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Abstract

With the recent advances in high-throughput experimental techniques, the volume and diversity
of biological data reached the highest level. Today this data regime allows us to accomplish
many critical tasks in biology via data-driven, genome-wide models. The recent breakthroughs
in neural networks led to highly expressive machine learning models that have become powerful
tools in data science. Due to the characteristics of biological data modalities and the domain-
specific challenges, the necessity for machine learning algorithms tailored for genomics data is
more significant than ever before. In this thesis, we present two novel algorithms we developed
to bridge this gap and improve the characterization of biological datasets using expressive
deep learning models. These algorithms address major challenges in delineating the sources of
variation in molecular and clinical phenotypes in human genetics and single-cell genomics.

The first method is a novel machine learning-based variant prioritization approach to
identify non-coding variants that potentially play a critical role in the underlying biology of
complex diseases and traits, presumably by modulating the regulatory circuitry. Our approach,
DeepWAS, uses deep neural networks to facilitate generating hypotheses about potential cell
types and regulatory elements underlying complex diseases and traits. Leveraging pre-trained
neural networks for predicting transcription factor (TF) binding sites from DNA sequences
allowed us to estimate the regulatory effect of non-coding variants. Subsequently, we used
potentially regulatory variants for modeling genotype-phenotype associations with a robust
multivariate variable selection method. We applied DeepWAS to complex phenotypes and
diseases like multiple sclerosis, major depressive disorder, and height to generate testable
hypotheses where potential cell types and regulatory elements are involved.

The second method is an unsupervised machine learning algorithm, DCA, to refine the
representations of single cells, which are impaired by the substantial noise in the single-cell
RNA-seq measurement process due to technical factors. We utilized autoencoders to capture
the structure of the data by compressing the data and representing cells with a few hidden
variables. Reconstructing the input data using only these core features omits unimportant
patterns in data and produces a denoised output, where the biological signal is accentuated.
We tailored the noise model of this scalable denoising method to the characteristics of single-cell
data, such as the sparsity and the count structure. We demonstrated that denoising improves
typical single-cell downstream tasks using simulated and real datasets. Our method thus
facilitates understanding the heterogeneity of cell populations.

In summary, we developed data-driven methods to improve the characterization of clinical
and molecular phenotypes from regulatory and single-cell genomics perspectives; at different

scales, ranging from cell populations to human populations.
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Chapter 1

Introduction

Computational biology is the science of characterizing biological systems through computational
modeling of the experimental data (Kitano 2002; Kohl et al. 2010). This line of research
ambitiously aims to develop a thorough understanding of the wide range of processes and
components of biological systems at different resolutions ranging from the molecular phenotypes
like gene expression and transcription factor (TF) binding (Deplancke et al. 2016) to the
complex clinical phenotypes like multiple sclerosis (Baranzini and Oksenberg 2017) and major
depressive disorder (Wray et al. 2018). In computational biology research, modeling is used as
an abstraction technique by distilling the utterly complex world of biology into a few concepts,
thereby providing a simpler representation of reality. For example, pseudotime inference,
a commonly used modeling technique in single-cell genomics, aims to resolve the order of
differentiating cells along the differentiation trajectory using the snapshot of gene expression
information of every single cell (Haghverdi, Biittner, et al. 2016). It abstracts the extreme
complexity of the cell circuitry, which gives rise to the high-dimensional transcriptomic profiles
into a single concept: the position along the differentiation axis. Although the abstract view
of models cannot fully encapsulate reality, it provides useful approximations of a specific
aspect of the data. As George E. P. Box elegantly said: “All models are wrong, but some are
useful.” (Box 1976).

New technologies have been the drivers of life sciences. Robert Hooke, one of the most
prolific scientists of the seventeenth century, described a fly’s eye and plant cells for the first
time in history (Hooke 1961) and pioneered a new field of study with these phenomenal
observations. The development of the technology, in this case the compound light microscopes,
was the key to the breakthrough. After Hooke, the advances in technology continued to
provide new tools for observing the world of molecular biology and for generating new types
of measurements and data. In the information age, the completion of human genome sequence
and the advent of inexpensive microarrays enabled genotyping individuals at scale and initiated

the next generation of genetic studies (Hoheisel 2006). This technology empowered identifying
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the sequence variation in the human genome that covaries with a phenotype of interest with
sufficient statistical power. These studies, called genome-wide association studies (GWAS), not
only fundamentally changed our understanding of complex traits and diseases (Visscher et al.
2017) but also facilitated the functional annotation and interpretation of the human genome
(Buniello et al. 2019). Similarly, the rise of a recent disruptive technology, called single-cell
genomics, has been revolutionizing how we observe cellular processes today (Wagner et al.
2016) by providing measurements of molecular phenotypes such as gene expression (Macosko
et al. 2015) and chromatin accessibility (Buenrostro et al. 2015; Schwartzman and Tanay
2015) at single-cell resolution. Single-cell genomics has been adding new dimensions to our
knowledge of fundamental biological concepts such as cellular identity (Wagner et al. 2016),
differentiation (Velten et al. 2017; Bach et al. 2017) and organ development (Jun Ding et al.
2018).

Computers and computational techniques have been reshaping biology and how biological
questions are formulated (Markowetz 2017). In his book, Life Out of Sequence (Stevens 2013),
Hallam Stevens wrote, “Biology adapted itself to the computer, not the computer to biology”.
This adaptation is driven by the impact of computational concepts such as simulations and
modeling on biology. For example, completion of the human genome in the Human Genome
Project was enabled by the application of efficient sequence alignment and scaffolding methods
to the shotgun sequencing data (Weber and Myers 1997). After the sequencing effort, one
of the lead scientists in the project, Eric S. Lander, famously summed up the results as
“Genome: Bought the book; hard to read”. Researchers in biology have been seeking new
ways to “read the book” through computational, mathematical and statistical methods. The
genome-wide association and quantitative trait loci (QTL) studies link many clinical and
molecular phenotypes to genomic loci thanks to the efficient implementations of fundamental
statistical models like linear and logistic regression that can analyze large-scale genotype and
gene expression data (Purcell et al. 2007; Shabalin 2012). Furthermore, machine learning
and predictive modeling techniques assist the progress of annotating the human genome by
extrapolating our knowledge beyond already characterized genomics regions (Ernst and Kellis
2012; Libbrecht and Noble 2015).

Recent theoretical and practical advances in machine learnin, particularly in predictive
modeling with deep neural networks led to remarkable applications in many fields, including
computer vision and natural language processing (LeCun et al. 2015). For some prediction
tasks like image recognition, neural networks are now the default modeling approaches that
can perform beyond human-level accuracy (K. He et al. 2015). Moreover, neural networks have
been fundamentally transforming many fields by replacing traditional learning algorithms. In
computational biology, where machine learning is already an essential tool (Libbrecht and

Noble 2015), the first applications of deep neural networks emerged as promising techniques
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for sequence analysis and binding prediction of DNA and RNA binding proteins (J. Zhou and
Troyanskaya 2015; Alipanahi et al. 2015; Kelley, Snoek, et al. 2016). Deep neural networks,
which form the basis of the two methods we propose, are introduced in the next section in
detail.

1.1 Artificial neural networks

In the 1950s, the research field of artificial neural networks set out to investigate the organization,
dynamics and information storage mechanisms of the human brain by designing computational
models of the biological neurons, so-called “brain models” (Rosenblatt 1958; Rosenblatt 1961).
This effort subsequently turned into an ambitious goal to perform specific complex tasks
such as language translation similarly to how the human brain would perform them, hence
simulating the intelligent behavior known as artificial intelligence (Al) (Russell and Norvig
2016). The first notable attempt towards this goal was the Perceptron, a special-purpose
hardware designed and built by American psychologist Frank Rosenblatt. The Perceptron
was a hardware implementation to perform supervised learning where a task is learned as a
mapping from an input to an output using pairs of input and output samples (Alpaydin 2009).
It used a simple neuron model introduced earlier by McCulloch and Pitts (1943), where a
neuron is represented as a computational unit that takes input signals, e.g. pixels of an image,
calculates a weighted sum of input features and finally produces a binary value. “On” state of
the binary output produced by an artificial neuron, which indeed represents a linear classifier,
can be interpreted as “firing” when the received stimuli exceed a threshold. Furthermore,
Rosenblatt proposed a simple learning method, called perceptron learning, which relied on
iteratively updating the neuron weights until the difference between the desired output and
the model output is lower than a predefined threshold (Rosenblatt 1961). It was also shown
that the learning algorithm is guaranteed to find a solution where all samples are classified

correctly if the samples are linearly separable.

In parallel with the research on artificial neural networks, the quest of exploring the
horizons of computation was shaping up by the key players in the field such as Alan Turing
who proposed to consider the question “Can machines think?” (Turing 1950). The efforts
following up on this question led to significant developments in Al. In the proposal of the
Dartmouth workshop in 1956, a two-month workshop on Al organized by John McCarthy,
who is considered one of the founders of Al, the aim of the Al research was summarized as:
“to find how to make machines use language, form abstractions and concepts, solve kinds of
problems now reserved for humans, and improve themselves.”. For example, Arthur Samuel,
who also coined the term artificial intelligence, implemented a checkers program which was

able to play at a strong amateur level and disproved the idea that computer programs cannot



4 CHAPTER 1. INTRODUCTION

Single-layer Neural Network B Multi-layer
(Logistic regression) Neural Network
Input Output Input Hidden layers Output

Feature 1 ---

/False

Feature 2 Q/

Fully-connected layer

Activation 2

Feature 2

Activation 1

Feature 1

Figure 1.1: Feature learning and nonlinearity aspects of multilayer neural networks compared to logistic
regression. (A) Logistic regression, which can be interpreted as a neural network with a single layer, fails to
classify two linearly non-separable classes. (B) Multilayer neural networks, exemplified here with a network
with two fully-connected layers, discover new representations of the data where nonlinearities are captured in
the hidden layers. This example demonstrates how hidden layer representations are leveraged to make linearly
non-separable data separable. The original features of the data and the hidden representation captured in the
second hidden layer are shown in scatter plots. The thickness of edges represents edge weights.

play games better than their creators by winning against Samuel (Samuel 1959; Russell and
Norvig 2016). Similarly, programs for proving mathematical theorems (Gelernter 1959), and
the introduction of genetic algorithms (Friedberg 1958) subsequently raised the expectations
of Al and contributed to the momentum of the progress in the field.

Despite the enthusiasm and raised expectations, most of the tasks that were expected to
be accomplished soon turned out to fail miserably by the end of the 1970s. Furthermore, the
perceptron method was criticized by Marvin Minsky and Seymour Papert on the grounds that
perceptrons would fail to learn the tasks involving linearly non-separable classes (Minsky and
Papert 1969). Due to the impact of this criticism and the disappointment caused by failing to
reach the ultimate aim of performing tasks at the human level, this line of research entered a
period of stagnation called the “AI winter” in the 1970s (Lighthill 1973; Russell and Norvig
2016). During this period, the fundings, which the U.S. Department of Defense primarily
provided, are dramatically reduced and neural networks could not become a critical method in
the field until the mid-1980s.
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Over time, the biological neuron interpretation and the overall influence of biology on neural
networks faded away and neural networks evolved from an ambitious idea of achieving human-
level performance using brain models into a theoretical framework of predictive modeling
(Bishop 1995). Recently, the emergence of key elements such as convenient neural network
frameworks (Abadi et al. 2015), increasing availability of GPUs (Shi et al. 2016), brilliant
heuristics for making training more efficient (Kingma and Ba 2014; Ioffe and Szegedy 2015),
and massive amounts of data (Jia Deng et al. 2009) set the scene for a creative and productive
era of machine learning. After notable applications in image recognition (Krizhevsky et al.
2012), object detection (Girshick et al. 2014) and image segmentation (Long et al. 2015)
where the traditional methods were outperformed by large margins, neural networks found
applications in other domains such as machine translation (Y. Wu et al. 2016) as well as audio
(A. v. d. Oord et al. 2016) and image synthesis (Radford et al. 2015). Consequently, neural
networks not only moved these domains forward but also fundamentally transformed them by

replacing key processing steps in their methodology.

The key factor behind the success of recent neural network applications and the deep learning
hype is the major methodological and practical improvements over traditional machine learning
methods. First of all, multilayer neural networks can capture nonlinearities in the data and
effectively exploit this information in classification or regression tasks which might substantially
affect performance. Compared to linear regression, which operates on raw input features,
multilayer neural networks create hidden features of the data by successively transforming
the input features nonlinearly (Figure 1.1). Second, the flexibility of neural networks enables
specific structural characteristics of the data to be reflected in the network architecture, which
is a concept known as inductive bias. For example, convolutional neural networks exploit
the locality in the data based on the assumption that proximal features are often dependent.
Consequently, this design dramatically reduces the number of parameters and improves
generalizability (Goodfellow, Bengio, et al. 2016). Convolutional architectures fit well to the
structure of images (Krizhevsky et al. 2012) and DNA sequences (J. Zhou and Troyanskaya
2015; Alipanahi et al. 2015; Kelley, Snoek, et al. 2016) where locality assumption holds. Third,
designing neural networks that can perform multiple related prediction tasks simultaneously,
called multitasking, is trivial. Such designs may improve overall prediction quality by taking
dependencies across prediction tasks into account and discovering representations of the input

that can be shared across tasks.

Similarly, multiple modalities of the same data, e.g. an image and a sentence describing
the image or DNA sequence and chromatin accessibility of a locus, can be combined either
at the input or output level in the neural network architecture conveniently by adding an
input or output layer per modality (Eser and Churchman 2016). This bears extra importance

for predictive modeling in computational biology since readouts from multiple omic layers
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Figure 1.2: The number of publications about deep learning and deep learning in genomics increased expo-
nentially between January 2009 and October 2018. Publication counts are obtained from app.dimensions.ai
using queries “deep learning” and “deep learning” AND “genomics”.

in matched samples are commonly measured and modeled (Bersanelli et al. 2016; Stoeckius
et al. 2017; Hasin et al. 2017). Finally, neural networks also excel at characterizing unlabeled
datasets either by extracting useful hidden variables (G. E. Hinton and Salakhutdinov 2006;
Vincent et al. 2008) or by estimating complex multivariate data generating distributions,
thereby allowing sampling of new data points in an unsupervised setting (Kingma and Welling
2013; Goodfellow, Pouget-Abadie, et al. 2014).

Machine learning and predictive modeling are used extensively in computational biology
for tasks ranging from the prediction of transcription factor (TF) or RNA-binding protein
(RBP) binding sites to splicing or cis-regulatory element prediction (Libbrecht and Noble
2015). The success of neural network applications in other fields and increasingly available
biological data catalyzed the deep learning applications in our field (Stephens et al. 2015). In
three seminal works published in 2015 and 2016 (J. Zhou and Troyanskaya 2015; Alipanahi
et al. 2015; Kelley, Snoek, et al. 2016), convolutional neural networks are used for predicting
the binding sites of transcription factors and chromatin accessibility where the prediction
problem is simply formulated as classification of given biological sequences and existing machine
learning methods are outperformed with a large margin. Furthermore, the potential of deep
learning-based sequence models has been leveraged to predict regulatory effects of variants, a
task known as variant effect prediction (VEP) (J. Zhou and Troyanskaya 2015; Kelley, Snoek,
et al. 2016; J. Zhou, Park, et al. 2018). Methods utilizing predicted variant effects for devising
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rich hypotheses on the mechanisms of complex traits and diseases have been proposed recently
(Arloth et al. 2020; J. Zhou, C. L. Theesfeld, et al. 2018). Genome-wide genotype-phenotype
associations, which is discussed in the next section, provides a general framework that is
critical to understand in the light of new methods using variant effects predicted by neural
networks.

Since the pioneering applications of deep learning in computational biology, the number
of published applications continued to increase exponentially (Figure 1.2). Today, neural
networks are employed as the method of choice for many tasks in genomics. See Eraslan,

Avsec, et al. (2019) for a comprehensive review of deep learning applications in genomics.

1.2 Genome-wide association studies

Curiosity about the inheritance patterns of the observable characteristics of living organisms
has been a major driving force in science for centuries. Since Gregor Mendel established the
field of genetics in the late 19th century by revealing the basic principles of inheritance in
pea plants, genetics expanded beyond inheritance. However, identifying the genetic drivers of
traits and diseases is still a critical scientific challenge today.

In the early 2000s, two major developments in genetics marked the start of a new era.
First, the sequence of the human genome is identified by the Human Genome Project with
the aim of having a complete map of all genes in the human genome (International Human
Genome Sequencing Consortium 2001; Venter et al. 2001). Second, the availability of low-cost
technologies, such as microarrays, enabled the measurement of genome-wide genetic variation,
known as genotyping, in a large number of individuals (Gunderson et al. 2005). Large-scale
genotyping projects (International HapMap Consortium 2003; Siva 2008) yielded a deep catalog
of human genetic variation that is now essential for genetics research.

The sequence of the human genome, the “big data” of genome-wide genotypes and the
scalable methods developed in parallel empowered the widespread comparative analyses of
the sequence variations in human populations in order to reveal the genetic basis of complex
diseases and traits. These studies, called genome-wide association studies (GWAS), aim to
find associations between the genetic variation and the phenotype of interest. The proportion
of phenotypic variance explained by the genetic variation provides information about the
genetic architecture, complexity and heritability of the disease or trait. Today, GWAS is the
most powerful statistical tool for identifying the loci that are potentially relevant for a given
phenotype and characterizing the genetic basis of phenotypes of interest.

To date, GWAS revealed over 75,000 unique genome-wide genotype-phenotype associations
for over 2000 diseases and traits reported in around 3500 publications (Buniello et al. 2019).

These associations not only fundamentally changed our understanding of complex traits and
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diseases by narrowing down the loci relevant for phenotypes (Visscher et al. 2017) but also
shaped our view of genetic variation at both the individual and the population level. However,
it remains a challenge to pinpoint the variants that are causal for the phenotype of interest
due to two major reasons. First, there are regions in the genome where the variants are
inherited hence co-occur together. This concept, called the linkage disequilibrium (LD), leads
to large blocks of highly correlated genetic variants. Therefore, the unit of highest granularity
in GWAS results is an LD block which flags most variants in the block as potentially causal.
Second, nearly 90% of the genome-wide significant variants are localized in the non-coding
regions of genes (Edwards et al. 2013). This poses another layer of complexity since there
is no trivial interpretation of non-coding variants as opposed to the coding variants such as
missense mutations. Such variants are considered to contribute to the disease mechanism
through modulating the regulatory mechanisms.

This thesis revisits the variant prioritization problem by leveraging deep learning-based
variant effect prediction approaches, namely DeepSEA (J. Zhou and Troyanskaya 2015). This
new sequence-based predictive approach enables us to suggest potentially causal non-coding
variants and establish a link between the regulatory mechanism modulated by the non-coding

variants and the phenotype of interest.

1.3 Single-cell RN A sequencing

Single-cell RNA sequencing (scRNA-seq) is an experimental technique for profiling transcrip-
tomes of individual cells in the target biological sample. scRNA-seq has been fundamentally
changing our understanding of molecular cell biology and diseases by facilitating the char-
acterization of cell populations, the regulatory circuitry of cells, and the organization of cell
populations in tissues.

Experimental steps of scRNA-seq comprise the dissociation and isolation of individual cells,
followed by the library preparation and sequencing (Figure 1.3). Cells are first dissociated from
a solid sample into a suspension of individual cells via enzymatic or mechanical dissociation
methods. This step is followed by cell isolation, where cells are isolated into either the wells of
a well-plate via FACS, microfluidic devices (Picelli et al. 2013; Jaitin et al. 2014; Soumillon
et al. 2014) or emulsion droplets! (Macosko et al. 2015; Klein et al. 2015; Zheng et al. 2017).
Isolated cells are then uniquely barcoded in the isolated environment where cell lysis, reverse
transcription and ¢cDNA amplification processes are performed.

Strengths and limitations of library preparation protocols vary (Ziegenhain et al. 2017;
Jiarui Ding, Adiconis, et al. 2019). In the plate-based methods, cells are sorted into the wells

of a well plate. Such protocols are more sensitive (i.e. the number of genes detected per cell

L Although these are the most commonly-used protocols today, many alternative single-cell profiling protocols
exist such as those based on nanowell and microfluidic chips (Han et al. 2018; Gierahn et al. 2017).
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Figure 1.3: Single-cell RNA sequencing workflow. Dissociation of cells is followed by the library preparation
where each cell is uniquely barcoded. Two primary library preparation techniques, plate-based and droplet-based
protocols, are shown. After sequencing, read alignment and read counting, downstream analysis is performed
for characterizing the biological heterogeneity of the sample. Adapted from Hwang et al. (2018).

is higher) and give good read coverage throughout the entire transcript (hence called “full

transcript methods”). However, the number of cells being profiled is limited by the size of the

well-plate and the number of plates. Therefore these protocols are considered low-throughput?.

Droplet-based methods provide high-throughput experiments where tens of thousands of cells

can be profiled at once. Furthermore, these methods are more cost-effective compared to

plate-based protocols. Another advantage of the droplet-based methods is that the unique

molecular identifiers (UMIs), an experimental technique where each transcript is labeled with

a unique barcode to avoid PCR duplicates, are used as a standard practice (Klein et al.

2015). A major limitation of the droplet-based protocols is relatively lower sensitivity and the

capture of only 3’-end or 5’-end of the transcripts. The lack of coverage throughout the entire

transcript might hinder conducting certain types of analyses such as allele-specific expression

and alternative splicing analysis, which are feasible with full-transcript protocols.

Since the first whole-transcriptomics study with four cells in 2009 (Tang et al. 2009),

2SPLiT-seq (Rosenberg et al. 2018) and sci-rna-seq (J. Cao, Packer, et al. 2017) offer elegant high-throughput
strategies for plate-based methods.
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Figure 1.4: The trend in the number of profiled cells in single-cell datasets over time (Svensson et al. 2019).
Each dot is a single-cell study. Colors represent the protocol used in the studies. The black line is a linear fit
that shows the exponential increase in the number of profiled cells.

numerous variations of single-cell protocols have emerged (Figure 1.4). Each protocol has
different pros and cons in throughput, sampling bias, technical variation, sensitivity, data
quality and cost-effectiveness (Ziegenhain et al. 2017; Jiarui Ding, Adiconis, et al. 2019). As a
low-cost, high-throughput alternative, droplet-based protocols are preferred today, especially
in large-scale studies such as atlas projects where the goal is typically to characterize a specific
organ or even organism (J. Cao, Packer, et al. 2017; Plass et al. 2018). A well-known example
is The Human Cell Atlas project (Regev et al. 2017). This recent large-scale collaborative
effort aims to create a comprehensive catalog of all human cell types and states using single-cell

genomics.

Similar to experimental methods, computational tools and algorithms are also rapidly
evolving and adapting to the advances of the field (G. Chen et al. 2019). The main goal
of the downstream analysis and modeling in single-cell genomics is to characterize given
biological samples mainly using exploratory data analysis techniques and statistical models.
This characterization typically starts with quality control (QC) steps to ensure the validity of

the downstream analysis and to have an accurate picture of the biology of a given sample.

There are various QC steps in scRNA-seq, including cell calling, ambient RNA detection,
and doublet detection. In droplet-based methods, a major problem called “ambient RNA”
stems from the fact that cell death and lysis cause some transcripts of primarily highly
expressed genes to contaminate the suspension. These transcripts can then be captured in the
droplets. For the droplets containing a cell, ambient RNA introduces spurious expression and
shifts the gene expression profiles in random directions. The droplets without a cell might
end up in the final gene expression count matrix as regular observations due to non-zero
expression originating from the ambient RNA. Cell calling methods aim to distinguish between

these two types of observations in the expression count matrix (Lun, Riesenfeld, et al. 2019).



1.3. SINGLE-CELL RNA SEQUENCING 11

Furthermore, detecting the composition and the amount of ambient RNA in cell-containing
droplets and removing the ambient RNA effect from the counts is a more challenging task
(Heaton et al. 2019; Fleming et al. 2019). Doublet detection methods aim to find droplets with
more than one cell (i.e. multiplets). Doublets with cells from population A and population B
might look like a “novel population” or a “transition state” with expression profiles similar to
those of A and B. Therefore keeping such observations in the count matrix might give rise to
misleading results in the analysis, especially if populations A and B are biologically relevant.
Simple cut-off based heuristics applied to the total number of detected transcripts are also
widely used to eliminate empty droplets and multiplets partly, assuming that empty droplets
contain fewer transcripts than regular cells, whereas multiplets contain higher (Luecken and
Theis 2019). Before the downstream analysis, the final preprocessing step that is typically used
is the normalization step which accounts for the cell-to-cell differences in sequencing depth.
The counts of two cells are not directly comparable without this correction. The simplest
normalization method used today is to scale total counts of all cells to a constant number such
as ten thousand, which is called TP10k (transcripts per ten thousand), similar to the TPM
method, which is often used in bulk RNA-seq where constant is simply one million instead of
ten thousand. However, this approach does not entirely remove the correlation between the
gene expression profiles and the total counts. Also, it does not consider the biological factors
(e.g. cell type-specific effects) behind the variation in total counts. Better methods that take
the count structure and biological variability of the data into account are also proposed in the
literature (Lun, Bach, et al. 2016; Bacher et al. 2017; Hafemeister and Satija 2019).

Downstream analysis steps of single-cell gene expression data consist of various unsupervised
and exploratory data science techniques. Clustering and data visualization are arguably the
most crucial steps of such pipelines facilitating the identification of biological variability in the
data (Figure 1.3). While clustering identifies groups of cells with relatively low within-group
variation compared to between-group variation, differential expression methods aim to find
differences in gene expression between such groups and/or between biological conditions using
statistical methods. In the cases where data exhibit continuous trends rather than a discrete
cluster structure (e.g. differentiation), the techniques tailored for continuous phenotypes
such as trajectory inference (Haghverdi, Buettner, et al. 2015; Haghverdi, Biittner, et al.
2016; Trapnell et al. 2014) or RNA velocity (La Manno et al. 2018; Bergen et al. 2019) are
typically used. In addition to these exploratory techniques, single-cell data can also be used
to interrogate gene-gene relationships and identify modules of genes as a proxy of cellular
programs based on correlation or other similarity metrics. However, due to the inherent
noise of the single-cell data (e.g. dropout due to the stochasticity in transcript capture and
amplification), gene-gene correlations are typically underestimated, which might hinder the

downstream analysis. Using reasonable heuristics, denoising techniques aim to recover the
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correlation between the genes that is lost due to the noise. In the literature, denoising has
been used to improve the identification of gene modules and further functional analyses built
on these modules (Smillie et al. 2019).

Many steps of the downstream analysis such as differential expression, denoising and
normalization, depend on the noise model assumption of the single-cell count data. A common
choice in these models is to first log-transform the count data using a pseudocount of one (i.e.
log(X+1)) and then assume Gaussian distribution as a simple noise model. This approach
ignores specific characteristics of the data, such as the count structure and high sparsity. Other
choices for the noise model include count distributions such as Poisson, negative binomial and
zero-inflated negative binomial. This thesis introduces a denoising method for scRNA-seq that
leverages unsupervised learning concepts from modern machine learning, where we use a noise

model that is tailored to the characteristics of single-cell data.

1.4 Research questions

In this thesis, we aim to answer the following questions about the major challenges in two

different domains of biology and genetics; GWAS and single-cell genomics:

1. In GWAS, it is challenging to prioritize potentially causal regulatory variants amongst
several risk variants identified by GWAS due to the highly correlated and cosegregated
variants. Variant prioritization approaches aim to characterize such variants by incor-
porating new layers of information from alternative sources that might help identify
causal variants and their proxies (Figure 1.5). Machine learning-based variant effect
prediction methods are getting increasingly available and performant. The first research
question we aim to answer is whether we can generate better functional hypotheses on
clinical phenotypes by combining genotype data from individuals with the variant effect

predictions produced by machine learning models.

2. Single-cell genomics is an indispensable tool in our toolbox of measurement techniques
which provides a unique way to investigate cellular processes and phenotypes at single-cell
resolution. However, due to the low amount of RNA in cells, single-cell RNA sequencing
(scRNA-seq) gene expression readout is corrupted by the characteristic noise of the
measurement process. This corruption hinders having accurate representations of cells
and poses a challenge in downstream analysis, which needs to be accounted for with
proper noise models (Figure 1.5). We aim to use genomics-based deep learning to address
this problem by denoising the expression signal which yields a faithful representation of

the underlying biology and improves downstream analysis.
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Figure 1.5: Overview of this thesis. Biological processes that we aim to understand, such as gene dysregulation
and cell differentiation, are observed as imperfect measurements through biological experiments. In this
process, the data act as a corrupted proxy of reality due to several factors like measurement noise or biological
confounders such as cosegregation. Modeling provides an abstract representation of reality which can be
utilized to improve our understanding of biology. Here, this flow is exemplified in two application domains.
First, variant prioritization in population studies (Chapter 3) where we use integration (Section 3.2) and
predictive modeling (Section 3.3) for finding potentially causal variants. Second, denoising approaches improve
the single-cell gene expression readouts (Chapter 4) and enhance the overall picture of molecular phenotypes
such as cell differentiation. Our novel autoencoder-based denoising approach is presented in Section 4.2.
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1.5 Overview of this thesis

Chapter 2 introduces an overview of the statistical learning methods and biological data
modalities used throughout the thesis. The methods section includes the introduction of the
fundamental modeling concepts that form the basis of this thesis, such as generalized linear
models, stability selection and neural networks. The chapter concludes with the definitions
of the essential data types of various omic layers such as transcriptomics and epigenomics,
other related concepts like genotyping and microRNAs, as well as the public data sources
like the ENCODE (ENCODE Project Consortium 2007) and Roadmap Epigenomics projects
(Kundaje et al. 2015).

Chapter 3 discusses variant prioritization methods from different perspectives, focusing
on the analysis of non-coding variants. The first section, which was published as a book chapter
(Schulze and F. McMahon 2018), provides an overview of the tools and methods commonly
used for prioritizing coding and non-coding variants based on positional overlaps. Next, we
introduce Misina, our method that facilitates the interrogation of the microRNA-mediated
effects of genetic variants by integrating microRNA-binding site predictions, microRNA and
target gene expression and eQTL effects of variants (publication in preparation). We aim
to understand the regulatory determinants of complex diseases and traits that act through
modulating microRNA-target interactions with this integrative approach. We conclude the
chapter by introducing another approach, DeepWAS, which identifies the disease- or trait-
associated non-coding variants with a potential regulatory and causal role (Arloth et al. 2020).
With this approach, we aim to broaden the scope of typical genome-wide association studies
by introducing relevant cell lines and regulatory elements like transcription factors.

Chapter 4 starts with the conceptual overview of dropout and the recovery of the biological
signal in scRNA-seq datasets. After we present two existing denoising methods, we introduce
our deep count autoencoder (DCA) approach, which utilizes unsupervised neural networks
to capture the data manifold and subsequently to reconstruct the data with a pronounced
biological signal (Eraslan, Simon, et al. 2019). We further demonstrate the benefits of denoising
using commonly used downstream methods.

Chapter 5 concludes the thesis with a summary and remarks on future directions. The

conceptual and structural overview of this thesis is given in Figure 1.5.



Chapter 2
Background

This chapter briefly introduces the statistical learning techniques, data modalities and sources
used in the following chapters. Section 2.1 focuses particularly on linear models and variable
selection employed in genotype-phenotype associations in the context of variant prioritization
in Chapter 3, as well as the neural network and autoencoder frameworks which serve as a
background for the unsupervised machine learning model introduced in Chapter 4. This section
is followed by Section 2.2 where brief descriptions of omics modalities such as transcriptomics
and epigenomics are presented. Finally, Section 2.3 concludes the chapter with the list of
public data sources like ENCODE and GTEx that were mainly utilized in Chapter 3.

2.1 Models

This section gives an overview of commonly used linear and non-linear models from supervised
and unsupervised learning perspectives, as well as the complementary technique of variable
selection. With a probabilistic (and frequentist) formulation, the objective of the supervised
models can be described as maximizing a likelihood function £(6;y;) of the conditional distribu-
tion P(y;|x;;6) which acts as a mapping of the inputs x; to the outputs y; parameterized by 6.
In the unsupervised case, the distribution of interest can be broadly defined as P(x;; ) where
the aim is to find the parameters that jointly models the inputs x; without an explicit mapping
by maximizing the likelihood L£(#;x;). Following subsections summarize different combinations
of linear and non-linear functions with different probability distribution assumptions where
the inference relies on the maximum likelihood-based parameter estimation (Friedman et al.
2001).



16 CHAPTER 2. BACKGROUND

2.1.1 (Generalized linear models

Linear regression is a simple and powerful method for modeling the relationship between a
target (or dependent) variable and one or more features (or independent variables) from a
set of observations using the linear combination of features. The coefficients of the linear
combination are called the model parameters. The data matrix with n observations and p
features can be written as X € R™®*t1) where the additional feature represents constant ones
that are used as the intercept term in the model. A single observation, namely a row of the X
matrix, is represented as x; where ¢ = 1, ..., n is the observation index. The target variable

and the model parameters are represented as n—dimensional and (p + 1)—dimensional vectors

y and 3.

1 Y1 Bo

Zi1 Y2 B1

x; = | Ti2 y=1| 3 B=| b
Tip Yn /Bp

A linear regression model can be described as
yi =x; B+e, €~ N(0,0%)

where the independent Gaussian noise term is denoted as ¢;. From a probabilistic perspective,
the estimation of the model parameters can be formulated as the maximum likelihood estimation
of the mean parameter of conditional distribution P(y;|x;; 3, %) using the Gaussian probability
density function (PDF):

1 i —x! 8)2
P(yilxi; B,0°) = oo XP <_(y2;<2z,3))

The log-likelihood of parameters, 3, can then be defined as follows:

>)

log £(B;y) = log (H T

=nlog

o (-
T B
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It can be shown that optimizing the model parameters with the most commonly used
error function in linear regression, mean squared error (MSE), is equivalent to maximizing the
log-likelihood of parameters with the assumption that P(y;|x;) is normally distributed. Given
that the variance parameter is a non-negative constant, MSE error (Lysg) can be derived as

follows:

arggnax nlog W 202 Z T,B = argmmz — x;fpﬁ)z

= arg;nin ly — X85

= arg;nin Lvse(y, XB)

See Chapter 5.5.1 of the deep learning book (Goodfellow, Bengio, et al. 2016) for more details.

Generalized linear models (GLMs) generalizes the concept of linear regression to arbitrary
distributions by linking the linear combination of features to the expectation of a distribution
using link functions. Therefore, investigating the link between the loss functions that are
typically used in classification and regression settings and the maximum likelihood estimates
of the parameters of corresponding probability distributions allows us to understand various

noise models used in GLMs and neural networks.

Logistic regression

For binary classification, the conditional distribution P(y;|x;;/3) can be modeled with the
Bernoulli distribution in the GLM framework. The likelihood function of Bernoulli is given

below

P(yil%i; 8) = Loemouni(3;y) = { '

9i = o(z] B)

where the g; parameter in [0, 1] interval is the only parameter of Bernoulli, which also
corresponds to the mean of the distribution. The sigmoid link function is defined as o(z) =
1/(14e~*) which converts the linear transformation of the data into the mean of the distribution,
is referred to as the inverse link function in generalized linear model (GLM) literature, whereas
it is called the activation function in the neural network literature. The same likelihood

function can also be expressed as


http://www.deeplearningbook.org/contents/ml.html
https://en.wikipedia.org/wiki/Generalized_linear_model#Link_function

18 CHAPTER 2. BACKGROUND

[/bernoulli(:@' yz) = :')zh + (1 - )(1 vi)

Ebernoulh :6 y :l_[yzZ 1 - yz (1 vi)

whereas the negative log-likelihood can be written as

log Ebernoulh By Z —Yi log Yi — 1 - yl) log(l - @z)

which yields the error function known as binary cross-entropy (BCE) or log loss in statistical
learning. This can be further extended to the categorical log-likelihood for multi-class problems.
This shows that maximizing the log-likelihood of Bernoulli distribution is equivalent to

minimizing the log loss:
arggnax log 'Cbernoulli(ﬁ; Y) = arg;nin Lpce (ya Y)

Regression with count data

Modeling count data is critical in computational biology as the readout of many experiments,
such as high-throughput sequencing assays, exhibits count structure. For count data, the data
generating process can be regarded as a process where the number of occurrences of an event is
counted. If the interval where we count the occurrences is fixed, then this process is called the
Poisson process and the P(y;|x;;3) distribution can be modeled using the Poisson distribution

and the corresponding likelihood function:

n
y eXp y
P(yi|xi; ) £p01sson 13 y H ! '
9 = exp(z; B)

where the only parameter g; of Poisson represents both the mean and the variance of the
distribution. The exponential link function keeps the estimated mean parameter non-negative.
The negative log-likelihood is given as:

—10g Lpoisson (B;¥) = Y _ i — yi log §i + log(y:!)

7

For maximizing the conditional likelihood, we can minimize the model parameters with
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respect to the negative log-likelihood as

arg;nin > 9 — yilog i
i

Negative binomial regression

The major limitation of Poisson distribution is that the mean and variance are equal and
are controlled by a single parameter. This, however, is not realistic in many real-world cases.
Negative binomial (NB) is another discrete distribution that can be used when the mean and
the variance of the data are not equal. Although the classical textbook definition of NB is
the number of successes before a specified number of failures occur in i.i.d Bernoulli trials,
the alternative parameterization with mean and dispersion is more intuitive and useful. NB

likelihood can be written as follows:

~1
= I'( y’L + 0~ ) o ’ Ui v
P(yilxi; B) = Lxs(Bsy H T 1) <91 n Qz> =1 + i

A

§; = exp(z! B)

where parameters ¢; and 6 represent the mean and dispersion. The variance of the distribution

is:

o2 =+ 0712

which shows the mean-variance dependence. Note that this distribution reduces to Poisson

when 0 = oo

The negative log-likelihood of NB is:

—log Lng(Byy) = —logT(y; + 07) + 1ogT(0") + log I'(y; + 1)
— 07" (log6' —log(0~" + 9:)) — vi (log 9 — log(0~" + 4))

In the GLM setting, we can interpret this equation as a loss function by dropping the



20 CHAPTER 2. BACKGROUND

terms that do not depend on g;:

n
argmin > 0 og(07" + i) — yi (log §i — log(0~" + 4))
7

=> (07" +yi)log(6~" + i) — yilog i

7

Dispersion parameter can either be optimized as a free parameter or can be conditioned

on x; via another set of parameters Gy e.g. 0; = exp(m?ﬁg).

Zero-inflated negative binomial regression

In some cases, there might be an excess number of zeros in the count data, which can be
accounted for using so-called zero-inflated models. In such cases, the conditional distribution
P(y;|x;; 8) can be modeled using zero-inflated negative binomial (ZINB), which can be written

as a mixture of a point mass at zero and a negative binomial:

i+ (1 —m;) Lng(0;94,0) ify; =0
(1 —m;) Lxs(Yi; 04, 0) if y; >0

Lzing (Yi; i, Ui, 0) =

where 7 represents the mixture coefficient between the point mass and NB. Note that the
model reduces to negative binomial if 7 = 0. It is also important to note that here the mixture
parameter 7 is sample-specific similar to the mean parameter of the negative binomial, pu;,
therefore it is conditioned on the data. This can be achieved by estimating 7; using the sigmoid

link function e.g. m; = a(:cZT,BW) as in logistic regression.

Negative log-likelihood can be written as:

o\
—log [ mi + (1 — m;) <6’T—&-yl> ify; =0

—log(1 — ;) — log LNB(B5Y) if y; >0

—log Lzing(B3y) =

which can be used as an error function in ZINB regression to estimate model parameters. In
Section 4.2, we use ZINB log-likelihood as a noise model within the autoencoder framework
to find the underlying manifold of single-cell RNA sequencing data, which is exploited for

denoising the expression levels of cells.
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2.1.2 Variable selection

Lasso

Lasso (Tibshirani 1996) is a feature selection and regularization method based on the L1 norm
of model parameters in regression analysis, often preferred to identify associations in high

dimensional datasets. Parameter estimation can be described as follows:

arg;ninuy —XB|3 + MBI,

where the hyperparameter A represents the strength of the L1-regularization, which shrinks
model parameters towards zero. Lasso is used for finding SNP-phenotype associations in this
thesis (Section 3.3).

Stability selection

The variation observed in feature selection when the model is fitted to similar datasets
might hugely impact reported results. Especially in computational biology, where selected
features such as genes are reported as the “signatures” of molecular or clinical phenotypes via

guilt-by-association, this aspect of feature selection called stability bears extra importance.

Stability methods seek robust feature selection procedures by taking the uncertainty of
feature selection into account using subsets or bootstrap samples of datasets. In stability
selection (Meinshausen and Biihlmann 2010), the authors propose a method where Lasso
models are fitted to the small random subsets of a given dataset (|n/2]) repeatedly N times
which yields selection probabilities for all variables. Afterward, a stringent predefined selection
probability cutoff (my,) is applied in order to obtain a stable feature set. However, the novelty
of the method lies in the theorem, which under some assumptions establishes an elegant
link between the selection cutoff and Type I error rate. In the method, the upper bound of
per-family error rate (PFER), E(V), representing the expected number of falsely selected
variables is defined in terms of the selection cutoff 7yp,., the average number of selected variables

gp and the total number of variables p:
1 2
E(V) < o———%
2 — 1 p

With predefined PFER and selection cutoff values, ¢ is calculated from the formula and

the regularization parameters A € A are determined accordingly.
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Figure 2.1: Neural network architectures. Layered structures and connection patterns of neurons are shown
for each of the major neural network architectures, namely (A) fully connected, (B) convolutional and (C)
recurrent neural networks.

2.1.3 Neural networks

There are three major architectures of neural networks (Figure 2.1). Architectures are designed
by reflecting a bias into the architecture matching the nature of the data and the network
structure, a concept known as the inductive bias. Fully connected neural networks (also known
as multilayer perceptrons, MLPs) consist of layers in which every neuron is connected to
every neuron in the next layer (Figure 2.1A) and are preferred for tabular data without an
assumption suggesting a particular connectivity pattern between the features.

Convolutional neural networks (CNNs) assume the locality of input features which fits
well to the structure of images, sentences and biological sequences. CNNs can be considered
regularized (or sparsified) versions of MLPs (Figure 2.1B). The inductive bias of recurrent
neural networks (RNNs) (Figure 2.1C) also favors locality in data, making it suitable for
modeling sequence data.

The general structure of neural networks can be summarized as

f(X1, W) =X,
[(X2, W3) = X3

g(Xl) Wl) - Y
argmin  L(Y,Y)
W1, Ws,..,\ W,
where X represents the input matrix. [ and W, depict the layer index and the corresponding
layer parameters. f(X;, W;) = o(X;W;) for feedforward neural networks. o is a simple

nonlinear function, such as tanh or sigmoid, called the activation function, which allows the
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Figure 2.2: Architecture of an autoencoder. Input and output layers of the same size and a bottleneck layer
of lower dimension characterize an autoencoder. The loss function quantifies the concordance between the
original input and the reconstruction.

neural network to capture nonlinear relationships in data. Final layer activation depends on the
type of task that the network is trained for. For example, sigmoid, softmax or linear activations
are used for binary, multi-class classifications and regression, respectively. L represents the
loss function.

Convolutional neural networks simply replace the matrix multiplication with the convolution
operation: f(X;, W;) = o(X; * W;). Recurrent neural networks process the data sequentially:
f(XZ(-j),WZ-) = U(XEDW@- + ng_l)WEh)) where the superscript j is the time index!. HU~1)

and W) denote hidden state vector from the previous time point and hidden state parameters.

Autoencoders

Unlike supervised learning where the mapping of the inputs (x;) to the outputs (y;) is explicitly
defined, unsupervised learning aims to find the parameters of the joint distribution P(x;;#)
without an explicit mapping or labels (e.g. ;) by maximizing the likelihood £(#;x;). An
autoencoder is a type of neural network typically used in unsupervised and representation
learning (Goodfellow, Bengio, et al. 2016). Autoencoders consist of an input layer, one or more
hidden layers including a bottleneck layer, and an output layer (Figure 2.2) where the hidden
layers perform nonlinear operations due to the nonlinear activation functions such as rectified
linear unit (ReLU) (Goodfellow, Bengio, et al. 2016). Input and output layers are of the same
width, which is equal to the number of features of the input data while the bottleneck layer is

typically of much lower dimensionality. Layers before and after the bottleneck are considered

! Although bidirectional RNNs also exist, here the unidirectional RNNs are described for clarity.
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two components of the network and called encoder and decoder, respectively. In the standard
autoencoders, the weights of the network are optimized via numerical optimization to obtain
the best reconstruction (i.e. predicted output) from the output layer using a loss function that
compares the reconstruction with the original input. Although mean-squared error (MSE) is
usually used as the default loss function, other likelihood functions that are more suitable
for the structure of the data can also be used (Eraslan, Simon, et al. 2019) as in the GLM
framework (see Section 2.1.1). The mathematical description of the model in Figure 2.2 is

given below:

E — ReLU(XWp)
B — ReLU(EWp)
D — ReLUBWp)
X = f(DWo)

where ReLLU is used as the activation function of the hidden layers, whereas the activation of
the output function is shown as f, which similar to the link functions in GLMs, depends on
the likelihood function. Here E, B, D and X represent, the first encoder layer, the bottleneck
layer, the first decoder layer and the output, respectively. The optimization objective can be

written using the loss function (i.e. likelihood function) as:

argmin — log £(X; X, ©)
S}

where O denotes the set of all parameters i.e. {Wg, Wp, Wp, Wp}.

Interestingly, there is a connection between autoencoders and principal component analysis
(PCA) where the loadings of PCA and the weights of an autoencoder with a single linear layer
trained with the MSE loss function span the same subspace (Plaut 2018).

The bottleneck layer acts as a major architectural constraint, which prevents the network
from learning the identity function. There are two critical consequences of this constraint.
First, neural network learns how to encode the data points in a low dimensional space, also
called the latent space, effectively by capturing the underlying manifold from which the
high-dimensional measured data is likely originated. This makes autoencoders suitable for
dimension reduction and other representation learning tasks. Moreover, in the probabilistic
formulations of autoencoders such as variational autoencoders (VAEs) (Kingma and Welling
2013), latent variables, which are represented by the bottleneck neurons, can be used as
building blocks and combined with additional latent variables that are needed for specific

tasks (Lopez et al. 2018). Second, autoencoders naturally function as denoising algorithms
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Figure 2.3: Microarrays with fixed DNA oligonucleotide probes allow us to quantify expression levels of
particular genes or to determine the genotypes of individuals by measuring the fluorescent signal emitted from
the labeled samples. (Figure is adapted from Wikipedia and is in the public domain.)

since the decoder reconstructs the data from its compressed representation, which is likely to
capture only essential features of the data. This idea is explored in Chapter 4 in the context

of single-cell genomics.

2.2  Omics modalities

The computational methods in biology operate on the measurements from a collection of
biological entities. The entire collection of specific entities of the same type, such as genes,
transcripts and proteins is typically referred to with the “-ome” suffix i.e. genome, transcriptome
and proteome. The concept of “the totality of biological entities” is also applied to many other
types of entities that are not part of the central dogma such as methylome for the regions of
the genome where methylation is observed and metabolome for the totality of metabolites in a
cell. The field of study focusing on such omes is called omics (Hasin et al. 2017) e.g. genomics.

Various measuring techniques and protocols in biology allow us to study and understand
the biological phenomenon of interest like gene regulation or cell differentiation indirectly
through data and modeling. In the following subsections, we briefly describe the data types

and data resources used in the analyses throughout the thesis.

2.2.1 Transcriptomics
Gene expression microarrays

Microarrays are screening tools that typically contain DNA oligonucleotide probes (or proteins
in protein arrays) attached to a solid surface. Fluorescently labeled sample sequences hybridize
with matching probes and emit light (Figure 2.3). For example, the microarrays with the
probes designed to match specific transcripts allow us to quantify the expression levels of these

transcripts based on the measurement of the emitted fluorescence intensity. It is still commonly


https://en.wikipedia.org/wiki/DNA_microarray
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used in bioinformatics because of its relatively low cost compared to the high-throughput

sequencing-based methods.

High-throughput sequencing

High-throughput sequencing (HTS) methods substantially changed our understanding of biology
and diseases (Reuter et al. 2015). For example, RNA sequencing showed three-quarters of
our genome is transcribed (Djebali et al. 2012). HTS also enabled the characterization of
various aspects of RNA biology such as splicing (Pan et al. 2008), non-coding RNA functions
(Guttman et al. 2009) and genomic sites undergoing RNA editing (J. B. Li et al. 2009). In
contrast to microarrays, HTS can also be employed without targeting specific sequences in the
genome; thus, it is a better candidate for genome-wide exploratory research. Today, not only
gene expression in bulk but also gene expression in single-cells, DNA-protein and RNA-protein
interactions, chromatin-chromatin interactions, DNA accessibility and DNA methylation can

be studied genome-wide using HT'S-based assays.

2.2.2 Epigenomics
Histone modifications

Histones are proteins that form a bead-like tetrameric protein complex around which chro-
mosomal DNA is wrapped in the nuclei of eukaryotic cells. DNA makes approximately 1.7
turns, or about 146 base pairs, around the protein complex. The resulting complex comprising
DNA and the histone proteins is called chromatin, where the basic repeating unit is called the
nucleosome. This mechanism organizes large genomes into highly-ordered compact structures

in the nuclei.

Through post-translational modifications (PTM), histones can undergo various covalent
modifications such as acetylation or methylation. Such modifications can activate or repress
gene expression by either changing the accessibility of the DNA due to loosening or tightening
of the DNA around the histones or by recruiting other factors.

The standard nomenclature for histone modifications is 1) the name of the histone (e.g.
H3) 2) single-letter amino acid abbreviation and its position in the protein (e.g. Lysine 4)
3) the type of modification (e.g. me for methylation) 4) number of modification (e.g. mel
for monomethylation, me2 for dimethylation, etc.). For example, H3K4mel and H3K4me3
modifications are highly enriched at enhancer and promoter regions in the genome, respectively
(Calo and Wysocka 2013).



2.2. OMICS MODALITIES 27

Target mRNA microRNA
Silenced translation
5 e —————eeen 3 —_ or
UTR CDSs mRNA degredation

Figure 2.4: microRNAs regulates target genes by mediating translation silencing or mRNA degradation.

ChlIP-seq

Chromatin immunoprecipitation sequencing (ChIP-seq) is an in vivo assay to identify genome-
wide binding sites of DNA-associated proteins such as transcription factors. The protocol
starts with cross-linking DNA and the protein complex of interest using formaldehyde. Next,
the DNA is fragmented and protein-specific antibodies are used to immunoprecipitate the
DNA-protein complex. DNA fragment that is bound to the protein complex is then extracted
and sequenced (Furey 2012). The major steps of the computational pipeline are read mapping
to the genome and peak calling, which employs statistical methods to distinguish protein
binding sites from the noise of the data. ChIP-seq is a widely used assay for studying the

binding sites of TFs or the regions enriched with histone modifications.

2.2.3 MicroRNAs

MiRNAs are small (19-24 nucleotide) non-coding RNAs that function in the degradation
or silencing of translation. It is predicted that these small single-stranded RNA molecules
regulate more than half of the human protein-coding genes (Bartel 2009). MiRNAs act through
complementary binding to the untranslated region of a target gene (Figure 2.4A). The seed
region of the binding site plays a vital role in target recognition (Lewis et al. 2003) and is

often located between base pairs 2—7 on the 5" end of miRNAs.

2.2.4 Genotype data

A single nucleotide polymorphism (SNP) is a single base-pair variation in the genome where
different alleles are observed in the population in relatively high frequency e.g. at least 1%
of the population. Today, around 12.8 million SNPs are cataloged in the human genome
(dbSNP, build 128, (Sherry et al. 2001)).The standard method for measuring SNPs, also
called genotyping, is SNP arrays. In SNP arrays, allele-specific oligonucleotide probe sets are
designed for all SNPs. Segmented, amplified and fluorescently labeled DNA fragments of SNP
loci hybridize with the probe sets designed to match a specific allele and emit light which
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shows that the allele is present in the fragment (Figure 2.3). Whole exome sequencing (WES)
and whole-genome sequencing (WGS) are also used for measuring genetic variation.

The majority of SNPs are in biallelic form, meaning that they are represented with two
alleles occurring in the SNP locus e.g. A and T. Genotype of an individual for a SNP represents
the combination of two alleles from the copies of DNA from each parent at the SNP locus
e.g. AA, AT and TT where AA and TT refer to homozygous genotypes, whereas AT is
heterozygous. Genotypes are determined by combining the measurements of each allele. For
example, for the samples with homozygous AA genotype, the intensity of the probes with
A allele is higher compared to those with heterozygous AT genotype. Classification of the
noisy measurement of fluorescent light intensities into genotypes is called genotype calling.
Measurement noise can be taken into account in genotype calling methods (Carvalho et al.
2009).

Linkage disequilibrium (LD)

Linkage disequilibrium (LD) is defined as the nonrandom association of alleles at two or more
loci (Slatkin 2008). This is mainly caused by the lack of recombination between the loci,
which leads alleles to be cosegregated. From a probabilistic perspective, LD is a measure for
testing the dependence of two random variables. In a given population, for two loci, A and B,
the difference between the product of individual allele frequencies, p4 and ppg, and the joint
probability, pap, represents the coefficient of linkage disequilibrium, commonly denoted as
D: D =psp —papp. When D = 0, the inheritance of alleles is an independent event and
the alleles A and B are in linkage equilibrium. The formula of D can also be interpreted as
the difference between the observed and expected frequency of haplotype AB where haplotype
refers to the cooccurrence of alleles A and B on the same chromosome. An alternative metric

that is often used is the squared correlation between the allele frequencies p4 and pp, which
D2

pa(l-pa)pe(1-pB)"

The LD structure provides the information that enables predicting genetic variants that

can be simply written in terms of D as r? =

are not directly measured via genotyping arrays or sequencing-based assays. Variants highly
correlated with the measured variants due to LD can be predicted through genotype imputation,
where sequencing-based reference panels are used to estimate haplotype (Marchini and Howie
2010). These imputed genotypes can be represented as probabilities of possible genotypes i.e.
AA, AT and TT that sum up to one. These probabilities, called dosages, can be converted to
“best-guess” genotypes by selecting the genotype with the highest probability. This conversion
can be performed more stringently by defining a threshold e.g. 0.9 and setting the predicted
genotype to unknown if the maximum probability does not exceed the threshold. However,
this may lead to missing values which cause a major problem for models using genotypes as

predictors.
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GWAS

A genome-wide association study tests potential associations between phenotype and genotype.
For quantitative phenotypes (e.g. LDL cholesterol and height), univariate linear regression
is used for testing the association where phenotype measurement and genotype are used as
dependent and independent variables, respectively. In the regression model, genotypes are
typically encoded as {0, 1,2} where 0 and 2 represent homozygous genotypes for reference and
alternative alleles and 1 represents heterozygous genotype. For dichotomous phenotypes (e.g.
multiple sclerosis) x? test is used for identifying SNPs where the frequency of one allele is
significantly different between cases and controls. The resulting test statistic (odds ratio in x?
test and regression coefficient in linear regression) and p-value are used as the metrics for the
association’s magnitude and significance level.

The standard genome-wide significance threshold is defined as 5 x 1078, therefore the
variants that are associated with the phenotype with a higher significance level (hence lower
p-value) are defined as genome-wide significant GWAS hits. The rationale behind this threshold
is that the number of independent loci is estimated as 150 per 500 kilobase pairs for Central
Furopean, Japanese and Chinese populations by the International HapMap Consortium in
2005 (Altshuler et al. 2005) which yields around a million independent loci when extrapolated
to the whole genome (~3.3Gb). Using a Bonferroni correction with a 0.05 significance level
then leads to the standard genome-wide threshold i.e. 0.05/10° =5 x 1078,

Quantitative trait loci (QTL) studies

A quantitative trait locus (QTL) is a locus where genetic variation correlates with the variation
of a (typically molecular) quantitative phenotype. For example, the association of the expression
of a gene with a genotype is called expression QTL (eQTL). There are also other types of
QTLs assessing the associations of different molecular readouts, such as DNA methylations
and histone modifications with genotype. Such QTLs are called meQTLs? and histoneQTLs,
respectively. Depending on the distance between the variant and the locus of the molecular
phenotype (e.g. gene position), QTLs are characterized as either cis and trans. cis-eQTLs
are loci of genetic variation that is close (typically < 1Mb) to the target gene, which are
sometimes called eGenes, and are hypothesized to mediate the expression of a gene locally via
altering the chromatin structure or transcription factor binding. trans-eQTLs reside far from
the variant (either > 1Mb or on a different chromosome) and act through an intermediary
factor called a cis-mediator such as a transcription factor (Q. Li et al. 2013) (Figure 2.5).
eQTL studies have been useful for understanding gene regulation and interpreting the

results of GWAS. Since many GWAS hits are in non-coding regions of the genome, eQTLs

2Expression quantitative trait methylation (eQTM) which quantifies the association between the gene expression
and methylation is sometimes confused with meQTL.
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Figure 2.5: cis- and trans-eQTLs are loci where genetic variation is significantly associated with gene expression.
The target gene is typically within 1Mb of the cis-eQTLs (A). trans-eQTLs affect the expression of the target
gene, which is more distant than 1Mb on the same chromosome or a different chromosome through other genes
called cis-mediators (B).

facilitate hypothesizing about the mechanism of action for the GWAS hits. For example,
overlapping GWAS hits with eQTLs might reveal through which gene a variant is linked to
the disease or phenotype (GTEx Consortium 2017).

2.3 Public data sources

2.3.1 ENCODE Project

The Encyclopedia of DNA Elements (ENCODE) is a collaborative effort aiming to characterize
all functional elements in the non-protein-coding regions of the genome (ENCODE Project
Consortium 2007) which are initially thought to be “junk”. Various types of assays are applied
to several human cell lines and tissues as a part of the project to investigate. As a part of the
project, gene expression, DNA-protein interactions, RNA-DNA interactions, DNA accessibility
and chromatin-chromatin interactions are investigated mainly in human cell lines via thousands
of experiments using various types of assays. ENCODE provides invaluable data resources,
especially for the researchers studying regulatory genomics by assessing sequence specificities
of TF binding sites or histone modifications using simple motif-based approaches or deep

sequence models.
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2.3.2 Roadmap Epigenomics

Roadmap Epigenomics set out to produce publicly available human reference epigenomes with
tissue-specific DNA methylation, histone modifications and chromatin accessibility datasets
(Kundaje et al. 2015). Currently, the project portal provides 127 epigenomes (111 from
Roadmap Epigenomics and 16 from ENCODE) with 31 histone modifications as well as
DNase-seq and DNA methylation tracks from many primary human tissues, embryonic stem

cells and various cell lines.

2.3.3 GTEx

The Genotype-Tissue Expression (GTEx) project provides a reference bulk RNA-seq data
resource and a tissue bank to study tissue-specific gene expression, regulation and eQTLs in
non-diseased human tissues collected from postmortem donors (Lonsdale et al. 2013). The
latest version of GTEx consists of 7,051 samples from 449 donors across 44 human tissues (31
solid-organ tissues, 10 brain regions, whole blood, two cell lines and skin samples), each from
at least 70 donors (GTEx Consortium 2017). In addition to the publicly available RNA-seq
datasets, the resource provides cis- and trans-eQTL for all tissues, eQTL-disease associations,

allele-specific expression and tissue-specific alternative splicing information.
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Chapter 3

Functional genotype-phenotype

assoclations and variant prioritization

Identifying the genetic determinants of complex human traits and diseases is one of the primary
goals in human genetics. Towards this goal, genome-wide association studies (GWAS) emerged
as a powerful tool for linking the sequence variation in the genomes of human populations to
various phenotypes (J. J. Lee et al. 2018). Potential determinants in the form of phenotype-
genotype associations are valuable as they narrow down the search space of the entire genome
to fewer loci. However, due to the linkage disequilibrium (LD), a phenomenon that gives rise
to non-random associations of variants in genomic blocks, many variants in proximity are
highly correlated. Such variants may exhibit statistical associations at similar levels making
it highly challenging to disentangle the causal effects of each variant within a given block of
correlated variants solely using the GWAS statistics (Figure 3.1A-B). Therefore, the resolution
of GWAS results is rather limited to such LD blocks (haplotypes). Typically, only the variant
with the strongest association with phenotype, called the lead variant, is reported for each
independent locus instead of the variants that are highly correlated in the proximity of the

lead variant called the prozy variants.

At this haplotype-level resolution, the difficulty of pinpointing causal variants poses a major
roadblock towards the ultimate goal of revealing the mechanisms underlying the diseases and
traits (Tak and Farnham 2015). This problem is exacerbated by the fact that most variants
are single-nucleotide polymorphisms (SNPs) in non-coding regions according to the catalogs of
disease-associated variants that were identified through GWAS (Leslie et al. 2014). This adds
another layer of complexity as it is often more challenging to characterize non-coding variants

than protein-coding variants.

Variant prioritization methods aim to identify variants that are potentially causal for a

phenotype by scoring them or predicting their effects using additional sources of information.
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Figure 3.1: Visualization of variant prioritization. The dysregulation of Gene A due to a non-coding variant is
depicted as the cause of a disease. The effect of the dysregulation propagates in the hypothetical regulatory
network (A). Typical GWAS identifies the correct haplotype. However, the causal non-coding variant does
not reach genome-wide significance (B). Variant prioritization approaches take a variant as input, infer its
regulatory effect, and output a prioritization score. Two major types of methods are overlap-based (C) and
deep learning-based (D) approaches. The comparison of the prioritization scores of given variants (E) suggests
the correct regulatory variant as causal. Thanks to the prioritization methods, it can be hypothesized that the
dysregulation of Gene A through the identified regulatory variant has a vital role in disease etiology (F').
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Figure 3.2: Variant prioritization using neural networks. (A) A convolutional neural network is trained for
predicting the binding of several transcription factors (TF) in various cell lines from the given DNA sequences
using available experimental datasets (e.g. ChIP-seq). (B) 1kb sequence where the variant in question is at
the center is fed through the pre-trained neural network with two different alleles. A regulatory score for the
given variant is calculated via comparing predictions of two alleles, which is compared to a group of randomly
selected background variants. This yields the final significance of the regulatory impact of the variant.

Two major types of variant prioritization methods are overlap-based and deep neural network-
based approaches. Overlap-based methods predict the potential effect of given variants by
evaluating the positional overlap between SNPs and various annotations of genomic elements
such as the transcription factor (TF) binding sites or microRNAs (Figure 3.1C). A major
drawback of methods based on positional overlap is that the actual impact of each variant on
regulatory elements is not assessed because the association is simply based on the positional
overlap. For example, two SNPs that colocalize in the same ChIP-seq peak of a TF might have
opposing effects or no functional effects at all. In silico approaches that predict the disruption
of TF binding motifs (Thomas-Chollier et al. 2011; S. G. Coetzee, G. A. Coetzee, et al. 2015)
have been proposed to resolve this shortcoming. However, our knowledge of TF binding motifs
as well as the mechanistic understanding and contribution of individual motif elements to the

binding event are still incomplete, limiting the success of such methods.

The second group consists of convolutional neural networks, which are increasingly preferred
for variant prioritization (Figure 3.1D, Figure 3.2). In this approach, first, the regulatory
effect of each allele of a given variant is predicted using a neural network that is pre-trained
to predict TF binding events. Second, the comparison of these predicted effects yields an
overall regulatory effect of the given variant. Unlike the positional overlaps, neural networks
can estimate the importance of a base pair change in a given locus using the DNA sequence
patterns of TF binding sites learned from the data. The step following the prioritization
typically aims to hypothesize about the mechanism of action in the light of new associations

and predictions (Figure 3.1E-F).
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Towards developing better hypotheses of complex diseases and traits, we developed two
variant prioritization approaches. Misina, a novel overlap-based variant prioritization approach,
provides a new angle on the microRNA-mediated effects of variants in microRNA regulation
loci in the context of complex diseases. Misina allows rapid exploration and prioritization of
user-provided or disease-associated SNPs residing in microRNA binding sites of target genes
by querying an integrated framework of seven SNP- and miRNA-related data sources. Misina
provides an easy-to-use analysis interface for non-expert researchers seeking to investigate
microRNA-mediated effects of genetic variants by automating many tedious steps required for
complex queries such as LD proxy search, consideration of microRNA seed type and relative
position of SNP in the binding site, matching tissue-specific eQTL genes with the microRNA
target genes, and the exploration of microRNA expression in various tissues.

Our second method DeepWAS is a multivariate genotype-phenotype association approach
that utilizes the predictions of the cell type-specific regulatory effect of single variants from
a pre-trained deep neural network (J. Zhou and Troyanskaya 2015). As a result, DeepWAS
associates variants not only with a trait or disease but also proposes a regulatory mechanism,
for example, a variant effect on altered transcription factor binding or DNA accessibility in a
specific cell type. We analyzed genotype data from three different cohorts, namely multiple
sclerosis (MS), major depressive disorder (MDD) and height, to reveal regulatory determinants
of these phenotypes. Using publicly available data, we underpinned the functionality of
identified putatively regulatory SNPs in specific tissues and disease contexts. We demonstrated
the potential of the DeepWAS method to generate testable hypotheses from genotype data,
even for small sample sizes.

Although these two methods use very different techniques and data sources, they both
provide new perspectives on the regulatory determinants of complex phenotypes in a comple-
mentary manner by covering different components of the regulome. In addition to these two
approaches which constitute most of this chapter, we present other approaches developed to
analyze coding and non-coding variants in the literature in Section 3.1.

The results reported in this chapter are part of the following publications and/or book

chapters. The contributions of the author are given below each publication.

® Section 3.1: Nikola Miiller, Ivan Kondofersky, G6kcen Eraslan, Karolina Worf, Fabian J. Theis.
“Bioinformatics in Psychiatric Genetics.” Psychiatric Genetics: A Primer for Clinical and Basic
Scientists (2018) https://doi.org/10.1093/med/9780190221973.001.0001

Contribution of the author: Literature review of different types of variant prioritization tools used for
analyzing coding and noncoding variants and writing
e Section 3.2: Gokcen Eraslan, Nikola S. Mueller, Fabian J. Theis. Misina: Finding microRNA-

mediated effects of genetic variants with an integrative approach (in preparation)

Contributions of the author:
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— Design and implementation of the variant prioritization method

— Integration of various databases of SNPs, LD proxies, eQTLs, microRNA targets, microRNA

expression and genotype-phenotype associations
— Investigation of variants associated with Alzheimer’s disease
— Interpretation of results

— Generating figures and writing

® Section 3.3: Janine Arloth*, G6kcen Eraslan*, Till F. M. Andlauer, Jade Martins, Stella Iurato,
Brigitte Kiihnel, Melanie Waldenberger, Josef Frank, Ralf Gold, Bernhard Hemmer, Felix Luessi,
Sandra Nischwitz, Friedemann Paul, Heinz Wiendl, Christian Gieger, Stefanie Heilmann-Heimbach,
Tim Kacprowski, Matthias Laudes, Thomas Meitinger, Annette Peters, Rajesh Rawal, Konstantin
Strauch, Susanne Lucae, Bertram Miiller-Myhsok, Marcella Rietschel, Fabian J. Theis, Elisabeth B.
Binder, Nikola S. Mueller Deep WAS: Multivariate genotype-phenotype associations by directly integrating
regulatory information using deep learning (PLoS Computational Biology 16, no. 2 (2020): 1007616,
https://doi.org/10.1371/journal.pcbi.1007616) *These authors contributed equally

Contributions of the author:

— Design and implementation of the variant prioritization method
— Prediction of the regulatory effects of non-coding variants

— Application of the method to MS, MDD and height phenotypes
— Functional characterization of the hits

— Integration of binding QTLs, GTEx bulk RNA-seq (GTEx Consortium 2017) and graph database-
based (Neod4j) visualizations

— Interpretation of results

— Generating figures and writing

3.1 Literature review of variant prioritization

This subsection gives a brief overview of existing methods for the prioritization of coding and

non-coding variants.

3.1.1 Coding variants

Many tools exist for annotating coding variants. Examples include ANNOVAR (K. Wang
et al. 2010) and VEP (Ensembl’s Variant Effect Predictor) (McLaren et al. 2016) which
are widely-used tools overlapping genetic variants with regions of the genome and providing
many filtering and annotation options. Another prominent tool in the field is GEMINI (Paila
et al. 2013) which integrates publicly available annotations such as ENCODE (ENCODE
Project Consortium 2007), UCSC (Hsu et al. 2006), KEGG (Kanehisa and Goto 2000), and

user-defined annotations as well as cohort genotype and phenotype data. Its efficient storage
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and query framework facilitates the downstream analysis. The key benefit of these tools is that
they save researchers from making manual queries to different sources of variant annotation
and prediction using alternative transcript sets e.g. ENSEMBL (Hubbard et al. 2002), RefSeq
(Pruitt et al. 2006). The use of different transcript sets can have drastic effects on annotation-
based queries, as McCarthy et al. (2014) have demonstrated. According to the study, there
is only a 44% agreement between the results of RefSeq and ENSEMBL annotations when
ANNOVAR is used to identify putative loss-of-function variants with these two transcript sets.

The evaluation of gene enrichment for groups of variants is an alternative approach to
variant prioritization. VEGAS (J. Z. Liu et al. 2010) is an example of enrichment tests
per gene to determine the genes that harbor variants associated with the disease. Similarly,
other tools such as DEPICT (Pers et al. 2015), INRICH (P. H. Lee et al. 2012) and GRAIL
(Raychaudhuri et al. 2009) allow the genes linked to GWAS hits to be tested for pathway
enrichment. Gene-based scoring initiatives such as the Residual Variation Intolerance Score
(RVIS) are also worth mentioning where the genes are ranked based on how well they can
tolerate mutations (Petrovski et al. 2013). The objective of the EXAC project is to consolidate
exome-sequencing data from many researchers to provide a comprehensive resource on coding
variants (Lek et al. 2016). Along with the genic intolerance scores in RVIS, annotations of
rare variants in EXAC are useful resources that can be used to prioritize rare coding variants.

Coding variants are often evaluated according to their effect on the protein structure. SIFT
(Ng and Henikoff 2003) and PolyPhen (Adzhubei et al. 2010) are popular tools that can predict
whether changes in amino acid sequence alter the structure and function of proteins. In their

outputs, most of the variant annotation tools also include SIFT and PolyPhen scores.

3.1.2 Non-coding variants

Prioritization of non-coding variants is a more difficult task since less evidence is available
regarding the function of non-coding regions. The assessment of the enrichment of cis-regulatory
elements such as promoters and enhancers for specified non-coding variants is a common
practice in many published GWAS (Tak and Farnham 2015). Comprehensive epigenetic and
regulatory annotations reported by ENCODE (ENCODE Project Consortium 2007) and
Roadmap Epigenomics (Kundaje et al. 2015) projects are commonly used by researchers for
employing such enrichment tests (Schizophrenia Working Group of the Psychiatric Genomics
Consortium 2014).

The investigation of non-coding variants that putatively affect the function of small non-
coding RNAs is also used to shed light on disease etiology (Hauberg et al. 2016). Other
integrative approaches that can be used to query the overlap of the given variants with
regulatory elements include Haploreg (L. D. Ward and Kellis 2016), RegulomeDB (Boyle et al.
2012) and FunciSNP (S. G. Coetzee, Rhie, et al. 2012). Machine learning methods such as
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Figure 3.3: microRNA-mediated dysregulation effects of variants. microRNAs regulates target genes by
mediating translation silencing or mRNA degradation (A). Genetic variation within the microRNA binding
site might impair microRNA binding leading to the dysregulation of the target gene and the disease (B).

GWAVA (Ritchie et al. 2014) and CADD (Kircher et al. 2014) prioritize variants based on
variant pathogenicity predicted from various variant characteristics. Likewise, FunSeq2 (Fu
et al. 2014) uses a scoring scheme where variant features are weighted for the prioritization
task.

A major problem in the analysis of GWAS hits and their proxies is that the variants that
do not meet the genome-wide significance, so-called sub-threshold variants, might play a role
in the development of the disease via various biological mechanisms (Figure 3.1). Examination
of such variants revealed new loci associated with cardiac traits where several variants were
found to be enriched in enhancer regions (Xinchen Wang et al. 2016). A comprehensive review
of functional analysis and follow-up studies of GWAS can be found in Edwards et al. (2013),
L. Hou and H. Zhao (2013) and Tak and Farnham (2015).

3.2 Identifying microRNA-mediated effects of genetic variants

miRNA binding sites are a key component of the regulome since miRNAs play a critical
role in post-transcriptional gene regulation. miRNA-mediated dysregulation effect of SNPs
was associated with diseases in previous studies (Chin et al. 2008; Esteller 2011) (Figure
3.3). Therefore, the interrogation of SNPs in miRNA binding sites provides a means for
identifying functional variants, which might shed light on the pathogenesis of a disease. In
this section, with our overlap-based variant prioritization approach called Misina, we focus on
the interrogation and prioritization of non-coding variants in miRNA gene regulation loci.

The key aspects of our approach compared to existing methods are as follows:

1. We integrate the linkage disequilibrium (LD) data of given phenotype-associated SNPs
to identify all potential SNPs that might lead to miRNA-mediated dysregulation of the
target gene. This is necessary because phenotype-associated SNPs identified in GWAS
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only establish a potential link between the phenotype and the haplotype block which

consists of several SNPs in addition to reported phenotype-associated SNP.

2. There are several miRNA target prediction and validation approaches with different
assumptions and strengths. Reporting miRNA target genes from several miRNA target
datasets enables researchers to either investigate a consensus of different approaches or

focus only on preferred datasets.

3. Misina uses key pieces of miRNA binding information such as miRNA seed type and
variant position within the binding site in order to perform variant prioritization and

scoring.

4. The experimental evidence of the expression of both the target gene and the miRNA
is important to hypothesize miRNA-mediated dysregulation. Matching the tissues
where miRNA and target gene are expressed may further strengthen the dysregulation

hypothesis.

We designed an integrative approach using a user-defined set of input SNPs or already cataloged
SNPs. Interactive web interface of Misina aims to provide an easy-to-use analysis tool for
non-expert users seeking to investigate miRNA-mediated effects in GWAS results. We included
an LD proxy search and overlapped SNPs with data from experimentally validated miRNA-
target interactions (starBase (J.-H. Li et al. 2013)) and two target prediction databases
(miranda (Betel et al. 2010) and TargetScan (V. Agarwal et al. 2015)). We chose two criteria
indicating that a SNP was likely to impair a miRNA binding site, namely 7- or 8-mer seed
type (strong initial binding) and relative position of SNP in the binding site. The resulting
miRNA-SNP pairs were enriched with known eQTLs providing the third scoring criteria
suggesting mechanistic effects if the same SNP-gene pairs were associated in the eQTL studies.
Furthermore, the human tissues where the listed miRNA are expressed are displayed. The
novel yet simple and practical way to prioritized resulting SNPs aimed to guide non-expert

users through the results to reveal high-confidence pairs.

3.2.1 SNP Prioritization

We prioritized SNPs to guide users in pinpointing disruptive miRNA /SNPs pairs, which may
be functional. Using expert knowledge, we implemented the following miRNA /SNP scoring

scheme:

e miRNA seed type: SNPs are prioritized if they fall into the binding site of a miRNA
whose seed type is of either 7— or 8—mer. In the literature, it was reported that four
types of canonical sites correlate with targeting efficacy such that 8mer > 7mer-m8 >

Tmer-Al > 6mer (Bartel 2009). Therefore, we prioritized 8- and 7-mer seed types.
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e Relative SNP position: SNPs within the miRNA binding site (SNPs in 1-12 bp from 5’
end of miRNA) are prioritized. Although it is proposed that target recognition occurs
based on the match in the seed region (i.e. 2-8nt of 5" end), it has been reported that
off-seed SNPs can also have a major impact on target regulation (Xiuchao Wang et al.
2016; Dorn et al. 2012).

e miRNA target — eGene match: SNPs are prioritized if miRNA target gene match eQTL
gene (miRNA gene identical to eGene). It is known that miRNAs play an essential role
in the regulation of gene expression. The SNPs within the miRNA binding site might
alter the mRNA-miRNA binding and lead to dysregulation of target genes. In this case,
investigating the expression of the target gene and, more importantly, how significantly
it changes due to the alterations in the binding site is worthwhile. The integration of
GTEx dataset enables us to detect such significant changes in the expression of target
genes. Therefore, SNPs are prioritized if the miRNA target is reported as an eGene
(significant eQTL gene).

SNPs that satisfy these rules are specified on the web interface and are sorted by total scores
(ranging from 0 to 3). In addition, the expression of the listed miRNAs in human tissues that
are potentially affected by SNPs can be examined through miRmine (Panwar et al. 2017) and
miR Tissue Atlas (Ludwig et al. 2016).

3.2.2 Design of the Misina framework

Seven SNP- and miRNA-associated data sources were integrated for Misina (Figure 3.4). First,
a user-defined set of (risk) SNPs (dbSNP identifiers) was used for analysis. As an important
feature of Misina, users can select any phenotype of interest cataloged by GRASP Project
version 2.0 (Eicher et al. 2015) spanning 8.87 million SNPs from 2082 studies. Second, all SNPs
in high LD with the given risk SNPs were identified. The most recent LD information was
automatically retrieved from SNiPA (Arnold et al. 2014). LD 7?2 cutoff and 1000G population
can be both configured. Third, hgl9 (Human Genome version 19) genomic coordinates
of all SNPs were retrieved from dbSNP build 142 (Sherry et al. 2001) and SNPs that fall
into the miRNA binding sites were determined by overlapping genomic positions. Resulting
miRNA-gene-pairs consisted of experimentally validated and/or predicted miRNA targets
from TargetScan v7.0 (V. Agarwal et al. 2015), miranda (Betel et al. 2010) and starBase
2.0 (J.-H. Li et al. 2013). Finally, identified SNPs were searched in GTEx v6 eQTL dataset
(Lonsdale et al. 2013) and GWAS catalog (Buniello et al. 2019). Hits that were also eSNPs in
GTEx dataset and SNPs or genes reported in the GWAS catalog were annotated. miRNA
expression in human tissues is also available thanks to miRmine and miRNA Tissue Atlas
datasets (Panwar et al. 2017; Ludwig et al. 2016).
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Figure 3.4: Workflow of the integrative approach. Misina integrates seven SNP- and miRNA-related data
sources to provide a user-friendly analysis interface.

3.2.3 Implementation

Misina was implemented in R programming language (R Core Team 2015) using the Shiny
web framework (Chang et al. 2015) and Bioconductor packages (Huber et al. 2015). To
handle time-consuming LD queries, a simple parallelized asynchronous job management
system was implemented. Genomic regions were overlapped using the GRanges/Bioconductor
package (Lawrence et al. 2013). Source code of Misina is available at https://github.com/

cellmapslab/misina.

3.2.4 miRNA-mediated determinants of Alzheimer’s disease

Potential role of miRNAs in complex human diseases including Alzheimer’s disease (Delay
et al. 2012; Femminella et al. 2015), Parkinson’s disease (G. Wang et al. 2008), diabetes (Lv
et al. 2008; X. Zhao et al. 2013), has been previously studied. However, miRNA-mediated
determinants of these diseases along with functional mechanisms have not been described
yet. Here we used Misina to prioritize Alzheimer’s disease risk SNPs that are potentially
contributing to the disease mechanism by inducing a regulatory dysfunction through disrupting
or enhancing the binding of miRNAs.

We queried Misina with the Alzheimer’s disease-associated SNPs from the GRASP2 catalog
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Figure 3.5: Investigation of the genetic factors of Alzheimer’s disease using Misina web interface. (A) The
input screen where Alzheimer’s disease-associated SNPs are entered to the input area for the analysis. (B)
The result of the Alzheimer’s analysis. The top hit, rs6859, has the triple score as it overlaps with miRNAs
with 8-mer seed type, relative SNP position within miRNA binding site is in 1-12 bp from 5’ end of miRNA
and miRNA target gene, PVRL2 (NECTINZ2), is also identified as an eQTL gene. This result is displayed
along with the information about SNP and LD, miRNAs with overlapping binding sites and genes and tissues
that rs6859 is associated with as an eSNP in eQTL studies.

(GRASP?2 categories: Alzheimer’s disease and Alzheimer’s disease late-onset, Eicher et al. 2015)
(Figure 3.5A). Our query yielded rs6859, a multiallelic risk SNP (A>G, A>T) located in the
3’ UTR of PVRL2 (NECTIN2) gene (isoform NECTIN2-202, ENST00000252485), as the top
hit with maximum score and the candidate miRNAs (e.g. hsa-miR-199a-5p and hsa-miR-648)
targeting NECTIN2 with 8-mer or 7-mer seed types (Figure 3.5B). Among these miRNAs,
hsa-miR-199a-5p binds to the 3” UTR of NECTIN2 where rs6859 resides in the 11th position
of the 5" end of the miRNA. Moreover, eQTL information provided by Misina showed that
the expression of NECTIN2 was significantly associated with rs6859 in the arteries and whole
blood samples of GTEx.

Characterization of hsa-miR-199a-5p, rs6859 and NECTIN2 relationship

To characterize the relationship between the three major components of our hypothesis of
a miRNA-mediated determinant of Alzheimer’s disease, namely rs6859, hsa-miR-199a-5p
and NECTIN2 (Figure 3.6A), we sought to examine further experimental evidence from
publicly available data sources. As a part of the validation of this hypothesis, miRNA-mRNA
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Figure 3.6: Experimental evidence to characterize the links between the variant, gene, miRNA and phenotype.
A) Diagram of the hypothesis with computational and experimental tools used to construct it. B) Alignment
of hsa-miR-199a-5p and its binding site in the 3> UTR of the target gene NECTIN2. G-U wobble is shown

as ‘.

C) Conservation of hsa-miR-199a-5p binding sites among vertebrates. Fully conserved seed region is

shown in red. D) Expression of hsa-miR-199a-5p in the tissues. E) Bulk RNA-seq and CAGE data showing
NECTIN2 expression in various CNS samples. F) Antibody staining (DAB) of NECTIN2 showing protein
expression in the cerebral cortex. Brown staining indicates cells expressing NECTIN2 protein. G) Top 10
cancer types where hsa-miR-199a-5p and NECTIN2 expression are highly anti-correlated (TCGA) and the
co-expression of each sample in esophagus. Red line denotes the significance threshold (0.05, left) and regression
line (right). H) HITS-CLIP coverage track showing the binding sites of Argonaute protein in HUVEC cell lines
indicating the miRNA binding sites in NECTIN2 3'UTRs. Coverage signal in the hsa-miR-199a-5p binding
site is magnified. I) eQTL effects of rs6859 on NECTINZ2 expression in various tissues including the brain. J)
Traits and diseases significantly associated with rs6859 in GWAS. Red line indicates genome-wide significance
threshold. Acronyms: TCGA: The Cancer Genome Atlas, HPA: Human Protein Atlas, eQTL: expression
quantitative loci, CAGE: Cap analysis gene expression, UKB: UK Biobank, DAB: 3,3’-diaminobenzidine,
FPKM: Fragments per kilobase of transcript per million mapped reads, RPM: Reads per million mapped reads,
pTPM: transcripts per million protein coding genes, CLIP: Cross-Linking and Immuno-Precipitation.
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interactions predicted with computational methods can be experimentally validated via CLIP
(Cross-Linking and Immuno-Precipitation) experiments where the cross-linked miRNA-mRNA
complex is captured by the immunoprecipitation of the Argonaute (AGO) protein (Chi et al.
2009). Linear models are typically applied to genotype-phenotype data to test variant-gene
expression and variant-phenotype associations. For the experimental validation, genetic mouse
models for Alzheimer’s disease can be leveraged to test whether this variant has a causal effect
on the disease etiology (Onos et al. 2016). Although the direct experimental validation of this
hypothesis is not available, we were able to compile a list of findings below to support the

hypothesis.
First, we inspected the miRNA-RNA binding pattern by aligning miRNA and the binding

site (Figure 3.6B). In addition to the seed pairing, the alignment showed a secondary site with a
G:U wobble in position 15-20 similar to a 3’-supplementary pairing, which is typically observed
in non-canonical binding sites (Bartel 2009). Moreover, we observed that the hsa-miR-199a-5p
binding site in NECTIN2 is highly conserved among the vertebrates (Figure 3.6C) indicating

the conservation of the miRNA-mediated regulatory mechanism across species.

Second, we inspected the expression of both hsa-miR-199a-5p and the target gene NECTIN2
in brain samples available from public data sources. miRmine (Panwar et al. 2017) showed
the expression of hsa-miR-199a-5p in the tissues including the brain, which is relevant to
Alzheimer’s etiology (Figure 3.6D). The inspection of GTEx, FANTOM and Human Protein
Atlas (HPA) data sources revealed the ubiquitous RNA and protein expression of NECTIN2
in the brain via bulk RNA-seq, CAGE and antibody staining experiments (Figure 3.6E-F).
According to the annotation of the antibody staining image by the HPA project, NECTIN2 is

expressed at moderate levels in endothelial cells in the cortex (Figure 3.6F).

Third, we queried starBase v2.0 (J.-H. Li et al. 2013) to find out the co-expression of hsa-
miR-199a-5p and NECTIN2, as well as further experimental evidence for the miRNA binding.
We evaluated the miRNA-mRNA co-expression in 32 cancer types from the TCGA pan-cancer
network (https://www.cancer.gov/tcga) where samples were profiled via miRNA-seq and
RNA-seq experiments allowing us to assess co-expression. hsa-miR-199a-5p and NECTIN2
were significantly anti-correlated in 3 out of 32 cancer types, namely esophageal carcinoma
(n = 162, Pearson p = —0.31, FDR= 4.98¢ — 4), stomach adenocarcinoma (n = 372, Pearson
p = —0.162, FDR= 1.73e — 3) and kidney chromophobe (n = 65, Pearson: p = —0.32,
FDR= 3.62¢ — 2) (Figure 3.6G). Furthermore, starBase showed Argonaute (AGO) binding
signal in this region using the HITS-CLIP (HIgh-Throughput Sequencing of RNAs from in
vivo Cross-Linking and Immuno-Precipitation) experiment in HUVEC cell line produced by
Balakrishnan et al. (2014) indicating miRNA activity in the hsa-miR-199a-5p binding site
(Figure 3.6H).

Finally, we investigated the effects of rs6859 on gene expression and complex traits and
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diseases via eQTL and GWA studies. eQTL data from the GTEx project identified a significant
association of rs6859 with the expression of NECTIN2 in many tissues, including the brain
(Figure 3.61), which supports our hypothesis. Moreover, in addition to Alzheimer’s disease,
rs6859 is associated with lipid-related and cognitive traits and diseases, including dementia,
cholesterol, hypercholesterolemia, and coronary artery disease (Figure 3.6J), which indicates
that rs6859 locus might affect the regulatory circuitry linked to many complex phenotypes.

In conclusion, we proposed Misina, an integrative approach with expert scoring of GWAS
risk SNPs to identify miRNA-mediated genetic factors. Misina is a resource primarily for
epidemiologists who will benefit from the easy-to-use interface to analyze the non-coding effects
of GWAS results. Since Misina consolidated many up-to-date SNP and most important miRNA-
related data sources, it allows for interrogations involving any SNP datasets. Consideration of
multiple data sources supporting miRNA-mediated dysregulation such as the effect of SNPs
on gene expression, expression of target gene and miRNA in relevant tissues, the potential
strength of miRNA binding via seed type, and inclusion of LD proxies might reveal new
mechanisms underlying the phenotype of interest. Moreover, as a proof-of-concept, we deeply
characterized an Alzheimer’s disease risk SNP, rs6859, which might have critical effects on the
regulatory mechanisms related to lipid metabolism and cognitive traits via the dysregulation
of NECTIN2.

3.3 Variant prioritization with deep learning

Deep learning-based variant prioritization, which was pioneered by J. Zhou and Troyanskaya
(2015) in DeepSEA, is getting increasingly popular in the field. DeepSEA predicts cell type-
specific molecular modalities such as histone marks, TF binding, and DNA accessibility from
the DNA sequence alone (J. Zhou and Troyanskaya 2015). Trained on the genome-wide
sequences obtained from the publicly available ChIP-seq and DNase-seq datasets provided by
the ENCODE (ENCODE Project Consortium 2012) and the Roadmap Epigenomics (Kundaje
et al. 2015), the model learns complex sequence patterns driving the sequence specificities of
these modalities. Importantly, this black box prediction method is then utilized to estimate
how variations in the DNA sequence might alter each modality, allowing DeepSEA to prioritize
the variants with significant functional impact. Notably, the method exploits cell-type specific
regulatory effects of variants under different treatment conditions, adding additional layers to
our understanding of context-specific disease mechanisms.

Deep convolutional sequence models like DeepSEA bear a high potential to outperform
positional overlap-based variant prioritization approaches due to consideration of not only
simple sequence motifs but also higher-order patterns like motifs of motifs (i.e. motif syntax)

during the prediction of regulatory effects of variants. Thus, these approaches can distinguish
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variants with putative functional effects from those who just reside by chance within an
annotated element for a given cell type.

So far, deep learning-based variant effect predictions have only been used as a follow-up
step in GWAS. Therefore, there is a disconnect between genotype-phenotype associations and
sequence-based effective variant effect prediction methods that can complement each other

when used jointly.

3.3.1 DeepWAS: Multivariate genotype-phenotype associations by inte-
grating regulatory information using deep learning

Here we introduce a new strategy harmonizing classical GWAS and the follow-up functional
analysis step. In GWAS, typically, single SNPs are individually analyzed and then filtered and
prioritized in a post hoc functional analysis step where regulatory information is incorporated.
Instead of this follow-up analysis, here we predict the regulatory effects of SNPs in various
cell lines with different treatments. Sets of SNPs with similar effects are then jointly tested
for association with a disease or trait of interest by using regularized regression models. The
advantages of this strategy, called DeepWAS, are two-fold. First, it limits the multiple testing
burden of typical GWAS by performing fewer tests. Second, it provides regulatory information
at the SNP level without needing a second stage of analysis.

By applying DeepWAS to previously published datasets, we constructed a comprehensive
landscape of potential regulatory drivers of multiple sclerosis (MS) (T. F. Andlauer et al.
2016), major depressive disorder (MDD) (Muglia et al. 2010; Rietschel et al. 2010) and height
(Wichmann et al. 2005) as a proof of concept application. Moreover, the comparison of the
DeepWAS results from cohorts with small sample sizes(n=15k, 3k and 6k for MS, MDD
and height) to the results from GWAS meta-analyses (n=116k, 807k and 184k) (Patsopoulos
2018; Howard et al. 2019; H. L. Allen et al. 2010) allowed us to verify that our method can
identify existing and novel disease- or trait-associated variants as well as the relevant molecular
modalities, cell lines and treatments which facilitates generating novel functional hypotheses

on the determinants of these phenotypes.

DeepWAS algorithm

DeepWAS algorithm consists of two steps. The first step of the pipeline obtains functional
importance scores from the pre-trained DeepSEA neural network for each given variant (Figure
3.7A). The primary outcome of this step is a grouping of variants where each group comprises
variants that are predicted to affect the same regulatory element in the same cell line, called
functional units (e.g. all variants modulating the NFKB binding event in GM12878 cell lines)
(Figure 3.7B). The second step associates these putative regulatory variants with the phenotype

of interest using a multivariate Lasso model for each variant group inferred in the previous
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Figure 3.7: Workflow of DeepWAS. (A) For a given variant, the DeepSEA model (J. Zhou and Troyanskaya
2015) predicts whether the probabilities of chromatin features (i.e. TF binding, DNase-I hypersensitivity
and histone marks) are affected by the variant for a given 1,000 base-pair DNA sequence around the variant.
The potential functional effects of a variant are determined by binarizing the functional scores using a cutoff.
Functional units (FU) represent chromatin feature, cell line and treatment combinations e.g. TF1 / Cell line
1/ Treatment 2. (B) Repeating this process for all genotyped variants leads to a large matrix of variant
effect predictions. (C) For each FU, the genotype-phenotype association is tested using Lasso regression with
stability selection. (D) In contrast to GWAS, DeepWAS suggests a regulatory process as well as the cell lines
and TFs that are potentially relevant for the phenotype of interest.

step. The independent variables of these models are the elements of the variant group (Figure
3.7C). Since the variant groups represent the regulatory context where the variant is “active”,
the final genotype-phenotype associations can be interpreted in a context-specific way which
distinguishes DeepWAS from the typical GWAS approach (Figure 3.7D). The following two

subsections present the details of these two steps in more detail.

1. Variant effect predictions with DeepSEA

To identify the SNPs that, through modifying regulatory elements, may play a critical role in
human diseases or traits, we used the pre-trained DeepSEA model (J. Zhou and Troyanskaya
2015) . For a given 1kb DNA sequence, this model predicts the probability that a molecular
event happens within the given sequence for each of the 919 predefined events. These events
are of three major types of events measured in the ENCODE project (ENCODE Project
Consortium 2007): TF binding, DNase-I hypersensitivity (DHS) and histone modifications.
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These three event types, called chromatin features (e.g. NFKB binding), are measured (and
predicted) in cell lines (e.g. K562) under different treatment conditions (e.g. TNF). To have a
compact representation of these events with three components, i.e. chromatin feature, cell line
and treatment, we named them “functional units” (FUs, e.g. NFKB:K562:TNF) here. 919
FUs comprised binding sites of 160 different TFs (690 TF profiles in total), 125 DHS, and 104
histone mark tracks across 17 treatment conditions and 31 cell lines.

We used the variant effect prediction methodology described in DeepSEA (Figure 3.7A-B):

e For each of the SNPs in the set of measured genotypes for all three phenotypes, MS,
MDD and height, the 1000 bp reference genome sequence centered at a SNP position is
retrieved. The sequences for both reference and alternative alleles are generated simply

by replacing the base at the center of the sequence with the corresponding allele.

e We generated the predictions for all sequences using the pre-trained DeepSEA network
v0.94 (Figure 3.2A), which was downloaded from http://deepsea.princeton.edu/
help/. Events that likely happen in sequences with reference and alternative alleles are

obtained.

e The chromatin effect of each SNP was calculated by comparing the event probabilities of
two alleles (Figure 3.2B, see DeepSEA J. Zhou and Troyanskaya 2015 for more details).

e To distinguish predicted high-effect SNPs from those occurring just by chance (i.e. to
control the false positive rates), an empirical p-value procedure is employed. To calculate
the empirical p-values (named “e-values” by the authors of DeepSEA) for each FU, the
chromatin effects of one million random variants from the 1,000 Genomes Project (1000
Genomes Project Consortium 2015) are used as a null distribution and the proportion
of random variants that have a greater impact than that of the observed variants are
calculated (Figure 3.2B).

e The SNPs with an e-value smaller than 5 x 10™° were considered potentially regulatory

and used in the regression models for testing genotype-phenotype associations.

2. Regularized regression models for testing associations

Regularized regression models like Lasso offer means to examine the associations in high
dimensional data. In the context of genetics, this is useful to test the associations between a
group of SNPs and the response variable, which is either a trait or a disease. In DeepWAS, for
each FU, we fit Lasso models with stability selection to test genotype-phenotype associations
where only the SNPs with a significant effect on the FU of interest are included as covariates
(Figure 3.7C). This grouped testing approach represents the hypothesis that the accumulated

downstream effects of many variants acting on a specific FU might alter a specific cellular
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function that is critical for the phenotype of interest. This improves the power to detect sets
of regulatory variants with a potential role in disease etiology.

Unlike GWAS, this approach implicates the relevant chromatin feature, cell type and
treatment for the phenotype in addition to the genotype-phenotype associations (Figure 3.7D).
For a continuous response (e.g. height), the Lasso model and how the regularization is applied

are given below:

Yi = Z ﬁjkxij + Bsex,ksexi + 5age,kagei + Bcoh,kCOhi + <Z 5(l1nc,kancé> + BOk +e€
l

JESK
2
M
arg;nin > |y = Bok = Y BinXij + BscakSexXi + Bage kage; + Beon,kcohi + (Z ﬁénc,kancé> + A8l
=1 JESK l

M
. <2
argénmg (yi —3:)” + MBI,
i=1

Phenotypes with a binary response variables (i.e. MS and MDD) are modeled with logistic

models:

logit P(yi = 1) = Bor + Y BirXij + Bsea kX + Bage ka8e; + Beon kcoh; + (Z @lmc,kaHCﬁ)
JESK I

gik = Singid Z Bijij + ﬁsew,ksexi + Bage,kagei + Bcoh,kCOhi + (Z ﬁénqkanCé)

€Sk I
M
argmax Y _ yilog(gix) + (1 — ;) log(1 — Gix) + A 18],
i=1

Variables in the equations represent:
e ¢,7.k: Subscripts representing individual, SNP and functional units, respectively.

e N : Number of individuals.

e sex, age, coh, anc: Sex, age, cohort membership and the multidimensional scaling (MDS)
components of the genotypes representing the ancestry of the individual. [ is used as an

index for the MDS components.

e X: Genotype matrix where the genotypes are encoded using the probabilities of three
possible genotypes in an additive manner e.g. X;; = 2P(AA;;) + P(Aa;;). P(AA;;) and
P(Aa;;) represent the homozygous and heterozygous genotype probabilities. Therefore

X,; takes on a continuous value in the range [0, 2].
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e Si: Set of SNPs with significant predicted regulatory effect on FU k. The regression

coefficients () are also indexed with k and thus are FU-specific.

e y: Response variable representing the disease or trait. It is binary in the case of MS and

MDD and continuous for height. 3 represents the predictions in both models.

e \: Regularization strength in Lasso which determines the amount of shrinkage applied

to the model parameters (/3).

The equations above consist of two components, the likelihood term (Zi‘il (y; — 9;)* in the
first equation and "M yilog(di) + (1 — 3:) log(1 — g) in the second equation) and the
regularization term (A [|3]|;), which can also be interpreted as Laplace priors over the model
parameters 3. As described in Section 2.1.2, L1-regularization term improves generalizability
and interpretability of the model by shrinking the model parameters towards zero and hence
leading to sparse solutions. Coefficients of the SNPs with non-zero values are considered

informative for the prediction and used for associating SNPs with the phenotype of interest.

Stability selection and accounting for the covariates

The resulting associations of Lasso models might exhibit high variation across different runs,
particularly when applied to datasets of small sizes. We used the stability selection approach
proposed by Meinshausen and Bithlmann (Meinshausen and Biihlmann 2010) to improve the
stability of the association results. This approach simply tests associations multiple times
for a given dataset via resampling of data points which yields the uncertainty estimation of
variable selections. These uncertainty estimates are then used for controlling false positive
rates (e.g. per-family error rate-PFER). See Section 2.1.2 for more details on the method.
To avoid cohort, sex, age and ancestry-specific effects in genotype-phenotype associations,
we used cohort membership, sex, age, and selected MDS ancestry components as additional
covariates in Lasso models. The stability selection procedure implemented in the “stabsel”
function of the R package “stabs” was used to test genotype-phenotype associations. The type
of Lasso implementation, selection probability cutoff and per-family error rate parameters,
namely “fitfun”; “cutoff” and “PFER” were set to “glmnet.lasso”, 0.7 and 1.0, respectively.
The subsampling strategy proposed by Shah and Samworth (2012) is used with n = 100
subsample replicates and a subsample size of [n/2|. The resulting SNPs which represent

stable FU-specific associations are named “dSNPs”.

Functional annotation of dSNNPs

The cell line and tissue data for the ENCODE tracks were downloaded from https://

genome.ucsc.edu/encode/cellTypes.html. The genome segmentation files of the 15-state
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ChromHMM model representing the annotations of cis-regulatory elements were downloaded
from the web portal of the Roadmap Epigenomics Project (Kundaje et al. 2015)(http://egg2.
wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/
jointModel/final/all.mnemonics.bedFiles.tgz). Roadmap segmentations are first col-
lapsed for each tissue into broader groups and then overlapped with the dSNPs using the
genomic positions.

To further characterize the regions where dSNPs are located, we overlapped the SNP
positions with various genomic annotations including promoters, 3’ and 5 UTRs, inter-
genic regions, downstream and intronic/exonic regions using the ChIPseeker (https://www.
bioconductor.org/packages/release/bioc/html/ChIPseeker.html) (Yu et al. 2015) Bio-
conductor R package and the UCSC hgl9 “known gene” transcript set. Moreover, we used
SNPsea to identify the tissue and cell types that are likely affected by dSNPs. SNPsea version
1.0.3 (Slowikowski et al. 2014) was downloaded from https://github.com/slowkow/snpsea/
and the enrichment p-values are calculated using the default annotation files via the SNPsea

command line interface.

Graph visualizations

The associations between dSNPs and the FU components (i.e. cell types, chromatin features
and treatments) as well as those between QTL-gene, QTL-tissue and QTL-cohort are visualized
with graphs. The dSNPs, FU information and links to external QTL datasets were added into
a local Neo4j graph database (version 3.4.0, https://neo4j.com). We used dummy nodes
(small gray nodes in graph visualizations) to avoid ambiguity in the dSNP-FU and dSNP-QTL
links. In this scheme, dSNPs are connected to the dummy nodes, which are connected to
the FU components instead of a direct dSNP-FU connection. An ambiguity would arise
when a dSNP with a regulatory effect on two FUs, e.g. JUND:K562 and NFKB:A549, were
connected to all four elements where one cannot distinguish whether the FUs are JUND:K562
and NFKB:A549 or JUND:A549 and NFKB:K562. Similarly, dNPs are connected to QTL

components (genes, tissues and cohorts) via dummy nodes.

3.3.2 Application of DeepWAS

We used DeepSEA variant effect predictions to filter from the measured SNPs only those with
significant cell-type-specific regulatory effects (e-value < 5 x 107°) (J. Zhou and Troyanskaya
2015). This process yielded around 40,000 SNPs. For each of the 919 FUs, we obtained a list
of likely functional and functionally similar SNPs. Next, using multivariate L1-regularized
regression models (Lasso) with stability selection (Tibshirani 1996; Meinshausen and Biithlmann
2010; Hofner et al. 2015), we tested the associations of these putatively regulatory variants

with the phenotype of interest for each FU individually using specifically the sets of SNPs
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functional in a FU. The SNPs with significant associations in 919 regression models, named
“dSNPs”, and the FU information linked to these models comprise the primary outcome of
DeepWAS (Figure 3.7).

We used DeepWAS to characterize the regulatory determinants of three complex phenotypes
from previous studies. These consist of two case-control studies, namely MS and MDD where
patients are compared to healthy controls, and a cohort study of human body height. In our
MS application, we analyzed the KKNMS GWAS dataset consisting of two independent MS
case-control cohorts with 15,283 participants in total (T. F. Andlauer et al. 2016). In total,
out of 36,409 predicted regulatory variants in 25,000 independent loci, DeepWAS identified
53 MS-associated dSNPs! in 16 independent loci that are potentially altering 120 chromatin
features in 133 cell lines in 38 independent loci (r? > 0.5). Moreover, this analysis revealed
637 out of 919 FU models with at least one variant association (Figure 3.8). While there was a
single SNP association with MS in most regression models, 148 models resulted in more than
two significant associations jointly affecting a FU.

We further applied DeepWAS to relatively small GWAS datasets for MDD (n=3,514)
(Muglia et al. 2010; Rietschel et al. 2010) and height (n=5,866) (Wichmann et al. 2005) which
yielded 61 dSNPs in 237 FUs for MDD and 43 dSNPs in 381 FUs for height.

Comparison of dSNPs with GWAS associations is an important point that is relevant for
evaluating the results of our approach. In the following sections, we investigated whether the
dSNPs overlap with 1) the results of typical GWAS analysis of the same datasets that we
characterized with DeepWAS 2) the results of the larger GWA studies or meta-analyses of the
identical phenotypes.

Clinical Samples

We analyzed the genotypes and phenotypes of the MS patients (including the patients at
prodromal phase, called CIS—clinically isolated syndrome) in the DE1 and DE2 cohorts of
KKNMS (Kompetenznetz Multiple Sklerose) network and the genotypes for the control group
are obtained from T. F. Andlauer et al. (2016) (n=15,283 total individuals). For further
information about the cohort and genotype data processing, refer to T. F. Andlauer et al. (2016).
For MDD, we analyzed the genotypes and phenotypes from two cohorts, recMDD and BoMa
(n=3,514), collectively named MDDC. recMDD individuals are recruited at the Max-Planck
Institute of Psychiatry (MPIP) in Munich, Germany, and two hospitals BKH Augsburg and
Klinikum Ingolstadt, which is previously described in Muglia et al. (2010). BoMa comprised
MDD patients described in Rietschel et al. (2010). For further information about the cohorts

and genotype data processing, please refer to the corresponding publication (Muglia et al. 2010;

!These 53 dSNPs were outside of the major histocompatibility complex (MHC) region. 111 dSNPs residing in
the MHC are excluded from the results.
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Pheno- DeepWAS datasets Func. dSNPs Overlap with Largest Overlap with
type units cohort-matched GWAS largest
GWAS GWAS
Dataset Co- To- Nomi- Genome- Cohort  Total Genome-
horts tal nal wide ind. wide
ind.
MS KKNMS DE1, 15,283 637 53 42 11 IMSGC 115,803 15
DE2
MDD MDDC BoMa, 3,514 237 61 60 0 PGC, 807,553 0
recMDD UKBB
Height KORA S3,S4 5866 381 43 42 1 GIANT 183,727 3

Table 3.1: Results of MS, MDD and height applications of DeepWAS and overlap with cohort-matched and
larger GWAS results. MS: Multiple sclerosis, MDD: Major depressive disorder, UKBB: UK Biobank, PGC:
Psychiatric Genomics Consortium, IMSGC: International Multiple Sclerosis Genetics Consortium.

Rietschel et al. 2010). GWAS analysis for MDD was conducted separately on recMDD and
BoMa cohorts by Janine Arloth. See the DeepWAS publication (Arloth et al. 2020) for more
details on methods. For the analysis of height, we used the genotypes and phenotypes from
the participants of S3 and S4 cohorts of the KORA (Kooperative Gesundheitsforschung in
der Region Augsburg) study (Wichmann et al. 2005) (n=>5,866). See Wichmann et al. (2005)
for more details on the cohort and genotype data processing. For the comparison with larger
GWAS results, we used the variant lists from IMSGC (n=115,803, International Multiple
Sclerosis Genetics Consortium 2019), PGC (n=807,553, Psychiatric Genomics Consortium,
Howard et al. 2019) and GIANT (n=183,727, H. L. Allen et al. 2010) cohorts for MS, MDD
and height respectively.

DeepWAS results are in accordance with the cohort-matched GWAS

We compared the dSNPs with the genome-wide and nominally significant associations identified
in the same MS, MDD and height datasets via a typical GWAS approach to assess the agreement
between the two approaches (Table 3.1). 11 out of 53 MS dSNPs (or their LD proxies, r2 > 0.5)
were genome-wide significant in published KKNMS GWAS (T. F. Andlauer et al. 2016). These
dSNPs were located in six independent loci near genes EVI5 (lead GWAS SNP: rs6689470),
CD58 (rs2300747), CLECI16A (rs6498168), MAZ (rs34286592), SHMT1 (rs4925166), and an
intergenic region (rs1891621). The remaining 42 dASNPs were nominally significant in the MS
GWAS (p-values < 5.13 x 1074).

60 out of 61 MDD dSNPs (or their proxies, 72 > 0.5) were nominally significant in the
GWAS of the MDDC cohort, while all 43 height dSNPs reached significance at the nominal
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level in the GWAS of the KORA cohort (Wichmann et al. 2005) (p-values < 7.7 x 1073) in
addition to a single genome-wide significant SNP. For more detailed results, see Arloth and
Eraslan et al. (2020).

These results indicate that DeepWAS was able to identify both novel and existing risk loci
with the expected Type I error rate (e.g. PFER). Interestingly, many dSNPs were sub-threshold
variants in GWAS which might be due to two reasons. The first one is the lack of sufficient
statistical power, which is discussed in the next section where we compared our results with
larger GWAS. Second, the multivariate nature of DeepWAS which estimates the phenotypic
effects of variants conditioned on other regulatory variants, unlike GWAS, might lead to this

difference.

DeepWAS results are in line with larger GWAS

We compared our MS dSNPs with the GWAS results of the International Multiple Sclerosis
Genetics Consortium (2019) (IMSGC, n=47,429 cases and n—=68,374 controls) where 200
genome-wide risk loci were identified outside of the MHC locus. 39 out of 200 MS risk loci
harbored at least one dSNP. 15 out of 53 MS dSNPs were genome-wide significant in ten
independent loci, including five loci where the nearest genes were EVI5, CD58, CLEC16A,
EPS15L1, LINCO00271 as well as five intergenic loci on chromosomes 5, 6, 10, 11 and 22. Eight
dSNPs near EVI5, CD58 and CLEC16A genes also reached genome-wide significance in the
cohort-matched GWAS.

None of the MDD dSNPs were genome-wide significant in the largest MDD GWAS (Howard
et al. 2019) (n=246,363 cases and n—=561,190 controls). The highest p-value (i.e. the least
significant) of MDD dSNPs in this GWAS was 2.8 x 10~%. Eight out of 43 height dSNPs
reached genome-wide significance in seven independent loci (nearest genes: DIS3L2, HABP4,
LCORL, PDLIM4, PXMP4, ZBTB38 and ZNF311) in the latest height GWAS (GIANT
Consortium, H. L. Allen et al. 2010, n=183,727).

Except for the MDD, we see a better agreement with the GWAS results as cohort sizes
and statistical power increase. This suggests that DeepWAS can detect sub-threshold GWAS
variants which can potentially govern critical regulatory components of disease or trait mecha-

nisms.

DeepWAS generates novel hypotheses of disease mechanisms

We next demonstrated how DeepWAS could be leveraged to derive testable hypotheses on
regulatory mechanisms that potentially contribute to MS pathology with two cases.

First, we highlighted a group of MS dSNPs (rs62420820, rs12768537 and rs137969) with
regulatory effects targeting four functionally-related TFs, namely MafF, MafK, Bachl and
NF-E2 (Figure 3.9A). The biological relevance of this finding in the context of MS pathology is
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Figure 3.9: (A) Network visualization demonstrating the potential regulatory effects of three related MS dSNPs.
Edges represent predicted associations of dSNPs, chromatin features and cell lines as well as the statistical
associations from the eQTLGen study. (B) Homodimer and heterodimer protein complexes formed by small
MAF proteins (sMafs) which are predicted to be affected by MS dSNPs and potentially play a role in disease
etiology. (C) Log2 fold changes between the DeepSEA probabilities of reference and alternative alleles of
rs62420820 variant for 919 functional units. Significant effects are highlighted. (D) Normalized probabilities of
MafF-K562 and MafK-K562 binding events for both alleles. Alternative allele causes significantly lower binding
probability compared to the reference allele. (E-G) LocusZoom plots of the MS dSNP rs62420820, rs12768537
and rs137969 from small (KKNMS) and large (IMSGC) GWAS results. rs62420820 dSNP, highlighted in blue,
is also a genome-wide significant variant in the MS GWAS (IMSGC (International Multiple Sclerosis Genetics
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without the LD information. Adapted from Arloth et al. (2020).
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twofold. First, it was reported that GRAP2, an eQTL gene for rs137969 (Vosa et al. 2018), is
differentially expressed in CD4 T cells purified from MS patients compared to healthy controls
and is an MS susceptibility gene (Berge et al. 2019). Second, small Maf protein family (sMafs)
are known to form heterodimers with Bachl and NF-E2, which are also involved in the same
regulatory module by DeepWAS, as well as homodimers with other sMafs (e.g. MafG-MafF)
(Katsuoka and Yamamoto 2016) (Figure 3.9B). Furthermore, Katsuoka, Motohashi, et al.
(2003) reported that mutations in sMafs might lead to neuromuscular dysfunction and neuronal
degeneration. Although MafG is not a part of the predictive DeepSEA model (therefore
DeepWAS), this finding supports the hypothesis that the Maf family protein complexes are
likely involved in the MS pathology through the regulatory mechanisms identified by DeepWAS
based on the significant predicted effects of rs62420820 on sMafs (Figure 3.9C-D). Importantly,
all three variants were nominally significant in cohort-matched GWAS analyses (Figure 3.9E-G),
while rs62420820 was a genome-wide significant variant in the IMSGC GWAS (p-value =
9.26 x 10730, Figure 3.9E). Consequently, DeepWAS not only brings the pieces of the puzzle of
MS etiology together by placing GRAP2 and sMafs in the same context, but it also uncovers
key regulatory non-coding variants that are not easily detectable without performing large
GWAS analyses and/or meta-analyses.

Second, we identified rs1985372, a variant on chromosome 16 within an intron of CLEC16A,
which is a gene previously associated with MS (T. F. Andlauer et al. 2016). This dSNP was
genome-wide significant in both cohort-matched (T. F. Andlauer et al. 2016) and in IMSGC
GWAS (International Multiple Sclerosis Genetics Consortium 2019). According to the GWAS
results, the minor allele (T') decreases the MS risk (OR=0.853). rs1985372 is also a known
eSNP for CLEC16A gene (GTEx Consortium 2017) which further supports the functional role
of the variant. DeepWAS now adds to that a testable hypothesis that the T allele of rs1985372
potentially creates a binding site for multiple TFs including GABP, GATA1, GATA2, p300,
STAT1, STAT2, STAT5A, and TBLR1 (Figure 3.10), which in turn potentially plays a role in
MS pathology via the dysregulation of CLEC16A.

Characterization of regulatory dSNPs via colocalization

We sought to further characterize the dSNPs of three phenotypes by investigating the genomic
regions where the dSNPs are located using the UCSC annotations (Casper et al. 2018). 63-87%
of the dSNPs were located within non-coding DNA elements. The fraction of intronic dSNPs
was higher in MS and height (32% and 33%, respectively) than in MDD (13%). Conversely,
the ratio of distal intergenic dSNPs at least 3kb away from the downstream of a gene was
higher in MDD (53%) than those in MS and height (36% and 37%, respectively). No MS or
MDD dSNPs were observed in coding regions (Figure 3.11A).

We next investigated the tissue-level specificity of dSNPs using the known tissue annotations
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Figure 3.10: (A) CLECI6A locus and the position of rs1985372. (B) Log2 fold changes between the DeepSEA
probabilities of reference and alternative alleles of rs1985372 variant for 919 functional units. Significant effects
are highlighted in blue. (C) Normalized probabilities of significantly affected binding events for both alleles.
(D) rs1985372 is significantly associated with the expression of CLEC16A in multiple tissues. Normalized
effect sizes and p-values of the associations from the GTEx portal are shown.

of cell lines that are linked to dSNPs to have a bigger picture of the results for each phenotype
(Figure 3.11B). Although most of the dSNPs fell into five major categories (i.e. blood, cervix,
embryonic stem cells, liver and skin), the fact that a different number of cell lines and/or
tissues contributed to these categories (e.g. 79 in the blood whereas 14 in the brain) influenced
the number of dSNPs for each category. Interestingly, a higher number of height dSNPs were
observed in the pancreas category compared to other phenotypes. Of note, Aune et al. (2012)
reported that higher height is associated with increased pancreatic cancer risk among both

men and women in a meta-analysis involving twelve cohort studies .

Colocalization of the identified variants with the key regulatory states of the genome, such
as enhancers, was another critical step in characterizing dSNPs. We overlapped dSNP positions
with the genomic regions whose epigenomic states are inferred by the 15-state ChromHMM
model (Ernst and Kellis 2012) (Figure 3.11C). Furthermore, we grouped these states into

active and repressive state groups for simplicity and reported aggregate counts for active
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Figure 3.11: (A) Overlap of dSNPs with the UCSC annotations of genomic regions. (B) The number of
dSNPs for each ENCODE tissue category corresponding to the cell line where dSNPs are identified. (C)
The number of dSNPs overlapping with the ChromHMM states which are grouped into repressive and active
for each tissue category. 12 out of 15 ChromHMM states which overlapped with at least one dSNP were
shown. (D) Top 15 dSNP-enriched tissues and cell types based on FANTOM gene expression data analyzed
with SNPsea (Slowikowski et al. 2014) (p-values < 0.05). Relevant tissue/cell types are highlighted for each
phenotype. Adapted from Arloth et al. (2020).
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Figure 3.12: Bar plot depicting the overlap of MS, MDD and height dSNPs with GTEx eSNPs identified in

brain, skeletal muscle and blood samples. Percentages, the number of overlapping dSNPs and the total number
of dSNPs are shown on the bars.

and repressive states. We observed that most MS and height dSNPs colocalized with active
chromatin states (82% and 86%, respectively) while the fraction of dSNPs falling into the
repressive regions was higher in MDD dSNPs (43%) than the other phenotypes. This might
indicate that the MS and height variants play a role in the regulation of active transcription
while MDD dSNPs are involved in silencing gene activities.

Similarly to the positional overlap with genomic annotations, we investigated whether
the loci of dSNPs and their proxies (r2 > 0.5) were enriched with the genes with cell type
and/or tissue-specific expression using Fantom CAGE data (Andersson et al. 2014). We
observed significant associations with many phenotype-related cell types and tissues for all
three phenotypes. For instance, immune cell types such as macrophages, dendritic cells and
CD14+ monocytes were associated with MS, whereas the genes with skeletal muscle and brain-
specific expression patterns gave rise to the associations with height and MDD, respectively
(p-values < 0.05, Figure 3.11D).

Effects of dSNPs on gene expression

We expect the predicted regulatory effects of ASNPs to be reflected on the gene expression which
can be examined using previously known SNP-gene expression associations, namely eQTLs.
We utilized cis-eQTLs detected in three tissues of the GTEx resource (GTEx Consortium 2017)
(blood, skeletal muscle and brain) to investigate the overlap between dSNPs and their proxies
(r? > 0.5). The percentage of MS and height dSNPs overlapping with GTEx cis-eQTLs was
higher in whole blood and skeletal muscle, respectively compared to other phenotypes (36%
and 42%, Figure 3.12). 19 MS dSNPs which are also eSNPs in the GTEx whole blood samples,
as well as the affected chromatin features and eGenes, are given in Table 3.2. Interestingly,
AHI1, IQCBI1 and PSAP genes, which were previously associated with MS (International
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Tissue MS dSNP  Proxy SNP R2 GTEX Variant Id P-value eGene symbol Affected chromatin feature(s)

Whole Blood rs11164608 rs4970702 1 1.92944994_A_G_b37 2.44981E-08 EVIS EZH2,SUZ12

Whole Blood rs7542867  rs10874726 0.995795 1_93103099_A_T_b37 4.01786E-07 EVI5 Histone marks

Whole Blood rs1034919  rs10924108 1 1_117062474_T_C_b37 2.60892E-05 RP5-1086K13.3 CTCF,CTCFL,DNase,Egr-1,GABP,Rad21,SIN3A,TBP,
ZNF263,ZNF274,22Z3

Whole Blood rs10924104 rs10924108 0.861657 1.117062474_T_C_b37 2.60892E-05 RP5-1086K13.3 Histone marks

Whole Blood rs35737776 rs10934565 1 3_121664661_G_A_b37 8.79109E-14 1QCB1 PU.1

Whole Blood rs13197384 6_135818897_C_A_b37 1.63426E-19 AHI1 CTCFL,RXRA,ZKSCAN1

Whole Blood rs7797030 rs112311344 0.51365 7_5759119_G_C_b37 2.58714E-06 RP11-527E14.1 BHLHE40,HDAC2

Whole Blood rs793102 10_31391564_C_T_b37 3.40424E-07 RP11-330011.3 FOXA1

Whole Blood rs11000015 10_73571883_C_T_b37 1.81549E-05 PSAP MAZ,RXRA,ZBTB7A

Whole Blood rs59410994 11_65490939_TTTTTA T_b37 6.1428E-17 MAP3K11 Histone marks

Whole Blood rs593525 11_65727799_T_C_b37 9.47338E-06 BANF1 CEBPB

Whole Blood rs9603589 13_40229744_C_T_b37 6.78673E-11 COG6 TAF1

Whole Blood rs17214656 rs7171079 1 15_80202643_C_T_b37 5.09342E-11  ST20 IRF3

Whole Blood rs1057452  rs4788187 0.914983 16_29845685_T_C_b37 4.63003E-05 MVP Max,Pol2-4H8,Sin3Ak-2

Whole Blood rs2075657 17_18061528_T_G_b37 1.59206E-05 SMCR8 IRF1,SP4

Whole Blood rs7207666 rs28880370 1 17_18182720_A_G_b37 4.18938E-08 RP1-178F10.3  Pol2,RPC155,TFIIIC-110,ZNF274

Whole Blood rs2273030  rs4925160 1 17_18185599_A_G_b37 2.33275E-06 TOP3A GRp20,NRSF,TAF7,YY1

Whole Blood rs4925172  rs4925160 1 17_18185599_A_G_b37 2.33275E-06 TOP3A CTCF

Whole Blood rs1000329  rs12972942 0.567754 19_16577647_G_A_b37 7.49011E-06 EPS15L1 Max

Table 3.2: MS dSNPs significantly associated with gene expression (i.e. eSNPs) in GTEx cis-eQTL data from
the whole blood samples. AHI1, IQCB1 and PSAP genes, shown in bold, were previously associated with MS
(International Multiple Sclerosis Genetics Consortium 2019; Berge et al. 2019). R? represents the measure of
LD between dSNP and the proxy.

Multiple Sclerosis Genetics Consortium 2019; Berge et al. 2019) were observed in the list of
eGenes. In the brain samples, MS showed the highest ratio of overlapped dSNPs compared
to height and MDD dSNPs?. Overall, our results suggest that dSNPs are disease-associated
potentially regulatory variants that play a role in the regulation of gene expression in various
tissues, including those that are phenotype-related such as blood and brain for MS and skeletal

muscle for height.

DeepWAS identifies potential key regulators of MS and MDD

We next sought to find dSNPs active in unusually high numbers of functional units, which
might indicate a critical regulatory role. Given that 72% of total dSNPs (113 out of 157) are
linked to at most three functional units, dSNPs very rarely affect multiple FUs. However,
some outliers, such as MS dSNP rs175714 and MDD dSNP rs7839671, which are linked to 214
and 27 FUs respectively, are worth investigating as potential key regulators (Figure 3.13).

2For the overlaps with other sources of eQTLs and methylationQTLs, see the DeepWAS publication (Arloth
et al. 2020).
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Figure 3.13: Top 15 dSNPs with the highest number of functional unit associations are shown for three
phenotypes. Potential key regulators of MS and MDD (rs175714 and rs7839671), which are described in this
section, are highlighted.
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The first candidate, rs175714, was predicted to affect 29 chromatin features in 116 cell
lines (Figure 3.14). One of the affected TFs, MAZ, was previously associated with MS by T. F.
Andlauer et al. (2016) via a genome-wide significant SNP rs34286592 (p-value=4.58 x 107%),
but the underlying mechanism linking MAZ to MS is yet to be described. We identified that
two dSNPs which are associated with MS in our multivariate models, rs175714 and rs11000015,
were also predicted to affect the binding of MAZ TF (Figure 3.15A-C). Moreover, rs11000015
is a significant cis-eQTL for the Prosaposin (PSAP) gene in the GTEx (Lonsdale et al. 2013)
samples collected from thyroid, tibial nerve, blood and others (Figure 3.15D). Berge et al.
(2019) reported that Prosaposin protein is differentially expressed in the CD4+ T cells collected
from the MS patients compared to those from the healthy controls (p-value=0.004366).

The second key regulator candidate, rs7839671, is an intergenic MDD dSNP potentially
affecting 24 chromatin features in 5 cell lines (Figure 3.16A). Together with another MS
dSNP rs7661078, rs7839671 was predicted to significantly affect the binding of MEF2C TF
(Figure 3.16B-C) which was shown to be an important risk gene for MDD (Howard et al.
2019). Furthermore, there is growing evidence suggesting a critical role of MEF2 gene family
in synaptic plasticity under stress (S. X. Chen et al. 2012), memory formation and dendritic
spine growth (Barbosa et al. 2008).

3.3.3 Conclusion

Associations between the genetic and phenotypic variation are examined individually for
each variant in the existing GWAS practices. This view fails to account for a critical point.
Putative determinants of many complex diseases are low-penetrance, non-coding variants with

potential regulatory role (Tak and Farnham 2015), some of which are detected below the
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Figure 3.14: Graph visualization of a putative key regulator for MS, dSNP rs175714 (highlighted). One of the
critical TFs affected by rs175714 is MAZ (highlighted), which is also among the most significant loci in the
cohort-matched GWAS results. dSNP-functional unit relationships are represented as dSNP, chromatin feature,
cell line and treatment nodes connected with edges through the dummy nodes (small gray nodes). Similarly,
eQTLs are depicted via connected dSNP, gene, source tissue and cohort nodes. Dummy nodes bundle all
components of dSNP and eQTL associations together to avoid the ambiguity that might arise when they are
directly connected. Adapted from Arloth et al. (2020).
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Figure 3.15: Log2 fold changes between the DeepSEA probabilities of reference and alternative alleles of
rs175714 (A) and rs11000015 (B) for 919 functional units. Significant effects are highlighted in blue. (C)
Normalized probabilities of significantly affected binding events for the alleles of both variants. (D) rs11000015
is significantly associated with the expression of PSAP in multiple tissues. Normalized effect sizes and p-values
of the associations from the GTEx portal are shown.

genome-wide significance threshold (Xinchen Wang et al. 2016). Therefore, variants with
the potential regulatory roles can be prioritized in the association tests to gain power and
to develop hypotheses on the regulatory mechanisms that contribute to the causal factors
of the phenotype. We implement this idea in our approach, DeepWAS, by fusing current
GWAS practices with the functional characterization of the variants into a single pipeline
(Figure 3.7). This pipeline starts with predicting the regulatory effects of the given variants on
various chromatin features in many cell lines using the predictive power of the deep learning
model DeepSEA. Next, multivariate L1-regularized (Lasso) regression models jointly test the
association of groups of variants playing similar regulatory roles (i.e. active in the same FU)
with the phenotype of interest. Using this testing approach, DeepWAS aims to model the
polygenic architecture of complex diseases and traits. The resulting variants, so-called dSNPs,

not only indicate a set of variants jointly affecting the phenotype but also suggest hypotheses
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Figure 3.16: (A) Graph visualization of MDD dSNPs rs7839671, rs7661078 and the functional units where
they are potentially active. dSNP-functional unit relationships are represented as dSNP, chromatin feature, cell
line and treatment nodes connected with edges through the dummy nodes (small gray nodes). rs7839671 and
TF MEF2C are highlighted. Log2 fold changes between reference and alternative allele DeepSEA probabilities
of variants rs7839671 (B) and rs7661078 (C) for 919 functional units. Significant effects are highlighted in
blue. Adapted from Arloth et al. (2020).

on the underlying regulatory mechanisms contributing to the phenotype. We showed that
DeepWAS can generate relevant mechanistic hypotheses and potentially increase statistical
power by pre-selecting putative regulatory variants, which is useful especially for underpowered

cohorts.

In our DeepWAS applications, we identified 53 non-MHC candidate risk SNPs for MS
(n=15,283 total individuals), 61 SNPs for MDD (n=3,514) and 43 SNPs for height (5,866).
We compared these results to well-powered GWA studies of the same phenotype as well as
the GWAS results of the same datasets (i.e. cohort-matched GWAS). 38 out of 53 dSNPs
were new putative MS risk SNPs that were sub-threshold in well-powered MS GWAS. All 61
MDD dSNPs and 35 out of 42 height dSNPs were not genome-wide significant in well-powered
GWAS of MDD and height, respectively. Although these findings remain to be experimentally

validated (both the regulatory mechanisms like TF binding and the disease associations), the
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results suggest that DeepWAS is able to generate novel hypotheses of disease mechanisms as
well as novel risk loci.

We used the sources of prior biology for the functional characterization of dSNPs, which
suggests that the identified variants potentially play a role in the disease-related pathways
and are likely to contribute to the phenotypes (Figure 3.9-3.16). First, we observed that
three MS dSNPs are also eQTLs affecting disease-associated genes GRAP2, CLEC16A and
PSAP (Figure 3.9-3.10, 3.14-3.15) (Berge et al. 2019; T. F. Andlauer et al. 2016). Second,
the vast majority of MS dSNPs were predicted to function in hematopoietic cell lines (47%,
n=35) and in the brain or spinal cord samples (30%, n=16), which are relevant in the context
of MS (Figure 3.11B). Similarly, the overlap with the GTEx cis-eQTL SNPs also showed
meaningful patterns such as high overlap with blood and brain eQTLs for MS and skeletal
muscle for height (Figure 3.12). Third, the positions of dSNPs significantly overlapped with
the genes expressed in a tissue- and cell type-specific manner in the relevant cell types and
tissues e.g. immune cells for MS, brain-related cell lines for MDD and the skeletal muscle for
height (Figure 3.11D). Last, dSNPs were predicted to be involved in the binding events of TFs
that were already linked to diseases, such as MAZ for MS (Figure 3.14) and MEF2C for MDD
(Figure 3.16) (T. F. Andlauer et al. 2016; Howard et al. 2019).

In conclusion, DeepWAS couples the concept of deep learning-based variant effect prediction
by estimating joint effects of regulatory variants moderating a complex phenotype. This
approach is a powerful tool that reveals regulatory mechanisms underlying diseases and traits
even for small cohorts and a method for identifying groups of risk variants jointly contributing

to the causes of the phenotype of interest through modulation of a common FU.
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Chapter 4

Recovering the expression signal in
single-cell genomics using

representation learning

Single-cell genomics is revolutionizing molecular biology. Novel computational and experimental
developments in single-cell have enabled in-depth exploration of the transcriptome landscape
via the applications in a spectrum ranging from discrete types and states (Lake et al. 2018) to
continuous phenotypes of malleable populations such as differentiation trajectories (Haghverdi,
Biittner, et al. 2016; Moignard et al. 2015; Herring et al. 2018) as well as applications to disease
biology (Keren-Shaul et al. 2017; Stephenson et al. 2018; Gladka et al. 2018). High-quality
spatial profiling techniques, multimodal measurements, large-scale perturbation experiments
and drug screens are only a few promising directions that will greatly expand the repertoire of

single-cell genomics and increase the popularity of single-cell even more in the next few years.

Due to the exponentially growing volume (Figure 1.4) and increasing complexity of single-
cell experiments, applying supervised learning techniques, as discussed in the previous chapter,
is highly impractical. Therefore, there is an expected shift towards unsupervised (and self-
supervised) machine learning in single-cell. As a branch of machine learning, unsupervised
representation learning provides a set of techniques to model high-dimensional, large-scale,
unlabeled data using the representations of the data points in a new feature space, which
makes it a perfect fit for this domain. This chapter will focus on applying representation
learning techniques to single-cell RNA-seq (scRNA-seq) datasets, mainly for improving cell
representations via denoising the data.

Technical sources of variation such as low RNA capture rate (Kharchenko et al. 2014),
amplification bias and varying library sizes (Vallejos, Risso, et al. 2017) contribute to the

gene expression readout of cells in scRNA-seq measurements. Another technical factor that
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might severely affect the measurements in scRNA-seq is called the dropout (Kharchenko et al.
2014). In the droplet-based single-cell sequencing techniques, shallow sequencing of single cells
exacerbates the problem of “detection failure” where no transcripts of some expressed genes
are detected, which results in “false” zeros in the expression matrix (Klein et al. 2015; Zheng
et al. 2017; Lopez et al. 2018; Lihnemann et al. 2020). Notably, this phenomenon creates a
distinction between the “true” zeros (i.e. biological non-expression) and the “false” zeros (i.e.

dropout events).

The technical sources of variation can potentially give rise to challenges in the downstream
analysis and hinder proper interpretation of the biological signal. For example, analysis of
gene-gene relationships (e.g. regulatory network inference, linking inferred gene modules to
complex diseases and biological processes) is a fundamental part of computational biology
and is gaining popularity in single-cell genomics (Aibar et al. 2017; Fiers et al. 2018; Iacono
et al. 2019). Such analyses typically rely on the gene-gene correlations which are inferred
from the data. However, due to the critical effects of technical factors, including the dropout
noise, these correlations can be underestimated, which might impair the inference of accurate

relationships between genes and regulatory network representations.

We further demonstrate the dropout noise and underestimation of gene-gene correlation
using a real scRNA-seq dataset, 20,031 CD4+ T cells from Zheng et al. (2017), where the
expression of CD3D (a general T cell marker), CD4 (marker of a major T cell subtype,
called T helper cells) and CD8 (marker of another major T cell subtype called Cytotoxic T
cells) are shown (Figure 4.1). Although all cells likely express CD3 and CD4 genes in this
population, CD3 and CD4 are not detected in 25% and 88% of the population, respectively
(CD3-CD4-: 4374, CD3-CD4+:509, CD3+CD4-:13397, CD3+4CD4+:1751). This sparsity is
also visible in the 2D visualization of cells (Figure 4.1C). Horizontal and vertical bars in
the scatterplot where CD3D and CD4 are plotted indicate the dropout (Figure 4.1D). The
Pearson correlation between CD3 and CD4 genes is 0.0042 and the p-value of Fisher’s exact
test measuring the dependence between these genes is 0.03. However, we expect to see a much
higher concordance between the two genes owing to prior biology. One possible explanation of
sparse CD4 expression is the misannotation of CD8 cells as CD4 cells in this population, but
there are only 41 cells where CD8 expression is detected! (Figure 4.1E-F). In summary, the
downstream analyses that are built on the relationship between these two genes estimated
from the noisy data can be suboptimal or even misleading.

Denoising is a common task in imaging that aims to distinguish visually meaningful
patterns (i.e. the signal) from the noise (Shao et al. 2014). This distinction allows denoising

methods to enhance the image quality by removing the noise from the image and increasing

!There are T cell subpopulations that might lack CD4 and CD8 expression (i.e. CD3+CD4—CD8—). However,
these rare cells are not detected in this population.
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Figure 4.1: Consequence of dropout in CD4+ T cells. UMAP (a nonlinear dimension reduction method)
visualization of CD3 positive and negative CD4 cells (A) from Zheng et al. (2017) 68k PBMC dataset and
subtype/state annotations (B) are shown. Although all CD4+ cells here likely express the CD3 gene, the
detected CD3 expression is sparse due to dropout (C). Plotting CD3 against CD4 expression shows the dropout
pattern as vertical (CD3 dropout) and horizontal (CD4 dropout) lines (D). Cells that are not expressing CD4
are not CD8+ T cells (E-F). log(TP10k+1) normalized expression is shown in (C-F). Gray dots in panels C
and E represent cells with no measured expression.
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process is exemplified with a hypothetical single-cell RNA-sequencing data (gene by cell heatmap) where the
cells are sorted by their differentiation status from progenitor to differentiated cells. The denoised output, which
is also represented as a heatmap, exhibits an arguably smoother and improved differentiation pattern after
denoising. (B) Based on our prior knowledge, we expect Gene A and Gene B to be active only in progenitors
(e.g. beginning of the differentiation process) and differentiated cells (e.g. later stages of the differentiation
process), respectively. The relationship between the hypothetical genes A and B before (C) and after (D)
denoising. Each dot represents a cell. Genes show higher anti-correlation after denoising, which is concordant
with the prior knowledge.

the signal-to-noise ratio. Similarly, in biology, the denoising approaches aim to recover the
biological signal that is impaired due to the corrupting factors mentioned previously and
improve the representation of cells and genes compared to those obtained from the original
form of the data (Figure 4.2A). Importantly, denoising applications are typically tailored to
the structure of the data in order to reduce the hypothesis space and generalize well. For
example, the image denoising methods specialize by making locality assumptions (Buades
et al. 2005). Similarly in single-cell, denoising models, or essentially probabilistic algorithms
for any downstream task, have to account for the count structure of the data, because certain
properties like sparsity and overdispersion distinguish them from other datasets. This leads to
the debate on the correct noise models to use with scRNA-seq datasets, which is discussed in
the following sections.

The denoising process may improve various downstream analysis tasks such as cell type
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identification, visualization, pseudotime, and hence might enhance the interpretation of the
data. For example, analyses that are built on the gene-gene similarities can be improved by
denoising where the “missing” correlation, which is lost due to the noise, is recovered. Such
improvements can be evaluated by assessing whether the denoised data is more concordant
with prior knowledge (Figure 4.2B-D). Overview of denoising methods and the effects of
denoising on downstream tasks are given in the following sections.

The results reported in Section 4.2 are part of the following peer-reviewed publication.

The contributions of the author are given below.
® Gokcen Eraslan*, Lukas M. Simon*, Maria Mircea, Nikola S. Mueller, Fabian J. Theis. Single

cell RNA-seq denoising using a deep count autoencoder, Nature Communications, 10 (2019): 390,
https://doi.org/10.1038/s41467-018-07931-2 *These authors contributed equally

Contributions of the author:

— Design and implementation of the method
— Single-cell RNA-seq simulations using Splatter R package (Zappia et al. 2017)
— Zero-inflation analysis of five datasets including the simulated data

— Denoising and dimension reduction applications to Zheng et al. (2017) PBMC 68k and Paul et al.
(2015) early blood development datasets

— Comparison of diffusion pseudotime and gene-gene correlations of Paul et al. (2015) dataset before

and after denoising

— Scalability analysis of five denoising/imputations methods including GPU version of our method
with 1.3M mouse brain cell dataset (10X Genomics 2017)

— Hyperparameter selection and comparison
— Interpretation of results

— Generating figures and writing

4.1 Overview of imputation methods

Due to the challenges given in the previous section, imputation and/or denoising methods for
scRNA-seq are getting increasingly available in the literature (Azizi et al. 2017; Ronen and
Akalin 2018; Dijk et al. 2018; Huang et al. 2018; W. V. Li and J. J. Li 2018). A common theme
in the existing approaches is to explicitly exploit cell-cell and/or gene-gene similarities using the
correlation structure to generate “corrected” (or “smoothed”) expression values. For example,
Li and Li proposed an approach, named sclmpute, which first groups similar cells into clusters
and then identifies likely dropout events using a Gamma-Normal mixture model, and finally
substitutes the expression values that are predicted as dropouts by borrowing information from
similar cells (W. V. Li and J. J. Li 2018). SAVER is another mixture model-based approach
which leverages the similarities of genes using Lasso models (Huang et al. 2018). MAGIC is a


https://doi.org/10.1038/s41467-018-07931-2
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global denoising approach based on graph diffusion, which propagates gene expression through
similar cells in the kNN graph (Dijk et al. 2018). In this section, an overview of these two

methods is given.

4.1.1 SAVER

SAVER (single-cell analysis via expression recovery) (Huang et al. 2018) is a statistical method
for predicting the true expression values of cells in UMI-based scRNA-seq datasets. SAVER

models the gene expression using a Poisson-Gamma mixture:

z;j ~ Poisson(s;\i;)

)\ij ~ Gamma(aij, IBU)

Here, x;; represents the observed UMI count of gene j in cell 4 which is assumed to be sampled
from a Poisson distribution with mean s;\;;. s; represents size normalization factor to account
for library size differences and is defined as total UMI counts per cell divided by the mean
of total counts, whereas \;; represents the normalized true expression. A gamma prior with
shape and rate parameters «;; and j3;; is placed on the true expressions A;;. p;; and v;; are the
reparameterized mean and variance parameters of the gamma prior such that p;; = a;/8;;

and v;; = o/ 5% . The prior mean p;; is predicted by a Poisson LASSO regression:

T + 1
log E(wi;/si|wi) = log pij = vjo + Z’ijlog [ : s, }
k#j

1

where the logarithmized and size factor normalized UMI count of each gene is regressed on
the other genes. The LASSO coefficients are denoted as vyjo and 7, in the equation.
For the prior variance parameter v;;, the authors considered three estimates with different

modeling assumptions:

e Constant variance which assumes that the variance is constant for all cells and independent

of the mean: v;; = v;

e Constant Fano which assumes that the variance scales linearly with the mean: v;; = F}ju;;

where F; = %
ij

e Constant CV? which assumes that the variance scales quadratically with the mean:
Vij = C’Vfu%j where CV?2 = O%

3

The estimated parameter with the highest maximum marginalized likelihood of z;; given p;;

and v;; is selected for the final prior variance.
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The true expression estimates in SAVER correspond to the mean of the posterior distribu-
tion

Nijlxij, duj, Bij ~ Gamma(xi; + duj, s; + Bij)
which can be written as

o Yiitay  Yy+Buhy s wy By .
Aij = — = = ——— T = Hij
si + Bij Si + Bij Si+Bij Si si+ By

where the shape parameter &;; is written in terms of the prior mean fi;; and the rate
parameter BZ] This formula can be interpreted as a weighted sum of normalized UMI counts
xi;/s; and the prior mean estimated with Poisson LASSO regression fi;;. For the cells with
high coverage i.e. high s; value, the posterior relies more on the observed UMI counts whereas
for the LASSO predictions with low uncertainty i.e. high Bij values, true count estimation
move towards the predicted mean. Therefore, the gene expression recovery model of SAVER

relies on the information sharing between similar genes through LASSO models.

4.1.2 MAGIC

MAGIC (Markov affinity-based graph imputation of cells) (Dijk et al. 2018) is another approach
designed to recover the scRNA-seq signal, which shares information across similar cells using
graph diffusion. The method first employs two preprocessing steps performed on the raw
counts, followed by graph construction and graph diffusion steps. An overview of these three

steps is given below:
1. Preprocessing

(a) X matrix, which represents the n-by-p raw count matrix with n cells and p genes,
is row-wise normalized over all genes so that after the normalization. After the
normalization, each cell has the same total count value, which is equal to the median

of total count values:

P
Si = E Tk
k=1

W = “Lmedian(s) where s = (s1, 52, ..., )
S
norm norm
L1 Lip
XnO?”m — .
norm norm
Tnl wnp

(b) The dimensionality of the is reduced by applying principal component analysis on
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the normalized data. The number of components is determined by 70% cutoff on

the explained variance:
XPea = PCA(X"™"™ 0.70)

2. Graph construction

(a)

(b)

Cell-cell distance matrix D is computed using the PCs of the normalized count

matrix, XP°*. Using k-nearest neighbors

Distance matrix D is converted to an affinity matrix A via an adaptive Gaussian

D2
Ajj = exp (— U?)

where o represents the width of the adaptive kernel. With the Gaussian kernel,

kernel:

the affinity between cells decreases exponentially with the distance. This is a
familiar trick used before in t-SNE (Maaten and G. Hinton 2008) and diffusion
maps (Haghverdi, Biittner, et al. 2016) to capture more of the local structure

information of the data compared to the global structure.

The affinity matrix is symmetrized additively:
AV = A+ AT

Finally, the symmetric affinity matrix A®Y™ is row-wise normalized so that every
row sum up to 1:
Ay
Mij = n Z]1453/771
Zk:l ik
which represents Markov transition matrix M, where every element M;; denotes

the probability of cell ¢ transitioning to cell j.

3. Diffusion

(a)

(b)

M is raised to the power of ¢, where the elements of the matrix ij represent the
transition probabilities from cell 4 to cell j with a random walk of length ¢. Exponent
t is defined as a hyperparameter which the user defines in advance. Typically, data
is imputed with different ¢ values from 1 to 8 and the outcomes are compared

heuristically.

Finally, the data diffusion is performed by multiplying M? by the original data

matrix X, which results in the smoothed (i.e. imputed) data matrix:

Ximputed _ MtX
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Comprehensive benchmarks of the single-cell imputation/denoising methods including MAGIC,
SAVER and many others are available in the literature (W. Hou et al. 2020; Vieth et al. 2019).

4.2 DCA: Deep count autoencoder

Characteristics of the scRNA-seq data, including the count structure, sparsity and nonlinear
gene-gene relationships, are often not taken into consideration in the existing scRNA-seq
denoising/imputation approaches. Moreover, the exponential increase in the number of profiled
cells in single-cell studies (see Figure 1.4) strongly necessitates performant algorithms and
implementations that scale up to millions of cells. Here, we propose a novel autoencoder-based?
denoising approach, called deep count autoencoder (DCA), which addresses these shortcomings
and improves the results of various downstream analyses. DCA is tailored to model sparse,
count-structured scRNA-seq data with two different loss functions, which are formulated as
the negative log-likelihood of the distributions that are commonly used in single-cell genomics
(Risso et al. 2018; Lopez et al. 2018), namely negative binomial (NB) and zero-inflated negative
binomial (ZINB) distributions. Similar to the generalized linear models (GLMs), the loss
function takes the data and the distribution parameters predicted by the network (e.g. mean
and dispersion) as input and measures the goodness of fit of these parameters to the data
using the likelihood function in an unsupervised manner (Figure 4.3A).

DCA leverages two major advantages of autoencoders that are relevant for denoising
scRNA-seq data. First, the ability of autoencoders to capture the manifold underlying the data
(e.g. differentiation process of cells) enables DCA to potentially map the data points lying near
the manifold due to the measurement noise back onto the manifold (Figure 4.3B). This process
also implicitly shares information across genes and takes nonlinear gene-gene dependencies
into account in denoising. Second, since autoencoders scale linearly with the number of data
points, DCA is highly performant and is able to process up to millions of cells. Furthermore,
the flexibility to use different noise models in DCA (i.e. NB and ZINB) is critical for the
downstream analysis, mainly because the noise models and distributional assumptions suitable
for the single-cell data are still under active debate. For example, Wenan Chen et al. (2018)
argued that zero-inflation is less likely to occur in the data generated by the protocols using
unique molecular identifiers (UMIs), compared to the scRNA-seq technologies using reads.
Moreover, methods using other distributions including Poisson, Beta-Poisson and Normal
distribution with zero-inflation were also previously proposed (Kharchenko et al. 2014; Vu
et al. 2016; Risso et al. 2018; Pierson and Yau 2015; Finak et al. 2015).

Although the evaluation of denoising methods proves difficult due to the lack of ground

truth for real single-cell datasets, we comprehensively evaluated our method on simulated and

2See Section 2.1.3 for a detailed description of autoencoders.
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Figure 4.3: (A) The architecture of DCA, which takes the raw count matrix (gene by cell heatmap) as input
through the input layer (blue circles i.e. genes), and estimates the parameters of the negative binomial (NB) or
zero-inflated negative binomial (ZINB) distribution that produce the best reconstruction (output heatmap)
according to the loss function. These parameters are mean (u, orange circles), dispersion (6, green circles)
and dropout probabilities (7, purple circles), if zero-inflation is preferred. (B) Illustration of corruption and
denoising processes affecting measured transcriptomes of differentiating cells. Ideal data points without noise
(filled circles) lie on the differentiation manifold (black curve). The corruption process (solid arrows) moves
these points away from the manifold, whereas the corrupted data points (empty circles) which lie near the
data manifold are mapped back to the manifold by the denoising method (dotted arrows). Adapted from
Goodfellow, Bengio, et al. (2016) and Eraslan, Simon, et al. (2019).
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real datasets using various downstream tasks by utilizing additional sources of prior information.
In our evaluations (Section 4.2.2), we observed that DCA enhances biological discovery in
these tasks. Our Python implementation, which is provided as a Python package and as a
command line tool, is publicly available on GitHub (https://github.com/theislab/dca)
and in Scanpy (Wolf et al. 2018) as an external module (https://scanpy.readthedocs.io/

en/latest/external/index.html#imputation).

4.2.1 Methods
Distributions for overdispersed count data

Negative binomial (NB) and zero-inflated negative binomial (ZINB) distributions are commonly
used for modeling overdispersed count data (Perumean-Chaney et al. 2013). NB is typically
parameterized by the mean (u) and dispersion (#) parameters, whereas ZINB is a mixture
model consisting of an NB component representing the count process and a point mass at
zero, which accounts for excess zeros in the count data. m and 1 — 7 parameters are used as
mixture weights for the point mass and NB components, respectively (see Section 2.1.1). In
the context of scRNA-seq, the NB component represents the process that generates the counts
and the point mass represents the dropout process which inflates the expected amount of zeros
in the count data, hence zero-inflation. Therefore, the m parameter can be interpreted as the
probability that a dropout event occurs. Likelihood functions of NB and ZINB distributions

whose logarithmized forms are used as loss functions in our approach are given below:

Lngp(w; p, 0) = r(iﬁé—?l) <9iu>0 <9iu>m (4-1)

Lzng(z; 7, p,0) = woo(x) + (1 — 7) Lng(7; 1, 0)

where I'() and d¢() refer to the gamma function, an extension of the factorial function to complex

numbers, and the Dirac delta function, representing the point mass at zero, respectively.

Architecture and loss functions

Autoencoders consist of encoder and decoder components with a lower-dimensional hidden
layer between the encoder and the decoder called “the bottleneck”, representing the latent
space representations of data points (see Section 2.1.3). In the traditional autoencoders, the
decoder has a single output layer that produces the predictions for the mean parameter of
the normal distribution when the mean squared error is used as a loss function. Because NB
and ZINB distributions require multiple parameters, DCA infers mean (1) and dispersion ()
(additionally the dropout parameter, 7, for ZINB) using multiple output layers of the decoder.


https://github.com/theislab/dca
https://scanpy.readthedocs.io/en/latest/external/index.html#imputation
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The activation functions of the output layers (e.g. inverse link functions) are determined by
taking the constraints of each parameter into account, e.g. exponential for mean and dispersion,
to ensure non-negativity and sigmoid for the dropout parameter. Note that inferring dispersion
and dropout parameters through the output layers implicitly conditions these parameters
on the latent (bottleneck) variables and hence cell type and state. Alternatively, they can
be defined as independent parameters (i.e. not conditioned on the data) and/or a scalar

parameter shared across all genes.

The formulation of the architecture in the matrix form is as follows:

E = ReLU(XWp)
B = ReLU(EW )

D = ReLU(BWp) (4.2)
M = exp(DW,,)

IT = sigmoid(DW)

© = exp(DWy)

Here encoder, bottleneck and decoder are represented as E, B and D variables, respectively.
Encoder and decoder hidden layers contain 64 neurons in the standard DCA architecture,
whereas the bottleneck layer has 32 neurons. Rectified linear unit (ReLU) is used as the
activation function in these layers. Mean, dispersion and dropout parameters, M, II and ©,
are defined as output layers. The input X denotes total count normalized, log-transformed

and scaled (via z-score) raw counts:

X = zscore( log(diag(s;) X + 1)) (4.3)
where X represents raw counts and s; is the total number of counts for cell i (e.g. s; = > y Tij).

NB loss function of DCA, which is optimized via stochastic gradient descent (SGD), can

be written as:

argmin — log Lxg(X; M, ©) (4.4)
M,0
= argnéin Z Z — log ACNB (xz'j; ,U/ija 0”) (45)
M - -
k) 1 ]

where Lnp refers to the likelihood function given in Equation 4.1, ¢ and j are cell and gene
indices. Note that the loss functions uses M instead of M. This aims to keep the mean

predictions independent of total count bias (e.g. due to differing library sizes) by scaling the
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predicted means (M) back to the original count scale using the total counts (s;):

M = diag(s;)M (4.6)

Similarly, ZINB loss function is defined as follows:

argmin — log Lzing (X; T, M, ©) + A[[II[[% (4.7)
I1,M,0
= aTII‘gl\I/Iné)n >N —log Lag(@ij; pij, O, mig) + Ay
’ ’ 7 ]

where the tunable A hyperparameter controls the strength of the ridge prior over the
dropout probabilities II. Especially for the lowly expressed genes, dropout probability may
approach to 1.0, which prevents the weights driving the NB parameters from being updated.
The ridge prior aims to avoid that by shrinking the dropout parameters. Moreover, DCA
provides a hyperparameter search implementation to facilitate the optimization of the A

hyperparameter.

Training

We used the RMSProp variant?® of the SGD with a learning rate of 0.001 for the optimization
of DCA parameters. A learning rate scheduling scheme is performed where the learning rate
was scaled by 0.1, if the validation error does not improve for 20 epochs. Early stopping was
employed to speed up the training process and avoid overtraining, where training is stopped if
the validation loss does not improve for 25 epochs. Gradients are clipped to 5.0 in order to

stabilize the training and the batch size of 32 is used in the training of all datasets.

Denoising

The mean parameter of the NB component before the total count scaling (M in Equation 4.2
and 4.6) represents the “denoised” and total count normalized version of the data. Therefore, it
is the primary outcome of DCA, which is used in downstream applications. From a NB/ZINB
GLM regression perspective, DCA can be intuitively interpreted as a two-step process where
1) representations of cells via some latent features are inferred by the encoder and decoder
(denoted as D in Equation 4.2 which is the layer before the output layer) and 2) gene expression
is regressed on these “new” features via NB/ZINB regression. Note that this is only an intuitive

explanation and the autoencoder framework allows joint training of these two steps.

3See the notes of lecture 6 from the online course “Neural Networks for Machine Learning” by Geoffrey Hinton
for the details on RMSProp.
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Implementation

DCA is implemented as a stand-alone command line tool and as a Python 3 package using
the deep learning frameworks Keras and Tensorflow, which support training on CPUs and
GPUs. hyperopt (Bergstra et al. 2015) and kopt (https://github.com/Avsecz/kopt) Python
packages are used for the optimization of the hyperparameter including the number of layers,
the number of neurons and the ridge prior weight (A) for the ZINB loss. For hyperparameter
optimization, we trained DCA with different configurations for 100 epochs using the Tree-
structured Parzen Estimator (TPE) (Bergstra et al. 2015) and picked the model with the

lowest validation loss.

Zero inflation tests

To test whether zero inflation significantly exists in single-cell datasets, we fit NB and ZINB
distributions to the selected clusters in four real scRNA-seq datasets (three UMI- and one
read-based protocol) and one simulated dataset. For the NB model, first, the dispersion
parameter (f) is estimated using the relationship between mean (1) and variance (02) i.e.
02 = p+0pu?. For the ZINB fits, the zero-inflation parameter is inferred as an affine function of
the observed mean jointly with the dispersion parameter using numerical optimization where
we compared the empirical and the predicted dropout rates using binary cross entropy (BCE).
Finally, we performed likelihood ratio tests between NB and ZINB fits using BCE to calculate

p-values and test whether the zero inflation is significant.

Simulations of scRNA-seq data

To simulate realistic single-cell datasets, we used the Splatter package (Zappia et al. 2017) in R.
splatSimulate () function was used with groupCells=2, nGenes=200, dropout .present=TRUE,
dropout.shape=-1, dropout.mid=5 parameters to simulate a dataset with two clusters and
with groupCells=6, nGenes=200, dropout . present=TRUE, dropout.shape=-1, dropout.mid=1
to simulate a dataset with six clusters. With these parameters, 63% and 35% of the matrix
entries were set to zero, for two- and six-group datasets, respectively. Note that the dropout
noise was conditioned on the mean expression such that the dropout likelihood was higher in

lowly expressed genes.

68k peripheral blood mononuclear cell analysis

Gene expression count matrix and the cell type annotations of 68k peripheral blood mononuclear
cell (PBMC) dataset (Zheng et al. 2017) were downloaded from the GitHub repository of
10X Genomics at http://www.github.com/10XGenomics/single-cell-3prime-paper. We
collapsed the granular cell states/subtypes of CD4+ and CD8+ T cells (e.g. CD4+/CD25-+


https://github.com/Avsecz/kopt
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Reg. T, CD4+/CD45RO+ memory T) due to the high overlap within these cell types. tSNE
coordinates of the cells were reproduced using the code available at the same GitHub repository.
We used an architecture with two neurons in the bottleneck layer for visualization purposes
and 16 neurons in the two additional hidden layers. We subsetted the dataset to top 1000
highly variable genes for this analysis using sc.pp.filter_genes_dispersion() function
in Scanpy. sklearn.metrics.silhouette_score() function from the scikit-learn Python

package was used to calculate the cell type separation on 2D representations.

Pseudotime and correlation analysis of blood differentiation

Gene expression count matrix and the cell type annotations of Paul et al. (2015) hematopoietic
stem cell (HSC) differentiation data (containing 2730 cells and 3451 informative genes) were
obtained via “sc.datasets.paull5()” Scanpy function. Diffusion map and pseudotime
(DPT)were computed with “sc.tl.dpt(adata, n_branchings=1)" after constructing a k-
nearest neighbors graph on logarithmized and normalized counts. Pseudotime estimates of the
cells in the MEP and GMP branches of the differentiation manifold are scaled between [0, 1]
and [0, —1] respectively to facilitate the interpretation and visualization. Pearson correlation

coefficients were calculated with the “corrcoef” function from the numpy Python package.

CITE-seq cord blood mononuclear cells analysis

UMI and antibody-derived tag (ADT) counts of cord blood mononuclear cells profiled by
the CITE-seq protocol (Stoeckius et al. 2017) were downloaded from the Gene Expression
Omnibus (GEO) via the accession number GSE100866. Data is preprocessed and annotated
as in the Seurat multimodal analysis vignette (https://satijalab.org/seurat/archive/
v2.4/multimodal_vignette.html). Mouse cells, unknown cells and megakaryocytes were
removed which yielded a total of 7617 cells. Centered log ratio (CLR)-transformed ADT counts
provided by the authors were used for the protein expression. We used the top 5000 highly
variable genes for denoising the RNA counts with DCA. Co-expression of three known protein
markers (CD3, CD11c and CD56) and the corresponding mRNA markers (CD3E, ITGAX, and
NCAM1) was compared using Pearson correlation (corrcoef () function in NumPy Python

package) across all cells.

Scalability analysis with 1.3 million cells

10X Genomics scRNA-seq dataset containing 1.3 million mouse brain cells was downloaded
from the dataset webpage of 10X Genomics available at https://support.10xgenomics.
com/single-cell-gene-expression/datasets/1.3.0/1M_neurons. After removing cells

and genes without expression, we subsetted genes to top thousand highly variable genes using
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the "filter_genes_dispersion" function of Scanpy with n_top_genes=1000 argument. The
rows of the data matrix were downsampled to 100, 1,000, 2,000, 5,000, 10,000 and 100,000
cells to compare different denoising/imputation approaches using datasets with various sizes.
Next, we denoised each matrix with the five methods as well as the GPU version of DCA and

measured the runtime.

Definitive endoderm differentiation analysis

Endoderm differentiation single-cell gene expression data from Chu et al. (2016) were subsetted
to the human embryonic stem cells (H1) using the provided annotation and the 1000 most
highly variable genes. The dataset which is based on read counts was then compared to the

datasets with UMI-counts in the zero-inflation analysis.

DCA applications

We used the default DCA command line arguments (which implies ~type zinb i.e. ZINB
loss) for the simulated datasets. NB loss function was used in the analyses of cord blood
mononuclear cell CITE-seq dataset, 68k peripheral blood mononuclear cell dataset, and the

Paul et al. (2015) blood cell differentiation dataset via the —type nb command line argument.

Code availability

Code for reproducing the figures in this chapter and the DCA tutorial are available at
https://github.com/theislab/dca.

4.2.2 Results
Count-based noise model is necessary for denoising simulated scRNNA-seq data

We first evaluated the performance of DCA on gene expression recovery and clustering tasks
using simulated datasets where the ground truth expression and clusters, which represent
broad cell classes, are known. Using Splatter (Zappia et al. 2017), we simulated two datasets
consisting of two and six cell groups both with 200 genes and 2000 cells (see Section 4.2.1
for simulation details). We observed that adding substantial dropout noise to the simulated
expression data with two groups obscured the cluster structure (Figure 4.4A-B). We were able
to recover the cluster structure after denoising the data using DCA (Figure 4.4A-B). Unlike
DCA with ZINB loss function, which explicitly takes the dropout noise into account, a regular
autoencoder trained with a mean squared error (MSE) loss function that was applied to the
logarithmized counts failed to recover the cell groups (Figure 4.4A-B). This indicates that the

count characteristics and dropout noise in scRNA-seq data necessitate custom loss functions
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Figure 4.4: A) PCA representation of simulated scRNA-seq data with two groups. From left to right: Data
without dropout noise, with dropout noise, denoised with DCA and denoised with an autoencoder with
MSE loss function. B) Gene expression of two-group simulation data visualized with heatmaps. C) tSNE
representation of simulated data with six cell types. D) Gene expression of six-group simulation data visualized
with heatmaps. Cells are colored by the ground truth cell groups in panels A and C. Adapted from Eraslan,
Simon, et al. (2019) (CC-BY-4.0).
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datasets in PCA (A) and tSNE space (B). C) The distribution of dropout probabilities inferred by DCA via
the m output layer. D) Dropout probability distributions shown separately as boxplots for the entries that
were subject to dropout noise in the simulation (i.e. dropout zeros) versus the zeros representing no expression
(i.e. true “non-expression” zeros). Adapted from Eraslan, Simon, et al. (2019) (CC-BY-4.0).

based on the likelihood of count distributions. We achieved similar results in the simulated

dataset with six groups (Figure 4.4C-D).

We next quantitatively compared the clustering performances of DCA and the MSE
autoencoder using the Silhouette coefficient, which showed that denoising with DCA highly
improved the cluster structure in both two-group and six-group simulation datasets compared
to the MSE loss (Figure 4.5A-B). The simulations also allowed us to investigate whether DCA
is able to distinguish ground truth “dropout zeros”, which are the entries that were set to zero
by the dropout noise, and the “true zeros” which represent zeros due to non-expression. We
examined the distribution of dropout probabilities (Figure 4.5C) which are the outputs of
“dropout” layer (i.e. m parameter, Figure 4.3A). We observed that dropout zeros were assigned
much higher dropout probabilities (median: 0.79) compared to the true zeros (median: 0.0,
Figure 4.5D).

We further compared the true expression values (i.e. counts before adding dropout noise)
with the denoised values to quantify the performance of gene expression recovery. We observed
that the gene expression predicted by DCA highly correlates with the true expression (Pearson
r=0.978, Figure 4.6A) and outperformed the MSE autoencoder (r=0.779). As expected, the
MSE autoencoder performed better in the high expression regime (e.g. z > 1000, r=0.8) since
the error in this regime simply contributes more to the overall loss. However, the predictions of
the MSE autoencoder showed different trends in the medium to low expression regimes. Lowly
expressed genes (x < 50) were highly underestimated (r=0.615) and the values in the medium
expression regime (50 < z < 1000) were both over- and underestimated (r=0.66). In order to
investigate this trend further, we correlated the true values of the dropout zeros with their
denoised predictions. While DCA showed a correlation comparable to its performance on all

counts (r=0.95, Figure 4.6B), MSE performance dropped to 0.649. Moreover, no overestimation
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Figure 4.6: Correlation between the ground truth expression and the expression denoised with DCA and MSE
autoencoder. All counts (A) and the non-zero counts that were set to zero due to the dropout noise (B)
are shown separately. Pearson correlation coefficients are shown in the upper-left corner of the panels where
applicable. The color of the dots represents density.

by the MSE autoencoder was observed in the medium expression regime.

UMI count datasets are not zero-inflated

To select the appropriate count distribution-based noise model implemented in DCA (i.e. NB
and ZINB), it is important to determine whether the zero-inflation trend is present in a given
dataset. To explore this and provide a simple test that may guide the users in the selection
of the noise model, we implemented a zero-inflation test as a part of DCA and applied it to
the simulated and real single-cell datasets. In this test, first NB and ZINB distributions are
fitted to the relationship between the mean expression and the empirical dropout rates (i.e.
fraction of observed zeros) using the expression values of cells in a selected cluster. Next,
the goodness of these two fits are compared using the likelihood ratio test (see Section 4.2.1
for details). Expectedly, the ZINB fit showed significantly better likelihood compared to
the NB model in the simulated two-group dataset (Figure 4.7AF). Among the four real
datasets analyzed, the ZINB model fit was significantly better only in the Chu et al. (2016)
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Figure 4.7: (A-E) Mean expression and empirical dropout rate (i.e. fraction of zeros) are shown for each
gene in selected clusters of five datasets. Red and green curves represent negative binomial (NB, red) and
zero-inflated negative binomial (ZINB, green) fits. Each dot is a gene. F) Selected clusters, type of the
datasets, negative log-likelihood estimates of NB and ZINB fits and the significance of the difference between
the goodness of fits of two distributions are given. BCE: binary cross entropy (i.e. negative log-likelihood of
Bernoulli). Adapted from Eraslan, Simon, et al. (2019) (CC-BY-4.0).
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Figure 4.8: The relationship between the size of the DCA bottleneck layer and the reconstruction loss (A) as
well as the separation of cell groups in terms of Silhouette coefficients (B). The error bars represent standard
error across five denoising runs. C) PCA representations of cells denoised using DCA with five different
bottleneck layer sizes. Colors represent ground truth groups of simulated cells. Adapted from Eraslan, Simon,
et al. (2019) (CC-BY-4.0).

definitive endoderm differentiation dataset which is the only read-based protocol analyzed
(Figure 4.7B-F). Concordant with the observation reported by Wenan Chen et al. (2018), we
conclude that UMI data does not exhibit any sign of zero-inflation, whereas the read-based

protocols are more likely to have a zero inflation trend.

Downstream effects of hyperparameter selection

Neural networks, including autoencoders, typically require a set of hyperparameters (e.g.
number of layers, size of the layers, regularization and dropout coefficients) to be specified
by the user before the training. Similar to the choice of noise model, we implemented a
hyperparameter search procedure in DCA, which can compare different hyperparameters via

random or grid search. This can be used to evaluate the effects of hyperparameter selection on
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Figure 4.9: A) tSNE representation of 68k PBMCs reproduced from Zheng et al. (2017). B) DCA latent space
visualization of the same dataset where the 2D bottleneck layer activations are used for visualization. Cells
are colored by the cell types obtained from Zheng et al. (2017) where CD4 and CD8 subtypes are merged
into coarser groups in panel A and B. (C-F) DCA representations of cells colored by the log-transformed
expression of the CD8A, CD14, NKG7 and FCER1A genes which are the known cell type markers of CD8+ T
cells, CD14+ monocytes, CD56+ natural killer cells and dendritic cells, respectively. Adapted from Eraslan,
Simon, et al. (2019) (CC-BY-4.0).

the denoising performance of DCA and to guide the users. Using the grid search approach, we
denoised the two-group simulated scRNA-seq data with varying bottleneck layer sizes (i.e. 4, 8,
16, 32 and 64) and evaluated the denoising performance using the reconstruction error (Figure
4.8A) and separation of ground truth cell groups via the Silhouette coefficient (Figure 4.8B).
We ran each configuration five times to calculate the standard errors. We obtained the optimal
values for both the reconstruction error and the Silhouette coefficient with the bottleneck size
of 32 neurons. We further visualized the denoised cells with PCA (Figure 4.8C), which showed

good cluster separation for the architecture with 32 bottleneck neurons (Silhouette: 0.3).
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Denoising process accounts for the cell population structure in real data

We next sought to examine whether DCA is able to capture cellular heterogeneity, e.g. broad
cell classes, which typically constitutes a major source of variation in complex single-cell
datasets (Zheng et al. 2017). Observing cell type-specific structure in the latent space suggests
that the noise model parameters are inferred conditionally on cell types and therefore, the
denoising procedure takes the cell population structure into account. We tested this hypothesis
by training DCA with only two bottleneck neurons on 68,579 peripheral blood mononuclear
cells (Zheng et al. 2017) (Figure 4.9A, Silhouette: -0.01). Visualizing the bottleneck neuron
activations on 2D yielded cell type-specific variation in the data (Figure 4.9B, Silhouette:
0.07). Moreover, we visualized log-normalized expression of the markers of four major cell
populations (CD8+ T cells, CD14+ monocytes, NK cells and dendritic cells) on the same
DCA latent space (Figure 4.9C-F). Our results indicate that DCA latent space captures cell
type-specificity and therefore, the denoising process accounts for the the cellular heterogeneity
in the data.

DCA captures the cell differentiation process

Clustering, an unsupervised technique commonly used in single-cell genomics, relies on the
discretization of cellular states that are expected to align with disparate cell types such as T
cells and dendritic cells. However, there are also cases such as cell differentiation in which
the transcriptome landscape can be modeled as a continuum where the phenotype is inferred
as a continuous variable e.g. pseudotime (Haghverdi, Biittner, et al. 2016). Similarly to the
cell population analysis given previously, we investigated whether DCA is able to capture
continuous phenotypes e.g. differentiation process in the latent space. We trained DCA with
two bottleneck neurons on the blood differentiation dataset by Paul et al. (2015) to test this
hypothesis. The visualization of the latent space revealed that the major branches of the
differentiation trajectory i.e. megakaryocyte—erythroid progenitors (MEP) and granulocyte-
macrophage progenitors (GMP) are captured by DCA (Figure 4.10A). Moreover, we examined
whether this representation can be used directly for the diffusion pseudotime (DPT) inference
and whether the inferred pseudotemporal ordering of cells in DCA latent space (Figure 4.10B)
correlates with the pseudotime order of cells in gene expression space. The comparison of these
two DPT results showed a very high correlation (Figure 4.10C, Pearson correlation: 0.95). This
indicates that DCA is able to capture biologically meaningful information (e.g. pseudotime)
in its latent space when applied to continuous phenotypes such as cell differentiation processes

and the latent space representation can be further used in downstream analysis.
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Figure 4.10: DCA latent space representations of differentiating blood cells from Paul et al. (2015) colored by
annotated cell clusters (A) and diffusion pseudotime (DPT) (B). C) Comparison of the DPT calculated on
gene expression (x-axis) against the DPT on 2D DCA latent space (y-axis). Pearson correlation coefficient is
shown in the lower right corner. Cell type annotations are obtained from Paul et al. (2015). Abbreviations:
Ery (erythrocytes), Mk (megakaryocytes), DC (dendritic cells), Baso (basophils), Mo (monocytes), Neu
(neutrophils), Eos (eosinophils), Lymph (lymphoid cells), MEP (Megakaryocyte/erythrocyte progenitor), GMP
(Granulocyte/macrophage progenitor). Adapted from Eraslan, Simon, et al. (2019) (CC-BY-4.0).

DCA improves the correlation structure of key regulatory genes

Downstream analyses in single-cell genomics, such as finding differentially expressed genes
between cell types or experimental conditions, are typically performed at a single gene level,
meaning that the test statistics and/or association p-values are calculated separately for each
gene. To gain a higher level and functional understanding of the findings, such as determining
relevant pathways and processes, pre-defined gene sets (e.g. Gene Ontology) are used to
query these results in the form of enrichment tests. As an alternative approach, downstream
analyses can be conducted at the level of gene modules by inferring data-driven modules and

interrogating the effects of e.g. experimental conditions on these modules. This can potentially
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Figure 4.11: Diffusion map representations of two major branches of blood cell differentiation (GMP and
MEP) colored by diffusion pseudotime (A) and annotated cell clusters (B). Heatmaps of Pearson correlation
coefficients for well-known blood regulators (Krumsiek et al. 2011) before (C) and after (D) denoising.
Correlation of Pu.l - Gatal transcription factors are highlighted in the heatmaps. Anti-correlation patterns
of Gatal and Pu.1 before (E) and after (F) denoising. Cells are colored by pseudotime. Gene expression
levels of Gatal and Pu.I before (G) and after denoising (H) visualized along the inferred DPT trajectory.
(I) Heatmap showing the expression of regulatory genes (min-max scaled) for each cell. Abbreviations:
Ery (erythrocytes), Mk (megakaryocytes), DC (dendritic cells), Baso (basophils), Mo (monocytes), Neu
(neutrophils), Eos (eosinophils), Lymph (lymphoid cells), MEP (Megakaryocyte/erythrocyte progenitor), GMP
(Granulocyte/macrophage progenitor). Adapted from Eraslan, Simon, et al. (2019) (CC-BY-4.0).
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enrich our functional interpretation by allowing access to modules that are not covered by
pre-defined gene sets.

Inferring data-driven gene modules requires robust and accurate estimation of gene-
gene relationships (e.g. via correlation or predictive methods (Aibar et al. 2017)), which is
hampered by noise in scRNA-seq datasets. To demonstrate this phenomenon and test whether
denoising can improve the structure of gene modules and facilitate interpretation of gene-gene
relationships, we analyzed the relationships between ten key regulatory genes in the Paul
et al. (2015) blood development dataset. As previously described, this study presents the
transcriptome landscape of blood cell differentiation through MEP and GMP branches (Figure
4.11A-B). Using well-studied transcription factors with key roles in the differentiation process
(Krumsiek et al. 2011), we examined the effects of denoising on the correlation structure.
Denoising with DCA improved the correlation structure where the anticorrelation between two
factors that are known to inhibit each other (Orkin and Zon 2008), Gatal and Pu.1, increased
(Pearson r: —0.318 and —0.613 without and with denoising, respectively, Figure 4.11C-F).
Visualization of the expression of these genes along the differentiation trajectory shows that
the mutually exclusive expression pattern becomes more visible and granular after denoising
(Figure 4.11G-H). Moreover, the correlation of genes within the two gene modules that are
active in the MEP and GMP branches (MEP module: Gfil, Flil, Cebpa, Pu.1; GMP module:
Tall, Zfpml, Gatal, KIf1) also increased after denoising (Figure 4.11C-D). Although the
correlation of genes within and between the modules is clearly visible when the gene expression
is visualized in a heatmap(Figure 4.11I), this structure is weakly present in raw data due
to the noise (Figure 4.11C). These results demonstrate that DCA enhances the correlation
structure, which may facilitate the discovery of gene modules and hence improve the results of

downstream analyses that rely on gene module inference.

Comparison with other denoising methods using bulk transcriptomics as ground
truth

Comparisons of DCA with other denoising methods were performed by Lukas M. Simon
and Maria Mircea in our publication (Eraslan, Simon, et al. 2019). First, we simulated
mean-dependent single-cell noise and added this noise to the bulk RNA-seq time-course data
of C. elegans development (Francesconi and Lehner 2013) similarly to the analysis in Dijk
et al. (2018). We observed that the data denoised with DCA showed the highest correlation
with the original bulk data compared to the other denoising methods MAGIC (Dijk et al.
2018), SAVER (Huang et al. 2018) and scImpute (W. V. Li and J. J. Li 2018). Second, we
performed differential expression (DE) analysis on the definitive endoderm cells (DEC) bulk
and single-cell data from Chu et al. (2016) and reported that DCA denoising improved the

concordance between the bulk and single-cell DE results. Please see Figure 4 and Figure
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Figure 4.12: A) UMAP representation of cord blood mononuclear cells from Stoeckius et al. (2017). Cells
are colored by the cell types. B) UMAP view of the same cells colored by the normalized expression of CD3,
CD11c and CD56 proteins and corresponding mRNAs (CD3E, ITGAX and NCAM1). Rows show protein
expression, RNA expression without denoising and RNA expression with denoising, respectively. Columns
represent CD3, CD11c, and CD56 proteins and corresponding RNAs. Pearson correlation coefficients between
protein and mRNA expression are given in the lower-left corner of each panel. C) Distribution of CD3 protein
expression (green), mRNA expression (blue) and denoised mRNA expression (orange) in T cells are shown.

5 as well as the methods sections in Eraslan, Simon, et al. (2019) for more details of these

applications.

Denoising increases protein and RNA co-expression

Multimodal single-cell profiling methods enable concomitant readouts such as protein and
mRNA expression at cellular resolution. In addition to enriching the representation of cells,
such approaches can also be used to obtain better estimates of the expression levels of genes
with low mRNA expression, which are more difficult to detect with scRNA-seq due to dropout.
Here, we sought to evaluate whether denoising with DCA accurately recovers expression
by comparing DCA output with measured protein expression. For this analysis, we used
CITE-seq, a single-cell profiling method that provides the full transcriptome readout as well
as the expression of selected proteins where the authors profiled over 8,000 human cord

blood mononuclear cells with a panel of 13 antibodies and identified major immune cell types



96 CHAPTER 4. RECOVERING EXPRESSION SIGNAL IN SCRNA-SEQ

Scaling of denoising/imputation methods

104+
W=
L
[
C
o
O
(0]
K22
2 107
£
€
=)
4

® DCA
10!
0 e DCA (GPU)
® scimpute
| ® ZINB-WaVE
102 103 1ot ) 166

Number of cells

Figure 4.13: Runtimes for denoising of 1.3 million mouse brain cells as well as its random subsets of various
sizes ranging from 100 to 100,000 (10X Genomics 2017). The colors denote different denoising/imputation
methods. DCA(GPU) represents the DCA method run on the GPU. Adapted from Eraslan, Simon, et al.
(2019) (CC-BY-4.0).

(Stoeckius et al. 2017) (Figure 4.12A). We used DCA with NB noise model to denoise the
mRNA count data. After denoising, the expression of CD3, CD11c and CD56 proteins, which
are known to be expressed, showed a higher correlation with mRNA expression of corresponding
genes (Figure 4.12B). Although CD3 protein is expressed in 99.9% of annotated T cells, mRNA
expression was detected in only 80% of T cells in the original data. After denoising, the
fraction of T cells with CD3E expression increased to 99.9% (Figure 4.12C).

DCA is able to denoise massive datasets

Given that the number of profiled cells in each study in single-cell genomics is rapidly increasing,
it is critical to develop performant scRNA-seq methods and implementations. Therefore we
evaluated the scalability and runtime performance of five denoising/imputation methods (Dijk
et al. 2018; Huang et al. 2018; W. V. Li and J. J. Li 2018; Risso et al. 2018) by applying
these methods to the largest publicly available scRNA-seq dataset, which consists of 1.3
million mouse brain cells made available by 10X Genomics (https://support.10xgenomics.

com/single-cell-gene-expression/datasets/1.3.0/1M_neurons). In addition to the full
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dataset, we used the subsampled versions of it consisting of 100, 1,000, 2,000, 5,000, 10,000
and 100,000 cells. All count matrices were first subsetted to the top 1000 highly variable genes.
Next, we denoised these matrices and measured the runtime. As expected, the runtime of DCA
scaled linearly with the number of denoised cells. While the other methods did not even scale
beyond 10,000 cells, DCA outperformed most methods and showed considerable performance

advantage over other tested methods, especially in the regime of relatively large datasets.

4.2.3 Conclusion

The technical variation in scRNA-seq data is still one of the major challenges in single-cell data
analysis. It has been shown in the recent studies that accounting for the sources of technical
variation may potentially enhance downstream analysis (Brennecke et al. 2013; Buettner et al.
2015; Vallejos, Marioni, et al. 2015; B. Ding et al. 2015). Here we presented an unsupervised
and scalable denoising approach based on neural networks, which is designed specifically for
the sparse and count structure of scRNA-seq datasets. We further showed that the removal of
technical variation via denoising improves various downstream analyses, including clustering,
protein-mRNA expression concordance, gene module identification and pseudotime analysis.
Moreover, we demonstrated that DCA is able to scale up to over a million cells.

Besides the simulations where the ground truth is known, denoising process is difficult to
evaluate and/or validate. Using prior biological knowledge and additional data modalities, we
here described a number of ways that can be used for the systematic evaluation of denoising
methods in the future.

Notably, determining when denoising may improve downstream analysis in single-cell
genomics can be difficult. For example, we observed that denoising resulted in increased
gene-gene correlations, which is expected due to the design of the autoencoders (or any
decomposition method in general). While increased correlations facilitated the detection of
desired regulatory structure in our applications, it might also lead to overimputation, especially
when the hyperparameter selection is performed poorly. To mitigate hyperparameter-related
overimputation issues, we implemented a variety of regularization techniques such as L1 and
L2 regularization as well as dropout, where neuron outputs are randomly dropped out, in order
to avoid overfitting. This is especially important when training on datasets with small sample
size. Moreover, DCA offers systematic hyperparameter search implementations to guide users
about the right set of hyperparameters.

DCA is available as a standalone command line tool and as a Python package at https:
//github.com/theislab/dca and is able to work in harmony with established single-cell
frameworks such as SCANPY (Wolf et al. 2018).


https://github.com/theislab/dca
https://github.com/theislab/dca
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Chapter 5
Summary and outlook

Computational biology provides tools and techniques to characterize biological systems by
processing, abstracting and interpreting experimental data. Like Sgren Kierkegaard’s famous
quote, “Life can only be understood backwards, but it must be lived forwards.” modeling
allows us to go from the data, which is recorded as an imprint of a biological process through
measurements, back to biology itself. Relatively recently, machine learning has become an
essential tool in the modeling toolbox of computational biology by substantially contributing
to this characterization with two major aspects: first, extrapolating beyond already known
by enabling in silico experiments and second, providing biologically useful abstractions by
unearthing relevant patterns while dimming irrelevant factors in the data. The first aspect
refers to supervised learning, where we use trained machine learning models to make predictions
in previously unseen settings. For example, training a model for predicting the event of a
transcription factor binding given an unseen sequence can be considered a plain prediction
task from a standard machine learning point-of-view. In contrast, in biology, this translates
into an in silico ChIP-seq experiment without directly measuring the binding event. The
second aspect refers to unsupervised learning tasks, such as visualization, feature selection and
denoising, where we seek representations of the biological entities of interest that highlight
their biologically meaningful, and more importantly, relevant features.

In this thesis, we focused on developing novel methods that leverage machine learning
techniques, particularly neural networks, to improve the characterization of clinical phenotypes
such as MS and MDD and molecular phenotypes such as gene expression of single cells. This
goal can be summarized more specifically with the following research questions: 1) Can we
generate functional hypotheses on clinical phenotypes by combining the genotype data from
individuals with the variant effect predictions (VEPs) produced by machine learning models?
2) Can we recover the gene expression signal of individuals cells corrupted by the measurement
process to obtain a representation that is more faithful to the underlying biology and improve

downstream analysis? Now let us look at how the two aspects of machine learning mentioned
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above are linked to these two research questions.

5.1 Towards functional hypotheses in GWAS

With the increasing availability of genotype datasets such as biobanks (Bycroft et al. 2018;
Njolstad et al. 2019) and large GWAS cohorts (M. Liu et al. 2019; Jansen et al. 2019) together
with the growing diversity of phenotypes (Buniello et al. 2019), human genetics is making
tremendous progress towards the goal of pinpointing the genetic architecture of complex traits
and diseases. Although playing a pivotal role in this progress, the primary result of GWAS is
limited to a set of loci with genetic variation that is significantly linked to the phenotype of
interest. Therefore functional interpretation and prioritization of resulting loci and variants
bear great importance.

Various variant prioritization and annotation tools for investigating both coding and non-
coding variants were proposed in the literature. The functions that these tools perform can be
grouped into three categories. The first category is the investigation of the consequences of
variants on the coding sequence, such as amino acid changes, events like stop gained, missense,
stop lost, frameshift, and how the protein structure and function are altered. The second
category is the integration of a multitude of resources such as gene and transcript annotations
with intron and exon information and overlapping these with the given variants. The last
category includes the examination of the regulatory effects of variants based on the positional
overlap of given variants with comprehensive epigenetic and regulatory elements such as
promoters, enhancers, and TF binding sites. The review of these tools is given in section 3.1
and published as a part of the Bioinformatics in Psychiatric Genetics chapter of the book titled
Psychiatric Genetics: A Primer for Clinical and Basic Scientists (Schulze and F. McMahon
2018).

The majority of significant risk loci identified via GWAS harbor non-coding variants with
unknown regulatory effects (Visscher et al. 2017) which makes the functional interpretation a
particularly challenging task. In order to address this challenge, we developed two approaches,
Misina and DeepWAS, which are given in section 3.2 and 3.3, respectively.

In our work, Misina (section 3.2), we focused on the link between GWAS risk variants and
microRNAs because microRNAs are a key component of the regulome and they are reported
to play an essential role in disease mechanisms through miRNA-mediated dysregulation (Chin
et al. 2008; Esteller 2011). In this approach, we developed a simple variant prioritization tool
for identifying variants that cause dysregulation of the microRNA target genes by disrupting
or enhancing the miRNA binding sites either directly or via LD proxies. We further integrated
experimental data of miRNA expression as well as the expression of the target genes. Using

Misina, we investigated miRNA-mediated effects of risk variants associated with Alzheimer’s
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disease. One risk variant, rs6859, reside where miRNA hsa-miR199a-5p binds the target gene
PVRL2 (NECTIN2) and potentially alter the binding affinity and hence lead to dysregulation
of PVRL2. We also further characterized the relationship between the SNP, miRNA and
the target gene with more experimental evidence. Note that it has been reported that the
miRNA-mediated dysregulation of PVRL2 by rs6859 variant is a potential risk factor for
Alzheimer’s disease (X. Zhou et al. 2019). In summary, our approach is a novel way to

interrogate the functional role of risk variants by integrating prior knowledge.

An alternative method for interpreting GWAS variants is to complement these results with
the results from the experiments where the other effects of genetic variation are studied, such
as the variant-gene associations obtained in eQTL studies in a post hoc manner. For example,
a locus that is strongly associated with obesity is located in the first intron of the FTO gene
(Frayling et al. 2007). Later, it has been shown that the obesity-associated variant is actually
an eQTL variant regulating the expression of the transcription factor IRX3, which is megabases
away from the FTO gene, through the enhancers located in this intronic region (Smemo et al.
2014). It has been further validated that deletion of Irx3 gene in developing adipocytes in
mice protects against obesity (Smemo et al. 2014). Therefore, having experimental data
that might suggest the function of the variant can greatly improve our understanding of the
phenotype. Another valuable experimental approach for functional validation is the binding
QTLs (bQTLs), where the genetic variations that alter the binding of transcription factors are
identified via pooled ChIP-seq experiments (Tehranchi et al. 2016). Although such experiments
elegantly highlight the potential regulatory role of variants, they are expensive and scale to

only a few transcription factors.

As an alternative to the experimental validation, J. Zhou and Troyanskaya (2015) proposed
a radically different approach, DeepSEA, for variant effect predictions using the idea of in
silico perturbations, exploiting the pattern recognition capabilities of deep neural sequence
models. DeepSEA relies on a classifier that predicts the binary binding event of multiple
transcription factors (and other chromatin features like DNase hypersensitivity and histone
modifications) from a given 1kb sequence. Trained using publicly available ChIP-seq and
DNase-seq datasets, this classifier is then used for estimating the effects of variation in the
input sequence. Compared to the experimental validation like binding QTLs, DeepSEA variant
effect predictions serve as in silico perturbation experiments for quantifying the regulatory

effect of a given variant.

In our work, DeepWAS (section 3.3, published in Arloth and Eraslan et al., 2020), we
proposed a new approach where putative regulatory variants are jointly tested for genotype-
phenotype associations rather than post hoc functional analyses conducted after GWAS. First,
the DeepWAS workflow predicts regulatory effects of all measured variants and their LD

proxies using the in silico experiments performed by the pre-trained DeepSEA model (J. Zhou



102 CHAPTER 5. SUMMARY AND OUTLOOK

and Troyanskaya 2015), which yields potential binding-QTLs, histone-QTLs and DNase-QTLs
similar to their experimental equivalents (Tehranchi et al. 2016). Second, we group the variants
that potentially act through the same regulatory mechanism (e.g. variants altering the binding
of MafK transcription factor in cell line K562). Last, we test genotype-phenotype associations
within each group using multivariate Lasso models with stability selection (Meinshausen
and Bithlmann 2010), allowing us to control for error rates of false discoveries. We applied
DeepWAS to three phenotypes, multiple sclerosis (MS), major depressive disorder (MDD)
and height, to uncover variants with potential regulatory effects to the phenotypes using
the genotype data from relatively small cohorts (MS: 15,283, MDD: 3,514 and height: 5,866
individuals). We identified several variants (MS: 53, MDD: 61, height: 43) along with the
transcription factors that might be affected by these variants, as well as the cell lines or tissues

where the variants might be acting.

In the comparisons of our results with the results of the identical phenotypes from much
larger GWASes (115k-807k individuals), we found that there are both novel risk variants that
are either untested or sub-threshold in GWAS and the variants that are common. Because
the DeepWAS approach prioritizes variants with likely regulatory effects, even if their effect
sizes are relatively small, we expected to find that many DeepWAS hits were sub-threshold
in GWAS. We further highlighted four major findings involving non-coding variants that
collectively contribute to the pathology of MS and MDD by affecting different mechanisms.

Our first key finding was a group of variants that potentially affect the binding of a family
of TFs called small Maf proteins (sMafs). Variants rs62420820, rs12768537 and rs137969 likely
alter the binding of not only MafF and MafK TFs, which are sMafs, but also Bachl and
NF-E2, which are known to form heterodimers with sMafs (Katsuoka and Yamamoto 2016).
We hypothesize that these variants modulate the regulation of the targets of either sMaf
homodimers (e.g. MafF-MafF or MafF-MafK) as well as the heterodimers (e.g. MafF-Bachl
and MafK-NF-E2). Notably, sMafs are known to play a critical role in CNS (Katsuoka,
Motohashi, et al. 2003). Furthermore, GRAP2, an MS susceptibility gene identified by Berge
et al. (2019), is an eQTL gene for rs137969 (Vosa et al. 2018), which further supports our
hypothesis. Although MafG is not a part of the DeepSEA predictive model, and hence
DeepWAS, we hypothesize that Maf family TFs likely play an important role in MS since the
variants identified by DeepWAS are potentially affecting the binding of various components of

TF protein complexes involving Mafs.

Our second highlight, rs1985372, is an intronic variant located in CLEC16A which is a
significant locus previously identified in the largest MS GWAS (International Multiple Sclerosis
Genetics Consortium 2019). This DeepWAS hit potentially alters the binding of multiple TFs,
including GABP, GATA-1, GATA-2, p300, STAT1, STAT2, STAT5A, and TBLRI1. rs1985372
is also significantly associated with CLEC16A expression in various tissues by GTEx eQTL data
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(see the GTEx portal https://gtexportal.org/home/snp/rs1985372). DeepWAS suggests
a testable hypothesis that rs1985372 plays a role in MS pathology by altering the binding of
multiple TFs and causing dysregulation of CLEC16A.

Third, we focused on rs175714, an intergenic DeepWAS hit for MS with potentially severe
regulatory effects on 29 chromatin features, including 18 TFs, chromatin accessibility, and 10
histone marks in total of 116 cell lines. MAZ, which is among the affected TFs, is a significant
locus in the cohort-matched GWAS. Another MS DeepWAS hit rs11000015, which also impacts
the binding of the MAZ TF together with rs175714, is an eQTL for the PSAP gene in GTEx
data. PSAP gene is a critical component of the sphingolipid pathways which were previously
linked to MS (O’Brien and Kishimoto 1991). Furthermore, PSAP was previously associated
with MS through a genome-wide expression study (Kemppinen et al. 2011). Therefore,
DeepWAS can also nominate key regulators of diseases by identifying variants with severe
regulatory effects as well as other variants exacerbating the regulatory effects by targeting the
same TFs.

Our last highlight was an intergenic SNP, rs7839671, in the analysis of MDD. This variant
potentially affects the binding of a key TF, MEF2C, which was already reported to be an
important risk gene in the PGC GWAS for MDD (Howard et al. 2019). Furthermore, MEF2C
is a member in the MEF2 TF family which was previously identified as the master regulator
of developmental metaplasticity (S. X. Chen et al. 2012) and also linked to activity-dependent
dendritic spine growth and suppression of memory growth (Barbosa et al. 2008).

In silico experiments provide a powerful means to enrich the characterization of variants
when they are leveraged in post hoc functional analysis in GWAS. In our approach, we showed
that moving these predictions to the center of genotype-phenotype associations, we not only
identify sub-threshold variants that likely play an important role in complex diseases through
regulatory effects but also generate hypotheses regarding how potential dysregulations might
occur, which addresses our research question on generating functional hypotheses on complex

traits and diseases.

5.2 Enhancing scRNA-seq characterization with unsupervised machine

learning

We leveraged supervised machine learning models that can accurately predict how sequence
variation can affect molecular events like TF binding or chromatin accessibility for improving
variant prioritization. Unlike this task that requires ground truth knowledge, unsupervised
machine learning focuses on enhancing the data representation for facilitating data exploration
and characterization. For example, t-distributed stochastic neighbor embedding (tSNE)

(Maaten and G. Hinton 2008) is an unsupervised machine learning method for embedding
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high-dimensional data into two-dimensional space while preserving the local structure of
the data so that the points that are close to each other in the high-dimensional space are
embedded close to each other in the two-dimensional space. In many cases, this representation
is preferable over the high-dimensional representation since it enables exploring both the
oddities and the regularities of the data visually. This massive transformation of the data
is done with the hope that the biologically relevant patterns are magnified while irrelevant

sources of variation in the data are hidden.

In our next method, DCA (chapter 4, published in Eraslan, Simon, et al. 2019), we utilized
an unsupervised machine learning technique, namely autoencoders, to address one of the
fundamental challenges in single-cell RNA-seq (scRNA-seq), which is the technical variation
introduced by substantial measurement noise. A major component of this noise arises from
the amplification of low amount of the input RNA and low RNA capture rate, and leads to
the failure of detection of expressed genes, a phenomenon called dropout, which results in
“false zeros” in addition to the true zeros of “non-expression”. Overall, the measurement noise
might affect the biological interpretation of the data and must be accounted for (Brennecke
et al. 2013; Buettner et al. 2015; Vallejos, Marioni, et al. 2015; B. Ding et al. 2015).

Following the brief introduction of two denoising/imputation methods, MAGIC (Dijk
et al. 2018) and SAVER (Huang et al. 2018), in section 4.1, we introduced a scalable and
robust machine learning method that is tailored to the structure of the scRNA-seq data for
recovering the gene expression signal, improving various downstream analyses and enhancing

the characterization of the biological sample of interest in section 4.2.

First, we discussed the appropriate noise models for the scRNA-seq data analysis and
how distribution assumptions might affect the quality of the downstream analysis, which are
highly debated topics in the field of single-cell genomics (Griin et al. 2014). We fitted negative
binomial (NB) and zero-inflated negative binomial (ZINB) models to one simulated and four
real datasets (one read-based (Chu et al. 2016) and three UMI-based (Stoeckius et al. 2017;
Zheng et al. 2017; Paul et al. 2015)) and compared the models using likelihood ratio test.
In agreement with previously reported results (Wenan Chen et al. 2018), we concluded that,
unlike the read-based count data, counts produced by the UMI-based scRNA-seq protocols do
not show zero inflation. The negative binomial noise model is preferable over the zero-inflated

negative binomial for UMI-based technologies.

Second, using the simulated scRNA-seq datasets, we demonstrated how severe dropout
noise can weaken the cluster structure in the data and obscure the cell type identities. Moreover,
we showed that the NB loss function, which takes the count structure of the data into account,
can recover the cluster structure impaired by the substantial noise better than the loss function

with normal distribution assumptions.

Third, we examined whether our method can capture the population structure in real
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datasets and can perform denoising in a cell type-specific manner since the datasets generated
from tissues typically exhibit high biological complexity and cellular heterogeneity. Using
68,579 peripheral blood mononuclear cells (Zheng et al. 2017), we restricted the latent space
of DCA to only two dimensions and visualized the latent variables our model extracted
from the data in order to uncover the determinants of the denoising process. This two-
dimensional view of the data overlapped well with the known cell population structure
of the data. Since the latent variables represent the compressed view and the source of
information used for denoising, the denoising process was highly cell type-specific. We
also investigated the ability of DCA to capture continuous phenotypes, for example, the
differentiation trajectory of myeloid progenitors. When applied to this dataset, the data
manifold captured by DCA highly correlated with the pseudotime estimated by the diffusion
pseudotime (DPT) method (Haghverdi, Biittner, et al. 2016) (Pearson’s rho: 0.95), indicating
that DCA captures biologically meaningful features.

Fourth, we utilized the data produced by Stoeckius et al. (2017) using the CITE-seq
protocol, which enables the measurements of both mRNA and protein expressions from the
same cells in order to quantify the mRNA-protein correlations and used this as a metric to
evaluate the denoising performance. We showed that DCA increased the concordance between

mRNA and protein expression.

Fifth, we examined the effects of denoising on the correlation structure of well-studied key
regulators of the blood development using the myeloid progenitor differentiation scRNA-seq
data from Paul et al. (2015). Denoised data exhibited higher pairwise correlations for the
genes that are part of the same module such as Cebpa-Pu.1 and Gatal-Tall, whereas the genes
that are part of mutually exclusive gene programs such as Pu.1-Gatal (Nerlov et al. 2000)
showed higher anticorrelation (correlation without and with denoising were —0.318 and —0.439,
respectively). Although these examples might seem anecdotal, correlation-based inference
of regulatory networks and gene modules is a common task in single-cell genomics (Aibar
et al. 2017; Smillie et al. 2019). Therefore inferring the gene modules without recovering the
correlation structure that is lost due to the measurement noise might lead to underestimated
gene-gene relationships and disconnected network structure, which might further propagate to

the findings built on these networks.

Finally, we compared the runtime performance of our approach with four other denois-
ing/imputation methods, namely MAGIC (Dijk et al. 2018), SAVER (Huang et al. 2018),
scImpute (W. V. Li and J. J. Li 2018) and ZINB-WaVE (Risso et al. 2018). In this analysis,
we used the downsampled versions of the largest single-cell RNA-seq data, which has 1.3M
mouse brain cells (10X Genomics 2017), in addition to the full dataset. The runtime of DCA
scaled linearly with the number of cells, while other methods did not scale beyond 10,000 cells.

We did not encounter any issues when we denoised the entire dataset with 1.3M cells using
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DCA.

5.3 Outlook

In this thesis, we utilized the DeepSEA model as the basis for the predictions of molecular
modalities such as TF binding and chromatin accessibility. Recently, alternative approaches
have been proposed and substantially expanded the repertoire of biological sequence modeling in
different directions. For example, ExPecto (J. Zhou, C. L. Theesfeld, et al. 2018) incorporated
gene expression into the variant prioritization and estimated the effects of sequence variation
on gene expression. This model can be viewed as in silico eQTL experiments. Basenji (Kelley,
Reshef, et al. 2018) applied dilated convolutions to biological sequences to predict histone
modifications, chromatin accessibility and gene expression from 131kb-long DNA sequences to
identify the promoters and distal regulatory elements in the genome. BPNet (Avsec et al. 2019)
is another example which predicts TF binding events at base-resolution using ChIP-nexus
profiles (Q. He et al. 2015) for a given DNA sequence, instead of making binary binding
predictions (i.e. binding/not binding). We expect that these next-generation predictive
sequence models will be widely used in the future in two forms. First, as a discovery tool,
predictive models are able to extrapolate beyond already characterized settings to those where
measurements are not available. For example, molecular patterns of gene expression, TF
binding and chromatin accessibility in tissues and cell types where the measured data is scarce
can be predicted, which might give us the ability to rapidly hypothesize about the underlying
biology. Second, such models can be used in approaches like DeepWAS where sequence models
play a central role in investigating and interpreting genotype—phenotype associations.

In parallel to the developments in sequence-based predictive models and variant prioritiza-
tion approaches in computational genomics, new machine learning techniques for sequence
models, language models and word embedding methods have been proposed in the fields of
natural language processing and deep learning (Vaswani et al. 2017; Peters et al. 2018; Devlin
et al. 2018). We envision that these new techniques will find applications in our field and
enable better in silico experiments which in turn will contribute to our understanding of
various complex phenotypes, biological mechanisms and regulatory codes of the genome.

Machine learning is becoming an indispensable tool in single-cell genomics. In Eraslan,
Simon, et al. (2019), we proposed one of the first deep learning-based representation learning
applications in single-cell which found many applications (Schiller et al. 2019; Y. Deng et al.
2019; Arisdakessian et al. 2019; Jingshu Wang et al. 2019; Hafemeister and Satija 2019).
Together with scVI (Lopez et al. 2018), our work also showed that the downstream tasks can
be performed well in the latent space for the first time which was followed up by other studies.

For example, Lotfollahi et al. (2019) proposed an in silico perturbation approach where latent
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space vector arithmetics were employed to predict single-cell perturbation responses. This
method also serves as a discovery tool for exploring molecular modalities beyond known cell
types, studies and species. With the emergence of highly multiplexed combinatorial single-cell
drug screens and perturbation experiments, we expect more machine learning approaches will
be developed to predict the effects of drugs and genetic perturbations in the future. These
experiments will not only enhance our understanding of causal effects in biology and discern
correlation and causation, but also give rise to methodological improvements in the domain of
causal inference and indirectly help other fields.

Moreover, predictive models are exploited for addressing challenges in single-cell immuno-
biology. Fischer et al. (2019) used deep learning to predict the antigen specificity of single T
cells using multimodal datasets where coupled transcriptome, T-cell receptor (TCR) sequence
and surface proteins of single-cells are available. Several unsupervised approaches that aim to
improve data representation and to facilitate biological discoveries in single-cell genomics are
proposed (Amodio et al. 2018; Cho et al. 2018; Jiarui Ding, Condon, et al. 2018; Lopez et al.
2018). We expect machine learning to be used for a wider range of tasks, both supervised and
unsupervised, in single-cell genomics in the future.

Today not only the volume and but also the diversity and the complexity of biological
datasets are increasing as new experimental techniques are introduced. For example, high-
throughput spatial protocols (Xiao Wang et al. 2018; Eng et al. 2019), single-cell perturbation
experiments with different types of readouts (Dixit et al. 2016; Datlinger et al. 2017; Mimitou et
al. 2019), simultaneous measurements of multiple modalities in single cells (J. Cao, Cusanovich,
et al. 2018; Reyes et al. 2019; L. Liu et al. 2019; S. J. Clark et al. 2018) are becoming a
standard practice. As these techniques mature and the datasets grow in quality and quantity,
we will reach a better coverage of genomic, epigenomic and genetic landscapes, which in
turn will improve the quality and complexity of the training datasets for future machine
learning methods. Combined with the increasing computational power of new hardware and
the predictive power of new scalable models, such training datasets have the potential to

revolutionize not only molecular biology but also personalized medicine and drug development.
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