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Summary

The advances in high throughput ’omics’ technologies have paved the way for under-
standing the inner workings of the cell on an unprecedented scale. Upon the techno-
logical improvements, several experimental techniques have been developed to identify,
monitor and quantify various processes in the cell. We are now able to learn the code
of ”life” in a totally unbiased, data-driven way.

Even though all the cells in an organism have the same DNA, there is a huge diversity
of cell types and states due to the complex mechanisms of the gene expression regulation.
This regulation is achieved through multiple steps, starting from transciption, followed
by splicing, translation and protein degradation. Therefore, deciphering the regulatory
mechanisms within and across each of these steps is critical for understanding how the
cells work.

Even though, transcriptional regulation has long been assumed to be the major reg-
ulatory step among all, we are now realizing the importance of the post-transcriptional
events and the diseases that occur in the case of their miscoordination. New experi-
mental techniques such as ribosome profiling, e-CLIP and mass-spec proteomics shed
lights on identification and quantification of the regulatory events happening during
translation and protein degradation.

In this thesis I present two studies in which I designed, implemented and executed
several statistical analyses to gain better insight about the post-transcriptional regula-
tion events. I display that through integrated analyses of high-throughput omics data
sets, we are able to identify new regulatory motifs and generate novel hypotheses about
the gene regulation mechanisms. My analyses provide a data driven system overview by
connecting multiple components of the post-transcriptional regulation. Performance of
our predictive models, which were developed based on the known and identified regula-
tory elements, help us to have an idea about where we stand in the way of understanding
genotype-phenotype relationships.

The first study I present aims to monitor the translational regulation in maturating
human dendritic cells by utilizing RNA sequencing and ribosome profiling data sets
generated at three different time points in the first 24h interval of the maturation process.
Our major finding was the novel observation of ribosome accumulation at 5’ and 3’
untranslated regions of various genes during this 24h time-scale, possibly due to ABCE1
gene downregulation.

The second study aims to discover new mRNA and protein sequence motifs that are
effective in post-transcriptional regulation, and to get a system overview between the
different components of the post-transcriptional regulation via omics data integration.
To this end, I developed an interpretable model for predicting the amount of proteins
produced per mRNA (PTR ratio), which at the same time provides insights about the
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contributions of various regulators effective in translation initiation, elongation, termi-
nation as well as protein degradation. While PTR ratios span more than 2 orders of
magnitude, my integrative model predicts PTR ratios at a median precision of 3.2-fold.
Moreover, our integrative model led to a new metric of codon optimality that cap-
tures the effects of codon frequency on protein synthesis and degradation. Altogether,
this study showed that a large fraction of PTR ratio variation in human tissues can
be predicted from sequence, and it identified many new candidate post-transcriptional
regulatory elements.
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1 Introduction

1.1 Biological background

1.1.1 Multiple layers of gene expression regulation

The central dogma of biology describes that the information in the genome flows into
proteins by mainly a two-step process: transcription of DNA into RNA molecules and
translation of messenger RNA (mRNA) into protein molecules (Figure 1.1). This infor-
mation flow is regulated in multiple, diverse ways acting on transcription, translation
and degradation of the molecules which is collectively called ’gene expression regulation’.

Figure 1.1: Depiction of Central Dogma of Biology. Taken from Ref. [3], Figure 1.
Information encoded in the genome is decoded into proteins through transcrip-
tion and translation. The abundance levels of mRNA and protein molecules
are regulated by several factors that determine transcription, translation, mRNA
degradation and protein degradation rates. Numbers are for illustration purposes
and represent overall estimates for mammalian cells [3, 4].

Orchestration of transcriptional gene regulation depends on chromatin accessibility
[5] and thousands of DNA-binding regulators, which directly or indirectly bind to spe-
cific sites in promoters or enhancers of regulated genes [6]. In eukaryotes transcribed
precursor mRNAs are transformed into mature mRNAs through splicing, during which
introns are removed and exons are joined together [7]. Alternative splicing generates an
average of four transcript variants per human gene [8].
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1 Introduction

For a long time the general understanding was that the main gene expression regu-
lation occurs during transcription, and mature mRNA levels are good proxies for the
resulting protein levels. However, with the advances in high-throughput biological data
acquisition techniques, transcripts and proteins quantified at genomic scales revealed
that even though the sequence of an mRNA determines the amino acid sequence of the
resulting polypeptide, there is no trivial relationship between the concentration of a tran-
script and the concentration(s) of the protein(s) derived from that particular transcript
[3].

The major processes that influence mRNA-protein concentration dynamics are trans-
lation initiation rates, translation elongation rates, ribosome recycling rates and protein
degradation rates. Each of these mechanisms are investigated for decades on a single-
gene-basis and various factors modulating these processes have been revealed. Tech-
nological advances in generating genomewide measurements of various biological data
modalities now enable us to study these processes in the global scale and understand
the effects of the underlying regulatory mechanisms on the cellular protein throughputs.

In the following sections of this chapter first I describe the four main high-throughput
omics data types that have been integrated throughout the studies explained in the rest
of this thesis. After that, I provide a background on our current understanding of the
mRNA - protein level dynamics in various scenarios and point out the known mRNA
and protein sequence elements that play important roles in post-transcriptional gene
expression regulation. Finally, I outline the scope and contributions of this thesis.

1.1.2 Major high-throughput data modalities utilized in
understanding translational and post-translational regulation
mechanisms

Several high throughput data acquisition protocols have been developed to measure
the molecular abundance and the functional activities of various molecules in the cell.
With the advance of these techniques now we are able to investigate the contribution
of transcription, translation and post-translational events to the gene expression reg-
ulation at a genome-wide scale. Next generation RNA-sequencing [9], and label-free
mass-spectrometry based peptide quantification [10] are two of the most widely used
techniques to quantify the complete set of transcripts and proteins in a cell, respectively.
Complementing to these methods, ribosome profiling [11] and enhanced UV crosslink-
ing and immunoprecipitation (eCLIP) [12] are examples of experimental protocols that
we utilize to discover the occupancy patterns of ribosomes and RNA-binding proteins,
which in turn help disentangling the translation dynamics.

1.1.2.1 Next generation RNA sequencing

The transcriptome is the whole set of transcripts in a cell in a particular condition.
Therefore, accurate quantification of the transcriptome is essential for understanding
the first level of gene expression regulation, that is transcriptional regulation. The
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1.1 Biological background

key objectives of transcriptomics are to catalogue all isoforms of genes, as well as non-
coding RNAs, and to quantify the changing expression levels of each transcript in dif-
ferent conditions. Before high-throughput RNA sequencing, several hybridization or
sequence-based technologies were developed to infer and quantify the transcriptome.
Hybridization-based methods were based on incubating fluorescently labelled cDNA with
custom-made microarrays [13, 14, 15, 16]. However, these approaches had to rely on the
existing knowledge about genome sequence and had a limited dynamic range of detec-
tion due to background and saturation of signals. Moreover, comparing expression levels
across different experiments was often difficult and required complicated normalization
methods [9].

Figure 1.2: Typical next generation RNA-seq workflow. Taken from Ref. [9], Figure 1.
RNAs are converted into a library of cDNA fragments through with or without
RNA fragmentation. Then sequencing adaptors are added to each cDNA frag-
ment which is later on sequenced at single or both ends. The resulting sequence
reads are mapped to the reference genome to get a base-resolution gene expres-
sion profile.

Development of high-throughput DNA sequencing methods also gave rise to a new
technique, namely RNA-seq, which enabled better mapping and quantifying of the tran-
scriptomes. In RNA-seq the population of RNA molecules is converted to a cDNA
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1 Introduction

library which has adaptor sequences attached to one or both ends. This is generally
followed by an amplification step which increases the overall signal strength, but can
also introduce bias based on the base composition of the cDNA sequences [17]. Each
molecule is then sequenced either from one end (single-end sequencing) or both ends
(paired-end sequencing) to obtain short sequences which are then either mapped to a
reference genome or assembled de novo to produce a transcription map (Figure 1.2).

1.1.2.2 Mass-spectrometry based shotgun proteomics

Proteins are the functional molecules that regulate various processes in the cells and
the ’proteome’ describes the total set of proteins encoded by the genome [18]. Even
though the structures and functions of selected proteins have been studied for decades
by the use of biochemical and biophysical methods such as quantitative western blots
or ELISA assays, the study of the proteome has become available with the development
of the mass-spectrometry (MS) based methods [19]. MS based methods are also able to
identify and localize the modified amino acids in the polypeptide chain, and to determine
the composition of the subunits of the protein complexes [19].

Figure 1.3: Typical shotgun proteomics workflow. Taken from Ref. [20], Figure 2.
Proteins are extracted from a sample and are digested to peptides with a diges-
tion enzyme. After high-performance liquid chromatography (HPLC) separation,
peptides are ionized and fed into a mass-spectrometer. First and second stage
mass spectra (MS1 and MS2) are recorded and analyzed by the computational
proteomics software.
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1.1 Biological background

In top-down mass-spec proteomics, the proteins are studied as intact molecules by the
mass spectrometry. Even though this approach enables to detect all modifications on the
same molecule, bottom-up approach, in which proteins are first digested into peptides,
is more common in use. In bottom-up approcah first the proteins are digested into
peptides, by a protease enzyme such as trypsin. Then the resulting mixture of peptides
are separated by liquid chromatography coupled with electrospray ionization. Then the
peptides are fed into the mass spectrometer, where they are fragmented to generate
the MS/MS spectra. The peaks in a mass spectrum correspond to molecular features
of the peptides. In data-dependent acquisition (DDA) methods, no prior knowledge
about the proteome is integrated to the pipeline and a full spectrum of the peptides
is acquired through MS1 and MS2 levels [19]. Thereon, the information in the spectra
is computatinally extracted by softwares such as MaxQuant to identify and quantify
specific peptides (Figure 1.3). The identification of the proteins with the sequenced
peptides also requires an additional computational step. Even though current approaches
have made it realistic to distinguish and quantify proteoforms, the different molecular
forms of a protein translated from the same gene, the identification of the complete set
of proteoforms still remains a challenge due to the huge combinatorial space defined by
the possible combinations of protein post-translational modifications [19, 20].

1.1.2.3 Ribosome profiling

Ribosome profiling is an emerging high-throughput technique that enables monitoring
in vivo translation and helps us to get a better understanding of the translation process
and its role in modulating protein levels [11]. The position of a ribosome on an mRNA
transcript can be determined by its 28-30 nucleotides footprint which is protected from
nuclease digestion [21]. In this method, the ribosome protected fragments are selected,
high-throughput sequencing is utilized to determine the pool of footprints of the ribo-
somes that are translating in vivo (Figure 1.4). Finally, these sequences are mapped
back to the reference genome to extablish the ribosome occupancy profiles per gene.

Ribosome profiling data provides various information about the ongoing translation
processes. First of all, since these protected fragments indicate the exact location of
the ribosomes, fragment density profiles on the transcripts indicate the translation ini-
tiation and end sites (Figure 1.5) and helps us identify the alternative reading frames.
Second, ribosome profiling data provides the ribosome distribution along the transcripts
in subcodon resolution and therefore can be utilized in identification of the ribosome
stalling sites, and delineating the differences in the elongation speed at different regions
of the transcripts, as well as the variability in codon decoding times [22, 23]. Finally,
apart from these spatial information about mRNA translation, ribosome profiling data
provides a proxy for the translation efficiency per gene when coupled with the corre-
sponding mRNA levels. Ribosome footprint density of a gene, which is the total number
of ribosome protected fragments mapped to a gene divided by the number of mapped
mRNA fragments, provides an estimate of the synthesis level of that protein from its
corresponding mRNA transcripts (Figure 1.5).
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1 Introduction

Figure 1.4: Typical ribosome profiling workflow. Taken from Ref. [22], Figure 1. Ribo-
somes physically enclose 28-30 nucleotides of the transcript, protecting this region
from nuclease digestion. These ribosome footprints are recovered and converted
into a DNA library which is deep sequenced by high-throughput sequencing.
Mapping these sequences back to the reference genome provides high-precision
measurements of in-vivo translation [11].
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1.1 Biological background

Figure 1.5: Multiple information obtained from ribosome profiling data. Taken from
Ref. [22], Figure 2. Ribosome profiling data provides us various information
about the translation process. The density of the ribosomes at each position of
the transcipt enables us to recognize the alternative start and stop sites, as well
as ribosome stalling locations and variance in codon decoding efficiency. Ribo-
some footprints incidate the total number of ribosomes engaged in translation of
a transcript. Accordingly, coupled with the mRNA level information, ribosome
profiling also provides ribosome density per gene which is a proxy of the transla-
tional efficiency.

1.1.2.4 Enhanced UV crosslinking and immunoprecipitation (eCLIP)

RNA binding protein (RBP) interacts with an RNA to regulate its translation, local-
ization, stability, modification and processing [24]. Accordingly, understanding the in-
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1 Introduction

teractions between RBPs and RNA is an important step to improve our knowledge
about translational gene expression regulation. In recent years several high throughput
sequencing methods have been developed to identify the targets of the RBPs, such
as RNP immunoprecipitation (RIP), chemically induced covalent crosslinks (CLIP),
photoactivitable-ribonucleotise-enhanced CLIP (PAR-CLIP), individual-nucleotide-resolution
CLIP (iCLIP) and enhanced CLIP (eCLIP) [24]. eCLIP is a variant of of iCLIP with
upgraded sensitiviy [12]. The pipeline of the eCLIP-seq protocol is displayed in Figure
1.6

Figure 1.6: eCLIP-seq pipeline. Taken from Ref. [12], Figure 1. RBP-RNA binding is
stabilized using UV crosslinking which is followed by cell lysis, RNA fragmenta-
tion, and RNA-protein immunoprecipitation with an RBP specific antibody. The
immunoprecipitated RNA-RBP complex is resolved, the RNA is recovered and
subjected to high-throghput sequencing after reverse transcription into cDNA.
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1.1 Biological background

1.1.3 Measurement of mRNA and protein turnover rates

1.1.4 Background about the relationship between mRNA and
protein levels under steady-state conditions

The relationship between mRNA and protein levels has been investigated under various
scenarios, such as steady state, long-term state changes or short term adaptations [25,
3, 26, 27]. Even though it is challenging to define the ‘steady state’ for the cells, large
amounts of cells have been assumed as being at steady state if the average protein and
mRNA levels remain relatively stable over several hours.

In these studies two main approaches are followed to explore the relationship between
mRNA and protein levels: i) observing mRNA and protein measurements of the same
gene across different individuals, conditions, tissues or time points ii) inspecting the
mRNA and protein levels of different genes in a certain tissue, condition or time point.
First approach examines to what extend the variation in the mRNA levels are propogated
to the protein levels. On the contrary, the second approach aims to learn the variation
of protein versus mRNA amounts of different genes and to find out to what extend
differences in mRNA levels are reflected to the respective protein levels.

Some of the studies that have followed the first approach have analysed gene-specific
correlation of mRNA and protein measurements across human tissues [28, 29, 30]. These
studies have suggested that the comparative analysis of the mRNA and protein levels
shows high correlation and a constant protein–mRNA ratio is preserved across human
cell lines. However, following studies [31, 32] have claimed these suggestions to be
inaccurate due to insufficient statistical analysis and have advocated the high impact of
differential post-transcriptional regulation on shaping tissue-type-specific proteomes.

Studies that analysed the protein and mRNA correlations across various number
of genes have also reported conflicting results; even though initial studies stated poor
overall correlation between mRNA and protein concentrations (Spearman rank correla-
tion between 0.45 and 0.61) [33, 34, 35, 36, 4, 37], more recent studies concluded that
mRNA levels can explain most of the variance in steady-state protein levels [38, 39, 26]
(%84, %85, %52 respectively). Nevertheless, all these studies have observed a high
dynamic-range difference between transcriptome and proteome levels, which reflects the
importance of post-transcriptional regulation on determining the protein abundances.

It is important to note that these studies have displayed different factors which may
lead to having different conclusions about mRNA-protein level dynamics. First of all, the
quality of the input data generated by different experimental techniques has a big role in
the significance of the mRNA-protein correlations. As an example, Jovanovic et al. [26]
displayed that correcting for mRNA and protein reproducibility increased the mRNA -
protein levels correlations from 42% to 52% in mouse dendritic cells. Second, different
data anlysis strategies can lead to drastically different conclusions. As an illustration,
Schwanhäusser et al. [4] had concluded that gene-to-gene differences in protein synthesis
rates contributes most to final protein levels ( 55%) while mRNA abundance explains
only 40% of the variation and degradation of mRNA and protein plays minor roles.
However, reanalysis of this data by Li et al. [38] came up with completely different
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1 Introduction

conclusions, arguing that mRNA levels may explain the variance in protein levels by
84% while protein synthesis contributes by only 8%.

1.1.5 Sequence features that are important for the
post-transcriptional gene expression regulation

Parts of the introduction presented in this section are part of the manuscript ”Quan-
tification and discovery of sequence determinants of protein per mRNA amount in 29
human tissues” from Eraslan and Wang et al. 2019 [1].

Decades of single-gene studies have revealed numerous sequence elements affecting
initiation, elongation, and termination of translation as well as protein degradation.
Eukaryotic translation is canonically initiated after the ribosome, which is scanning the
5’ UTR from the 5’ cap, recognizes a start codon. Start codons and secondary structures
in 5’ UTR can interfere with ribosome scanning [40, 41]. Also, the sequence context of the
start codon plays a major role in start codon recognition [42]. The translation elongation
rate is determined by the rate of decoding each codon of the coding sequence [43, 44, 45].
It is understood that the low abundance of some tRNAs leads to longer decoding time
of their cognate codons [46], which in turn can lead to repressed translation initiation
consistent with a ribosome traffic jam model (reviewed in [45]). However, estimates
of codon decoding times in human cells and their overall importance for determining
human protein levels are highly debated [47, 48, 45]. Secondary structure of the coding
sequence and chemical properties of the nascent peptide chain can further modulate
elongation rates [49, 50, 51, 52]. Translation termination is triggered by the recognition
of the stop codon. The sequence context of the stop codon can modulate its recognition,
whereby non-favorable sequences can lead to translational read-through [53, 54, 55, 56].
Furthermore, numerous RNA binding proteins (RBPs) and microRNAs (miRNAs) can
be recruited to mRNAs by binding to sequence-specific binding sites and can further
regulate various steps of translation [57, 58, 59, 60, 61, 62]. However, not only predicting
the binding of miRNAs and RBPs from sequence is still difficult, but the role of few of
these binding events in translation is well understood.

Complementary to translation, protein degradation also plays an important role in
determining protein abundance. Degrons are protein degradation signals which can be
acquired or are inherent to protein sequences [63]. The first discovered degron inherent to
protein sequence was the N-terminal amino acid [64]. However, the exact mechanism and
its importance are still debated, with recent data in yeast indicating a more general role
of hydrophobicity of the N-terminal region on protein stability [65]. Further protein-
encoded degrons include several linear and structural protein motifs [66, 63, 67], or
phosphorylated motifs that are recognized by ubiquitin ligases [68]. Altogether, numer-
ous mRNA and protein-encoded sequence features contribute to determining how many
protein molecules per mRNA molecule cells produce. However, it is known neither how
comprehensive the catalogue of these sequence features is nor how they quantitatively
contribute to protein-per-mRNA abundances.
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1.2 Aims and scope of this thesis

This thesis presents an in-depth investigation of the mechanisms and effects of post-
transcriptional gene expression regulation in i) maturating human dendritic cells (DC)
ii) samples of 29 healthy human tissues. Furthermore, it introduces a machine learning
model which uses sequence features effective in post-transcriptional regulation to predict
the amount of protein produced per mRNA molecule under steady-state conditions.

In order to get a better understanding of the links between the different components
of the post-transcriptional gene expression regulation, I have designed, implemented and
executed sets of integrated statistical analyses on various types of omics data sets. More-
over, I have planned follow-up experiments which were executed by our collaborators
to validate some of our findings. The outcomes of these experiments are also included
in the respective chapters. The major contributions of my statistical analyses can be
summarized as follows:

� We spotted a novel observation of ribosome accumulation at 5’ UTR and 3’ UTR
sites during DC maturation, possibly as a result of ABCE1 gene downregulation.

� We provided a better understanding of the functional relationship between the
mRNA and protein levels in 29 human tissues.

� We generated a comprehensive catalogue of known sequence features controlling
protein-to-mRNA (PTR) ratios and quantification of their effects.

� We identified and validated novel sequence features that are predictive of PTR
ratios.

� We dissected the effects of the sequence elements that are predictive of PTR ratios
into their effects in regulating distinct post-transcriptional steps: mRNA degrada-
tion, protein translation and protein degradation by the integration of independent
mRNA half-life, ribosome profiling and protein half-life data sets.

� We proposed a new metric of codon optimality that captures the effects of codon
frequency on protein synthesis and degradation.

Despite the progress in recent years, high-quality proteomic data is still expensive to
obtain compared to acquiring the corresponding RNA sequencing profiles. Therefore,
good machine learning models that are capable of predicting the protein levels is invalu-
able for the field. For this purpose, I also developed a novel and interpretable machine
learning model which predicts the amount of protein produced per mRNA molecule by
utilizing the sequence features that are important for the translation efficiency and the
protein degradation rates. While PTR ratios span more than 2 orders of magnitude, my
integrative model predicts PTR ratios at a median precision of 3.2-fold while providing
insights about the features that are more informative for this prediction task.
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2 Translational gene expression
regulation in maturating human
dendritic cells

2.1 Maturation of dendritic cells

Dendritic cells (DCs) are vital for the orchestration of immune responses. First, they
prevent the immune system from reacting against ”self” and thereby help to avoid au-
toimmune diseases [69]. Secondly, in response to danger signals like microbial compo-
nents or malignant cell signatures, they are responsible for the induction of adequate
immune responses leading to elimination of infection or prevention of tumorigenesis, re-
spectively [70, 71]. DCs are the professional antigen-presenting cells that play a central
role in the initiation andregulation of immune responses. DCs regulate both the innate
(e.g. macrophages, granulocytes and natural killer (NK) cells) and the adaptive (e.g. T
and B cells) immunity [71].

Upon activation, DCs phenotypically mature. This involves the upregulation of sev-
eral surface molecules, most importantly MHC II and the costimulatory molecules CD40,
CD80 and CD86 [72]. Depending on the type of danger signal leading to their activa-
tion, DCs start to express a specific cytokine profile, thereby polarizing naive T cells to
differentiate into the various T cell subsets [73].

To adapt to changes in the environment, immune cells need to rapidly modulate their
protein abundance. During this dynamic fast-evolving process, in order to avoid slow de
novo transcription, gene expression is predominantly regulated by translational control
[4, 74, 26]. Accordingly, one of the most translationally regulated pathways in DCs is
protein synthesis itself [75].

To reveal regulatory processes during DC maturation, lots of studies have either
focused on mRNA or protein production. However, these are suboptimal proxies as
they are highly regulated processes themselves. Therefore, the best representation of
the actual protein repertoire of a cell is given by translatome studies.

In this study we elucidated the effects of a cytokine cocktail containing IFNG, TNFA,
IL-1B, PGE2 and the TLR7/8 agonist R84 on the translatome of primary human
monocyte-derived DCs. By ribosomal profiling (RPF-seq), a technique based on the
isolation of RNAs contained within ribosome-protected fragments (RPFs) followed by
next-generation sequencing and RNA abundance quantification, we obtained snapshots
of actively translated RNA. Collecting matched RNA-seq and RPF-seq data at 0 (im-
mature DCs), 4h and 24h time points after the LPS maturation stimulus enabled us
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2 Translational gene expression regulation in maturating human dendritic cells

to monitor the changes in the translation efficiency over time during the maturation
process.

2.2 Ribosome density change in untranslated regions
during dendritic cell maturation

In order to get insights abouts the translation dynamics during dendritic cell differen-
tiation, we inspected the change in ribosome densities in gene coding and 5’ and 3’
untranslated regions. Here, ribosome densities are approximated by the ratio of the
number of ribosome profiling reads over the RNA sequencing reads mapped to a certain
region because of the reasons explained in the introduction section (see Figure 1.5).

Figure 2.1: Distribution of 4h/iDC, 24h/iDC RNA and ribosome density fold
change values for 5’ UTR, coding and 3’ UTR regions. Distributions
of the 4h/iDC and 24h/iDC log2 fold changes in number of mapped RNA reads
(RNA) and ribosome densities (RDen) for coding and untranslated regions (de-
noted as 5UTR, CDS, and 3UTR in the x-axis text). We observe an overall
increase in the ribosome densities in 5’ UTR and 3’ UTR regions at 4h and 24h
time points in the maturation process.
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2.2 Ribosome density change in untranslated regions during dendritic cell maturation

It’s expected that sequencing reads originating from ribosome protected fragments
predominantly map to coding regions. Therefore we were surprised by the observation
that an increased number of RPF reads mapped to 5’ and 3’ UTR UTR regions at 4h as
well as at 24h. Since the ribosome profiling protocol that was used in the experiments
included the isolation of 80S monosomes after nuclease digestion via a sucrose gradient,
the sequencing reads had to be originated from true ribosome protected fragments. A
comparison of the ribosome density on the features 5’ UTR, CDS and 3’ UTR for all
samples showed that the increase is not a consequence of elevated expression levels and
is apparently a global effect rather than specific for certain genes (Figure 2.1, p−value <
0.001 ). The ribosome density on 5’ and 3’ UTRs was increased at 4h levels stayed on
a comparable level at 24h (Figure 2.1, p− value > 0.05).

Figure 2.2: 4h/iDC, 24h/iDC mapped mRNA reads and ribosome density fold
change values for 5’ UTR, coding and 3’ UTR regions. Heatmap display-
ing the 4h/iDC and 24h/iDC log2 fold changes of the number of mapped mRNA
reads and ribosome densities for coding and untranslated regions.

When we had a closer look at the genes which has at least 2 fold ribosome density
change in any of the 3 inspected regions at 4h and/or 24h time points, seven distinct
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2 Translational gene expression regulation in maturating human dendritic cells

fold-change patterns across the genes (Figure 2.2) were detected. Group 1 which dis-
played a significant down-regulation in RNA levels at 4h and 24h time points (Figure
2.2) were enriched in genes that are involved in regulation of multicellular organismal
process. Conversely, groups 4 and 5 were transcriptionally upregulated during the mat-
uration process (Figure 2.2). Gene set enrichment analysis reported that the genes in
group 4 and 5 are enriched in interferon-gamma-mediated signaling pathway and regula-
tion of vitamin D biosynthetic process respectively (Appendix Figure A.1). Remaining
groups 2, 3, 6 and 7 did not show overall big change in the RNA expression levels but
displayed significant change patterns in the 5’ and 3’ ribosome density approximations.
The gene set enrichemnt analysis of the genes belonging to each of these groups were
not particularly enriched in any specific biological or metabolic process.

Figure 2.3: Pairwise correlations between 4h/iDC and 24h/iDC fold change val-
ues at 5’ UTR, CDS and 3’ UTR regions. Upper triangle of the figure
displays the scatter plots showing the pairwise relationships between the 4h/iDC
and 24h/iDC fold-change values. Lower triangle of the figure displays the corre-
sponding Spearman’s correlation coefficients.
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2.2 Ribosome density change in untranslated regions during dendritic cell maturation

Plotting the ribosome density fold change at 4h/iDC and 24h/iDC time intervals in 5’
UTR, CDS and 3’ UTR regions revealed no significant correlation between the ribosome
density changes at these three regions (Figure 2.3) This implied that accumulation of
ribosomes in 5’ UTRs has no impact on translation of the coding sequence. Therefore,
based on the analysis of the data at hand, the biological relevance of ribosomes located in
5’ UTRs during maturation of DCs remains enigmatic. A growing number of publications
report on so called small open reading frames (defined as being smaller than or equal
to 300 nucleotides) found in several different organisms, which are located in regions
annotated as non-coding [76, 77, 78] However, validation of their coding potential is
often limiting. Since identification of small open reading frames by ribosome profiling
requires the treatment of cells with a translation initiation inhibitor, e.g. harringtonine
or lactimidomycin, our initial observation should be investigated in further studies.

Figure 2.4: Metagene plot displaying loss of the three nucleotide periodicity of
the ribosome P-sites after the stop codon. Metagene plot displaying the
positions of the ribosome P-sites estimated based on the mapped RPF reads.
Three different colors display the position based on three possible reading frames,
purple color stands for the canonical reading frame. The periodicity is lost at the
3’ UTR region.

Similar to the increase of ribosomes in 5’ UTRs, the elevated ribosome density in 3’
UTRs was unrelated to the ribosome density in the corresponding CDS (Figure 2.3). The
accumulation of ribosomes in 3’ UTRs at 24h could be a result of an impaired translation
termination causing stop codon readthrough. A metagene plot of genes aligned at their
stop codon showed that ribosomes entering the 3’ UTR are losing the three nucleotide
periodicity, a typical feature of RPF reads originating from active translating ribosomes,
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2 Translational gene expression regulation in maturating human dendritic cells

rendering this explanation unlikely (Figure 2.4). However, in order to completely refute
this possibility, further studies should be designed where mass-spectrometry data is
generated for the search of the corresponding peptides.

In order to get some insights about the mechanisms that might lead to the observed
ribosome recycling defect, we inspected of the genes that are known to be responsible for
the ribosome release at the stop codon. Eukaryotic peptide chain release factor subunit
1 (eRF1, encoded by ETF1) and eukaryotic peptide chain release factor GTP-binding
subunit ERF3A (eRF3, encoded by GSPT1) or the known rescue factor HBS1L showed
no differences in their expression levels (Figure 2.5). Utilizing a defined in vitro system
from rabbit reticulocyte lysate Skabkin et al. showed that post-termination complexes,
i.e. after peptide release and in the absence of the ribosome recycling factor ABCE1, can
start to diffuse along the mRNA and are able to rebind to codons cognate to the P-site
tRNA, which they still carry [79]. In a more recent publication, the Green group showed
by ribosome profiling of yeast samples that depletion of Rli1 (homolog of mammalian
ABCE1), leads to an increase of ribosomes in 3’ UTRs, which apparently reinitiate
translation by a frame independent non-canonical mechanism [80]. In fact, inspection
of our sequencing data revealed a slight decrease of ABCE1 by one third at 4h and a
three-fold downregulation at 24h (Figure 2.5).

Figure 2.5: RNA expression and ribosome density values of ribosome recycling
factors at iDC, 4h, and 24h. RNA expression of ribosome recycling factors
ETF1, GSPT1 and HBS1L does not change over the 24h time frame during
DC maturation. However, ABCE1 displays a significant (FDR < 0.1) down-
regulation between iDC and 24h.
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3 The relationship between the human
transcriptome and the proteome

The methodology, results and figures presented in this section are part of the manuscript
”Quantification and discovery of sequence determinants of protein per mRNA amount
in 29 human tissues” from Eraslan and Wang et al. 2019 [1] and ”A deep proteome and
transcriptome abundance atlas of 29 healthy human tissues” from Wang and Eraslan et
al. 2019 [2]

The mRNA and protein concantration dynamics of gene i is commonly modelled
[81, 82] as:

dMit

dt
= ksi − kmiMit (3.1)

dPit
dt

= kriMit − kpiPit (3.2)

where Mit and Pit denote the cellular mRNA and protein concentrations at time t,
ksi is the mRNA transcription rate [mRNA/min], kmi is the mRNA degradation rate
[mRNA/min], kri is the protein translation rate [protein/(mRNA*min)] and kpi is the
protein removal rate of gene i. If the translation and protein removal rates did not vary
by gene and by condition/tissue, we would be observing perfect correlation between the
mRNA and the protein levels. However mRNA-protein correlations reported by many
studies [33, 34, 35, 36, 4, 37, 31, 32] are far away from being perfect, which attracts the
attention to the role of post-transcriptional events in gene expression regulation.

In order to gain a better understading of the steady-state mRNA-protein level dy-
namics in and across-tissues, we profiled the proteomes and transcriptomes of adjacent
cryo-sections of 29 histologically healthy tissue specimens collected by the Human Pro-
tein Atlas project [83] by utilizing label-free quantitative proteomics and RNA-Seq [2].
We modeled every gene with a single transcript isoform because there was little evidence
for widespread expression of multiple isoforms and to avoid practical difficulties of call-
ing and quantifying isoform abundance consistently at mRNA and protein levels. The
number of genes with multiple quantified isoforms on protein level was small (10% of
the 13,664 genes with a protein detected in at least in one tissue). Also, for 5,636 (43%)
genes the same isoform was the most abundant one across all tissues at mRNA level (out
of 12,978 genes with at least one mRNA transcript isoform expressed [FPKM > 1] in
at least in one tissue) (Figure 3.1).
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Figure 3.1: mRNA isoform distribution Distribution of the number of different major
mRNA isoforms each gene has across 29 tissues.

Moreover, 4,303 (34%) genes had a perfect match between the RNA-Seq-defined and
the proteomics-defined major isoform in all the tissues they were detected (out of 12,920
genes with matched protein and mRNA measurements). For the remaining genes, there
were some mismatches between the RNA-Seq-defined and the proteomics-defined major
isoforms in a varying number of tissues, yet the number of matched RNA-Seq-defined
and proteomics-defined major isoforms were larger than the unmatched ones in almost
all tissues (Figure 3.2).

Figure 3.2: mRNA - protein isoform match Number of genes in each tissue with matched
and unmatched mRNA and protein major isoforms.

Since we were restricted by the small number of isoform counts on proteome level,
we defined the transcript isoform with the largest average protein abundance across tis-
sues as its major transcript isoform. The mRNA levels were estimated from RNA-Seq
data by subtracting length and sequencing-depth-normalized intronic from exonic cov-
erages. RNA-Seq technical replicates were summarized using the median value. In our
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3.1 mRNA - protein level variations across genes

downstream analysis, for each gene we required at least 10 sequencing-depth-normalized
mRNA reads per kilobase pair, because low expression values on transcript and protein
levels were associated with a larger measurement error. Altogether, this analysis led to
matched quantifications of protein and mRNA abundances for 11,575 genes across 29
tissues, where an average of 7,972 (69%, minimum 7,300 and maximum 8,869) protein-
to-mRNA ratios were quantified per tissue.

3.1 mRNA - protein level variations across genes

The proportion of variance in protein levels explained by mRNA levels of the same tissue
(R2) ranged from 20% (ovary) to 39% (liver) when an orinary least squares model was fit
independently for each tissue. These relationships corresponded to Pearson correlation
coefficients ranged from 0.45 (ovary) to 0.62 (liver) (Figure 3.3). These numbers are in
line with previous studies [35, 4, 37]

Figure 3.3: Per tissue mRNA - protein relationships Proportion of the variance in
protein levels explained by mRNA levels of the same tissue (x-axis) versus the
pearson correlation coeffcients between tissue specific mRNA and protein levels
(y-axis) for 29 human tissues.

We observed that for certain tissues the mRNA levels of other tissues were also predic-
tive of their mRNA levels (Figure 3.4). Protein levels of tissues which express reletively
higher tissue-specific genes, such as Brain, Lymphnode, Testis and Thyroid [2], were only
significantly predictive by their tissue specific mRNA measurements. On the contrary,
the protein levels of other tissues, such as Colon, Duodenum, Endometrium, Esophagus,
Lung, Rectum and Urinary bladder were also predicted by the mRNA levels of other
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tissues to a certain extend. This observation may be attributed to the common cell
types and active cellular programs in these tissues.

Figure 3.4: Explained variance in protein levels by the mRNA levels of other tis-
sues. Heatmap displaying the explained variance (R2) in protein levels (rows)
by the mRNA levels (columns) of the 29 tissues.

In line with this observation, we saw that much larger proportions of the variance
in protein levels could be explained by using mRNA profiles across all tissues (between
41% for pancreas and 56% for liver, P < 10−132 for each tissue) (Figure 3.5). The
reasons for this increase in explained variance are at least two fold. Biologically, as
mentioned above, the mRNA levels of common cell types and cellular programs active
in different tissues are predictive of the protein levels in other tissues. Technically, this
increase may also be driven by the more robust nature of mRNA profiles across all
tissues compared to the mRNA level measures in a single tissue. This is consistent with
observations by Csárdi et al [39] that de-noising of mRNA measurements of budding
yeast can enhance the explained variance of protein levels. In that regard, we emphasize
that this analysis would benefit significantly if we had more replicates of matched tissue
specific transcriptome and proteome measurements.
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Figure 3.5: Explained variance in protein levels by own versus all tissues’ mRNA
levels. Proportion of the variance in protein levels explained by mRNA levels of
the same tissue (x-axis) versus the explained variance by all 29 tissues’ mRNA
level measurements (y-axis).

(a) (b)

Figure 3.6: Functional relationship between mRNA and protein levels in 29 tis-
sues. a) Scatterplot displaying the mRNA (x-axis) and protein (y-axis) gene
measurement values in Brain tissue. Black line displays the ranged major-axis
(RMA) regression fit with a slope of 2.76. b)The slopes of the tissue specific
RMA regression fits between protein and mRNA levels for 29 tissues.
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In addition to the explained variance in protein levels by mRNA levels, one can also
question the functional relationship between these two phenotypes. According to the
model shown in Equations 3.1 and 3.2, the ratio of the protein level to the mRNA level
of gene i should be proportional to kri

kpi
at the steady-state. If this fraction were equal

for all genes, we would observe a linear relationship between mRNA and protein levels.
However, we observed that there is a superlinear relationship between them in all 29
tissues (Figure 3.6) we analyzed. The approximately quadratic relationship between
protein and mRNA levels across genes [2] results in a larger dynamic range of expression
among proteins than mRNAs: dynamic range of mRNA levels is about 125 folds while
the dynamic range of protein levels is about 794 folds (Figure 3.7).

Figure 3.7: Density histograms of mRNA and protein levels of 29 tissues. Almost
quadratic functional relationship between the mRNA and the protein levels re-
sults in a dynamic range difference between them. Darker red and blue regions
display the 25%-75% quantile intervals.

This superlinear relationship holds true for other eukaryotes, such as yeast Saccha-
romyces cerevisiae (Figure 3.8-a) [39], while it is absent in prokaryotes (Figure 3.8-b) [84]
for which the transcription and translation are coupled [85, 86]. In contrast to eukary-
otes, there is no nucleus in prokaryotes that separates the transcription and translation
process. Therefore, prokaryotic transcription and translation occur simultaneously in the
cytoplasm. This reduces the effect of the translational regulation in bacteria, explaining
the linear relationship between mRNA and protein levels.
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(a) (b)

Figure 3.8: Difference in functional relationship between mRNA and protein levels
in eukaryotes and prokaryotes. a) Experimental values of mRNA and protein
levels in Saccharomyces cerevisiae. Dashed line displays the line with slope equal
to 1. Figure is taken from [39]. b) Experimental values of mRNA and protein
levels in Escherichia coli. Dashed line displays the line with slope equal to 1.
Figure is taken from [84].

The superlinear functional relationship in eukaryotes is attributed to high-expression
genes showing signs of more efficient translation [87, 11, 82], validated by measurements
of translational activity by the ribosome profiling experiments. In these studies increased
density of ribosomes on highly expressed mRNAs suggests increased rates of translation
initiation as the major contributor [41, 88]. Current views attribute the positive cor-
relation between translation rates and mRNA levels to the natural selection; that is,
highly expressed genes have evolved to have sequences favoring higher translation rates
[39, 82]. For example the comparisons of mRNA secondary structures of genes with
different expression levels have shown that, the stability of mRNA structures in the 5’
region weakens as mRNA expression level increases, favoring more efficient translation
initiation [88]. Nevertheless, further studies should be designed to investigate whether
there are also mechanistic factors in the cell that enable exponential amplification of pro-
tein levels when mRNA levels of the genes increase. For example, one can hypothesize
that mRNA concentration and localization of the mRNAs of the highly-expressed genes
would be effecting the ribosome recycling rates of these transcripts, thereby increasing
the translation initiation rates. Targeted expresiments should be designed to question
and refute such possible scenarios.
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3.2 mRNA - protein level variations across tissues

(a)

(b)

Figure 3.9: Difference between the dynamic range of PTR ratios across genes and
across tissues. a) PTR ratios (log10) of the 4,506 genes that are measured at
the transcriptome level and at the proteome level in 29 tissues. b) PTR ratio
fold-change (log10) per gene across tissues. Values shown in (A) are centered per
gene based on their median values across tissues.

Variation of the PTR ratio per gene across different tissues is more relevant for un-
derstanding the tissue-specific post-transcriptional regulation of protein expression than
the variation between different genes of a single tissue. Our analysis shows that the
variation of the PTR ratio of single genes across tissues was small in comparison with
the variation of PTR ratios across different genes (Figure 3.9).
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In order to understand how much of the across tissue protein variation of single genes
could be predicted by the across tissue variation of their corresponding mRNA levels,
we utilized latent space arithmetics between the latent space of the mRNA levels and
protein levels of 29 tissues as follows:

For a t×g matrix M of mRNA level measurements of g genes (11,575) in t tissues (29),
the SVD decomposition of the MᵀM covariance matrix provides us min(t, p) number of
eigenvectors and eigenvalues which aligns with the min(t, p) major directions of variation
of g genes across t tissues (Eqn 3.3). Let L be the eigenvector matrix of MᵀM and P
be the t×g matrix of protein levels. When g > t, as it is in our case, M and P are high
dimensional, low rank matrices and L is a g×t matrix of t dimensions. Accordingly,
P ·L is the projected protein levels in the t dimensional latent space of the mRNA levels.
Therefore, by reconstructing back the protein matrix by mutiplying the projected data
points P · L with Lᵀ, we get the protein levels predicted by the corresponding mRNA
levels (Eqn 3.4).

MᵀM · L = MᵀM · Λ (3.3)

Ppred = P · L · Lᵀ (3.4)

We observe that R-squared (R2) value based on this prediction is equal to 0.24 (Figure
3.10) meaning that about 24% of the protein level variance across tissues is explained by
the variance of the corresponding mRNA levels. Alternatively, our application of Multi-
Omics Factor Analysis [89] showed that the latent factors explaining 60% of the across-
tissue variance of mRNA levels were only able to explain 35% of the variance in PTR
ratios (Figure 3.11 - a). Moreover, most of these latent factors were specific to either
mRNA or PTR ratio level indicating that joint likelihood optimization failed to find
significant factors that capture the shared covariation between mRNA and PTR ratio
across tissues (Figure 3.11 - b). Together, these observations suggest that a substantial
amount of the regulation of PTR ratios is independent of the mRNA level regulation,
as it was also reported in the across tissue analysis done by Franks et al in 2017. ([32]).
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Figure 3.10: Predicted (x-axis) versus observed (y-axis) protein fold changes
around the mean values across tissues.

Among the considered genes, housekeeping genes defined by the Human Protein At-
las, which are abundantly expressed in general, had fairly similar PTR ratios across
tissues. Gene set enrichment analysis (FDR < 0.1) performed with DAVID [90, 91] re-
vealed that cellular protein complex assembly, negative regulation of protein metabolic
process, and regulation of cytoplasmic transport were some of the biological processes
enriched for genes with low PTR ratio standard deviation. Also, proteins localized in
certain cellular components such as chaperonin-containing T-complex, whole membrane,
and cytoskeleton had significantly low PTR ratio standard deviation across tissues. In
contrast, genes with strongly varying PTR ratios across tissues were enriched in bio-
logical processes that point toward tissue-specific and cell-specific biology and include
cilium organization, glycolipid biosynthetic process, single–multicellular organism pro-
cess, and inflammatory response and in cellular localizations that include extracellular
space, intrinsic component of membrane, and secretory vesicles and granules.
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(a) (b)

Figure 3.11: Explained variance in mRNA levels and PTR ratios by the common
latent factors obtained by Multi-Omics Factor Analysis. a) Proportion
of variance across tissues of PTR ratio (left) and mRNA (right) explained by
the 15 latent factors fitted by joint optimization of the likelihood of both data
modalities [89]. b) Explained variance by each latent factor. Factors that
are active in both mRNA and PTR ratio capture shared covariation across
tissues, and factors that are active in only one capture the signal specific to that
modality.
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4 Sequence determinants of
protein-per-mRNA amount in 29
human tissues

The methodology, results and figures presented in this section are part of the manuscript
”Quantification and discovery of sequence determinants of protein per mRNA amount
in 29 human tissues” from Eraslan and Wang et al. 2019 [1] and ”A deep proteome and
transcriptome abundance atlas of 29 healthy human tissues” from Wang and Eraslan et
al. 2019 [2]

4.1 Integrative analyses of multi-omics data to identify
the sequence determinants of protein-to-mRNA
ratio

Multiple post-transcriptional stages, including mRNA processing, nuclear export and
localization, mRNA stability, and translation of mature mRNA molecules, protein sat-
ibility and secretion regulate the steady state mRNA and protein levels. A diverse set
of mechanisms operating at the translation initiation, as well as during elongation and
termination and even after termination, regulate the translation itself.

To identify and quantify sequence determinants of protein-to-mRNA ratio, we de-
rived a model predicting tissue-specific PTR ratios from mRNA and protein sequence
alone. The model is a multivariate linear model that includes a comprehensive set of
mRNA-encoded and protein-encoded sequence features known to modulate translation
initiation, elongation, and termination, as well as protein stability. In our model, we
considered known post-transcriptional regulatory elements and identified novel candi-
dates in the 5’ UTR, coding sequence, and 3’ UTR, by means of systematic association
testing.

To interpret our findings related to different layers of gene expression regulation; that
is, mRNA degradation [92], translation, and protein degradation, we included mRNA
half-life measurements [93, 94, 95], in addition to human ribosome profiling of 17 in-
dependent studies [96, 23] as well as protein half-life measurements from immortal and
primary cell lines [97, 98] (Figure 4.1).
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Figure 4.1: Integrated datasets to interpret our findings related to different layers
of gene expression regulation Overview of the datasets analyzed in this study.
We analyzed the protein-to-mRNA ratios by considering a dataset of matched
proteome and transcriptome of 29 human tissues [2]. We further interpreted
our findings with respect to ribosome occupancy datasets, reflecting translation
elongation, protein half-life datasets, and mRNA half-life datasets. Solid lines
represent the dependencies in the basic gene expression kinetic model. Dashed
line represents the coupling between mRNA elongation and degradation rates
[92].

In the below sections the results of the statistical analyses performed to decipher the
associations between the regulatory sequence elements present in the 5’ UTR region,
coding region, 3’ UTR region and the PTR ratio are presented. Details of the feature
extraction methods and the applied statistical and bioinformatics analyses are explained
in detail in Chapter 6.

4.1.1 Sequence features in the 5’ Untranslated Region

Translation initiation regulation is mainly mediated via different sequence elements
present in the 5’ UTR and upstream coding regions of the transcripts; secondary struc-
tures can impede the detection of AUG initiation codons due to a blockage of the scan-
ning ribosome, internal ribosome entry sites (IRESs) can stimulate cap-independent
translation, binding sites of RNA binding proteins that either repress or facilitate trans-
lation, non-AUG initiation codons, the start codon sequence context that affects effi-
ciency of AUG recognition, and upstream AUG codons which are sometimes followed by
an in frame termination codon located upstream or downstream of the canonical start
codon, thereby forming upstream open reading frames.

4.1.1.1 mRNA secondary structures

mRNA secondary structures affect the translation initiation, elongation and ribosome re-
cycling rates in various ways [99, 100, 101]. Those structures occuring in the 5’ UTR and

32



4.1 Integrative analyses of multi-omics data to identify the sequence determinants of protein-to-mRNA ratio

upstream of coding region are especially effective in regulating the translation initiation
rates [101].

We tested the assocciation of secondary structures around canonical start codon region
and upstream 5’ UTR regions with PTR ratio by computing the negative minimum RNA
folding energy, a computational proxy for RNA secondary structure, in 51-nt sliding
windows in the [-100, +100] bp region around the start codon. We observed that these
negative folding energy values associated with a lower PTR ratio around the start codon
(Figure 4.2, up to 9% decrease, FDR < 0.1). This observation was in line with the
mechanistic studies in E.Coli which had shown that secondary structures around the
start codon impair translation by sterically interfering with the recruitment of the large
ribosome subunit [41].

In contrast, negative minimum folding energy in 51-nt windows associated positively
with the PTR ratio about 48 nt downstream of the start codon (Figure 4.2, up to 7%
increase, FDR < 0.1) This positive association is consistent with experiments showing
that hairpins located downstream of the start codon facilitate start codon recognition
of eukaryotic ribosomes in vitro [102], presumably by providing more time for the large
ribosome subunit to be assembled.

Figure 4.2: Effects of mRNA secondary structures around the canonical start
codon on the PTR ratio.Effect of log2 negative minimum folding energy of
51-nt window on median log10 PTR ratio across tissues corrected for all other
sequence features that are included in the model (y-axis) versus position of the
window center relative to the first nucleotide of the canonical start codon (x-axis)
for genes with a 5’ UTR and a coding sequence longer than 100 nt. Statistically
significant effects at P < 0.05 according to Student’s t-test and corrected by the
Benjamini–Hochberg methods are marked in red.
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4.1.1.2 Upstream AUG codons and open reading frames

In eukaryotic mRNAs, one or more start codons may precede the start codon of the
main coding region. When these upstream start codons (uAUGs) are preceded with
an in-frame stop codon at the upstream or downstream of the canonical start codon,
upstream open reading frames (uORFs) are formed. uAUGs and uORFs are observed to
regulate the translation initiation and thus the protein expression levels through different
mechanisms ( reviewed in [103]).

Upon our search of the k-mers that were significantly associated with median PTR
ratio across tissues 4.2, we de-novo identified AUG, the upsream start codon, for which
at least one occurrence out-of-frame relative to the main ORF associated with about
18–33% lower median PTR ratios across tissues (Figure 4.3). This observation is consis-
tent with previous reports that out-of-frame AUGs in the 5’ UTR ([40]) and upstream
ORFs ([104, 105, 103]) associate with lower protein-per-mRNA amounts.

Figure 4.3: Effects of uAUGs.Effect estimate (dot) and 95% confidence interval (bar) of
the presence of at least one out-of-frame AUG in 5’ UTR on log10 PTR ratio
corrected for all other sequence features listed in (A) (y-axis) per tissue (x-axis).

No significant associations could be found for the 796 transcripts with only in-frame
uAUGs (Figure 4.4-a). Among 2,483 transcripts with a single uAUG or uORF, a single
out-of-frame uAUG is associated with a 20% reduced PTR ratio compared to a single
out-of-frame uORF (Figure 4.4-b), possibly because ribosomes can re-initiate translation
downstream with high efficiency after translating a uORF ([104]). These uAUGs are
significantly conserved (one-sided Wilcoxon test, P = 1×10−37) compared to background
flanking regions according to the PhastCons score [106] computed across 100 vertebrates
(Figure 4.4-c), which is consistent with earlier conservation analyses of AUG triplets in
mammalian and yeast 5’ UTRs [107].
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(a) (b)

(c)

Figure 4.4: Upstream AUGs and ORFs. a) Transcripts having at least one out-of-frame
uAUG have significantly smaller PTR ratios across 29 tissues (corrected for other
sequence elements) compared to transcripts with either no uAUG or only with
in-frame uAUG(s) (Wilcoxon test, fold − change = 0.75, P = 6.8 × 10−17).
Shown are the quartiles (boxes and horizontal lines). b)Transcripts with only
one out-of-frame uAUG which is not followed by an in-frame stop codon are
associated with 22% smaller PTR ratios (corrected for other sequence elements)
compared to transcripts with only one out-of-frame uORF (Wilcoxon test, fold−
change = 0.78, P = 3.9 × 10−2). Shown are the quartiles (boxes and horizontal
lines). c) Average 100-vertebrate PhastCons score (y-axis) per position relative
to the uAUG instances in 5’ UTR (x-axis). P-values assess significance of the
average 100-vertebrate PhastCons scores at the motif sites compared to the two
10-nucleotide flanking regions.
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4.1.1.3 Canonical start codon context

Significant associations of individual nucleotides with the PTR ratio were detected in the
12 nt interval around the canonocal start codon (FDR < 0.1). At nearly every position
of the start codon context, the nucleotide of the consensus sequence gccRccAUGG [42]
showed the strongest association, indicating selection for efficient start codon recognition.
The strongest effects were found at the third position upstream of the start codon (27%
lower PTR ratio for C than for the consensus A), recapitulating mutagenesis data [42],
and at the second nucleotide downstream of the start codon (23% lower PTR ratio for A
than for the consensus C). Moreover, effects of the start codon context on the PTR ratio
were largely independent of the tissue (Figure 4.5) consistent with a ubiquitous role of
the start codon context likely due to structural interaction with the ribosome [108].

Figure 4.5: Effects of canonical start codon context on the PTR ratio. Median effect
(dot) and range across 29 tissues (bar) of a single nucleotide mismatch relative to
consensus sequence in a 12 nt window centered at first nucleotide of the canonical
start codon (top). Position weight matrix logo showing information in bits (y-
axis) computed across all 11,575 transcripts (bottom).

4.1.2 mRNA coding region sequence features

4.1.2.1 Codon usage

Codon usage frequency regulates protein function and PTR ratios in various ways. First,
synonymous codon usage modulates translation efficiency [44, 109, 110, 111, 45], where
preferred codons increase the rate of elongation, while non-optimal codons decrease the
elongation rate. This translation rate in-turn affects co-translational protein folding,
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and thus the protein function [109]. On the other hand, amino acid identity affects
translation speed [112, 45] and protein half-life [113, 97].

Among all investigated sequence features, amino acid frequency had the largest pre-
dictive power for PTR ratio in every tissue (explained variance between 12 and 17%,
median 15%) (Figure 4.6).

Figure 4.6: Comparison of the explained variance in PTR ratio by amino acid and
codon usage. Log2-transformed frequencies of 20 amino acids in the coding
region explain on average 15% of the variance in tissue-specific PTR ratios (min
12%, max 17%). In comparison, log2-transformed frequencies of 61 codons, which
inherently encode for amino acid frequency and synonymous codon usage, explain
on average 16% of the variance in PTR ratios (min 13%, max 20%).

In our linear model, we defined the amino acid effect on PTR ratio as the PTR
ratio fold-change associated with doubling the frequency of an amino acid in a gene.
The amino acid effects were large with a twofold increase in amino acid frequencies
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associating with 40% lower PTR ratio for serine (S) and 50% higher PTR ratio for
aspartic acid (D) (Figure 4.7 - a).

Codon frequency, which inherently encodes amino acid frequency and synonymous
codon usage, increased that explained variance on average by only 1% (explained vari-
ance between 13 and 20%, median 16% , Figure 4.6). We defined the protein-to-mRNA
ratio adaptation index (PTR-AI) as the PTR ratio fold-change associated with doubling
the frequency of a codon in a gene. Synonymous codons coding for the same amino
acids displayed different PTR-AIs (Figure 4.7 - b). Moreover, the PTR-AI of individual
codons showed consistent amplitudes and directions across tissues (Figure 4.7 - b), which
contests the hypothesis of widespread tissue-specific post-transcriptional regulation due
to a varying tRNA pool among different tissues [114, 115].

(a)

(b)

Figure 4.7: Distribution of the amino acid and codon usage effects on PTR ratio. a)
Distribution of the amino effects on PTR ratio per tissue, which is the PTR ratio
fold-change associated with doubling the frequency of the amino acid. Shown
are the quartiles (boxes and horizontal lines) and furthest data points still within
1.5 times the interquartile range of the lower and upper quartiles (whiskers).
b)Same as (A) for codons (PTR-AI). The codons are grouped by the amino acid
they encode and are sorted first by increasing amino acid effect, then by increasing
synonymous codon effect.
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(a)

(b)

Figure 4.8: Codon frequency distribution at the upstream coding region. a) Rel-
ative codon frequencies per bin of 15 codons (columns). Codon frequency is
differentially distributed in the 5’ end of the CDS (from codon 2 to codon 31)
compared to the rest of the coding region. b)In spite of the distinctive codon
frequency composition of the coding region 5’ end as displayed in (C), twofold
codon frequency increase effect in the proximal 15 codons significantly correlates
with the twofold codon frequency increase effect in the rest of the coding region
(Spearman′scorrelation = 0.4, P < 0.0024).

We observed differences of codon frequency in the 5’ end of the coding sequence
compared to the rest of the coding region (Figure 4.8-a). However, when we modelled the
codon usage of the upstream and downstream coding regions idependently, we observed
that the effects of the codon usage on the PTR ratio correlated significantly between
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these two regions (Figure 4.8-b). We therefore did not distinguish the 5’ end region
of the coding sequence from the rest of the coding sequence when considering codon
frequencies in our model.

To relate the amino acid and synonymous codon effects to translation and protein
degradation, both of which contribute to PTR ratios, we first investigated codon de-
coding times, whereby long decoding times would lead to lower translation output
[116, 44, 22, 109, 110, 111, 45]. We considered codon decoding time as the typical time
ribosome takes to decode a codon [117], also sometimes referred to as ribosome dwell
time [23]. We computed median codon decoding times across 17 ribosome profiling
datasets [96, 23]. Notably, amino acid identity explained 70% median codon decod-
ing time variance (Figure 4.9-a, Appendix Figure A.1), consistent with the dominant
role of amino acids on PTR ratio. The strong association between amino acid identity
and codon decoding time may be in part reflecting that the amino acid content of the
nascent polypeptide chain influences translation elongation [118]. PTR-AIs correlated
significantly negatively with median codon decoding times ((Figure 4.9-b), Spearman’s
correlation = −0.27, P = 0.03).

(a) (b)

Figure 4.9: Codon usage effects on PTR ratio based on its effect on translation
efficiency. a) Median codon decoding time (transformed to z-scores) across 17
independent ribosome profiling datasets (y-axis), grouped per amino acid (x-axis).
Red dots display the average amino acid decoding time. b) Median codon de-
coding time estimates (z-scores) across 17 independent human Ribo-Seq datasets
(x-axis) significantly negatively correlate with average PTR-AI across tissues (y-
axis).
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We also found that median PTR-AIs correlated significantly positively with predicted
effects of codons on mRNA stability in K562 (Spearman’s correlation = 0.47, P = 4.7×
105, [95]), in HEK293 (Spearman’s correlation = 0.48, P = 9 × 105, [94]), and in HeLa
Tet-off cells (Spearman’s correlation = 0.52, P = 3 × 105, [93]) (Figure 4.10). This
agreement of PTR-AIs and predicted effects of codons on mRNA stability is consistent
with the fact that codon composition is causally affecting mRNA degradation [119, 120,
121, 122] in a way that is mediated by translation [92]. Together, these results indicate
that PTR-AIs capture the effect of codons on translation.

Figure 4.10: PTR-AI correlation with mRNA half-lives Median PTR-AI across tissues
highly correlates with mRNA half-life fold-changes associated with twofold fre-
quency increase of codons in K562 [95], HEK293 [94], and HeLa Tet-off cells
[93].

We then asked whether our amino acid effects on PTR ratios captured the effects of
amino acids on protein degradation. To this end, we first performed a linear regression
of protein half-lives measured in HeLa cells [97], B cells, NK cells, hepatocytes, and
monocytes [98] on amino acid frequency. We defined the amino acid effect on protein
half-life as the protein half-life fold-change associated with doubling the frequency of
an amino acid in a gene. The amino acid effects on protein half-life agreed well among
these datasets (Figure 4.11-a)) with proportions of explained variance varying from 9%
for monocytes to 19% for NK cells. Moreover, the amino acid effects on protein half-life
significantly correlated with the effects of single amino acid substitutions on protein ther-
modynamic stability ([123], Figure 4.11-b); Spearman’s Correlation = 0.18, P = 0.002)
and with amino acid hydrophobicity values (Figure 4.11-c; Spearman’s Correlation =
0.42, P = 0.04), a major force stabilizing the folding of proteins [124]. This suggests
that the associations of amino acids with protein half-lives are in part functional and
due to the role of amino acids on protein thermodynamic stability, a strong determinant
of protein cytoplasmic degradation [125].
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(a) (b)

(c) (d)

Figure 4.11: Codon usage effects on PTR ratio based on its effect on protein half-
lives. a) Distribution of the amino acid effect on protein half-lives, which
is the protein half-life fold-change associated with doubling the frequency of
the amino acid, for five different cell types: HeLa cells [97], B cells, NK cells,
hepatocytes, and monocytes [98]. Shown are the quartiles (boxes and horizontal
lines) and furthest data points still within 1.5 times the interquartile range of
the lower and upper quartiles (whiskers). b) Differences of amino acid effects on
protein half-life (x-axis) significantly correlate with effects of single amino acid
substitutions on protein thermodynamic stability (y-axis; citeDehouck2009). c)
Amino acid effect on protein half-life significantly correlates with the amino
acid hydrophobicity value. d) Amino acid effect on protein half-lives (x-axis)
significantly positively correlates with amino acid effect on PTR ratio (y-axis).
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Overall, the amino acid effects on PTR ratio correlated significantly with both the
amino acid effects on protein half-life (Figure 4.11-d; Spearman’s correlation = 0.6, P =
0.006 ) and the average amino acid decoding time (Figure 4.12 ; Spearman’s correla-
tion = −0.41, P = 0.03). However, average amino acid decoding times did not corre-
late significantly with the amino acid effects on protein half-life (Figure 4.12; Spear-
man’s correlation = −0.22, P = 0.35). Analogous results were obtained by taking a
codon-centric rather than an amino acid-centric point of view. Specifically, PTR-AI
correlated significantly with codon effects on protein half-life (Spearman’s correlation
= 0.56, P = 4.7e − 06) on the one hand, and with codon decoding time (Figure 4.12 ;
Spearman’s correlation = −0.27, P = 0.04) on the other hand. However, codon decoding
time did not correlate significantly with codon effects on protein half-life (Spearman’s
correlation = −0.09, P = 0.45). Hence, PTR-AI appears to capture a combination of
apparently independent effects of codon frequency on translation elongation and amino
acid frequency on protein stability.

Figure 4.12: Codon adaptiveness based on its effects on translation efficiency and
protein stability. Correlation network of the amino acid or codon frequency
when applicable on PTR ratio, codon decoding time, and protein half-life. Sig-
nificant Spearman correlations (P < 0.05) are found between the effects on PTR
ratio and codon decoding time, and between the effects on PTR ratio and pro-
tein half-life but not between codon decoding time and protein half-life.

Notably, PTR-AI did not correlate well with previous codon optimality measures,
including the frequency of codons in human coding sequences (Figure 4.13-a, Spear-
man’s correlation = 0.2, P = 0.11) and species-specific codon absolute adaptiveness
([51]; 4.13-b, Spearman’s correlation = 0.23, P = 0.1), which are based on genomic or
transcriptomic data and strong modeling assumptions. Altogether, these results indi-
cate that a PTR ratio-based measure of codon optimality, which captures the combined
effects of protein production and degradation, is an attractive alternative to existing
codon optimality measures and could help resolving some of the debates about the role
of codon optimality in human cells.
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(a) (b)

Figure 4.13: PTR-AI did not correlate well with previous codon optimality mea-
sures. a) PTR-AI (2 fold codon frequency increase effect on PTR ratio) does
not significantly correlate with human genomic codon frequencies. b) Codon
tRNA adaptiveness (x-axis), a widely used codon optimality metric, does not
significantly correlate with PTR-AI (y-axis), which may be a new optimality
metric reflecting the combined effect of amino acid and synonymous codon us-
age on protein synthesis and degradation.

4.1.2.2 Stop codon context

Stop codon itself is only part of the translation termination signal and the context in
which it resides has significant effects on the efficiency of the translation termination
and the ribosome recycling rate [56].

The opal stop codon UGA was significantly associated with the lowest median PTR
ratio having in median 15% lower PTR ratios than the ocher stop codon UAA (Figure
4.14-a; P = 1.2105).

Around the stop codon, the two most influential positions were the +1 nucleotide at
which a C associated with 15% lower PTR ratios than the consensus G, and the −2
nucleotide, at which a G associated with 19% lower PTR ratios than the consensus A in
median across tissues (Figure 4.15). The inhibitory effect of a C at the +1 nucleotide,
which was observed for all three stop codons (Figure 4.14-b), is in line with previous
studies in prokaryotes and eukaryotes [53, 54, 55, 56]. Also, structural data show that a
C following the stop codon interferes with stop codon recognition [126], thereby leading
to stop codon read-through. Moreover, our data indicate that the nucleotide at the
−2 position, which is also reported to be highly biased in E. coli [127], is significantly
associated with PTR ratio and deviation from the consensus nucleotide A is associated
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with a reduced PTR ratio. Altogether, the start and stop codon contexts demonstrate
the sensitivity of the PTR ratio analysis in detecting contributions to translation down
to single-nucleotide resolution.

(a)

(b)

Figure 4.14: Comparison of stop codons. a) Transcripts with an opal (UGA) canoni-
cal stop codon have significantly smaller median PTR ratios across 29 tissues
(corrected for other sequence elements) compared to transcripts with an ochre
(UAA) or an amber (UAG) stop codon. Shown are the quartiles (boxes and
horizontal lines), the furthest data points still within 1.5 times the interquar-
tile range of the lower and upper quartiles (whiskers), P-values for two-sided
Wilcoxon test (P), and fold-change (FC). b) Transcripts with a cytosine at the
+1 position relative to the stop codon have significantly smaller median PTR
ratios across 29 tissues (corrected for other sequence elements) independently of
the stop codon type. Shown are the quartiles (boxes and horizontal lines) and
furthest data points still within 1.5 times the interquartile range of the lower
and upper quartiles (whiskers).
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Figure 4.15: Effects of stop codon context on the PTR ratio. Median effect (dot) and
range across 29 tissues (bar) of a single nucleotide mismatch relative to consensus
sequence in a 12 nt window centered at first nucleotide of the canonical stop
codon (top). Position weight matrix logo showing information in bits (y-axis)
computed across all 11,575 transcripts (bottom).

4.1.3 mRNA 3’ UTR sequence features

4.1.3.1 RNA binding proteins

RNA binding proteins (RBPs) are among the major factors controlling protein transla-
tion. They regulate post-transcriptional processes such as splicing, cleavage and polyadeny-
lation, and the editing, localization, stability and translation of mRNAs [128]. Even
though RBPs bind to not only to 3’ UTR region but also 5’ UTR and coding regions,
the ones that bind to the 3’ UTR region are mostly involved in controlling translation
efficiency and mRNA half-life [12, 128]. This is why we include our results about the
RBP analysis in this subsection.

Exploiting our comprehensive protein expression measurements across 29 human tis-
sues, we investigated tissue-specific expression of RNA binding proteins. Overall, 1,233
out of 11,575 inspected genes were among the 1,542 RNA binding proteins manually cu-
rated by Gerstberger et al [60]. Of these, 825 RBPs were measured in all 29 tissues(Figure
4.16) . According to tissue specificity scores defined by Gerstberger et al, 135 out of 1,233
RBPs were defined as being tissue-specific based on our RNA-Seq dataset, which was
consistent with the general observation that the majority of the RBPs are ubiquitously
expressed and typically at higher levels than average cellular proteins [129, 60]. The 135
tissue-specific RBPs were significantly enriched in spermatogenesis, the multi-organism
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reproductive process, DNA modification, and meiotic nuclear division and localized in
germ plasm, pole plasm, and P granule (FDR < 0.1).

Figure 4.16: Number of tissues the 1,233 RNA binding proteins are measured
Distribution of the number of tissues 1,233 RNA binding proteins are measured
both at transcriptome and proteome level.

Disentangling the effects of each of the 1,542 RBPs on PTR ratios is challenging not
only because the binding targets of these RBPs are poorly charted, but also because
binding sites of RBPs and miRNAs often co-occur due to cooperative and competitive
binding [130, 131, 132, 133]. Nevertheless, we included the binding evidence of our 11,575
genes to 112 RNA binding proteins (RBPs) by exploiting the enhanced CLIP (eCLIP)
data set published by Von Nostrand et al [12] to observe the explained variance of the
PTR ratios by these 112 RBPs. The proportion of variance in PTR ratio explained by
the binding evidence to 112 RNA binding proteins [12] varied from 3 to 6% across tissues
(median 5%) (chapter 6). Overall, these RBPs appeared to be ubiquitously expressed
since 81 out of the 112 RBPs (77%) were detected expressed at the proteome level and
at the mRNA level in all tissues. Ubiquitous expression of RBPs and the frequent co-
binding of RBPs and miRNAs may be two reasons why tissue-specific effects of RBP
binding on PTR ratio did not show significant correlations with the corresponding tissue-
specific RBP expression levels (Appendix Figure A.2). Nevertheless, in 16 of these RBPs,
there was a significant difference between their across-tissue covariation with their target
and non-target genes (Figure 4.17).
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Figure 4.17: Expression levels of RBPs correlate with the expression levels of their
target genes. Distribution of Spearman’s rho between RBP protein level ex-
pressions and target and non-target genes’ PTR ratios across tissues. Only
RBPs which are expressed in at least 15 tissues and with protein level standard
deviation greater than 0.1 are taken into account. Similarly for the calculation
of correlation coefficients, only genes with which are expressed in at least 15
tissues and with PTR ratio standard deviation greater than 0.1 are considered.
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4.1.3.2 microRNAs

MicroRNAs (miRNAs) are 23-nucleotide RNAs that favourably bind to 3’ UTR sites
in the mRNAs of protein-coding genes to downregulate the mRNA staibility and/or
the protein translation efficiency [57]. Previous studies has shown that miRNAs reduce
the protein output by mainly destabilizating the target mRNAs, and their effect on
translational efficiency is moderate [59].

(a) (b)

Figure 4.18: Explained variances in mRNA levels and mRNA half-lives. a) Distri-
butions of explained variances by linear models of individual sequence feature
groups in mRNA levels of 29 tissues. The distribution of the total explained
variance by the linear model that combines all of the listed sequence features is
displayed in the first line. Shown are the quartiles (boxes and vertical lines) and
furthest data points still within 1.5 times the interquartile range of the lower
and upper quartiles (whiskers). b) Same as (a), with the difference that the
response variable is set to be Ensembl Transcript ID matched mRNA half-lives
in K562 [95], HEK293 [94], and HeLa Tet-off cells [93].

Currently there are 2,599 catalogued human miRNAs [134], most of which display
cooperative/competitive binding profiles with the RNA binding proteins. Therefore, es-
timating each of their individual effects on PTR ratios is a challenging goal. Nevertheless,
in order to explore the degree to which the prediction of the PTR ratio from sequence
could be improved in principle, we included the binding evidence for 296 miRNAs from
the miRTarBase database with more than 200 targets in our dataset as features in our
predictive model (chapter 6). 150 latent variables of these 296 miRNAs’ binding evi-
dence (chapter 6) explained on average only 1% of the PTR ratio variance across genes,
while these 150 variables were able to explain on average 5% (min 4%, max 7%) of the
variance in tissue-specific mRNA levels.

49



4 Sequence determinants of protein-per-mRNA amount in 29 human tissues

The binding evidence of RBPs and miRNAs were among the top mRNA features
explaining the tissue-specific mRNA levels and mRNA half-lives of three different cell
types (Figure 4.17-a,b ). The binding of the considered 112 RBPs explained on aver-
age 18% (min 13%, max 21%) and features representing miRNA binding explained on
average 5% (min 4%, max 7%) of the variance in tissue-specific mRNA levels (Figure
4.17-a). Consistent with that, RBP binding explained on average 17% of the variance
(min 12%, max 22%) in mRNA half-lives of K562, HEK293, and HeLa Tet-off cells (Fig-
ure 4.17-b). Likewise, features representing miRNA binding explained 5% (median, min
4%, max 5%) of the variance in mRNA half-lives of these three cell lines. Altogether, the
differences and similarities in the explained variances of mRNA levels, mRNA half-life,
PTR ratio that the RBPs and miRNAs considered in our model may be more effective
in regulating mRNA stability rather than PTR ratios.

4.1.4 Protein sequence features

Figure 4.19: N-terminal residue effect on PTR ratio. Distribution of the effects of pro-
tein N-terminal residues (with respect to Alanine) on PTR ratio across tissues.

Protein sequence and structural features, as well as its post-translational modifications,
not only determine its cellular function, but also its cellular localization and degradation
rate. Therefore, these features also play significant roles in regulating the PTR ratios.
We analyzed the effect of well known protein degradation signals on the PTR ratios and
also searched for amino acid k-mers that significantly associated with the PTR ratios
and the protein half-lives.
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Although the N-terminal amino acid, which is known to affect protein stability via
the N-end rule pathway, significantly associated with the PTR ratio (Figure 4.19), the
N-terminal amino acid was not significant in the joint model, possibly because the effect
was confounded with the start codon context.

A recent study by Kats and colleagues [65] in yeast indicated that the mean hydropho-
bicity of the first 15 amino acids plays a more important role in protein stability than
the N-end rule pathway. We observed that mean hydrophobicity of the first 15 amino
acids significantly associated with the PTR ratios of 8 tissues (3% higher PTR ratio on
average, FDR < 0.1; Figure 4.20), however positively, in apparent contradiction with
its negative effect on protein stability in yeast [65]. This may be due to the multiple
roles of the 5’ end of the coding region in gene expression regulation, which also includes
a role in translation [135].

Figure 4.20: Protein sequence features that significantly associate with PTR ra-
tios. Heatmap showing tissue-specific associations of protein sequence features
with higher (red gradient) or lower (grey gradient) PTR ratios. Stars repre-
sent tissue-specific significance of the sequence feature with FDR < 0.1. Eu-
karyotic protein motif acronyms are CLV PKCS FUR 1 (Furin (PACE) cleav-
age site), LIG KEPE 1 (Sumoylation site), TRG NLS BIPARTITE 1 (classi-
cal bipartite nuclear localization signal), and three classical monopartite nu-
clear localization signals: TRG NLS MonoCore 2, TRG NLS MonoExtC 3, and
TRG NLS MonoExtN 4.

We also considered protein surface charge–charge interactions because they can affect
protein stability [136, 137], and because the charged polypeptides in the ribosome exit
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tunnel can influence ribosome elongation speed [138]. Consistently, we observed that a
one unit increase in the protein isoelectric point had a significant negative association
with the PTR ratio (median 5%) in several tissues (Figure 4.20; FDR < 0.1). Our
analysis also confirmed, genome-wide, the negative effect on PTR ratios of PEST regions,
which are degrons that are rich in proline (P), glutamic acid (E), serine (S), and threonine
(T) [139] that were present in 4,592 proteins , and estimated its median effect across
tissues to a 26% lower PTR ratio (Figure 4.20; FDR < 0.1).

Figure 4.21: Identified eukaryotic linear protein motifs that associate with
PTR ratio variation. Distribution of median PTR ratio across 29
tissues for genes with and without the eukaryotic linear protein mo-
tifs. CLV PKCS FUR 1 (Furin (PACE) cleavage site), LIG KEPE 1
(Sumoylation site), TRG NLS BIPARTITE 1 (classical bipartite nuclear lo-
calization signal), three classical monopartite nuclear localisation signals:
TRG NLS MonoCore 2, TRG NLS MonoExtC 3, TRG NLS MonoExtN 4, and
nuclear proteins (GO:0005634) in general. Four nuclear localization signals were
associated with less median PTR ratio even though there is no significant PTR
ratio difference between nuclear and non-nuclear proteins.

When we searched for other known protein motifs that associated with PTR ratios,
we identified 6 linear protein motifs out of the 267 motifs from the ELM database [140]
using a feature selection method (chapter 6). These 6 linear protein motifs contained
4 nuclear localization signals of the ELM database which associated negatively with
PTR ratios. It is unclear why these four nuclear localization signals were associated
negatively with PTR ratio even though there is no significant PTR ratio difference
between nuclear (GO:0005634) and non-nuclear proteins (Figure 4.21). One possibility
is that these linear motifs are destabilizing elements. Indeed, these 6 linear protein
motifs were significantly associated with shorter protein half-lives (Figure 4.22). Also,
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nuclear proteins with the four nuclear localization signals were associated with shorter
half-lives compared to nuclear proteins without these signals (Figure 4.22). We also
note that these linear motifs are KR-rich and this could reflect either that stretches of
positively charged amino acid slow down translation or a technical bias due to the usage
of trypsin as the protein digestion enzyme.

Figure 4.22: Identified eukaryotic linear protein motifs also display similar asso-
ciations with protein half-life measurements. Same as Figure 4.20, for
average protein half-lives across HeLa cells, B cells, NK Cells, Hepatocytes and
Monocytes [97, 98]. Nuclear proteins with the four nuclear localization signals
we have identified have even shorter protein half-lives compared to other nuclear
proteins.

4.2 De-novo discovery of sequence motifs that are
predictive of tissue-specific protein-to-mRNA ratios

In addition to analyzing the associations of the known mRNA and protein sequence
elements with the PTR ratios, we also did de-novo motif searches to find the k-mers that
are associated with the PTR ratio variation across genes. We executed these searches for
5’ UTR, coding region and 3’ UTR regions independently where the response variables
were the PTR ratios of the 29 tissues we considered (chapter 6). Our search strategy
produced fruitful results, de-novo identfying many known important post-transcriptional
motif sequences as well as suggesting new ones. In the following sections we describe the
found motifs along with the additional analyses we have done to characterize the motif
site phylogenetic conservation scores and the gene set enrichment analyses of the genes
having the consensus motifs.
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4.2.0.1 5’ UTR Motifs

Investigating every 3- to 8-mer in the 5’ UTR, while controlling for occurrence of other
k-mers, revealed 6 k-mers significantly associated with median PTR ratio across tissues,
as well as 19 further k-mers associated with tissue-specific PTR ratio at a false discovery
rate FDR < 0.1. The 6 k-mers that were significantly associated with median PTR ratio
across tissues include AUG, the canonical start codon, for which at least one occurrence
out-of-frame relative to the main ORF associated with about 18–33% lower median PTR
ratios across tissues (Figure 4.23).

Figure 4.23: Identified motifs in 5’ untranslated region. Estimated effect of PTR ratio
in each tissue (row) of the 25 5’ UTR k-mers (column) associating with either
median PTR ratio across tissues or tissue-specific gene-centered PTR ratios.
Color scale ranges from blue (negative effect) to red (positive effect). Gray
marks non-significant (FDR ≥ 0.1) associations.
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Figure 4.24: Identified eukaryotic linear protein motifs also display similar asso-
ciations with protein half-life measurements. First and third columns:
Motif information content logos for the 25 k-mers, obtained by motif consensus
sequence search in 11,575 5’ UTR sequences allowing for one mismatch. Second
and fourth columns: number and percentage of transcripts consensus motif se-
quence among the 11,575 transcripts (first line) and best significantly matching
RNA binding protein motif of the database ATtRACT [141] together with the
ATtRACT motif quality score Q (value between 0 and 1, the higher the better).

AUG 3-mer, a strong positive control, was de-novo identified by our search approach.
While the out-of-frame uAUG associated significantly with decreased PTR ratio in all
29 tissues, the other 24 5’ UTR k-mers showed significant effects on PTR ratio (FDR <
0.1) only in certain tissues (Figure 4.23). These 24 k-mers were found in between 215
transcripts (2%) for AGCGGAA and 3,038 transcripts (26%) for GCCGCC (Figure
4.24). To search for possible proteins binding these k-mers, we queried the ATtRACT
database ([141], which is, to our knowledge, the most extensive database of RNA binding
motifs and contains 3,256 position weight matrices collected for 160 human RNA binding
proteins. However, no obvious association between these k-mers and RNA binding motifs
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could be drawn as most of the matches remain very distant (ATtRACTqualityscore <
0.1). A potential reason is that the ATtRACT database covers a small fraction of
all human RBPs, which could consist of more than 1,500 proteins [60]. Nonetheless,
11 out of 24 of our k-mers were significantly more conserved than their flanking regions
(FDR < 0.1, (Figure 4.25), Appendix Figure A.0)) and 10 showed significant enrichment
for Gene Ontology (GO) terms, supportive for a potential regulatory role (Appendix
Figure A.0). The appendix provides a comprehensive description of these results.

Figure 4.25: Identified motifs in 5’ untranslated region. Average 100-vertebrate Phast-
Cons score (y-axis) per position relative to the exact motif match instances in
5’ UTR (x-axis) for three example k-mers that are significantly predictive of
PTR ratios in specific tissues. P-values assess significance of the average 100-
vertebrate PhastCons scores at the motif sites compared to the two 10-nucleotide
flanking regions. The motif logos are constructed using all matches of the con-
sidered k-mer up to one mismatch in the 5’ UTR sequences.
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4.2.0.2 3’ UTR Motifs

Figure 4.26: Identified motifs in 3’ untranslated region. Estimated effect of PTR ratio
in each tissue (row) of the 20 3’ UTR k-mers (column) associating with either
median PTR ratio across tissues or tissue-specific gene-centered PTR ratios.
Color scale ranges from blue (negative effect) to red (positive effect). Gray
marks non-significant (FDR ≥ 0.1) associations.

De novo motif searching in the 3’ UTR revealed 20 k-mers significantly associated with
median PTR ratios across tissues or with tissue-specific PTR ratio (FDR < 0.1; Fig-
ure 4.26, 4.27). This recovered 4 well-known mRNA motifs: the polyadenylation signal
AAUAAA [142], the AU-rich elements UAUUUAU [143, 144] and AUUUUUA [145], and
the binding site of the Pumilio family of proteins UGUAAAUA [146]. The polyadenyla-
tion signal AAUAAA associated with between 13 and 28% increased PTR ratio across
tissues (median 21%, FDR < 0.1; Figure 4.26), consistent with one role of polyadeny-
lation signals in translation [147]. The AU-rich element UAUUUAU was found in 3,158
genes (27%) and associated with lower PTR ratios by about 9% consistently across tis-
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sues, in agreement with its function in mRNA destabilization and translational silencing
[143, 144]. The Pumilio motif UGUAAAUA was found in 1,320 genes (11%) and is the
binding target of members of the Pumilio family of proteins which regulate translation
and mRNA stability in a wide variety of eukaryotic organisms [146].

Figure 4.27: Identified eukaryotic linear protein motifs also display similar associa-
tions with protein half-life measurements. First and third columns: motif
information content logos for the 20 k-mers of panel A, obtained by motif con-
sensus sequence search in 11,575 3’ UTR sequences allowing for one mismatch.
Second and fourth columns: number and percentage of transcripts consensus
motif sequence among the 11,575 transcripts (first line) and best significantly
matching RNA binding protein motif of the database ATtRACT [141] together
with the ATtRACT motif quality score Q (value between 0 and 1, the higher
the better.

In addition to these four evolutionarily conserved motifs (Appendix Figure A.-2), we
identified 7 motifs, namely ACCAAA, CCAAAG, CUCAGG, GGGCUGCG, GGAGCC,
GGCCCUG, and UUCUGAG; these are also significantly conserved with respect to the
background flanking regions (Appendix Figure A.-2). While some of these conserved
motifs were not previously reported in the literature, some of the obtained k-mers may
possibly be the binding motifs of RBPs with a post-transcriptional role. One notable
example is the k-mer ACACUA, which matches a recognition site of the QKI protein ac-
cording to the ATtRACT database (quality score = 1.0), which is highly enriched in the
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brain (Human Protein Atlas; [148]) and important for myelinization [149], mRNA sta-
bility, and protein translation [150]. Another example is the well-conserved ACCAAA,
present in 3,655 genes (32%), possibly being the target motif of RBMX (ATtRACT
quality score = 1.0) which plays several roles in the regulation of post-transcriptional
processes [151]. The appendix provides a full analysis per motif based on their number
of occurrences, phylogenetic conservation scores (Appendix Figure A.-2), and a gene set
enrichment analysis for the genes having the consensus motif (Appendix Figure A.-3).

4.2.1 Validation of the identified motifs

We assessed the effects of motifs in a dual reporter assay in which the nine tested mo-
tifs (GGCCCCUG, UACUAAGA, UAUUUAU, UGUAAAUA, CACGU, CCCACCC,
CUGUCCU, GGCGCCCG, UUCCG) were inserted in the 5’ UTRs or 3’ UTRs of
Gaussia luciferase constructs. The same plasmid also expressed a secreted alkaline phos-
phatase as control. This assay showed significant effects for two positive controls: the
out-of-frame upstream AUG and the out-of-frame upstream ORF, i.e., an upstream AUG
with an in-frame stop codon within the 5’ UTR (Figure 4.28; P < 0.0001).

Figure 4.28: Reporter assay of the AUG in 5’ UTR. Ratio of GLuc over SEAP inten-
sities normalized per experiment (y-axis, n = 18) per time point (x-axis) and
construct: no insertion (pink), inserted out-of-frame AUG (green), and inserted
uORF, i.e., inserted AUG with an inserted stop codon in-frame in the 5’ UTR
(blue). Shown are the quartiles (boxes and horizontal lines) and furthest data
points still within 1.5 times the interquartile range of the lower and upper quar-
tiles (whiskers).

For the remaining tested motifs, control constructs containing scrambled versions of
the tested motif were also assayed (Appendix Figs S15 and S16, Table EV10). Two tested
motifs (UUCCG and CUGUCCU) showed significant effects in the direction predicted
by the model (Figure 4.29, FDR < 0.1). Most motifs had small predicted effects, so that
significance was difficult to attain in such assays. Taking this into account, four further
motifs, including two positive controls, the AU-rich 3’ UTR motif UAUUUAU and the
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Pumilio response elements, as well as the new motifs CCCACCC and GGCCCCUG,
showed effects consistent with the model prediction (Appendix Figures A.-2 and A.-1)
both in direction and in amplitude.

(a)

(b)

Figure 4.29: Reporter assay results for tested motifs. a) Reporter assay of the 5’
UTR motif CUGUCCU. Ratio of GLuc over SEAP intensities normalized per
experiment (y-axis, n = 18) per time point (x-axis) and construct: inserted motif
(pink), inserted scrambled motif UUUGCCC (blue). Shown are the quartiles
(boxes and horizontal lines) and furthest data points still within 1.5 times the
interquartile range of the lower and upper quartiles (whiskers). b) As in (b)
for inserted 5’ UTR motif UUCCG (pink) or a scrambled version of it (blue,
CUUCG).

60



5 Prediction of protein-to-mRNA
ratios from sequence features

The methodology, results and figures presented in this section are part of the manuscript
”Quantification and discovery of sequence determinants of protein per mRNA amount
in 29 human tissues” from Eraslan and Wang et al. 2019 [1] and ”A deep proteome and
transcriptome abundance atlas of 29 healthy human tissues” from Wang and Eraslan et
al. 2019 [2]

5.1 An interpretable model explaining PTR ratios from
sequence

The multivariate linear model combining all these sequence features predicted PTR ra-
tios at a median relative error of 3.2-fold on held-out data (10-fold cross-validation),
which is small compared to the overall variation of PTR ratios (200-fold for the 80%
equi-tailed interval). This model explained 22% (median across tissues) of the variance
(Figure 5.1 -a). Moreover, we observed that the predicted PTR ratios moderately posi-
tively correlated with the mRNA levels (Figure 5.1 - b; Spearman′srho = 0.26). Hence,
our model supports the hypothesis that highly transcribed genes also have optimized
sequences for post-transcriptional up-regulation, hence yielding higher amounts of pro-
teins, which is consistent with earlier work by Vogel and colleagues [152]. Combining
these sequence features together with the mRNA profiles in a single linear model ex-
plained 58% of the variance of tissue-specific protein levels in average (minimum 49% in
pancreas, maximum 63% in liver), increasing the proportions of variance of tissue-specific
protein levels explained with mRNA profiles alone by 10% in average (P = 3 × 10−10,
Wilcoxon test).
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(a) (b)

Figure 5.1: Explained variances in mRNA levels and mRNA half-lives. a) Observed
PTR ratios of all tissues (y-axis) versus predicted PTR ratios by the interpretable
sequence model (x-axis) which includes 18 sequence feature groups representing
204 post-transcriptional regulatory elements. b) Observed mRNA levels of all
tissues (y-axis) correlates with predicted PTR ratios by the interpretable sequence
model (x-axis) which includes 18 sequence feature groups representing 204 post-
transcriptional regulatory elements. This observation supports the hypothesis
that genes that are highly transcribed are also optimized for post-transcriptional
regulation leading to higher protein levels.

5.2 Extended model with experimentally characterized
elements

There are thousands of further sequence elements that could play a role in controlling the
PTR ratios, including the binding sites of any of the 2,599 catalogued human miRNAs
[134], the binding sites of the estimated 1,542 RNA binding proteins [60], and elements
subject to mRNA modifications and post-translational modifications of certain amino
acids. In this context, derivation of a more comprehensive yet interpretable model of
PTR ratio from sequence is difficult. One reason is that the sequence determinants
driving the binding of these factors and these modifications are poorly charted. Another
reason is that binding sites of RBPs and miRNAs often co-occur due to cooperative and
competitive binding [130, 131, 132, 133], which makes untangling the effects of individ-
ual sequence elements difficult. Nevertheless, in order to explore the degree to which the
prediction of the PTR ratio from sequence could be improved in principle, we consid-
ered a model that was not based on sequence alone, rather also including experimental
characterization of such interactions and modifications of mRNA and proteins.
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Figure 5.2: Explained variances in tissue-specific PTR ratios by the inspected se-
quence elements. Proportion of variance in tissue-specific PTR ratios explained
(R2) by separate linear models representing one sequence feature group in each
tissue. The first row (labeled ”ALL”) corresponds to the linear model combining
all of the features displayed in the consecutive rows.

This extended model included (i) N6-methyladenosine (m6A) mRNA modification,
an abundant modification enhancing translation [153]; (ii) binding evidence for 296 miR-
NAs from the miRTarBase database [134] with more than 200 targets in our dataset;
(iii) whether proteins are part of protein complexes, which is known to stabilize proteins
[154, 155]; (iv) binding evidence to 112 RNA binding proteins (RBPs) [12]; and (v)
phosphorylation, methylation, acetylation, SUMOylation, and ubiquitination of certain
amino acids [156]. This analysis showed that with the inclusion of these experimen-
tally characterized features, the proportion of variance of PTR ratio increased to a
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median across tissues of 27% (Figure 5.2; min 24%, max 31%). Moreover, combining
the extended set of features together with the mRNA profiles in a single linear model
explained 62% of the variance of tissue-specific protein levels in average (minimum 53%
in pancreas, maximum 68% in tonsil). However, these increased proportions of variance
explained do not imply that these experimentally characterized features are not driven
by regulatory elements encoded in sequence. Rather, they may reflect that our primary
regression of PTR ratio on sequence features was not powerful enough to capture those
underlying, potentially complex, regulatory sequence elements.

Figure 5.3: Distributions of explained variances by linear models of individual se-
quence feature groups in protein half-lives of HeLa cells [97], B cells,
NK cells, hepatocytes, and monocytes [98]. The distribution of the
total explained variance by the linear model that combines all of the
listed sequence features is displayed in the first line. Shown are the
quartiles (boxes and vertical lines) and furthest data points still within
1.5 times the interquartile range of the lower and upper quartiles
(whiskers).
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Analysis of explained variance of individual feature groups indicated that amino acid
frequency alone explained on average 15% of the variance in PTR ratios (min 12%,
max 15%; Figure 5.2 and Appendix Figure A.0). This is followed by protein acetylation
sites, binding sites of 112 RBPs [12], CDS length, protein ubiquitination sites, and linear
protein motifs. These results suggest that sequence elements affecting protein stability
may be the dominant features predictive of PTR ratios. In line with this possibility,
we observed that the explained variance in PTR ratio by these sequence features highly
correlated (Spearman′sρ = 0.59, P = 0.001) with their explained variances in protein
half-lives (Figure 5.4) in five cell types [98, 97].

Figure 5.4: Sequence elements affecting protein stability may be the dominant
features predictive of PTR ratios. Median proportion of variance in tissue-
specific PTR ratios explained (x-axis, R2) by each sequence feature group shown
in (D) highly correlates with median proportion of variance explained in protein
half-lives of five different cell types (y-axis). Most of the explained variance
in PTR ratios is dominated by sequence elements that are highly predictive of
protein half-lives.

The proportion of variance in PTR ratio explained by the binding evidence to 112
RNA binding proteins [12] varied from 3 to 6% across tissues (median 5%), while 150 la-
tent variables of 296 miRNAs’ binding evidence explained on average only 1%. Overall,
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these RBPs appeared to be ubiquitously expressed since 81 out of the 112 RBPs (77%)
were detected expressed at the proteome level and at the mRNA level in all tissues.
Ubiquitous expression of RBPs and the frequent co-binding of RBPs and miRNAs may
be two reasons why tissue-specific effects of RBP binding on PTR ratio did not show
significant correlations with the corresponding tissue-specific RBP expression levels (Ap-
pendix Figures A.2, A.0 ). Nevertheless, in 16 of these RBPs, there was a significant
difference between their across-tissue covariation with their target and non-target genes
(Figure 4.17). The binding of these regulatory elements was among the top mRNA
features explaining the tissue-specific mRNA levels and mRNA half-lives of three dif-
ferent cell types (Figure 4.18). The binding of the considered 112 RBPs explained on
average 18% (min 13%, max 21%) and features representing miRNA binding explained
on average 5% (min 4%, max 7%) of the variance in tissue-specific mRNA levels (Figure
4.18-a). Consistent with that, RBP binding explained on average 17% of the variance
(min 12%, max 22%) in mRNA half-lives of K562, HEK293, and HeLa Tet-off cells (Fig-
ure 4.18-b). Likewise, features representing miRNA binding explained 5% (median, min
4%, max 5%) of the variance in mRNA half-lives of these three cell lines. Altogether, the
differences and similarities in the explained variances of mRNA levels, mRNA half-life,
PTR ratio, and protein half-life suggest that the RBPs and miRNAs considered in our
model may be more effective in regulating mRNA stability rather than PTR ratios.

Of note, the proportion of variance explained is driven by the combination of effect
size, frequency, and variability of the features across genes. Hence, sequence features
which play a crucial role for translation, like the Kozak sequence, can only explain 3% of
the genome-wide PTR ratio variation by itself because it is already optimized for most
of the genes in the genome. Also, the 5’ and 3’ UTR motifs explain a small fraction of
the variance between genes although their effect size can be large because they typically
occur in a small number of genes.

5.2.1 Model comparison with the full set of features

In order to determine the best model with the whole set of sequence and experimentally
characterized features, we compared the prediction performance of various regression
methods (Figure 5.5) with their optimized hyperparameter values. Here we observed
that for the full set of 472 features that are characterized either based on the sequence
or the experimental measurements, the models with regularization effects, such as ridge
regression, lasso and elastic net, scored higher explained variance (R2). On the other
hand models like multilayer perceptrons which are able to capture nonlinear relation-
ships between the covariates, but at the same time have higher number of parameters,
overfitted and performed poorly in generalization in the 10 fold cross-validation setting.
Given these results, we see that modelling more complex relationships between 472 fea-
tures was not feasible with the available PTR values of 9,000 genes for each tissue.
Furthermore, we even observed that applying some regularization on the parameters of
the simple linear regression slightly increased the explained variance by preventing over-
fitting, which means even modelling the additive effects of 472 features was not feasible
with this amount of data.
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(a)

(b)

Figure 5.5: Comparison of the different regression model performances. a) Boxplots
displaying the distribution of the explained variances in tissue specific PTR ratios
by five different regression models with optimized hyperparameter values. b)
Comparison of explained variances in PTR ratio of each tissue by the considered
regression models with optimized hyperparameter values.
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6 Methods

6.1 Methods used for the analysis of the translational
gene expression regulation in maturating human
dendritic cells

6.1.1 Segmenting the genome based on the transcriptome data

Most human genes have multiple transcription start and polyadenylation sites, which are
fine tuned in a tissue-specific manner [157, 158, 159]. In order to determine the bound-
aries of the transcriptional units in human dendritic cells, we segmented the genome
with a two state hidden markov model (HMM) (Figure 6.1) applied on the coverage of
combined iDC, 4h, 24h transcriptome data and adjusted the resulting segments with
min-length max-gap algorithm as previously described in Zacher et al. [160]. Here two
of the hidden states correspond to the transcribed and untranscribed regions, while the
observed variables are the RNA read occupancy profiles in 1 base-pair resolution.

Figure 6.1: Two state hidden markov model for segmenting the transcribed re-
gions. In the used HMM, two hidden states correspond to the transcribed and
untranscribed regions of the genome. a0, 1−a0, a1, 1−a1 are the state transition
probabilities and b0, b1 are the probabilities of the observed 1bp RNA occupancy
profile given the ”not transcribed” and ”transcribed” states respectively.
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After segmenting the genome based on the total transcriptional profiles at iDC, 4h
and 24h, the segments standing for the transcribed regions of the genome were mapped
to the human RefSeq annotation hg38 to find the 5’ and 3’ untranslated regions (UTRs)
of the genes. We defined the gene 5’ UTR to be the region between the start of the
mapped segment and the first annotated start codon, while the region between the last
annotated stop codon and the end of the mapped segment is accepted to be the 3’ UTR
region of the gene. Defining the gene untranslated regions as such enabled us to make
sure that the ribosome profiling reads mapped to these locations do not belong to the
coding region of any of the alternative isoforms of the gene.

6.1.2 Computation of ribosome density values in 5’ UTR, 3’ UTR
and coding regions

Ribosome protected fragments signal the total number of ribosomes that are employed
in protein synthesis, which is dependent on both the number of mRNAs in the cell
and the number of ribosomes that translate each transcript [22]. Therefore, ribosome
density of a specific region of the genome can be described as the ratio of the number
of ribosome profiling reads to the number of transcriptome reads mapped to this region.
We computed the log2 ribosome density at 3’ UTR, 5’ UTR and coding regions by
taking the log2 ratio of the library size normalized counts of ribosome profiling reads
over transcriptome reads mapped to the exonic intervals of these regions. While counting
the number of ribosome profiling reads mapped to a region, we considered the P-site of
the ribosomes which is at 13 nucletides downstream of 5’ end of each ribosome protected
fragment [161].

6.2 Methods used for the analysis and the prediction of
the sequence determinants of protein per mRNA
amounts in 29 human tissues

The methodology, results and figures presented in this section are part of the manuscript
”Quantification and discovery of sequence determinants of protein per mRNA amount
in 29 human tissues” from Eraslan and Wang et al. 2019 [1] and ”A deep proteome and
transcriptome abundance atlas of 29 healthy human tissues” from Wang and Eraslan et
al. 2019 [2]

6.2.1 Preprocessing of the protein levels, mRNA levels, and PTR
ratios

The protein data in MaxQuant [162] output file ’proteinGroups.txt’ were filtered such
that the Reverse, Only.identified.by.site, and Potential.contaminant columns were not
equal to “+”. Moreover, we restricted to unambiguously identified gene loci by requiring
the number of Ensembl Gene IDs in the Fasta.headers column to equal 1. To calculate
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protein expression levels, IBAQ values equal to zero were set as missing values (NA).
Next, IBAQ values were adjusted to have in each tissue the same median than the overall
median by adding in the logarithmic scale a tissue-specific constant.

About 10% of the genes were reported to have 2 or more transcript isoforms in the
MaxQuant file ’proteinGroups.txt’. We defined as major transcript isoform per gene
the transcript isoform reported in the MaxQuant file ’proteinGroups.txt’ that had the
largest sum of IBAQ values across all tissues. We used these major transcript isoforms
for all tissues, to compute all sequence features and to compute mRNA levels.

For each tissue, only the mRNA replicates which had a matching protein sample
were used throughout the analysis. Paired-end raw read files were quality-checked with
FastQC software (Babraham Bioinformatics – FastQC A Quality Control tool for High
Throughput Sequence Data), and the overrepresented adapter sequences were trimmed
using the Trim Galore software (Babraham Bioinformatics – Trim Galore!). After that,
resulting read files were checked again with FastQC and the reads were mapped with
STAR alignment software [163] to human genome annotation Hg38.83, with the param-
eter of maximum number of multiple alignments allowed for a read to be equal to 1
(–outFilterMultimapNmax).

To estimate the mature mRNA levels, for each sample (each replicate in each tissue)
the number of reads that map to exonic and intronic regions of the transcript (which
was decided to be used based on the major protein isoform) was counted separately and
then normalized by the total exonic and intronic region lengths, respectively. Next, the
intronic counts normalized by the intronic region length were subtracted from exonic
counts normalized by the exonic region length. The resulting normalized exonic counts
per sample (i.e., each replicate of each tissue) were corrected by the library size factor
obtained with the Bioconductor package DESeq2 and further log-transformed (log10).
Finally, technical replicates were summarized by taking the median value. We set a
cutoff of 10 reads per kilobase pair for a transcript to be treated as transcribed, which
further improved the correlation between mRNA and proteins, possibly because of the
poorer sensitivity of proteomics for lowly expressed genes or because of higher technical
noise in low ranges of expression for RNA-Seq and for proteomics. Tissue-specific PTR
ratios were computed as the logarithm in base 10 of the ratio of the normalized protein
levels over the normalized mRNA levels.

6.2.2 mRNA isoform level quantification

In order to obtain tissue-specific mRNA transcript isoform FPKM levels, we used Kallisto
[164] with Gencode annotation Hg38.83 using default parameters. For each gene, the
major isoform in a specific tissue was defined to be the isoform with the largest FPKM
value among all isoforms with FPKM ¿ 1. Thereon, the number of major isoforms across
the 29 tissues with unique Ensembl Transcript IDs was counted per gene.
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6.2.3 Explained variance of protein levels and relative protein levels
by mRNA levels

For protein levels, we performed a linear regression of log-transformed protein levels
against either log-transformed mRNA levels of the matching tissue or the complete log-
transformed mRNA levels across all tissues. Explained variance was reported as adjusted
R2, and statistical significance was assessed using the chi-square test for nested linear
models. For relative protein levels, the same was done for log-transformed and median-
centered protein levels against log-transformed and median-centered mRNA levels.

6.2.4 Multi-omics factor analysis on mRNA levels and PTR ratios

Multi-omics factor analysis [89] was applied to mRNA levels and PTR ratio matrices
(7,822 by 29) of the 7,822 genes detected expressed at the mRNA level and at the protein
level in at least 15 tissues. The mRNA levels and PTR ratios were mean-centered per
gene across tissues before the fitting was performed.

6.2.5 Feature engineering for the multivariable predictive model

In order to develop an interpretable predictive model of PTR ratios from sequence, in
addition to the de-novo search for novel mRNA and protein motifs which could be the
binding sites of several factors such as RNA binding proteins, miRNAs, protein localiza-
tion and degradation factors, I did a deep literature search of all the sequence elements
that are known to be important for post-transcriptional gene expression regulation and
included them in my model. However, including each of these features to the covariate
matrix needs meticulous preprocessing and feauture engineering steps in order to achive
a model with the best performance. This feature engineering step was also important
for keeping the model as interpretable as possible because one of our main objectives
was to gain more biological insights in post-transcriptional regulation through our in-
tegrated model. Therefore, intead of applying standard feature extraction techniques
used in black-box machine learning techniques, we carefully crafted each of the sequence
features. In the sections below, these feature engineering techniques are presented for
each of the sequence feature we have included.

6.2.5.1 5’ UTR folding energy (secondary structure proxy)

The sequence spanning 100 nt 5’ and 100 nt 3’ of the first nucleotide of the canonical
start codon was extracted for all transcripts with a valid PTR value in at least one tissue.
The folding energies were computed via Vienna-RNAfold package [165] with 51-nt-wide
sliding window for each center position in [−75,+75] nt relative to the first nucleotide
of the canonical start codon. The effect and P-values of the log2-transformed negative
minimum folding energy values at each position on median PTR across tissues were
assessed individually with a linear regression model, in which all the analyzed sequence
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features were included as covariates. P-values were corrected for multiple testing using
Benjamini–Hochberg correction.

6.2.5.2 Kozak sequence and stop codon context

In order to find the effect size of 1bp nucleotide change at Kozak sequence or stop codon
context on PTR ratios, a simple linear regression model was used where the feature
matrix X is contains the categorial nucleotide information in a [−6,+6] nt window
around the canonical start and stop codons. Base reference level for each position is
taken to be the most frequent nucleotide at this position among the inspected 11,575
genes.

6.2.5.3 Codon frequency

Codon frequency was encoded as the log2 of the frequency of each of the 61 coding
codons (number of codons divided by coding sequence length). Using the frequency
in natural scale led to a decreased explained variance by 1%. In addition, codon pair
frequencies were modeled in the design matrix as the first 2 principal components of the
codon pair frequency matrix consisting of 3,721 features.

6.2.5.4 Linear protein motifs

Linear protein motifs were downloaded from the ELM database [140] as regular ex-
pressions. We classified proteins as containing an ELM motif if the regular expression
matched at least once in the protein sequence. Thereafter, we selected the ELM mo-
tifs significantly associating with PTR ratios in at least one tissue by utilizing LASSO
feature selection where the PTR ratios were corrected for the core sequence features,
which we defined as the motifs identified de novo, the 5’ UTR folding energies at posi-
tions 0 and +48, start codon context, codon frequencies, codon pair bias indicators, stop
codon context, UTR and CDS region lengths, PEST motifs, protein isoelectric point,
and protein N-end hydrophobicity.

6.2.5.5 N-terminal residue

The second residue of the protein sequence was extracted.

6.2.5.6 Protein 5’ end hydrophobicity

The mean hydrophobicity value of the amino acids 2–16 at the 5’ end of the protein
was calculated by the hydropathy index per amino acid values reported in Kyte and
Doolittle [166].

6.2.5.7 Protein isoelectric point

Protein isoelectric points for 11,575 protein considered in our model were computed with
the IPC-Isoelectric Point Calculator software (Kozlowski, 2016).
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6.2.5.8 PEST-region

We classified protein sequences as ’PEST-region containing’ if the EMBOSS program
epestfind [139, 167] identified at least one ’PEST-no-potential’ hit.

6.2.5.9 m6A mRNA modification

We classified mRNAs as m6A-modified if at least one m6A peak for the same gene locus
in untreated HepG2 cell line was reported in Supplementary Table 6 of Dominissini et
al [168].

6.2.5.10 Protein complex membership

We classified each protein as a protein complex member if it was a subunit of at least one
annotated protein complex in the CORUM [169] mammalian protein complex database
(release version 02.07.2017).

6.2.5.11 Protein post-translational modification

We downloaded protein acetylation, methylation, phosphorylation, SUMOylation, and
ubiquitination data from the Phosphosite database (release version 02.05.2018) [156] and
calculated the number of modification sites per modification type for each protein. For
proteins whose modification information was not available in the downloaded dataset,
we assigned 0 instead. The covariate for each of these features was defined as the log2
of the number of modifications plus 1 (pseudocount).

6.2.5.12 RNA binding protein targets

We classified transcripts as targets of 112 RBPs if they contained at least one peak in
the eCLIP dataset of Van Nostrand et al [12] as processed earlier [170].

6.2.5.13 miRNA targets

Many miRNAs in the miRTarBase database (Chou et al, 2018) have very few reported
targets, leading to no improvement explained variance. Therefore, we filtered for the
miRNAs which have at least 200 experimentally validated target genes in our dataset
and classified the genes accordingly as targets for these miRNAs. Due to high collinearity
between binding evidences of different miRNAs, we applied PCA to the 11,575 Ö 296
binding evidence matrix and selected as features the 150 first principal components that
explained 95

6.2.5.14 De novo motif Identification

Similar to Eser et al [171], de novo motif identification was performed separately for 5’
UTR, CDS, and 3’ UTR regions by using a linear mixed model in which the effect of each
individual k-mer on the median PTR ratios across tissues was assessed while controlling
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for the effect of the other k-mers (random effects) and region length and region GC
percent (fixed effects). In order to identify k-mers which display more tissue-specific
effects, the same approach was applied to tissue-specific median-centered (median being
taken per gene across tissues) log-transformed PTR ratios. The model was fitted with
the GEMMA software [172]. Motif search was executed for k-mers ranging from 3 to
8, and the P-values were adjusted for multiple testing with Benjamini–Hochberg’s false
discovery rate computed across the P-values of all tissues jointly. Significant motifs at
FDR < 0.1 were subsequently manually assembled based on partial overlap.

6.2.6 Developed models

6.2.6.1 Interpretable multivariate linear model

The multivariate linear model we used for quantifying the tissue-specific effects of the
considered sequence elements is:

yij = βj
0 + xi

Tβj + εij (6.1)

β̂j = arg min
βj

(‖Xjβj − Yj‖2
2) (6.2)

where yij is the tissue-specific PTR ratio (log10) of gene i and tissue j, and xi
T is the

i th row of the matrix X of sequence feature predictors which contains:

� 61 features for individual codon frequencies (in log2 scale)

� 36 features for Kozak sequence position–nucleotide pairs

� 39 features for stop-codon-context position–nucleotide pairs

� three features for CDS, 5’ UTR and 3’ UTR lengths (in log2 scale)

� three features for CDS, 5’ UTR and 3’ UTR GC percentages

� 20 features for 3’ UTR motifs

� 25 features for 5’ UTR motifs (including upstream AUG)

� three features for CDS amino acid motifs

� six features for linear protein motifs

� three features for 5’ UTR folding energy

� two features for codon pair bias

� one feature for PEST motifs

� one feature for protein isoelectric point
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� one feature for protein N-terminal hydrophobicity

The intercept βj
0 and the vector βj of the model coefficients for the j th tissue were

estimated by ordinary least squares, that is, minimizing the squared of the errors εij.
To predict the tissue-independent effects of the sequence features, we considered the

simple linear regression model:

yij = βj
0 + xi

Tβ + εij (6.3)

where the intercepts βj
0 varied by tissue while the coefficients of the sequence features

(the vector β) were kept equal across tissues. The intercept βj
0 and the vector β of the

model coefficients were estimated by ordinary least squares, i.e., minimizing the squared
of the errors εij. The explained variance R2 of the PTR ratio by the sequence features
was obtained by 10-fold cross-validation where in each fold the held-out data were used
to have the PTR ratio predictions based on the linear regression model fit obtained from
the remaining nine partitions.

6.2.6.2 Extended regularized model

We used elastic net for the model with extended set of features where the covariate matrix
X consists of both the sequence based and the experimentally characterized regulators
of the post-transcriptional regulation. Elastic net is a penalized linear regression model
which applies both L1 and L2 regularization on model parameters in the loss function:

β̂j = arg min
βj

(‖Xjβj − Yj‖2
2 + λ(

(1− α)

2
‖βj‖2

2 + α‖βj‖1)) (6.4)

Elastic net is the same as lasso when α = 1 and is the same as ridge regression when
α = 0. For other values of α, the penalty on the model parameters interpolates between
the L1 norm of β and the squared L2 norm of β. We used grid search with 10 fold
cross-validation to find the optimal values for the λ and α hyperparameters (R caret
package [173]).

6.2.7 Processing and modelling of external data sets

6.2.7.1 mRNA half-life

To estimate codon effects on mRNA half-life, for K562 cells we first called a major
isoform as the highest expressed isoforms of Gencode v24 coding transcripts in the total
RNA samples of Schwalb and colleagues [95] according to Kallisto [164]. The half-life
was estimated as the ratio of 5 min labeled TT-seq sample over total RNA-Seq sample
(two replicates) after correcting library size with spike-in. For HeLa Tet-off cells, we
used the isoforms reported by the authors [93], and for HEK293 cells [94], we used the
dominant major isoforms across the 29 tissues we have inspected. We then fitted a linear
model with log10 mRNA half-life as response variable against log2 frequency of codons
with region length and GC content of 5’ UTR, CDS, and 3’ UTR as further covariates.
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6.2.7.2 Protein half-life

Protein half-lives for B cells, NK cells, hepatocytes, and monocytes [98] were identified
only by gene name and not by isoforms, and those for HeLa cells [97] by gene names
and UniProt protein identifiers. We therefore mapped our transcript isoforms to these
datasets by gene identifiers. We estimated the associations of the sequence features
with protein half-life by multivariate regression where the response variable was the
cell-type-specific log10-transformed protein half-life.

6.2.7.3 Independently matched transcriptome–proteome dataset

We used data from Kremer et al [174]. As originally reported, these data showed strong
technical effects. To be on the safe side, we restricted the analysis to six samples (sample
IDs: 65126, 73804, 78661, 80248, 80254, and 81273) that belonged to the same cluster.

6.2.8 Additional analyses

6.2.8.1 Motif analysis

Tissue-specific motif effects:
In the design matrix, all of the de novo identified motifs except ’AUG’ and ’AAUAAA’

are encoded as the number of motif sites in the sequence of the mRNA region (i.e., 5’
UTR, CDS, 3 ’UTR). ’AUG’ and ’AAUAAA’ are encoded as binary, hence whether the
motif is available in 5’ UTR and 3’ UTR regions, respectively. The tissue-specific effect
of the motif is assessed by fitting all sequence features considered jointly in the linear
model, with the tissue-specific PTR ratios being the response variables.

Gene ontology enrichment:
Enrichment for gene ontology categories [175] as of January 21, 2016, was per-

formed using the Fisher exact test and corrected for multiple testing using the Ben-
jamini–Hochberg correction.

Systematic motif search in RNA binding protein databases:
Motif consensus sequences are searched in the RNA binding protein database AT-

tRACT [141] by using the database Web interface at https://attract.cnic.es/searchmotif.
The RNA binding protein with the highest quality score, if any, was reported as binding
candidate of the motif.

Motif 1 nucleotide mismatch logos:
The sequences of each motif instance with at most 1 nucleotide mismatch were ob-

tained from transcript mRNA sequences. The logos were created with R ggseqlogo
package.

Motif conservation analysis:
Phylogenetic conservation scores for human annotation hg38 (phastConst100way from

http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way), which reports con-
servation across 99 vertebrates aligned to the human genome, were downloaded, and the
conservation scores per nucleotide were extracted for each of the motif instances without
any mismatch. The significance of the enrichment scores at the motif sites compared
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to 10 nucleotides flanking regions was tested with a one-sided Wilcoxon test across all
consensus motif occurrences in the given mRNA region (i.e., 5’ UTR or 3’ UTR).

6.2.8.2 RNA binding protein across-tissue covariation with target genes

Among 112 RBPs whose binding evidences were used in our integrated model, 64 of
them were expressed in at least 15 tissues with an mRNA level standard deviation
across tissues ¿ 0.1. In order to see across-tissue expression covariation between these
RBPs and their target genes, for each RBP we calculated the Spearman’s rho between
its protein level expression and mRNA levels in other genes (again expressed in at least
15 tissues and with mRNA ratio standard deviation ¿ 0.1). The significance of the
correlation coefficient distribution difference between target and non-target genes was
assessed with two-sided Wilcoxon test.

6.2.8.3 Coding sequence 5’ end codon frequency analysis

We considered the 10,778 transcripts with CDS length greater than 460 nucleotides.
Starting from the second codon, the log2 frequencies of 61 coding codons are calculated
in each of the 11 non-overlapping 15-codon-long windows. The frequency values are
centered per codon across windows. In order to compare the effect of twofold codon
frequency increase in the first window (codons from 2 to 16) versus the effect of the
twofold codon frequency increase in the rest of the coding sequence, the codon frequencies
of the whole coding sequence are replaced by the respective frequency values in the global
interpretable model.

6.2.8.4 Explained variance of protein levels by mRNA levels and sequence
features

We performed a linear regression of log-transformed protein levels against the complete
log-transformed mRNA levels across all tissues and the sequence features. We also
performed a linear regression of log-transformed protein levels against the complete log-
transformed mRNA levels across all tissues, the sequence features, and the non-sequence
features. Explained variance was reported as adjusted R2.

6.2.8.5 Effect of amino acids on PTR ratio

To estimate the effect of doubling the frequency of an amino acid in any gene on its
log10 PTR ratio, we performed a modified version of the regression defined by equation
1 (for tissue-specific effects) and a modified version of the regression defined by equation
2 (general effect), whereby the amino acid log2 frequencies were considered as features
instead of the codon log2 frequencies.
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6.2.8.6 PTR-AI

The tissue-specific protein-to-mRNA ratio index (tissue-specific PTR-AI) of a codon is
computed as ten to the power of the estimated coefficient of the log2 frequency of this
codon in the regression described by equation 1, where j is the index of the tissue of
interest. It is an estimation of the fold-change on PTR ratio for a specific tissue obtained
if one would double the frequency of this codon in any gene. The protein-to-mRNA ratio
index (PTR-AI) of a codon is computed as ten to the power of the estimated coefficient
of the codon log2 frequency in the regression described by equation 2. It is an estimation
of the fold-change on PTR ratio in any tissue obtained if one would double the frequency
of this codon in any gene.

6.2.8.7 Codon decoding time and average amino acid decoding time

Codon decoding times for 16 human ribosome profiling datasets were obtained from
RUST values [23]. We estimated decoding time using the RUST ratio defined by
the RUST A-site values over the RUST expected value (personal communication with
Patrick O’Connor). We also included decoding times in the HEK293 cell line estimated
by Dana and Tuller [96]. To estimate the average decoding times per codon, for each
dataset i we converted the decoding times into z-scores (i.e., subtracting the mean and
dividing by the standard deviation) and then used the median z-score per codon across
datasets as the average normalized decoding time of the codon. The average amino acid
decoding time was defined as the average codon decoding time per amino acid weighted
by the codon genomic frequency.
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The methodology, results and figures presented in this section are part of the manuscript
”Quantification and discovery of sequence determinants of protein per mRNA amount
in 29 human tissues” from Eraslan and Wang et al. 2019 [1]

In this thesis I presented two studies in which I designed, implemented and exe-
cuted several statistical computational analyses to gain better insight about the post-
transcriptional regulation events. I displayed that through integrated analyses of high-
throughput omics data sets, we are able to identify new regulatory motifs and generate
novel hypotheses about the regulation mechanisms. My analyses provide a data driven
system overview by connecting multiple components of the post-transcriptional regula-
tion. Performance of our predictive models which were developed based on the known
and identified regulatory elements help us to have an idea about where we stand in the
way of understanding genotype-phenotype relationships.

However, I should note that even though our high-throughput data driven approaches
of provide a first step in generating new hypothesis about the mRNA and protein rela-
tionship, they should be taken with a grain of salt due to the various experimental and
statistical constraints. First of all, the potentially large number of transcript isoforms
that can be generated from the same gene via alternative splicing presents an important
complication for the comparison of protein and mRNA levels. The possibility that pep-
tide levels may be compared to splice isoforms that do not contain the respective peptide
sequence may distort the protein/mRNA correlation. The emergence of RNA-seq has
greatly improved our ability to account for splicing effects compared to earlier transcript
profiling methods. This is particularly relevant when evaluating protein/mRNA correla-
tion for a single gene, as the transcript isoforms expressed may change across conditions.
An important complication for measuring translation again points to alternative splic-
ing because the efficiency of translation of different isoforms can vary greatly - e.g., by
including or excluding uORFs in front of the coding sequence [176].

Our multivariate regression analysis estimated the contribution within and across
tissues of 18 sequence feature groups representing 204 post-transcriptional regulatory
elements. Altogether the model predicts the PTR ratio of individual genes at a median
precision of 3.2-fold from sequence alone, while the PTR ratio spans about 200-fold
across 80% of the genes. For most known regulatory elements, the estimated effects
were consistent with the literature, such as the effects of the secondary structures in
the upstream CDS, upstream AUGs, individual nucleotides in the start and stop codon
context, and de novo identified 3’ UTR motifs AATAAA, TATTTAT, and TGTAAATA,
providing support to the functional interpretability of the model. Moreover, this anal-
ysis led to the identification of novel candidate regulatory elements in 5’ UTR and 3’
UTR, whose effects are estimated to be in the range of well-known canonical motifs.
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Follow-up experiments provided initial functional support for these motifs. Moreover,
our extended model comprising 269 additional experimentally characterized sequence
features indicates that post-translational protein modifications substantially contribute
to PTR ratios and would constitute an important set of features for modeling in more
detail in the future.

There are limitations to this approach that should be noted. The model is additive
on the logarithmic scale. However, regulatory elements likely function depending on
the sequence context, the presence of other regulatory elements, and their respective
distance along the transcript but also in space. Given the amount of variations across
genes, such non-additive effects are very hard to be fitted. Hence, the effect of mutat-
ing a particular sequence element on a given gene may differ from the expected effect
estimated by the linear model. Also, the conserved sequence elements we found associ-
ated with PTR ratio may be functional but actually play a different role because high
PTR ratios correlate with other selected traits such as high mRNA levels. Experiments
will help in resolving these questions. Nonetheless, our study provides interesting con-
served sequence elements to follow up with mechanistic studies. We have also performed
matches to the ATtRACT database, as an indication of possible RBP recognizing these
motifs. ATtRACT matches, even with the highest scores, can be lenient. Also, this
database suffers from the general poor charting of RBP binding sites. As a result, we
shall take these matches as indicative and with caution. Another limitation is that most
tissues investigated have been obtained from different donors [2]. While it is reasonable
to expect that tissue-specific effects dominate the differential expression signal between
these samples, one cannot exclude donor-specific effects as well.

Our regression approach led to a new codon metric, PTR-AI, for protein-to-mRNA
ratio adaptation index, which estimates the effect of doubling the frequency of a codon in
a gene on its protein-to-mRNA ratio. Using PTR-AI, codons, which inherently encode
amino acids and synonymous codon usage, are the lead explanatory variable explaining
about 16% of the PTR ratio variance across genes almost in every tissue we inspected.
Amino acid frequency and synonymous codon usage affect PTR ratios via various mech-
anisms. Amino acid identity affects translation [112, 45] and protein half-life [113, 97]
while synonymous codon usage influences translation efficiency due to variation in the
translation elongation rates of different codons [116, 44, 22, 109, 110, 111, 45]. Highly
expressed genes contain relatively high proportions of codons recognized by abundant
tRNAs with efficient codon–anticodon base-pairing. Based on this observation, sev-
eral codon optimality metrics have been suggested [177, 178, 179, 51]. However, all of
these rely on some assumptions and simplifications, such as the codon adaptation index
defining a set of highly expressed genes as a reference set or the tRNA adaptation in-
dex overlooking the supply and demand relationship for charged tRNAs. PTR-AI does
not correlate well with codon genomic frequency or tAI adaptiveness, whereas it does
correlate well with the codon decoding times estimated from several ribosome profiling
datasets. Furthermore, we have shown that PTR-AI also captures the effects of amino
acids on protein stability. Consequently, we suggest that PTR-AI is a more reliable
codon optimality metric than previous metrics.
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Our findings do not support the hypothesis of tissue-specific codon optimality. It
has been suggested that there is tissue-specific codon-mediated translational control due
to differential synonymous codon usage in human tissue-specific genes, which correlates
with varying tRNA expression among different tissues [114, 115]. However, other studies
found no evidence for optimization of translational efficiency by cell-type-specific codon
usage in human tissues [180, 181]. Our tissue-specific PTR-AIs, which are estimated
by fitting our model separately for each tissue, do not display high variation across
tissues. This result is coherent with negligible tissue-specific enrichments of expressed
codons in human transcriptomes, showing that tissue-specific expression is neither due
to the transcription nor due to the translation of genes with particular codon contents.
Further corroborating this finding, genes with high-effect codons tended both to have a
high median level of protein expression and to be ubiquitously expressed. These genes
were enriched for housekeeping functions. A possible explanation of these findings is
that housekeeping genes have evolved for optimal coding sequence to reach high protein
expression levels. Because of the ubiquitous role of housekeeping genes, their codon
content in turn constrains the pool of tRNA to be rather constant across tissues. These
explanations are consistent with the recent massive genomic editing experiment results,
which show that codon bias of highly expressed genes maintains the efficiency of global
protein translation in the cell [182]. The lack of tissue specificity of PTR-AIs we reported
here does not contradict the differential tRNA pool regulation between proliferative and
differentiating cells [183], since our tissues are essentially constituted of non-proliferative
cells.

In every tissue investigated, protein-to-mRNA ratios were higher for genes with high
mRNA expression levels, leading to an approximately quadratic relationship between
protein and mRNA levels across genes [2] and a larger dynamic range of expression
among proteins than mRNAs. Our model partially explains this apparent amplification
from sequence features, thereby showing that high protein expression levels are reached
because of high mRNA levels and because of genetically encoded elements favoring the
synthesis and stability of proteins. Regulatory elements that affect both the mRNA
levels and protein-per-mRNA copy numbers could further contribute to this apparent
amplification. Codons are known to play such a dual role since they affect translation on
the one hand, and mRNA stability on the other hand. The mechanistic basis for these
cross-talks between translation and mRNA stability is not fully understood. It is possible
that regression approaches similar to those employed by us could help in revealing further
sequence elements acting on both levels. A similar super-linear relationship had been
reported before for the unicellular eukaryotes in baker’s yeast [184] and fission yeast [39],
which appears to be absent in the prokaryote E. coli, respecting which mRNA and protein
levels across genes obey a nearly linear relationship [84]. Prokaryotic transcription and
translation are coupled processes, which do not allow post-transcriptional regulation to
have an effective role in determining steady-state protein levels. In contrast, these two
processes are highly uncoupled and have specialized mechanisms in eukaryotes, which are
favored by the compartmentalization of eukaryotic cells. We suggest that the uncoupling
of transcription and translation underlies a fundamental difference in the relationship
between protein and mRNA levels across genes in eukaryotes compared to prokaryotes
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and may allow protein copy numbers of eukaryotic cells to span a much larger dynamic
range. Further matched transcriptome and proteome datasets for a larger range of
prokaryotes would help to support this model.

A comprehensive post-transcriptional regulatory code is important for interpreting
regulatory genetic variations in personal genomes and in genetic engineering for biotech-
nological or gene therapy applications. Our study provides an important contribution by
modeling codon effects, identifying novel sequence elements with potential function, and
giving a framework for quantifying and assessing the role of new elements on protein-per-
mRNA copy number. In the future, we expect further approaches including the analysis
and integration of perturbation-based data and the mapping of post-translational regu-
latory elements in order to complement and refine the present analysis.
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A Appendix: Additional Figures

Figure A.1: Correlations between PTR-AI and the codon decoding times obtained
from 17 independent ribosome profiling data sets Median PTR-AI across
tissues negatively correlates with expected codon decoding times in 17 ribosome
profiling datasets [23].
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Figure A.2: Correlations between PTR-AI and the codon decoding times obtained
from 17 independent ribosome profiling data sets Our data set covers
matched transcriptome and proteome measurements of 97 out of 112 RBPs whose
target genes were detected by Van Nostrand et al. [12] and 81 of these RBPs were
measured in all 29 tissues. The tissue-specific effect sizes of the RBP binding
evidences in the linear model did not significantly correlate with the tissue-
specific RBP expression levels.
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Figure A.0: 5’ UTR motifs’ conservation scores. Average 100-vertebrate PhastCons
score (y-axis) per position relative to the exact motif match instances in 5’ UTR
(x-axis). P-values assess significance of the average 100-vertebrate PhastCons
scores at the motif sites compared to the two 10-nucleotide flanking regions

91



A Appendix: Additional Figures

92



(a) (b)

(c) (d)

(e) (f)

93



A Appendix: Additional Figures

(g) (h)

(i) (j)

Figure A.0: Gene ontology terms enriched for genes that have the consensus 5’
UTR motifs. Gene ontology terms that are enriched for set of genes that
contain consensus sequences of the de-novo identified k-mers in 5’ UTR that are
predictive of PTR ratios.
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Figure A.-2: 3’ UTR motifs’ conservation scores. Average 100-vertebrate PhastCons
score (y-axis) per position relative to the exact motif match instances in 3’ UTR
(x-axis). P-values assess significance of the average 100-vertebrate PhastCons
scores at the motif sites compared to the two 10-nucleotide flanking regions
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Figure A.-3: Gene ontology terms enriched for genes that have the consensus 3’
UTR motifs. Gene ontology terms that are enriched for set of genes that
contain consensus sequences of the de-novo identified k-mers in 3’ UTR that
are predictive of PTR ratios.
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Figure A.-2: Selected 5’ UTR motifs’ test experiments. Time course Gluc/SEAP in-
tensity values per 5’ UTR motif and its scrambled version.
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(a) (b)

(c) (d)

Figure A.-1: Selected 3’ UTR motifs’ test experiments. Time course Gluc/SEAP in-
tensity values per 3’ UTR motif and its scrambled version.
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Figure A.0: The distribution of the total explained variance by the linear model
that combines all of the listed sequence features is displayed in the first
line. Shown are the quartiles (boxes and vertical lines) and furthest
data points still within 1.5 times the interquartile range of the lower
and upper quartiles (whiskers).
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(a)

(b)

Figure A.1: GO terms enriched for the genes in group 4 and 5.

108



List of Figures

1.1 An illustration of Central Dogma of Biology . . . . . . . . . . . . . . . . 1
1.2 Typical next generation RNA-seq workflow . . . . . . . . . . . . . . . . . 3
1.3 Typical shotgun proteomics workflow . . . . . . . . . . . . . . . . . . . . 4
1.4 Typical ribosome profiling workflow . . . . . . . . . . . . . . . . . . . . . 6
1.5 Multiple information obtained from ribosome profiling data . . . . . . . . 7
1.6 eCLIP-seq pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Distribution of 4h/iDC, 24h/iDC RNA and ribosome density fold change
values for 5’ UTR, coding and 3’ UTR regions. . . . . . . . . . . . . . . . 14

2.2 4h/iDC, 24h/iDC mapped mRNA reads and ribosome density fold change
values for 5’ UTR, coding and 3’ UTR regions. . . . . . . . . . . . . . . . 15

2.3 Pairwise correlations between 4h/iDC and 24h/iDC fold change values at
5’ UTR, CDS and 3’ UTR regions. . . . . . . . . . . . . . . . . . . . . . 16

2.4 Metagene plot displaying loss of the three nucleotide periodicity of the
ribosome P-sites after the stop codon. . . . . . . . . . . . . . . . . . . . . 17

2.5 RNA expression and ribosome density values of ribosome recycling factors
at iDC, 4h, and 24h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 mRNA isoform distribution . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 mRNA - protein isoform match . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Per tissue mRNA - protein relationships . . . . . . . . . . . . . . . . . . 21
3.4 Explained variance in protein levels by the mRNA levels of other tissues 22
3.5 Explained variance in protein levels by own versus all tissues’ mRNA levels 23
3.6 Functional relationship between mRNA and protein levels in 29 tissues. . 23
3.7 mRNA and protein level dynamic ranges . . . . . . . . . . . . . . . . . . 24
3.8 Difference in functional relationship between mRNA and protein levels in

eukaryotes and prokaryotes. . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9 Difference between the dynamic range of PTR ratios across genes and

across tissues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10 Across tissue protein variation predicted by across tissue mRNA vaariation. 28
3.11 Explained variance in mRNA levels and PTR ratios by the common latent

factors obtained by Multi-Omics Factor Analysis. . . . . . . . . . . . . . 29

4.1 Integrated datasets to interpret our findings related to different layers of
gene expression regulation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Effects of mRNA secondary structures around the canonical start codon
on the PTR ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Effects of uAUGs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

109



List of Figures

4.4 Upstream AUGs and ORFs. . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Effects of canonical start codon context on the PTR ratio. . . . . . . . . 36
4.6 Comparison of the explained variance in PTR ratio by amino acid and

codon usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 Distribution of the amino acid and codon usage effects on PTR ratio. . . 38
4.8 Codon frequency distribution at the upstream coding region. . . . . . . . 39
4.9 Codon usage effects on PTR ratio based on its effect on translation efficiency. 40
4.10 PTR-AI correlation with mRNA half-lives. . . . . . . . . . . . . . . . . . 41
4.11 Codon usage effects on PTR ratio based on its effect on protein half-lives. 42
4.12 Codon adaptiveness based on its effects on translation efficiency and pro-

tein stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.13 PTR-AI did not correlate well with previous codon optimality measures. 44
4.14 Comparison of stop codons. . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.15 Effects of stop codon context on the PTR ratio. . . . . . . . . . . . . . . 46
4.16 Number of tissues the 1,233 RNA binding proteins are measured. . . . . 47
4.17 Expression levels of RBPs correlate with the expression levels of their

target genes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.18 Explained variances in mRNA levels and mRNA half-lives. . . . . . . . . 49
4.19 N-terminal residue effect on PTR ratio. . . . . . . . . . . . . . . . . . . . 50
4.20 Protein sequence features that significantly associate with PTR ratios. . . 51
4.21 Identified eukaryotic linear protein motifs that associate with PTR ratio

variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.22 Identified eukaryotic linear protein motifs also display similar associations

with protein half-life measurements. . . . . . . . . . . . . . . . . . . . . . 53
4.23 Identified motifs in 5’ untranslated region. . . . . . . . . . . . . . . . . . 54
4.24 Identified eukaryotic linear protein motifs also display similar associations

with protein half-life measurements. . . . . . . . . . . . . . . . . . . . . . 55
4.25 Identified motifs in 5’ untranslated region. . . . . . . . . . . . . . . . . . 56
4.26 Identified motifs in 3’ untranslated region. . . . . . . . . . . . . . . . . . 57
4.27 Identified eukaryotic linear protein motifs also display similar associations

with protein half-life measurements. . . . . . . . . . . . . . . . . . . . . . 58
4.28 Reporter assay of the AUG in 5’ UTR. . . . . . . . . . . . . . . . . . . . 59
4.29 Reporter assay results for tested motifs. . . . . . . . . . . . . . . . . . . . 60

5.1 Explained variances in mRNA levels and mRNA half-lives. . . . . . . . . 62
5.2 Explained variances in tissue-specific PTR ratios by the inspected se-

quence elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Explained variances in tissue-specific PTR ratios by the inspected se-

quence elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Sequence elements affecting protein stability may be the dominant fea-

tures predictive of PTR ratios. . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Comparison of the different regression model performances. . . . . . . . . 67

6.1 Two state hidden markov model for segmenting the transcribed regions. . 69

110



List of Figures

A.1 Correlations between PTR-AI and the codon decoding times obtained
from 17 independent ribosome profiling data sets . . . . . . . . . . . . . 86

A.2 Correlations between PTR-AI and the codon decoding times obtained
from 17 independent ribosome profiling data sets . . . . . . . . . . . . . 87

A.0 5’ UTR motifs’ conservation scores. . . . . . . . . . . . . . . . . . . . . . 91
A.0 Gene ontology terms enriched for genes that have the consensus 5’ UTR

motifs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.-2 3’ UTR motifs’ conservation scores. . . . . . . . . . . . . . . . . . . . . . 99
A.-3 Gene ontology terms enriched for genes that have the consensus 3’ UTR

motifs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.-2 Selected 5’ UTR motifs’ test experiments. . . . . . . . . . . . . . . . . . 105
A.-1 Selected 3’ UTR motifs’ test experiments. . . . . . . . . . . . . . . . . . 106
A.0 Distributions of explained variances by linear models of individual se-

quence feature groups in PTR ratios of 29 tissues. . . . . . . . . . . . . . 107
A.1 GO terms enriched for the genes in group 4 and 5. . . . . . . . . . . . . . 108

111





References

[1] Eraslan, B. et al. Quantification and discovery of sequence determinants of protein-
per-mRNA amount in 29 human tissues. Molecular Systems Biology 15 (2019).
URL https://onlinelibrary.wiley.com/doi/abs/10.15252/msb.20188513.

[2] Wang, D. et al. A deep proteome and transcriptome abundance atlas of 29
healthy human tissues. Molecular Systems Biology 15 (2019). URL https:

//onlinelibrary.wiley.com/doi/abs/10.15252/msb.20188503.

[3] McManus, J., Cheng, Z. & Vogel, C. Next-generation analysis of gene expression
regulation-comparing the roles of synthesis and degradation. Molecular BioSystems
11, 2680–2689 (2015). URL http://dx.doi.org/10.1039/C5MB00310E.
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