of scope of this thesis. The term fusion DVBFs was coined by Becker-Ehmck
et al. (2019); the term residual DVBFs is used in this thesis to distinguish the two
variants.

4.2 deep variational bayes filters 53

z

x
(a) Extended graphical model
of DVBF.

z

x

h
(b) Inference model of DVBF.

zt−1 zt zt+1f(zt−1)

Σt

xt

(c) Residual DVBF prior transi-
tion.

+

f(zt−1)

Σt µε εt

xt

zt−1 zt zt+1

(d) Approximate posterior transition of
residual DVBF.

zt−1 zt zt+1f(zt−1)

Σt

xt

(e) Fusion DVBF prior transition.

∝

xt

zt−1 zt zt+1

(f) Approximate posterior transition
of fusion DVBF.

Figure 4.4: Top: extended graphical models and inference models of deep
variational Bayes filters (DVBFs) for both variants. Middle: details for residual
DVBFs. Bottom: details for fusion DVBFs. In the three inference plots, solid
edges indicate a reuse of the respective prior component. Half-dotted edges
(, cf. (b), (d), (f)) indicate partial reuse. Boxes in the top row correspond
to boxes in the middle and bottom row. Plots (c) and (e) are identical.

54 neural state-space models

The inference model q(εt | zt−1, xt) is implemented by a density net-
work. Prior and posterior density networks share the mean function f,
which is made possible by reparametrization. The extended graphical
and inference models are depicted in figs. 4.4a and 4.4b, with details
on the prior and approximate posterior density networks in figs. 4.4c
and 4.4d.

The residual formulation creates the desired coupling of prior
and posterior, where both equally benefit of improvements of f. It
also readily allows for estimating the ELBO. The approximate pos-
terior q(z1:T | x1:T) can easily be sampled by ancestral sampling of
q(εt | zt−1, xt). This can be viewed from two perspectives. Either the
states z1:T are deterministic functions of the noise samples; or the
particular process of combining the distribution parameters is part of
the density network that implements p(zt | zt−1). The latter point of
view is depicted in fig. 4.4d. The likelihood term can be estimated via
MC integration. The prior KL term can be evaluated equally well as it
is shift-invariant, i. e.,

KL(q(zt | zt−1, xt) || p(zt | zt−1)) (4.16)

= KL(q(εt | zt−1, xt) || p(εt)). (4.17)

The function f is generally an arbitrary function such as an MLP. In
Karl et al. (2017a), a particular implementation

f(zt−1) = A(zt−1)zt−1 (4.18)

is suggested where a transition matrix A(zt−1) is computed by mixing
base matrices as a function of zt−1. The actual transition is then a
matrix-vector product. This fast-weight approach (Schmidhuber, 1992;
Ba et al., 2016) may be interpreted as returning a linearization of a
nonlinear system in zt. This inductive bias is called a locally linear
transition. For full details including Bayesian treatment of the base
matrices (Blundell et al., 2015) and annealing techniques (Mandt et al.,
2016), the reader is referred to Karl (2020).

4.2.2 Fusion DVBF

The key inspiration for fusion DVBFs is the prediction-update cycle

αt(zt) ∝ p(xt | zt)Eαt−1(zt−1)[p(zt | zt−1)] (4.19)

known from standard Bayesian SSM posterior techniques, cf. sec-
tion 3.3, which in this context translates to

q(zt | zt−1, xt) ∝ p(xt | zt)Eq(zt−1)[p(zt | zt−1)]. (4.20)

The prediction step is easy to implement in typical style via single-
sample MC integration. The immediate benefit of this algorithmic
inspiration is the reuse of the prior transition.

4.2 deep variational bayes filters 55

The update step is less clear. The emission model p(xt | zt) is a
typically highly nonlinear density network, which makes closed-form
normalization as with Kalman filters, section 3.3.2.1, difficult. Thus
the rather pragmatic solution is to approximately invert the emission
model p(xt | zt) with a local inference density network q(zt | xt) so
that fusion takes place in latent space instead of observation space as
with Kalman filters:

q(zt | zt−1, xt) ∝ q(zt | xt)Eq(zt−1)[p(zt | zt−1)]. (4.21)

The benefit is that we can exploit the fusion mechanism for Gaussian
distributions we established in eqs. (3.46) to (3.48) for closed-form
normalization of eq. (4.21).4 This fusion mechanism can be seen as a
weighted average of a prediction and the local inference depending
on their covariances, i. e., how much they can be believed.

Additionally, since q(zt | xt) only makes use of the current observa-
tion xt, we achieve the goal of propagating information through time
only via the transition.

Residual and fusion DVBFs are identical from a high level point of
view, as is indicated by the extended graphical and inference model
depictions in figs. 4.4a and 4.4b. Even the prior is identical, cf. figs. 4.4c
and 4.4e. They largely differ in the details of the implementation of
the approximate posterior transition q(zt | zt−1 xt), as can be seen in
figs. 4.4d and 4.4f.

The fact that Gaussian fusion strictly decreases variance combined
with the single-sample MC integration of the prediction makes it
necessary to decouple the variance of the prior p(zt | zt−1) and the
prediction Eq(zt−1)[p(zt | zt−1)]. Ultimately, like with residual DVBFs,
prior and posterior density networks share weights to produce the
means but not the variances. As with residual DVBFs we spare these
details and refer the reader to Karl (2020).

The resulting fusion mechanism bears resemblance to the concept
of a product of experts (Hinton, 2002; Kurle et al., 2019). Products of
experts apply to non-sequential LVMs with m (conditionally) inde-
pendent measurements, the experts. That is, the emission model for
x =

(
x(1), . . . , x(m)

)
decomposes into factors,

p(x | z) =
m∏
i=1

p
(

x(i)
∣∣∣ z
)

, (4.22)

in which case the posterior factorizes as

p(z | x) ∝ p(z)
m∏
i=1

p
(
z
∣∣ x(i)

)
p(z)

. (4.23)

Like with fusion DVBF, the posterior is a product of densities for
different sources of information on the latent variable.

4 This has the downside of restricting the variational family to those that allow for
closed-form normalization like the family of Gaussian distributions.

56 neural state-space models

4.2.3 Initial Inference

Both variants of DVBFs share a weakness we have ignored so far: infer-
ence of the initial state z1. Implementing the filtering scheme, eq. (4.11),
by the letter would imply an initial inference model q(z1 | x1). A single
observation typically does not capture higher-order dynamical infor-
mation, like velocities or forces. Again, the pendulum data in fig. 4.3
illustrate this point. The lack of information about the higher-order
dynamic components of the state space would require very uncertain
initial posteriors; q(z1 | x1) essentially needs to fall back on the prior
for all latent quantities that are not directly reflected by x1.

By itself this is not necessarily problematic, provided the density
network q(z1 | x1) is able to represent such distributions well; the
uncertainty could be reduced in subsequent steps with new observa-
tions. Combined with the fact that the posterior beliefs are propagated
through time by as few as a single sample, however, high uncertainty
of q(z1 | x1) is catastrophic: the probability to draw samples only from
the wrong region in state space is high. This drastically increases
the variance of ELBO estimates, which in turn translates to noisy
stochastic gradients and negatively affects learning.

As a solution, both variants look at future observations to infer z1,
i. e., q(z1 | x1) is replaced by q(z1 | x1:τ), which takes into account
some horizon x1:τ with 1 < τ 6 T . The approximate posterior model
of both variants is thus more correctly described as

q(z1:T | x1:T) = q(z1 | x1:τ)
T∏
t=2

q(zt | zt−1, xt). (4.24)

The initial inference model q(z1 | x1:τ) is implemented as a density
network, which could be feed-forward if the horizon τ is known and
fixed a priori or recurrent (and possibly bidirectional) in the more
general case. The latter case is depicted in the inference model in
fig. 4.4b.

The necessity of this initial inference model is a testament to the
intentionally misspecified posterior model, eq. (4.11), which, as dis-
cussed, is not faithful to the true SSM posterior factorization. In
fact, through the backdoor it turns the entire inference model into
a smoother. Since q(z1 | x1:τ) depends on observations x1:τ, so will all
further inferred states z2:T .

From the application-driven point of view this compromise may
still be desirable. It is not necessary to always feed all observations,
τ = T , as was originally done in Karl et al. (2017a). Indeed, at test time
initial inference may be used during a smoothing burn-in phase after
which DVBF—as designed—is used as a filter. A similar scheme is
described in Becker-Ehmck et al. (2020).

There is a further problem for initial inference. State spaces are
typically constrained, e. g., by mathematical or physical laws. In the

4.2 deep variational bayes filters 57

Figure 4.5: Test time samples of the approximate posterior q(z1:T | x1:T) of a
DVBF trained on the image pendulum data presented in fig. 4.3. The color
gradient indicates the ground truth angular velocity. The DVBF learns a
two-dimensional manifold in the embedding three-dimensional space.
This figure has previously appeared in Karl et al. (2017a) and Karl (2020).

pendulum example, its angle is part of the state space. This translates
either to a periodicity constraint on the dynamics or to an embedding
of the angle as sine and cosine, a one-dimensional manifold in a
two-dimensional embedding latent space.5 The latter case is easier to
implement for smooth density networks.

Indeed, DVBFs learn to extract such a barrel-shaped manifold for
the pendulum data, fig. 4.5. Such embedded manifolds lead to states
that are implausible.6

Gaussian transition density networks p(zt | zt−1) or q(zt | zt−1, xt)
can stay close to such manifolds with their entire probability mass
since the uncertainty between time steps tends to be low if ∆t is
small. The initial inference network, however, tends to have larger
uncertainty, as discussed earlier. If implemented by a Gaussian density
network, due to the sheer geometry of Gaussian distributions at least
some of the probability mass may be far off the state-space manifold.
To this end, DVBFs add an additional function g after sampling the
density network q(z1 | x1:τ), effectively performing a mapping onto
the manifold. This mapping is shared between p(z1) and q(z1 | x1:τ),
as is reflected in both figs. 4.4a and 4.4b.

Since g is typically not invertible, the prior KL term at t = 1 is
computed before the mapping. The prior KL term is technically not
invariant under g. This effect is ignored. A more principled, less

5 Technically, the embedding only needs to be homeomorphic—i. e., topologically
equivalent—to the circular sine and cosine embedding. In the simplest case, that can
mean a rescaling of sine and cosine.

6 The term manifold is used rather loosely here, not in the strict sense of Riemann
manifolds. Indeed, it is an open question of research how to enforce the discovery of
flexible proper manifolds in such latent spaces.

58 neural state-space models

Figure 4.6: Test time samples of the approximate posterior q(z1:T | x1:T) of
a deep Kalman filter (DKF) trained on the image pendulum data presented
in fig. 4.3. Color indicates the ground truth angular velocity. The DKF only
learns to encode the angle as a one-dimensional manifold but fails to capture
angular velocity.
This figure has previously appeared in Karl et al. (2017a) and Karl (2020).

flexible approach would be to use normalizing flows or flexible priors,
cf. sections 2.5.1 and 2.5.2.

4.3 concurrent and later models

A number of publications have addressed learning SSMs or closely
related models by auto-encoding and amortized inference. In this
section, we review a number of key papers and relate them to DVBFs.

We also refer the interested reader to a concurrent review paper of
this class of models due to Girin et al. (2020).

4.3.1 Deep Kalman Filters

Concurrently to DVBFs, Krishnan et al. (2015) suggested DKFs. Both
models constitute the first attempts to learn neural SSMs by employing
amortized inference.

The generative model of DKFs is a standard SSM, where transition
and emission model are density networks. The inference model is
reminiscent of the inference model of STORNs and as such more
straightforward than with DVBFs: an RNN processes either7 x1:t or
x1:T—depending on whether the RNN is bidirectional—and at each
time step produces the approximate posterior q(zt | x1:T), that is

q(z1:T | x1:T) =
T∏
t=1

q(zt | x1:T). (4.25)

7 The original paper suggests further baseline alternatives of lesser interest.

4.3 concurrent and later models 59

z

h

x

Figure 4.7: The inference model of deep Kalman smoother (DKS). The corre-
sponding generative model, deep Markov models (DMMs), is omitted since it is
a standard SSM known from fig. 3.1. Note that deep Kalman smoothers (DKSs)
do not reuse the transition model for inference as indicated by the dotted
lines.

Both generative and inference model have been depicted previously
in figs. 3.1 and 4.1d.

Interestingly, the authors notice that the true posterior is a smoother
and provide the correct factorization according to eq. (3.25), yet their
inference neglects the previous state in favor of the previous observa-
tions.

This turns out to be a crucial oversight. Empirically, DKFs consis-
tently struggle to learn higher-order dynamic state-space components
such as velocity that cannot be inferred from a single observation xt,
cf. fig. 4.6. The transition is only learned through the prior KL in the
ELBO. This does not provide sufficient inductive bias. The powerful
recognition model can leverage intra-step correlations just as discussed
earlier, which is sufficient to achieve high ELBO values.

4.3.2 Deep Markov Models and Deep Kalman Smoothers

Krishnan et al. (2017) later also suggested deep Markov models (DMMs)
as a generative model and deep Kalman smoothers (DKSs) as an inference
model. DMMs are special cases of SSMs with a particular density
network parametrization of the transitions p(zt+1 | zt). Rather than
using an arbitrary neural network, they use a particular architecture
inspired by gated recurrent units (GRUs; Chung et al., 2015)). The
motivation is to provide an inductive bias towards linear and at least
initially isometric transitions. From the theory of dynamical systems, it
is known that isometric systems, i. e., systems with transition Jacobian
eigenvalues close to the unit circle in the complex plane, are more
stable, the exact same argument that motivates LSTMs and GRUs over
vanilla RNNs.

The authors observe the true posterior factorization we know from
eq. (3.25) and consider various inference models, eventually settling
for the variant they call DKS. It is depicted in fig. 4.7. It consists of a
unidirectional RNN that summarizes observations, running backward
in time, as well as a specific combiner function that combines the
previous state sample zt−1 and the summarized observations ht(xt:T)
to obtain the distribution q(zt | zt−1, xt:T). Notably though, in contrast

60 neural state-space models

z

h

x
(a) Graphical model extended
with recurrent hidden units h.

z

h

g

x
(b) Inference model with addi-
tional hidden units g.

Figure 4.8: Graphical and inference model of stochastic recurrent neural net-
works (SRNNs). The connection between observations x and RNN hidden
units h is as in the experiments of the original paper. In theory, the RNN
could be fed other inputs, such as control signals. Solid lines in the inference
model indicate that the generative model is reused.

to DVBFs the combiner function is completely independent of the
prior transition function.

To the best of our knowledge, this is the first inference model in the
suggested literature that correctly implements an approximation

q(z1:T | x1:T) =
T∏
t=1

q(zt | zt−1, xt:T) (4.26)

that is faithful to the true posterior factorization.

4.3.3 Stochastic Recurrent Neural Networks

Fraccaro et al. (2016) suggest a hybrid model achieved by stacking
probabilistic SSMs and deterministic RNNs in latent space called
stochastic recurrent neural networks (SRNNs). The model is depicted in
fig. 4.8.

In theory, the model is presented as an SSM where the state space
consists of a probabilistic part z and a deterministic part h. In practice,
however, the devil lies in the details: if there are no control signals—as
we assume for the most part in this thesis—then the deterministic
part of the dynamics will have no input and would always be the
same. To overcome this, the model is modified to feed observations
back into the latent system.8 This violates SSM assumptions since the
transition p(zt | zt−1, x1:t−1) is now no longer Markovian. SRNNs can
thus rather be viewed as an alternative to the previously discussed
non-SSM models such as STORN or VRNN.

8 This crucial detail is mentioned in the experimental section of Fraccaro et al. (2016).

4.3 concurrent and later models 61

z

h

a

x
(a) Graphical model extended
with pseudo-observations a.

K
alm

an

z

h

a

x
(b) Inference model with closed-
form Kalman inference.

Figure 4.9: Graphical and inference model of Kalman variational auto-encoders
(KVAEs). The model p(z1:T , a1:T) is restricted to be an LGS, its inference
then closed-form as indicated by the box. Solid lines in the inference model
indicate that the generative model is reused.

The deterministic part is the hidden state of an RNN. SRNNs orders
the two parts: the probabilistic part depends on the deterministic part,

p(h1:T , z1:T) =
T∏
t=1

p(zt | zt−1, ht)p(ht | ht−1, xt−1), (4.27)

as indicated in fig. 4.8. The factor p(ht | ht−1, xt−1) is a Dirac point
mass distribution representing the deterministic propagation.

Inference then obeys the correct posterior factorization, eq. (3.25),
and implements a smoothing posterior by a second inference RNN
that runs backward in time, producing hidden states g1:T ,

q(h1:T , z1:T) =
T∏
t=1

p(ht | ht−1, xt)q(zt | zt−1, gt(xt, ht:T)). (4.28)

4.3.4 Kalman Variational Auto-Encoders

After SRNNs, Fraccaro et al. (2017) also suggested Kalman variational
auto-encoders (KVAEs). This model is truer to its namesake than DKFs:
the core idea is to leverage closed-form inference via Kalman filters
(or smoothers). To this end, the authors assume an LGS in latent
space. In order to represent nonlinear observations, they introduce
the concept of pseudo-observations a1:T . Pseudo-observations are the
virtual, intermediate, linear emissions of the LGS, which are then
translated to real observations by means of a density network, i. e.,

p(xt | zt) =
∫
p(xt, at | zt)dat =

∫
p(xt | at)p(at | zt)dat, (4.29)

where p(at | zt) is a linear Gaussian distribution.

62 neural state-space models

z

h1

x

y
(a) Graphical model extended
with recurrent hidden units h.

z

h2

h3

h4

x

y
(b) Inference model with recur-
rent hidden units h2, h3, h4,
distinct from another and h1.

Figure 4.10: Graphical and inference model of disentangled sequential auto-
encoders (DSAEs).

In inference, the pseudo-observations are inferred like in a VAE,
and then the states are inferred closed-form, i. e.,

q(a1:T , z1:T | x1:T) = p(z1:T | a1:T)
T∏
t=1

q(at | xt), (4.30)

where p(z1:T | a1:T) denotes the closed-form posterior as opposed to
an approximation q(z1:T | a1:T).

Since LGSs are relatively restricted in scope, the latent dynamics
of KVAEs may change with time. This is implemented by convex
combinations of base matrices in a similar fashion to the locally linear
transitions in DVBFs. The difference is that the weights are not a func-
tion of the previous state zt−1 but all previous pseudo-observations
a1:t−1 by means of an RNN. During inference, the same function may
be used—KVAEs originally use LSTMs—to infer the transition param-
eters from the amortized pseudo-observations. This model is depicted
in fig. 4.9.

The authors argue that this difference to DVBFs is what allows them
to use the closed-form inference. It should be noted, however, that
this completely neglects the dependence of a1:t−1 on, among others,
zt−1. Strictly speaking, p(a1:T , z1:T) is thus not a proper SSM, as is
obvious from fig. 4.9. The inference as suggested by the authors does
not account for that.

4.3.5 Disentangled Sequential Auto-Encoder

Li and Mandt (2018) suggest a model called disentangled sequential auto-
encoders (DSAEs). Inspired by Hsu et al. (2017), DSAEs add a static
variable y which is supposed to capture features that apply to the

4.3 concurrent and later models 63

entire sequence, like the tone of voice for a speech signal. It is explicitly
modeled to influence only the emissions but not the dynamics of the
latent states,

p(x1:T , z1:T , y) = p(y)
T∏
t=1

p(xt | zt, y)p(zt | z1:t−1). (4.31)

Note how, by means of tying the states z1:T via an RNN, this model is
again not a strict SSM.

During inference, the static feature vector is first inferred from x1:T
through a bidirectional RNN. Then, the states z1:T are inferred by
first processing y and x1:T with another bidirectional RNN and lastly
processing the output of this RNN with a unidirectional RNN.

Both processes are depicted in fig. 4.10.
Interestingly, the model is designed to be smoothing in the sense

that it uses future observations for inferring states. Like other models
presented previously, it fails to feed back the eventual states into the
inference. This is not reflected in the original publication.

4.3.6 Filtering Variational Objectives

A related approach was independently developed by Maddison et al.
(2017), Le et al. (2018), and Naesseth et al. (2018). All three publications
motivate their solution from slightly different angles but ultimately re-
sult in a similar algorithm. In this illustration, we will follow Maddison
et al. (2017), who suggest a filtering variational objective (FIVO).

FIVO is an MCO, section 2.5.3, turning the unbiased estimator

p(x1:T) ≈
T∏
t=1

P∑
p=1

ŵ
(p)
t (4.32)

from the unnormalized weights ŵ(p)
t of particle filters, cf. eq. (3.66),

into a lower bound

lnp(x1:T) = ln E

 T∏
t=1

P∑
p=1

ŵ
(p)
t

 > E

ln
T∏
t=1

P∑
p=1

ŵ
(p)
t

. (4.33)

This lower bound is closely related to the bound used by IWAEs as
discussed in section 2.5.3.

With FIVO, we can train SSMs. However, FIVO side-steps devising
an explicit inference model by using particle filters. The inference
model is reinterpreted as the proposal distribution for the particle
filter.

We will revisit FIVO in section 7.3, where we will find that learning
proposals via lower bounds can lead to biased solutions.

64 neural state-space models

4.3.7 Hybrid Models

Sequential LVMs have sparked interest in the reinforcement learning (RL)
literature. Their appeal is immediate: with high-dimensional sensors,
such as cameras with highly redundant information, it is advisable
to first reduce the sensor information to its core in order to devise
more efficient policies. A comparably low-dimensional state space is a
natural candidate. Karl et al. (2017b), later refined by Becker-Ehmck
et al. (2020), showed how to utilize DVBFs for model-based RL.

Driven by application, we observe a surge of hybrid models in
the field, i. e., models that are typically only partially motivated by
VAEs and the models presented in this chapter. Often, they feature
considerable deterministic components on top. For instance, Ha and
Schmidhuber (2018a,b) suggest a model where a VAE is used to embed
image streams frame by frame. The latent dynamics are then entirely
learned through deterministic LSTMs without ties to VI.

Other approaches borrow ideas from the models mentioned earlier,
such as using hybrids between RNNs and SSMs (Hafner et al., 2019),
even significantly altering the ELBO to perceived needs (Gregor et al.,
2019; Hafner et al., 2019), or partially setting the posterior to be the
prior (A. X. Lee et al., 2020), a noisy variant of RNN-SSM hybrids.

4.4 critical discussion

The application of the VAE framework to sequential LVMs has sparked
a plethora of models that have been used for applications as varied as
anomaly detection (Soelch et al., 2016), music generation (Hennig et al.,
2017), machine translation (Su et al., 2018), video generation (Denton
and Fergus, 2018), or simultaneous localization and mapping (SLAM;
Mirchev et al., 2019). As we have seen, they most recently found their
way into model-based RL. In fact, chapter 5 tackles tracking as another
application.

At the same time, we critically observe that in the roughly seven
years since the publication of VAEs no single approach has crystallized
as a reliable go-to method for sequential LVMs. VRNNs are often used
as a reliable baseline, likely due to code availability, but are generally
not used as an off-the-shelf solution.

For SSMs, no clear contender could be established as a standard
solution. In fact, as our discussion of hybrid models for model-based
RL shows, new models with minor adjustments and modifications
are invented over and over. This constant reinvention of models and
algorithms for very similar purposes and the rather liberal approach
to, e. g., SSM assumptions motivates a critical reflection of possible
causes. The following paragraphs identify recurring themes and gather
possible hypotheses.

4.4 critical discussion 65

assumptions and deterministic components Many of the ap-
proaches presented in section 4.3 are motivated by SSMs and indeed
often presented as neural SSM implementations. As we have seen
in several cases, however, these assumptions are not implemented
faithfully, often by adding feedback loops or entirely deterministic
components of the state space that effectively render the latent transi-
tion stateful and thus non-Markovian.

Often, these changes are not apparent from the theoretical presen-
tation and can only be found in experimental sections, appendices,
or supplementary code. As a consequence, the repercussions of such
choices are discussed and examined insufficiently.

Deterministic state components are a prime example. In a probabilis-
tic, sequential LVM learned with the ELBO the prior is regularized
via the prior KL term. That is, a complex prior model needs to be
justified by equal improvement in the likelihood term of the ELBO.
Deterministic dynamics, even partially deterministic, can side-step
this balance: they do not appear in the prior KL term and are thus not
regularized. Anything the probabilistic components capture can be
represented by the deterministic components without the complexity
penalty of the prior KL.

One needs to carefully evaluate to what extent ELBO values of these
hybrid models can even be compared fairly. Their apparent closeness
in absolute value between models is misleading here. Prior KL terms
are typically orders of magnitude smaller than the likelihood term in
absolute values. In other words, the likelihood term tends to dominate
the ELBO.

posterior factorization and conditioning Many of the den-
sity network designs for amortized sequential posteriors are motivated
from the perspective of auto-encoding rather than Bayesian inference.
The apparent design principle is the efficient exploitation of RNNs
to implement q(z1:T | x1:T) as a mapping from observations x1:T to
states z1:T . With occasional exceptions—like deep Kalman smoothers,
section 4.3.2—the density network designs end up not adhering to the
known structure of the true Bayesian posterior, e. g., eq. (3.25) for SSMs.
While the posterior design is necessarily an approximation, the effects
of such violations were insufficiently studied.

The amortization of posteriors via density networks further adds
an axis to the design space. A density network has an explicit input-
output relationship between the random variable and its conditions.
This also implies that designs can actively choose—and in particular
choose not—to use certain inputs. DVBFs are a prime example: mo-
tivated by a filtering approach, the amortized posterior transition is
a density network q(zt | zt−1, xt). In comparison to the true posterior
transition p(zt | zt−1, xt:T), it is actively modeled to ignore the future
observations xt+1:T .

66 neural state-space models

loose coupling of prior and posterior Another common
thread in the literature is to approximate the posterior q(z1:T | x1:T)
as a whole, i. e., the density networks that implement the approximate
posterior share little or no weights with the density networks that
implement the generative model p(x1:T , z1:T).

This is not warranted by the literature on sequential Bayesian poste-
riors. The prediction-update cycle we know from section 3.3 can serve
as an illustration: the Bayesian posterior can be written as a recursive
function of prior components and subsequent normalization.

Completely ignoring such insights leads to the arguably most in-
teresting component, the prior p(z1:T) capturing the latent dynamics,
often being an afterthought in learning, which is dominated by fitting
the approximate posterior. We have alluded to this point when moti-
vating the design principles of DVBFs. Our results comparing DKFs
and DVBFs are a strong indication that reusing prior components for
the posterior can be beneficial for learning better priors.

data Much like none of the models has proven to be an off-the-shelf
solution, the community has not settled for a shared set of benchmark
data sets. This stands in contrast to VAEs, where standard data sets
such as MNIST are widely accepted. This lack of standard hinders
comparability.

Further, the lack of standardized data sets makes it difficult to eval-
uate common properties of these data sets. The closest to an emerging
community standard are RL environments (Todorov et al., 2012; Brock-
man et al., 2016). These environments are typically simulations of
deterministic environments, with little to no noise both in simulated
dynamics and sensor readings. It is questionable to what extent a prob-
abilistic treatment with, e. g., SSMs would be beneficial for such data.
This goes to show that the choice of data can severely bias the results
for any given model, and the choice of data is often not motivated
transparently.

belief representations Some assumptions that were made in
the literature on VAEs have found their way into the sequential models
without further scrutiny. A central example is the approximation
of expected values with single-sample MC integration, an almost
universal feature of the models presented here with FIVO as a notable
exception.

In a setting like the VAE, where the posterior is by default rather
simple and in particular unimodal, this approach is not harmful
and more than justified by speed-up in the learning phase. In many
dynamical systems, however, assuming approximate posteriors so
simple that a single sample could represent them well may limit the
class of systems which can be represented and learned well by such
learning algorithms. Well-known phenomena like perceptual aliasing—

4.4 critical discussion 67

recall the localization example in fig. 3.3—become more challenging
to resolve.

A potential remedy would be to use richer belief representations
than single-sample approximations. The challenge here is to provide a
belief representation that can be sampled and evaluated efficiently—so
that the ELBO remains a viable objective—or propagated through time
in some fashion that allows efficient learning.

The hypotheses of this section are of a more inductive nature, observ-
ing patterns in the existing literature and speculating about plausible
causes. In part III, we will test multiple of these hypotheses and
suggest possible remedies.

5 C A S E S T U DY: VA R I AT I O N A L
T R A C K I N G

Chapter 4 has introduced a general-purpose learning algorithm for
state-space models with deep variational Bayes filters. In this chap-
ter, we will present an application of deep variational Bayes filters
to the problem of object tracking in sequential, visual data. Many
relevant and concrete perception tasks can be solved given sufficient
engineering efforts (Pulford, 2005; Cadena et al., 2016). Adaptation of
conceptually simple frameworks to specific scenarios requires the ex-
ploitation of constraints to achieve satisfying performance. In tracking,
e. g., different target representations (point, bounding box), observa-
tions (depth, color), and partial models (appearance, motion) need to
be incorporated.

In recent years, learning methods and in particular deep neural
networks have enhanced or even replaced hand-crafted perception
pipelines, promising competitive performance in the presence of rich
data sets. These approaches can loosely be put into three categories.
First, components of existing pipelines are replaced by neural compo-
nents, leaving major parts untouched (Dosovitskiy et al., 2015; Schulter
et al., 2017; Yang et al., 2018). Second, complete pipelines are replaced
with learnable counterparts, often inspired by the previously domi-
nant solutions (Krizhevsky et al., 2012; Kahou et al., 2017; Kosiorek
et al., 2017; Gordon et al., 2018; Parisotto et al., 2018). Third, the data
generating process is formulated as a latent variable model and the
task of interest expressed as Bayesian inference. The last scenario im-
mediately allows us to apply the techniques discussed in the previous
chapters.

Multi-object tracking has been the primal concern of many works
(Pulford, 2005). Bewley et al. (2016) propose using a detector and a
subsequent state-space model, showing the promise of such methods
outside a deep learning context. Neiswanger et al. (2014) formulate
tracking as a mixture of Dirichlet processes operating on top of a
feature extraction pipeline without the need for supervision signals. A
series of works considers tracking via end-to-end supervised learning
(Kahou et al., 2017; Kosiorek et al., 2017; Ning et al., 2017; Gordon
et al., 2018), showing that it is possible to represent trackers with
neural architectures when annotated data are available. Importantly,
the learning algorithms presented in this chapter are unsupervised.
Tracking does not emerge from explicit supervision via labels but
implicitly by rephrasing it as Bayesian inference.

In video prediction the central concern is the prediction of future
frames in a video stream (Srivastava et al., 2015; Babaeizadeh et al.,

69

70 case study: variational tracking

2018; Denton and Fergus, 2018; A. X. Lee et al., 2018; Steenkiste et al.,
2018). This can be expressed as inference in the underlying generative
model but without a focus on tracking. This is the starting point of
our method, which is based on the approaches discussed in chapter 4.

Beyond highlighting an interesting application, this chapter serves
two major purposes in the context of this thesis. The first concerns the
type of LVMs used for this application. Up to this point, all discussed
LVMs could be considered black-box in the sense that we had limited
or no assumptions on the interpretation of the latent variables or
states that were learned. In the pendulum example, post-hoc analysis
showed that the latent variables indeed corresponded to the ground
truth and formed a plausible manifold. Yet, the numerical values
of a single state zt are not immediately interpretable, and, e. g., axis
alignment of learned states and ground truth quantities is coincidental.
The only inductive bias in this example is to fix the number of latent
dimensions to dz = 3. This chapter is a conscious departure. The
latent states of the tracking model are much more structured, and we
examine how this added structure in turn informs the design of both
generative and inference model.

Secondly, many of the challenges for learning LVMs we identified
in section 4.4 recur tangibly in this line of work. As such, this chapter
bridges the gap between DVBFs on the one hand and subsequent
developments discussed in part III.

5.1 scene understanding

To begin, we discuss the work of Eslami et al. (2016), who suggest
Attend, Infer, Repeat (AIR). AIR is a special-purpose variant of VAEs for
scene understanding. Scene understanding here refers to the process
of decomposing an image into a set of conceptually similar objects. The
core idea of our model presented later is to add dynamic consistency
to frame-wise scene understanding. In this formulation (approximate)
Bayesian inference means tracking objects between frames—our target
application.

AIR implements scene understanding as a VAE that imposes struc-
ture on the generative latent-variable model: it assumes scenes of
n ∈N0 conceptually similar objects y(i) defined by a set of properties
z(i) =

{
p(i), s(i), d(i)

}
, comprised of the position p ∈ R2, size of the

object s ∈ R2, and a content description vector d ∈ Rd.
The rather baroque generative model is

p
(

x, n,
{

y(i), p(i), s(i), d(i)
})

(5.1)

=p(n)p
(

x
∣∣∣ {y(i), p(i), s(i)

}) n∏
i=1

p
(

y(i), d(i), p(i), s(i)
)

, (5.2)

5.1 scene understanding 71

n

p

s

d

x

y

n
(a) Graphical model of AIR.

n

n

p

s

d

x

y

(b) Inference model of AIR.

Figure 5.1: Graphical and inference model of Attend, Infer, Repeat (AIR). The
box indicates n-fold repetition of the graphical model, one set of position
p, size s, and description d for each of the n distinct objects. The bold font
type of the integer n ∈N0 hints at the vector-valued encoding in the actual
implementation. In practice, position p and size s are estimated jointly, i. e.,
their depicted inference order here is arbitrary.

with i. i. d. object priors

p(y, d, p, s) = p(y | d)p(d)p(p)p(s), (5.3)

and the inference model is

q
(

n,
{

y(i), p(i), s(i), d(i)
} ∣∣∣ x

)
(5.4)

=q(n | x)
n∏
i=1

q
(

y(i), d(i), p(i), s(i)
∣∣∣ x
)

(5.5)

with per-object posterior density network1

q(y, d, p, s | x) = q(p, s | x)q(y | p, s, x)q(d | y). (5.6)

For better understanding, the graphical and inference model are de-
picted in fig. 5.1.

The name Attend, Infer, Repeat is derived from the procedure by
which its inference operates. After determining the number of objects,
q(n | x), the objects are inferred one at a time by attending to their
position and size, q(p, s | x), inferring the contents, q(y | p, s, x)q(d | y),
and repeating the process for all objects. Crucially, this sequential
inference process imposes an order—albeit arbitrary—on the objects.

This setup is in several ways a departure from vanilla VAEs. Position
and size vectors p and s are by design immediately interpretable in
relation to the original scene x. In fact, the generative model uses
them without further processing as the inputs to an invertible spatial
transformer network (Jaderberg et al., 2015), which is used as a density
network to implement

p
(

x
∣∣∣ {y(i), p(i), s(i)

})
, (5.7)

1 The per-object posteriors are technically linked via a deterministic RNN hidden state
without feedback. We refrain from a detailed discussion in the interest of brevity and
refer the interested reader to Eslami et al. (2016) and Akhundov (2018).

72 case study: variational tracking

Figure 5.2: Application of AIR to individual frames of a sequence. The
color frames indicate inference of the object positions and sizes. Their color
indicates the order of inference.
A similar figure has previously appeared in Akhundov et al. (2019).

the process that pastes the objects into the scene. The inverse is then
the density network that implements the corresponding inference

q
(

y(i)
∣∣∣ x, p(i), s(i)

)
(5.8)

which extracts an object into a canonical representation y(i).
Only the description vectors d resemble the less interpretable latent

variables of VAEs. Indeed, the pair of generative density network
p(y | d) and its corresponding inference density network q(d | y) along
with the prior p(d) arguably constitute a VAE within the latent states.

An interesting observation is that the more complex graphical model
of AIR compared to VAEs induces conditional independence patterns
between the latent variables, like

q(d | y, p, s, x) = q(d | y). (5.9)

This also informs their order of inference—an aspect to inference that
is usually absent in vanilla VAEs.

We refrain from further implementation details of AIR and refer the
reader to Akhundov (2018) and Akhundov et al. (2019) for a detailed
review, including two adjustments to the original model by Eslami et
al. (2016), which empirically stabilize the notoriously difficult training
of AIR (Kosiorek et al., 2018).

5.1.1 Dynamic Scene Composition

A straightforward way to leverage AIR for the tracking problem would
be to use AIR for independent, frame-wise scene understanding. Sev-
eral problems of this approach become immediately apparent, as
fig. 5.2 shows.

The order of attention in AIR is arbitrary. Empirically, it learns
a spatial policy for attention order, e. g., left-to-right, top-to-bottom
(Eslami et al., 2016). With moving objects, this inevitably leads to
permutations in object discovery order between frames.

In a single frame, AIR cannot distinguish between multiple over-
lapping objects and non-overlapping regular objects since it is not
equipped with a semantic understanding of the difference between
the two or any other prior information as to the appearance of the
objects it is supposed to detect.

5.2 tracking as inference 73

n

m

p

x

y

d

s

n

Figure 5.3: The graphical model of variational tracking and state-space inference
(VTSSI). Note that the number of objects n is fixed for a sequence x1:T .
Similarly, description d and size s remain constant across time and only vary
between objects.

A third downside of using AIR independently on frames is that, after
tracking, prediction is not possible by design. The core idea to tackle
all three challenges is to integrate the structured generative model
of AIR with SSM dynamics. This connects frames in the generative
model. Subsequently, we adjust the inference model to explicitly take
temporal consistency into account.

We add an explicit motion random variable m(i)
t to the latent space

of frame xt. It captures higher-order motion description, e. g., veloc-
ities, accelerations, or curve radii. This allows us to define Markov
transition priors

p
(

p(i)
t , m(i)

t

∣∣∣ p(i)
t−1, m(i)

t−1

)
(5.10)

for state prediction in the next frame given the current state. Apart
from this addition, the likelihood model of AIR is reused at every time
step,

p
(

xt
∣∣∣ {y(i), p(i)

t , s(i)
})

, (5.11)

as can be seen from fig. 5.3. This implies we assume a fixed number
of objects for a sequence of frames x1:T , and descriptions and sizes of
these objects are constant.

5.2 tracking as inference

Naive frame-wise application of AIR is insufficient for tracking. Our
suggested inference model addresses these points and ties in the new
dynamic state components with three distinct inference components,

74 case study: variational tracking

which we will explain in the following section. We call the result-
ing sequential auto-encoding model variational tracking and state-space
inference (VTSSI).

5.2.1 Inferring Consistent Labels

The first component aims at preventing label switches. One solution
would be to aim at a matching of objects between frames. This would
still require AIR inference evaluations for every frame. On top, the
matching adds additional complexity, especially considering that the
process should be differentiable to allow gradient-based learning.

Instead, we leverage the description d. At this point, we assume we
have achieved a description from any source. This may be a single
evaluation of AIR on the first frame; alternatively a consensus from
several frames, as will be explained further down.

Based on an object description d we try to find the corresponding
object in subsequent frames. In comparison to AIR, this reverses the
inference order of object position p and description d. This prevents
label switches while reducing the number of applications of the com-
putationally relatively more expensive AIR component from T to one.
The implementation is inspired by the fast-weights approach (Schmid-
huber, 1992; Ba et al., 2016): we compute convolution kernels from d.
From the resulting features of frame xt and the previous position pt−1
the updated position pt is inferred. Since its task is to find a previously
seen object, we call this component FIND.

FIND may be interpreted as a density network

q(pt | pt−1, d, xt). (5.12)

The component is depicted in fig. 5.4a.

5.2.2 Inferring Overlapping Objects

FIND, combined with AIR on the first frame, will find an object in ev-
ery frame and can thus already serve as a tracking algorithm. However,
this assumes that AIR is able to extract an object description d from
the first frame x1. Since we do not impose AIR with prior information
as to the appearance of the objects it is supposed to detect, it will not
learn to single out overlapping objects and find a single description
for the resulting overlap. As a consequence, for the combination of
AIR and FIND to work, we would need to impose the rather strong
assumption that objects must not overlap in the first frame.

We introduce the second component RECT (for rectification) to relax
this assumption: rather than relying on AIR’s object description from
the first frame, an RNN processes the inference output of AIR on
the first K frames, where K is a hyper-parameter. This net reaches a
consensus z from the K sets ẑ1:K of latent variables from applications

5.2 tracking as inference 75

MLP CNN MLP
kernels

d

pt

xt pt−1

FIND
(a) The FIND density network q(pt | pt−1, d, xt). It uses the description d to produce
fast-weight convolution kernels for a CNN, which rediscovers the object described by
d in frame xt and subsequently updates the position estimate pt.

n̂ŝd̂

h

d
s
n

(b) The RECT inference model that computes a single consensus between several sets
of descriptions d̂, sizes ŝ, and n̂ variables by means of a bidirectional RNN.

p̂

h

p

m

d s

(c) The MOT inference model
to infer motion variables after a
burn-in phase (one frame in the
depiction). The prior transition
is reused for p and m.

FIND

MOT

AIR AIR AIR

RECT

d
s
n

x

m

p
(d) FIND, RECT, and MOT—abstracted to their
interfaces—integrated into the full VTSSI infer-
ence model. RECT computes a consensus on three
frames. MOT has a two-frame burn-in. FIND and
MOT are unidirectional, RECT is bidirectional.

Figure 5.4: The components FIND, RECT, and MOT individually, and com-
bined into variational tracking and state-space inference (VTSSI).

76 case study: variational tracking

of AIR on the first K frames, e. g., by means of weighted averaging.
Finally, we use the more robust consensus d ∈ z as the input to the
FIND module.

The RECT inference component is depicted in fig. 5.4b.

5.2.3 Inferring Motion

FIND and RECT are designed to deal with label switches and ob-
ject overlap. As described, the focus of these two components is the
consistency of objects across time.

The last component of VTSSI deals with the added state-space dy-
namics of the generative model. This inference component, dubbed
MOT, aims at establishing dynamic consistency of single objects, in-
ferring the motion variables mt and thereby refining the position
estimates pt.

To infer the motion variable, we feed the object position proposals
p̂1:T from FIND to an RNN. After M frames, where M is at least
the order of dynamics assumed, the RNN provides inferred motion
proposals m̂M+1:T . Both position and motion proposals are fused with
prior predictions p̃(i)

t and m̃(i)
t from the transition prior. The fusion is

achieved by averaging.
This inference process is inspired by DVBFs. In particular, reusing

the prior transition is an integral part of the design. As we will show
empirically—cf. section 5.3—this allows faithful multi-step object-level
prediction. Similarly, the explicit burn-in phase of M frames is the
initial inference model of DVBFs in new clothes. The application,
tracking, is inherently a filtering application. Where DVBFs opt for
kickstarting the inference by a smoothing inference of the initial state,
VTSSI makes this deficiency explicit and only infers motion as soon
as it is reasonably possible from past observations.

The MOT inference component is depicted in fig. 5.4c.

5.2.4 Combined Inference

Combining all suggested modules, we arrive at the full architecture,
which we call variational tracking and state-space inference (VTSSI). It
processes initial frames x1:K separately with AIR; reaches a consensus
with RECT; uses this consensus in FIND to determine positions; refines
the position estimates with dynamic information by exploiting MOT.
This procedure is depicted in fig. 5.4d.2

An interesting feature of VTSSI is its modularity: rather than using
the full model with all suggested components, we can choose to use

2 To acknowledge Adnan Akhundov’s contribution to this collaboration and in the
interest of space, we refer the reader to Akhundov (2018) and the appendices of
Akhundov et al. (2019) for full implementation details.

5.2 tracking as inference 77

only some of them, depending on the downstream task, for a more
efficient model. We will investigate this in the following section.

VTSSI, arguably more than any model discussed so far, tightly
combines concrete neural architectures and density networks. The
components have defined interfaces and can be combined in any way
that returns estimates of the desired quantities. Only the ultimate
position estimate is interpreted as an approximate posterior with a
corresponding prior. Intermediate estimates, for instance, from AIR or
FIND components before being processed by MOT, are not considered
in a Bayesian way in the sense that they do not have priors.

5.2.5 DDPAE and SQAIR

Two related approaches to ours have been suggested in the literature:
decompositional disentangled predictive auto-encoders (DDPAEs; Hsieh
et al., 2018) and sequential Attend, Infer, Repeat (SQAIR; Kosiorek et al.,
2018). Both approaches use attention-based amortized inference to
decompose video sequences of moving objects into per-object latent
state sequences. Like VTSSI, both approaches borrow the likelihood
model of AIR, cf. section 5.1.

DDPAE focuses on faithful prediction of the tail xK+1:T of a se-
quence from its head x1:K. As a consequence, it is trained on a lower
bound to the conditional p(xK+1:T | x1:K) rather than the joint p(x1:T).
This also leads to architectural differences: in contrast to VTSSI and
SQAIR, DDPAE does not auto-encode the entire sequence but follows
a seq2seq-inspired approach (Sutskever et al., 2014). The sequence
head x1:K is only used for inference and never reconstructed. Con-
versely, the latent states zK+1:T of the sequence tail xK+1:T are never
inferred from data but predicted from the head. Both inference and
prediction are implemented by RNNs. DDPAE further models interac-
tions between objects by means of another recurrence that connects
inference of individual objects.

SQAIR introduces two inference components: PROP and DISC.
PROP handles object propagation between frames. Two recurrent
cells update the position, then (based on the new position) update
description and presence. DISC discovers new objects. It works much
akin to inference in AIR, except that the inference of a new object
is informed by the latent states of existing objects from propagation
to avoid duplicate discovery. Relying on AIR to this extent, SQAIR
inherits its inability to handle overlapping objects in inference for the
first time step and assumes non-overlapping first frame. SQAIR can,
in principle, support entering and exiting objects at arbitrary frames.

Contrasting DDPAE and SQAIR with VTSSI, we conclude that all
models share the same ancestor AIR, specifically the non-dynamic
part of latent space design and resulting likelihood model. A major
distinctive feature of VTSSI is enhancing the state space with an

78 case study: variational tracking

explicit motion variable m, capturing the dynamics of motion. This
extra variable turns the position transition fully Markov and the overall
model into a proper state-space model. In contrast, both DDPAE and
SQAIR use recurrent cell states in the transition model, which need
to capture the motion information. This reduces the interpretability
of the latent state as the role of the recurrent state is unclear for each
specific model and rules out regularization via priors.

All three models implement significantly different inference pro-
cedures for the sequential case. Our modular framework focuses on
robust inference even in challenging scenarios to allow for accurate
long-term prediction even for complicated nonlinear motion. Object
interaction (as in DDPAE) or entering and exiting objects (as in SQAIR)
are not considered but could be introduced by adding new or modified
components to the VTSSI framework.

5.3 experiments

We conducted two sets of experiments. The first aims at understanding
the modularity of VTSSI and the added benefit of each component.
The second then examines differences between VTSSI and the related
baselines DDPAE and SQAIR.

5.3.1 Evaluating Components of VTSSI

With the first set of experiments, we study five model variants:

1. AIR,

2. FIND (based on AIR),

3. RECT/FIND (i. e., VTSSI without MOT),

4. FIND/MOT (i. e., VTSSI without RECT), and

5. full VTSSI.

We trained these variants on four flavors of Moving MNIST—we
used several variants with different features to perform targeted stud-
ies of the components of VTSSI: the data show either linear or elliptic
motion, and either the first frame is guaranteed to contain only non-
overlapping digits or not. Details on the data set can be found in
appendix B.1.

We evaluated object counting accuracy as a proxy for robustness
towards overlapping digits. Further, we report the accuracy of the
position inference against ground truth as well as prediction accuracy
for the two models that make use of MOT (all other models cannot
generate coherent sequences by design). The results can be found in
table 5.1. We can make several interesting observations:

5.3 experiments 79

Table 5.1: Quantitative tracking and prediction results with variants of varia-
tional tracking and state-space inference (VTSSI) on 10 000 test set trajectories.
Counting accuracy refers to the average percentage of frames for which the
amount of present objects is determined correctly. Inference and prediction
errors refer to the average per-frame Euclidean distance (unit: pixels) from
the inferred or predicted object center to the ground truth, respectively.
A similar table has previously appeared in Akhundov et al. (2019).

AIR FIND RECT/FIND FIND/MOT VTSSI

motion overlap
count

acc.
inf.
err.

count
acc.

inf.
err.

count
acc.

inf.
err.

count
acc.

inf.
err.

pred.
err.

count
acc.

inf.
err.

pred.
err.

linear 7 97.6% 5.95 99.9% 1.02 99.9% 1.13 99.9% 1.29 3.49 99.9% 1.04 3.44

3 97.2% 5.62 91.5% 2.74 99.7% 1.23 92.7% 3.00 5.20 99.5% 1.11 3.54

elliptic 7 97.3% 5.16 99.9% 0.97 99.9% 1.10 99.9% 0.85 2.84 99.9% 1.03 2.58

3 96.7% 4.83 91.0% 2.13 99.5% 1.19 89.6% 2.28 4.37 99.5% 1.08 2.68

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIND

VTSSI

SQAIR

Figure 5.5: Qualitative example of challenging overlap. We pick one sequence
x1:15 and show inference results of FIND, VTSSI, and SQAIR on two sub-
sequences of length ten, x1:10 and x6:15. Applied to x1:10, FIND, VTSSI,
and SQAIR successfully infer object properties. Applied to x6:15, FIND and
SQAIR, relying on AIR for discovery, only recognize one object, and are
unable to correct. VTSSI recognizes both digits, despite overlap of the two
digits in all K = 5 first frames.
A similar figure has previously appeared in Akhundov et al. (2019).

FIND drastically improves the inference accuracy when the first
frame is sufficiently clean to identify objects. In fact, FIND is on a par
with VTSSI in these scenarios despite being much more lightweight.
AIR suffers from label switches and recounting every frame. The
results for FIND drop significantly when the assumption of non-
overlapping objects in the first frame is removed. This can be mitigated
by the introduction of RECT. We hypothesize that the slight drop in
performance compared to FIND on non-overlapping first frames hints
at room for improvement with the consensus mechanism of RECT.

RECT is very robust w. r. t. overlapping objects, as fig. 5.5 highlights.
FIND, SQAIR (Kosiorek et al., 2018), and the RECT-based VTSSI
successfully tackle the sequence on the left side with a clean first
frame. When these models do not get access to the first five frames
but start with the cluttered frames 6 and higher, FIND and SQAIR are

80 case study: variational tracking

Figure 5.6: Test set prediction errors of DDPAE vs. VTSSI on data used in
the original publication. Details in section 5.3.2.
This figure has previously appeared in Akhundov et al. (2019).

unable to recover from the wrong count in the first frame. This is a
consequence of AIR’s inability to deal with overlapping frames. We
note that VTSSI succeeds despite RECT only accessing K = 5 frames,
i. e., frames 6 to 10 in this case, all of which have overlapping objects.

MOT by itself generally does not lead to improved inference over
FIND. When combined with RECT to form VTSSI, however, genera-
tive accuracy increases, even for scenarios where RECT is not strictly
necessary—being able to predict helps inference. The full VTSSI han-
dles all variants equally well. It performs well on linear and nonlinear
motion, with slight advantage on the nonlinear, but smooth elliptic
movements compared to discontinuous bouncing behavior, which is
more difficult to predict.

We conclude that each component fulfills its designated purpose:
in the absence of FIND, we observe label switching; in the absence
of RECT, overlapping objects cannot be disentangled reliably; in the
absence of MOT, prediction is impossible, but even inference perfor-
mance drops slightly.

Our evaluation also suggests that we can take advantage of the
modular composition of VTSSI. For inference, FIND and RECT are
the decisive factors. If prediction is not necessary, we can reliably train
and use a simpler model.

5.3.2 Comparison to DDPAE and SQAIR

On top of our ablation studies in section 5.3.1, we study VTSSI against
the baselines DDPAE and SQAIR. The experiments investigate the ro-
bustness in inference and prediction, particularly over longer horizons.
We build upon the Moving MNIST data sets previously studied with
the baselines.

prediction Hsieh et al. (2018) provide a data generation process
for DDPAE. We built a training and test set from this process to ensure
fair comparability, cf. appendix B.1. We trained both models with
T = 20 and K =M = 10, as in the original publication. Starting from
inferences with K = 10, we tested the position prediction error for

5.3 experiments 81

(a) VTSSI vs. SQAIR: SQAIR data. (b) VTSSI vs. SQAIR: our linear data.

Figure 5.7: Test set prediction of SQAIR vs. VTSSI on its data set and our
data set. The models perform inference on three observations (first vertical
line), the observation horizon. After that, object trajectories are sampled
generatively without access to further observations and beyond training
sequence length (second vertical line).
This figure has previously appeared in Akhundov et al. (2019).

T > 20, probing the generalization of the learned predictions. The
average performance across a test set of 10 000 sequences can be seen
in fig. 5.6. DDPAE and VTSSI are equally faithful to ground truth
within the training horizon. However, the recurrent prediction cell
of DDPAE is unable to generalize beyond the training horizon, it
seems to severely overfit on the training horizon. This is particularly
remarkable given DDPAE’s loss is tailored towards prediction.

As with DDPAE, we tried to compare VTSSI to SQAIR on its original
data set. Kosiorek et al. (2018) also provide a data generation process.
We used the same data generation process, except we removed the
noise, which turned prediction comparisons in the confined frames
futile. We trained both models with T = 10 and K =M = 3, as in the
original publication. On these data, we find SQAIR and VTSSI to per-
form equally well, with slight advantage for VTSSI within the training
horizon and for SQAIR outside the training horizon, cf. fig. 5.7a. We
noticed a subtle but crucial difference in the generation process of
these data against the data we used for the results in, e. g., table 5.1:
the data generation implements bouncing of the walls in terms of
the top left corner of the tight bounding box, i. e., an object bounces
in-frame on the top and left border and out-of-frame otherwise.

To examine the effect, we trained SQAIR on the linear data set
suggested in section 5.3.1 with clean first frames, i. e., not SQAIR’s
original data set but well within SQAIR’s assumptions. These data do
not generate bouncing behavior in terms of bounding boxes but the
actual object appearance. The result can be seen in fig. 5.7b. When
required to model bouncing behavior, SQAIR falls short of VTSSI.
SQAIR defines object positions in terms of bounding box corners, not
the center (as DDPAE and VTSSI do). We believe that this generally
makes it harder to learn accurate object dynamics except when the
data set reflects this model assumption. This may lead to instabilities
in the recurrent motion propagation cell of SQAIR. Using the object

82 case study: variational tracking

(a) VTSSI vs. SQAIR: SQAIR data. (b) VTSSI vs. SQAIR: our linear data.

Figure 5.8: Test set inference error of SQAIR vs. VTSSI on a noise-free version
of its own data set and our data set. Details in section 5.3.2.
This figure has previously appeared in Akhundov et al. (2019).

center makes it easier to use a simpler Markov transition. Specific
motion behavior of an object can be saved into the motion variable m.

inference and tracking With the same models and data as in
our evaluation of prediction, we also examined tracking performance
of SQAIR and VTSSI. The results can be seen in fig. 5.8. On both data
sets, we see that the tracking performance of SQAIR drops drastically
after around 20 steps. In contrast, VTSSI keeps a constant error over
long horizons.

We also added one of the models discussed in section 5.3.1, VTSSI
without the MOT component, which is not necessary for pure tracking.
Rather than training a new, reduced model separately, this model is
achieved by using the full VTSSI model. At test time, the outputs of
its FIND component are directly evaluated. Unaffected by prediction
errors, this model achieves even more reliable tracking performance.

5.4 discussion

In the context of this thesis, the results of section 5.3 are interesting
from several points of view.3

Firstly, there are aspects inherently interesting to VTSSI. In the rela-
tively young field of amortized inference, structured latent spaces like
that of AIR and VTSSI are still the exception. The experiments are a
proof of concept that this approach can be applied to a specific task, in
this case tracking, because it can be cast as an instance of Bayesian in-
ference. Moreover, VTSSI highlights how such highly structured latent
spaces require a more careful design of the respective (approximate)
inference model. Case in point: FIND is a feed-forward component,
where the baselines use black-box RNNs. We believe this leads to the

3 We took the editorial liberty to exclude some results and discussion compared to
Akhundov et al. (2019) in order to keep this chapter concise and connected to the
surrounding chapters while reflecting the collaborative nature of the underlying
publication. We refer the interested reader to the publication for more detail.

5.4 discussion 83

higher robustness, and as a side effect VTSSI trains significantly faster
than SQAIR. Using reference implementations of the original authors,
our model required at least an order of magnitude less wall clock time
until convergence. The amount of parameters was roughly equal and
most were used by the AIR base model.

Our ablation study of the different variants of VTSSI also shows the
benefit of embracing a less black-box, more algorithmic inference de-
sign in terms of interfaces. Depending on the downstream application,
the inference model may be chosen or adapted.

From a higher-level point of view, the results highlight several
aspects of our critical discussion of the state of the art in sequential
LVMs in section 4.4—for better or worse.

For instance, the baselines DDPAE and SQAIR are both examples
of hybrid models where the dynamics are handled by deterministic
RNNs and thus avoid Bayesian regularization against a prior. VTSSI
explicitly avoids this and uses a proper SSM as a prior, and moreover it
couples prior and posterior by reusing the SSM during inference. The
result is a significantly increased robustness in both prediction and
inference. Most strikingly, both baselines struggle when the presented
sequences are longer than those used during training even when
the underlying data generation process is otherwise identical. This
underlines our previous discussion. Such choices haven been studied
insufficiently. Our experiments indeed hint at insufficiently learned
dynamics priors with the baselines, which are the basis of the robust
prediction of VTSSI.

At the same time, VTSSI itself strikes different compromises that
can be viewed critically in hindsight, especially in the light of the
discussion in section 4.4. Most notable is its steadfast focus on filter-
ing. This is inherited from DVBFs, since tracking—when interpreted
as Bayesian inference—is a filtering task. Where DVBFs evaded the
dilemma of the true posterior being of smoothing type by introducing
the smoothing initial inference, VTSSI doubles down on filtering. The
result is a compromise where the motion variables are only inferred
after a burn-in phase, which means that no prior KL terms for the mo-
tion variables before that point—which are present in the generative
model—will be used. None of these solutions is inherently preferable
since both are approximations born out of necessity. This necessity
warrants a closer look though, which will be the starting point for
part III.

Part III

L E A R N I N G B Y S M O OT H I N G

Chapter 6 is based on ideas that have appeared previously
in the following publication:

Bayer, Justin, Maximilian Soelch, Atanas Mirchev, Baris
Kayalibay, and Patrick van der Smagt (2021). “Mind
the Gap When Conditioning Amortised Inference in Se-
quential Latent-Variable Models.” In: 9th International
Conference on Learning Representations, ICLR 2021. Open-
Review.net. url: https ://openreview . net/forum ? id =
a2gqxKDvYys.

This publication is a collaboration between Justin Bayer
and the author. First authorship is shared with equal con-
tribution.

Chapter 7 is previously unpublished work.

Direct quotes from the publication are highlighted in gray
font color. Minor adaptations of the quotes to the style of
this thesis are not explicitly highlighted.

Supplementary material is collected in appendix C.

https://openreview.net/forum?id=a2gqxKDvYys
https://openreview.net/forum?id=a2gqxKDvYys

6 T H E C O N D I T I O N I N G G A P

Part II explored how to apply the VAE framework to sequential LVMs
and specifically SSMs. In section 4.4, we discussed common model
design assumptions and inaccuracies in our as well as related work.

In this chapter, we take a closer look at one of these highlighted
design decisions for inference models shared by both DVBFs and
VTSSI: a filtering inference density network, i. e., a density network
that is restricted to past and present observations.

In both cases we required amendments to the respective inference
models to balance out this assumption. DVBFs have a specialized
initial inference network that introduces future observations almost
through the backdoor. VTSSI acknowledges the assumption more di-
rectly with an explicit burn-in phase for inference of state components
that correspond to higher-order dynamics.

These amendments are symptoms of a deeper issue, which we will
study in this chapter. The introduction of a direct functional relation-
ship between conditions and the distribution of the (approximate)
posterior via density networks allows to be selective in terms of the
conditions that are fed to the inference density network. This would
not be the case when optimizing posterior distribution parameters
directly.

This phenomenon is not restricted to sequential LVMs by any means.
Examples for non-sequential LVMs are just much more rare in the
literature (Kurle et al., 2019). VAE implementations can be selective
about inference density network inputs; though counter-intuitive, they
could, for instance, choose to ignore half the pixels of an input image x.
Sequential LVMs merely have a more established history of and use for
different flavors of Bayesian inference like filtering and smoothing. The
more varied density network design is an almost logical consequence.
In contrast to the example of missing pixels, a filtering inference
model may be conceptually simpler, and part II has shown several
applications.

We call this phenomenon partial conditioning and the resulting ap-
proximate posteriors partially conditioned. Table 6.1 collects examples
of partial conditioning in the literature discussed in chapter 4. As we
will show in this chapter, it has effects on the posterior approximation
distinct from both approximation and amortization gap known in the
literature and discussed in section 2.4. While partial conditioning has
been acknowledged in the literature (Krishnan et al., 2017), its effect
has hitherto not been studied systematically. This chapter will study
the emerging conditioning gap theoretically and empirically.

87

88 the conditioning gap

Table 6.1: Overview of partial conditions for sequential inference networks
q(zt | Ct) in the literature. Ct denotes missing conditions vs. the true poste-
rior according to the respective graphical model. DKF acknowledges the true
factorization but does not use zt−1 in any experiments.
This table has previously appeared in Bayer et al. (2021).

Model Ct Ct

STORN (Bayer and Osendorfer, 2014) x1:T z1:t−1
VRNN (Chung et al., 2015) x1:t, z1:t−1 xt+1:T
DKF (Krishnan et al., 2015) x1:T zt−1 (exper.)

DKS (Krishnan et al., 2017) zt−1, xt:T ∅
DVBF (Karl et al., 2017a) xt, zt−1 xt+1:T
Planet (Hafner et al., 2019) xt, zt−1 xt+1:T
SLAC (A. X. Lee et al., 2020) xt, zt−1 xt+1:T

6.1 a new inference suboptimality

While partial conditioning is most prevalent with sequential LVMs,
we analyze it for general LVMs. For the following discussion, we split
the observed variables into two disjoint sets of included conditions C

and excluded conditions C, i. e., x = C ∪̇ C.
Take DVBFs as an example. The true posterior forward transition

would be p(zt | zt−1, xt:T), a DVBF implements q(zt | zt−1, xt) instead,
i. e., C = {zt−1, xt} and C = {xt+1:T }.

Amortized posteriors are learned by maximizing the expected ELBO,

arg max
φ

Ep(x)
[
lnp(x) − KL

(
qφ(z | C)

∣∣∣∣ p(z ∣∣ C,C
))]

(6.1)

= arg min
φ

Ep(x)
[
KL
(
qφ(z | C)

∣∣∣∣ p(z ∣∣ C,C
))]

. (6.2)

In eq. (6.1), we deliberately choose the intractable form of the ELBO,
which is equivalent to the expected posterior KL, eq. (6.2). The latter
is more useful for the following theoretical analysis.

Notice how, in the sequential case that is more interesting to this
thesis, the posterior KL decomposes across time as

Ep(x1:T)
[
KL
(
qφ(z1:T | x1:T)

∣∣∣∣ p(z1:T | x1:T)
)]

(6.3)

=

T∑
t=1

Ep(Ct,Ct)
[
KL
(
qφ(zt | Ct)

∣∣∣∣ p(zt ∣∣ Ct,Ct))], (6.4)

which again justifies focusing on the general case first, if only for the
reduced notation clutter.

6.1 a new inference suboptimality 89

Analyzing the amortized objective in eq. (6.2) reveals that

Ep(x)
[
KL
(
qφ(z | C)

∣∣∣∣ p(z ∣∣ C,C
))]

(6.5)

= Ep(C)

[
Ep(C|C)

[
Eqφ(z|C)

[
ln
qφ(z | C)

p
(
z
∣∣ C,C

)]]] (6.6)

= Ep(C)

[
Eqφ(z|C)

[
lnqφ(z | C) − Ep(C|C)

[
lnp

(
z
∣∣ C,C

)]]]
(6.7)

= Ep(C)

Eqφ(z|C)

ln
qφ(z | C)

exp
(

Ep(C|C)
[
lnp

(
z
∣∣ C,C

)])
 (6.8)

= Ep(C)
[
KL
(
qφ(z | C)

∣∣∣∣ qC(z))− lnF(C)
]
, (6.9)

where

qC(z) ∝ exp
(

Ep(C|C)
[
lnp

(
z
∣∣ C,C

)])
(6.10)

with normalizing constant

F(C) =

∫
exp

(
Ep(C|C)

[
lnp

(
z
∣∣ C,C

)])
dz. (6.11)

Since F is constant in qφ, it is easy to see that qC(z) is the theoretically
optimal solution of eq. (6.2). Analyzing this optimum further, we make
two unfortunate observations:

First, from eq. (6.10), it is immediately clear that the partially-
conditioned approximate posterior is in general not equal to the
fully-conditioned true posterior,

qC(z) 6= p
(
z
∣∣ C,C

)
. (6.12)

Secondly, a straightforward reformulation of eq. (6.10),

qC(z) ∝ exp
(

Ep(C|C)
[
lnp

(
z
∣∣ C,C

)])
(6.13)

= exp
(

Ep(C|C)

[
lnp

(
z
∣∣ C,C

)p(z | C)

p(z | C)

])
(6.14)

= p(z | C) exp

(
Ep(C|C)

[
ln
p
(
z
∣∣ C,C

)
p(z | C)

])
, (6.15)

shows that, similarly, the partially-conditioned approximate posterior is
in general not equal to the partially-conditioned true posterior,

qC(z) 6= p(z | C). (6.16)

That is, even if qφ(z | C) is capable of representing the desired true
posteriors p(z | C) or p

(
z
∣∣ C,C

)
, they will in general not be optimal.

Since the optimum of our objective was shifted, a new inference
suboptimality

Ep(C,C)[KL(qC(z) || p(z | x))] > 0 (6.17)

90 the conditioning gap

is introduced, which we call the conditioning gap. In fact, as we show
in appendix C.1, assuming either of eqs. (6.12) and (6.16) to hold true
implies

p
(
C
∣∣ z,C

)
= p

(
C
∣∣ C), (6.18)

i. e., the missing conditions C are conditionally independent of the state z
given the used conditions C. Unless this is the case, the inequality in
eq. (6.17) is strict and the conditioning gap will not vanish.

Establishing this new gap immediately raises several questions:

1. Can we gain a better understanding of the new optimal approxi-
mate posterior qC(z)?

2. Are there potential reasons why the effect had not been discussed
in the literature yet?

3. How is the conditioning gap related to the well-established
approximation and amortization gaps, cf. section 2.4?

4. Does the provable inference suboptimality also affect the learn-
ing of the generative model?

5. How large is the effect of the conditioning gap in practice?

The remainder of this chapter will tackle these questions in order.

6.2 understanding the conditioning gap

6.2.1 Understanding the Optimal Approximate Posterior

The first step is a close inspection of the optimal approximate posterior

qC(z) ∝ exp
(

Ep(C|C)
[
lnp

(
z
∣∣ C,C

)])
. (6.19)

Interestingly, this expression bears superficial similarity to the true
partially-conditioned posterior

p(z | C) = Ep(C|C)
[
p
(
z
∣∣ C,C

)]
(6.20)

= exp
(

ln
(

Ep(C|C)
[
p
(
z
∣∣ C,C

)]))
. (6.21)

To understand the difference, consider a uniform discrete p
(
C
∣∣ C) for

the sake of the argument. In this case, the expectation is an average
over all missing conditions. The true partially-conditioned posterior
p(z | C) is then a mixture distribution of all plausible fully-conditioned
posteriors p

(
z
∣∣ C,C

)
. The optimal approximate posterior, because of

the logarithm inside the sum, is a product of plausible fully-conditioned
posteriors.

6.2 understanding the conditioning gap 91

N
(
µ,σ2

)
≈ p(z | C)

qC(z)

p(z | C)

p
(
z
∣∣ C,C = 1

)p
(
z
∣∣ C,C = 0

)

Figure 6.1: Illustration of the effect of partial conditioning on two examples.
Consider a latent-variable model p

(
C,C

∣∣ z)p(z) with scalar latent variable z
and binary C. We omit C from the amortized approximate posterior q(z | C).
Left: the true fully-conditioned Gaussian posteriors barely overlap. Right: the
true fully-conditioned posteriors overlap. Top: the true fully-conditioned
posteriors p

(
z
∣∣ C,C = 0

)
and p

(
z
∣∣ C,C = 1

)
as well as their average, the

true partially-conditioned posterior p(z | C). Middle: Variational Gaussian
approximation N

(
µ,σ2

)
to the marginal posterior, which was obtained by

stochastic gradient descent on the reverse, mode-seeking KL-divergence
(Hoffman et al., 2013). Bottom: The optimal qC(z) obtained by optimizing
the ELBO with a partially-conditioned amortized approximate posterior
w. r. t. q. It is located far away from the modes, sharply peaked and shares
little mass with the true fully- or partially-conditioned posteriors, as well as
the approximate partially-conditioned posterior.
A similar figure has previously appeared in Bayer et al. (2021).

92 the conditioning gap

Such distributions occur, e. g., in products of experts (Hinton, 2002)
or Gaussian sensor fusion (K. P. Murphy, 2012), as we have discussed
previously in the context of fusion DVBFs in section 4.2.2. Products
behave differently from mixtures: an intuition due to Welling (2007)
is that a factor in a product can single-handedly veto a sample while
each term in a mixture can only pass it.

This intuition is highlighted in fig. 6.1. We can see that qC(z) is lo-
cated between the modes and sharply peaked. It shares almost no mass
with either of the posteriors p(z | C),p

(
z
∣∣ C,C = 1

)
, or p

(
z
∣∣ C,C = 0

)
.

The best Gaussian approximate marginal posterior on the other hand
either covers one or two modes, depending on the width of the two
full posteriors—a much more reasonable approximation.

It is worth stressing that in this simple example, a single bit missing
in the condition is sufficient for the theoretical optimum to not be a
desirable approximation of any true posterior.

Arguably, the properties of the optimal shared posterior are sur-
prising. Partial conditioning means inferring based on less informa-
tion. One could expect the less informed approximate posterior to be
more uncertain, the way p(z | C) is on average more uncertain than
p
(
z
∣∣ C,C

)
, cf. appendix A.3. The opposite is true.

A very reduced scalar linear Gaussian example highlights this. The
target distribution is the standard Gaussian p(x) ∼ N(0, 1). We assume
the latent variable model pa(x, z) = N(x | az, 0.1) ·N(z | 0, 1) with free
parameter a > 0. This implies

pa(x) = N
(
x
∣∣ 0, 0.1+ a2), (6.22)

pa(z | x) = N
(
z
∣∣∣ a(0.1+ a2)−1x,

(
1+ 10a2

)−1)
. (6.23)

With a∗ =
√
0.9, we recover the target distribution with posterior

pa∗(z | x) = N
(
z
∣∣∣ √0.9x, 0.1

)
. (6.24)

Next, we introduce the variational approximation q(z) = N(z | µz,σ2z).
With the only condition x missing, this is a deliberately extreme case
of partial conditioning where C = ∅ and C = {x}. Note that the true
posterior is a member of the variational family, i. e., no approximation
gap. We maximize the expected ELBO

qCa(z) = arg max
µz,σz

Ep(x)

[
Eq(z)

[
ln
pa(x, z)
q(z)

]]
, (6.25)

i. e., all observations from p share the same approximation q. One can
show that

qCa(z) = N
(
z
∣∣∣ 0, (100a2 + 1)−1). (6.26)

This distribution has extremely low variance, in particular much lower
than pa∗(z | x) ≡ p

(
z
∣∣ C,C

)
or p(z) ≡ p(z | C), the true fully- and

6.2 understanding the conditioning gap 93

partially-conditioned posteriors. We immediately see that qCa(z) is
generally equal to neither of them. This simple example highlights
how poor shared posterior approximations can become.

Further, inserting qCa(z) back into the expected ELBO and optimiz-
ing for a reveals that the maximum likelihood model parameter a∗ is
not optimal. In other words, pa∗(x, z) does not optimize the expected
ELBO in p—despite being the maximum likelihood model.

6.2.2 Vanishing Conditioning Gap

With these theoretical results in mind, it is reasonable to wonder
why the effects of the conditioning gap have not been reported in
the literature. After all, they seem to be at odds with the overall
positive results including successful applications to applied problems
as discussed in part II.

While there may be factors like publication bias (Song et al., 2010)
at play on a meta level, there is reason to believe that the types of
systems typically studied in the literature are not as affected by the
conditioning gap, as the previous sections may suggest. To understand
this, we take a closer look at the circumstances for the conditioning
gap to disappear,

p
(
C
∣∣ z,C

)
= p

(
C
∣∣ C) ⇐⇒ C ⊥ z | C. (6.27)

At first glance, this may seem like an extreme scenario, but there may
be cases where these circumstances are at least approximately true
and the gap is small. We highlight two such cases of sequential LVMs.

First, where the partially- and the fully-conditioned posterior corre-
spond to the prior transition, i. e.,

p(zt | zt−1) ≈ p(zt | Ct) ≈ p
(
zt
∣∣ Ct,Ct).

This is, for example, the case for deterministic dynamics where the
transition is a single point mass.

Second, the case where the observations are sufficient to explain the
latent state, i. e.,

p(zt | xt) ≈ p(zt | Ct) ≈ p
(
zt
∣∣ Ct,Ct).

A common case are systems with perfect state information.
We conjecture that the mentioned safe cases are overrepresented in

the studied data sets. For example, environments for reinforcement
learning such as the OpenAI Gym or MuJoCo environments (Todorov
et al., 2012; Brockman et al., 2016) feature deterministic dynamics.

Since it is reasonable to assume that the conditioning gap is negligi-
ble even in these relevant standard benchmarks, it is less surprising
that its effects have not yet been reported. Indeed, for such scenarios
it may even be favorable to use the theoretically incorrect approaches

94 the conditioning gap

arg min
φ

Ep(C)

[
Ep(C|C)[KL(qφ(z | C) || p(z | x))]

]
approximation gapconditioning gap

optimization gap capacity gap

amortization gap

variational familymissing conditions

suboptimal
minimization

limited inference
network capacity

Figure 6.2: High-level breakdown of the sources of different gaps in (amor-
tized) variational inference as they relate to the expected posterior KL. The
posterior KL—equivalent to the ELBO—is the better theoretical tool for un-
derstanding the differences between the gaps. Recall that x = C ∪̇ C and thus
p(x) = p

(
C,C

)
.

as their practical advantages outweigh the negative impact of the
conditioning gap.

Our empirical analysis in section 6.3 will focus on data sets that
deviate from these predominant scenarios in the literature.

6.2.3 Relation to Other Gaps

The conditioning gap requires amortized VI. Density networks used for
amortization introduce the notion of conditions as network inputs. It
is their use that enables partial conditioning in the first place.

Seeing that the inference suboptimality is caused by amortization,
a natural conclusion would be to subsume the conditioning gap as
part of the amortization gap, as discussed in section 2.4. Indeed, this
turned out to be a common concern among the reviewers of Bayer
et al. (2021).1 The argument has a certain appeal. From a practical per-
spective, the root cause for both the amortization and the conditioning
gap is the inference density network. Considering the gaps as separate
has the air of describing two sides of the same medal.

Establishing the conditioning gap as a separate phenomenon is
justified if countermeasures would not emerge from counteracting the
amortization gap. In this light, it is worth revisiting the previously

1 Reviews and rebuttals are public at https://openreview.net/forum?id=a2gqxKDvYys.

https://openreview.net/forum?id=a2gqxKDvYys

6.2 understanding the conditioning gap 95

known gaps—including the approximation gap—and understanding
their relation to the conditioning gap.

First, we will briefly discuss the approximation gap. Its root cause
is the restricted variational family. If we attempt to approximate, e. g.,
a non-Gaussian posterior with a Gaussian approximation, this intro-
duces an approximation gap. This gap can be countered by widening
the variational family to include more faithful classes of distributions.
Our results in section 6.1, however, never assumed a particular dis-
tribution of q(z | C), p(z | C), or p

(
z
∣∣ C,C

)
. Widening the variational

family would not help closing the conditioning gap at all. Even worse,
we showed that the desired solutions p(z | C) or p

(
z
∣∣ C,C

)
are gen-

erally not optimal in the objective even if they are members of the
variational family.

The amortization gap is caused by the use of density networks for
inference. Empirically, the mapping from conditions to the optimal
member of the variational family cannot be represented perfectly by
the inference density network. This discrepancy is the amortization
gap and is caused by two factors. Firstly, while neural networks are
theoretically universal function approximators, in practice their finite
amount of parameters and particular architecture restricts the class
of functions a neural network can represent well. We refer to this as
the neural network having a limited capacity. The second cause for an
amortization gap is that the density network is learned by imperfect
first-order optimization methods.2 Countering this gap thus involves
either the fine art of increasing the capacity of the inference density
network, or the optimization method to learn its parameters, or likely
a combination of both.

Like with the approximation gap, we observe that neither of these
interventions affects the conditioning gap at all. The amortization
gap quantifies how much the inference density network misses the
optimum. The conditioning gap on the other hand is caused by the
optimum being shifted, recall fig. 6.1. Even in a hypothetical scenario
where the inference density network is a true universal approximator—
infinite capacity—and an oracle optimizer that guarantees optimal
parameters for a given objective, the shifted optimum implies that the
conditioning gap remains present. The fact that the countermeasures
to reduce the amortization gap have no effect on the conditioning gap
are a first strong indication that it is worth discussing it as separate
phenomenon.

This is backed by another observation. Both approximation and
amortization gaps are defined on the level of individual data samples.
For a particular x, the true posterior p(z | x) is not a member of the

2 One might argue that the amortization gap itself consists of two separate gaps, a
capacity gap and an optimization gap. Making this distinction is potentially interesting
because a non-amortized VI method like SVI also suffers from the optimization
gap but not from the capacity gap. A full classification—and value judgment of its
usefulness—is out of scope for this thesis and left to future research.

96 the conditioning gap

variational family; for a particular x, the inference density network
misses the optimal member of the variational family. The conditioning
gap on the other hand cannot be characterized from this point of
view. To define the conditioning gap, all plausible observations x
that share the same condition C always need to be considered. All
these observations necessarily share the same optimal qC(z). The
conditioning gap can only be thought of in terms of expectations w. r. t.
p(x). No neural network can avoid the foul compromise that is the
new optimum. In this sense, the cause of the conditioning gap is much
less isolated in the inference density network than the amortization
gap. From this vantage point, it becomes clear that the conditioning
gap cannot be a part of the amortization gap—say, in addition to
optimization and capacity gap.

The discussion of this section is summarized in fig. 6.2.
Two main routes to counter the conditioning gap come to mind. The

first is a careful analysis of the system to be learned. If there is reason
to suspect that it falls, e. g., into one of the two benevolent categories
discussed earlier, one may simply choose to ignore the conditioning
gap in favor of a practically useful inference density network.

The second is to decouple learning the inference model from learn-
ing the generative model. That is to say, for learning the generative
model one should attempt to reduce the conditioning gap by feeding
all relevant conditions to the inference density network even if the
resulting density network is not useful for downstream application. In
a second step, after the generative model has converged, one can then
seek to fit a separate inference model based on the conditions that are
available in the downstream application. Here, it is likely advisable to
use a different objective than a lower bound to p(x) or p(x1:T) but a
more targeted objective that explicitly seeks to approximate the true
posterior that matches the intended application. Efficient curricula
along these lines are left to future research. The bottom line is that,
depending on the system to be learned, the conditioning gap is a
strong argument against currently popular joint end-to-end learning
of inference and generative model.

6.2.4 The Conditioning Gap and the Generative Model

The analysis so far has been centered on the inference model and
inference suboptimality caused by the conditioning gap. Adding the
generative model—which we usually try to fit in conjunction in the
VAE framework—back into the picture begs the question how much
it is affected by the conditioning gap.

A simple variational calculus argument, appendix C.2, reveals
that, when trained with partially-conditioned approximate posteriors,
maximum-likelihood models and ELBO-optimal models are generally
not the same. While this may not be surprising, the interesting ques-

6.3 empirical study 97

tion is how large the discrepancy is. We hypothesize that during the
learning process the generative model adapts in a way that reduces
the conditioning gap at the cost of overall model quality. That is to
say, instead of learning an approximately optimal model in the sense
of maximum likelihood, a model with high likelihood subject to low
conditioning gap is learned.

For sequential LVMs, we believe this to lead to inferior predictive
models when future observations are part of the missing conditions.
The reason is that in this scenario all plausible futures are mapped to
the same optimal yet foul compromise. It is thus not possible for this
belief to carry relevant information to predict the future observations.
We will put this hypothesis to a test in our empirical study.

6.2.5 Further Comments

It should be noted that the analysis of section 6.1 hinges on the
posterior KL as the objective. While it is a natural choice given its
duality to the ELBO, our objective of choice in this work, it is by no
means the only option. It is an open question to what extent other
divergences (Ranganath et al., 2014; Li and Richard E. Turner, 2016), cf.
also appendix A.2, suffer from similar conditioning gaps and if these
lead to practical learning algorithms.

Theoretical studies of biases of learning algorithms based on the
ELBO are numerous in the literature (Richard Eric Turner and Sahani,
2011; Nowozin, 2018; Huang and Courville, 2019). These studies are
largely orthogonal to our perspective here, which is deeply rooted in
amortized inference in particular.

However, we want to address one study by Lai et al. (2019). Their
study sets out to examine the role of sequential LVMs. They conclude
that the added stochasticity is not only unhelpful but potentially even
harmful to the performance of the overall system. Crucially, their
experimental protocol restricts the inference density networks in a
way that induces a conditioning gap, of which the study was unaware.
We conjecture that such assumptions lead to a collapse of the model
where the latent variables merely help to explain the data local in time,
i. e., intra-step correlations. In the light of the conditioning gap, their
results need to be re-examined.

6.3 empirical study

We studied the conditioning gap and its impact on learning SSMs
with amortized VI. In section 6.2.2 we have discussed that the con-
ditioning gap is likely to be less relevant in commonly studied data
sets. We thus looked at three different data sets: unmanned aerial vehi-
cle (UAV) trajectories with imperfect state information, section 6.3.2,

98 the conditioning gap

a sequential version of the MNIST data set, section 6.3.3, and traffic
flow, section 6.3.4.

6.3.1 Experimental Setup

We implement an SSM

p(x1:T , z1:T | u1:T) =
T∏
t=1

p(xt | zt)p(zt | zt−1, ut−1) (6.28)

with density networks. Controls u1:T are used in the UAV scenario.
Like with residual DVBFs, section 4.2.1, we choose a residual formula-
tion of the transition.

This is to ease the implementation of comparable inference models

q(z1:T | x1:T , u1:T) (6.29)

= q(z1 | x1:k, u1:k)
T∏
t=2

q(zt | zt−1, x1:m, u1:m) (6.30)

that allow us to examine the conditioning gap for different configu-
rations of k and m. Similar to residual DVBFs, the inference density
networks implement

q(εt | z1:t−1, x1:m, u1:m), (6.31)

and then

q(zt | z1:t−1, x1:m, u1:m) (6.32)

is implicitly defined through the residual formulation.
The initial inference model q(z1 | x1:k, u1:k) is also inspired by

DVBFs in that we may allow a sneak peek of k steps ahead even
when the inference model generally mimics filtering.

Concretely, we consider the configurations:

1. k = m = T . We refer to this as fully-conditioned inference.

2. k = 1,m = t. We refer to this as partially-conditioned inference.

3. k > 1,m = t. We refer to this as semi-conditioned inference.

The semi-conditioned inference model is motivated by the same argu-
ments as the initial inference model of DVBFs. It is a less severe form
of partial conditioning. If the conditioning gap is relevant in practice,
we should see the first fully-conditioned configuration outperforming
the latter two.

In practice, the translation from eq. (6.31) to eq. (6.32) is yet another
density network

q(zt | f(zt−1, ut−1), ht) (6.33)

6.3 empirical study 99

(a) x-axis

(b) y-axis

Figure 6.3: Posterior-predictive check of prefix-sampling on the Blackbird
data set. Possible futures are sampled from the model after having observed
a prefix x1:t. The state at the end of the prefix is inferred with a bootstrap
particle filter. Each plot shows a kernel density estimate of the distribution
over the final location xT , once for the semi-conditioned model in green and
for the fully-conditioned in blue. The true value is marked as a vertical, black
line. The fully-conditioned model assigns higher likelihood in almost all
cases and is more concentrated around the truth.
This figure has previously appeared in Bayer et al. (2021).

Table 6.2: ELBO values for models with differently conditioned variational
posteriors for various data sets. Presented values are averages over ten
samples from the inference model. The standard deviations were negligible.
Higher is better.
This table has previously appeared in Bayer et al. (2021).

UAV Traffic Flow

val test val test

partial - - −2.91 −2.97

semi 1.47 2.13 −2.73 −2.75

full 2.03 2.41 −2.69 −2.78

that uses the prior mean prediction f(zt−1, ut−1). This is to maximally
exploit the prior during inference and avoid duplicate learning of
dynamics. The deterministic feature vector ht is computed differently
depending on the configuration. The interface via the feature vector
allows us to easily change the conditioning. For the fully-conditioned
configuration, h1:T is the output of a bidirectional RNN with inputs
x1:T and u1:T . For the the other two configurations, h1 is computed
with an MLP with inputs x1:k and u1:k, and h2:T are computed with
a unidirectional RNN with inputs x1:T and u1:T .3

6.3.2 UAV Trajectories

With these models, we learn UAV trajectories from the Blackbird data
set (Antonini et al., 2018). By discarding the rotational information,

3 For further implementation details, we refer to the appendices of Bayer et al. (2021).

100 the conditioning gap

(a) semi-conditioned

(b) fully-conditioned

Figure 6.4: Comparison of prefix-sampling for a top-down view of UAV data.
Possible futures x̂(i)k+1:T (colored lines) are sampled from the model after
having observed a prefix x1:k (solid black line) and then compared to the
true suffix xk+1:T (dashed line). The state at the end of the prefix is inferred
with a bootstrap particle filter.
A similar figure has previously appeared in Bayer et al. (2021).

we create a system with imperfect state information. This creates a
system in which, according to our previous discussion, we expect
a conditioning gap because the observation xt does not contain the
full dynamic state. Each observation xt ∈ R3 is the location of an
unmanned aerial vehicle (UAV) in a fixed global frame. The conditions
ut ∈ R14 consist of IMU readings, rotor speeds, and pulse-width
modulation. The emission model was implemented as a Gaussian
density network with fixed, hand-picked standard deviations, where
the mean corresponds to the first three state dimensions:

p(xt | zt) = N
(
µ = zt,1:3,σ2 = [0.15, 0.15, 0.075]

)
. (6.34)

This approach is reminiscent of the explicit latent variables in VTSSI.
We leave out the partially-conditioned case as it cannot infer the

higher-order derivatives necessary for rigid-body dynamics. A sneak
peek of k = 7 for the semi-conditioned model is theoretically sufficient
to infer those moments.

Fully-conditioned models outperform semi-conditioned ones on the
test set ELBO, as can be seen in table 6.2. We evaluated the models on
prefix-sampling, i. e., the predictive performance of

p(xt+1:T | x1:t, u1:T). (6.35)

To restrict the analysis to the found parameters of the generative model
only, we inferred the filter distribution p(zt | x1:t, u1:t) using a boot-
strap particle filter, cf. section 3.3.2.2. By not using the respective ap-
proximate posteriors, we ensure fairness between the different models
since the fully-conditioned model would otherwise be at an advantage.
Inference would have already taken into account the observations to
be predicted. Samples from the predictive distribution were obtained

6.3 empirical study 101

Table 6.3: Results for row-wise MNIST. We report the ELBO as a lower bound
on the log likelihood and the KL divergence of the digit distribution induced
by the model from a uniform distribution.
This table has previously appeared in Bayer et al. (2021).

Distribution Log-Likelihood ↑ KL ↓

data - 0.002

partial > −98.99± 0.06 0.098

full > −88.45± 0.05 0.015

vhp + rewo (Klushyn et al., 2019) > −82.74 -

iwae (L=2) (Klushyn et al., 2019) > −82.83 -

via ancestral sampling of the generative model. Representative sam-
ples are shown in fig. 6.4. We performed a posterior-predictive check
for both models, where we compare the densities of the final obser-
vations xT obtained from prefix sampling in fig. 6.3. Both evaluations
qualitatively illustrate that the predictions of the fully-conditioned
approach concentrate more around the true values. In particular the
partially-conditioned model struggles more with long-term prediction.

6.3.3 Row-Wise MNIST

We transformed the MNIST data set into a sequential data set by
considering one row in the image plane per time step, from top to
bottom. This results in stochastic dynamics: similar initial rows can
result in a 3, 8, 9, or 0, future rows are very informative. Before all
experiments, each pixel was binarized by sampling from a Bernoulli
with a rate in [0, 1] proportional to the corresponding pixel intensity.

The setup was identical to that of section 6.3.2, except that a density
network returning a Bernoulli was used. No conditions u1:T and a
short sneak-peek (k = 1) were used. The fully-conditioned model
outperforms the partially-conditioned by a large margin, placing it
significantly closer to state-of-the-art performance, see table 6.3. This
is supported by samples from the model, see fig. 6.5. Note that state-
of-the-art results cannot be expected to be achieved since an SSM is
arguably not an ideal generative model of handwritten digits.

For qualitative evaluation, we used a state-of-the-art classifier4 to
categorise 10 000 samples from each of the models. If the data distribu-
tion is learned well, we expect the classifier to behave similarly on both
data and generative samples, i. e., yield uniformly distributed class pre-
dictions. We report KL divergences from the uniform distribution of
the class prediction distributions in table 6.3. A bar plot of the induced
class distributions can be found in fig. 6.5. Only the fully-conditioned
model is able to nearly capture a uniform distribution.

4 https://github.com/keras-team/keras/blob/2.4.0/examples/mnist cnn.py

https://github.com/keras-team/keras/blob/2.4.0/examples/mnist_cnn.py

102 the conditioning gap

0 1 2 3 4 5 6 7 8 9
digit

0.0

0.1

re
l.

fr
eq

ue
nc

y

type
data
partially
full

(a) Class distributions of the respective image distributions induced by a state-of-
the-art classifier. The data distribution is close to uniform, except for 5. The fully-
conditioned model yields too few 5s and is close to uniform for the other digits. The
partially-conditioned model only captures the right frequencies of 1 and 3.

data partially-cond. fully-cond.
(b) Comparison of generative sampling on row-wise MNIST. Samples from the data
distribution are shown on the left. The middle and right show samples from models
with a partially- and a fully-conditioned approximate posterior, respectively.

Figure 6.5: Results for the row-wise MNIST data.
A similar figure has previously appeared in Bayer et al. (2021).

6.3.4 Traffic Flow

We consider the Seattle loop data set (Cui et al., 2019, 2020) of average
speed measurements of cars at 323 locations on motorways near Seat-
tle, from which we selected a single one (42). The dynamics of this
system are highly stochastic, which is of special interest for our study.
Even though all days start out very similar, traffic jams can emerge
suddenly. In this scenario the emission model was a Gaussian density
network conditioned on the whole latent state. We compare partially-,
semi- (k = 7) and fully-conditioned models. The results are shown
in table 6.2. While the fully-conditioned posterior emerges as the
best choice on the validation set, the semi-conditioned and the fully-
conditioned one are on par on the test set. We suspect that the sneak
peek is sufficient to fully capture a sensible initial state approximation.

We performed a qualitative evaluation of this scenario as well in
the form of prefix sampling. Given the first t = 12 observations, the
task is to predict the remaining ones for the day, compare section 6.3.2.
We show the results in fig. 6.6. The fully-conditioned model clearly
shows more concentrated yet multi-modal predictive distributions.
The partially-condition model concentrates too much, and the semi-
conditioned one too little.

6.4 discussion 103

(a) partially-conditioned

(b) semi-conditioned

(c) fully-conditioned

Figure 6.6: Comparison of prefix-sampling. Same as fig. 6.4 but for the traffic
flow data.
A similar figure has previously appeared in Bayer et al. (2021).

6.4 discussion

In this chapter, we have gathered strong theoretical and empirical
evidence that the common practice of under-conditioning amortized
inference models harms learning. In particular, our empirical study
shows that not only inference is affected but also the generative learn-
ing that is learned in conjunction.

New learning algorithms that minimize—or altogether avoid—the
conditioning gap need to be devised. For many applications, such as
model-based control or RL with SSMs, learning the model may need
to be split from learning to infer. Neither part is straightforward; we
will consider one model learning algorithm without conditioning gap
in chapter 7.

Considering the overall promising results of part II, the results of
this chapter may appear anticlimactic. Yet, they also allow for a more
optimistic interpretation: by acknowledging and countering the condi-
tioning gap, one may find the basis upon which learning sequential
LVMs becomes feasible in broader classes of systems, particularly
systems with more inherent uncertainty. Future research may lead
to model designs and learning algorithms that are less tailored to a
particular application as many of the algorithms discussed in part II,
establishing the VAE framework more firmly for dynamical systems.

7 A P P R O X I M AT E N E U R A L
S M O OT H I N G

Chapter 6 explicitly outlines how sequential VAEs suffer from the
conditioning gap when the approximate posterior density network
uses different inputs compared to what the true posterior conditions
prescribe. This upcoming chapter combines the insights from part II
and chapter 6 into a new learning algorithm for SSMs.

From these experiences, we derive a set of design principles. The
inference model

1. must not exhibit a conditioning gap, it is thus smoothing;

2. should reuse generative SSM components to maximum extent;

3. should not impose Gaussian restrictions out of the gate.

As a consequence of these principles, the inference model needs some
way of handling beliefs that are not Gaussian. The most straight-
forward approach that is largely agnostic to certain distributions is
importance sampling, which leads to a particle smoothing approach.
This has the added benefit of not only maintaining a full posterior
belief at all times, albeit approximated by particles, but in the process
does away with the single-sample MC integrations.

The remainder of this chapter fleshes out the design principle into
an inference model and subsequently a learning algorithm for SSMs
and concludes with a proof of concept.

7.1 faithful approximate smoothing

Much like the design of DVBFs was inspired by Bayesian filters in
general and the Kalman filter in particular, cf. chapter 4, we once again
turn our attention to Bayesian smoothers for inspiration.

The crucial building blocks are already known from the background
section 3.3.1. According to eq. (3.25), the Bayesian SSM posterior
factorizes as

p(z1:T | x1:T) =
T∏
t=1

p(zt+1 | zt, xt+1:T). (7.1)

With eqs. (3.14), (3.24), and (3.30), we can refine the factors further:

p(z1 | x1:T) ∝ p(z1)p(x1 | z1)β1(z1), (7.2)

p(zt+1 | zt, xt+1:T) ∝ p(zt+1 | zt)p(xt+1 | zt+1)βt+1(zt+1). (7.3)

105

106 approximate neural smoothing

This view on the posterior is immediately appealing for designing an
approximation since it makes use of the SSM components. Reusing
these components creates a level of entanglement between posterior
approximation and generative model that may provide a useful in-
ductive bias for model learning. We observed similar advantages with
DVBFs in chapter 4.

In an eventual approximation the only source of the approximation
gap is how well the backward filter β is approximated. The proportion-
ality and the fact that β is not a distribution but a likelihood function
make it at least theoretically more plausible to make the lower bound
tight because it is not hampered by variational family choices.

In this light, eqs. (7.2) and (7.3) pose two challenges to a concrete
implementation. The first is the proportionality of both equations. This
does not necessarily pose a problem to inference as seen with, e. g.,
particle filters. Yet, pdf evaluations are not straightforward, which
needs to be accounted for during learning with the ELBO. We will
investigate this in section 7.2

The second is the backward filter βt(zt). We observe that we can
reuse initial state distribution, transition, and emission models by
approximating the posterior based on eqs. (7.2) and (7.3).1 The only
unknown—and in fact intractable—component is the backward filter
βt(zt). This leads to the core idea of this new approach: instead of
an explicit closed-form approximate posterior we implicitly define an
approximate posterior

q(z1:T | x1:T) =
T∏
t=1

q(zt+1 | zt, xt+1:T), (7.4)

with

q(z1 | x1:T) ∝ p(z1)p(x1 | z1)b1(z1), (7.5)

q(zt+1 | zt, xt+1:T) ∝ p(zt+1 | zt)p(xt+1 | zt+1)bt+1(zt+1), (7.6)

where we use an approximate backward filter bt ≈ βt. Using SIS akin
to particle filters with target q, we require neither distribution nor
normalizing constants to obtain samples.

The backward filter

βt(zt) = p(xt+1:T | zt) (7.7)

is a function, not a distribution in zt. It comes, however, with a de-
manding constraint: as a likelihood function of the future observations
it is required to be non-negative and integrate to 1 over the observa-
tions. However, since eqs. (7.5) and (7.6) are already proportional, we

1 We note that, in contrast to the reuse in, e. g., DVBFs, the prior here needs not be
reparemetrizable as long as we can evaluate its pdf.

7.1 faithful approximate smoothing 107

may relax the latter.2 Instead of directly approximating βt with a nor-
malized variational distribution β̂t, we learn a proportional positive
function

bt(zt) ∝ β̂t(zt) ≈ βt(zt). (7.8)

From this viewpoint, even β̂t is now implicit to our method. Like q,
and in contrast to bt, it is never explicitly implemented.

7.1.1 Approximate Neural Smoothing

Aside from these considerations, we have not assumed a particular
implementation of q or bt. To implement an SIS approach, we need
to provide a specific implementation for the proposals as well as
the approximate backward filter. The latter has not been used in the
previous literature, and both differ from the generative model in that
they require to work with inputs of variable size.

Both need to operate on a variable number of future observations.
This lends itself to RNNs:

f1:T = RNNb(x1:T), (7.9)

lnbt(zt) = MLPb(zt, ft+1), (7.10)

g1:T = RNNπ(x1:T), (7.11)

π(z1 | x1:T) = MLPπ(g1), (7.12)

π(zt+1 | zt, xt:T) = MLPπ(gt, zt). (7.13)

The RNNs in eqs. (7.9) and (7.11) compute fixed-size future summaries
ft ∈ Rdf and gt ∈ Rdg backwards in time. For instance, ft is always a
function of only xt:T to avoid data leakage by ensuring congruence
of inputs with the definition of a backward filter, eq. (7.7). This also
requires an uninformed fT , which is set to be a learnable variable.

By using the same networks at all time steps, we can share weights
between all approximations. We can even resort to using only one RNN
between proposal and approximate backward filter to summarize the
future observations. However, due to reasons discussed in section 7.3.1
this should be done with care.

Concretely, eqs. (7.12) and (7.13) are implemented by density net-
works returning distribution parameters as discussed in section 1.1.4.

Equation (7.10) could be implemented by a vanilla network since,
as discussed, bt is only proportional to a likelihood function, and
the subsequent exponentiation ensures non-negativity. In early experi-
ments, we found that constraining it to be a (log) probability density
in zt to be favorable. This can be implemented like the proposal.

2 Technically, the approximation needs to have finite integral in the future observations
xt+1:T . We did not encounter any problems with neglecting this tricky constraint.

108 approximate neural smoothing

Such an approach is further justified by the observation that in the
simple case of an LGS the true backward filter can be written as

βt(zt) = N(xt+1:T | Btzt,Σt) (7.14)

for appropriate matrices Bt and Σt, cf. appendix C.4. Despite being
a likelihood function, this is a bell-curve function in zt. As such, it is
proportional to a Gaussian pdf in zt, and thus can be represented by
the proposed implementation.

The resulting algorithm is shown in algorithm 5. It bears close
resemblance to particle filters in algorithm 2. The major differences
are an adapted update function

γt(zt, zt−1) =
p(xt | zt)p(zt | zt−1)bt(zt, xt+1:T)

π(zt | zt−1, x1:T)
, (7.15)

which, compared to the particle filter, adds the approximate backward
filter to the numerator. Further, the proposal π(zt | z1:t−1, x1:T) may
now also use future observations. We call this new amortized inference
algorithm approximate neural smoothing (ANS).

7.2 estimating the sequential elbo

In order to use ANS for learning, we need to estimate the sequential
ELBO

Eq(z1:T |x1:T)

[
ln
p(x1:T , z1:T)
q(z1:T | x1:T)

]
. (7.16)

Due to the implicit nature of our approximation q even a partial
evaluation of, e. g., the prior KL like with DVBFs is not possible.
However, SIS equips us with (weighted) samples of q so that an MC
estimate is possible.

We thus turn our attention to the log ratio in eq. (7.16). We denote
the step-wise normalizing constants of the approximate posterior as

Zt(zt−1) =
∫
p(zt | zt−1)p(xt | zt)bt(zt)dzt, (7.17)

Z1 =

∫
p(z1)p(x1 | z1)b1(z1)dz1. (7.18)

Our deliberate choice of reusing the generative model as much as
possible for the approximate posterior now has an interesting effect
on this log ratio. All components of the generative model cancel:

ln
p(x1:T , z1:T)
q(z1:T | x1:T)

(7.19)

= ln
p(z1)

∏T−1
t=1 p(zt+1 | zt)

∏T
t=1 p(xt | zt)Zt(zt−1)

p(z1)
∏T−1
t=1 p(zt+1 | zt)bt(zt)

∏T
t=1 p(xt | zt)

. (7.20)

7.2 estimating the sequential elbo 109

Algorithm 5: Approximate Neural Smoothing.
Input: observations x1:T ; number of particles P;

SSM initial, transition, and emission distribution;
proposal distributions π(zt | z1:t−1, x1:T);
resampling criterion and technique

Output: weighted state particle trajectories{{(
w

(p)
t , z(p)1:t

)}
p=1,...,P

}
t=1,...,T

Initialize w(p)
0 = 1/P,p = 1, . . . ,P

for t = 1, . . . , T do
for p = 1, . . . ,P do

Proposals z(p)t ∼ π
(

zt
∣∣∣ z(p)1:t−1, x1:T

)
Updates

γ
(p)
t ≡ γt

(
z(p)t , z(p)t−1

)
=
p
(

xt
∣∣∣z(p)t)

p
(

z(p)t
∣∣∣z(p)t−1)bt(z(p)t ,xt+1:T

)
π
(

z(p)t
∣∣∣z(p)1:t−1,x1:T

)
Unnorm. weights ŵ(p)

t = w
(p)
t−1γ

(p)
t

end

Renormalize weights w(p)
t = ŵ

(p)
t /
∑P
r=1 ŵ

(r)
t

if criterion is met then{(
w

(p)
t , z(p)1:t

)}
= resample

({(
w

(p)
t , z(p)1:t

)})
end

end

def resample
({(

w
(p)
t , z(p)1:t

)})
:

Save temporary copy ẑ(p)1:t = z(p)1:t
Updated particle indexes {ip} = technique

({
w

(p)
t

})
for p = 1, . . . ,P do

Set w(p)
t = 1/P

Overwrite trajectories z(p)1:t = ẑ(ip)1:t

end

110 approximate neural smoothing

We are left with3

Eq(z1:T |x1:T)

[
ln
p(x1:T , z1:T)
q(z1:T | x1:T)

]
(7.21)

= Eq(z1:T |x1:T)

[
lnZ1 +

T−1∑
t=1

ln
Zt+1(zt)
bt(zt)

]
(7.22)

=

T∑
t=1

Eq(zt−1|x1:T)[lnZt(zt−1)]︸ ︷︷ ︸
A

−Eq(zt|x1:T)[lnbt(zt)].︸ ︷︷ ︸
B

(7.23)

The latter term B can immediately be estimated via importance sam-
pling with the weighted particles. The log normalizing constants in A
require some thought. The outer expectation can be approximated
with the weighted particles as well. We further observe that

Zt

(
z(p)t−1

)
= E

π
(

zt
∣∣∣z(p)t−1,xt:T

)[γt(zt, z(p)t−1
)]

. (7.24)

This can be estimated as

Zt

(
z(p)t−1

)
≈ 1

N

N∑
n=1

γt

(
z(n,p)
t , z(p)t−1

)
(7.25)

by drawing N proposals4

z(n,p)
t ∼ π

(
zt
∣∣∣ z(p)t−1, xt:T

)
. (7.26)

Putting things together, we get

Eq(zt−1|x1:T)[lnZt(zt−1)] (7.27)

= Eq(zt−1|x1:T)
[
ln Eπ(zt|zt−1,xt:T)[γt(zt, zt−1)]

]
(7.28)

≈
P∑
p=1

w
(p)
t−1 ln

(
1

N

N∑
n=1

γt

(
z(n,p)
t , z(p)t−1

))
. (7.29)

In total, we can get an estimator of the ELBO as

T∑
t=1

 P∑
p=1

w
(p)
t−1 ln

(
1

N

N∑
n=1

γ
(n,p)
t

)
︸ ︷︷ ︸

≈A

−

P∑
p=1

w
(p)
t lnb(p)t︸ ︷︷ ︸
≈B

, (7.30)

where

γ
(n,p)
t = γt

(
z(n,p)
t , z(p)t−1

)
, b

(p)
t = bt

(
z(p)t

)
. (7.31)

In eq. (7.30), note the different time indexes of weights inA and B. They
prevent the backward filter term from canceling with its contribution
to the update term.

3 Equation (7.23) defines lnbT (zT) = 0 for ease of notation.
4 To start the process at t = 1, N · P particles are drawn i. i. d.

7.3 a linear gaussian example 111

Equation (7.30) actually estimates a lower bound to the ELBO. The
reason is that the unbiased estimator of the normalizing constant,
eq. (7.25), is the argument of a logarithm so that Jensen’s inequality
kicks in. This bias disappears asymptotically with decreasing variance
of the inner estimator increases as N→∞.

It should be noted that resampling requires categorical sampling
for which we cannot easily use reparametrization for computing pa-
rameter gradients. Stopping the gradients through these decisions
has been shown to bias the gradient estimates. In their analysis of
FIVO, Maddison et al. (2017) verify that the bias drastically reduces
the variance compared to corrected unbiased gradients. We follow
this line of argument and trade off a small gradient bias for reduced
gradient variance.

7.3 a linear gaussian example

To put ANS and the proposed estimator to a test, we conduct an
experiment on a two-dimensional LGS. Details on the system and
data used are gathered in appendix C.3. Using an LGS has several
advantages:

1. Since we know the ground-truth system, we can plug it into the
learning algorithm and isolate the (approximate) backward filter
and proposal in our evaluation.

2. Many quantities of interest can be computed in closed form
for LGSs. This includes the true backward filter of an LGS, cf.
appendix C.4. The log marginal likelihood lnp(x1:T) is also
tractable, which allows us to evaluate the approximation gap.

Learning approximate backward filter and proposal with the estimator
in eq. (7.30) in this controlled scenario creates an undesired result:
consistently negative approximation gaps. That is, the ELBO estimates
are higher than the known log marginal likelihood when they should
be lower bounds. This holds true even on held-out data, and since the
generative model is set to the ground-truth model overfitting can be
ruled out as a reason.

We thus turn our attention to the estimator in eq. (7.30). It is impor-
tant to recall that this is an IS estimator. For IS estimators to work, it
is crucial that the proposal is designed to cover the tails of the target
distribution. Ionides (2008) provides a good overview with examples.

When learning the proposal along with the model and approximate
backward filter with eq. (7.30), such advice is ignored. Instead, the
proposal is learned to maximize the estimator. The crux is that maxi-
mizing an estimator is not necessarily equivalent to maximizing the
quantity to be estimated, the ELBO. It is thus reasonable to assume

112 approximate neural smoothing

that the proposal learns to exploit this discrepancy and delivers what
is asked: a maximized estimator rather than an accurate estimator.

We put this hypothesis to a test: recall the filtering variational objective
(FIVO) from our discussion in section 4.3.6. FIVO is also a particle-
based IS estimate of a lower bound to the log marginal likelihood
lnp(x1:T). In contrast to our proposed method, the proposal is the
only learnable component when fixing the generative model to the
ground truth LGS, i. e., we can isolate the proposal for study. Indeed,
we find that the FIVO estimator suffers from the same phenomenon
of systematically overestimating the true log marginal likelihood even
though it should be a lower bound.5

7.3.1 Learning the Proposal

This motivates obtaining a proposal by other means. Specifically, we
use neural adaptive sequential Monte Carlo (NASMC; Gu et al., 2015).
The idea is to learn a proposal by maximizing

KL(q(z1:T | x1:T) || π(z1:T | x1:T)). (7.32)

Compared to VI, this KL is reversed, the proposal is the second argu-
ment. This is to encourage mode-covering behavior, which is beneficial
to the quality of the IS estimate. It is further justified by the observa-
tion that the number of samples required should be at the minimum as
large as the exponentiated KL in eq. (7.32) to make reasonable estimates
likely (Chatterjee and Diaconis, 2015). In other words, a proposal opti-
mized with the NASMC objective will learn to achieve more accurate
estimates with fewer particles.

This mode-covering KL is hard to evaluate especially since the target
distribution is not available, but the key insight by Gu et al. (2015) is
that evaluation is not necessary. Stochastic gradients w. r. t. proposal
parameters ϕ can be computed from the particles obtained in the
ELBO estimation, in our case

−∇ϕKL
(
qφ(z1:T | x1:T)

∣∣∣∣ πϕ(z1:T | x1:T)
)

(7.33)

=
∑
t

Eqφ(z1:T |x1:T)[∇ϕ lnπϕ(zt | zt−1, xt:T)] (7.34)

≈
∑
t

∑
p

w
(p)
t ∇ϕ lnπϕ

(
z(p)t

∣∣∣ z(p)t−1, xt:T
)

. (7.35)

Concretely, we update generative and inference model parameters θ
and φ with gradient steps in the ELBO estimate, eq. (7.30), as before.

5 In our preliminary experiments, this only holds true when the proposal of FIVO uses
future observations via a bidirectional RNN. With the additional information the
proposal exploits the discrepancy between estimator and target quantity. As a side
note, this is an empirical counterexample to the claim that a smoothing proposal does
not provide benefit in terms of maximizing the estimator (Maddison et al., 2017). The
fact that this had not been found may be related to our results of chapter 6.

7.4 further experiments and discussion 113

Proposal parameters ϕ are updated according to eq. (7.35).6 This adds
a substantial consideration to the learning algorithm: how to balance
training of the proposal vs. all other learnable components, in this case
the approximate backward filter but later also the generative model.
The challenge here is that the target distribution for the proposal,
the approximate posterior, is learnable and thus a moving target and
the proposal needs to catch up. At the same time, gradient steps
in the proposal parameters do not benefit the model, which adds
to the computational cost of learning. This leads to a trade-off of
learning stability and learning time. Such a trade-off is particularly
difficult because it is hard to detect the quality of the proposal or the
estimator on the fly, in particular in scenarios where no ground truth
log marginal likelihoods exist to verify the plausibility of estimated
ELBO values.

7.3.2 Results

In our LGS example, we employ a rather pragmatic learning algorithm,
with one update step in the proposal parameters for each update step
in the model parameters. This schedule proves to remove the spurious
ELBO over-estimation, and the approximation gap vanishes. As the
approximate backward filter implementation is able to represent the
true backward filter in this controlled scenario, this result is to be
expected.

Figure 7.1 qualitatively contrasts the proposal and its target—the
approximate posterior—with the ground truth posterior. We see that
ANS is able to approximate the ground truth well. In addition, the
prior and the ground truth filter obtained by Kalman filtering, sec-
tion 3.3.2.1, are depicted. We see that these differ significantly, showing
that the addition of the backward filter is beneficial for inference, and
that the LGS was chosen to be sufficiently volatile for future observa-
tions to provide benefit.

7.4 further experiments and discussion

7.4.1 Outlook: MNIST

We also conducted experiments on nonlinear data, in this case the
row-wise MNIST data familiar from section 6.3.3. While we do not
have the benefit of closed-form log marginal likelihoods as with LGSs,

6 In practice with auto-differentiation frameworks, one needs to ensure that the pro-
posal is not optimized w. r. t. either weights or particles as these depend on the
proposal parameters ϕ. This is achieved, e. g., by stopping gradients through both in
eq. (7.35) or any comparable way of achieving the gradient of the proposal density
function directly. Further, in this setting proposal and model components must not
share parameters.

114 approximate neural smoothing

−1

0

1

p
ri

o
r

t = 1 t = 8 t = 15 t = 22 t = 30

−1

0

1

fi
lt

er

−1

0

1

p
ro

p
o
sa

l

−1

0

1

a
p

p
ro

x
im

a
te

p
o
st

er
io

r

−1 0 1

−1

0

1

g
ro

u
n

d
tr

u
th

p
o
st

er
io

r

−1 0 1 −1 0 1 −1 0 1 −1 0 1

Figure 7.1: Qualitative comparison of various distributions in latent space
for one sequence at the respective time steps from left to right. Top to bot-
tom: the prior distribution; the ground truth Bayesian filter computed with
the Kalman filtering algorithm; the proposal distribution π(zt | zt−1, x1:T);
the unnormalized approximate posterior distribution q(zt | zt−1, xt:T); the
ground truth smoothing posterior p(zt | zt−1, xt:T).

7.4 further experiments and discussion 115

Test Data Reconstructions

Predictions from t = 10 Prior Samples

Figure 7.2: Qualitative results on row-wise MNIST data. The top row shows a
batch of test data and the respective mean reconstructions from the posterior
belief. The bottom row examines the prior. On the left are predictions with
the prior, starting from the approximate posterior belief after t = 10 rows.
The beliefs are those of the test batch in the top row. To distinguish ground
truth from prediction, the ground truth rows are rescaled towards gray
values. On the right, we show purely generative samples.

116 approximate neural smoothing

MNIST is so well-established as a benchmark that we at least know
reasonable ELBO values.

We experience the same phenomenon of overestimating the ELBO,
though not consistently. This is a challenge for quantitative evaluation
since ELBO estimates are not trustworthy and hence not useful for
model selection and evaluation.

Motivated by the positive impact for LGS data, we explored whether
NASMC would lead to similar stabilization. The results were mixed.
While NASMC drastically reduced the number of experiments with
clearly implausible ELBO estimates, it also dramatically increased
training time. In fact, none of the experiments with NASMC achieved
comparable results to those of section 6.3.3.

We speculate that there are two main reasons for this.
The first is that striking a balance between learning the model via

ELBO and the proposal via NASMC is more delicate in this case. Too
few updates of the proposal parameters negate the effect of using
NASMC; too many render learning prohibitively expensive. It appears
that a more sophisticated schedule for balancing the two objectives
would be necessary.

The second insight is derived from experiments that do not use
NASMC. In this case, we can share weights between the backward
RNN of the proposal and the backward filter. This appears to be
beneficial to learning.

For these reasons, a quantitative analysis is not possible at this
point. Nonetheless, a qualitative analysis of a successful run produces
interesting results summarized in figs. 7.2 and 7.3. This run did not
use NASMC; its final ELBO estimate was on a par with the results
from section 6.3.3—keeping in mind that this should be interpreted
with care. Details on the experiment can be found in appendix C.5.

The model exhibits a few desirable properties. Figure 7.2 shows
that reconstructions are impeccable in comparison to data while prior
samples are diverse and plausible at first glance. While the algorithm
eludes deeper quantitative analysis for now, this serves as a promising
proof of concept.

The remaining plot of fig. 7.2 shows the interplay between inference
and generative model. The inference model is fed the test data and
infers a belief up until time step t = 10, the tenth row, indicated by the
gray background. From there on, the remaining rows are produced by
sampling from the belief and subsequently exclusively from the prior.
Again, we see that the resulting digits are plausible.

Contrasting the predictions with the true continuations of the data,
we observe significant variability. This indicates that the learned latent
system is dynamic and stochastic. The belief and the subsequent steps
in the prior have not degenerated into a virtually deterministic system.
Keep in mind that the belief at t = 10 was indirectly informed by the
entire digit by means of the backward filter. This is an encouraging

7.4 further experiments and discussion 117

Figure 7.3: This plot reiterates the prediction plot in the bottom left of fig. 7.2,
starting the prediction with the prior from different prefixes of length t. From
top to bottom t = 1, 5, 10, 15. The columns are two independent predictions
based on the same belief to examine sample diversity. The growing prefix is
highlighted by rescaling their pixel grayscale values from [0, 1] to [0.25, 0.75].
The test batch is the same as in fig. 7.2.

118 approximate neural smoothing

result, indicating that the learning algorithm is able to pick up inherent
stochasticity in the system and avoids over-emphasizing the inference
model.

Figure 7.3 explores this notion further. Starting from the same test
batch, we investigate different prefix lengths before predicting with
the prior and show two predictive samples per prefix length. Con-
trasting the samples from short prefixes with data, we can see that
the posterior does not memorize the digit by letting the backward
filter determine the perfect sample. With increasing prefix length,
the variability between the predictive samples decreases, but never
disappears. We also notice that the samples show a very consistent
style, e. g., the stroke width within a sample remains plausible. This
indicates that such global properties are propagated in the state, while
local variations within the same style are driven by transition noise.

While the analysis remains qualitative at this point, these results
certainly warrant further research into improving and stabilizing the
learning of proposals.

7.4.2 Relation to Importance-Weighted Auto-Encoders

Our analysis of learned proposals is sufficient to motivate the use of
methods like NASMC to learn the proposal. From a higher point of
view, however, it does not provide insight into what exactly causes the
overestimation.

We speculate further analysis would be interesting to importance-
weighted auto-encoders (IWAEs), cf. section 2.5.3. IWAEs are similar to
our proposed method in the sense of providing an IS approach to
learning VAEs. In fact, Maddison et al. (2017) claim that FIVO without
resampling is the same as IWAE, except for a sequential model.

But there are also differences to our approach. Where our model has
potentially three moving parts—generative, proposal, and inference
model—FIVO and IWAEs have only two, generative and proposal
model. Our ELBO estimate in eq. (7.30) has the overall structure

Eπ(z)

[
q(z)
π(z)

ln
p(x, z)
q(z)

]
(7.36)

whereas the IWAE bound has the structure

Eπ(z)

[
ln
p(x, z)
π(z)

]
. (7.37)

That is, with IWAEs, there is an application of Jensen’s inequality after
importance sampling. A better understanding of these similarities and
differences may hold the key to improved learning algorithms in the
presence of proposal distributions.

The theory of IWAE bounds has been studied to some extent. Rain-
forth et al. (2018) found that, counterintuitively, increasing numbers

7.4 further experiments and discussion 119

of particles may hinder proposal learning. The reason is that a higher
number of particles lowers the influence of the proposal: with a higher
number of particles, a wider range of proposals lead to good results,
leading in return to lower gradient magnitudes. Rainforth et al. (2018)
show that the signal-to-noise ratio of the gradient estimate indeed
decreases in the number of particles P.

It is unclear to what extent our results translate to the IWAE setting.
We believe this to be worth of further study since our results show
that estimated bound values are potentially misleading for evaluation
and model selection. A deeper analysis is left to future research.

7.4.3 Discussion

ANS merges many of the previous threads of this thesis.
Based on the findings of chapter 6, it eliminates the conditioning

gap by using a fully-conditioned inference algorithm for learning a
generative model.

Even more, this inference model is derived by analyzing the Bayesian
smoothing posterior of a state-space model. This is to maximally
exploit inductive biases of proper algorithms and without relying
on specific neural architectures or even neural networks in the first
place. Only when quantities become generally intractable are they
approximated with density networks, in this case the backward filter.

In doing so, ANS picks up the design principles of DVBFs and even
takes them a crucial step further. Where DVBFs would only reuse
the prior transition, ANS makes use of the entire generative SSM,
including the emission model.

As we have seen in the preliminary experiments of this chapter,
there is light and shadow. The experiments serve as a proof of concept.
The approximate backward filter is learned well enough so that the
posterior forward transition is approximated well. While the nonlinear
results are not yet conclusive, the probed model shows promising
properties.

At the same time, we observed challenges with the proposal dis-
tribution. NASMC shows promise as a remedy, but the nonlinear
experiments also show that it is not straightforwardly integrated into
a learning algorithm. Managing two objectives simultaneously ups
the complexity of the overall learning algorithm significantly. This
challenge needs to be addressed before ANS can be considered as a
general-purpose algorithm.

To this end, further research beyond the scope of this thesis is
required.

120 approximate neural smoothing

Future Work

To conclude this chapter, we can identify and speculate about possible
paths forward which can already be identified at this stage.

One possible path is to better understand what causes instabilities of
the estimator. As discussed in section 7.4.2, this may be of interest even
beyond ANS. It could be interesting to probe to what extent proposal
and backward filter may still share weights and what objective should
be used for these shared weights.

Another possible route is to establish a learning algorithm that
balances the two objectives more gracefully. A promising approach
was recently suggested for VAEs by Rezende and Viola (2018) and
Klushyn et al. (2019). They established a constrained optimization
framework in which the ELBO is reinterpreted as the Lagrangian of a
constrained optimization program. This leads to a learning algorithm
that dynamically adjusts the relative importance of the likelihood
and prior KL terms of the ELBO. This framework could be extended
to include the proposal so that the resulting learning algorithm can
adjust the relative importance of learning the model vs. learning
the proposal. As with the previous suggestion, such approaches are
possibly of interest beyond ANS. A principled, yet practical way of
imposing constraints to sequence models may be beneficial beyond
the challenge of learning proposals.

Part IV

S E T-VA L U E D N E U R A L F U N C T I O N S

This part is based on ideas that have previously appeared
in the following publication:

Soelch, Maximilian, Adnan Akhundov, Patrick van der
Smagt, and Justin Bayer (2019). “On Deep Set Learning
and the Choice of Aggregations.” In: Artificial Neural Net-
works and Machine Learning - ICANN 2019: Theoretical Neu-
ral Computation - 28th International Conference on Artificial
Neural Networks, Munich, Germany, September 17-19, 2019,
Proceedings, Part I. Ed. by Igor V. Tetko, Vera Kurková,
Pavel Karpov, and Fabian J. Theis. Vol. 11727. Lecture
Notes in Computer Science. Springer, pp. 444–457. isbn:
978-3-030-30487-4. doi: 10.1007/978-3-030-30487-4\\ 35.

Direct quotes from this publication are highlighted in gray
font color. Minor adaptations of the quotes to the style of
this thesis are not explicitly highlighted.

Supplementary material is collected in appendix D.

https://doi.org/10.1007/978-3-030-30487-4_35

8 A G G R E G AT I O N F U N C T I O N S I N
D E E P S E T L E A R N I N G

8.1 a motivating example

This last part shifts focus towards functions with set-valued inputs—
set functions. This is nominally a departure from sequential LVMs,
the central topic of this thesis, but there are connections on multiple
levels.

To illustrate this, consider an agent with a belief in its own (scalar)
position z along a line. The agent might need to take different actions
if a certain position has been reached, e. g., perform a task in a specific
place or avoid the danger of falling off a cliff.

As we have learned, e. g., in chapters 3 and 7, such beliefs can be
represented by a set of particles. Then any policy acting on this belief
must be a function of this belief, i. e., a set function. For the sake of the
argument, we consider a simple task: answering the question whether
the current position is more likely to exceed some threshold τ or not;
that is which of the mutually exclusive events z > τ and z 6 τ is more
probable.

The particle-based belief does not immediately answer this question,
but it can inform the decision. If the belief is assumed to be Gaussian,
then the particle mean—a function of the set of particles—is a good
feature. Since a Gaussian is symmetric around its mean, its relative
position to the threshold is a strong indicator to answer the question.

With a non-Gaussian belief, this feature becomes more error-prone.
A more sophisticated feature derived from the particle representa-
tion of the belief is a committee: each particle submits an educated
guess on whether the threshold was exceeded (e. g., by determining
whether according to this particle the threshold is exceeded). The
overall prediction is then determined by a majority vote among the
particles.

Even for this feature, it is easy to imagine systematic failure cases.
The most suitable features are tailored towards the beliefs that are
likely to occur. This motivates replacing such hand-made features with
learnable set functions which leverage learnable feature extraction.

A simple example underlines this.1 We assume the true beliefs are
scalar mixtures of two Gaussians, with one component mean above
threshold τ = 0 and one below. We represent each belief by a meager
five samples. Figure 8.1 shows some beliefs and the respective samples.

1 The underlying neural architecture will be explained in the following sections. The
full experimental details are collected in appendix D.1.

123

124 aggregation functions in deep set learning

1 0 1 1 0 1 1 0 1

Figure 8.1: Three examples of mixtures of Gaussians for the motivating
example. The graph shows the pdf. The shaded area indicates 50% of the
probability mass, i. e., the task is to predict whether the shaded area stretches
across 0. Particles are depicted as crosses, the dotted line is their mean.
Examples were picked to show failure cases of the hand-crafted features in
the two right plots.

Table 8.1: Test set accuracies for sign prediction of the median of a mixture
of two Gaussians, section 8.1.

feature variant accuracy

hand-crafted particle mean 0.8150

committee 0.8292

neural mean aggregation 0.8348

max aggregation 0.8328

ground truth mixture weight 0.9124

We now compare the mean predictor, the committee predictor, and
a learned neural predictor for whether z > 0 is more likely or not. The
results are reported in table 8.1. Even in this rather simple setting, the
neural predictor can outperform manual features out of the box—no
hyper-parameters needed to be tuned. For completeness, we show
another predictor that decides based on the true weight of the belief
components. It outperforms all other predictors, but it also leverages
information that is not contained in the particle-based belief and
is difficult to estimate from only five particles but emphasizes that
learned set functions are not strictly superior.

This simple example establishes a direct link to the previous chap-
ters. From a higher level, there are further connections.

Firstly, with both sequential models and set functions, the data
have structure that needs to be adhered. With sequential models, the
temporal order is key. Analogously, with set functions it is important
to respect that sets are unordered—a notion that we will formalize in
section 8.2.2. In both cases, the additional structure in data requires
distinct treatment in the models to tackle them.

The remedy shows further high-level connections to the previous
chapters. The neural architectures are informed by algorithms. The
same principle has been applied to set functions. The Deep Set neural
architecture (Zaheer et al., 2017) is entirely motivated by a provable

8.2 state of the art 125

mathematical property of set functions as presented in section 8.2.3
and theorem 8.1.

notation and terminology To ease the discussion of sets of sets,
minor adjustments in notation and terminology are required to avoid
ambiguity. The elements Z ∈ D of a data set—themselves sets—are
called populations. The elements zi ∈ Z of a population Z ⊂ Z are
called particles from the particle space Z, alluding to the connection to
particle-based algorithms discussed earlier. Each population further
has a tensor-valued2 representation Z ≡ Z, where Z ∈ Rp×d is created
by concatenating p = |Z| particles of dimension d in a new tensor
axis. Implicitly, this representation assumes that z ∈ Z ⊂ Rd. Such
a representation is only unique up to the order of particles in the
tensor. Equivalent representations are denoted by Zπ, where π denotes
the permutation along the concatenation axis that transforms Z into
Zπ. That is, generally Z 6= Zπ but Z ≡ Z ≡ Zπ. Populations could
technically be multi-sets—sets that may hold duplicate entries. All
presented results are valid either way. For clarity, we omit further
discussion of multi-sets.

8.2 state of the art

8.2.1 Order Matters

Sets that have been transformed into a tensor representation can be
processed by a variety of neural networks. The problem is that the
resulting mapping is in most cases not a proper set function, usually
for one of two reasons.

Firstly, the result typically changes with a permutation of represen-
tation from Z to Zπ. This can be mitigated by regularization methods
such as shuffling the tensor randomly at training time but does not
guarantee identical results for all permutations.

Secondly, many feed-forward NNs are unable to handle sets of vari-
able size. This is not true for RNNs, where the set can be interpreted
as an input sequence of arbitrary length. However, in the context of
sequence-to-sequence problems it has been shown that the result is
sensitive to the order of particles (Vinyals et al., 2016). The challenge
is that most NNs are explicitly not designed to ignore the ordering.

The suggested solution by Vinyals et al. (2016) is an architecture
that decouples the set represented as tensor M—the memory—from
the inputs to the neural component. Rather, from a high-level point
of view the RNN produces a query qt to the memory per step; the
memory responds with an activation at that is aggregated from the

2 As has become custom in the community, we use the term tensor loosely as a synonym
for multi-dimensional arrays, not the generalization of linear transforms.

126 aggregation functions in deep set learning

memory, neglecting the order; the aggregation is then fed back to
produce the next query:

qt = LSTM(qt−1, at−1) (8.1)

ŵi,t = attention(mi, qt)
(
= m>iqt

)
(8.2)

wt = softmax(ŵt) (8.3)

at =
∑

wi,tmi (8.4)

a = aT . (8.5)

This architecture is called read-process-write. It is a proper set function
that can handle sets of arbitrary size by design. Yet, it is unclear what
kind of functions can be expressed by this architecture.

To the best of our knowledge, this model has only been discussed
in its sequence-to-sequence context. We will revisit and refine this
architecture in section 8.3.3.

8.2.2 Invariance and Equivariance

We have defined how sets Z can be translated into tensor represen-
tations Z. This brings us closer to the more familiar tensor-to-tensor
scheme, but we also found that a naive application of MLPs does not
yield proper set functions. The key issue is the non-unique translation
of sets into tensors. A proper set function needs to be invariant to any
particular translation. This concept of invariance is formalized by

Definition 8.1 (Invariance). A function f : P(Z)→ Y is order-invariant
if for any permutation π and input {z1, . . . , zN} ∈ P(Z)

f({z1, . . . , zN}) = f
({

zπ(1), . . . , zπ(N)

})
.

If it is clear from the context, we will call such functions invariant. When
the input is represented as a tensor, a function is invariant if for all tensor
representations Z and permutations π, this definition can also be expressed as

f(Z) = f(Zπ).

The attentive reader may have spotted that the first definition is
somewhat circular: the argument of right- and left-hand side are
identical since both are sets of the same elements which are not
affected by the permutation. If defined on sets, f is automatically
invariant. Some ordering of the particles is required to even define
functions that are not invariant, e. g., a function that returns the first
particle. The key notion of definition 8.1 is thus the invariance to
arbitrary ordering of set elements from a particular representation
on which f operates, e. g., from assigning indices, or in the tensor-
valued representation. The latter motivates the equivalent definition
of invariance in terms of Z and Zπ.

8.2 state of the art 127

The function f : P(Z) → Y in definition 8.1 assumes a range Y of
fixed dimension, irrespective of the size of the input set. Alternatively,
we might be interested in mapping a set to a set of outcomes of equal
size, i. e., a function g : Zp → Yp. This might be the case if we want
to simultaneously make a prediction for each particle, taking into
account the entire set. In this case, a related concept to invariance
emerges.

Definition 8.2 (Equivariance). A function g : Zp → Yp is equivariant if
input permutation results in equivalent output permutation, i. e., for any Z
and Zπ

g(Zπ) = (g(Z))π.

Equivariance guarantees that we can interpret the function g—which
is defined in terms of tensors Z ∈ Zp—as a function on sets.

8.2.3 Deep Sets

We have seen that naive implementations of set functions with neural
networks will not yield invariant functions. To benefit from the uni-
versal approximation capabilities of NNs for invariant set functions, a
deeper understanding of invariance is required.

The seminal work by Zaheer et al. (2017) proved a defining structural
property of order-invariant functions:

Theorem 8.1 (Deep Sets, Zaheer et al. (2017)). A function f on popu-
lations Z from countable particle space Z is invariant if and only if there
exists a decomposition,

f(Z) = ρ

(∑
z∈Z

φ(z)

)
,

with appropriate functions φ and ρ. Following Wagstaff et al. (2019), we call
such functions sum-decomposable.

In other words, every invariant function is decomposable into a per-
particle embedding φ, a sum operation that aggregates particles and
thus ensures invariance, followed by a final processing of the invariant
sum with ρ. The key advantage of this decomposition is that both φ
and ρ are no longer set functions but operate on vector-valued input.
As a consequence, it is much more straightforward to use off-the-shelf
NNs in their place.

As Wagstaff et al. (2019) point out, the devil is in the details: the
restriction to countable particle spaces in theorem 8.1 limits its practical
use. They highlight severe pathologies for uncountable input spaces:

1. There exist invariant functions that have no sum decomposition.

128 aggregation functions in deep set learning

Z
φ M

⊕

σ ⊕ a ρ r

Figure 8.2: Deep Set architecture, eqs. (8.7) to (8.10), with a single equivariant
layer, eq. (8.6). Aggregation functions are depicted by ⊕.
A similar figure has previously appeared in Soelch et al. (2019).

2. There exist sum decompositions that are everywhere-discontinu-
ous.

3. Even common functions such as max(Z) cannot be continuously
decomposed when the dimension of the image space of the
embedding φ is smaller than the population size p = |Z|.

As a consequence they refine theorem 8.1 to

Theorem 8.2 (Uncountable Particle Spaces, Wagstaff et al. (2019)). A
continuous function f on finite populations Z, |Z| 6 p, is invariant if and
only if it is sum-decomposable via Rp.

That is, for arbitrary continuous f, the image space of φ has to
have at least dimension p, which is both necessary and sufficient.
More restrictive in scope than theorem 8.1, its assumptions are more
applicable in practice where most function approximators—neural
networks, Gaussian processes—are continuous.

A generic invariant neural architecture emerges from theorems 8.1
and 8.2 by using neural networks for ρ and φ, respectively. In practice,
to allow for higher-level particle interaction during the embedding φ,
equivariant neural layers (Zaheer et al., 2017) are introduced:

equivariant(Z) = σ(Z − 1α(Z)), (8.6)

where σ(·) denotes a per-particle feed-forward layer, and α(·) denotes
an aggregation. Aggregations—our object of study—induce invariance
by mapping a population to a fixed-size description, typically, e. g.,
sum, mean, or max. The full architecture is

mi = embed(zi), (8.7)

C = combine(M),
(

M =
[
m>i
])

, (8.8)

a = aggregate(C), (8.9)

r = process(a), (8.10)

with φ implemented by a per-particle embedding followed by an
equivariant combination function consisting of equivariant layers.
These two steps are equivariant by design. Summation is replaced by

8.2 state of the art 129

a generic aggregation operation. This aggregation induces invariance
of the overall architecture. Qi et al. (2017a) and Zaheer et al. (2017)
suggest the max operation as an alternative to summation. Lastly, ρ
can be implemented by arbitrary functions since the aggregation in
eq. (8.9) is already invariant. This framework is depicted in fig. 8.2.

8.2.4 Related Work

Beyond the highlighted connections to the previous chapters, set
functions have a wide field of applications: depth vision with 3D
point clouds, probability distributions represented by finite samples,
or operations on unstructured sets of tags (Póczos et al., 2013; Reed
et al., 2016; Wang et al., 2019).

This motivated research into order-invariant neural architectures
(Guttenberg et al., 2016; Ravanbakhsh et al., 2016; Vinyals et al., 2016;
Edwards and Storkey, 2017). From this, the Deep Set framework
as outlined in the previous sections emerged, proving that many
interesting invariant functions allow for a sum decomposition (Qi
et al., 2017a; Zaheer et al., 2017; Wagstaff et al., 2019).

Several papers introduce and discuss a Deep Set framework for
dealing with set-valued inputs (Qi et al., 2017a; Zaheer et al., 2017).
A driving force behind research into order-invariant neural networks
are point clouds (Qi et al., 2017a,b, 2018), where such architectures are
used to perform classification and semantic segmentation of objects
and scenes represented as point clouds in R3. It is further shown that
a max decomposition allows for arbitrarily close approximation (Qi
et al., 2017a).

Generative models of sets have been investigated: in an extension of
VAEs, the inference of latent population statistics resembles a Deep
Sets architecture (Edwards and Storkey, 2017). Generative models of
point clouds are proposed by Achlioptas et al. (2018) and Yi et al.
(2019).

Permutation-invariant neural networks have been used for predict-
ing dynamics of interacting objects (Guttenberg et al., 2016). The
authors propose to embed the individual object positions in pairs
using a feed-forward neural network. Similar pairwise approaches
have been investigated by X. Chen et al. (2014) and Chang et al. (2017)
and applied to relational reasoning by Santoro et al. (2017).

Weighted averages based on attention have been proposed and ap-
plied to multi-instance learning (Ilse et al., 2018). Several works have
focused on higher-order particle interaction, suggesting computation-
ally efficient approximations of Janossy pooling (R. L. Murphy et al.,
2019) or proposed set attention blocks as an alternative to equivariant
layers (J. Lee et al., 2019).

130 aggregation functions in deep set learning

8.3 the choice of aggregation

8.3.1 The Role of Aggregations in Deep Set Architectures

Section 8.2 has established the Deep Set architecture as proposed by
Zaheer et al. (2017), along with minor extensions. The key ingredient
that renders this type of architecture invariant is the summation be-
tween embedding and processing step. The architecture inherits its
invariance from the sum function—the prototypical, downright trivial
invariant function.

Yet, in practice we see it replaced by, e. g., the mean or max function.
In comparison, summation has unfavorable properties. For instance,
the former two have their result bounded when the embedding is
bounded. The result of summation can instead grow arbitrarily large
with growing population size. This may cause a downstream neural
processing function ρ to saturate. Such practical considerations mo-
tivate a looser definition of the Deep Set architecture with a more
general aggregation function at its core, cf. eqs. (8.7) to (8.10).

In this context, aggregation is a rather loose term. It is strictly
speaking simply an invariant function, which turns the connection
to theorems 8.1 and 8.2 on its head: invariant functions are invariant
because they are invariant. For our purposes, an aggregation function
is a function that is loosely speaking “obviously” invariant and thus
lends itself to be deployed in a Deep Set architecture as the central,
invariance-inducing component between embedding and processing.

We hypothesize that this rather imprecise nature led to a focus
on either embedding or processing in the previous literature. In the
following, we will study aggregations. After discussing desirable
properties and extending the theory around aggregation functions,
we will suggest multiple alternatives, including learnable recurrent
aggregation functions. Studying them in several experimental settings,
we will find that the choice of aggregation impacts not only the
performance but also hyper-parameter sensitivity and robustness to
varying population sizes. In the light of these findings, we will argue
for new evaluation techniques for neural set functions.

8.3.2 Sum Isomorphism

We start with a simple but useful observation:

Corollary 8.1 (Sum Isomorphism). Theorems 8.1 and 8.2 can be extended
to aggregations of the form αg = g ◦

∑
◦ g−1, i. e., summations in an

isomorphic space.

Proof. From ρ ◦
∑
◦ φ = (ρ ◦ g−1) ◦ g ◦

∑
◦ g−1 ◦ (g ◦ φ), sum de-

compositions can be constructed from αg-decompositions and vice
versa.

8.3 the choice of aggregation 131

−1 1

−1

1

max

−10 10

−10

10

LΣE

−1 1

−1

1

LΣE

−0.1 0.1

−0.1

0.1

LΣE

−1 1

−1

1

Σ

Figure 8.3: Contour plots on two inputs for max, logsumexp (LΣE) on three
ranges, and sum (Σ). For large ranges, LΣE acts like max, shifting towards
sum with decreasing input range.
A similar figure has previously appeared in Soelch et al. (2019).

Corollary 8.1 justifies, e. g., mean with

g((z1, . . . , zn+1)) = (z1, . . . , zn)/zn+1, (8.11)

g−1(z) = (z>, 1)>, (8.12)

but also logsumexp (LΣE) with g = ln. In that light, there is an interest-
ing case to be made for LΣE: depending on the input magnitudes, LΣE
can behave akin to max or like a linear function akin to summation,
cf. fig. 8.3. Operating in log space, LΣE further exhibits diminishing
returns: N identical scalar particles zi yield

LΣE({zi}) = ln(N) + z1. (8.13)

The larger N, the smaller the output change from additional particles.
As discussed previously with sum vs. mean aggregation, this may be
numerically favorable particularly with large sets. While we will not
investigate this idea further, we point out that the concept of diminish-
ing returns is also related to possibly desirable asymptotic statistical
properties. With an increasing amount of particles, we might want to
expect some notion of convergence in the result akin to asymptotic
consistency.

8.3.3 Learnable Aggregation Functions

In the Deep Set architecture as suggested by Zaheer et al. (2017), cf.
section 8.2.3, the aggregation is the only non-learnable component.
While understandable in the light of its origin in theorems 8.1 and 8.2,
there is no inherent reason why this should be the case. The key to a
learnable aggregation is finding a function that is learnable and useful
but simple enough to be integrated as an aggregation function.

Here, we recall the read-process-write architecture by Vinyals et al.
(2016), cf. section 8.2.1. While it predates the Deep Set architecture, it
has been overlooked3 in the wake of the more universal architecture.
Elaborating on this idea, we suggest recurrent aggregations:

3 For instance, Zaheer et al. (2017) only briefly mention the sequence-to-sequence and
order aspect without acknowledging the suggested invariant architecture.

132 aggregation functions in deep set learning

M

⊕
q1 q2 qT

a1 a2 aT

a

...

...

...

Figure 8.4: Recurrent aggregation function, eqs. (8.14) to (8.18). Queries to
memory are produced in a forward pass, responses aggregated in a backward
pass. This backward pass introduces short cuts for stable gradients.
A similar figure has previously appeared in Soelch et al. (2019).

Definition 8.3 (Recurrent and Query Aggregation). A recurrent aggre-
gation is a function f(Z) = a that can be written recursively as:

qt = query(qt−1, at−1) (8.14)

ŵi,t = attention(mi, qt) (8.15)

wt = normalize(ŵt) (8.16)

at = reduce({wi,tmi}) (8.17)

a = g(a1:T), (8.18)

where mi = φ(zi) is an embedding of the input population {zi} and q1 is a
constant. We further call the special case T = 1, i. e., a single query q ≡ q1,
a query aggregation.

As long as reduce is invariant and normalize is equivariant, recur-
rent and query aggregations are invariant. This architectural block is
depicted in fig. 8.4.

Building upon eqs. (8.1) to (8.5), recurrent aggregations introduce
two modifications: firstly, we replace a weighted sum by a general
weighted aggregation—giving us a rich combinatorial toolbox on the
basis of simple invariant functions.

Secondly, we add post-processing of the step-wise results a1:T . In
practice, we use another recurrent network layer that processes a1:T
in reversed order. Without this modification, later queries tend to be
more important as their result is not as easily forgotten by the forward
recurrence. The reversed-order processing reverses this effect so that
the first queries tend to be more important, and the overall architec-
ture is more robust to common fallacies of recurrent architectures, in
particular unstable gradients (Hochreiter, 1991).

Observing eq. (8.17), we note that our learnable aggregation func-
tions wrap around the previously discussed simpler non-learnable
aggregations. A major benefit is that the inputs are weighted—sum

8.3 the choice of aggregation 133

becomes weighted average, for instance. This also allows the model to
effectively exploit nonlinearities as discussed with LΣE.

8.3.4 Further Remarks

divide-and-conquer aggregation A straightforward strategy
to obtain “obviously” invariant aggregations leverages commutative
and associative binary operations like addition and multiplication.
Commutativity and associativity guarantee that we aggregate a pop-
ulation two particles at a time, and no matter the order, the result
remains the same.

This principle can be generalized to divide-and-conquer operations,
where the set is first divided up into its atoms and then aggregated
piecemeal by conquering. This sort of aggregation is invariant if con-
quering is invariant to division. This rationale allows for a much
wider class of aggregations. Examples are logical operators such as
any or all, but also sorting. Sorting further generalizes max and min,
and any percentile, e. g., median. We mention this interesting class
of aggregations for completeness but will not discuss it further—it
does not fit our neural framework, which requires aggregations to be
differentiable.

universal approximation The key promise of universal approxi-
mation (Kolmogorov, 1957; Hecht-Nielsen, 1988; Hornik et al., 1989) is
that a family of approximators, e. g., neural nets or neural sum decom-
positions, is dense within a wider family of interesting functions. The
universality granted by theorems 8.1 and 8.2, through constructive
proofs, hinges on sum aggregation. Corollary 8.1 grants flexibility but
does not apply to arbitrary aggregations, like max or the suggested
learnable aggregations.4 It remains open to what extent the sum can
be replaced. It is worth noting that the embedding dimension con-
straint of theorem 8.2 is rarely met, trading theoretical guarantees for
test-time performance.

invariance recursion Both the broadened definition of the Deep
Set architecture and the recurrent aggregation are defined in terms of
some other invariant aggregation function, cf. eqs. (8.9) and (8.17). This
deviation from sum decompositions implies a recursion of invariance:
the invariance of the overall architecture is relayed to invariance of a
component of a component etc. For instance, a recurrent aggregation
could be the aggregation function used inside a higher-level recurrent
aggregation. Similarly, equivariant functions or layers require an arbi-
trary aggregation, which can include a recurrent aggregation or even
an entire, nested Deep Set architecture.

4 Note that max allows for arbitrary approximation (Qi et al., 2017a).

134 aggregation functions in deep set learning

data
sample mean
target circle and center

Figure 8.5: Minimal enclosing circle example population.
This figure has previously appeared in Soelch et al. (2019).

While we restrict ourselves to at most one level of recursion in this
work, this perspective highlights the considerable amount of creative
freedom the Deep Set architecture grants once it is detached from
theorems 8.1 and 8.2 At the same time, it shows a need to gain a
better understanding of aggregation functions such as inductive biases
in practical settings, much like feed-forward neural nets are usually
replaced with architectures targeted towards the task at hand.

8.4 experiments

We consider three simple aggregations: mean (or weighted sum), max,
and LΣE. These are used in equivariant layers and final aggregations
and may be be wrapped into a recurrent aggregation. This combi-
natorially large space of configurations is tested in four experiments
described in the following sections.

8.4.1 Mininmal Enclosing Circle

In this supervised experiment, we are trying to predict the minimal
enclosing circle of a population of size 20 from a GMM. A sample
population with target circle is depicted in fig. 8.5. The sample mean
does not approximate the center of the minimal enclosing circle well,
and the correct solution is defined by at least three particles. The
models are trained by minimizing the mean squared error (MSE) towards
the center and radius of the true circle, computable in linear time
(Welzl, 1991).

Results are given in table 8.2. Each row shows the best result out
of 180 runs, 20 runs for each of the 9 combinations of aggregations.
We can see that both recurrent equivariant layers and recurrent ag-
gregations improve the performance, with equivariant layers granting
the larger performance boost. The challenge lies mostly in a better
approximation of the center.

8.4 experiments 135

Table 8.2: Minimal enclosing circle results.
A similar table has previously appeared in Soelch et al. (2019).

mean squared errors

recurrent

equiv./aggr.

best radius center median

best

7 / 7 0.71 0.06 0.66 1.57

7 / 3 1.02 0.14 0.88 1.30

3 / 7 0.54 0.08 0.47 0.87

3 / 3 0.42 0.09 0.33 0.58

Figure 8.6: GMM mixture weights problem. Left: Example population. Middle
and Right: Estimator development for increasing populations size for a non-
learnable and a learnable model, with 50% and 90% empirical confidence
intervals.
This figure has previously appeared in Soelch et al. (2019).

The top row indicates that an entirely non-recurrent model performs
better than its counterpart with recurrent aggregation (second row).
To test for a performance outlier, we compute a bootstrap estimate
of the expected peak performance when only performing 20 exper-
iments: we subsample all available experiments (with replacement)
into several sets of 20 experiments, recording the best performance in
each batch. The last column in table 8.2 reports the median of these
best batch performances. The result shows increased robustness to
hyper-parameters despite having more hyper-parameters.

8.4.2 Gaussian Mixture Weights

In this experiment, our goal is to estimate the mixture weights of a
Gaussian mixture model directly from particles. The GMM popula-
tions of size 100 in our data set are sampled as follows: each mixture
consists of two components; the mixture weights are sampled from
[.05, .95]; the means span a diameter of the unit circle, their position
is drawn uniformly at random; component variances are fixed to the
same diagonal value such that the clusters are not linearly separa-
ble. An example population is shown in fig. 8.6. The model outputs

136 aggregation functions in deep set learning

Figure 8.7: Robustness analysis. Metric is the score ratio of the true mix-
ture weight under a neural model compared to expectation maximization
(negative sign indicates EM is outperformed; the more negative, the better).
Each violin shows the peak performance distribution for batches of five
experiments. Top row: equivariant layer aggregations. Bottom row: final
aggregations.
This figure has previously appeared in Soelch et al. (2019).

concentrations a and b of a Beta distribution. We train to maximize
the log likelihood of the smaller ground truth weight under this Beta
distribution. At training time, for every gradient step the batch popu-
lation size N is chosen randomly, with p(N = n) ∝ n. In fig. 8.6, we
show how an estimator based on the learned model behaves with
growing population size.

We were again interested in the robustness of the models. We com-
pare to expectation maximization (EM)—the classic estimation technique
for mixture weights—as a baseline by gathering 100 estimates each
from EM and the model for each population size by subsampling
(with replacement) the original population. Then we compare the
likelihood of the true weight under a kernel density estimate (KDE) of
these estimates. The final metric is the log ratio of the scores under
the two KDEs. Then, as in the previous section, we compute the peak
performance for batches of five experiments in order to see which
configurations of models consistently perform well.

The results of this analysis are shown in fig. 8.7. The top row indi-
cates that learnable equivariant layers lead to a significant performance
boost across all reduction operations. Note that the y-axis is in log
scale, indicating multiples of improvements over the EM baseline. We
note that LΣE benefits most drastically from learnable inputs. Notably,
the middle column, which depicts max-type aggregations, indicates
that this type of aggregation significantly falls behind the alternatives.
Note that we had to scale the y-axes to even show the violins and
that a significant amount of peak performances perform worse than EM
(indicated by sign flip of the metric).

8.4 experiments 137

Table 8.3: Test set accuracy on ModelNet40 classification. Sorted by accuracy
for |Z| = 1000, the population size at training time. The models show a high
range of robustness to lowered population sizes.
This table has previously appeared in Soelch et al. (2019).

Equivariant layer type & aggregation type

|Z|

max
max

max
r-LΣE

max
r-sum

max
q-max

max
q-sum

r-sum
r-sum

max
r-max

r-max
r-max

r-LΣE
r-LΣE

q-sum
q-sum

1000 0.873 0.858 0.857 0.838 0.835 0.820 0.817 0.812 0.780 0.775

100 0.665 0.753 0.730 0.695 0.684 0.719 0.453 0.220 0.640 0.603

50 0.470 0.628 0.584 0.524 0.513 0.610 0.355 0.146 0.519 0.468

8.4.3 Point Clouds

The previous experiment extensively tested the effect of aggregations
in controlled scenarios. To test the effect of aggregations on a more
realistic data set, we tackle classification of point clouds derived from
the ModelNet40 benchmark data set (Wu et al., 2015). The data set
consists of CAD models describing the surfaces of objects from 40

classes. We sample point cloud populations uniformly from the surface.
The training is performed on 1000 particles. For this experiment,
we fixed all hyper-parameters—including optimizer parameters and
learning rate schedules—as described by Zaheer et al. (2017), and only
exchanged the aggregation functions in the equivariant layers and the
final aggregation.

The results for the 10 best configurations are summarized in table 8.3.
The original model (max/max column) performs best in the training
scenario (|Z| = 1000, first row)—as expected on hyper-parameters that
were optimized for the model. Otherwise, learnable final aggregations
outperform all non-learnable aggregations. We further observe that
max-type aggregations in equivariant layers seem crucial for good final
performance. This contrasts the findings from section 8.4.2. We believe
this to be a result of either (i) the hyper-parameters being optimized for
max-type equivariant layers or (ii) the classification task (as opposed to
a regression task), favoring max-normalized embeddings that amplify
discriminative features.

The second and third row highlight an insufficiently investigated
problem with invariant neural architectures: the top-performing model
overfits to the training population size. Despite sharing all hyper-
parameters except the aggregations, the test scenarios with fewer
particles show that learnable aggregation functions generalize favor-
ably. Compare the first two columns: both drops for the original model
are comparable to the total drop for the learnable model.

138 aggregation functions in deep set learning

Figure 8.8: Spatial attention example. Each pane shows multiple test time
bounding box samples for 5, 20, 200, 1000 particles.
This figure has previously appeared in Soelch et al. (2019).

8.4.4 Spatial Attention

In the previous experiments, we investigated models trained in
isolation on supervised tasks. Here, we will test the performance as a
building block of a larger model, trained end-to-end and unsupervised.
The data consist of canvases containing multiple MNIST digits, cf.
fig. 8.8. These data are known from AIR and VTSSI in chapter 5. We
plug an invariant model as the localization module, which repeatedly
attends to the input image, at each step returning the bounding box
of an object. To turn a canvas into a population, we interpret the
gray-scale image as a two-dimensional density and create populations
by sampling 200 particles proportional to the pixel intensities. As
we discussed in chapter 5, AIR is a major bottleneck for VTSSI.
Remarkably, the set-based approach requires an order of magnitude
fewer weights and consequently has a significantly lower memory
footprint compared to the original model, which repeatedly processes
the entire image.

The task is challenging in several ways: the loss is a lower bound to
the likelihood of the input canvas, devoid of localization information.
The intended localization behavior needs to emerge from interaction
with downstream components of the overall model. As with enclosing
circles, the bounding box center is correlated with the sample mean
of isolated particles from one digit. However, depending on the digit,
this can be inaccurate.

As fig. 8.9 indicates, the order-invariant architecture on 200 particles
(as in training, vertical line) can serve as a drop-in replacement, per-
forming on a par or slightly improved compared to the original model
baseline, indicated by the vertical line. This is remarkable, with the
original model being notoriously hard to train (Kosiorek et al., 2018).

We investigate the performance of the model when the population
size varies. We observe that the effect on performance varies with dif-
ferent aggregation functions. Learnable aggregation functions exhibit
strictly monotonic performance improvements. This is reflected by
tightening bounding boxes for increasing population sizes, fig. 8.8.
Similar behavior cannot be found reliably for non-learnable aggrega-
tions. Note that we can trade off performance and inference speed at

8.5 discussion 139

Figure 8.9: Test-time evidence lower bound values against various population
sizes. Dashed vertical line: training population size. Dashed horizontal line:
best baseline model.
This figure has previously appeared in Soelch et al. (2019).

test time by varying the population size, depending on the needs of
the application.

Lastly, we note that in both this and the point cloud experiment,
section 8.4.3, learnable LΣE-aggregations performed well. We attribute
this to the properties of diminishing returns and sum-max-interpola-
tion amplified by weighted inputs, cf. section 8.4.

8.5 discussion

Our analysis of Deep Set architectures reveals that aggregation func-
tions play a more crucial role than previously acknowledged. Firstly,
we have shown that the aggregation function of a Deep Set architec-
ture is also a learnable component, like embedding and processing.
Secondly, we provided theoretical and empirical results that can guide
the choice of aggregation in future applications. Depending on the task
at hand—classification vs. regression—different aggregation functions
may be warranted. And even when the peak performance is equal
for different aggregation functions, we found that they can exhibit
very different secondary properties. Aggregations wildly differ in
sensitivity to hyper-parameters, a concern that is not reflected in peak
results. Some aggregations, particularly learnable aggregations, scale
more gracefully with varying population sizes at test time.

Tying this coda chapter back in with the remainder of this thesis,
we found that deep set architectures can be integrated well as density
networks with LVMs and trained in unsupervised fashion and end-to-
end as part of the pipeline of AIR. To the best of our knowledge, this
had not been shown before. In the light of our motivating example and
the particle-based approach presented in chapter 7, further research

140 aggregation functions in deep set learning

into combining Deep Set architectures with sequential LVMs, e. g., as
policies, is warranted.

C O N C L U S I O N

This thesis shows that the variational auto-encoder framework can
be adapted to sequential latent-variable models in order to efficiently
uncover dynamics via unsupervised learning from data. With DVBFs,
VTSSI, and ANS, we have successfully showcased an evolution of
algorithms to learn state-space models. Their inference models tackle
even complex semantic tasks—such as tracking with VTSSI—as a
sequential Bayesian inference problem by amortizing the previously
prohibitive computational cost of inference.

Naturally, new questions arise with the success of these models.
ANS itself is a reaction to our findings on the conditioning gap, which
was found upon close examination of assumptions made by DVBFs,
VTSSI, and many related earlier models. Even ANS, despite encourag-
ing initial results, is not an off-the-shelf solution for learning SSM—at
least, not yet. We are confident that the insights and suggestions of
this thesis are suitable grounds for overcoming the growing pains of
this still nascent field.

A key message of this thesis is that structured data like sequences
are best tackled with equally structured models. The more surgically
learnable building blocks like neural networks are injected, the more
efficiently and robustly they learn. As we have shown, this insight
transfers readily to a different mode of structured data, namely sets.
Here, a theorem—rather than an algorithm—provides the leverage for
learning neural set functions. Our deliberations have shown that the
theory is insufficiently developed, and the resulting models can have
wildly different secondary virtues, such as robustness to changes in
the test scenario or hyper-parameters.

We started with the tongue-in-cheek truism that neural networks
were everything and nothing to this thesis. Eight chapters in, we want
to close by reflecting on just how much truth there is to the statement.

All contributions of this thesis make strong use of neural networks
in one way or the other. If it were not for neural networks, we would
not be asking some of the questions tackled in this thesis. And yet,
neural networks are a mere vehicle in many regards. The algorithms
presented transcend neural networks in the sense that they start from
an established algorithm or theorem, and neural networks only come
into play when it comes to implementing the algorithms. More so,
when we uncover failings of the presented algorithms, they can be
traced back to an unexpected show of idiosyncrasies of the involved
neural networks. If there were a more flexible, more easily learned
alternative to neural networks, it could be hot-swapped with limited

141

142 conclusion

or no adjustments. In this light, it is revealing that chapter 3—the core
background chapter—does not even mention neural networks.

Algorithms and theory can serve as a phenomenal inductive bias for
whatever model one hopes to fit. The better the respective template is
understood when deriving a model or respective learning algorithm,
the more efficiently we can make use of learnable components. If the
reader were to take away one thing and one thing only from this thesis,
it should be this.

APPENDICES

143

A B A C KG R O U N D

a.1 details on vae on mnist example

Model and Training Details

The VAE consists of

1. the approximate posterior implemented by an MLP with two hid-
den layers of 512 units and ReLU activations returning a member
of the variational family of diagonal two-dimensional Gaussians,
the covariance diagonal is rectified with the exponential function
(summary: 784-512(ReLU)-512(ReLU)-4(2+2(exp));

2. the likelihood model is implemented by an MLP with two hid-
den layers of 512 units and ReLU activations returning the logit
of a Bernoulli distribution for each pixel (summary: 2-512(ReLU)-
512(ReLU)-784).

The 70 000 samples in the data set were split (55 000, 5000, 10 000) into
training, validation, and test set. The model was trained with mini-
batch SGD with the Adam optimizer (Kingma and Ba, 2015) on the
ELBO, with batch size 50 and step size 10−4. The training lasted for
3000 epochs, the evaluated model was selected based on the validation
ELBO.

Generative Samples

The generative samples in fig. 2.3 are sampled with the following
procedure.

First, we span an evenly-spaced grid in the square area

[cdf(−2.5), cdf(2.5)]2 ⊂ [0, 1]2, (A.1)

where cdf refers to the cumulative distribution function of the standard
Gaussian distribution.

Then, we transform each two-dimensional grid point into a latent
state z by pointwise application of the inverse cdf, akin to component-
wise inverse transform sampling, except the uniform samples are
grid-based instead of random.

This procedure is a compromise between a grid-based evaluation
for a consistent arrangement of the samples and an evaluation with
latent states z faithful to the spread of probability mass in the prior.
The resulting latent states are shown in fig. A.1.

Lastly, the samples shown in fig. 2.3 are created by applying the
likelihood model pθ(x | z). The figure depicts means in gray scale.

145

146 background

−2 0 2

−2

0

2

Figure A.1: The latent states used to produce the samples in fig. 2.3, see
appendix A.1 for details. Contour plot of the standard Gaussian pdf in the
background.

a.2 renyi divergences and bounds

The KL divergence can be viewed as special cases of the Renyi diver-
gence

Dα(p || q) ≡ 1

α− 1
ln
∫
p(z)αq(z)1−α dz > 0 (A.2)

with parameter α > 0 (Li and Richard E. Turner, 2016). One can show
that

lim
α→1

Dα(p || q) = KL(p || q). (A.3)

Similar to the ELBO, one may derive a variational bound

lnp(x) > lnp(x) − Dα(q(z) || p(z | x)) (A.4)

=
1

1−α
ln Eq(z)

[(
p(x, z)
q(z)

)1−α]
(A.5)

≡ Lα. (A.6)

The bound is continuous and non-increasing in α. We can devise a
straightforward estimator

Lα,K ≡
1

1−α
ln

K∑
k=1

(
p
(
x, z(k)

)
q
(
z(k)

))1−α, z(k) ∼ q(z). (A.7)

We recognize the IWAE bound as the special case α = 0. The estimator
is biased by Jensen’s inequality due to the expectation inside the
logarithm.

For a fixed α, the estimator has interesting properties:

• The bias vanishes with increasing K, i. e.,

lim
K→∞E[Lα,K] = Lα. (A.8)

A.3 bayesian updates, fusion, uncertainty 147

• It is non-decreasing in K if α 6 1 and non-increasing in K if
α > 1. This allows for sandwiching lnp(x) with two different
values of α and increasing K.

• For K = 1 and all α,

Lα,1 = ln
p(x, z)
q(z)

. (A.9)

Lα,1 is a single-sample ELBO estimator. That is, for low K the
estimator is biased towards L1, the ELBO.

a.3 bayesian updates, fusion, uncertainty

In the case of Gaussians, eq. (3.47) shows that the fusion of two
Gaussian distributions leads to reduced variance. For Gaussians, this
directly translates to reduced entropy—loosely speaking, we reduce
uncertainty.

A Bayesian update in a Gaussian model, like the update step in a
Kalman filter, will thus reduce uncertainty. It is tempting to assume
that this is always the case since it fits the intuition that more informa-
tion leads to better results. More information leads to more accurate
beliefs—always assuming the model is specified correctly—but that
need not translate to reduced uncertainty. In this section, we will
provide counterexamples and counterarguments.

Most straightforward is a technical counterexample for a product
of pdfs. Consider the two beta distributions B(0.5, 1.5) and B(1.5, 0.5).
Multiplying their pdfs and renormalizing yields the pdf of the Beta
distribution B(1, 1), otherwise known as the uniform distribution
U[0, 1]. This is of course not a coincidence: the two source distributions
were chosen to be inverse to one another in the sense that their pdfs f
and g fulfill f ∝ 1/g. The fixed interval of the Beta distribution allows
this construction, the inverse of a Gaussian pdf is not proportional
to a valid pdf. On a fixed interval, the uniform distribution is always
the distribution with highest variance or entropy. That is, the fusion
of these two pdfs indeed increased uncertainty, in this case to the
maximally possible extent.

A similar counterexample for a Bayesian update is a textbook i. i. d.
sequence of Bernoulli coin tosses. After N tosses all showing up
heads, the posterior is B(1,N+ 1) (starting from a uniform prior). A
subsequent tail toss updates the posterior to B(2,N+ 1). It is easy to
verify that the entropy for, e. g., N = 9 increases after the tail toss.
Intuitively, it questions the strong belief in a large bias of the coin.

148 background

On a general level, the law of total variance is instructive1:

Var[x] = Ep(y)[Var[x | y]] + Var
[
Ep(y)[x | y]

]︸ ︷︷ ︸
>0

(A.10)

=⇒ Ep(y)[Var[x | y]] 6 Var[x]. (A.11)

The variance is reduced on average, but for a single realization of y it
may be larger.

A similar result can be shown for entropy:

H(x) = H(x | y) + MI(x, y)︸ ︷︷ ︸
>0

>H(x | y), (A.12)

where H denotes entropy and MI mutual information. As in the case
of variance, the key insight is that the conditional entropy on the right-
hand side is an expected value w. r. t. p(y), i. e., entropy is reduced on
average but not necessarily for all realizations of y.

a.4 a matrix identity for kalman filters

In eqs. (3.51) and (3.52), it is claimed that((
HΣ(p)

t H>
)−1

+ R−1

)−1

= H
(
Σ
(p)
t − KHΣ(p)

t

)
H>. (A.13)

The key to proving this identity is Woodbury’s matrix inversion lemma
(K. P. Murphy, 2012, Corollary 4.3.1). For matrices E, F, G, J, with E, J
invertible, the lemma is(

E − FJ−1G
)−1

= E−1 + E−1F
(
J − GE−1F

)
GE−1. (A.14)

Identifying

E =
(

HΣ(p)
t H>

)−1
, J = −R, F = G = Idx , (A.15)

with the identity matrix Idx of rank dx, we can prove the claim:((
HΣ(p)

t H>
)−1

+ R−1

)−1

(A.16)

=HΣ(p)
t H>+ HΣ(p)

t H>
(
−R − HΣ(p)

t H>
)−1

︸ ︷︷ ︸
=−K

HΣ(p)
t H> (A.17)

=HΣ(p)
t H>− HKHΣ(p)

t H> (A.18)

=H
(
Σ
(p)
t − KHΣ(p)

t

)
H>. (A.19)

1 Admittedly though, the notational conflation of random variable and realization
makes this equation hard to parse.

B A U TO - E N C O D I N G
S TAT E -S PA C E M O D E L S

The following appendix is adopted from Akhundov et al. (2019). Minor
adaptations in style and spelling have not been highlighted.

b.1 moving mnist data set

Our data sets consist of 50 000 training, 10 000 validation, and 10 000
test sequences with a variable number of MNIST digits moving within
50× 50 frames. The length of the sequences is 20. The number of
digits in each sequence is sampled uniformly at random from {0, 1, 2}
but is fixed for each sequence. MNIST digits for each sequence are
sampled uniformly at random from the original MNIST data set. The
MNIST digits in our test set are sampled only from the MNIST test
set whereas the ones in our training and validation sets are sampled
only from the MNIST training set.

Four versions of our data set are determined by combination of two
factors, depending on

• whether digit motion is linear or elliptic and

• whether two digits in the first frame are allowed to overlap.

The digits are placed at a random position in the initial frame with
the condition of residing within the frame. In the non-overlapping
first frame data set two digits are not allowed to overlap in the first
frame, i. e., they may not share non-zero intensity pixels but may still
overlap in further frames.

In the data set with linear motion, a random velocity vector is sam-
pled for each digit and kept constant during motion, except flipping
the components of the velocity at the edges of the frame: when at least
one pixel of the digit goes out of frame after a motion step, the digit
bounces off the edge.

In the data set with elliptic motion, a random elliptic trajectory is
sampled for each digit such that a digit stays within the frame while
moving along it. Angular velocity of each individual object is also
sampled randomly and kept constant throughout the sequence.

As the velocity magnitudes are sampled from uniform distributions,
while objects are moving their positions take on fractional values.
Instead of rounding the position to the nearest integer pixel and
pasting the same constellation of pixels as in the original digit at a new
discrete position, we maintain the real position values and through

149

150 auto-encoding state-space models

bilinear interpolation smoothen the digit motion. We believe that this
makes our data sets closer to real video sequences, in which object
motion is typically smooth.

ddpae DDPAE and VTSSI models with the prediction performance
reported in fig. 5.6 were trained on the data generated by the script
from the official DDPAE repository1. The test set was also generated
by the DDPAE script because the original Moving MNIST data set
lacks ground truth position annotation. It is worth mentioning that
VTSSI was trained on 50 000 20-frame sequences whereas DDPAE
was trained on streaming data (with every batch being randomly
generated). The performance of both models reported in fig. 5.6 is
evaluated on the test set.

sqair SQAIR and VTSSI models with the prediction performance
reported in figs. 5.7a and 5.7b were trained on three different data
sets corresponding to the two figures. SQAIR data corresponding to
fig. 5.7a was generated by the data generation script from the official
SQAIR repository2, without noise and acceleration in digit motion.
Our linear data corresponding to fig. 5.7b is comprised of 10-frame
sequences structurally similar to our non-overlapping linear data set,
with the exception of all frame edges being virtually shifted 3 pixels
away from the center. This is to allow the digits going deeper out
of frame before bouncing (for higher similarity with SQAIR’s data).
Model performance reported in fig. 5.7 is evaluated on hold-out test
sets.

b.1.1 Evaluation Details

The accuracies reported in table 5.1 are computed by dividing the
number of sequences where the number of objects is correctly inferred
by the total number of sequences in the test set. AIR’s accuracy is
computed per frame as it may infer different numbers of objects from
different frames of a single sequence, e. g., when the objects are highly
overlapping.

The position error reported in table 5.1 and figs. 5.6 and 5.7 is
computed as a distance in pixels between the ground truth object
position and the positions inferred or predicted by the model. Ground
truth object positions in all data sets correspond to the geometric
centers of the tight bounding boxes around the object. The positions
inferred or predicted by the models are translated into pixel coordi-
nates before being compared with the ground truth positions. The
position error is computed per inferred object and not per sequence:
i. e., if there are two objects in one sequence, those are treated as two

1 https://github.com/jthsieh/DDPAE-video-prediction
2 https://github.com/akosiorek/sqair

https://github.com/jthsieh/DDPAE-video-prediction
https://github.com/akosiorek/sqair

B.1 moving mnist data set 151

different subjects of comparison. When there are multiple possible
matchings between ground truth and inferred objects, we pick the
matching that minimizes the summed distance error on a prefix of a
sequence. Observation horizons of the models are used as the length
of matching-determining prefixes (e. g., 10 in VTSSI vs. DDPAE and 3
in VTSSI vs. SQAIR evaluation).

At test time, DDPAE and VTSSI replace random variables in the
computational graph by their modes. This proves to yield more accu-
rate one-shot long-term predictions of object motion. As the SQAIR
code from the official repository samples generative trajectories ran-
domly, this would give a comparative disadvantage to SQAIR. For
this reason, during evaluation we have modified the SQAIR code to
replace all random variables by their modes, the same way as DDPAE
and VTSSI do. This modification substantially improved the prediction
performance metrics of SQAIR. We also modified the configuration
of the trained SQAIR models to avoid dropping the objects from the
sequence even when they disappear behind an edge of a frame. After
this change SQAIR always preserved the objects inferred from the first
frame throughout the sequence.

C L E A R N I N G B Y S M O OT H I N G

c.1 optimal partially-conditioned posteri-
ors

In this section, we show that assuming either qC(z) = p(z | C) or
qC(z) = p

(
z
∣∣ C,C

)
implies p

(
C
∣∣ z,C

)
= p

(
C
∣∣ C). Here, we will make

use of the rewritten form of the optimal shared partially-conditioned
posterior

qC(z) ∝ p(z | C) exp

(
Ep(C|C)

[
ln
p
(
z
∣∣ C,C

)
p(z | C)

])
(C.1)

from eq. (6.15).
Firstly,

qC(z) = p(z | C) (C.2)

=⇒ exp

(
Ep(C|C)

[
ln
p
(
z
∣∣ C,C

)
p(z | C)

])
= 1 (C.3)

=⇒
p
(
z
∣∣ C,C

)
p(z | C)

=
p
(
C
∣∣ z,C

)
p
(
C
∣∣ C) = 1 (C.4)

=⇒ p
(
C
∣∣ z,C

)
= p

(
C
∣∣ C). (C.5)

Secondly,

qC(z) = p
(
z
∣∣ C,C

)
(C.6)

=⇒ exp

(
Ep(C|C)

[
ln
p
(
z
∣∣ C,C

)
p(z | C)

])
∝
p
(
z
∣∣ C,C

)
p(z | C)

(C.7)

=⇒
p
(
z
∣∣ C,C

)
p(z | C)

=
p
(
C
∣∣ z,C

)
p
(
C
∣∣ C) is constant w. r. t. C (C.8)

=⇒ p
(
C
∣∣ z,C

)
= p

(
C
∣∣ C). (C.9)

c.2 proof of suboptimal generative model

We investigate whether a maximum likelihood solution

p? = arg min
p

Ep̂(x1:T)[− lnp(x1:T)] (C.10)

153

154 learning by smoothing

is a minimum of the expected negative ELBO. From calculus of vari-
ations (Gelfand and Fomin, 2003), we derive necessary optimality
conditions for maximum likelihood and the expected negative ELBO
as

0
!
=

dEp̂(x1:T)[− lnp(x1:T)]
dp

α
dG
dp

, (C.11)

0
!
=

dEp̂(x1:T)[− lnp(x1:T)]
dp

+
dEp̂(x1:T)[KL]

dp
+ λ

dG
dp

, (C.12)

respectively. G is a constraint functional ensuring that p is a valid
density, λ and α are Lagrange multipliers. KL refers to the posterior
divergence in eq. (6.2). Equating (C.11) and (C.12) and rearranging
gives

dEp̂(x1:T)[KL]
dp

+ (α− λ)
dG
dp

= 0. (C.13)

Equation (C.13) is a necessary and sufficient condition (Erven and
Harremoës, 2014) that the KL divergence is minimized as a function of
p, which happens when p(zt | Ct,Ct) = q(zt | Ct) for all t.

c.3 details on the example linear gaussian
system

The example LGS

p(z1) ∼ N(µ,Σ), (C.14)

zt+1 = Azt + εt+1, εt+1 ∼ N(0, Q), (C.15)

xt = Hzt + δt, δt ∼ N(0, R), (C.16)

has parameters µ,Σ, A, Q, H, R chosen as follows.
The latent space as well as the observation space are of dimension

dx = dz = 2.
The latent transition matrix A is designed to be rotating and slightly

contracting. This translates to a scaled rotation matrix

J = 0.95 ·

[
cos(20◦) − sin(20◦)

sin(20◦) cos(20◦)

]
, (C.17)

a real-valued Jordan block for a (pair of) complex eigenvalues indicat-
ing rotation.

A is similar (in the sense of linear mappings) to J with change of
basis

M =

[
1 1

0 1

]
=⇒ A = MJM−1. (C.18)

C.3 details on the example linear gaussian system 155

−2 0 2
z1

−2

−1

0

1

2

z2

−2 0 2
x1

x2

−2
0
2

z1 x1

0 10 20 30

t

−2
0
2

z2

0 10 20 30

t

x2

Figure C.1: 25 test set sequences from the LGS described in appendix C.3.
Left: ground truth states. Right: ground truth observations Top: superposition
of the 25 sequences, with a single highlighted sequence. Middle and bottom:
the individual features of the highlighted sequence plotted against time.

The transition covariance matrix features correlation,

Q = 0.5 ·

[
1 −0.5

−0.5 1

]
. (C.19)

The observation model is a full-rank matrix that mixes latent states
and adds white noise with

H =

[
1 2

3 4

]
, R =

[
1 0

0 1

]
. (C.20)

The initial state distribution is

N

([
0

0

]
, 0.7 ·

[
1 0

0 1

])
. (C.21)

The entire system is scaled down so that states and observations are
in a range immediately suitable for neural networks without further
normalization. This is achieved by scaling down state distributions
with a factor 0.6 and emission distributions with 0.25. The covariance
matrices are multiplied by the squared scaling factors.

156 learning by smoothing

The final system is

µ =

[
0

0

]
, Σ =

[
0.252 0

0 0.252

]
, (C.22)

A ≈

[
0.7306 −0.3899

0.1950 0.3407

]
, Q =

[
0.18 −0.09

−0.09 0.18

]
, (C.23)

H =

[
0.25 0.5

0.75 1

]
, R =

[
0.0625 0

0 0.0625

]
. (C.24)

We use 500 sequences of length T = 30 each for training, validation,
and test set. A subsample of 25 test sequences is depicted in fig. C.1.

c.4 linear gaussian backward filter

For the LGS

p(z1) ∼ N(µ,Σ), (C.25)

zt+1 = Azt + εt+1, εt+1 ∼ N(0, Q), (C.26)

xt = Hzt + δt, δt ∼ N(0, R), (C.27)

the backward filter for t = 1, . . . , T − 1 can be written as

βt(zt) = N(xt+1:T | Btzt,Σt), (C.28)

Bt =

HA

...

HAT−t

, (C.29)

Σt =

R

. . .

R

+
[
Σ
(i,j)
t

]
i,j=1,...,T−t

, (C.30)

Σ
(i,j)
t =

∑j
τ=1HAi−τQ

(
Aj−τ

)>H>, i > j(
Σ
(j,i)
t

)>
, i < j

(C.31)

or recursively

Bt =

[
H

Bt+1

]
A, (C.32)

Σt =

[
R + HQH> HQB>t+1
Bt+1QH> Σt+1 + Bt+1QB>t+1

]
. (C.33)

Proof. By induction backward in time.

C.4 linear gaussian backward filter 157

base case t = T − 1

βT−1(zT−1) = p(xT | zT−1) (C.34)

We know

xT = HzT + δT δT ∼ N(0, R) (C.35)

= H(AzT−1 + εT) + δT εT ∼ N(0, Q) (C.36)

∼ N
(

HAzT−1, HQH>+ R
)

, (C.37)

which follows from (i) linear mappings of Gaussians and (ii) inde-
pendence of δT and εT . The distribution in eq. (C.37) complies with
eqs. (C.28) to (C.31).

induction step t+ 1→ t By definition,

xt+1 = Hzt+1 + δt+1, δt+1 ∼ N(0, R). (C.38)

By the induction hypothesis,

xt+2:T = Bt+1zt+1 + ζt+1 ζt+1 ∼ N(0,Σt+1). (C.39)

In an SSM xt+1 and xt+2:T are conditionally independent given zt+1.
With

ηt+1 ∼ N

(
0,

[
R 0

0 Σt+1

])
, (C.40)

εt+1 ∼ N(0, Q), (C.41)

this allows us to write[
xt+1

xt+2:T

]
=

[
H

Bt+1

]
zt+1 +ηt+1 (C.42)

=

[
H

Bt+1

]
(Azt + εt+1) +ηt+1, (C.43)

which is a Gaussian with mean[
H

Bt+1

]
Azt =: Btzt (C.44)

and covariance

Σt :=

[
H

Bt+1

]
Q

[
H

Bt+1

]>
+

[
R 0

0 Σt+1

]
(C.45)

=

[
R + HQH> HQB>t+1
Bt+1QH> Σt+1 + Bt+1QB>t+1

]
. (C.46)

158 learning by smoothing

This proves the recursions in eqs. (C.32) and (C.33). Further, it is easy
to see that eq. (C.44) implies eq. (C.29) under induction hypothesis.

It remains to show that eq. (C.46) implies eqs. (C.30) and (C.31)
under the induction hypothesis. From eq. (C.46), we see that

Σ
(1,1)
t = R + HQH> (C.47)

fulfills eqs. (C.30) and (C.31). Further, by the induction hypothesis
Σ
(1,1)
t
...

Σ
(T−t,1)
t

 (C.48)

=Bt+1QH>=

HA

...

HAT−(t+1)

QH> (C.49)

=
[
HAi−1QH>

]
i=2,...,T−t

, (C.50)

which complies with eqs. (C.30) and (C.31). By symmetry, the same
holds for[

Σ
(1,2)
t · · · Σ(1,T−t)

t

]
= HQB>t+1. (C.51)

By induction hypothesis,

Bt+1QB>t+1 =

HA

...

HAT−(t+1)

Q

HA

...

HAT−(t+1)

>

(C.52)

=
[
HAiQ(Aj)>H>

]
i,j=1,...,T−(t+1)

. (C.53)

Consequently, again by induction hypothesis, eq. (C.46), and assuming
T − 2 > i > j > 1,

Σ
(i+1,j+1)
t (C.54)

=Σ
(i,j)
t+1 + HAiQ(Aj)>H> (C.55)

=HAiQ(Aj)>H>+
j∑
τ=1

HAi−τQ
(
Aj−τ

)>
H> (C.56)

=

j∑
τ=0

HAi−τQ
(
Aj−τ

)>
H> (C.57)

=

j+1∑
τ=1

HAi+1−τQ
(
Aj+1−τ

)>
H>, (C.58)

which complies with eqs. (C.30) and (C.31). The case j > i follows by
symmetry, which concludes the argument.

C.5 details on row-wise mnist experiments 159

c.5 details on row-wise mnist experiments

The data in this experiment are similar to those in section 6.3.3, i. e.,
each row of pixels of an MNIST digit is interpreted as a time step.
The only difference is that this experiment uses gray-scale values
instead of static binarization. All distributions and density networks
of the model are Gaussian, except for p(xt | zt), which is a pixel-wise
Bernoulli distribution. The pixels are independent given zt. Backward
filter and proposal share the same backward RNN. The transition
mean can be residual, and the added residual is scaled down with a
learnable scalar. The transition proposal density network gets the prior
mean as input in order to avoid duplicate learning of the dynamics.
The initial prior is fixed to a standard Gaussian. All weights are jointly
trained on the ELBO estimator, NASMC is not used. The full set of
hyper-parameters of the model is gathered in table C.1.

160 learning by smoothing

Table C.1: Hyper-parameters for qualitative MNIST experiment with ANS.
Parameter Value

backward filter full covariance True
hidden activation elu
n components 1

n layers 3

shared covariance False
units 64

dims future 32

observation 28

particle 8

proposal 2

state 32

time 28

optimizer generative clip norm 0.5
cls Adam
kwargs betas (0.3, 0.999)

lr 0.0001

proposal init full covariance False
hidden activation elu
n layers 2

shared covariance False
units 64

rnn cls RNN
kwargs hidden size 32

input size 28

num layers 1

transit full covariance False
hidden activation softsign
n layers 3

residual True
residual scale init 0.01
shared covariance False
units 128

use prior True

resampling criterion effective
rel min n particle 0.35
technique iid

ssm emission fn hidden activation elu
n layers 2

units 128

init state dist full covariance False
learnable loc False
learnable scale False

transition fn full covariance False
hidden activation softsign
n layers 2

residual True
residual scale init 0.1
shared covariance False
units 128

training batch size 64

use nasmc False

D S E T-VA L U E D N E U R A L
F U N C T I O N S

d.1 details on motivating example

Data

We created N = 20 000 independent Gaussian mixtures of two compo-
nents with the following properties:

1. The two means were drawn randomly and independently from
U[−0.8, 0] and U[0, 0.8], respectively.

2. The scales were drawn randomly and independently from the
uniform distribution U[0.1, 0.3].

3. The mixture weight of the negative component was randomly
drawn uniformly from the set [0.1, 0.4] ∪ [0.6, 0.9]. The mixture
weight of the positive component was then set to add up to 1.

Due to the symmetry of the parameter choices, the resulting classifica-
tion problem is balanced. At the same time, the restrictions are strong
enough to be leveraged by a Deep Set architecture.

Of each mixture, P = 5 particles were drawn i. i. d. The populations
were split (10 000, 5000, 5000) into training, validation, and test set.

Models

The embedding dimension is d = 32. The embedding was performed
by an MLP with two hidden layers of 128 units each with softsign
activation functions and d linear output units, followed by a simple
equivariance subtracting the particle mean from the output, followed
by another MLP with two hidden layers of 128 units with softsign
activation functions and d linear output units.

The aggregation was performed by either a mean or a max opera-
tion.

The processing was performed by an MLP with three hidden layers
of 128 units each with softsign activation functions, mapping to a
prediction probability normalized with the sigmoid function.

Training

The models were optimized by SGD on the (negative) binary cross
entropy loss with the Adam optimizer (step size 10−4). Training ran for

161

162 set-valued neural functions

500 epochs with a batch size of 1000. Model selection was performed
based on the prediction accuracy on the validation set. No hyper-
parameter search was performed.

B I B L I O G R A P H Y

Abadi, Martín et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. url: https://www.tensorflow.org/.

Achlioptas, Panos, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J.
Guibas (2018). “Learning Representations and Generative Models
for 3D Point Clouds.” In: Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause.
Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 40–
49. url: http://proceedings.mlr.press/v80/achlioptas18a.html.

Akhundov, Adnan (2018). “Unsupervised Object Tracking with Vari-
ational Inference.” Master thesis. Munich: Technische Universität
München.

Akhundov, Adnan, Maximilian Soelch, Justin Bayer, and Patrick van
der Smagt (2019). Variational Tracking and Prediction with Generative
Disentangled State-Space Models. arXiv: 1910.06205 [cs, stat]. url:
http://arxiv.org/abs/1910.06205.

Alemi, Alexander A., Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A.
Saurous, and Kevin Murphy (2018). “Fixing a Broken ELBO.” In:
Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018.
Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings
of Machine Learning Research. PMLR, pp. 159–168. url: http://
proceedings.mlr.press/v80/alemi18a.html.

Antonini, Amado, Winter Guerra, Varun Murali, Thomas Sayre-
McCord, and Sertac Karaman (2018). “The Blackbird Dataset: A
Large-Scale Dataset for UAV Perception in Aggressive Flight.”
In: Proceedings of the 2018 International Symposium on Experimen-
tal Robotics, ISER 2018, Buenos Aires, Argentina, November 5-8, 2018.
Ed. by Jing Xiao, Torsten Kröger, and Oussama Khatib. Vol. 11.
Springer Proceedings in Advanced Robotics. Springer, pp. 130–139.
doi: 10.1007/978-3-030-33950-0\\ 12.

Ba, Jimmy, Geoffrey E. Hinton, Volodymyr Mnih, Joel Z. Leibo, and
Catalin Ionescu (2016). “Using Fast Weights to Attend to the Recent
Past.” In: Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain. Ed. by Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, pp. 4331–
4339. url: https://proceedings.neurips.cc/paper/2016/hash/9f44e
956e3a2b7b5598c625fcc802c36-Abstract.html.

Babaeizadeh, Mohammad, Chelsea Finn, Dumitru Erhan, Roy H.
Campbell, and Sergey Levine (2018). “Stochastic Variational Video

163

https://www.tensorflow.org/
http://proceedings.mlr.press/v80/achlioptas18a.html
https://arxiv.org/abs/1910.06205
http://arxiv.org/abs/1910.06205
http://proceedings.mlr.press/v80/alemi18a.html
http://proceedings.mlr.press/v80/alemi18a.html
https://doi.org/10.1007/978-3-030-33950-0_12
https://proceedings.neurips.cc/paper/2016/hash/9f44e956e3a2b7b5598c625fcc802c36-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9f44e956e3a2b7b5598c625fcc802c36-Abstract.html

164 bibliography

Prediction.” In: 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net. url: https://openreview.
net/forum?id=rk49Mg-CW.

Babb, Tim (2015). How a Kalman Filter Works, in Pictures. url: https://
www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/.

Baker, James E. (1987). “Reducing Bias and Inefficiency in the Selection
Algorithm.” In: Proceedings of the 2nd International Conference on
Genetic Algorithms, Cambridge, MA, USA, July 1987, pp. 14–21.

Banville, Simon and Frank Diggelen (2016). “Precise GNSS for Ev-
eryone: Precise Positioning Using Raw GPS Measurements from
Android Smartphones.” In: GPS World 27, pp. 43–48.

Bayer, Justin (2015). “Learning Sequence Representations.” PhD thesis.
Munich: Technische Universität München. url: https://nbn-resolvin
g.org/urn:nbn:de:bvb:91-diss-20151102-1256381-1-9.

Bayer, Justin and Christian Osendorfer (2014). Learning Stochastic Recur-
rent Networks. arXiv: 1411.7610 [cs, stat]. url: http://arxiv.org/
abs/1411.7610.

Bayer, Justin, Maximilian Soelch, Atanas Mirchev, Baris Kayalibay, and
Patrick van der Smagt (2021). “Mind the Gap When Conditioning
Amortised Inference in Sequential Latent-Variable Models.” In: 9th
International Conference on Learning Representations, ICLR 2021. Open-
Review.net. url: https://openreview.net/forum?id=a2gqxKDvYys.

Becker-Ehmck, Philip, Maximilian Karl, Jan Peters, and Patrick van
der Smagt (2020). Learning to Fly via Deep Model-Based Reinforcement
Learning. arXiv: 2003.08876 [cs, stat]. url: http://arxiv.org/abs/
2003.08876.

Becker-Ehmck, Philip, Jan Peters, and Patrick van der Smagt (2019).
“Switching Linear Dynamics for Variational Bayes Filtering.” In:
Proceedings of the 36th International Conference on Machine Learning.
International Conference on Machine Learning (ICML) 2019. Ed. by
Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceed-
ings of Machine Learning Research. Long Beach, California, USA:
PMLR, pp. 553–562. url: http://proceedings.mlr.press/v97/becker-
ehmck19a.html.

Bewley, Alex, ZongYuan Ge, Lionel Ott, Fabio Tozeto Ramos, and
Ben Upcroft (2016). “Simple Online and Realtime Tracking.” In:
2016 IEEE International Conference on Image Processing, ICIP 2016,
Phoenix, AZ, USA, September 25-28, 2016. IEEE, pp. 3464–3468. doi:
10.1109/ICIP.2016.7533003.

Bishop, Christopher M. (1994). Mixture Density Networks. url: http://
publications.aston.ac.uk/id/eprint/373/.

– (2007). Pattern Recognition and Machine Learning, 5th Edition. Informa-
tion Science and Statistics. Springer. isbn: 978-0-387-31073-2. url:
https://www.worldcat.org/oclc/71008143.

https://openreview.net/forum?id=rk49Mg-CW
https://openreview.net/forum?id=rk49Mg-CW
https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20151102-1256381-1-9
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20151102-1256381-1-9
https://arxiv.org/abs/1411.7610
http://arxiv.org/abs/1411.7610
http://arxiv.org/abs/1411.7610
https://openreview.net/forum?id=a2gqxKDvYys
https://arxiv.org/abs/2003.08876
http://arxiv.org/abs/2003.08876
http://arxiv.org/abs/2003.08876
http://proceedings.mlr.press/v97/becker-ehmck19a.html
http://proceedings.mlr.press/v97/becker-ehmck19a.html
https://doi.org/10.1109/ICIP.2016.7533003
http://publications.aston.ac.uk/id/eprint/373/
http://publications.aston.ac.uk/id/eprint/373/
https://www.worldcat.org/oclc/71008143

bibliography 165

Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe (2017). “Varia-
tional Inference: A Review for Statisticians.” In: Journal of the Ameri-
can Statistical Association 112.518, pp. 859–877. issn: 0162-1459. doi:
10.1080/01621459.2017.1285773.

Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra (2015). “Weight Uncertainty in Neural Network.” In: Pro-
ceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015. Ed. by Francis R. Bach and David
M. Blei. Vol. 37. JMLR Workshop and Conference Proceedings.
JMLR.org, pp. 1613–1622. url: http://proceedings.mlr.press/v37/
blundell15.html.

Bottou, Léon (2010). “Large-Scale Machine Learning with Stochastic
Gradient Descent.” In: 19th International Conference on Computational
Statistics, COMPSTAT 2010, Paris, France, August 22-27, 2010 - Keynote,
Invited and Contributed Papers. Ed. by Yves Lechevallier and Gilbert
Saporta. Physica-Verlag, pp. 177–186. doi: 10.1007/978-3-7908-2604-
3\\ 16.

Box, George E. P. (1976). “Science and Statistics.” In: Journal of the
American Statistical Association 71.356, pp. 791–799. issn: 0162-1459.
doi: 10.1080/01621459.1976.10480949.

– (1979). “Robustness in the Strategy of Scientific Model Building.”
In: Robustness in Statistics. Ed. by Robert L. Launer and Graham N.
Wilkinson. Academic Press, pp. 201–236. isbn: 978-0-12-438150-6.
doi: 10.1016/B978-0-12-438150-6.50018-2.

Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba (2016). OpenAI
Gym. arXiv: 1606.01540 [cs]. url: http://arxiv.org/abs/1606.01540.

Burda, Yuri, Roger B. Grosse, and Ruslan Salakhutdinov (2016). “Im-
portance Weighted Autoencoders.” In: 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and
Yann LeCun. url: http://arxiv.org/abs/1509.00519.

Cadena, Cesar, Luca Carlone, Henry Carrillo, Yasir Latif, Davide
Scaramuzza, José Neira, Ian Reid, and John J. Leonard (2016). “Past,
Present, and Future of Simultaneous Localization and Mapping:
Toward the Robust-Perception Age.” In: IEEE Trans. Robotics 32.6,
pp. 1309–1332. doi: 10.1109/TRO.2016.2624754.

Chang, Michael, Tomer Ullman, Antonio Torralba, and Joshua B.
Tenenbaum (2017). “A Compositional Object-Based Approach to
Learning Physical Dynamics.” In: 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. url: https://
openreview.net/forum?id=Bkab5dqxe.

Chatterjee, Sourav and Persi Diaconis (2015). “The Sample Size Re-
quired in Importance Sampling.” In: The Annals of Applied Probability
28, pp. 1099–1135. doi: 10.1214/17-AAP1326.

https://doi.org/10.1080/01621459.2017.1285773
http://proceedings.mlr.press/v37/blundell15.html
http://proceedings.mlr.press/v37/blundell15.html
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1080/01621459.1976.10480949
https://doi.org/10.1016/B978-0-12-438150-6.50018-2
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1509.00519
https://doi.org/10.1109/TRO.2016.2624754
https://openreview.net/forum?id=Bkab5dqxe
https://openreview.net/forum?id=Bkab5dqxe
https://doi.org/10.1214/17-AAP1326

166 bibliography

Chen, Nutan, Francesco Ferroni, Alexej Klushyn, Alexandros
Paraschos, Justin Bayer, and Patrick van der Smagt (2019). “Fast
Approximate Geodesics for Deep Generative Models.” In: Artificial
Neural Networks and Machine Learning - ICANN 2019: Deep Learning
- 28th International Conference on Artificial Neural Networks, Munich,
Germany, September 17-19, 2019, Proceedings, Part II. Ed. by Igor V.
Tetko, Vera Kurková, Pavel Karpov, and Fabian J. Theis. Vol. 11728.
Lecture Notes in Computer Science. Springer, pp. 554–566. doi:
10.1007/978-3-030-30484-3\\ 45.

Chen, Nutan, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin
Bayer, and Patrick van der Smagt (2018). “Metrics for Deep Gen-
erative Models.” In: International Conference on Artificial Intelligence
and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote,
Canary Islands, Spain. Ed. by Amos J. Storkey and Fernando Pérez-
Cruz. Vol. 84. Proceedings of Machine Learning Research. PMLR,
pp. 1540–1550. url: http://proceedings.mlr.press/v84/chen18e.html.

Chen, Xu, Xiuyuan Cheng, and Stéphane Mallat (2014). “Unsuper-
vised Deep Haar Scattering on Graphs.” In: Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Infor-
mation Processing Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada. Ed. by Zoubin Ghahramani, Max Welling, Corinna
Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, pp. 1709–
1717. url: https : //proceedings . neurips . cc/paper/2014/hash/
892c91e0a653ba19df81a90f89d99bcd-Abstract.html.

Child, Rewon (2020). Very Deep VAEs Generalize Autoregressive Models
and Can Outperform Them on Images. arXiv: 2011.10650 [cs]. url:
http://arxiv.org/abs/2011.10650.

Cho, Kyunghyun, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio
(2014). “Learning Phrase Representations Using RNN Encoder-
Decoder for Statistical Machine Translation.” In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A Meeting of
SIGDAT, a Special Interest Group of the ACL. Ed. by Alessandro Mos-
chitti, Bo Pang, and Walter Daelemans. ACL, pp. 1724–1734. doi:
10.3115/v1/d14-1179.

Chung, Junyoung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C.
Courville, and Yoshua Bengio (2015). “A Recurrent Latent Variable
Model for Sequential Data.” In: Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada. Ed. by
Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,
and Roman Garnett, pp. 2980–2988. url: http://papers.nips.cc/
paper/5653-a-recurrent-latent-variable-model-for-sequential-data.

Cireşan, Dan C., Ueli Meier, Jonathan Masci, Luca M. Gambardella,
and Jürgen Schmidhuber (2011a). “Flexible, High Performance Con-

https://doi.org/10.1007/978-3-030-30484-3_45
http://proceedings.mlr.press/v84/chen18e.html
https://proceedings.neurips.cc/paper/2014/hash/892c91e0a653ba19df81a90f89d99bcd-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/892c91e0a653ba19df81a90f89d99bcd-Abstract.html
https://arxiv.org/abs/2011.10650
http://arxiv.org/abs/2011.10650
https://doi.org/10.3115/v1/d14-1179
http://papers.nips.cc/paper/5653-a-recurrent-latent-variable-model-for-sequential-data
http://papers.nips.cc/paper/5653-a-recurrent-latent-variable-model-for-sequential-data

bibliography 167

volutional Neural Networks for Image Classification.” In: IJCAI
2011, Proceedings of the 22nd International Joint Conference on Artifi-
cial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011. IJCAI’11.
Barcelona, Catalonia, Spain: AAAI Press, pp. 1237–1242. isbn: 978-1-
57735-514-4. doi: 10.5591/978-1-57735-516-8/IJCAI11-210.

Cireşan, Dan C., Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber
(2011b). “A Committee of Neural Networks for Traffic Sign Classifi-
cation.” In: The 2011 International Joint Conference on Neural Networks,
IJCNN 2011, San Jose, California, USA, July 31 - August 5, 2011. IEEE,
pp. 1918–1921. doi: 10.1109/IJCNN.2011.6033458.

Clark, Jack (2017). Let’s Battle the Hype of AI by Coming up with Bor-
ing Alternate Terms! I’ll Start. Deep Learning ===> Stacked Func-
tion Approximators. url: https ://twitter .com/jackclarkSF/status/
838986258542026752.

Cremer, Chris, Xuechen Li, and David Duvenaud (2018). “Inference
Suboptimality in Variational Autoencoders.” In: Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G.
Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. PMLR, pp. 1086–1094. url: http://proceedings.mlr.press/
v80/cremer18a.html.

Cremer, Chris, Quaid Morris, and David Duvenaud (2017). “Reinter-
preting Importance-Weighted Autoencoders.” In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Workshop Track Proceedings. OpenReview.net. url:
https://openreview.net/forum?id=Syw2ZgrFx.

Cui, Zhiyong, Kristian Henrickson, Ruimin Ke, and Yinhai Wang
(2020). “Traffic Graph Convolutional Recurrent Neural Network:
A Deep Learning Framework for Network-Scale Traffic Learning
and Forecasting.” In: IEEE Transactions on Intelligent Transportation
Systems 21.11, pp. 4883–4894. doi: 10.1109/TITS.2019.2950416.

Cui, Zhiyong, Ruimin Ke, Ziyuan Pu, and Yinhai Wang (2019). Deep
Bidirectional and Unidirectional LSTM Recurrent Neural Network for
Network-Wide Traffic Speed Prediction. arXiv: 1801.02143 [cs]. url:
http://arxiv.org/abs/1801.02143.

Del Moral, Pierre (1996). “Non Linear Filtering: Interacting Particle
Solution.” In: Markov Processes and Related Fields 2, pp. 555–580.

Denton, Emily and Rob Fergus (2018). “Stochastic Video Generation
with a Learned Prior.” In: Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause.
Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 1182–
1191. url: http://proceedings.mlr.press/v80/denton18a.html.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova
(2019). “BERT: Pre-Training of Deep Bidirectional Transformers for
Language Understanding.” In: Proceedings of the 2019 Conference of

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
https://doi.org/10.1109/IJCNN.2011.6033458
https://twitter.com/jackclarkSF/status/838986258542026752
https://twitter.com/jackclarkSF/status/838986258542026752
http://proceedings.mlr.press/v80/cremer18a.html
http://proceedings.mlr.press/v80/cremer18a.html
https://openreview.net/forum?id=Syw2ZgrFx
https://doi.org/10.1109/TITS.2019.2950416
https://arxiv.org/abs/1801.02143
http://arxiv.org/abs/1801.02143
http://proceedings.mlr.press/v80/denton18a.html

168 bibliography

the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers). Ed. by Jill
Burstein, Christy Doran, and Thamar Solorio. Association for Com-
putational Linguistics, pp. 4171–4186. doi: 10.18653/v1/n19-1423.

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2017). “Den-
sity Estimation Using Real NVP.” In: 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. url: https://
openreview.net/forum?id=HkpbnH9lx.

Doersch, Carl (2016). Tutorial on Variational Autoencoders. arXiv: 1606.
05908 [cs, stat]. url: http://arxiv.org/abs/1606.05908.

Dosovitskiy, Alexey et al. (2015). “FlowNet: Learning Optical Flow
with Convolutional Networks.” In: 2015 IEEE International Conference
on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015.
IEEE Computer Society, pp. 2758–2766. doi: 10.1109/ICCV.2015.316.

Dykeman, Isaac (2016). Conditional Variational Autoencoders. url: https:
//ijdykeman.github.io/ml/2016/12/21/cvae.html.

Edwards, Harrison and Amos J. Storkey (2017). “Towards a Neu-
ral Statistician.” In: 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net. url: https://openreview.net/
forum?id=HJDBUF5le.

Erven, Tim van and Peter Harremoës (2014). “Rényi Divergence and
Kullback-Leibler Divergence.” In: IEEE Transactions on Information
Theory 60.7, pp. 3797–3820. doi: 10.1109/TIT.2014.2320500.

Eslami, S. M. Ali, Nicolas Heess, Theophane Weber, Yuval Tassa,
David Szepesvari, Koray Kavukcuoglu, and Geoffrey E. Hinton
(2016). “Attend, Infer, Repeat: Fast Scene Understanding with Gen-
erative Models.” In: Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain. Ed. by Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
pp. 3225–3233. url: https://proceedings.neurips.cc/paper/2016/
hash/52947e0ade57a09e4a1386d08f17b656-Abstract.html.

Fraccaro, Marco, Simon Kamronn, Ulrich Paquet, and Ole Winther
(2017). “A Disentangled Recognition and Nonlinear Dynamics
Model for Unsupervised Learning.” In: Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA.
Ed. by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett,
pp. 3601–3610. url: https://proceedings.neurips.cc/paper/2017/
hash/7b7a53e239400a13bd6be6c91c4f6c4e-Abstract.html.

Fraccaro, Marco, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther
(2016). “Sequential Neural Models with Stochastic Layers.” In: Ad-

https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1606.05908
https://doi.org/10.1109/ICCV.2015.316
https://ijdykeman.github.io/ml/2016/12/21/cvae.html
https://ijdykeman.github.io/ml/2016/12/21/cvae.html
https://openreview.net/forum?id=HJDBUF5le
https://openreview.net/forum?id=HJDBUF5le
https://doi.org/10.1109/TIT.2014.2320500
https://proceedings.neurips.cc/paper/2016/hash/52947e0ade57a09e4a1386d08f17b656-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/52947e0ade57a09e4a1386d08f17b656-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7b7a53e239400a13bd6be6c91c4f6c4e-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7b7a53e239400a13bd6be6c91c4f6c4e-Abstract.html

bibliography 169

vances in Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain. Ed. by Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, pp. 2199–
2207. url: https : //proceedings . neurips . cc/paper/2016/hash/
208e43f0e45c4c78cafadb83d2888cb6-Abstract.html.

Gelfand, I. M. and S. V. Fomin (2003). Calculus of Variations. Trans. by
Jerry Silverman. Mineola, N.Y: Dover Publications Inc. 240 pp. isbn:
978-0-486-41448-5.

Girin, Laurent, Simon Leglaive, Xiaoyu Bie, Julien Diard, Thomas
Hueber, and Xavier Alameda-Pineda (2020). Dynamical Variational
Autoencoders: A Comprehensive Review. arXiv: 2008.12595 [cs, stat].
url: http://arxiv.org/abs/2008.12595.

Goodfellow, Ian J., Yoshua Bengio, and Aaron C. Courville (2016). Deep
Learning. Adaptive Computation and Machine Learning. MIT Press.
isbn: 978-0-262-03561-3. url: http://www.deeplearningbook.org/.

Gordon, Daniel, Ali Farhadi, and Dieter Fox (2018). “Re(3): Real-
Time Recurrent Regression Networks for Visual Tracking of Generic
Objects.” In: IEEE Robotics Autom. Lett. 3.2, pp. 788–795. doi: 10.1109/
LRA.2018.2792152.

Goyal, Anirudh, Alessandro Sordoni, Marc-Alexandre Côté, Nan Rose-
mary Ke, and Yoshua Bengio (2017). “Z-Forcing: Training Stochastic
Recurrent Networks.” In: Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, pp. 6713–6723.
url: http://papers.nips.cc/paper/7248-z-forcing-training-stochastic-
recurrent-networks.

Gregor, Karol, George Papamakarios, Frederic Besse, Lars Buesing, and
Theophane Weber (2019). “Temporal Difference Variational Auto-
Encoder.” In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
arXiv: 1806.03107. url: https://openreview.net/forum?id=S1x4ghC
9tQ.

Gu, Shixiang, Zoubin Ghahramani, and Richard E. Turner (2015).
“Neural Adaptive Sequential Monte Carlo.” In: Advances in Neu-
ral Information Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada. Ed. by Corinna Cortes, Neil D. Lawrence,
Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, pp. 2629–
2637. url: https : //proceedings . neurips . cc/paper/2015/hash/
99adff456950dd9629a5260c4de21858-Abstract.html.

Guttenberg, Nicholas, Nathaniel Virgo, Olaf Witkowski, Hidetoshi
Aoki, and Ryota Kanai (2016). Permutation-Equivariant Neural Net-

https://proceedings.neurips.cc/paper/2016/hash/208e43f0e45c4c78cafadb83d2888cb6-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/208e43f0e45c4c78cafadb83d2888cb6-Abstract.html
https://arxiv.org/abs/2008.12595
http://arxiv.org/abs/2008.12595
http://www.deeplearningbook.org/
https://doi.org/10.1109/LRA.2018.2792152
https://doi.org/10.1109/LRA.2018.2792152
http://papers.nips.cc/paper/7248-z-forcing-training-stochastic-recurrent-networks
http://papers.nips.cc/paper/7248-z-forcing-training-stochastic-recurrent-networks
https://arxiv.org/abs/1806.03107
https://openreview.net/forum?id=S1x4ghC9tQ
https://openreview.net/forum?id=S1x4ghC9tQ
https://proceedings.neurips.cc/paper/2015/hash/99adff456950dd9629a5260c4de21858-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/99adff456950dd9629a5260c4de21858-Abstract.html

170 bibliography

works Applied to Dynamics Prediction. arXiv: 1612.04530 [cs, stat].
url: http://arxiv.org/abs/1612.04530.

Ha, David and Jürgen Schmidhuber (2018a). “Recurrent World Models
Facilitate Policy Evolution.” In: Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada.
Ed. by Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, pp. 2455–2467.
url: http://papers.nips.cc/paper/7512-recurrent-world-models-
facilitate-policy-evolution.

– (2018b). World Models. arXiv: 1803.10122 [cs, stat]. url: http://
arxiv.org/abs/1803.10122.

Hafner, Danijar, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas,
David Ha, Honglak Lee, and James Davidson (2019). “Learning
Latent Dynamics for Planning from Pixels.” In: Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA. Ed. by Kamalika Chaudhuri and
Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning
Research. PMLR, pp. 2555–2565. url: http://proceedings.mlr.press/
v97/hafner19a.html.

Hecht-Nielsen, Robert (1988). “Theory of the Backpropagation Neural
Network.” In: Neural Networks 1 (Supplement-1), pp. 445–448. doi:
10.1016/0893-6080(88)90469-8.

Hennig, Jay A., Akash Umakantha, and Ryan C. Williamson (2017). A
Classifying Variational Autoencoder with Application to Polyphonic Music
Generation. arXiv: 1711.07050 [cs, stat]. url: http://arxiv.org/abs/
1711.07050.

Higgins, Irina, Loïc Matthey, Arka Pal, Christopher Burgess, Xavier
Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Ler-
chner (2017). “Beta-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework.” In: 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. url: https://
openreview.net/forum?id=Sy2fzU9gl.

Hinton, Geoffrey E. (2002). “Training Products of Experts by Minimiz-
ing Contrastive Divergence.” In: Neural Computation 14.8, pp. 1771–
1800. issn: 0899-7667. doi: 10.1162/089976602760128018.

Hochreiter, Sepp (1991). “Untersuchungen Zu Dynamischen Neu-
ronalen Netzen.” Diploma thesis. Munich: Technische Universität
München. url: http://www.bioinf.jku.at/publications/older/3804 2.
pdf.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term
Memory.” In: Neural Computation 9.8, pp. 1735–1780. issn: 0899-7667.
doi: 10.1162/neco.1997.9.8.1735.

Hoffman, Matthew D., David M. Blei, Chong Wang, and John Pais-
ley (2013). “Stochastic Variational Inference.” In: Journal of Machine

https://arxiv.org/abs/1612.04530
http://arxiv.org/abs/1612.04530
http://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
http://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122
http://proceedings.mlr.press/v97/hafner19a.html
http://proceedings.mlr.press/v97/hafner19a.html
https://doi.org/10.1016/0893-6080(88)90469-8
https://arxiv.org/abs/1711.07050
http://arxiv.org/abs/1711.07050
http://arxiv.org/abs/1711.07050
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://doi.org/10.1162/089976602760128018
http://www.bioinf.jku.at/publications/older/3804_2.pdf
http://www.bioinf.jku.at/publications/older/3804_2.pdf
https://doi.org/10.1162/neco.1997.9.8.1735

bibliography 171

Learning Research 14.4, pp. 1303–1347. issn: 1533-7928. url: http://
jmlr.org/papers/v14/hoffman13a.html.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). “Mul-
tilayer Feedforward Networks Are Universal Approximators.” In:
Neural Networks 2.5, pp. 359–366. issn: 0893-6080. doi: 10.1016/0893-
6080(89)90020-8.

Hsieh, Jun-Ting, Bingbin Liu, De-An Huang, Fei-Fei Li, and Juan
Carlos Niebles (2018). “Learning to Decompose and Disentangle
Representations for Video Prediction.” In: Advances in Neural In-
formation Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada. Ed. by Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Gar-
nett, pp. 515–524. url: https://proceedings.neurips.cc/paper/2018/
hash/496e05e1aea0a9c4655800e8a7b9ea28-Abstract.html.

Hsu, Wei-Ning, Yu Zhang, and James R. Glass (2017). “Unsupervised
Learning of Disentangled and Interpretable Representations from Se-
quential Data.” In: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fer-
gus, S. V. N. Vishwanathan, and Roman Garnett, pp. 1878–1889.
url: http://papers.nips.cc/paper/6784-unsupervised-learning-of-
disentangled-and-interpretable-representations-from-sequential-
data.

Huang, Chin-Wei and Aaron Courville (2019). Note on the Bias and
Variance of Variational Inference. arXiv: 1906.03708 [cs, stat]. url:
http://arxiv.org/abs/1906.03708.

Ilse, Maximilian, Jakub M. Tomczak, and Max Welling (2018).
“Attention-Based Deep Multiple Instance Learning.” In: Proceed-
ings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by
Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings of Machine
Learning Research. PMLR, pp. 2132–2141. url: http://proceedings.
mlr.press/v80/ilse18a.html.

Ionides, Edward L (2008). “Truncated Importance Sampling.” In: Jour-
nal of Computational and Graphical Statistics 17.2, pp. 295–311. doi:
10.1198/106186008X320456.

Jaderberg, Max, Karen Simonyan, Andrew Zisserman, and Koray
Kavukcuoglu (2015). “Spatial Transformer Networks.” In: Advances
in Neural Information Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada. Ed. by Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, pp. 2017–2025. url:
http://papers.nips.cc/paper/5854-spatial-transformer-networks.

http://jmlr.org/papers/v14/hoffman13a.html
http://jmlr.org/papers/v14/hoffman13a.html
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://proceedings.neurips.cc/paper/2018/hash/496e05e1aea0a9c4655800e8a7b9ea28-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/496e05e1aea0a9c4655800e8a7b9ea28-Abstract.html
http://papers.nips.cc/paper/6784-unsupervised-learning-of-disentangled-and-interpretable-representations-from-sequential-data
http://papers.nips.cc/paper/6784-unsupervised-learning-of-disentangled-and-interpretable-representations-from-sequential-data
http://papers.nips.cc/paper/6784-unsupervised-learning-of-disentangled-and-interpretable-representations-from-sequential-data
https://arxiv.org/abs/1906.03708
http://arxiv.org/abs/1906.03708
http://proceedings.mlr.press/v80/ilse18a.html
http://proceedings.mlr.press/v80/ilse18a.html
https://doi.org/10.1198/106186008X320456
http://papers.nips.cc/paper/5854-spatial-transformer-networks

172 bibliography

Jordan, Michael I., Zoubin Ghahramani, Tommi S. Jaakkola, and
Lawrence K. Saul (1999). “An Introduction to Variational Meth-
ods for Graphical Models.” In: Machine Learning 37.2, pp. 183–233.
doi: 10.1023/A:1007665907178.

Julier, Simon J. and Jeffrey K. Uhlmann (1997). “New Extension of the
Kalman Filter to Nonlinear Systems.” In: Signal Processing, Sensor
Fusion, and Target Recognition VI. Signal Processing, Sensor Fusion,
and Target Recognition VI. Vol. 3068. International Society for Optics
and Photonics, pp. 182–193. doi: 10.1117/12.280797.

– (2004). “Unscented Filtering and Nonlinear Estimation.” In: Proceed-
ings of the IEEE 92.3, pp. 401–422. issn: 1558-2256. doi: 10 .1109/
JPROC.2003.823141.

Kahou, Samira Ebrahimi, Vincent Michalski, Roland Memisevic,
Christopher Joseph Pal, and Pascal Vincent (2017). “RATM: Re-
current Attentive Tracking Model.” In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops, CVPR Workshops
2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society,
pp. 1613–1622. doi: 10.1109/CVPRW.2017.206.

Kalman, Rudolph Emil (1960). “A New Approach to Linear Filtering
and Prediction Problems.” In: Journal of Basic Engineering 82.1, pp. 35–
45. issn: 0021-9223. doi: 10.1115/1.3662552.

Karl, Maximilian (2020). “Unsupervised Control.” PhD thesis. Munich:
Technische Universität München. url: http://nbn-resolving.de/urn/
resolver.pl?urn:nbn:de:bvb:91-diss-20200331-1484075-1-4.

Karl, Maximilian, Maximilian Soelch, Justin Bayer, and Patrick van
der Smagt (2017a). “Deep Variational Bayes Filters: Unsupervised
Learning of State Space Models from Raw Data.” In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net. url:
https://openreview.net/forum?id=HyTqHL5xg.

Karl, Maximilian, Maximilian Soelch, Philip Becker-Ehmck, Djalel
Benbouzid, Patrick van der Smagt, and Justin Bayer (2017b). Un-
supervised Real-Time Control through Variational Empowerment. arXiv:
1710.05101 [stat]. url: http://arxiv.org/abs/1710.05101.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for
Stochastic Optimization.” In: 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.
url: http://arxiv.org/abs/1412.6980.

Kingma, Diederik P., Tim Salimans, Rafal Józefowicz, Xi Chen, Ilya
Sutskever, and Max Welling (2016). “Improving Variational Autoen-
coders with Inverse Autoregressive Flow.” In: Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, December 5-10, 2016, Barcelona, Spain. Ed.
by Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle
Guyon, and Roman Garnett, pp. 4736–4744. url: https://proceedings.

https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1117/12.280797
https://doi.org/10.1109/JPROC.2003.823141
https://doi.org/10.1109/JPROC.2003.823141
https://doi.org/10.1109/CVPRW.2017.206
https://doi.org/10.1115/1.3662552
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20200331-1484075-1-4
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20200331-1484075-1-4
https://openreview.net/forum?id=HyTqHL5xg
https://arxiv.org/abs/1710.05101
http://arxiv.org/abs/1710.05101
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2016/hash/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Abstract.html

bibliography 173

neurips.cc/paper/2016/hash/ddeebdeefdb7e7e7a697e1c3e3d8ef54-
Abstract.html.

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Varia-
tional Bayes.” In: 2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings. url: http://arxiv.org/abs/1312.6114.

Klushyn, Alexej, Nutan Chen, Richard Kurle, Botond Cseke, and
Patrick van der Smagt (2019). “Learning Hierarchical Priors in
VAEs.” In: Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, pp. 2866–2875. url: http://
papers.nips.cc/paper/8553-learning-hierarchical-priors-in-vaes.

Kobyzev, I., S. Prince, and M. Brubaker (2020). “Normalizing Flows: An
Introduction and Review of Current Methods.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1–1. issn: 1939-3539.
doi: 10.1109/TPAMI.2020.2992934.

Kolmogorov, Andrei Nikolaevich (1957). “On the representation of con-
tinuous functions of many variables by superposition of continuous
functions of one variable and addition.” In: Doklady Akademii Nauk
SSSR 114, pp. 953–956. issn: 0002-3264. url: https://zbmath.org/
?q=an%3A0090.27103.

Kosiorek, Adam R., Alex Bewley, and Ingmar Posner (2017). “Hi-
erarchical Attentive Recurrent Tracking.” In: Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA. Ed. by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, pp. 3053–3061. url: https://proceedings.neurips.cc/paper/
2017/hash/752d25a1f8dbfb2d656bac3094bfb81c-Abstract.html.

Kosiorek, Adam R., Hyunjik Kim, Yee Whye Teh, and Ingmar Pos-
ner (2018). “Sequential Attend, Infer, Repeat: Generative Modelling
of Moving Objects.” In: Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Ed.
by Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, pp. 8615–
8625. url: https : //proceedings . neurips . cc/paper/2018/hash/
7417744a2bac776fabe5a09b21c707a2-Abstract.html.

Krishnan, Rahul G., Uri Shalit, and David Sontag (2015). Deep Kalman
Filters. arXiv: 1511.05121 [cs, stat]. url: http://arxiv.org/abs/
1511.05121.

Krishnan, Rahul G., Uri Shalit, and David A. Sontag (2017). “Struc-
tured Inference Networks for Nonlinear State Space Models.” In:
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,

https://proceedings.neurips.cc/paper/2016/hash/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Abstract.html
http://arxiv.org/abs/1312.6114
http://papers.nips.cc/paper/8553-learning-hierarchical-priors-in-vaes
http://papers.nips.cc/paper/8553-learning-hierarchical-priors-in-vaes
https://doi.org/10.1109/TPAMI.2020.2992934
https://zbmath.org/?q=an%3A0090.27103
https://zbmath.org/?q=an%3A0090.27103
https://proceedings.neurips.cc/paper/2017/hash/752d25a1f8dbfb2d656bac3094bfb81c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/752d25a1f8dbfb2d656bac3094bfb81c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/7417744a2bac776fabe5a09b21c707a2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/7417744a2bac776fabe5a09b21c707a2-Abstract.html
https://arxiv.org/abs/1511.05121
http://arxiv.org/abs/1511.05121
http://arxiv.org/abs/1511.05121

174 bibliography

February 4-9, 2017, San Francisco, California, USA. Ed. by Satinder P.
Singh and Shaul Markovitch. AAAI Press, pp. 2101–2109. url: http:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14215.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “Ima-
geNet Classification with Deep Convolutional Neural Networks.”
In: Advances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012. Proceedings
of a Meeting Held December 3-6, 2012, Lake Tahoe, Nevada, United States.
Ed. by Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C.
Burges, Léon Bottou, and Kilian Q. Weinberger, pp. 1106–1114. url:
http://papers.nips.cc/paper/4824- imagenet- classification- with-
deep-convolutional-neural-networks.

Kurle, Richard, Stephan Günnemann, and Patrick van der Smagt
(2019). “Multi-Source Neural Variational Inference.” In: The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, the Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, the Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019. AAAI Press, pp. 4114–4121. doi: 10.1609/aaai.v33i01.33014114.

Lai, Guokun, Zihang Dai, Yiming Yang, and Shinjae Yoo (2019). “Re-
Examination of the Role of Latent Variables in Sequence Modeling.”
In: Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, pp. 7812–7822. url: https ://
proceedings.neurips.cc/paper/2019/hash/d0ac1ed0c5cb9ecbca3d
2496ec1ad984-Abstract.html.

Le, Tuan Anh, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank
Wood (2018). “Auto-Encoding Sequential Monte Carlo.” In: 6th Inter-
national Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. Open-
Review.net. url: https://openreview.net/forum?id=BJ8c3f-0b.

LeCun, Yann, Corinna Cortes, and CJ Burges (2010). “MNIST Hand-
written Digit Database.” In: ATT Labs [Online] 2. url: http://yann.
lecun.com/exdb/mnist.

Lee, Alex X., Anusha Nagabandi, Pieter Abbeel, and Sergey Levine
(2020). “Stochastic Latent Actor-Critic: Deep Reinforcement Learn-
ing with a Latent Variable Model.” In: Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Vir-
tual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin. url: https://proceedings.
neurips.cc/paper/2020/hash/08058bf500242562c0d031ff830ad094-
Abstract.html.

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14215
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14215
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.1609/aaai.v33i01.33014114
https://proceedings.neurips.cc/paper/2019/hash/d0ac1ed0c5cb9ecbca3d2496ec1ad984-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d0ac1ed0c5cb9ecbca3d2496ec1ad984-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d0ac1ed0c5cb9ecbca3d2496ec1ad984-Abstract.html
https://openreview.net/forum?id=BJ8c3f-0b
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://proceedings.neurips.cc/paper/2020/hash/08058bf500242562c0d031ff830ad094-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/08058bf500242562c0d031ff830ad094-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/08058bf500242562c0d031ff830ad094-Abstract.html

bibliography 175

Lee, Alex X., Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea
Finn, and Sergey Levine (2018). Stochastic Adversarial Video Prediction.
arXiv: 1804.01523 [cs]. url: http://arxiv.org/abs/1804.01523.

Lee, Juho, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin
Choi, and Yee Whye Teh (2019). “Set Transformer: A Framework
for Attention-Based Permutation-Invariant Neural Networks.” In:
Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA. Ed. by Ka-
malika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings
of Machine Learning Research. PMLR, pp. 3744–3753. url: http://
proceedings.mlr.press/v97/lee19d.html.

Li, Yingzhen and Stephan Mandt (2018). “Disentangled Sequential
Autoencoder.” In: Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, pp. 5656–5665.
url: http://proceedings.mlr.press/v80/yingzhen18a.html.

Li, Yingzhen and Richard E. Turner (2016). “Rényi Divergence Varia-
tional Inference.” In: Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain. Ed. by Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Ro-
man Garnett, pp. 1073–1081. url: http://papers.nips.cc/paper/6208-
renyi-divergence-variational-inference.

MacKay, David J. C. (2002). Information Theory, Inference & Learning
Algorithms. USA: Cambridge University Press. isbn: 978-0-521-64298-
9.

Maddison, Chris J., Dieterich Lawson, George Tucker, Nicolas Heess,
Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, and Yee Whye
Teh (2017). “Filtering Variational Objectives.” In: Advances in Neu-
ral Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA. Ed. by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, pp. 6573–6583. url: https://proceedings.neurips.cc/paper/
2017/hash/fa84632d742f2729dc32ce8cb5d49733-Abstract.html.

Mandt, Stephan, James McInerney, Farhan Abrol, Rajesh Ranganath,
and David M. Blei (2016). “Variational Tempering.” In: Proceedings of
the 19th International Conference on Artificial Intelligence and Statistics,
AISTATS 2016, Cadiz, Spain, May 9-11, 2016. Ed. by Arthur Gretton
and Christian C. Robert. Vol. 51. JMLR Workshop and Conference
Proceedings. JMLR.org, pp. 704–712. url: http://proceedings.mlr.
press/v51/mandt16.html.

Mc Gee, L. A., S. F. Schmidt, and G. L. Smith (1962). Application of
Statistical Filter Theory to the Optimal Estimation of Position and Velocity

https://arxiv.org/abs/1804.01523
http://arxiv.org/abs/1804.01523
http://proceedings.mlr.press/v97/lee19d.html
http://proceedings.mlr.press/v97/lee19d.html
http://proceedings.mlr.press/v80/yingzhen18a.html
http://papers.nips.cc/paper/6208-renyi-divergence-variational-inference
http://papers.nips.cc/paper/6208-renyi-divergence-variational-inference
https://proceedings.neurips.cc/paper/2017/hash/fa84632d742f2729dc32ce8cb5d49733-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/fa84632d742f2729dc32ce8cb5d49733-Abstract.html
http://proceedings.mlr.press/v51/mandt16.html
http://proceedings.mlr.press/v51/mandt16.html

176 bibliography

on Board a Circumlunar Vehicle. url: http ://archive . org/details/
nasa techdoc 19620006857.

Mirchev, Atanas, Baris Kayalibay, Maximilian Soelch, Patrick van der
Smagt, and Justin Bayer (2019). “Approximate Bayesian Inference
in Spatial Environments.” In: Robotics: Science and Systems XV, Uni-
versity of Freiburg, Freiburg Im Breisgau, Germany, June 22-26, 2019.
Ed. by Antonio Bicchi, Hadas Kress-Gazit, and Seth Hutchinson.
doi: 10.15607/RSS.2019.XV.083.

Mnih, Andriy and Danilo Jimenez Rezende (2016). “Variational Infer-
ence for Monte Carlo Objectives.” In: Proceedings of the 33nd Interna-
tional Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016. Ed. by Maria-Florina Balcan and Kilian Q.
Weinberger. Vol. 48. JMLR Workshop and Conference Proceedings.
JMLR.org, pp. 2188–2196. url: http://proceedings.mlr.press/v48/
mnihb16.html.

Mohamed, Shakir (2015). Machine Learning Trick of the Day (4): Reparam-
eterisation Tricks. url: http://blog.shakirm.com/2015/10/machine-
learning-trick-of-the-day-4-reparameterisation-tricks/.

Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective.
Adaptive Computation and Machine Learning Series. The MIT Press.
isbn: 978-0-262-01802-9.

Murphy, Ryan L., Balasubramaniam Srinivasan, Vinayak A. Rao, and
Bruno Ribeiro (2019). “Janossy Pooling: Learning Deep Permutation-
Invariant Functions for Variable-Size Inputs.” In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net. url: https://openreview.net/
forum?id=BJluy2RcFm.

Naesseth, Christian A., Scott W. Linderman, Rajesh Ranganath, and
David M. Blei (2018). “Variational Sequential Monte Carlo.” In:
International Conference on Artificial Intelligence and Statistics, AISTATS
2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain. Ed.
by Amos J. Storkey and Fernando Pérez-Cruz. Vol. 84. Proceedings
of Machine Learning Research. PMLR, pp. 968–977. url: http://
proceedings.mlr.press/v84/naesseth18a.html.

Nayak, Pandu (2019). Understanding Searches Better than Ever Before.
url: https://blog.google/products/search/search-language-under
standing-bert/.

Neiswanger, Willie, Frank D. Wood, and Eric P. Xing (2014). “The
Dependent Dirichlet Process Mixture of Objects for Detection-Free
Tracking and Object Modeling.” In: Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics, AISTATS
2014, Reykjavik, Iceland, April 22-25, 2014. Vol. 33. JMLR Workshop
and Conference Proceedings. JMLR.org, pp. 660–668. url: http://
proceedings.mlr.press/v33/neiswanger14.html.

Ning, Guanghan, Zhi Zhang, Chen Huang, Xiaobo Ren, Haohong
Wang, Canhui Cai, and Zhihai He (2017). “Spatially Supervised Re-

http://archive.org/details/nasa_techdoc_19620006857
http://archive.org/details/nasa_techdoc_19620006857
https://doi.org/10.15607/RSS.2019.XV.083
http://proceedings.mlr.press/v48/mnihb16.html
http://proceedings.mlr.press/v48/mnihb16.html
http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/
http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/
https://openreview.net/forum?id=BJluy2RcFm
https://openreview.net/forum?id=BJluy2RcFm
http://proceedings.mlr.press/v84/naesseth18a.html
http://proceedings.mlr.press/v84/naesseth18a.html
https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
http://proceedings.mlr.press/v33/neiswanger14.html
http://proceedings.mlr.press/v33/neiswanger14.html

bibliography 177

current Convolutional Neural Networks for Visual Object Tracking.”
In: IEEE International Symposium on Circuits and Systems, ISCAS 2017,
Baltimore, MD, USA, May 28-31, 2017. IEEE, pp. 1–4. doi: 10.1109/
ISCAS.2017.8050867.

Nowozin, Sebastian (2018). “Debiasing Evidence Approximations:
On Importance-Weighted Autoencoders and Jackknife Variational
Inference.” In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net. url: https://openreview.net/
forum?id=HyZoi-WRb.

Owen, Art B. (2013). Monte Carlo Theory, Methods and Examples. url:
https://statweb.stanford.edu/~owen/mc/.

Papamakarios, George, Iain Murray, and Theo Pavlakou (2017).
“Masked Autoregressive Flow for Density Estimation.” In: Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA. Ed. by Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, pp. 2338–2347. url: http://papers.nips.cc/paper/
6828-masked-autoregressive-flow-for-density-estimation.

Papamakarios, George, Eric Nalisnick, Danilo Jimenez Rezende, Shakir
Mohamed, and Balaji Lakshminarayanan (2019). Normalizing Flows
for Probabilistic Modeling and Inference. arXiv: 1912.02762 [cs, stat].
url: http://arxiv.org/abs/1912.02762.

Parisotto, Emilio, Devendra Singh Chaplot, Jian Zhang, and Ruslan
Salakhutdinov (2018). “Global Pose Estimation with an Attention-
Based Recurrent Network.” In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition Workshops, CVPR Workshops 2018, Salt
Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society, pp. 237–
246. doi: 10.1109/CVPRW.2018.00061.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-
Performance Deep Learning Library.” In: Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Gar-
nett, pp. 8024–8035. url: https://proceedings.neurips.cc/paper/
2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Póczos, Barnabás, Aarti Singh, Alessandro Rinaldo, and Larry A.
Wasserman (2013). “Distribution-Free Distribution Regression.” In:
Proceedings of the Sixteenth International Conference on Artificial Intel-
ligence and Statistics, AISTATS 2013, Scottsdale, AZ, USA, April 29 -
May 1, 2013. Vol. 31. JMLR Workshop and Conference Proceedings.
JMLR.org, pp. 507–515. url: http://proceedings.mlr.press/v31/
poczos13a.html.

https://doi.org/10.1109/ISCAS.2017.8050867
https://doi.org/10.1109/ISCAS.2017.8050867
https://openreview.net/forum?id=HyZoi-WRb
https://openreview.net/forum?id=HyZoi-WRb
https://statweb.stanford.edu/~owen/mc/
http://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-density-estimation
http://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-density-estimation
https://arxiv.org/abs/1912.02762
http://arxiv.org/abs/1912.02762
https://doi.org/10.1109/CVPRW.2018.00061
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://proceedings.mlr.press/v31/poczos13a.html
http://proceedings.mlr.press/v31/poczos13a.html

178 bibliography

Pulford, G. W. (2005). “Taxonomy of Multiple Target Tracking Meth-
ods.” In: Sonar and Navigation IEE Proceedings - Radar 152.5, pp. 291–
304. issn: 1350-2395. doi: 10.1049/ip-rsn:20045064.

Qi, Charles Ruizhongtai, Wei Liu, Chenxia Wu, Hao Su, and Leonidas
J. Guibas (2018). “Frustum PointNets for 3D Object Detection from
RGB-D Data.” In: 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018.
IEEE Computer Society, pp. 918–927. doi: 10.1109/CVPR.2018.00102.

Qi, Charles Ruizhongtai, Hao Su, Kaichun Mo, and Leonidas J. Guibas
(2017a). “PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation.” In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017.
IEEE Computer Society, pp. 77–85. doi: 10.1109/CVPR.2017.16.

Qi, Charles Ruizhongtai, Li Yi, Hao Su, and Leonidas J. Guibas (2017b).
“PointNet++: Deep Hierarchical Feature Learning on Point Sets in a
Metric Space.” In: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett, pp. 5099–5108. url:
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d
12f74d8b05e9b89836f-Abstract.html.

Rainforth, Tom, Adam R. Kosiorek, Tuan Anh Le, Chris J. Maddison,
Maximilian Igl, Frank Wood, and Yee Whye Teh (2018). “Tighter
Variational Bounds Are Not Necessarily Better.” In: Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G.
Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. PMLR, pp. 4274–4282. url: http://proceedings.mlr.press/
v80/rainforth18b.html.

Ranganath, Rajesh, Sean Gerrish, and David M. Blei (2014). “Black
Box Variational Inference.” In: Proceedings of the Seventeenth Inter-
national Conference on Artificial Intelligence and Statistics, AISTATS
2014, Reykjavik, Iceland, April 22-25, 2014. Vol. 33. JMLR Workshop
and Conference Proceedings. JMLR.org, pp. 814–822. url: http://
proceedings.mlr.press/v33/ranganath14.html.

Rauch, H. E., F. Tung, and C. T. Striebel (1965). “Maximum Likeli-
hood Estimates of Linear Dynamic Systems.” In: AIAA Journal 3.8,
pp. 1445–1450. issn: 0001-1452. doi: 10.2514/3.3166.

Ravanbakhsh, Siamak, Jeff Schneider, and Barnabas Poczos (2016).
Deep Learning with Sets and Point Clouds. arXiv: 1611 . 04500 [cs,

stat]. url: http://arxiv.org/abs/1611.04500.
Reed, Scott E., Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran,

Bernt Schiele, and Honglak Lee (2016). “Generative Adversarial Text
to Image Synthesis.” In: Proceedings of the 33nd International Confer-
ence on Machine Learning, ICML 2016, New York City, NY, USA, June

https://doi.org/10.1049/ip-rsn:20045064
https://doi.org/10.1109/CVPR.2018.00102
https://doi.org/10.1109/CVPR.2017.16
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
http://proceedings.mlr.press/v80/rainforth18b.html
http://proceedings.mlr.press/v80/rainforth18b.html
http://proceedings.mlr.press/v33/ranganath14.html
http://proceedings.mlr.press/v33/ranganath14.html
https://doi.org/10.2514/3.3166
https://arxiv.org/abs/1611.04500
https://arxiv.org/abs/1611.04500
http://arxiv.org/abs/1611.04500

bibliography 179

19-24, 2016. Ed. by Maria-Florina Balcan and Kilian Q. Weinberger.
Vol. 48. JMLR Workshop and Conference Proceedings. JMLR.org,
pp. 1060–1069. url: http://proceedings.mlr.press/v48/reed16.html.

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational
Inference with Normalizing Flows.” In: Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015. Ed. by Francis R. Bach and David M. Blei. Vol. 37. JMLR
Workshop and Conference Proceedings. JMLR.org, pp. 1530–1538.
url: http://proceedings.mlr.press/v37/rezende15.html.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014).
“Stochastic Backpropagation and Approximate Inference in Deep
Generative Models.” In: Proceedings of the 31th International Conference
on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014.
Vol. 32. JMLR Workshop and Conference Proceedings. JMLR.org,
pp. 1278–1286. url: http://proceedings.mlr.press/v32/rezende14.
html.

Rezende, Danilo Jimenez and Fabio Viola (2018). Taming VAEs. arXiv:
1810.00597 [cs, stat]. url: http://arxiv.org/abs/1810.00597.

Al-Rfou, Rami et al. (2016). Theano: A Python Framework for Fast Com-
putation of Mathematical Expressions. arXiv: 1605.02688. url: http://
arxiv.org/abs/1605.02688.

Santoro, Adam, David Raposo, David G. T. Barrett, Mateusz Mali-
nowski, Razvan Pascanu, Peter W. Battaglia, and Tim Lillicrap (2017).
“A Simple Neural Network Module for Relational Reasoning.” In:
Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA. Ed. by Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, pp. 4967–4976. url: https ://proceedings .
neurips . cc/paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff -
Abstract.html.

Sarkka, Simo (2013). Bayesian Filtering and Smoothing. Cambridge:
Cambridge University Press. isbn: 978-1-139-34420-3. doi: 10.1017/
CBO9781139344203.

Schmidhuber, Jürgen (1992). “Learning to Control Fast-Weight Mem-
ories: An Alternative to Dynamic Recurrent Networks.” In: Neu-
ral Computation 4.1, pp. 131–139. issn: 0899-7667. doi: 10 . 1162/
neco.1992.4.1.131.

– (2017). History of Computer Vision Contests Won by Deep CNNs on GPU.
url: http://people.idsia.ch/~juergen/computer-vision-contests-
won-by-gpu-cnns.html.

Schulter, Samuel, Paul Vernaza, Wongun Choi, and Manmohan Chan-
draker (2017). “Deep Network Flow for Multi-Object Tracking.”
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer
Society, pp. 2730–2739. doi: 10.1109/CVPR.2017.292.

http://proceedings.mlr.press/v48/reed16.html
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v32/rezende14.html
http://proceedings.mlr.press/v32/rezende14.html
https://arxiv.org/abs/1810.00597
http://arxiv.org/abs/1810.00597
https://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://proceedings.neurips.cc/paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff-Abstract.html
https://doi.org/10.1017/CBO9781139344203
https://doi.org/10.1017/CBO9781139344203
https://doi.org/10.1162/neco.1992.4.1.131
https://doi.org/10.1162/neco.1992.4.1.131
http://people.idsia.ch/~juergen/computer-vision-contests-won-by-gpu-cnns.html
http://people.idsia.ch/~juergen/computer-vision-contests-won-by-gpu-cnns.html
https://doi.org/10.1109/CVPR.2017.292

180 bibliography

Schuster, Mike and Kuldip K. Paliwal (1997). “Bidirectional Recurrent
Neural Networks.” In: IEEE Transactions on Signal Processing 45.11,
pp. 2673–2681. doi: 10.1109/78.650093.

Schwartz, Barry (2020). Google: BERT Now Used on Almost Every English
Query. url: https://searchengineland.com/google-bert-used-on-
almost-every-english-query-342193.

Silver, David et al. (2016). “Mastering the Game of Go with Deep Neu-
ral Networks and Tree Search.” In: Nature 529.7587 (7587), pp. 484–
489. issn: 1476-4687. doi: 10.1038/nature16961.

Soelch, Maximilian, Adnan Akhundov, Patrick van der Smagt, and
Justin Bayer (2019). “On Deep Set Learning and the Choice of Aggre-
gations.” In: Artificial Neural Networks and Machine Learning - ICANN
2019: Theoretical Neural Computation - 28th International Conference on
Artificial Neural Networks, Munich, Germany, September 17-19, 2019,
Proceedings, Part I. Ed. by Igor V. Tetko, Vera Kurková, Pavel Karpov,
and Fabian J. Theis. Vol. 11727. Lecture Notes in Computer Science.
Springer, pp. 444–457. isbn: 978-3-030-30487-4. doi: 10.1007/978-3-
030-30487-4\\ 35.

Soelch, Maximilian, Justin Bayer, Marvin Ludersdorfer, and Patrick
van der Smagt (2016). Variational Inference for On-Line Anomaly Detec-
tion in High-Dimensional Time Series. arXiv: 1602.07109 [cs, stat].
url: http://arxiv.org/abs/1602.07109.

Sønderby, Casper Kaae, Tapani Raiko, Lars Maaløe, Søren Kaae Søn-
derby, and Ole Winther (2016). “Ladder Variational Autoencoders.”
In: Advances in Neural Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain. Ed. by Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, pp. 3738–
3746. url: http://papers.nips.cc/paper/6275- ladder-variational-
autoencoders.

Song, Fuijan et al. (2010). “Dissemination and Publication of Research
Findings: An Updated Review of Related Biases.” In: Health Technol-
ogy Assessment (Winchester, England) 14.8, pp. iii, ix–xi, 1–193. issn:
2046-4924. doi: 10.3310/hta14080.

Srivastava, Nitish, Elman Mansimov, and Ruslan Salakhutdinov (2015).
“Unsupervised Learning of Video Representations Using LSTMs.”
In: Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015. Ed. by Francis R. Bach and
David M. Blei. Vol. 37. JMLR Workshop and Conference Proceedings.
JMLR.org, pp. 843–852. url: http://proceedings.mlr.press/v37/
srivastava15.html.

Steenkiste, Sjoerd van, Michael Chang, Klaus Greff, and Jürgen
Schmidhuber (2018). “Relational Neural Expectation Maximization:
Unsupervised Discovery of Objects and Their Interactions.” In: 6th
International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceed-

https://doi.org/10.1109/78.650093
https://searchengineland.com/google-bert-used-on-almost-every-english-query-342193
https://searchengineland.com/google-bert-used-on-almost-every-english-query-342193
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/978-3-030-30487-4_35
https://doi.org/10.1007/978-3-030-30487-4_35
https://arxiv.org/abs/1602.07109
http://arxiv.org/abs/1602.07109
http://papers.nips.cc/paper/6275-ladder-variational-autoencoders
http://papers.nips.cc/paper/6275-ladder-variational-autoencoders
https://doi.org/10.3310/hta14080
http://proceedings.mlr.press/v37/srivastava15.html
http://proceedings.mlr.press/v37/srivastava15.html

bibliography 181

ings. OpenReview.net. url: https ://openreview . net/forum ? id =
ryH20GbRW.

Su, Jinsong, Shan Wu, Deyi Xiong, Yaojie Lu, Xianpei Han, and Biao
Zhang (2018). “Variational Recurrent Neural Machine Translation.”
In: Proceedings of the Thirty-Second AAAI Conference on Artificial In-
telligence, (AAAI-18), the 30th Innovative Applications of Artificial In-
telligence (IAAI-18), and the 8th AAAI Symposium on Educational Ad-
vances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018. Ed. by Sheila A. McIlraith and Kilian Q. Wein-
berger. AAAI Press, pp. 5488–5495. url: https://www.aaai.org/ocs/
index.php/AAAI/AAAI18/paper/view/16791.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). “Sequence to
Sequence Learning with Neural Networks.” In: Advances in Neu-
ral Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada. Ed. by Zoubin Ghahramani, Max Welling, Corinna
Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, pp. 3104–
3112. url: https : //proceedings . neurips . cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “MuJoCo: A
Physics Engine for Model-Based Control.” In: 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, IROS 2012,
Vilamoura, Algarve, Portugal, October 7-12, 2012. IEEE, pp. 5026–5033.
doi: 10.1109/IROS.2012.6386109.

Turner, Richard Eric and Maneesh Sahani (2011). “Two Problems
with Variational Expectation Maximisation for Time Series Mod-
els.” In: Bayesian Time Series Models. Ed. by A. Taylan Cemgil,
David Barber, and Silvia Chiappa. Cambridge: Cambridge Uni-
versity Press, pp. 104–124. isbn: 978-0-521-19676-5. doi: 10.1017/
CBO9780511984679.006.

Vinyals, Oriol, Samy Bengio, and Manjunath Kudlur (2016). “Order
Matters: Sequence to Sequence for Sets.” In: 4th International Con-
ference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio
and Yann LeCun. url: http://arxiv.org/abs/1511.06391.

Wagstaff, Edward, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and
Michael A. Osborne (2019). “On the Limitations of Representing
Functions on Sets.” In: Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, pp. 6487–6494.
url: http://proceedings.mlr.press/v97/wagstaff19a.html.

Wang, Yue, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M.
Bronstein, and Justin M. Solomon (2019). “Dynamic Graph CNN for
Learning on Point Clouds.” In: ACM Trans. Graph. 38.5, 146:1–146:12.
doi: 10.1145/3326362.

https://openreview.net/forum?id=ryH20GbRW
https://openreview.net/forum?id=ryH20GbRW
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16791
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16791
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1017/CBO9780511984679.006
https://doi.org/10.1017/CBO9780511984679.006
http://arxiv.org/abs/1511.06391
http://proceedings.mlr.press/v97/wagstaff19a.html
https://doi.org/10.1145/3326362

182 bibliography

Watter, Manuel, Jost Tobias Springenberg, Joschka Boedecker, and
Martin A. Riedmiller (2015). “Embed to Control: A Locally Lin-
ear Latent Dynamics Model for Control from Raw Images.” In:
Advances in Neural Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada. Ed. by Corinna Cortes, Neil D.
Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett,
pp. 2746–2754. url: https://proceedings.neurips.cc/paper/2015/
hash/a1afc58c6ca9540d057299ec3016d726-Abstract.html.

Welling, Max (2007). “Product of Experts.” In: Scholarpedia 2.10, p. 3879.
issn: 1941-6016. doi: 10.4249/scholarpedia.3879.

Welzl, Emo (1991). “Smallest Enclosing Disks (Balls and Ellipsoids).”
In: New Results and New Trends in Computer Science, Graz, Austria,
June 20-21, 1991, Proceedings [on Occasion of h. Maurer’s 50th Birthday].
Ed. by Hermann A. Maurer. Vol. 555. Lecture Notes in Computer
Science. Springer, pp. 359–370. doi: 10.1007/BFb0038202.

Wu, Zhirong, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao (2015). “3D ShapeNets: A Deep
Representation for Volumetric Shapes.” In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015. IEEE Computer Society, pp. 1912–1920. doi: 10.1109/
CVPR.2015.7298801.

Yang, Nan, Rui Wang, Jörg Stückler, and Daniel Cremers (2018). “Deep
Virtual Stereo Odometry: Leveraging Deep Depth Prediction for
Monocular Direct Sparse Odometry.” In: Computer Vision - ECCV
2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part VIII. Ed. by Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss. Vol. 11212. Lecture Notes in
Computer Science. Springer, pp. 835–852. doi: 10.1007/978-3-030-
01237-3\\ 50.

Yi, Li, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J. Guibas
(2019). “GSPN: Generative Shape Proposal Network for 3D Instance
Segmentation in Point Cloud.” In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019. Computer Vision Foundation / IEEE, pp. 3947–3956.
doi: 10.1109/CVPR.2019.00407.

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos,
Ruslan Salakhutdinov, and Alexander J. Smola (2017). “Deep Sets.”
In: Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, pp. 3391–3401. url: https://
proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d
86d40ff442fe-Abstract.html.

https://proceedings.neurips.cc/paper/2015/hash/a1afc58c6ca9540d057299ec3016d726-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/a1afc58c6ca9540d057299ec3016d726-Abstract.html
https://doi.org/10.4249/scholarpedia.3879
https://doi.org/10.1007/BFb0038202
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1007/978-3-030-01237-3_50
https://doi.org/10.1007/978-3-030-01237-3_50
https://doi.org/10.1109/CVPR.2019.00407
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	Acronyms
	Notation
	 Introduction
	Introduction

	 Background
	1 Learning and Sampling
	1.1 Learning Distributions
	1.2 Sampling Distributions

	2 Latent-Variable Models
	2.1 Definitions and Concepts
	2.2 Variational Inference
	2.3 Variational Auto-Encoders
	2.4 Inference Gaps
	2.5 VAEs as a Framework

	3 Sequential Latent-Variable Models
	3.1 State-Space Models
	3.2 Sequential Bayesian Posteriors
	3.3 Inference in State-Space Models
	3.4 The Sequential ELBO

	 Auto-Encoding State-Space Models
	4 Neural State-Space Models
	4.1 Sequential Variational Auto-Encoders
	4.2 Deep Variational Bayes Filters
	4.3 Concurrent and Later Models
	4.4 Critical Discussion

	5 Case Study: Variational Tracking
	5.1 Scene Understanding
	5.2 Tracking as Inference
	5.3 Experiments
	5.4 Discussion

	 Learning by Smoothing
	6 The Conditioning Gap
	6.1 A New Inference Suboptimality
	6.2 Understanding the Conditioning Gap
	6.3 Empirical Study
	6.4 Discussion

	7 Approximate Neural Smoothing
	7.1 Faithful Approximate Smoothing
	7.2 Estimating the Sequential ELBO
	7.3 A Linear Gaussian Example
	7.4 Further Experiments and Discussion

	 Set-Valued Neural Functions
	8 Aggregation Functions in Deep Set Learning
	8.1 A Motivating Example
	8.2 State of the Art
	8.3 The Choice of Aggregation
	8.4 Experiments
	8.5 Discussion

	 Conclusion
	Conclusion

	 appendices
	A Background
	A.1 Details on VAE on MNIST Example
	A.2 Renyi Divergences and Bounds
	A.3 Bayesian Updates, Fusion, Uncertainty
	A.4 A Matrix Identity for Kalman Filters

	B Auto-Encoding State-Space Models
	B.1 Moving MNIST Data Set

	C Learning by Smoothing
	C.1 Optimal Partially-Conditioned Posteriors
	C.2 Proof of Suboptimal Generative Model
	C.3 Details on the Example Linear Gaussian System
	C.4 Linear Gaussian Backward Filter
	C.5 Details on Row-Wise MNIST Experiments

	D Set-Valued Neural Functions
	D.1 Details on Motivating Example

	 Bibliography

