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Predicting antigen specificity of single T cells
based on TCR CDR3 regions
David S Fischer1,2 , Yihan Wu1 , Benjamin Schubert1,3 & Fabian J Theis1,2,3,*

Abstract

It has recently become possible to simultaneously assay T-cell
specificity with respect to large sets of antigens and the T-cell
receptor sequence in high-throughput single-cell experiments.
Leveraging this new type of data, we propose and benchmark a
collection of deep learning architectures to model T-cell specificity
in single cells. In agreement with previous results, we found that
models that treat antigens as categorical outcome variables
outperform those that model the TCR and antigen sequence jointly.
Moreover, we show that variability in single-cell immune repertoire
screens can be mitigated by modeling cell-specific covariates.
Lastly, we demonstrate that the number of bound pMHC complexes
can be predicted in a continuous fashion providing a gateway to
disentangle cell-to-dextramer binding strength and receptor-to-
pMHC affinity. We provide these models in the Python package
TcellMatch to allow imputation of antigen specificities in single-cell
RNA-seq studies on T cells without the need for MHC staining.
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Introduction

Antigen recognition is one of the key factors of T cell-mediated immu-

nity. T cells interact via a dimeric surface protein, the T-cell receptor

(TCR), with an antigen presented on a major histocompatibility

complex (MHC) located on the surface of antigen-presenting cells. This

presenting cell can be experimentally modeled via an MHC multimer

with an immobilized antigen (pMHC). The T cells of an individual

organism cover a wide range of antigen specificities. This variability in

specificity stems mostly from plasticity of three complementarity-deter-

mining region (CDR) loops (CDR1-3) of both TCR ɑ- and b-chains. The
hypervariable loops CDR3ɑ and CDR3b are most commonly aligned

with the presented epitope (Singh et al, 2017) and are hypothesized to

be the main driver of T-cell specificity (Glanville et al, 2017). However,

specificity-determining influences of the other CDR loops (Cole et al,

2009; Madura et al, 2013; Stadinski et al, 2014) and distal regions

(Harris et al, 2016a,b) have also been demonstrated.

The ability to accurately predict T-cell activation upon antigen

recognition based on antigen and TCR sequences would have trans-

formative effects on many research fields from infectious disease,

autoimmunity, and vaccine design to cancer immunology, but has

been thwarted by a lack of training data and adequate models. In the

absence of sufficiently large experimental data, most studies focused

on molecular analysis of individual co-crystallized TCR–pMHC

complexes and molecular dynamics simulations with limited success

(Flower et al, 2010). Only recently, through concerted data collection

efforts (Borrman et al, 2017; Shugay et al, 2018; Vita et al, 2019) and

newly emerging high-throughput technologies that allow the sequenc-

ing of the TCR while probing the T-cell specificity (Klinger et al,

2015; Bentzen et al, 2016), have large enough data sets become avail-

able to begin modeling the TCR–pMHC interaction through machine-

learning methods (Zvyagin et al, 2020). Current methods to predict

the likelihood of binding of TCRs to specific antigens use linear posi-

tion-specific scoring matrices (Glanville et al, 2017), Gaussian processes

(preprint: Jokinen et al, 2019), or random forests (Gielis et al, 2018). A

second set of methods attempts to directly model the TCR–pMHC inter-

action with neural networks in order to generalize across unseen TCR–

antigen pairs (preprint: Jurtz et al, 2018). We expand on these efforts

but also consider the current limitation in the number of available anti-

gens in training data sets. Secondly, we consider the inclusion of

complex sets of cell-specific covariates into the prediction problem. The

inclusion of cell-specific covariates has previously been shown to work

in the example of transcriptome-derived clusters as covariates (preprint:

Jokinen et al, 2019). Here, we leverage the data modalities in the new

droplet-based single-cell experiments.

In this study, we exploit a newly developed single-cell technology

that enables the simultaneous sequencing of the paired TCR ɑ- and
b-chains and determining the T-cell specificity via bound peptide-

loaded MHC (pMHC) complexes. This technology allows the routine

collection of binding TCR and antigen complexes of the size of entire

curated databases in a single study (Bagaev et al, 2019; 10x Geno-

mics, 2019) and accordingly harnesses great potential to transform

the field of T-cell receptor specificity prediction. We propose and

trained multiple deep learning architectures that model the TCR–
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pMHC interaction. The models account for the variability found in

single-cell data through cell-specific covariates. We show that

models that include both ɑ- and b-chain have a predictive advantage

over models that only include the b-chain, while models fit on only a

single chain still perform well. We further find that T-cell specificity

imputation in a single-cell sample from a known donor is possible,

enabling assessment of the presence of disease-specific T cells, while

generalization across unknown TCR–pMHC pairs is still not possible.

Lastly, we anticipate a large number of single-cell studies involving

T cells to exploit TCR specificity as an additional phenotypic readout.

To facilitate the usage of our predictive algorithms, we built the

Python package TcellMatch, which hosts a pre-trained model zoo for

analysts to impute pMHC-derived antigen specificities and allows the

transfer and re-training of models on new data sets.

Results

A joint deep learning model for alpha- and beta-chains, antigens,
and covariates for single-cell TCR profiling experiments

We set out to predict the antigen specificity of single T cells based

on TCR ɑ- and b-chain sequences and other cellular covariates, such

as donor identity and cell surface protein counts. We used a publicly

available single-cell data set (10x Genomics, 2019) based on a tech-

nology in which cells are captured in droplets in a microfluidics

system so that antigen specificity, the CDR3 TCR sequences, surface

protein abundance, and mRNA abundance can be assayed for each

captured cell (Fig 1A, Methods and Protocols). Antigen specificity

was quantified via the count of unique molecular identifiers associ-

ated with antigen-specific dextramer (pMHC complex) barcode

sequences (10x Genomics, 2019). Additionally, we used databases

(IEDB; Shugay et al, 2018; Vita et al, 2019) and VDJdb (Shugay

et al, 2018) that harbor additional pairs of binding TCR and antigen

sequences from traditional low-throughput screenings and crystal

structures to validate our results. The prediction of antigen speci-

ficity was previously attempted on smaller data sets, but the new

single-cell technology enables the collection of data sets that are

orders of magnitude larger than what was previously available from

curation efforts that integrated studies from the entire field of TCR

specificity (Shugay et al, 2018; Vita et al, 2019). These large single-

cell data sets may, however, be susceptible to greater noise than

results derived from studies that are either conducted in bulk or

validated separately. We chose deep learning models for the predic-

tion task as these are well suited to cope with large noisy data sets.

We included interpretable linear models and a previously proposed

non-linear reference model (NetTCR; preprint: Jurtz et al, 2018) as

baseline methods. The convolutional and linear models used here

are in structure similar to models that relate antigen specificity to

clusters of TCR sequences but are continuously differentiable and

therefore easier to extend to new specificity groups.

The prediction of antigen specificity from TCR sequences and

numeric cellular covariates is a mixed input data-type problem. The

deep characterization of the single cells via modalities such as mRNA

or surface protein abundance in the context of specificity assessment

makes such mixed input data-type models much more relevant to

single-cell data than they were previously to less well-characterized

pairs of binding TCRs and antigens that were curated from literature.

We approached this problem by combining a network tailored to

numerical data with a network tailored to sequence-structured data to

yield a single prediction (Fig 1B). Machine learning on sequence data

is a field of ongoing research and different layer types have been

shown to be effective for different tasks. Accordingly, we imple-

mented all major sequence data-specific layer types to be able to

perform a comprehensive comparison of deep learning architectures

for the task of predicting TCR specificity. This comprehensive compar-

ison is to the best of our knowledge the first of its kind. Specifically,

we implemented recurrent layers (bidirectional GRUs; Schuster &

▸Figure 1. Deep learning models predict binding of T-cell receptors (TCR) to peptide MHC complexes (pMHC) from defined antigen panels.

Distributions shown as boxplots are across threefold cross-validation. AUC ROC test: Area under the receiver operating characteristic curve on the test set for the binary

binding event prediction task. The top panel in (C), (F), (G) is a zoom into an informative region of the y-axis. counts: total mRNA counts, nc: negative-control pMHC counts,

surface: surface protein counts.

A Concept of multimodal single-cell immune profiling experiment with RNA-seq, surface protein quantification, bound pMHC quantification, and TCR reconstruction.
B Categorical TcellMatch model: A feed-forward neural network to predict a vector of antigen specificities of a T cell based on the CDR3 sequences of the TCR ɑ- and

b-chains. Gray boxes: layers of the neural network.
C Covariates improve sequence-based binding accuracy prediction. Shown are bidirectional GRU models fit on both ɑ- and b-chains (CONCAT). none: no cell-specific

covariates, donor: one-hot encoded donor identity, donor + counts: one-hot encoded donor identity and total mRNA counts per cell, counts, nc: negative-control
pMHC count vector, nc + donor + counts: negative-control pMHC count vector, one-hot encoded donor identity and total mRNA counts per cell, counts,
nc + donor + counts + surface: negative-control pMHC count vector, one-hot encoded donor identity, total mRNA counts per cell and surface protein count vector
(n = 4 cross-validations for models none and nc, “leave-one donor out”, and n = 3 cross-validations for all other models).

D Overlap of correctly and incorrectly classified test set observations from best-performing model to models with reduced covariate sets. Models without donor
covariates were not included. full: nc + donor + counts + surface model from (C), red: model shown on x-axis tick (n = 3 cross-validations for all models).

E Antigen-wise prediction performance by covariates setting. In contrast to panel (C), the prediction performance is not aggregated across the entire test set but
evaluated separately the observations belonging to each antigen. Shown are bidirectional GRU models fit on both ɑ- and b-chains (CONCAT) (n = 4 cross-validations
for models without donor covariate, “leave-one donor out”, and n = 3 cross-validations for all other models).

F Antigen-binding prediction is improved by the inclusion of TCR CDR3 sequences. BIGRU: bidirectional GRU model, NOSEQ: model without TCR sequence embedding. Models
without donor covariates were not included (n = 4 cross-validations for models none and nc, “leave-one donor out”, and n = 3 cross-validations for all other models).

G Antigen-binding prediction based on TCR CDR3 sequences is improved by modeling ɑ- and b-chains. BIGRU: bidirectional GRU model, SA: self-attention model, CONV:
convolution model, LINEAR: linear model, CONCAT: models fit on the CDR3 sequences of both TCR ɑ- and b-chains, TRA, TRB: models fit on the CDR3 sequence of either
the TCR ɑ- or the b-chain (n = 3 cross-validations for all other models).

Data information: All boxplots: the center of each boxplot is the sample median; the whiskers extend from the upper (lower) hinge to the largest (smallest) data point no
further than 1.5 times the interquartile range from the upper (lower) hinge. In (C, F, G), the underlying data points are shown as swarm plots color-coded in the same
way as the boxplot.
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Paliwal, 1997; Cho et al, 2014) and bidirectional LSTMs (Hochreiter &

Schmidhuber, 1997; Schuster & Paliwal, 1997), convolutional layers

(Szegedy et al, 2015), self-attention layers (Vaswani et al, 2017), and

densely connected networks, which include linear models that relate

to previous work (Glanville et al, 2017). All of these sequence data

embedding layer types require an initial representation of the elements

A

B C

F G

E

D

Figure 1.
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of the sequence: an initial encoding of the amino acids. We compared

categorical, substitution frequency derived (BLOSUM), and learned

embeddings and found that the initial amino acid embedding does not

have a strong effect on the results (Appendix Fig S1). The novel

learned embedding that we propose here is more parameter efficient

as it can expose a lower-dimensional amino acid space to the

sequence-embedding layers than the standard embedding layers do

(Methods and Protocols). In the following, we only show model fits

based on these learned 1×1 convolutional embeddings based on

BLOSUM50 (Methods and Protocols).

We considered the binding event prediction task within a panel

of antigens as a single- or multi-task prediction problem with anti-

gen species as categorical output variables (“categorical antigen

model”, Figs 1 and 2, Methods and Protocols). Secondly, we consid-

ered binding event prediction on arbitrary antigens as a distinct

scenario that requires the model to embed the input antigen

sequence (“antigen-embedding model”, Fig 3, Methods and Proto-

cols). The categorical antigen model predicts a probability distribu-

tion across possible binding events, including a negative (no

binding) event. The antigen-embedding model is based on the

concept of positive and negative sets. In the single-cell data, a nega-

tive set naturally arises from cells that did not bind to any or a given

pMHC species. The positive set is naturally defined as the observed

binding pairs. We generated the negative set for TCR–antigen-

binding pairs from IEDB or VDJdb (preprint: Jurtz et al, 2018) shuf-

fling TCR and antigen assignments in silico.

Assembling meaningful training and test sets across databases

We subset the data sets to allow a meaningful model comparison and

predictivity evaluation: The single-cell data set contained more than

150,000 cells from four donors with successfully reconstructed TCR

sequences and with measured binding specificity to 44 distinct pMHC

complexes. The authors of this data set defined binding events by

comparing the target pMHC counts to the counts of negative-control

pMHCs. pMHCs were defined as negative-control pMHCs if they were

not expected to specifically bind any TCR in the screen (10x Geno-

mics, 2019). We assembled antigen specificity labels based on the

same binding classification scheme. We removed putative cellular

doublets from the data set (Methods and Protocols, Appendix Fig S2):

A doublet of two cells of distinct specificities in a microfluidics setup

may result in the TCR sequence of the first cell and the pMHC binding

read-outs from the second cell being misreported as a third, non-exis-

tent, specificity pair. To avoid such non-existent specificity pairs, we

chose a conservative doublet exclusion threshold (Methods and

Protocols). We only considered the eight antigens in the pMHC CD8+

T-cell data set that had at least 100 unique, non-doublet clonotype

observations to remove effects from strong class imbalance

(Appendix Fig S3A and B). The total data set size was 91,495 unique,

non-doublet observations (cells) across the four donors.

We only assembled pairs of binding TCR CDR3 b-chain and anti-

gen sequences from IEDB and VDJdb as these databases contain far

fewer ɑ-chain than b-chain sequences and do not contain an equiva-

lent of the cellular covariates found in the single-cell data. We only

considered observations from the most commonly assayed HLA type

HLA-A*02:01. We assembled a data set of 12,414 observations from

10,726 clonotypes and 71 antigens from IEBD and 3,964 observations

from 2,812 clonotypes and 40 antigens from VDJdb, which contained

at most 10 TCR sequences per clonotype. The number of TCR clono-

types per antigen was very heterogeneous, with the most frequently

encountered antigen covering 4,812 clonotypes in IEDB, and 1,461 in

VDJdb. We provided a detailed descriptive analysis of all data sets in

Dataset EV3. TCR and specificity variation of the single-cell data are

also described in detail elsewhere (10x Genomics, 2019).

To avoid an over-optimistic estimation of model performance,

we clustered the T cells into clonotypes and separated the single-cell

data into train, test, and validation sets with regard to their assigned

clonotypes so that each clonotype only existed in one of the splits

(Methods and Protocols). We down-sampled clonotypes to a maxi-

mum of 10 observations.

Cell-specific covariates improve binding event prediction

Single-cell T-cell specificity screens feature multiple effects that

confound the binding event and its observation. Here, we compared

the performance of categorical antigen models with various sets of

covariates to quantify the relevance of covariates for predictive models.

Firstly, one would expect the donor identity to affect the TCR

sequence if donors vary in their HLA genotype. We compared models

with and without a one-hot encoded donor identity covariate to estab-

lish the impact of these donor-to-donor differences. We found that the

performance of models without donor information varies strongly and

is much worse than the performance of models with donor covariates.

The mean area under the receiver operating characteristic curve (AUC

ROC, Methods and Protocols) was 0.33 for bidirectional GRU models

(the best-performing sequence-based models) without covariates and

0.81 for those with donor covariates (Fig 1C).

The identification of binding events based on single-cell RNA-seq

libraries is liable to false negatives due to a low capture rate of RNAs.

In the single-cell screen, negative-control pMHCs were included to

provide a background distribution of non-specific binding events

and were part of the definition of discrete binding events (Methods

and Protocols). The discrete labels are therefore already corrected

for false-positive binding events. We investigated whether normal-

ization factors and negative-control pMHC counts are useful predic-

tors of a false-negative binding event that cannot be rescued by

background signal correction: A donor covariate-only model

(“donor”) was not outperformed either by a model that also included

a scaled total mRNA count covariate (“donor + counts”) or by one

that additionally also contained negative-control count covariates

(“nc + donor + counts”) (Materials and Methods, Fig 1C). We

conclude that such false-negative observations are either rare or

cannot be captured by the correction proposed here. We also identi-

fied a predictive advantage of models that account for the cell state

encoded by surface protein counts: bidirectional GRUs that

accounted for donor, negative-control pMHC counts, and total

counts improved from 0.83 AUC ROC to 0.86 if cell surface protein

counts were added as a covariate (Fig 1C, Welch’s t-test, P < 0.01).

The surface protein counts can be used to embed cells based on their

membrane surface structure in a latent space which can be used by

the model to account for the abundance of TCRs and other binding-

relevant proteins on the cell surface. The overall top-performing

model accounted for donor, total counts, negative-control counts,

and surface protein counts with an AUC ROC of 0.87 (Fig 1C).

We validated that growing the set of covariates modeled lead to

models that had additional (rather than different) correct
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predictions. The best-performing model with the highest number of

covariates predicted almost all observations correctly that were also

predicted correctly by models with fewer covariates (Fig 1D). The

test sets are not balanced across the different classes: We found

similar trends across covariate settings on each individual class as

we found globally (Fig 1E). We validated that sequence information

is indeed a relevant predictor in each of these covariate scenarios,

indicating that the combination of sequence and non-sequence

covariates is desirable (Fig 1F).

Lastly, we investigated whether models that were fit with cell-

specific covariates generalize to observations that do not contain

these covariates. For this purpose, we applied models presented in

A

C

B

Figure 2. The binding strength of T cells to pMHC complexes can be modeled based on single-cell data.

A Sequence-encoding layer types outperform linear models on pMHC count prediction if donor and size factors are given as covariates. BIGRU: bidirectional GRU model,
SA: self-attention model, CONV: convolution model, LINEAR: linear model, CONCAT: models fit on the CDR3 sequences of both the TCR ɑ- and b-chains, TRA,
TRB: models fit on the CDR3 sequence of either the TCR ɑ- or the b-chain (n = 3 cross-validations for all other models).

B Performance of bidirectional GRU models that predict pMHC counts directly is best if covariates and both TCR chains are modeled. test R2 (log): test R2 on
log-transformed test data. none: no cell-specific covariates, donor: one-hot encoded donor identity, donor + counts: one-hot encoded donor identity and total mRNA
counts per cell, counts, nc: negative-control pMHC count vector, nc + donor + counts: negative-control pMHC count vector, one-hot encoded donor identity and total
mRNA counts per cell, counts, nc + donor + counts + surface: negative-control pMHC count vector, one-hot encoded donor identity, total mRNA counts per cell and
surface protein count vector (n = 4 cross-validations for models without donor covariate, “leave-one donor out”, and n = 3 cross-validations for all other models).

C Multi-task models outperform separate single-task model on pMHC count prediction by antigen. multi: multi-task model, single: single-task model (n = 3 cross-
validations for all other models).

Data information: All boxplots: the center of each boxplot is the sample median; the whiskers extend from the upper (lower) hinge to the largest (smallest) data point no
further than 1.5 times the interquartile range from the upper (lower) hinge. The underlying data points are shown as swarm plots color-coded in the same way as the
boxplot.
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this section to TCR sequences from matched and unmatched anti-

gens from IEDB (Vita et al, 2019) and VDJdb (Shugay et al, 2018),

setting the covariate input vector to zero. The best-performing linear

predictors had true-positive rates above 0.55 while maintaining

false-positive rates below 0.1 (Appendix Fig S4), suggesting that

these models can generalize to settings in which not all covariates

are observed.

Co-modeling alpha- and beta-chains improves binding
event prediction

We compared the predictivity of models fit using one TCR CDR3

chain (“TRA only”, or “TRB only”) with models fit on both TRB and

TRA chains (“TRA + TRB”, Materials and Methods) to evaluate the

additional information inherent in the use of both chains. We found

A B

C D

E

Figure 3.
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that TRA + TRB models were slightly better than TRA-only and

TRB-only models across most layer types if basic single-cell covari-

ates were included in the prediction. The top-performing

TRA + TRB was 0.01 AUC ROC better than the corresponding

single-chain model (Fig 1G). This suggests that the evolutionary

constraint on the ɑ-chain is so strong that there is a strong correla-

tion between the two chains, which is in line with recent results that

are based on prediction performance on smaller single-cell data sets

(preprint: Jokinen et al, 2019) and results based on TCR similarity

(Lanzarotti et al, 2019). We found that recurrent and convolutional

neural networks performed similarly to linear models, typically with

a difference of up to 0.01 AUC ROC (Fig 1G). This suggests that anti-

gen specificity of a ɑ- and b-chain pair can be well represented as a

sequence motif problem in which the sequence motif has a fixed

position on the CDR3 sequence.

Binding strength can be approximated based on pMHC counts

In single-cell studies, antigen-binding events are measured as the

number of bound pMHCs of the target antigen compared with

bound negative-control pMHCs (Fig 1A). We hypothesized that one

can predict not only binarized binding events but also binding

strength based on the pMHC counts. The pMHC complexes used

here are multimers (“dextramers”) and there are typically many

TCR complexes on the cell surface. Therefore, the number of bound

pMHCs on a T cell is determined by a combination of the affinity of

an individual TCR to a pMHC monomer and the number of possible

interactions between the multimeric pMHC complex and TCR mono-

mers on the cell surface, the compound binding strength.

We fit models that were similar in structure to the models dedi-

cated to binarized binding event prediction on covariates and TCR

CDR3 sequences (Fig 1B) to predict pMHC counts per cell (Fig 2A).

We investigated whether total count and negative-control pMHC

covariates explain additional variance in the data. In contrast to the

discrete binding event prediction models, the labels (the pMHC

counts) are no longer corrected for the negative-control background

signal anymore in this scenario so that one would expect total

counts and negative-control pMHC counts to influence the target

pMHC counts. Indeed, the donor covariate-only model (“donor”)

was outperformed by a model that also included a scaled total

mRNA count covariate (“donor + counts”, R2 of log count difference

0.07) and one that additionally also contained negative-control

count covariates (“nc + donor + counts”, R2 of log count difference

0.05; Materials and Methods, Fig 2B). We conclude that T cell-

specific covariates can be used to fit variation in the pMHC count

signal. The best-performing model included donor, total count,

negative-control pMHC counts, and surface protein covariates with

an R2 of log counts of 0.63 (Fig 2B). The relevance of the surface

state covariate beyond the background correction may be an indica-

tion of a separation of affinity (pMHC to TCR interaction) and the

strength of the pMHC complex to T-cell interaction. This overall

interaction strength and may depend on additional surface proteins

that influence the binding event. Components of variation in both

effects can likely be modeled based on the surface protein composi-

tion of the cell.

Weak binding events are not captured in the discretized binding

data but may be represented in the pMHC counts. Such weak events

may contain information about antigen–antigen similarities and

therefore about output space correlations, which can be exploited

by multi-task supervised learning. Indeed, we found that multi-task

models that jointly model the prediction across antigens through

shared hidden layers of the neural network architectures outper-

formed single-task models on six out of eight antigens modeled

(Fig 2C). An alternative interpretation of the improved performance

of multi-task models is their ability to learn better de-noised low-

dimensional representations of TCR sequences, through the integra-

tion of more diverse training data.

Models with sequence-space embedding of antigens are
outperformed by categorical models

The categorical approach to modeling antigens suffers from the

disadvantage that predictions of unseen antigen sequences are diffi-

cult or impossible. Models that are based on a learned embedding of

the antigen amino acid sequence can overcome this limitation in

principle and have been used (preprint: Jurtz et al, 2018) to predict

binding events in databases such as IEBD (Vita et al, 2019) or

VDJdb (Shugay et al, 2018) (Fig 3A and B). However, it is unclear

whether the antigen diversity in the currently available data is suffi-

cient to learn such a generalization across antigens as it does not yet

◀ Figure 3. Models tailored to generalize to unseen antigens are outperformed by categorical antigen models on seen antigens.

Distributions shown as boxplots are across threefold cross-validation.

A The databases IEDB and VDJdb contain pairs of TCRs and antigens that were found to be specific to each other and are curated from many different studies.
A supervised model that predicts binding events can be trained on such data but also requires the assembly of a set of negative observations (Methods and
Protocols).

B Antigen-embedding TcellMatch model: A feed-forward neural network to predict a binding event based on TCR CDR3 sequences and antigen peptide sequence.
Gray boxes: layers of the neural network.

C Different sequence-encoding layer types perform similarly well on binding prediction based on TRB-CDR3 and antigen sequence. CONCAT: models in which TRB
CDR3 sequence and antigen sequence are concatenated, SEPARATE: models in which TRB CDR3 sequence and antigen sequence are embedded by separate
sequence-encoding layer stacks. BILSTM: bidirectional LSTM model, BIGRU: bidirectional GRU model, SA: self-attention model, CONV: convolution model, INCEPTION:
inception-type model, NETTCR: NetTCR model (preprint: Jurtz et al, 2018), LINEAR: linear model (n = 3 cross-validations for all other models).

D, E Antigen-wise categorical models outperform models that are built to generalize across antigens on high-frequency antigens in IEDB (D) and on overlapping
antigens between IEBD and single-cell data (E). In both cases, the models were trained on IEDB and tested on held-out observations from IEBD (D) or on the
single-cell data (E). embedding: models that are embedding the antigen sequence and can be run on any antigen (Fig 3b), categorical: antigen-wise categorical
models that do not have the antigen sequence as a feature (Fig 1B) (n = 3 cross-validations for all other models).

Data information: All boxplots: the center of each boxplot is the sample median; the whiskers extend from the upper (lower) hinge to the largest (smallest) data point no
further than 1.5 times the interquartile range from the upper (lower) hinge. The underlying data points are shown as swarm plots color-coded in the same way as the
boxplot.
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adequately cover the antigen space. To resolve this issue, we first

built and compared a zoo of models that can embed antigen amino

acid sequences to use the best-performing instances as an upper

limit on predictive performance. Entries in the IEDB and VDJdb

mostly contain TCR b-chain sequences only. Accordingly, we built

models that only use the TCR b-chain sequence to be able to

conduct a meaningful extrapolation between the single-cell data,

IEDB, and VDJdb. Previously, a specific single-layer motif-based

A

B

C

D

Figure 4. Imputed antigen specificity labels enrich single-cell RNA-seq workflows on T cells by an additional phenotype.

A–D UMAP with observed (A, C) and predicted (B, D) labels. (A, B) The cells in the UMAP are the cells from all donors (training and validation data, n = 189,512); the model
was fit with donor and size factor covariates. (C, D) The cells in the UMAP are the cells from a validation donor (n = 46,526); the model was fit without covariates.
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architecture was proposed to model antigen sequences (preprint:

Jurtz et al, 2018). We generalized this architecture and found that

all common sequence-embedding layer types can perform this

prediction and that bidirectional LSTM-based networks perform best

in terms of model uncertainty with AUC ROC of 0.82 (Fig 3C).

Having built optimal antigen-embedding models, we assessed

whether we find evidence for the ability of these models to general-

ize in the antigen space on both the prediction task on antigens that

are contained in the training set and the task held-out test antigens.

Firstly, we investigated whether antigen-embedding models have

predictive advantages over similar categorical models on antigens

that are in the training set. A lack of such predictive advantages

would be indicative of an inability to learn generalizable embed-

dings of antigen sequences. We found that antigen-wise categorical

models have better predictive performance on the antigens they

were trained on than sequence-embedding models, on both the

IEDB (categorical model had a higher AUC ROC in 8 out of 11 anti-

gens, Wilcoxon test, P < 0.01) and the single-cell pMHC CD8+ T-cell

data set (categorical model had a higher AUC ROC in 8 out of 8 anti-

gens, Wilcoxon test, P < 0.01; Fig 3D and E). We conclude that the

previously proposed antigen sequence-embedding models are

currently suboptimal for binding prediction on seen antigens. More-

over, the analysis of seen antigens does not suggest that antigen-

embedding models can learn representations of antigen sequences

that allow for generalization in the antigen space.

Secondly, we tested the ability of sequence-embedding models to

generalize to held-out antigens that are not contained in the training

data. This task cannot be performed with models that treat antigens

as categories. Firstly, we trained models on a subset of high-

frequency antigens from IEDB and tested on low-frequency antigens

from IEDB (Appendix Fig S5A, average of the top mean AUC ROC

by antigen of 0.79). Secondly, we used a subset of observations of

VDJdb with antigens not overlapping to IEDB as a test set

(Appendix Fig S5B, average of the top mean AUC ROC by antigen of

0.86). Thirdly, we trained models on IEDB and tested on not over-

lapping antigens from the single-cell pMHC CD8+ T-cell data

(Appendix Fig S5C, average of the top mean AUC ROC by antigen of

0.59). While binding could be predicted for a few held-out antigens,

the variation in prediction success across antigens and data sets was

very large on the IEDB and VDJdb hold out scenarios. In the single-

cell hold out (Appendix Fig S5C), in which we had sufficient data to

assess prediction properly for each antigen, the predictivity was not

very high (average AUC ROC 0.59). Thus, we cannot find evidence

in the current TCR databases that extrapolation in the antigen space

is possible based on current numbers of sampled antigens, in accor-

dance with previous findings (preprint: Jurtz et al, 2018).

In summary, we do not find evidence that supports the usage of

antigen-embedding models as they are outperformed by categorical

models in the task of predicting antigens contained in the training

data and because there is not enough antigen diversity in the avail-

able training data to fit models that are able to generalize to unseen

antigens.

Imputation of antigen specificity of T cells adds phenotypic
information to single-cell studies

We showed that antigen specificity can be predicted based on

TCR sequences from single-cell data. The inclusion of pMHC

binding detection in an experiment increases the sequencing and

reagent costs compared with experiments involving CDR3

sequencing only; this will be especially pronounced in assays

with many different antigens. However, antigen specificity is a

layer of phenotypic information that adds to single-cell RNA-seq

embeddings and can be used to relate activation states and cell

types to specific disease-causing agents. The model classes shown

here can be used to impute antigen specificity based on the CDR3

sequence only. Accordingly, pre-trained specificity-predicting

models may serve as an alternative to including pMHCs in T-cell

assays. All models discussed above can be used for the purpose

of imputation. We found that the imputation of antigen specificity

can give interpretable results in T-cell subpopulations identified

based on the transcriptome (Fig 4): The observed labels are

enriched in sub-regions of the transcriptome space (Fig 4A and

C), which can be recovered in multiple cases based on the

predicted labels (Fig 4B and D). This implies that cell states can

be interpreted based on imputed specificity labels. In this scenar-

io, one encounters the case of held-out donors. We showed above

that prediction performance is strongly increased if donors are

modeled (Fig 1C). Prediction to unseen donors requires the MHC

alleles to be modeled directly; this requires larger patient cohorts

than given in this study, though, and will be a focus of future

research.

Discussion

Our results quantify the benefit of jointly modeling the TCR ɑ- and
b-chains while accounting for single-cell variability through cell-

and donor-specific covariates for the prediction of T-cell speci-

ficity. Most importantly, we found that models that treat antigens

as categorical outcome variables outperform those that model the

TCR and antigen sequences jointly. Our results suggest that T-cell

specificity can be predicted in an HLA genotype-specific fashion

and thereby pave the way for research and development on all

HLA types, beyond the commonly investigated type HLA-A*02:01.

Here, we modeled donor rather than explicitly modeling MHC alle-

les. In the future, one might directly use one-hot encoded MHC

alleles as predictors when larger patient cohorts become available.

The issue of MHC allele modeling is much simplified if pMHC

panels are considered in isogenic mouse models only, which may

be an important scenario for mouse-based single-cell immunology

research. We showed that generalization to unseen antigens with

antigen sequence-embedding models is currently challenging.

However, these models will become more important as the diver-

sity of assayed antigens increases. The models and analysis

presented here can serve as a starting point for such studies in the

future. Lastly, we showed that pMHC counts can be modeled as a

measure of the strength of dextramer to T-cell binding and that

multi-task models outperform single-task models in this setting,

facilitating the integration of large pMHC panels in single experi-

ments.

T-cell specificity complements standard immunological single-

cell RNA-seq studies and can be used to uncover subpopulations

that are expected to be activated during disease or used as an

indicator of the presence of an antigen in a tissue. Consequently,

we propose the computational imputation of T-cell specificity as
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an important tool for immunologically focused single-cell RNA-

seq experiments. Here, we chose a very conservative exclusion of

putative doublet T cells that could be improved in the future

based on the transcriptome-derived and the TCR sequence-

derived doublet likelihoods of each observation. Imputation will

reduce the number of pMHC species in experiments by allowing

antigen prioritization or may entirely replace the pMHC reagents

in this workflow. In addition to the economic value of this impu-

tation, it will also offer unbiased specificity metrics that are not

liable to errors in the pMHC panel choice. Such predictive

models can also be directly applied to immunophenotyping by

screening for TCRs that interact with known viral or cancer

neoepitopes, enabling the characterization of a patient’s immuno-

logical state and the stratification of subpopulations that are

amenable to antigen-specific immunotherapies. Continuous T-cell

binding strength models would permit the possibility of rational

in silico TCR design, accelerating the development of TCR-based

biologics.

Materials and Methods

Reagents and Tools table

Reagent/
Resource Reference or Source

Identifier or
Catalog Number

Software

python v3.7 https://www.python.org/

scanpy v1.4 https://pypi.org/project/scanpy/

tensorflow
v2.0.1

https://pypi.org/project/tensorflow/

Methods and Protocols

General note on data sets
In this study, we worked on data sets from public databases IEDB

(Vita et al, 2019) and VDJdb (Shugay et al, 2018) and on a public

data set from a single-cell pMHC-based T-cell specificity experi-

ment (10x Genomics, 2019). IEDB and VDJdb contain pairs of

binding T-cell receptors (TCRs) and antigens. In the single-cell

experiment, cells were first treated with barcoded pMHCs and

were then physically separated into droplets in a microfluidics

setup. pMHCs captured in these droplet and T-cell receptor

sequences associated with the captured cells are barcoded with a

droplet-specific sequence so that both can be mapped to a single

observation after sequencing (10x Genomics, 2019). Accordingly,

one can obtain not only a list of bound TCRs and antigens but

also pMHC counts for each TCR. These counts can be discretized

into binding events and “spurious” binding or can be directly

modeled as proposed in the main text. Importantly, one can

easily establish the identity of multiple binding antigens to a

single TCR sequence based on such pMHC counts. Two of the

four donors (donors 1 and 2) were HLA-A*02:01 (10x Genomics,

2019), which was also the HLA type selected for in the IEDB and

VDJdb samples. A detailed description of the HLA types and

pMHC types used in this study is provided elsewhere (10x Geno-

mics, 2019).

Statistics
We present P-values for selected model performance comparisons.

These P-values were computed on the comparison of two sets of

performance metrics. We used Welch’s t-test if we compared two

sets of performance metrics from two separate cross-validation sets,

which is equivalent to the case of both sets sharing all model hyper-

parameters other than cross-validation partition. We used the

Wilcoxon test if we compared metrics across sets of models that

vary in hyper-parameters, as one would no longer expect a unim-

odal performance metric distribution in these cases.

Feed-forward network architectures
Here, we describe proposed architectures of the models that predict

antigen specificity of a T-cell receptor (TCR) based on the CDR3

loop of both ɑ- and b-chains and on cell-specific covariates. Note

that specificity-determining influences of CDR1 and CDR2 loops

(Cole et al, 2009; Madura et al, 2013; Stadinski et al, 2014) and

distal regions (Harris et al, 2016a,b) have also been demonstrated,

but were not measured in the single-cell pMHC assay. All networks

presented contain an initial amino acid embedding, a sequence data

embedding block, and a final densely connected layer block.

Amino acid embedding

The choice of initial amino acid embedding may impact data and

parameter efficiency of the model and therefore may impact the

predictive power of models trained on data sets that are currently

available. We used one-hot encoded amino acid embeddings, evolu-

tionary substitution-inspired embeddings (BLOSUM), and learned

embeddings. The learned embeddings were a 1 × 1 convolution on

top of a BLOSUM encoding and were prepended to the sequence

model layer stack. Here, channels are the initial amino acid embed-

dings (we chose BLOSUM50) and filters are the learned amino acid

embedding. This learned embedding can reduce the parameter size

of the sequence model layer stack. All fits presented in the manu-

script other than in Appendix Fig S1 are based on such a learned

embedding with five filters. We anticipate that sequence-based

embeddings will gain relevance in the context of extrapolation

across antigens in the future. Here, parameter efficiency in the

sequence models will play an important role and the 1 × 1 convolu-

tion presented here is an intuitive first step in this direction.

Sequence data embedding

We screened multiple layer types in the sequence data embedding

block: recurrent layers (bidirectional GRU and LSTM), self-attention,

convolutional layers (simple convolutions and inception-like), and

densely connected layers as a reference. Recurrent layer types and

self-attention layers were previously useful for modeling language

(Vaswani et al, 2017) and epitope (Wu et al, 2019) data. Convolu-

tional layer types have been useful for modeling epitope (Han &

Kim, 2017; Vang & Xie, 2017) and image (Szegedy et al, 2015) data.

The sequence model layers retain positional information in subse-

quent layers and can thereby build an increasingly abstract repre-

sentation of the sequence. To achieve this on recurrent networks,

we chose the output of a layer to be a position-wise network state

which results in an output tensor of size (batch, positions × 2,

output dimension) for a bidirectional network. This position-wise

encoding occurs naturally in self-attention and convolutional

networks. We did not use feature transforms with positional signals
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(Vaswani et al, 2017) on the self-attention networks, so that the

network has no knowledge of the original sequence-structure but

can still retain inferred structure in subsequent layers. We presented

models fit on the CDR3 loop of both ɑ- and b-chains of the TCR

(Fig 1B) and models fit on the CDR3 loop of the b-chain and the

antigen sequence (Fig 3B). In both cases, we needed to integrate

two sequences. To this end, we either used separate sequence-

embedding layer stacks for each sequence (all models presented in

Fig 1 and models indicated as “separate” in Fig 3) or by appending

the two padded sequences and using a single sequence-embedding

layer stack (models indicated as “concatenated” in Fig 3). We

reduced the positional encoding to a latent space of fixed dimen-

sionality in the last sequence-embedding layer of recurrent

networks by the emitted state of the model on the last element of

the sequence in each direction. This last layer allows usage of the

same final dense layers independent of input sequence length.

Convolutional and self-attention networks were not built to be

independent of sequence length. We did, however, pad the input

sequences to mitigate this problem on the data handled in this

paper. We used a residual connection across all sequence-embed-

ding layers. Further layer-specific hyper-parameters can be

extracted from the code supplied with this manuscript (Dataset

EV1 and EV2).

Final densely connected layers

We fed the activation generated in the sequence-embedding block

into a dense network that can integrate the sequence information

with continuous or categorical donor- and cell-specific covariates.

We modeled the binding event as a probability distribution over two

states (bound and unbound) and compute the deviation of the

model prediction from observed binding events via cross-entropy

loss. Firstly, one can use such models to predict binding events on a

single antigen represented as a single output node with a sigmoid

activation function. Secondly, one can model a unique binding

event among a panel of antigens with a vector of output nodes (one

for each antigen and one node for non-binding) which are trans-

formed with a softmax activation function.

Covariate processing

We set up a design matrix inspired by linear modeling to use as a

covariate matrix. We modeled the donor as a categorical covariate,

resulting in a one-hot encoding of the donor. We modeled total

counts, negative-control pMHC counts, and surface protein counts

as continuous covariates. We log(x + 1)-transformed negative-

control pMHC counts and surface protein counts to increase the

stability of training. We modeled total counts as the total count of

mRNAs per cell divided by the mean total count.

Training, validation, and test splits
We used training data to compute parameter updates, validation

data to control overfitting, and test data to compare models across

hyper-parameters. Model training was terminated once a maxi-

mum number of epochs were reached or if the validation loss was

no longer decreasing. In the latter case, the model with the lowest

validation in a sliding window of n epochs until the last epoch

was chosen; n is given in the grid search scripts (Dataset EV3).

The model metrics presented in this manuscript are metrics evalu-

ated on the test data for models selected on cross-entropy

(categorical binding prediction) or mean-squared log error (dex-

tramer count prediction) of the validation data. We provide train-

ing curves for all models that contributed to panels in this

manuscript in Dataset EV3.

Optimization
We used the ADAM optimizer throughout the manuscript for all

models. We used learning rate schedules that reduce the learning

rate at the time of training once plateaus in the validation metric

are reached. The initial learning rate and all remaining hyper-

parameters (batch size, number of epochs, patience, steps per

epoch) were varied as indicated in the grid search hyper-para-

meter list.

Model fitting objectives

We chose cross-entropy loss on sigmoid- or softmax-transformed

output activation values to train models that predict binarized bind-

ing events and mean-squared logarithmic error (msle) on exponenti-

ated output activation values for models that predict continuous

(count) binding affinities.

Performance metrics
We used AUC ROC, F1 scores, false-negative rates, and false-

positive rates in the study to evaluate models that predict bind-

ing probabilities. AUC ROC is useful if the observations cover the

full range of classification thresholds and is useful because it

provides a measure that summarizes all scalar classification

thresholds. F1 scores can always be used to evaluate a classifier

but rely on a strict threshold. We used AUC ROC where possible

but complemented with F1 scores if the AUC ROC score may suf-

fer from a disjointed support of test data set on the classification

threshold. False-negative and false-positive rates are used in

Appendix Fig S4 to emphasize how models trained on single-cell

data generalize to data from IEBD and VDJdb in both the nega-

tive and the positive classes separately. We used the R2 to evalu-

ate the performance of models that predicted pMHC counts

(positive integer space).

Single-cell immune repertoire (CD8+ T cell) data processing
Primary data processing

We downloaded the full data of all four donors from another study

(10x Genomics, 2019). All data processing for each model fit is

documented in the package code (Dataset EV1) and grid search

scripts (Dataset EV2). The number of T-cell clonotypes per antigen

varied drastically between the order of 100 and 104 (Appendix Fig

S3A and B). Subsequently, we selected the eight most common anti-

gens (ELAGIGILTV, GILGFVFTL, GLCTLVAML, KLGGALQAK,

RLRAEAQVK, IVTDFSVIK, AVFDRKSDAK, RAKFKQLL) for categori-

cal panel model fits to avoid issues with class imbalances. We used

the binarized binding event prediction by the authors of the data set

(10x Genomics, 2019; labeled “*_binder” in the files “*_binarized_-

matrix.csv”) as a label for prediction. For the continuous case, in

which we predicted pMHC counts, we chose the corresponding

count data columns in the same file. Next, we performed multiple

layers of observation filtering: (i) doublet removal, (ii) clonotype

down-sampling, and (iii) class down-sampling. It was previously

shown that doublets, namely, droplets containing two cells targeted

with the same barcode, which cannot be distinguished in

ª 2020 The Authors Molecular Systems Biology 16: e9416 | 2020 11 of 14

David S Fischer et al Molecular Systems Biology



downstream analysis steps, tend to be enriched in subsets of tran-

scriptome-derived clusters (Wolock et al, 2019). We propose using

the number of reconstructed TCR chain alleles to identify potential

doublets and demonstrate that the so characterized doublets are

indeed enriched in a particular cluster in each donor (Appendix Fig

S2A–D). There are cells that have two active alleles for either TCR

chain, but these cannot be easily separated from doublets that arise

in the cell separation process. To avoid bias of the presented results

by potential cellular doublets, we chose to exclude all cells showing

more than one allele for either the ɑ- or the b-chain. We further

investigated the overall contribution of potentially ambient mole-

cules that give rise to all observed T cells and found that high-

frequency chains do not dominate the overall signal (Appendix Fig

S2E and F). This analysis presents an upper bound to the impact of

ambient molecules on this experiment as evolutionary effects prob-

ably also contribute to over-representation of particular chain

sequences. Subsequently, we removed all cellular barcodes that

contain more than one ɑ- or b-chain as mature CD8+ T cells are

expected to only have a single functional ɑ- and b-chain allele.

Next, we down-sampled each clonotype to a maximum of 10

observations to avoid biasing the training or test data to large

clones. Here, we used clonotypes as defined by the authors of the

data set in the files “*_clonotypes.csv” (10x Genomics, 2019).

Lastly, we down-sampled the larger class to a maximum of twice

the size of the smaller class when predicting a binary binding

event for a single antigen. We did not perform this last step on

multiclass and count prediction scenarios. We padded each CDR3

sequence to a length of 40 amino acids and concatenated these

padded chain observations to a sequence of length 80 for models

that were trained on both chains. We performed leave-one-donor-

out cross-validation on models that did not take the donor iden-

tity as a covariate. We sampled 25% of the full data clonotypes

and assigned all of the corresponding cells to the test set for all

models that did use the donor covariate. The latter case yielded

68,716 clonotypes and 91,495 cells across all four donors. All

cross-validations shown across different models are based on

threefold cross-validation with seeded test–train splits resulting in

the same split across all hyper-parameters. We present an analy-

sis of the clonotype diversity encountered in this data set in

Appendix Fig S6.

Binarization of single-cell pMHC counts into bound and unbound states

We used the binarization described in the original publication (10x

Genomics, 2019) for the raw counts to receive binary outcome

labels: A total pMHC UMI count larger than 10 and at least five

times as high as the highest observed UMI count across all negative-

control pMHCs was required for a binding event. If more than one

pMHC passed these criteria, the pMHC with the largest UMI count

was chosen as the single binder.

Test set assembly for models fit on IEDB data

This section describes how the test described in Fig 3E and

Appendix Fig S5C was prepared. The cells were filtered as described

above. We then extracted one binding TCR-antigen pair per cell

from this list. We used the remaining TCR-antigen pairs as validated

negative examples and down-sampled these to the number of posi-

tive observations to maintain class balance. All cross-validations

shown across different models are based on threefold cross-

validation with seeded test–train splits resulting in the same split

across all hyper-parameters.

IEDB data processing
Primary processing

We downloaded the data from the IEDB website (Vita et al, 2019)

with the following filters: linear epitope, MHC restriction to HLA-

A*02:01 and organism as human and only human. This yielded a

list of matched TCR (mostly b-chain CDR3s) with bound antigens.

We assigned TCR sequences to a single clonotype if they were

perfectly matched and down-sampled all clonotypes to a single

observation. We only extracted the b-chain and CDR3 sequences to

a length of 40 amino acids. We padded the antigen sequences to a

length of 25 amino acids. We sampled 10% of all observations as a

test set. We generated negative samples for both training and test

sets separately by generating unobserved pairs of TCR and antigens.

Here, we assumed that all TCRs bind a unique antigen out of the set

of all antigens present in the database so that any other pairing

would not result in a binding event. This procedure yielded 9,697

observations for both the positive and the negative sets before the

train–test split from 71 antigens.

Test set assembly for models fit on IEDB data

This section describes how the test depicted in Appendix Fig S5A

was prepared. To explore the ability of antigen-embedding Tcell-

Match models to generalize to unseen antigens, we fit such a model

on the subset of high-frequency antigens of IEDB with at least five

unique TCR sequences and tested the models on the remaining anti-

gens. All cross-validations shown across different models are based

on threefold cross-validation with seeded test–train splits resulting

in the same split across all hyper-parameters.

VDJdb data processing
Primary processing

We provided an exploratory analysis of this data set in Appendix Fig

S3 “exploration_vdjdb_data.*”. We downloaded the data from the

VDJdb (Shugay et al, 2018) website with the following filters: Species:

human, Gene (chain): TRB, MHC First chain allele(s): HLA-A*02:01.

This yielded 3,964 records from 40 antigens. We assigned TCR

sequences to a single clonotype if they were perfectly matched and

down-sampled all clonotypes to a single observation. We only

extracted the b-chain and CDR3 sequences to a length of 40 amino

acids. We padded the antigen sequences to a length of 25 amino acids.

Test set assembly from VDJdb for models fit on IEDB data

This section describes how the test depicted in Fig 3D and

Appendix Fig S5B was prepared. We sub-selected observations with

matching or non-matching antigens with respect to the training set

depending on the application (described in the figure caption or

main text). All cross-validations shown across different models are

based on threefold cross-validation with seeded test–train splits

resulting in the same split across all hyper-parameters.

Data availability

The data sets and computer code produced in this study are avail-

able in the following databases:
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• Modeling python package (TcellMatch) and analysis scripts:

GitHub (https://github.com/theislab/tcellmatch). Model fits are

available in Dataset EV4.

Expanded View for this article is available online.
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