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Abstract

Energy markets worldwide are facing a transformation amid rising energy needs and climate

change mitigation efforts. One part of this transformation consists in the move towards liberal-

ized markets where power can be traded like any other commodity. This change calls for new

approaches to market design, and poses various challenges for regulators, exchanges, and market

participants due to the peculiarities of power as a commodity.

On the other hand, the rising prevalence of computerized markets and the availability of high-

frequency market data present a unique opportunity to study the markets and develop policies.

In this thesis, I explore these two aspects of modern energy markets.

First, I show how demand elasticity can be estimated from high-frequency market data using

renewable energy feed-in as an exogenous explanatory variable. My empirical findings show

that demand elasticity can be approximated precisely using the proposed approach. Second,

I develop a theoretical market model of continuously trading markets with workup sessions. I

show how workup sessions can mitigate bid shading and foster more effective reallocation of

financial assets under limited liquidity. I present an empirical case study based on the Nasdaq

Nordic power market. Third, I show how the regulation of insiders’ trading impacts the excess

returns achieved by corporate insiders. In particular, my research reveals that regulators face a

trade-off between fairness in the market and increased welfare by the signaling effect of insiders’

trades. I derive disclosure policy recommendations based on my findings.

My findings contribute towards a theoretical and empirical understanding of markets with im-

plications for power market design.
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1 | Introduction

This introduction serves as an overview of the most recent developments in energy market

microstructure and how these motivate my research. First, I present a summary of how the

power markets have developed in recent years with a focus on the computerization of trading

and market mechanisms. Second, I lay out in more detail how these changes affected market

mechanisms in power trading. I proceed to discuss the possibilities of widely available financial

market data and how it can be used in econometric research. I then provide an outlook on

the key challenges in designing power markets going forward. Next, I present an overview of

my research, my main contributions, and what these imply for the power market design of the

future. Last, I present the structure of my thesis.

1.1 Developments in Power Market Microstructure

The wave of power market liberalization initiated in the 90s brought upon a fundamental trans-

formation of the way power is traded and distributed. The changes in the power market mi-

crostructure triggered by this development are still ongoing.

Regulators and exchanges are addressing a myriad of aspects of new power markets when de-

signing their policies. On the one hand, market design is supposed to foster competition and,

therefore, more efficient market outcomes (Wilson, 2002). On the other hand, it has to address

various topics arising from the shift towards intermittent power sources such as investment in-

centives, renewable support schemes, the complexity of grid operations, and the increasingly

short-term nature of demand and supply shifts. Addressing all of these topics raises multiple

questions in market design.

1



1 Introduction 2

1.1.1 Trading Mechanism Design

The choice of trading mechanisms to exchange power between traders among markets with

different maturities is one of such questions.

Electricity is traded on multiple markets with varying maturities due to its special properties.

In particular, there are no economically viable ways to store it at scale. In addition, supply

and demand need to match exactly at any given point in time, and prices can be subject to

high volatility (Eydeland and Wolyniec, 2002). To account for these properties, regulators and

exchanges respond by introducing an increasingly complex set of markets to trade electricity

on. The two most prevalent choices for market design in this area are various types of double

auctions and continuous limit order books (LOBs).

Power markets and their mechanisms differ depending on the maturity of the underlying financial

contracts traded on these markets and depending on the market participants trading them.

Today, exchanges are offering multiple products: from long-term ones going multiple years into

the future to very short-term products (sub-hourly). At the same time, market participants

active in these markets can have very different natural positions, risk preferences, and planning

horizons. For example, power producers are typically taking a net long position with long-

term planning horizons, as their cashflow can be more dependent on price fluctuations than the

cashflow of an industrial participant for whom electricity is just one input factor. A retailer

can hold a long or short position with a medium planning horizon. Last, an end consumer is

typically short and plans the position not too long in advance in order to profit from possible

short-term price fluctuations.

On the long-term end of the spectrum, there are markets with a planning horizon spanning up

to 10 years, e.g., in the form of power purchase agreements (PPAs) which can be used to reduce

the risk for renewable power procurement and investment (Hundt et al., 2020). PPAs represent

a contract to exchange power at a future date for a fixed price and are usually exchanged over-

the-counter (OTC).

There are medium-term markets in the form of classical futures markets. Here, participants ex-

change electricity with a planning horizon of up to 3 years. These markets are mostly organized

as LOBs. Large participants also exchange forward contracts OTC. In terms of total volume

traded, futures markets generally represent the most significant ones, especially in Germany.
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They serve a multitude of roles, including hedging risks, optimal price discovery, mitigation of

market power exertion (Allaz and Vila, 1993, Mansur, 2007) and as a tool to price investments

(Ausubel and Cramton, 2010). As such, their design plays a key role. Examples of issues ad-

dressed by market design in this area are front-running, bid shading (and more generally strategic

bidding), market power exertion, appropriate demand and supply response, and planning un-

certainty. Planning uncertainty can arise because the price forward curve deviates a lot from

the actual spot price at a future date. Some of these problems, such as strategic order place-

ment (Budish et al., 2015) or market power exertion (Bushnell et al., 2008) can be addressed by

appropriate changes in market mechanisms.

On the short-term side, exchanges are offering day-ahead products and intraday products, al-

lowing traders to exchange electricity only hours before delivery, a counterpart to spot trading

in other commodities. These markets are partly organized as double auctions and partly as

continuous LOBs. They are also split with regard to delivery periods. Exchanges are offering

an ever-rising number of products batching multiple hours to best approximate the needs of

suppliers and consumers. For the European Energy Exchange (EEX), these products span, e.g.,

base (electricity delivered in all hours of the day, 7 days a week), peak (hours 8 to 20, Monday

to Friday), off-peak, and many others. At the same time, the amount of sub-hourly products is

rising, too. With an increasing share of renewable power, these markets have seen steady growth

in terms of volume, as the need to rebalance the position and respond to the newest information

is on the rise. This, in turn, has led to multiple discussions on optimal mechanisms, as, e.g., in

Neuhoff et al. (2016), Ocker and Jaenisch (2020).

Last, to balance the very short-term mismatch of demand and supply, many countries have

introduced balancing markets. Balancing power is typically provided at a high premium and

can be dispatched within seconds to minutes. In these markets, participants are remunerated for

both, provision of flexibility and actually delivering electricity when required. In these markets,

regulators are also facing design questions, in particular, due to the tight connection between

the physical delivery and the financial transactions behind it. In addition, these markets play

a crucial role in network stability and present a strategically important part of the electricity

infrastructure (van der Veen and Hakvoort, 2016).

The high impact of these developments is not limited to exchanges. Similar questions also arise

on the other side of the screen, where participants active in these markets are trying to find

optimal strategies to trade or hedge power. Continuous LOBs pose high requirements on the
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trading infrastructure, the decision process of traders, and the effective execution of the trades

themselves. A high need for coordination between the long-term and the short-term markets

makes these requirements even more complex. Modeling such decision processes (Lai, 2018) is

just the first part of the problem of finding a suitable trading strategy. Given that this problem

is solved effectively, optimal liquidation and order placement are another crucial part of trading

in LOB markets (Obizhaeva and Wang, 2013, Cont and Kukanov, 2017). Optimal liquidation is

closely related to optimal algorithmic trading, which is continuously gaining importance as power

markets become more and more automated and the need for short-term rebalancing increases

(Wang and Yu, 2019). To sum up, the question of optimal trading mechanisms is prevalent

across all power markets. The interplay between markets of different maturities makes the

question of optimal design even more complex. The goal of an optimal market design is to allow

market participants to exchange power according to their specific risk preference and volumetric

requirements while avoiding the exertion of market power and strategic behavior. This entails

optimal price and size discovery.

1.1.2 Increasing Availability of High-frequency Data

Computerized markets are naturally generating large amounts of high-frequency data. For a

typical LOB market, the data is often quoted on a millisecond scale, as this is the typical scale

algorithmic trading takes place on (Goldstein et al., 2014). While this development started in

the 90s for stock, fixed income, or derivatives markets, algorithmic trading in power markets has

gained interest only recently (Baltaoglu et al., 2018, Wang and Yu, 2019).

This development poses a second key challenge for regulators and market participants. For regu-

lators, an analysis of this data presents an integral part of measuring the efficacy of mechanisms,

incentive schemes, or regulations. For market participants, processing market data poses an

important prerequisite for decision making and serves as an input to, e.g., trading algorithms.

One important application of market data analysis is the measurement of demand elasticity. De-

mand elasticity in power markets is connected to multiple aspects of their organization, including

demand flexibility and demand response, real-time pricing, strategic behavior, and integration

of renewable power sources (Borenstein, 2005, Bompard et al., 2007, Clastres and Khalfallah,

2015, Gold et al., 2020). A more recent development towards smart grids and more localized
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markets is another key application of demand elasticity, as price response in such markets is an

important indicator of their allocative efficiency (Fabra et al., 2021).

For policy considerations, the requirement on elasticity estimation models is even higher, as

policy-makers are typically interested in causal relationships between price and quantity de-

manded as opposed to the simple association between the two.

For market participants, demand elasticity serves as an important input to a variety of models.

For example, producers employ elasticity estimates for constructing optimal day-ahead bidding

strategies (Hajati et al., 2011). Another application are fundamental market models used, e.g.,

for investment decisions into new technologies or PPA pricing (Gerbaulet and Lorenz, 2017).

The increasing availability of high-frequency data in computerized markets spurred a new strain

of research into statistical methods to analyze it. In finance, machine learning has seen a

steady increase in popularity with a wide range of applications in the pricing of derivatives,

forecasting, algorithmic trading, and many others. As methods from finance and industrial

organization become increasingly blended (Kastl, 2017), these methods find their way into the

industrial organization, too. Recent studies show that these methods are widely applied in

energy economics and finance (GHO, 2019). Despite the advantages of machine learning applied

to high-frequency data, researchers and practitioners are also facing some risks, as the properties

of these methods are not always well-understood (Abadie and Kasy, 2019).

As a consequence, there are promising research avenues for using high-frequency data and study-

ing machine learning approaches in the context of market design and market microstructure.

1.2 Power Trading Mechanisms

In liberalized power markets, trading represents a key mechanism to allocate goods. It can take

place in various forms, including double auctions, price-driven markets or continuous limit order

books (order-driven markets), known as lit markets. In addition, some exchanges offer dark pool

trading. These venues offer participants to submit large orders without making these public.

This process can take place with a wide variety of mechanisms. In addition, bilateral trading

and OTC trading are also prevalent in today’s markets.

Researchers, regulators, and market participants employ various metrics to judge these trading

mechanisms. While an overview of desirable qualities of trading mechanisms is a very far-reaching
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topic, there are some standard properties that are commonly discussed by both, academics and

practitioners. These properties include the speed and precision of price and size discovery,

reallocation speed, proneness to strategic behavior, pre-trade and post-trade transparency.

LOBs present the most frequently used mechanism among all of today’s biggest exchanges. As

of 2020, the market capitalization of exchanges employing some form of LOBs amounted to 82%

of the worldwide market capitalization of all exchanges (World Federation of Exchanges, 2021).

For this reason, LOBs have seen a steadily growing interest in the literature.

The current understanding of LOBs is fragmented, as there are different perspectives on viewing

these markets. From an economic perspective, researchers are dealing with questions such as

welfare, strategic behavior, and market power. From an operations research perspective, optimal

liquidation strategies are an important topic. The increasingly low-latency nature of these

markets has also led to substantial research in algorithms and automated trading logic.

The question of whether continuous LOBs can be further improved by augmentation with ad-

ditional mechanisms has seen a lot of interest, too. Empirically, it is known that dark pools

present an important additional trading venue, especially in equity markets and fixed income

markets, where they amount to around 50% of total traded volume (Fleming et al., 2018). Yet,

their overall net impact is ambiguous. On the one hand, dark pools are known to better serve

the needs of large institutional traders, as they limit strategic front-running and usage of ice-

berg orders (Frey and Sandås, 2017). On the other hand, dark pools were found to decrease

the liquidity in the lit market (Nimalendran and Ray, 2014, Johann et al., 2019) and thereby

decrease their effectiveness of price discovery. The net benefit is therefore not clear and has led

to controversial discussions in the literature. Researchers struggle to find a definitive answer

here, as these markets are difficult to model theoretically and commonly do not offer their data

for academic analysis. The question of their role for market efficiency, therefore, remains open

and requires efforts from theoretical and empirical researchers alike.

1.3 Econometrics and Machine Learning

Turning to the use of machine learning for analyzing financial market data, recent years have seen

a variety of applications combining it with econometric methods (Shmueli and Koppius, 2011).

While the main focus of econometrics is often on structuring the models and causal inference,
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machine learning methods have the advantage of approaching problems in a data-driven way

without putting much structure on them.

A combination of these methods is found in multiple applications. The first prominent example is

a data-driven way to select parameters in econometric models when no further information about

these parameters is available. Machine learning techniques also find application in modeling non-

linear relationships in econometric models (Varian, 2014).

Borrowing variable selection tools from machine learning to build econometric models is an-

other important example. Here, cross-validation and regularization present two well-known

approaches. Cross-validation allows improving the out-of-sample fit by artificially splitting up

the dataset into parts and making sure that the estimated model is a good fit on each part (fold).

Regularization has a similar property in that it artificially reduces the in-sample fit in the hope

of improving the out-of-sample fit.

One important application for variable selection on the econometrics side are instrument variable

(IV) models. These used to be estimated based on economic reasoning for the choice of variables.

Even though this economic reasoning is still important for the preselection of instruments, reg-

ularization, and cross-validation can help in selecting the right set of instruments. While there

are multiple prior works on the efficiency of such techniques, field tests with known benchmarks

are rare. This opens up a possibility for further research.

1.4 Contribution

In my thesis, I contribute to a deeper theoretical and empirical understanding of mechanisms

behind today’s financial markets in terms of price and size discovery, with a focus on electricity

markets. My findings are relevant to both, regulators and market participants. My thesis consists

of three main essays, each with a distinct research question and contribution.

First, I show how regularization can be used to better estimate demand elasticities from high-

frequency market data. These estimates can, in turn, be used to judge the effectiveness of

policies that aim to flexibilize the demand side in power markets. Recent works have shown how

demand elasticity can be used as a measure of the effectiveness of real-time pricing (Fabra et al.,

2021). Second, I show how augmenting classic LOB markets with mechanisms such as workup

sessions (Duffie and Zhu, 2017) can alter the behavior of market participants and influence their
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strategies. For regulators, these findings imply possible changes to trading mechanisms that

can ensure faster reallocation of financial contracts. For market participants, I explain how

an optimal liquidation strategy can be derived theoretically. I also demonstrate empirically

that the optimal liquidation strategy achieves a lower overall cost of liquidity, yielding higher

average prices for net sellers. In addition, I lay out how market participants can leverage power

market data to optimize their market position and maximize profits. Last, I look into the

regulatory aspect of designing efficient financial markets. I show how disclosure of insiders’

trading influences market outcomes in terms of fairness and information asymmetry. I build on

extant literature on event studies (Corrado, 2011) and show how regulators can use market data

to derive optimal policies.

The empirical part of my contributions is based on power market data from the German power

market (EEX) and the Nordic power market (Nasdaq Nordic). Both datasets provide detailed

data on market participants’ behavior, in the case of Nasdaq on the order-book level. I also

employ data on insiders’ dealings in German, UK, and US-American markets.

In the following, I summarize each of the three essays and lay out their distinct contributions.1

1.4.1 Demand Elasticity Estimation with Many Instruments

In the first essay of this thesis, I investigate different methods for demand elasticity estimation

in power markets. This estimation is subject to classic identification issues, as the supply and

the demand shifts cannot be disentangled based on prices and quantities only. Some classic

approaches are known to solve this problem, with the most prominent one being instrument

variable estimation (Angrist and Krueger, 2001). Other approaches include cointegration models,

structural time series models, and Kalman filter models (Inglesi-Lotz, 2011, Arisoy and Ozturk,

2014).

Researchers typically utilize data on equilibrium (market-clearing) prices and quantities to esti-

mate demand elasticity, mainly due to the unavailability of more precise data reflecting quantities

demanded at different (non-market-clearing) prices.

This is problematic for several reasons. First, there is no way to judge the quality of estimates

stemming from equilibrium price-quantity data. Researchers are employing methods such as
1I use the first person throughout, even though the essays are based on joint work with co-authors
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instrument variable regression to overcome the simultaneity bias, but these methods do not

guarantee precise estimates (Angrist et al., 2000). In fact, the instrument variable (IV) estimates

can be even further away from the true estimate when weak or wrong instruments are selected

(Jiang, 2017). Second, without any external way to judge the quality of the estimates, research

on the methods of estimation themselves is difficult. While some properties of such estimators

can be shown in theory and in simulation studies, as in, e.g., Gold et al. (2020), this is often

an imprecise approximation to what would happen with real-world data. Theoretical properties

often only hold asymptotically. Simulation studies mostly assume a certain parametrization,

and their robustness with respect to different parametrizations can be questionable.

I make use of a unique setting in terms of data availability to address this question. I employ

data from the German power markets where both, the equilibrium price-quantity pairs and the

submitted demand curves (quantity demanded for different levels of price) are directly observable.

The former allows me to estimate demand elasticity using instrument variables, as regularly

applied by empirical researchers. The latter allows me to compute the actual underlying demand

elasticity and to compare my estimates to it. The actual demand elasticity, therefore, serves as

a benchmark to judge the performance of different estimation methods.

Another important ingredient for elasticity estimation models is given by strong and preferably

exogenous instruments, in my case by supply shifters. For supply shifters on the German power

market, I, therefore, make use of the predicted in-feed from renewable power sources. This data

is publicly available, exogenous, and a strong supply shifter, as the total installed capacity is

constantly expanding. I also utilize fossil fuel prices from day-ahead markets and CO2 prices as

instruments.

In terms of estimation methods, I vary between classic IV models with controls and regularized

IV models. I propose regularization in the "first stage" of the estimation as a way to select

the most suitable instruments (Belloni et al., 2012). I investigate how LASSO, RIDGE, and

Post-LASSO type of estimators perform in this instrument selection problem.

I show empirically that, especially in cases with possibly unfit instruments, whose local average

treatment effect (LATE) deviates from the effect in the entire population, regularization can

significantly improve the resulting estimates. This observation is robust with respect to the

estimation period, controls, and over time.
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My results contribute to the literature in two ways. First, I provide precise true estimates of the

demand elasticity in the German power market, which can be used in a variety of models building

upon the elasticity of demand. Second, I provide reasoning why instrument selection is an

important step in IV estimation and proof that the right instrument selection can influence results

significantly. This makes the results relevant to both, researchers in industrial organization and

practitioners active in power markets.

1.4.2 Optimal Liquidation in Continuous Markets with Workups

In the second essay of the thesis, I look into the problem of optimal liquidation in continuous LOB

markets with workup sessions, as defined by Duffie and Zhu (2017). In a workup session, a price

for a financial contract is frozen based on the latest market price or another price-determining

mechanism. Participants are then allowed to submit bids in terms of quantity only. The process

of quantity submissions takes place until one side (either bid or ask) drops out of the session.

This mechanism is therefore sacrificing complete market clearing and is designed to enhance the

size discovery process. Size discovery sessions are found across all financial markets, including

equities, fixed income, and commodities. This kind of mechanism is highly relevant for electricity

markets, where large producers and consumers are trading their portfolios far in advance.

The motivation for augmenting continuous LOB with size discovery sessions is straightforward:

market participants are typically shading their true bids in fear of possible price impact, espe-

cially when trying to liquidate a non-trivial position. This means that they either do not submit

their true bids or use techniques such as iceberg orders to trade (Frey and Sandås, 2017).

By this reasoning, a workup session with a frozen price gives market participants an incentive

to disclose their desired quantity faster. This, in turn, can lead to a faster liquidation. A faster

reallocation speed is a desirable property and is considered welfare-enhancing. For an exchange,

it can be a competitive advantage to offer workups, as exchanges compete against each other in

terms of trading speed (Pagnotta and Philippon, 2018).

Despite this reasoning, the literature on the role of workup sessions in LOB markets is quite

ambiguous. Researchers found that this mechanism can have negative consequences, as it draws

away liquidity from the main trading venue, thus decreasing the market’s price discovery capa-

bilities. It is also prone to strategic behavior, as market participants can strategically wait for

the next workup session before submitting any bids. In addition, such a mechanism is prone to
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front-running, as the information on which side drops out first is public. This information can

then be used in the subsequent continuous market to profit from the temporal imbalance.

There is also some evidence that size discovery sessions can be welfare-enhancing. Theoretical

researchers are trying to model the market and the behavior of participants to underpin this

point. Empirical works are typically looking at liquidity, bid-ask spreads, reallocation speeds,

and other metrics to judge the effectiveness of this mechanism. My essay aims to provide further

theoretical and empirical evidence on the role of workups in continuous LOBs.

In the theoretical part of my work, I build upon the continuous-time market model of Almgren

and Chriss (2001) and extend it to include limit orders and workup session orders. This allows me

to reflect the decision process faced by a trader who is active on an exchange that offers standard

LOB trading with market and limit orders but also offers size discovery sessions. Similar to Antill

and Duffie (2020), I randomize the arrival of orders in the size discovery session. This allows

me to circumvent the problem of traders strategically waiting for the arrival of the next workup

session. I also introduce waiting costs to incentivize traders to liquidate their position at the

earliest time possible. I find an optimal closed-form solution to this problem by formulating

it as a dynamic optimization program and solving the corresponding Hamilton-Jacobi-Bellman

equation. My results show that a workup session influences traders’ behavior in terms of which

orders they place. I also argue that there is an optimal split between the regular, continuous

market and the workup market, ensuring the fastest reallocation speed. These results have

strong implications for exchanges and regulators aiming to improve the classic LOB trading

mechanism.

In the empirical part of my work, I make use of order book level data from the Nasdaq Nordic

exchange. I simulate a setting that allows traders to participate in a workup session. Build-

ing upon the classic benchmarks for optimal liquidation, such as time-weighted average price

(TWAP) or volume-weighted average price (VWAP), I show that markets with workups pro-

vide better average prices for both market sides while increasing the reallocation speed. I also

demonstrate that the optimal strategy determined in the theoretical part of my work can easily

be implemented in a real-world trading algorithm.
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1.4.3 Fairness vs. Welfare: Disclosure in Financial Markets

In the third essay of my thesis, I look at the role of regulation, in particular disclosure, in

designing efficient financial markets. Company insiders trading companies’ stock are obliged

to disclose their position. This has several reasons. First, it is assumed that insiders possess

superior information about the state of the company. This creates information asymmetry

between insiders and other traders. This information asymmetry can be reduced if insiders’

trading intentions are known, thereby increasing welfare (Lenkey, 2014). This is called the

indicator effect and represents one of the regulatory aims. The second aim is fairness, measured

by excess performance an insider can achieve when trading a company’s stock. If the excess

return deviates from the normal market return2, the trade is considered unfair. Various empirical

studies (Dardas and Güttler, 2011, King et al., 2015, Hodgson et al., 2020) show that insiders

actually achieve excess returns. This motivates the need for regulatory intervention. In their

endeavor to set the optimal degree of disclosure, regulators face a trade-off. I find that, while

reducing fairness in the market, a looser regulation of insiders’ trades entails welfare gains due

to the positive signaling effect.

In the essay, I shed light on the implications of insiders’ trading on market outcomes by analyzing

disclosure policies and transactions data on insiders’ deals from the German, the UK, and the

US-American markets. I show how the seminal event study methodology (MacKinlay, 1997,

Corrado, 2011) can be extended to account for both, pre-event and post-event effects. I also

argue that compounding of returns plays a key role in such studies (McLean, 2012) and introduce

a return metric to account for it. In addition, I provide a possible explanation for differences in

excess returns among analyzed markets and explain the role of regulatory enforcement for the

efficacy of disclosure policies.

First, I introduce the necessary modifications to the standard event study methods. One such

modification is the timing estimator. This estimator relates pre-event, and post-event effects of

an insider’s trade, thereby allowing me to judge the timing exhibited by corporate insiders. I

also introduce a metric for compounded excess returns.

Next, I analyze the dataset on insiders’ transactions and show that in all three financial markets,

they achieve excess returns. This effect is particularly pronounced in the USA. I relate my find-

ings to the properties of the transaction, such as volume, the duration between the transaction
2Normal market return is derived based on a market index.
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and its public disclosure, and the corporate level of the insider.

Based on my findings, I provide reasoning why pre-trade or simultaneous disclosure constitutes

a better way to enforce fairness. I also argue that the enforcement of disclosure regulations plays

a key role in its efficacy, but exhibits substantial drawbacks, especially in the German market.

I conclude the essay with recommendations for disclosure regulation.

1.5 Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 explores how regularization

methods can be applied to estimate demand elasticity and presents applied findings for the

German power market. In Chapter 3, I present a continuous-time market model with workup

sessions and argue theoretically and empirically how these influence market outcomes. Chapter

4 deals with the regulatory side of designing efficient markets via effective disclosure processes.

Last, Chapter 5 concludes with an overview of how my research can be applied to improve the

market design of financial markets, and in particular, of power markets.



2 | Estimation of Demand Elasticity with

Many Instruments:

A Machine Learning Approach

Vadim Gorski, Sebastian Schwenen3

In settings with high-dimensional data, endogenous regressors and several instrument candidates

for IV estimation, the choice of instruments becomes essential to estimate the effect of interest.

We explore how regularization techniques can improve inference for the canonical two-stage IV

demand estimation problem. We rely on high-frequency data from double auctions, where we

observe submitted demand curves that allow us to infer how well the proposed regularization-

based IV methods approximate true elasticity. We find that regularization in the first stage

correctly selects the most relevant instruments, significantly improves inference, and reduces the

mean squared error. We derive suggestions for researchers using machine learning tools in IV

models with many instruments.

3Author contributions: This essay is based on a joint paper with Sebastian Schwenen. My contribution was the
formulation of the research question, the design of the empirical strategy, large parts of empirical work, and the
draft of major parts of the paper
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2.1 Introduction

Estimating demand elasticity from equilibrium price-quantity pairs is a classic problem in eco-

nomics. However, researchers often face difficulties to arrive at good estimates, either because of

too much or too little data or due to the necessity to find reasonable instruments. In the worst

case, estimates become unreliable and introduce bias in policy-relevant counterfactuals.

Instrumental variable (IV) estimation presents one of the key approaches to estimating demand

elasticity. The seminal literature on demand estimation using IV concentrates on cases with

scarce data, i.e., only few available instruments (Angrist and Krueger, 2001). Recently, the

increasing availability of large datasets with a high frequency of observations has encouraged

novel research in empirical economics and applications of IV, with its own set of obstacles in

handling large volumes of data.

In case of scarce data, researchers find it hard to identify the true effect of interest because

of potential bias in the local average treatment effect. In case of too much data, researchers

struggle to find the right instruments that are best suited to reduce bias. As marketplaces become

increasingly computerized, market participants generate vast amounts of data with many possible

instrumental variable candidates. Paramount examples are marketplaces such as Amazon or

Uber, which gain increasing focus for the estimation of demand and consumer surplus (Bajari

et al., 2015, Cohen et al., 2016).

In this article, we study the usefulness of machine learning approaches for demand estimation in

high dimensional, high-frequency settings. We make use of the seminal two-stage IV model and

estimate demand elasticity from equilibrium prices, quantities, and numerous supply shifters.

As well known, bad instruments correlated with the error term can possibly worsen the bias as

compared to using ordinary least-squares (OLS). In large datasets, the availability of many, pos-

sibly unfit, instruments increases the risk of misidentification and over-fitting, again introducing

bias.

The statistics and machine learning literature has proposed a host of approaches to guide the

variable selection and estimation process for the problem at hand.4 While these methods are

originally designed for prediction, a growing literature explores their usefulness for inference of
4See, e.g., Varian (2014) and Athey (2018) for comprehensive reviews and implications for empirical economics.
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model parameters and underlying economic models (Belloni et al., 2012, 2014, Fessler and Kasy,

2019).

In our study, we apply machine learning techniques to the seminal IV problem and explore their

usefulness for improving inference. In particular, we investigate how first-stage regularization

performs in selecting suitable instruments, and how this selection affects the second-stage es-

timates. Specifically, we focus on LASSO, RIDGE, and Post-LASSO estimation (Hoerl and

Kennard, 1970, Tibshirani, 1996) of the first-stage model. We follow an applied perspective

on settings with many instruments, in our case supply shifters, and apply different IV model

formulations to the canonical demand elasticity estimation problem (e.g, Angrist et al., 2000).

Our data stem from computerized double auctions in wholesale electricity markets. This dataset

provides a rich test environment for our study as it entails revealed demand curves submitted

to the double auction. Observing demand curves enables us to compute the “true” underlying

demand elasticity. This, in turn, allows us to evaluate the different estimates from IV regression

based on equilibrium prices, quantities, and instruments. Knowing the true elasticity furthermore

allows us to infer how well different IV models with and without machine learning approximate

the true elasticity.

Our findings show that regularization in the first-stage reduces bias and mean squared error

(MSE) of the estimator. This is, we find that in situations with many instrument candidates for

IV estimation, the application of regularization in the first stage dominates standard two-stage

models.

As our results show, regularization is especially valuable under certain conditions. First, we

find that regularization improves inference when instruments are correlated or exhibit outliers.

Second, we find that regularization is effective in addressing the weak instrument problem in

that it aids the instrument selection process and avoids over-identification. Our dataset includes

a variety of arguably exogenous instruments and allows us to test the instrument selection

properties of the regularized first-stage estimator. It is commonly known that selecting the

seemingly best instrument requires economic reasoning and an understanding of the underlying

mechanism (Angrist and Krueger, 2001) while using several plausible instruments at once can

introduce additional bias. In this regard, we find that combining economic reasoning with

machine learning based instrument selection presents a data-driven answer to this trade-off.
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Our findings relate to several strands of research. First, we contribute to the emerging literature

on the estimation of demand and consumer surplus with large data and machine learning tools

(Bajari et al., 2015, Cohen et al., 2016). While Bajari et al. (2015) use machine learning to predict

the treatment effect of price promotions on demand, our approach instead aims at improving

the traditional IV demand estimation procedure. Although we conduct our analysis within the

demand estimation framework, we believe it is widely applicable to a broader set of IV models

with large datasets.

Second, we relate to the literature on demand estimation, that has been applied to a variety of

problems and settings in industrial organization (e.g., Genesove and Mullin, 1998, Berry et al.,

1995). More specifically, we relate to the literature focusing on estimating demand elasticity

in power markets (Lijesen, 2007, Bönte et al., 2015, Boogen et al., 2017), where estimating

elasticity has become of particular interest for evaluating policies to implement smart meters

and real-time pricing schemes Fabra et al. (2021). As we show, adding machine learning tools

to the traditional two-stage IV design significantly improves estimates and, as such, can also be

widely used for studying policy counterfactuals.

Last and more broadly, we add to the growing literature at the intersection between applied

economics and econometrics on the use of machine learning for causal inference. In a recent

paper, Abadie and Kasy (2019) show that data-driven regularization yields estimates that are

close to estimators obtained for optimal levels of regularization. We draw from this idea but

apply regularization to select among many instruments within a two-stage IV setting, which has

previously been studied in Okui (2011) and Belloni et al. (2012). Similar works develop methods

for high-dimensional instrumental variable settings, including (Zou, 2006, Belloni et al., 2014,

Carrasco and Tchuente, 2015). These works mostly concentrate on the derivation of asymptotic

properties of the estimators. Our focus is on the application of these methods to a practical

demand estimation problem and the investigation of how these estimators perform “in the field”.

The remainder is organized as follows. Section 2.2 introduces theoretical foundations and nota-

tion. Section 2.3 describes the dataset, while section 2.4 outlines our empirical strategy. Section

2.5 presents our findings and results. Section 2.6 concludes.
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2.2 Model

This section outlines a brief equilibrium market model. Subsequently, we use the model to

illustrate how we measure and estimate demand elasticity. Our setup and notation draws from

Angrist et al. (2000).

Consider a set of n competitive markets in which buyers and sellers exchange a perfectly ho-

mogeneous good.5 Each single market i = 1, . . . , n is subject to supply shocks from k sup-

ply shifters that we denote as zj with j = 1, ..., k. We write the set of all supply shifters as

Z = [z1, . . . , zk]. The market supply function hence depends on the realization of Z and can

be written as Si(p, Z). In equilibrium, realized supply and demand determine a market-clearing

price-quantity pair {p∗i (Z), q∗i (p
∗
i (Z))}.

We denote the demand function in market i as Qi(p). Furthermore, we assume that demand is

stochastic and has a zero mean random component so that Qi(p) = Qi(p, ξ) with E[ξ|p] = 0. The

error term ξi may contain any perturbations due to unobserved consumer behavior in market i.

As the good is traded over i markets, we measure demand elasticity, denoted by ε, as the average

elasticity over all n markets, formally:

ε =
1

n

n∑
i=1

∂E[Qi(p, ξ)]

∂p

p

Qi
=

1

n

n∑
i=1

εi, (2.1)

where εi is the elasticity in market i. The average demand elasticity as defined in Equation (2.1)

is the object of interest that we seek to estimate.

If the realization of the demand curve in market i is observable, say as submitted demand curve

in a double auction, we can estimate (2.1) from data on Qi and p.

Typically, researchers however do not observe realized demand curves. In this case, empirical

specifications have to rely on observed equilibrium price-quantity pairs {p∗i (Z), q∗i (p
∗
i (Z))} and

instruments (supply shifters), Z, to approximate the true demand elasticity. The frequently

used approach in such cases is to use 2SLS (two-stage least squares) and first approximate the
5An alternative interpretation to having n markets that trade homogeneous goods is that the same market clears
n times.
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price given the supply shifters:6

p∗i = Zπ + η, (2.2)

where π are the first-stage coefficients, ηi is the first-stage error term, and Z are supply shifters

that cause exogenous shocks to the equilibrium price, p∗i . As common, instruments are assumed

to be relevant and independent, i.e., each supply shifter zj ∈ Z should be uncorrelated with the

second-stage error term, cov(zj , ξi) = 0, but correlated with the equilibrium price, cov(p∗i , zj) >

0. Note that the fitted values p∗i depend on the choice of instruments Z and the choice of weights

π. Below, we employ machine learning methods to estimate (2.2) and study how they affect the

fitted values p∗i and, in turn, the elasticity as approximated by the second stage equation:

q∗i = α+ p∗i ε
∗ +Xβ + ξ. (2.3)

In this equation, β captures coefficients of all variables in X, this is β = (β1, . . . , βm) and

X = [x1, . . . , xm] captures observable heterogeneity other than price that determines demand in

market i. The 2SLS estimate of the true elasticity given the equilibrium price-quantity pairs is

represented by ε∗.

Note that the 2SLS approach addresses the endogeneity concerns that arise from directly esti-

mating quantities q∗ by regressing these on prices p∗ using OLS (ordinary least squares). As

well known, the equilibrium price is endogenous because it depends on shifts in demand, leading

to biased ordinary least squares (OLS) estimates.

Below, we estimate demand elasticity based on observed demand curves as in Equation (2.1),

which provides our benchmark estimate for the true underlying elasticity. We also estimate elas-

ticity using equilibrium price-quantity pairs following the canonical IV approach as in Equations

(2.2) and (2.3). When using instrumental variables, we employ the standard two-stage least

squares approach and machine learning approaches that first select the most relevant instru-

ments from the set of supply shifters Z. The goal is to arrive at good elasticity estimates when

demand curves are not observed and only price-quantity pairs are available. In particular, we

are interested in the usefulness of machine learning tools for selecting instruments and arriving

at better demand estimates.
6Note that we use p∗ and q∗ to denote both, the theoretical equilibrium price-quantity tuples and the underlying
data.
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2.3 Data

To explore the usefulness of machine learning for estimating demand, our empirical setup exploits

data from the European Power Exchange EPEX. In Europe, EPEX acts as the largest power

exchange and clears, amongst others, day-ahead wholesale markets for electricity in all major

European countries. In this study, we employ data from the German day-ahead electricity

wholesale market.

The EPEX organizes market clearing as a closed bid double auction, that determines a uniform

clearing price for every delivery hour of the consecutive day. Prior to market clearing, producers

and retailers submit stepwise supply and demand schedules, respectively, for each hour of the

next day. EPEX aggregates and matches supply and demand, and establishes 24 hourly day-

ahead clearing prices. Finally, note that there exist lower and upper bounds for clearing prices.

Allowed supply and demand schedules can range between -500 EUR/MWh and 3000 EUR/MWh.

We make use of rich power market data for several reasons. First, electricity is a homoge-

neous good and allows us to abstract from competing differentiated products. Second, our setup

offers a well-defined test environment for demand estimation, because aggregate demand func-

tions, and hence true underlying demand elasticities, are directly observable in the data. We

therefore can benchmark estimated elasticities against observed demand curves submitted to

the wholesale double auction. Third, we in addition observe equilibrium price-quantity pairs at

hourly granularity, which allows us to compute two-stage IV estimates for demand elasticity in

a high-frequency setting. Last, there exist several plausible instruments as supply shifters.

The instruments that we employ in our study are weather-dependent day-ahead solar and wind

output forecasts which are available in hourly resolution. Because solar and wind output have

marginal costs close to zero, both are exogenous supply shifters that shift the entire market

supply. We also make use of day-ahead input prices for gas, the front month futures prices for

coal, and prices for CO2 allowances. All latter are inputs to producing electricity and can be

considered as exogenous. In total, we hence make use of k = 5 first-stage instruments.

As we use solar output forecasts, we restrict our sample to 12 daytime hours between 8 am and

8 pm. Our observation period spans 11 years, from 2010 to 2020. In total, our data consists
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of 34,440 hourly observations.7 For each hour, our data includes aggregated demand curves,

market clearing price-quantity pairs, and observations on our instrumental variables.

Specifically, the instruments solar output and wind output are observable at the hourly level,

while fuel prices and CO2 prices are at the daily level. Table 2.1 presents selected summary

statistics.

Table 2.1: Summary statistics

Mean St. Dev. Min Max Obs.
Price (EUR/MWh) 46.07 16.00 -83.94 210.00 34,440
Quantity (GW) 29.94 5.05 16.57 51.47 34,440
Wind output (GW) 8.64 8.04 0.22 47.09 34,440
Solar output (GW) 7.47 7.10 0 32.48 30,960
Gas price (EUR/MWh) 19.16 5.56 3.63 29.35 2,870
Coal price (EUR/metric ton) 9.17 2.04 5.08 14.41 2,870
CO2 price (EUR/metric ton) 11.85 7.51 2.75 33.44 2,870

Notes: Prices and quantities are for day-ahead electricity at the German market, traded at EPEX. Gas
prices are day-ahead prices for the TTF hub. Coal prices are for imported coal to Europe (API2-CIF),
CO2 prices are from ICE. Prices, quantities, wind and solar output each contain one missing observation
due to daylight saving time adjustments. The amount of peak hours in each year of our dataset is given by
3,132 for the years 2010, 2012-2016, 2018-2019. For the year 2011 and 2017, we have 3,120 observations.
For the year 2020, we have 3,144 observations. Solar output contains 3,480 missing observations. We
observe gas, coal and CO2 prices only in daily resolution.

2.4 Empirical Strategy

In this section, we introduce our empirical strategy to estimating “true” demand elasticities

from observed demand curves. Subsequently, we illustrate how we infer the same elasticity

from market clearing price-quantity pairs and applying IV-based estimators, with and without

machine learning in the first stage. We also present how we evaluate the different estimators.

2.4.1 Estimating True Demand from Bid Curves

We start from the Equation (2.1) and assume that demand is iso-elastic. Then, the demand

function can be written as:

Qi = αpεi . (2.4)
7More specifically, the data in total comprise 12 hours between 8 am and 8 pm * 52 weeks * 5 working days * 11
years = 34,320 observations, plus additional hours from leap years and years with 53 calendar weeks.
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Note that in our data, market i refers to a specific market clearing in hour i. The demand

elasticity in hour i is then directly estimable by using data points along the submitted demand

curves, using a log-log-specification:

log(Qi) = log(α) + εilog(p) + ξ, (2.5)

where εi is the estimate of the elasticity in market i as in Equation (2.1). In essence, the above

fits an iso-elastic curve around the observed demand function. We apply Equation (2.5) to all

hours in our sample and compute the underlying demand elasticity for every hour i by averaging

over all markets’ elasticities belonging to that hour. As this estimate is obtained directly from

using demand curve data, we also refer to this estimate as “true” elasticity and denote it by εtruei

henceforth.

Note again that our observed demand curves are stepwise functions. The steps of the submitted

curve are well-approximated by an iso-elastic function with an average approximation error of

only 2.24% for our entire sample. Figure 2.1 depicts four representative hours from our sample

with their corresponding “true” elasticity estimate εtruei as estimated by Equation (2.5). As can

be seen, the assumption of iso-elastic demand fits the data well. As indicated in Figure 2.1, we

estimate Equation (2.5) only using relevant parts of the demand curve, i.e., we fit the log-log

specification up to a specified highest observed equilibrium price to avoid fitting demand curves

significantly out of sample.8 Appendix A.1.1 presents this approach in more detail. In Table

2.2, we illustrate the summary statistics of the resulting estimates. We plot selected statistics of

the true elasticity by year. As can be seen, the “true” elasticity varies relatively little throughout

the year with a typical standard deviation of below 5%.

Lastly, to make our estimates comparable with those derived from equilibrium price-quantity

pairs, we average the true elasticities over the same timespan as the sample used for our IV

estimations. For this sake, we partition our 11-year sample in different subsamples ω, for each of

which we then compute the average elasticity by averaging over estimates from (2.5). Formally,

εtrueω =
1

nω

∑
i∈ω

εtruei , (2.6)

8Recall that demand can be measured for all prices between -500 and 3000 EUR/MWh but that clearing prices as
reported in Table 2.1 range between -83.94 and 210 EUR/MWh. Importantly we include negative prices when
estimating Equation (2.5) by transforming the prices with the function sign(p)log(1 + |p|). This transformation
preserves the sign of the prices as opposed to leaving negative prices out of the sample and significantly improves
the fit as compared to the untransformed observed demand curve. Our results are robust with respect to this
choice of the price transformation.
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Figure 2.1: Submitted demand curves (quantity in thousands of MW over price in EUR/MWh) and elasticity
εtruei . Part (a) of this figure shows the observed stepwise demand curve for the hour 9-10am on September 1st,
2016. The dashed line shows the fitted iso-elastic demand curve with elasticity εtruei that we obtain when esti-
mating the log-log specification in Equation (2.5). Parts (b), (c), and (d) show demand curves and corresponding
log-log fits for additional three representative hours.

where εtrueω denotes our estimate for the underlying average elasticities that we obtain from the

set of observed demand curves for the sub-sample ω. For instance, when looking at weekly

average elasticity, the sample ω consists of all hours belonging to a given calendar week.

This strategy allows us to compare different IV estimators against the true elasticity for different

sample lengths and sample compositions. For example, for week-level aggregation, we pool all

calendar weeks into one sample and perform the above procedure. This is, we fit iso-elastic

demand curves for each hour of every calendar week 20 in the sample and obtain εtrueω for

this particular calendar week. Subsequently, when using all hourly price-quantity pairs and

instruments from calendar week 20 (again from 2010 to 2020), we then estimate Equations (2.8)

and (2.7) to obtain the IV estimates. We then evaluate our IV estimates against εtrueω for week

20. Our main analysis is performed at the weekly level. Yet, for additional tests, we also pool

all markets for every peak hour over our entire sample into one sub-sample per peak hour and
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Table 2.2: Summary statistics: true elasticities of peak hours (hours 8 to 20)

Year Mean St. Dev. Min Max Obs.
2010 -0.299 0.111 -0.766 -0.060 3120
2011 -0.279 0.093 -0.801 0.064 3101
2012 -0.197 0.072 -0.490 -0.038 3125
2013 -0.123 0.050 -0.322 -0.023 3125
2014 -0.192 0.069 -0.438 -0.043 3125
2015 -0.224 0.073 -0.484 -0.042 3125
2016 -0.229 0.108 -0.600 -0.015 3125
2017 -0.174 0.095 -0.574 -0.015 3125
2018 -0.204 0.144 -0.823 -0.010 3125
2019 -0.139 0.084 -0.476 -0.080 3125
2020 -0.101 0.067 -0.352 -0.060 3125

Notes: Only hours with complete information on demand curves are included: the differences in obser-
vations compared to the Table 2.1 are due to missing demand curves in our sample. Standard deviations
present sample estimates. Only peak hours are considered, i.e. Mon-Fri, hour 8 to 20.

then approximate the average elasticity of that peak hour only, again using IV estimates. We

then compare hourly IV estimates to the corresponding true demand elasticities.

2.4.2 Estimating Demand Elasticity from Price-quantity Pairs

Next, we describe our approach to estimate elasticity from market-clearing price-quantity pairs.

We follow the approach from Section 2.2 and apply log-log specifications throughout. In the first

stage of the estimation, we approximate equilibrium prices p∗i via supply shifters Z by fitting:

log(p∗i ) = log(δ) +

k∑
j=1

πj log(zj) +

m∑
l=1

πlxl + η, (2.7)

where zj ∈ Z are supply shifters as introduced in Section 2.2. Note that exogenous controls

xl ∈ X also appear in this equation, as they ensure consistency of the 2SLS estimator in the

second stage. X consists of m controls related to time, i.e., depending on the specification,

we employ hourly, daily, weekly and monthly dummies. We also use the day of the week as a

dummy in hourly models.
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Next, we extract fitted values from this estimation and denote these by p̃∗i . These fitted values

are then substituted into the second stage:

log(q∗i ) = log(α) + ε∗i log(p̃∗i ) +Xβ + ξ, (2.8)

where q∗i are equilibrium quantities and p̃∗i are fitted equilibrium prices in market i. ε∗i is our

IV-estimate for the average elasticity across all markets, ε.9 In our data, q∗i , p
∗
i are the prices

and quantities which clear the double auction.

The resulting elasticity estimate ε∗ can then be compared to the true elasticity stemming from

(2.6) for evaluating the quality of inference. Of course, the effectiveness of this method heavily

relies on the instruments being strong and independent of the error term. When this condition

is not fulfilled or only fulfilled partly, the resulting estimate from the two-stage procedure can

become even worse than a regular OLS estimate.

2.4.3 Regularized First-stage Estimation

To select the best instruments in the first stage, we therefore apply different strategies to obtain

fitted values log(p̃∗i ). Below, we briefly introduce methods from the machine learning literature

that we employ. Specifically, we introduce regularization into the first-stage Equation (2.7) and

study how regularization affects the second-stage estimate.

First, we denote the regularized first-stage estimator with L1 penalty as πL. To compute the

latter, we solve:

πL ∈ arg min
π∈Rk+m

E[(log(p∗i )− (log(Z), X)π)2] +
λ

n
‖π‖1 , (2.9)

where λ is chosen such that the 10-fold cross-validated MSE is minimal. Note that πL has k+m

components, as we regress on both, k instruments and m exogenous variables and controls X in

the first stage.

Following the same notation, the L2-penalized first-stage estimator (RIDGE) is defined as:

πR ∈ arg min
π∈Rk+m

E[(log(p∗i )− (log(Z), X)π)2] +
λ

n
‖π‖22 , (2.10)

9In abuse of notation, we use ξi as error term for estimating demand from bid curves and price-quantity pairs.
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and again, the regularization intensity λ is chosen to minimize MSE using 10-fold cross-validation.

Last, we construct the Post-LASSO estimator πPL by first performing a LASSO-penalty regu-

larization in the first stage and then taking all non-zero coefficients to estimate the second stage

equation using OLS, formally:

πPL ∈ arg min
π∈Rk+m

E[(log(p∗i )− (log(Z), X)π)2] : πj = 0 ∀ j : πLj = 0. (2.11)

The idea for this estimator is similar to Belloni et al. (2012), who also apply LASSO as a

pre-selection procedure.

The regularization parameter λ, if positive, introduces first-stage bias as compared to the stan-

dard 2SLS case with λ = 0. As λ increases, so do the costs of large instrument coefficients when

minimizing the sum of squared errors.

The above setup allows for obtaining several estimators of ε∗ for the second-stage model in

Equation (2.8). First, using fitted values for p∗i with λ = 0 yields the standard two-stage least

squares estimator ε∗2ls. In addition, we obtain three regularized IV estimators when using fitted

values from (2.9), (2.10) and (2.11), i.e., using LASSO, RIDGE or Post-LASSO penalties. We

denote the two-stage estimator based on RIDGE first-stage as ε∗R, the second-stage estimator

based on LASSO regression as ε∗L and the Post-LASSO second-stage as ε∗PL.

Apart from investigating how regularized first-stage estimators choose instruments and their

weights, we will also look into the best data-driven choice for the regularization intensity λ in

terms of bias and MSE in the second stage.

2.4.4 Evaluation Criteria

Typically, researchers who estimate demand elasticity from price-quantity pairs (or apply IV es-

timation to other problems) are interested in approximating the true elasticity (effect of interest)

as closely as possible, while keeping the variance of the estimates low. For prediction purposes,

the mean squared error (MSE) becomes relevant, too. We therefore compare and report the

performance of estimators based on the bias, variance, and MSE. For each sample ω, we define

and compute the sample analogs of bias, MSE, and standard deviation as

Bias(ε∗ω) = εtrueω − ε∗ω, (2.12)
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MSE(ε∗ω) =
∑

[(εω − εtrueω )2], (2.13)

σ(ε∗ω) =

√∑
(εω − εtrueω )2

N
, (2.14)

where N denotes the total number of market clearing hours i in sample ω.

Last, we also investigate how the regularized methods choose instruments’ weights and which

coefficients are set to 0 by the LASSO estimator. For each pool of markets, we consider which

instruments are being left in the sample and provide economic reasoning for the type of selection

behavior.

2.5 Results

We first present results for estimating weekly average elasticities. This is, we pool hourly markets

at the weekly level over the entire timespan of the dataset and estimate εtrueω and {ε∗2ls,R,L,PL} for

the corresponding weekly samples. As we have 11 years of data, the estimates are hence based

on 11 full-week observations for each of the 52 calendar weeks. Figure 2.2 displays the bias over

all calendar weeks for all considered estimators. As shown, the bias reduces considerably and

estimates vary much less for the regularized first-stage models.
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Figure 2.2: Bias of two-stage estimators (2SLS, RIDGE, LASSO, Post-LASSO). This figure shows the bias of
each estimator for each of the 52 calendar weeks. The bias is shown relative to the true demand elasticity for
the respective week. Note that we plot the bias as stated in Equation (2.12), but swap the estimated elasticity
and the true elasticity. This allows for a more natural interpretation of the plot, as positive values represent an
overestimation while negative ones represent an underestimation.
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We observe that the relative over-performance of regularized estimators is especially pronounced

in weeks with very high variance in instruments, especially for solar output during summer

weeks. In these cases, all three of the regularized estimators have a lower bias and return more

stable results.

Table 2.3 reports the mean bias, mean squared error, and variance of the estimators. As shown,

the estimation quality improves considerably for our regularized IV estimators, and two-stage

estimates based on LASSO perform best.

Table 2.3: Bias, mean squarer error, and variance of two-stage estimators over 52 weeks

Estimator Bias MSE Variance Observations

ε∗2ls 0.221 0.428 0.218 31,100

ε∗R 0.029 0.088 0.104 31,090

ε∗L 0.018 0.064 0.109 31,090

ε∗PL 0.030 0.087 0.108 31,090

Notes: Bias, Variance and MSE are computed as in Equations (2.12), (2.13), and (2.14). The differences
in the numbers of observations compared to Table 2.1 are due to daylight saving time shift and erroneous
data. In particular, we require complete observations on prices, quantities and all instruments to compute
these estimators. Therefore, for a given 15 minutes interval, one missing observation leads to exclusion
from our sample.

Regularization is commonly known to outperform unregularized estimators, particularly in cases

of a small number of observations compared to the number of explaining variables, collinearity

between explanatory variables, and a high amount of outliers. While price-quantity datasets

usually exhibit enough observations, collinearity and outliers are a concern. Indeed, we find

variance inflation factors (VIF) of up to 8 in our data on instruments, which is a clear sign of

collinearity. Also, fundamentally speaking, fuel prices are typically highly correlated. When

investigating outliers, we find that, on average, around 3% of observations are outliers in terms

of Cook’s distance. We believe this contributes to the performance of the regularized estimators,

as shown in Table 2.3.

We check for the robustness of our results by pooling the data by peak hours instead of weeks.

This analysis also shows how the number of observations can influence inference precision. We

therefore compare εtrueω and {ε∗2ls,R,L,PL} where a each sample ω now contains all peak hours of

hour i with i ∈ {9, 20} over all years of our dataset. Figure 2.3 displays the difference between the

true elasticity and our estimates based on price-quantity pairs. Again we find that the classical

IV approach largely underestimates the hourly demand elasticity, while all of the regularized
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estimators perform significantly better. On average, the bias decreases by around 50%. The

average bias of the 2SLS estimator is around -0.095, while the average bias for the regularized

estimators is between -0.041 and -0.043.
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Figure 2.3: Bias of two-stage estimators (2SLS, RIDGE, LASSO, Post-LASSO). This figure shows the bias of
each estimator for each of the 12 peak hours. The bias is shown relative to the true demand elasticity for the
respective hour.

To investigate how the observed improvements are related to instrument selection, we look into

which instruments are being selected over time by the regularized estimators. In case of LASSO

and Post-LASSO, this can be done by screening for instruments with coefficients of zero. We

find that in our weekly models, the instruments coal, gas and CO2 prices are set to zero in 6%,

20% and 14% of cases, respectively, while wind and solar remain relevant almost always. In

addition, the relevance of the instruments changes over time. As we start in 2010 and analyze

the timespan until 2020 where wind and solar heavily entered the market, we conjecture that the

explanatory power of the forecasted renewable energy in-feed should increase over time. Table

2.4 reports how often each instrument is selected in the first stage over the years. We find that

while wind feed-in is kept in all models, the role of solar feed-in in explaining first-stage price

variance is increasing over time. Coal and gas prices remain at relatively low levels in terms of

explaining price. Notably, the CO2 price gains more explanatory power over time.

Last, we present the sensitivity of our results with respect to the level of regularization. The

choice of λ in regularized models is subject to ongoing research. We find that the performance

of regularized estimators can drop significantly when the level of applied shrinkage becomes too

high. Without the possibility to benchmark against true elasticities in the second-stage, the task
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Table 2.4: Instrument relevance over time: percentage of models which use the corresponding instrument in the
first stage after LASSO-regularization

Year Solar Wind Coal pr. Gas pr. CO2 pr.
2010 0.83 1.00 0.58 0.58 0.66
2011 0.83 1.00 0.58 0.83 0.75
2012 0.92 1.00 0.83 0.83 0.83
2013 0.92 1.00 0.75 0.83 0.83
2014 0.92 1.00 0.50 0.91 0.58
2015 1.00 1.00 0.50 0.58 0.91
2016 1.00 1.00 0.66 0.41 0.58
2017 1.00 1.00 0.50 0.50 0.91
2018 0.92 1.00 0.50 0.66 0.91
2019 1.00 1.00 0.50 0.58 0.91
2020 1.00 1.00 0.50 0.58 0.91

Notes: For each year, we consider how many estimation models per month are using the corresponding
instrument variable after regularizing the first-stage and express this amount as percentage.

of choosing the shrinkage level correctly becomes non-trivial. We find that the standard 10-fold

cross-validation with respect to the first-stage MSE as implemented in most statistical packages

yields a too high regularization level in about 20% of the cases. This means that in these cases,

reducing the level of shrinkage yielded a better second-stage estimate. Furthermore, we find

that if using cross-validation, the fold size should be adjusted to the number of observations and

is highly sensitive with respect to it. For example, when fitting weekly models with about 60

observations, reducing the fold number to 3 yielded the best results.

2.6 Conclusion

The increasing availability of large datasets has led to the growing prominence of statistical

learning methods in empirical economics. While these methods have originally been developed

to improve out-of-sample prediction and MSE, they are increasingly adopted and used to improve

inference.

In this article, we make use of a unique empirical setting to put these methods to a test. We

contribute to the empirical economics literature by showing how regularization in the first-stage

of the canonical demand estimation problem can help to improve the second-stage inference.
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We first define the true demand elasticity as the one derived from the submitted bid curves.

This elasticity estimate directly reflects the price response of the demand side and we therefore

use it as a benchmark. We then define estimators which can approximate this elasticity from

information on equilibrium prices-quantity pairs and supply shifters as instruments. We show

how regularization in the first-stage is used to address the instrument selection and the weak

instrument problems.

Using this empirical strategy, we derive a set of results on the properties of RIDGE, LASSO, and

Post-LASSO estimators. We find that bias, variance, and MSE of the second-stage coefficients

can be significantly reduced when employing regularization in the first-stage. The bias reduction

property is more prominent the higher the number of observations and instruments. We also

find that the variance of the estimates is reduced by more than 50%.

We find that the observed effects are robust with regard to the aggregation level and amount

of observations. We propose several explanations for the better performance of regularized esti-

mators. We find that the number of outliers in the observations, the collinearity of instruments,

and the changing relevance of instruments over time are all factors explaining the performance

of regularization.

In addition, we investigate how the level of shrinkage affects the results. We find that the

estimators are quite sensitive with regard to the selection of the shrinkage parameter λ. We

argue that "over-shrinking" is a concern, as the quality of estimates can drop significantly when

it occurs. We derive suggestions on the practical choice of the shrinkage parameter based on our

observations.

In sum, our findings suggest that regularization methods offer measurable advantages for IV

estimation with large data and many instrument candidates, with LASSO-type regularization

performing best on our data.



3 | Optimal Liquidation in Continuous

Markets with Workups

Vadim Gorski, Sebastian Schwenen10

Traders active in financial markets based on limit order books can choose between submitting

limit or market orders to liquidate their position. However, they have an incentive to shade

their true bids in fear of price impact. This effect has led to the emergence of dark pools and

quantity-based allocation mechanisms such as size discovery sessions. We develop a model of a

limit order market, unifying market orders and limit orders with a randomized size discovery

mechanism. Based on this model, we study the optimal liquidation problem and resulting

allocative efficiency. We find that introducing randomized size discovery sessions increases the

reallocation speed, allows market participants to avoid costly holding of unwanted inventory,

and thereby increases welfare. We show this effect on historical LOB data from the Nasdaq

Nordic power market. We argue that while this mechanism is attractive in theory, practical

implementation bears some problems.

10Author contributions: This essay is based on a joint paper with Sebastian Schwenen. My contribution was the
development of the research idea, large parts of the theoretical model, the empirical work, and major parts of
the draft of this paper
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3.1 Introduction

Today, continuous trading on lit exchanges11 using limit order books (LOB) represents the most

important allocation mechanism in financial markets. Traders active in LOB markets use a

variety of strategies to optimally liquidate their undesired inventory. Especially for traders with

large positions, the liquidation strategy plays a key role, as they face significant adverse price

effects when liquidating.

Strategic behavior in LOB markets is the reason why liquidating a large position becomes chal-

lenging. Traders placing large orders are facing an uncertain price impact and are susceptible

to front-running. Front-runners use the information in the LOB to position themselves against

traders with large positions (Pancs, 2014). This and other kinds of strategic behavior also impede

an efficient price discovery (Vayanos, 1999). The consequences of this problem are two-fold.

First, traders typically split up their true position into smaller pieces or employ iceberg orders,

thereby shading their true bids. While splitting-up orders can be an effective technique, it slows

down the reallocation speed, i.e., it takes market participants longer to adjust their portfolio

and arrive at the allocation of financial assets they require. Splitting up the entire position

into smaller ones also has a substantial impact on transaction costs, adding complexity to the

allocation decision. Additional adverse effects of splitting are costly delays in the reallocation of

financial assets (Rostek and Weretka, 2015).

Second, exchanges with non-public order books, so-called dark pools have emerged as a response.

They offer traders the possibility to exchange large positions without price impact, because

trades can be submitted privately. This has made dark pools ubiquitous in many financial

markets. Dark pools offer a wide variety of trading mechanisms, with size discovery sessions

being one of them. Despite their popularity (Fleming et al., 2018), both the empirical and

the theoretical literature have no clear answer on the role of dark pools and, in particular, size

discovery mechanisms for the efficient reallocation of financial assets and welfare effects. We

refer to size discovery sessions as workups, as size discovery is a particular workup mechanism.12

While there are seminal results on the role of workups (Pancs, 2014, Duffie and Zhu, 2017) and

on the optimal liquidation with market and/or limit orders (Almgren and Chriss, 2001, Foucault

et al., 2005, Cartea and Jaimungal, 2015, Roşu, 2019), the literature so far is largely silent on
11Lit exchanges are venues with publicly visible bids and offers.
12Generally, a sequential process of negotiating on a quantity is called "workup".
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the combination of these mechanisms into one liquidation strategy, albeit their joint use in many

markets.

In this paper, we address the role of size discovery in LOB markets from two perspectives. From

the perspective of a trader, we solve the optimal liquidation problem when size discovery sessions

are offered in addition to regular LOB trading. From the perspective of an exchange, we derive

the incentives for traders active in such markets, thereby shedding light on the interplay between

a lit market LOB and a size discovery session offered by a dark pool. This has implications for

the strategy of exchanges looking to attract traders.

Our model for optimal liquidation builds on the classic optimal liquidation model by Almgren

and Chriss (2001) in continuous time. In the environment that we study, traders can decide

between placing a market order, a limit order with a certain mark-up compared to the market

price, or placing a part of the volume in a workup session. All three decisions are made jointly,

i.e., traders optimize their strategy over all three options at all times.

The trade-off traders face is the penalty to hold unwanted inventory versus the penalty of a

market impact when they execute too large positions too quickly. The market impact effect can

be reduced by either using limit orders or by participating in workups. Both options, however,

do not guarantee execution. Instead, we introduce a probability of a position being executed

given a limit order with a certain mark-up and stochastic liquidity available in a workup session.

The trade-off between the price impact of a market order and the uncertainty of execution is

another key trade-off in our model. The price impact in our model is linear, which is a classic

choice in the literature (Huberman and Stanzl, 2004).

In addition, we address the problem of strategic behavior in markets with workups by randomiz-

ing the arrival of liquidity in a workup session. This mechanism addresses the problem of traders

withholding liquidity and strategically waiting for workups, thereby harming price discovery in

lit markets.

The first key result of our paper is the optimal liquidation choice of a trader. The parameters

in our model can all be estimated from historical LOB data, thereby making it applicable

in practice. The basic version of our model allows us to find explicit, closed-form solutions.

Estimated parameters can be substituted into these solutions to find the optimal strategy. An

extension of our model incorporates decisions by other traders via order flow (Bechler and
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Ludkovski, 2015), but does not offer a well-tractable analytical solution. Yet, we show how

the solution can be approximated numerically.

Our second key result is that the strategies for trading in lit markets and dark pools cannot be

optimized separately. We find that the effect of participating in workups has an influence on the

optimal placement of market and limit orders on a lit exchange. Hence the order strategies are

endogenous to participating in workups.

We also apply our model to LOB market data. In particular, our application relies on data

from Nasdaq Nordic power market. First, we find that following the optimal lit market strategy

results in substantially lower price variance and less adverse price movements as implementing

benchmark strategies such as time- or volume-weighted order placement. Second, we show in

a simulation-based on real order-book data that a workup session introduced at random times

increases the trading volume and thereby the reallocation speed with only little adverse effect

on the lit market liquidity.

Overall, this paper provides a theoretical model to analyze trading in lit markets and dark pools,

a set of empirical findings for power markets, and a set of empirical strategies for analyzing LOB

data. As such, we contribute to a growing literature on optimal liquidation, dark pools, workups,

and the empirics of LOBs.

As shown in Fleming et al. (2018), around 50% of the total volume traded in US-American

treasuries is exchanged in workup sessions. For corporate bonds and credit default swaps (CDS)

products, around 70% are exchanged over so-called matching sessions with a fixed price set by

an operator. In addition, around 15% of US equities are traded over dark pools. Companies like

BrokerTec are even offering randomly held workup sessions.

Starting with Pancs (2014), the literature has studied the effect of workups on trading strategies

theoretically. In particular, he focuses on expandable orders as one form of quantity negotiations.

He compares expandable orders to iceberg orders and identifies front-running and lack of trust

in an exchange as common problems that incentivize traders to participate in workups. He

proposes a "button mechanism" which allows traders to gradually submit their quantities to

avoid information leakage. This is structurally very similar to the size discovery mechanism

proposed in our work. However, our theoretical model is different, as we consider this problem

from the optimal liquidation perspective.
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Duffie and Zhu (2017) introduce a theoretical model of workups in the form of size discovery

sessions. Their model shows that under some conditions, a one-off size discovery session at

the beginning of the trading day is more efficient than a regular LOB market. This idea is

similar to holding an opening and closing auction-based mechanism in addition to regular LOB

trading (Friederich and Payne, 2007, Huang and Tsai, 2008). Their results, however, only hold

under common value assumption and uniform holding costs. In addition, they do not model

the relationship between participation in a workup session and trading in the lit market. The

drawback of workup sessions they identify is that traders anticipating the session have ample

incentives to wait for it, thereby withholding liquidity.

To avoid strategic waiting for the workup, the arrival of the session can be randomized in time,

an idea related to Antill and Duffie (2019) who introduce a size discovery session which arrives

at random times. In this model, traders submit an optimal demand function and an excess

inventory for the size discovery session. Both are then processed by the exchange. In contrast,

our model allows traders to decide between different modes of trading to reduce their unwanted

inventory. In addition, Antill and Duffie (2019) argue that size discovery harms overall welfare

by reducing liquidity in lit markets. While this result holds true in a batched auctions setting, as,

e.g., proposed by Budish et al. (2015), it is not clear how this effect influences a continuous LOB

market that we model in our paper. Du and Zhu (2017) introduce a related model, where traders

also submit demand schedules. They use the model to find an optimal frequency of a sequence

of double auctions so as to optimize the reallocation speed. While the speed of reallocation is

optimized in our model as well, Du and Zhu (2017) do not incorporate size discovery in their

model.13

Apart from modeling workups, the integration of limit orders into the optimal liquidation

strategy complicates the resulting analysis considerably. Parlour and Seppi (2008) provide an

overview of the main obstacles of modeling limit orders, such as deciding on price and quantity

simultaneously, the interplay of limit and market orders, and the stochasticity of order fills. We

address this problem in our model by introducing mark-ups above the mid-price as the decision

variable and modeling the filled limit order quantity via a probability distribution representing

current market liquidity.
13Speed of reallocation plays a role in the empirical literature, too. Riordan and Storkenmaier (2012) find that
exchanges offering higher speeds of trading and lower latencies attract liquidity. This supports the idea of
reallocation speed being an important metric for traders.
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We also contribute to the literature on optimal liquidation modeling by integrating limit orders,

market orders, and size discovery sessions into one model. Foucault et al. (2005) model the

optimal choice of orders assuming symmetric information and sequentially arriving traders. They

do not account for strategic choice between market and limit orders but introduce different levels

of waiting costs as one of the drivers of the liquidation decision, a property also used in our

model. Roşu (2009) propose a similar model but allow sequentially arriving traders to modify

already submitted limit orders. In a more recent work, Roşu (2020) studies a setting with both,

market and limit orders in a continuous dynamic model. His focus, however, is on information

asymmetry among traders, while we focus on the optimal liquidation, assuming traders follow

the same liquidation strategy. Alfonsi et al. (2010) solve an optimal execution problem for a

LOB market with an arbitrary shape of the order book. Similarly, Obizhaeva and Wang (2013)

and Siu et al. (2019) introduce a detailed, discrete-time model of a limit order book and find

that an optimal limit-order strategy mainly depends on the resilience of the order book. The

shape of the order book does not play a role in our theoretical model, as we directly impose

a distribution of liquidity. Cartea and Jaimungal (2015) introduce a continuous-time model of

the optimal liquidation problem with limit and market orders. Their model, however, does not

account for dark pools.14

In addition to the optimal liquidation literature, other theoretical models consider optimal order

routing. This literature relates to our model, as size discovery sessions are typically a dark

pool mechanism, with dark pools often operating independently of the lit exchange. Cont and

Kukanov (2017) formulate a model with multiple trading venues and solve an optimal order

routing problem. Traders face an order placement problem after they have decided on an optimal

liquidation schedule, that we derive in our model. Therefore, order placement can be seen as an

implementation of the liquidation schedule. Similarly, Kratz and Schöneborn (2018) deal with

dark pools as a separate venue and optimize the order routing decision. While they incorporate

adverse selection in their model, they do not account for market orders.

Apart from order routing, optimal order placement is another related problem. As Guéant et al.

(2012) argue, finding an optimal trading strategy and actually implementing it on the market
14Two notable parallel modeling approaches of the optimal liquidation problem are based on game theory and
zero-intelligence models. Sannikov et al. (2016) present an alternative, game-theoretic modeling approach.
They model the interactions between traders with private information and asymmetric players. An interesting
parallel take on this problem is found in the zero intelligence literature assuming random behavior by traders.
Some properties such as increased market order placement when spreads are narrow and increased limit order
placement when spreads are wide can be derived under no strategic assumptions on traders’ behavior (Farmer
et al., 2005, Foucault, 2010).
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are two separate problems. This decoupling of optimal liquidation and the implementation of

the trading strategy requires traders to employ various techniques in order to make the two

strategies reflect each other closely. Most notably, this is why iceberg orders are widely used in

continuous markets. There is abundant evidence that these decrease allocative efficiency (Frey

and Sandås, 2017). We provide empirical evidence that by augmenting the trading mechanism

with a workup session, regulators and exchanges can increase reallocation speed and thereby

allocative efficiency.

Our result that traders have an incentive to split up liquidity between lit markets and dark pools

is largely supported by the empirical literature. Extant empirical works such as Degryse et al.

(2015) find that dark pools have a negative impact on the market depth, as traders withdraw

their volume from continuous exchanges because of their preference for fixed prices. This, in turn,

leads to wider bid-ask spreads on these exchanges and overall less liquidity. Similarly, Johann

et al. (2019) find that the impact of size discovery is largely negative, decreasing the liquidity

on exchange markets. Nimalendran and Ray (2014) study equity markets to show that the price

impact worsens when introducing "unlit" markets. Additional evidence from Hatheway et al.

(2017) and Farley et al. (2018) points to negative consequences of unlit markets, in particular,

order flow segmentation and decreased overall liquidity in each sub-market. Evidence pertaining

to non-equity markets is scarce. There is some limited evidence on the efficiency of price discovery

mechanisms in fixed income markets, as found in Brandt et al. (2007) and Putnin, š (2013). These,

however, make no connection between the price discovery and the value added of size discovery in

these markets. Apart from efficiency, there are ample studies on the adverse effects of dark pools

pertaining to market manipulation. Mittal (2008) finds that information leakage and information

asymmetry are two decisive reasons why dark pools might be harming the market. Last, there

is also some experimental evidence on the effects of hiding liquidity in limit order markets. Last,

Bloomfield et al. (2015) find that while allowing traders to hide their true position via iceberg

orders or dark pool orders influences their strategy, the market outcomes resulting from such

mechanisms remain largely unchanged, with price discovery and liquidity flow stabilizing around

the same levels. Our empirical findings suggest that there is indeed a negative liquidity effect

in the LOB market augmented by workups. However, this negative effect is offset by an overall

faster reallocation speed.

The remainder of this paper is organized as follows. Section 3.2, presents our market model and

the decision problem of the trader. In Section 3.3, we solve the resulting optimal control problem
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and derive the properties of the optimal solution. We also present numerical simulations and

intuition on comparative statics. In section 3.4 we apply our results to a real LOB dataset and

test our model in practice. Section 3.5 concludes.

3.2 Model

We model a continuous double auction market with size discovery sessions. We build on the

foundation of the classical Almgren-Chriss market model (Almgren and Chriss, 2001) and extend

it to include workup sessions held at a price generated by the price discovery process through

continuous trading. We allow traders to place market orders, limit orders, and participate in

workup sessions. We draw from models by Duffie and Zhu (2017), Antill and Duffie (2019) and

consider the fundamental trade-off between a costly delay in liquidation and the price impact

of immediate liquidation. The volume to be liquidated on the market is considered unwanted

inventory in our model. We introduce random mechanism components for the fulfillment of limit

orders and the liquidity process in the workup session. In an extension to our model, we add

order flow (Cartea and Jaimungal, 2016) to account for strategies followed by other (competing)

traders. We start by laying out the key components of our model.

3.2.1 Market

Assume a market with one security, traded at mid-prices Pt which follow a stochastic process.15

In the following, we consider the case of arithmetic Brownian motion with drift as our mid-price

process. The time is continuous in our model. The beginning of the trading session is denoted

by t0, and the session lasts until T .

Similar to Du and Zhu (2017), we assume that traders aim to liquidate a non-trivially sized

portion of their portfolio. The portion is supposed to be non-trivial in the sense that it can cause

substantial adverse price effects when liquidated at once. The associated inventory process is

denoted by Zt. The trader aims at reaching his target inventory z∗ by the end of the trading

session: ZT = z∗. Without loss of generality, we assume z∗ = 0 and Zt > 0, such that the

trader aims to eliminate the entire unwanted position by the end of the trading period and acts

as a net seller. We do not explicitly forbid the seller to buy shares in our model, i.e., we do not
15We use capital letters for stochastic processes, and we use small letters for a particular value of that process in
time.
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introduce any constraints to our model here. Our results do not depend on the market side, as

both are treated symmetrically.

At each point in time prior to the end of the trading session, a trader holds an unwanted

allocation, Zt > 0. Each trader seeks to liquidate such that his utility is maximized. This is

equivalent to finding a trading strategy St maximizing the utility of the trader. The utility

function is typically chosen to reflect both, the current state of the inventory and the disutility

of too high inventory at the end of the planning period. The strategy St consists of three distinct

decisions (controls) a trader can make over time.

The first part is placing a market order at a rate m ≡ (mt)0≤t≤T . Intuitively, this is the number

of shares the trader is continuously trying to liquidate via market orders.

The second part is placing a limit order with a mark-up of δt above the current mid-price and

a size of l(δt) = lt, denoted by δ ≡ (δt)0≤t≤T . We introduce l(δt), because the control for limit

orders is stated in terms of price mark-up and not in terms of quantity. The function l(δt) maps

the chosen mark-up to a quantity posted at that mark-up. In our basic model (Section 3.2), we

set l(δt) = a, meaning that the trader always aims to liquidate a shares at once. In our model

extensions, we set l(δt) = 1 for analytical tractability.

Third, traders can choose to participate in a workup session with the posted inventory denoted

by w ≡ (wt)0≤t≤T . The total trading activity in terms of shares submitted for transaction at

time t can thus be described as:

St = mt + lt + wt, (3.1)

and we introduce u ≡ {m, δ, w} as a set of all controls.16 Note that the fraction of lt actually

executed depends on a probability measure we introduce below.

In addition, we define the set of all admissible strategies:

At =

{
St :

∫ T

t
S2
τdτ <∞

}
, (3.2)

that is we assume that all strategies in A are self-financing and F-measurable with filtration F

defined in Section 3.2.5. We further assume that m and w are bounded from above and δ from

below. The self-financing property, the square integrability, and the boundedness are standard
16We distinguish between δ as control variable and l(δ) as the amount of shares actually posted to the market
with a mark-up of δ.
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assumptions ensuring regularity of optimal controls and are used in the proof of the optimality

of the solution. We refer to Federico et al. (2010) for a detailed discussion of these properties.

The utility-maximizing strategy can be visualized as a path between z0 and z∗ = 0 through

time. Note that we find the optimal strategy using a dynamic programming approach, meaning

that we find optimal controls as a function of the current state. This means that the optimal

path is only known and can only be plotted ex-post. Figure 3.1 depicts the intuition behind this

idea.

Figure 3.1: Set of ex-post liquidation paths through time, which liquidate the initial inventory z0. Note that
these paths can only be plotted ex-post, as they are dynamically generated by the optimal liquidation policy.

3.2.2 Price Process

In our basic model (Section 3.2), the share mid-price P ≡ (Pt)0≤t≤T , is determined from an

initial condition, P0 = P and follows:

dPt = σdWt, (3.3)

where Wt is the standard Brownian motion. This is the most basic assumption on the share

price process, as known from the classic Merton problem (Zhu and Ma, 2018). We make this

choice of the process, because it substantially simplifies the closed-form solution of our basic

model.
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In our model extension (Section 3.3.3), we let the price process be influenced by the aggregate

rate of trading of all market participants. We choose the "mean-field" formulation similar to

Cartea and Jaimungal (2016). Mean-field refers to the aggregate of the actions of other market

participants, faced by the trader.

Given some linear permanent impact (slope) parameter, b ≥ 0, and (mid-price) volatility pa-

rameter, σ ≥ 0, the mean-field mid-price evolves according to:

dPt = b(µt −mt)dt+ σdWt, (3.4)

where µt is the aggregate rate of trading of all market participants, mt is the trader’s rate of

market orders, and Wt is the standard Brownian motion. The permanent impact b is defined

net of a trader’s own market order rate.

3.2.3 Trading Mechanism

Traders face inventory costs of η for holding unwanted inventory at every point in time t with

Zt 6= z∗. We assume this cost to be equal for all traders and to reflect effects such as holding

costs, portfolio (mis)allocation costs, and similar cost components.

When placing a market order, the trader faces a temporary price impact κ > 0, which is

proportional to the rate mt and has no permanent effect. Note that only the aggregate of

market orders has a permanent price impact b > 0 as described above. The linear temporary

price impact is a standard assumption ensuring no-arbitrage property (Huberman and Stanzl,

2004). We refer to Curato et al. (2017) for a detailed discussion on temporary and linear price

impacts.

In addition, we assume the limit order to have no permanent influence on the price process, as

it is filled by a market order which "walks the book". To account for execution uncertainty, we

impose a probability on the limit order being filled:

P[fill|δ] =
2(Pmax − δ)

P 2
max

=: Pδ, (3.5)
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where Pmax is defined as the maximum price at which an order can still be lifted. While in

theory, there is no upper bound on the price, Pmax can be calibrated empirically. We refer to

Section 3.4 for a detailed discussion.

For our extended model (Section 3.3.3), we assume a different parametrization: P[fill|δ] =

κ`(1 − κ`δ/2), with κ` > 0.17 This formulation ensures that the resulting first-order condition

is analytically tractable. For a more detailed discussion of this choice, we refer to Appendix

A.2.1.18

We further introduce a Poisson process, N δ with intensity λδ that, without loss of generality,

represents the arrival of buy orders.19 Not all buy orders are large enough to "walk the book"

until the posted limit sell order. We introduce N δ as the counter (controlled process) for orders

sufficiently large to reach the posted limit order. The probability of an increment in N δ resulting

in an increment of N δ is defined by (3.5). We refer to Guéant et al. (2012), Guo et al. (2016)

for a more elaborate model of optimal placement in limit order books.

3.2.4 Workup Session Mechanism

The workup sessions always take place at the current mid-price. We allow market participants

to submit parts of their undesired inventory to the workup session. We assume that volumes in

the size discovery session arrive according to an independent Poisson process, Nw ≡ (Nw
t )0≤t≤T ,

with intensity λw. We assume that the arrival intensity does not change throughout the trading

session and that traders can reasonably approximate it from past LOB data. Let Ξt be the

cumulative volume available for size discovery at any given time. We assume that wt � Ξt, i.e.,

the volume posted to the workup session can always be matched by the "other side of the book".

This assumption ensures the analytical tractability of our solution. An obvious extension here

would be to impose a probability distribution of the workup volume being filled. We refer to

Buti et al. (2017) for a detailed discussion on similar mechanisms.
17Note that Pmax ≡ 2

κ`
recovers the other parametrisation.

18Note that the probability of being filled at any (continuous) point in time can be interpreted as the probability
of a given (discrete) order being filled (binary).

19As we assume that the trader in our model is a net seller, his limit orders are matched against buy orders
arriving "on the other side of the book".
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3.2.5 Information Flow

All market-related information such as average price response, market volatility, cumulative

inventories, as well as intensities λδ and λw are publicly known. This assumption is similar

to the standard Almgren-Chriss model (Almgren and Chriss, 2001). All traders observe these

parameters directly and use them to derive their strategy St. We assume that our controls u are

predictable and càdlàg with respect to a filtration F ≡ (Ft)0≤t≤T , that is generated by P , N δ,

and Nw. These conditions ensure that the optimal strategy can be computed ahead of time and

that all required parameters are known.

3.2.6 Decision Problem of the Trader

The inventory held by a trader at every point in time evolves according to:

dZt = −mtdt− ltdN δ
t − wtdNw

t . (3.6)

Equation (3.6) shows that the change in inventory is influenced by three processes. mtdt describes

the change associated with market orders. ltdN
δ
t describes the change associated with limit

orders, as we integrate with respect to matching orders arriving on the other side of the book,

N δ
t . Last, wtdNw

t describes the change associated with posting volume to the workup session,

and it is counted with respect to the workup session’s volume, dNw
t . This inventory results in

the following cash process:

dCt = (Pt − κmt)mtdt+ (Pt + δt)ltdN
δ
t + wtPtdN

w
t . (3.7)

The cash process is a sum of three components: the first component is the volume traded via

market orders at the market price, reduced by the temporary (quadratic) price impact factor κ:

(Pt − κmt). The second component is the cashflow from limit orders, represented by the mid-

price Pt, adjusted by trader’s mark-up δt, and multiplied with the volume sold. Similarly, the

proceedings from the workup session are represented by the volume traded times the mid-price,

as we assume that there is no price impact there.
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We impose a quadratic penalty α ≥ 0 for liquidating the asset and a linear penalty η ≥ 0 for

holding the asset during the trading horizon [0, T ], as described in Section 3.2.3.

The performance criterion of a trader is to maximize the end-of-horizon utility under risk aver-

sion. This is a well-known performance criterion functional (Frei and Westray, 2015, Cartea and

Jaimungal, 2016):

Ju(t, C, P, Z) = Et,C,P,Z
[
Cτ + Zτ (Pτ − αZτ )− η

∫ τ

t
(Zs)

2ds

]
. (3.8)

The criterion is formulated for a stopping time τ as opposed to the end of the planning horizon

T . We define τ as the last point in time when Zt > 0. This accounts for cases where the

trader liquidates his position prematurely, before the end of the trading session. Intuitively,

the performance criterion, therefore, reflects the current cash position, the penalized inventory,

valued at the current price (minus the penalty), and a quadratic penalty on the entire path of

the inventory process until the end of the trading session.

3.3 Optimal Liquidation Strategies

We first define the value function based on the performance criterion as stated above:

Ju(t, C, P, Z) ≡ sup
u∈A

Ju(t, C, P, Z). (3.9)

Then we apply the dynamic programming principle to get the corresponding Hamilton-Jacobi-

Bellman (HJB) equation to find the optimal strategies.20

3.3.1 Derivation

We refer to Appendix A.2.2 for more details on this procedure.
20We refer to Appendix A.2.2 for details on the dynamic programming principle and the derivation based on
Øksendal and Sulem (2019).
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Using the value function (3.9), we solve:

0 = ∂tJ +
1

2
σ2∂PPJ − ηZ2 + sup

m
{[m(P − km)∂C −m∂Z ]J}

+ λδ sup
δ
{Pδ[J(t, C + l(P + δ), P, Z − l)− J ]}

+ λw sup
w
{[E[J(t, C + Pw,P, Z − w)− J ]]},

(3.10)

with the terminal condition at time T being J(T,C, P, Z) = C + Z(P − αZ). Note that each

sup-term represents the value of placing a market order, a limit order of a given depth and the

participation in the workup session.21 Next, we apply the ansatz J(t, C, P, Z) = C + ZP +

j(t, Z)22 and plug it into (3.10):

0 = ∂tj − ηZ2 + sup
m
{−κm2 −m∂Zj}

+ λδ sup
δ
{Pδ[l(δ)δ + j(t, z − l(δ))− j]}

+ λw sup
w
{E[j(t, Z − w)− j]},

(3.11)

with j(T,Z) = −αZ2.

We now derive the optimal rates of trading for each of the three trading possibilities: market

orders, limit orders and workup session participations. We solve each of the terms in (3.11) for

m, δ, w, respectively. We apply the ansatz:23

j(t, Z) = j0t + Zj1t + Z2j2t, (3.12)

and the terminal conditions are transformed to j0(T ) = 0, j1(T ) = 0 and j2(T ) = −α. With

these assumptions and ansatz24, we find the following optimal strategies:

m∗t =
−j1 − 2Zj2

2κ
, (3.13)

21Intuitively, the first sup-term represents the change in cash and in inventory resulting from market orders. The
second sup-term represents the change in value from placing a limit order with a quantity of l, and a mark-up
of δ and the third sup-term represents the effect of posting w shares to the workup session.

22The value function, J , is thus decomposed additively into the present (time t) cash from liquidation (in both lit
and dark markets and limit orders), C, plus the mid-price (P ) marked-to-market book value of the remaining
inventory (Z), ZP , plus the excess book value, j, given the present inventory.

23This is a standard ansatz applied to the performance criterion as defined in 3.8, compare e.g. Cartea and
Jaimungal (2016). The excess book value, j, is assumed quadratic in inventory, Z.

24In the following, we omit index t for functions j0, j1, j2 for better readability.
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δ∗t =
1

2

(
j1 − aj2 + 2j2Z + Pmax

)
, (3.14)

w∗t =
j1 + 2Zj2

2j2
. (3.15)

We refer to Appendix A.2.4 for a detailed derivation of these optimal controls. To find j0, j1, j2

we resubstitute optimal controls into (3.11) and collect all terms for (Z0, Z, Z2), i.e. we collect

all scalar terms, those dependent on Z linearly and those depending on Z quadratically. We

refer to Appendix A.2.5 for a detailed derivation. Solving this system of PIDEs (Appendix

A.2.6) yields the optimal strategies m∗, δ∗, w∗ in closed form. For better readability, we set

C1/2 = 1
2θ

(
λw ±

√
λ2
w + 4θη

)
, θ =

(
1
κ + λδ

a
P 2
max

)
, Θ = θ(C1 − C2) and Λ = α+C2

α+C1
. Then, the

optimal controls are given by:

m∗t =
−Z
κ

C2 − C1Λ exp(−Θ(T − t))
1− Λ exp(−Θ(T − t))

, (3.16)

δ∗t = Pmax −
(a

2
− Z

) C2 − C1Λ exp(−Θ(T − t))
1− Λ exp(−Θ(T − t))

, (3.17)

w∗t = Z. (3.18)

3.3.2 Properties of the Optimal Liquidation Strategy

We find that the optimal controls {m∗, δ∗, w∗} all depend on each other: the functional forms of

m∗ and δ∗ contain both, λδ and λw. Similarly, w∗ depends on m∗ and δ∗ over their respective

effects on the inventory process Zt. Next, the solutions remain defined for a wide range of

parameters. The only requirement we have to impose is λ2
w + 4θη ≥ 0. We did not explicitly

constrain the controls to be positive. However, due to the martingale property of the price

process, all three controls move downwards for a net seller.
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Rate of Market Orders

In general, we see that the market order rate is positive and accelerates as T comes closer and

the exp(−Θ(T − t)) term converges to 1. We refer to Appendix A.2.7 for the proof. The rate

declines with temporary price impact κ. We observe that ∂Θ
∂λw

> 0.25 This means that with an

increasing amount of orders posted to the workup session, the market orders are posted at a

lower rate at any point t < T . Similarly, we find that ∂Θ
∂λδ

> 0.26 With an increase in liquidity

λδ, the amount of buy orders large enough to walk the book until the posted limit sell order

increases. This leads to less aggressive bidding with market orders.

On the other hand, we find that the rate becomes faster, as the trader is increasingly penalizing

ZT 6= 0, i.e., becoming increasingly risk-averse with respect to unwanted inventory holdings by

the end of trading. Taking this to the limit, we find limα→∞ Λ = 1, therefore making the rate

m∗ the fastest.

Rate of Mark-ups in Limit Orders

The optimal mark-up for the limit order posted by the trader is expressed as Pmax, reduced by

a factor dependent on all other strategy parameters. Intuitively, this means that as long as the

outstanding inventory is larger than the amount traded in a limit order at once (a), the trader

keeps on posting limit orders. This follows from
(
a
2 − Z

) C2−C1Λ exp(−Θ(T−t))
1−Λ exp(−Θ(T−t)) < 0 as long as

a
2 < Z. This also means that at a point in time close to T , Pδ = 0 and therefore, no further

limit orders get executed. We refer to Appendix A.2.8 for the proof. This result means that

when the trader decides to post large-sized limit orders, he will stop trading these earlier. We

also observe that the orders are posted more aggressively for higher α, because limα→∞ Λ = 1

and therefore, the mark-ups are smaller.

Rate of Participation in Workups

The rate of participation in workups is maximized by the trader throughout the entire trading

session. This is to be expected, as workups present the least risky way to trade in our model.

25 ∂Θ
∂λw

= 2λw

√
λ2
w + 4η

(
1
κ

+ aλδ
Pmax

)
> 0.

26 ∂Θ
∂λδ

= 4aη
Pmax

√
λ2
w + 4η

(
1
κ

+ aλδ
Pmax

)
> 0.
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This result can be interpreted as the trader always trying to liquidate his residual inventory,

net of the market, and limit orders, in the workup session. We find that the rate of arrival of

liquidity in the workup session λw influences the rate m∗ with ∂m∗

∂λw
< 0. This is in line with the

theory that workups limit liquidity in the lit market. We numerically investigate the effect of

the intensity of the workup session in more detail in Section 3.3.4.

3.3.3 Model Extensions

In the preceding section, we derived the optimal strategy for a single trader acting in the market

as defined in Section 3.2. While such a model is suitable to derive qualitative properties of

optimal strategies, it does not reflect the interaction between traders. As there is no back-

loop between the optimal strategy S∗t and the price Pt, apart from the temporary price impact

κ, we cannot make any statement about a market equilibrium in that model. The extension

presented here draws from the mean-field model by Cartea and Jaimungal (2016) and allows us

to impose an order flow process on top of the price process. The order flow process represents

the cumulative effect of all other traders.

To model the market with order flow, we first introduce two additional, independent Poisson

processes L± ≡ (L±t )0≤t≤T , both with intensity λf .27 These processes represent the order flow

on both sides of the order book(bid/ask). We modify the drift process:

dµt = −κfµtdt+ ηf (dL+
t − dL

−
t ), (3.19)

with κf , ηf > 0 being volatility and decay parameters, respectively. As we take the difference

between L+
t and L−t , we are modelling the impact of the net order flow.

We also modify the counting process for the processing of limit orders, N δ
t :

N δ ≡ (N δ
t ≤ L+

t )0≤t≤T .

This ensures that the number of market buy orders, L+
t , which lift the limit sell order of the

agent/walk the sell side of the book to a price not exceeded by Pt + δt.
27In the following, we use the subscript f for all parameters related to order flow.
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With these modifications, the HJB Equation (3.8) is now given by:

J(t, C, P, µ, Z) ≡ Et,C,P,µ,Z

Cτ + Zτ (Pτ − αZτ )− ηf

τ∫
t

(Zu)2du

 . (3.20)

And the modified resulting HJB (previously 3.10) is given by:

0 = ∂tJ +
1

2
σ2∂PPJ + LµJ − ηfZ2 + sup

m
{[m(P − km)∂C + b(µ−m)∂P −m∂Z ]J}

+ λf sup
δ
{κ`(1− κ`δ/2)[J(t, C + P + δ, P, µ, Z − 1)− J ]}

+ λd sup
w
{[J(t, C + Pw,P, µ, Z − w)− J ]},

(3.21)

with the terminal condition, J(T,C, P, µ, Z) = C + Z(P − αZ).

The infinitesimal generator of the net order flow is given by:

LµJ = −κfµ∂µJ + λf [J(t, C, P, µ+ ηf , Z)− J ]

+ λf [J(t, C, P, µ− ηf , Z)− J ].
(3.22)

We refer to Appendix A.2.9 for the detailed derivation of optimal strategies {m∗, δ∗, w∗} resulting

from this model, as well as for definitions of all parameters. Here, we discuss how order flow

changes the strategies. These are given by:

m∗ = − 1

2κ

(
b− 2

β

ξ

)
Z

[
−1

2κ
(−λfκ2

`
¯̀
0(t, T ; 2γ) + bµ¯̀

1(T − t) + 2Zχ)

]
, (3.23)

δ∗ =
1

κ`
+

1

2

[
(1− 2Z)

β

ξ
− λfκ2

`
¯̀
0(t, T ; 2γ) + bµ¯̀

1(T − t) + (2Z − 1)χ

]
, (3.24)

w∗ = Z − 1

2

λfκ
2
`
¯̀
0(t, T ; 2γ)− bµ¯̀

1(T − t)
χ− β

ξ

. (3.25)

The optimal trading speed (3.23) differs from that of Almgren and Chriss (2001) by its three

leftmost summands. The addition of workups is captured by the second summand, ¯̀
1(T − t).

We see that ¯̀
1(T − t)

t→T−→ 0 continues to intuitively hold: order flows influence the optimal

trading speed of the trader less as maturity nears. Also, note that the share of inventory Z is

now adjusted by the term
(
b− 2βξ

)
which intuitively captures the trader’s temporary and the

market’s permanent price impacts, as well as the workup intensity and the probability of limit

orders being filled.
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Second, the optimal mark-up (3.24) is now scaled by the term β
ξ , accounting for price impacts,

and directly depends on the market order flow via ¯̀
1. Note that the rightmost term of (3.24)

corresponds to our base model, as χ has a similar functional form.

Third, we note that the optimal volume w∗ posted to the workup session is marked down by

a factor mostly influenced by the intensity of the net order flow λf and the permanent price

impact b faced by traders in the lit market.

Last, we find that ¯̀
0(t, T ;λd) has a complicated influence on all three controls (3.23)-(3.25),

when λf , κ` > 0. To study the statics of this influence, either a numerical approximation or an

assumption such as λd = nγ for n ∈ N.

In sum, we note that while the closed-form solution is still available for optimal controls with

order flow, numerical simulations might offer a more direct way to study the comparative statics.

3.3.4 Numerical Simulations

We simulate our main results on optimal liquidation strategies obtained in Section 3.3.1 to shed

light on their statics. As the model relies on randomness in prices, arrivals of workups, and fill

probabilities of limit orders, we are randomly sampling each of these processes. We then apply

a discretized solution of the main HJB Equation (3.10) to these samples to arrive at optimal

inventory curves.

We find that the solution of the liquidation strategy is very sensitive with respect to λδ and λw.

For the simulations in Figure 3.2, we set α = 10, η = 50, λδ = 2, λw = 5, κ = 1. The price process

is sampled using µ = 0.1, σ = 0.8. We sample random prices three times (Scenarios P1, P2, P3)

and generate three optimal inventory paths (Z1, Z2, Z3). We plot Z∗, the theoretical inventory

path along with the generated paths.

Under these parameters, we observe that the trade-off between α and η is such that the ZT > 0,

i.e., the trader is incentivized to limit the area under the allocation curve more than he is to

reach ZT = 0. We also observe that the strategies behave as expected with respect to the price

process Pt. In the case of Scenario 3 (Z3), the corresponding prices P3 are quite high during the

first half of the trading session, so it is optimal to liquidate the entire position before T . This

also demonstrates that the stopping time formulation works as expected when τ < T . Similarly,



3 Optimal Liquidation in Continuous Markets with Workups 52

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Time

In
v
e
n

to
ry

 p
ro

c
e
s
s
 Z

_
t

Inventory

Z*
Z1
Z2
Z3

(a) Simulated inventory processes over time
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(b) Simulated price processes over time

Figure 3.2: Side-by-side comparison of inventory and price processes, values over time. Part (a) of this figure
shows how the inventory develops over time for 3 different scenarios. The black line (Z∗) represents the theoretical
optimal inventory as derived from the model. Part (b) shows the corresponding samples of the price processes.

for relatively low prices with little drift, the incentive to liquidate is lower, and the trader reaches

a significantly higher residual inventory in Scenario Z1.

The optimal liquidation path behaves regularly with respect to both risk aversion parameters

α, η. When shifting more weight towards the terminal penalty, we observe that all paths converge

to 0 before T , regardless of the price process, as can be seen in Figure 3.3.

We find that in the practical application, a calibration to both, the market price process and

the own risk preferences is required to achieve sensible liquidation strategies.

In addition, we consider the empirical average slope of the process Zt as the speed of reallocation.

We find that decreasing λw by 1% decreases the speed of reallocation by 0.6%.
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Figure 3.3: this figure shows how the inventory develops over time for 3 different scenarios under high risk
aversion parameter α. The black line (Z1) represents the theoretical optimal inventory as derived from the
model.

3.4 Simulation with Order Book Data

We illustrate our results using real-world LOB data. Our aim is twofold: first, we want to show

how our optimal liquidation strategies perform compared to established benchmark strategies.

Second, we want to investigate the effect of randomized size-discovery sessions on a real LOB,

in particular in terms of the reallocation speed. While the actual effect of introducing a new

mechanism can only be tested in practice, our aim in this simulation is to approximate the actual

behavior of market participants as closely as possible.

3.4.1 Data

We employ LOB data from the NASDAQ Nordic exchange. Our dataset spans three years,

starting from 2018 and ending in 2020. We observe monthly, quarterly, and yearly power futures.

NASDAQ is offering two kinds of power futures: the regular power futures are settled mark-

to-market on a daily basis, while the deferred settlement futures (DS) are accumulating the

mark-to-market valuation during their trading period with a cash settlement coming on the

20th day of the following calendar month. This means that the current mark-to-market is

not realized throughout the whole trading period. For monthly contracts, only DS futures are

observed in our dataset. As these futures are not being traded on any other exchange, we observe

the complete available liquidity of these contracts, excluding possible OTC trading. This is a

rare setting in the LOB research literature (Gould et al., 2013).
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All futures are quoted in euro, and the contract base size is 1 MWh. Depending on the delivery

period, the number of delivery hours for monthly and quarterly contracts can vary between

672–745 hours and 2159–2209 hours, respectively.

We consider baseload contracts only, meaning that delivery takes place every hour of the day

(Nasdaq Nordic, contract specification, 2021).

We observe the orders submitted to each contract’s LOB as a series of event messages, ordered

in the sequence of their submission to the order book. In the case of NASDAQ, the series

is generated by the ITCH protocol (Nasdaq Nordic, ITCH protocol, 2021). We observe the

complete depth of the order book, i.e., limit orders placed at an arbitrary level, as well as every

change of the LOB on an event-by-event basis. This means that every alteration of the order

stack, including order submissions, order modifications, and cancelations, is observable. For a

summary of event messages as specified by the protocol, we refer to Table 3.1.

Table 3.1: ITCH protocol: message specifications

Field Values
Message type Add (A), Delete (D), Execute (E), Revise (R)
Timestamp Timestamp of order’s arrival, measured in nanoseconds
Order book ID Unique identifier of the order
Symbol Contract traded: ENOM*/ENOQ*/ENOY*
Quantity Volume to be transacted
Type Bid / ask order
Price Price of the order
Order attributes Market / Limit / Short sell / Override / Fill-or-kill

Notes: each message of the ITCH protocol consists of these fields. As NASDAQ Nordic is using one
protocol for very diverse contracts, not all values can be found in data on power futures. In particular,
orders like "fill-or-kill" are not found in our data. We refer to Nasdaq Nordic, ITCH protocol (2021) for
further details on the protocol.

3.4.2 Empirical Strategy and LOB Matching

Our empirical strategy for testing the theoretical results is split into two parts. First, we are

simulating regular LOB trading with market and limit orders while placing these using the

optimal strategy for market and limit orders from Section 3.2. In our notation, this is equivalent

to setting λw = 0. Second, we simulate a workup session by performing regular LOB matching

and combining it with workup-like matching for a subset of orders in the order book at random

times.
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In both cases, we evaluate each contract’s LOB separately, building up the order queue based on

bids and asks submitted only for that contract. The orders placed by each strategy are added

to the order book. We then match the order book based on both, the orders already present in

the dataset (other participants) and the orders that we placed.

We first introduce the necessary notation. The state of the order book is a set of all bids and asks

currently present in the queue. We denote the set of all bids active at time t as Bt = {bbid, qbid}t

and the set of all asks as At = {bask, qask}t. We denote the slope of the bid and ask side of the

order book by ψbid/ask where

qbid/ask ≈ β0 + ψbid/askbbid/ask, (3.26)

i.e., it is a linear approximation of the slope on both sides of the order book. We define ψbid/ask >

0, regardless of which side of the book is considered. We refer to Figure A.2 for a depiction of

this concept. As the sets At and Bt change with every tick, we can estimate (3.26) for every

tick. This yields an irregularly spaced time series of slopes, which we consider a proxy for the

liquidity of the contract over time. Figure 3.4 shows two exemplary time series of slopes.

We assume that the trader holds a "natural" net short position in power. This is usually the

case of a power producer. We set Z0 = 50 MWh for each day. This number is chosen such that

the temporary price impact of individual orders is significant enough (i.e., the order actually

walks the queue of limit orders by more than 1 step), but at the same time, the overall price

impact after placing the position is not significant. We measure this by comparing the average

bid-ask spread with and without placing an order. We allow for a deviation of up to 5% in

bid-ask spreads here.

Pmax is calibrated such that the deviation between the theoretical density of a limit order being

filled and the actual probability of it being filled (until the end of the session) is minimal. We

refer to Figure 3.5 for a graphical representation of this idea.

In addition, we set α = η = 10, the variance of the price process σt is estimated based on the

empirical intraday variance of the prices, computed on a rolling basis for the last 30 days.

The price impact of a market order is denoted by κ. It is estimated by placing market orders

(bask, qask) with a size ranging from 1MWh to 30MWh. Each placement yields a price impact
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Figure 3.4: empirical slopes of both sides of the order book for a monthly and a quarterly contract (slope over
time). Part (a) of this figure shows how the slopes of the monthly contract developed over time, part (b) shows
the same development for a quarterly contract. The shape of the curves is representative for other contracts.

Pt − P̃ > 0, as we are placing sell orders. Then,

Pt − P̃t = α0 + κqaskt , (3.27)

Figure 3.5: Calibrating Pmax to the actual order fill probability. The histogram represents the order probabilities
as measured by placing an order δ above the initial price of the day and waiting until the end of the day (T ) to
check if it gets filled. The blue line is the density of a triangle distribution fitted to the histogram.
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where P̃t is the actual price from the transaction, including the effect of "walking the book".

The price impact will be different depending on the time the market order is set. To account for

this effect, we sample the point in time when we set the order uniformly. When applying this

technique, we find an average κ of 0.45.

3.4.3 Continuous Trading

We assume that a trader wants to liquidate a positive position (Z0 > 0). We assume T to be

the end of one trading day. We select benchmark strategies to compare the optimized strategy

against. As benchmarks, we select established optimal liquidation strategies (Frei and Westray,

2015, Sağlam et al., 2019). These include the time-weighted average price (TWAP), the volume-

weighted average price (VWAP), and the liquidity-weighted average price (LWAP). We define

P̄ = 1
Z

∑
i PiZi with Zi being the volume traded in trade i and Z being the total volume.

Definition 3.1 (TWAP strategy). Let PTWAP [0, T ] = 1
T

∑N
k=1 Pkdk, where dk is the time during

which the price Pk remains constant. The time-weighted average price strategy is minimizing

|PTWAP − P̄ |.

Definition 3.2 (VWAP strategy). Let PVWAP [0, T ] = 1
V

∑N
k=1 Pkvk be the volume weighted

average price of a trading session, with V =
∑

k vk being the total volume and vk the total

volume transacted for price Pk. The volume-weighted average price strategy aims to minimize

|PVWAP − P̄ |.

Definition 3.3 (LWAP strategy). Let PLWAP [0, T ] = 1
L

∑N
k=1 Pklk be the liquidity weighted

average price of a trading session, with L being the sum of all slopes of the bid side, ψbid and

Pk the price of a trade. The liquidity-weighted average price strategy aims to trade N units

of the contract at an average price that corresponds to PLWAP as closely as possible, i.e. it is

minimizing |PLWAP − P̄ |.

We discretize time in 15-minute intervals to compute these strategies. We implement the TWAP

strategy by placing a quantity of Z
28 every 15 minutes of the trading day, trading over 7 hours (7

hours × four 15-minute-intervals = 28 intervals). The VWAP strategy is implemented by taking

the volume profile of the preceding day as a proxy for V and 15-minute average volumes of the

day before as a proxy for vk. We place trades proportional to each 15 minutes volume’s share

of the cumulative volume of the day before. For the LWAP strategy, we assume the slope ψbid
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from the day before is a proxy for L. We place a quantity of Z lk
L every 15 minutes, where lk is

the average of all slopes belonging to this 15 minutes interval.

3.4.4 Continuous Trading with Workup Sessions

For this simulation, instead of taking the perspective of a trader liquidating a position, we

consider the perspective of the exchange settling orders arriving in the order book. We consider

order book matching with and without a randomized workup session.

We measure the impact of the workup session arriving with an intensity λw in terms of volume

transacted per time, average price, price volatility, and average liquidity represented by the

bid-ask spread. These are the typical metrics observed by market participants and represent

measures of the favourableness of market conditions.

To simulate participation in the workup session by orders recorded in our LOB, we make some

assumptions. We know from our model in Section 3.3.3 that the likelihood that a trader partic-

ipates in the workup session depends on the execution risk of his limit orders, the time pressure

he is facing, and the volume of the order. To account for these factors, we make the following

assumptions:

Assumption 1. At any given point in time, t ∈ [0, T ], top γwu% of open orders in terms of

volume always participate in the workup session. These are assumed to be traders facing the

largest potential market impact.

Assumption 2. The likelihood of participation in a workup session for any limit order in the

book increases by 1/7 for each hour after 09:00, until 6/7 for the last trading hour of the day.

Assumption 3. The execution risk for natural sellers is higher than for natural buyers. All else

equal, an open limit order to sell participates in the workup session with a probability of 1 and

a limit order to buy with a probability of buywu = 0.9.

Assumption 4. The workup session arrival intensity λ28 is calibrated such that, on average, at

least one session takes place every hour, i.e., we set λ = 1, and we sample inter-arrival time at

the beginning of the trading day from the exp(λ)-distribution.
28Note that this is conceptually a different λ, i.e., not λw.
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In sum, our assumptions ensure that participation in a workup session is sufficiently high. We

need these assumptions, because it is not clear that in a Nash equilibrium, all traders would

participate in workup sessions.

3.4.5 Results

Continuous trading without workups

In this section, we report the results of applying the optimal strategy from Section 3.3 to the

LOB. We find that the optimal liquidation strategy S∗t achieves prices and price volatilities very

similar to those achieved by the LWAP strategy. This is to be expected, as the optimization

problem (3.10) is optimizing the speed of liquidation vs. the costs of liquidation. As it takes

the price impact explicitly into account, its results are similar to trading during the most liquid

times, which is, in turn, similar to weighting the volume traded by the current expected price

impact. In addition, we find that the deviation between volume-weighted and liquidity-weighted

prices can be substantial. A possible interpretation here is that traders transacting large volumes

do not always do so when market liquidity is optimal. Alternatively, the fact that large volumes

are being transacted could be the reason that the market liquidity is not optimal. In both cases,

it is evident that a liquidity-oriented strategy can lower the variance of prices while reducing

adverse effects in settlement prices.
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Table 3.2: Continuous trading without workups: market metrics

TWAP VWAP LWAP S∗t

Avg.
σ

Avg.
σ

Avg.
σ

Avg.
σprice price price price

2018
Monthly 45.59 9.88 46.15 10.18 47.39 11.11 47.14 9.80
Quarterly 38.80 9.44 38.78 10.01 39.05 10.87 39.02 9.15
Yearly 34.90 5.80 34.25 6.28 35.00 6.00 35.79 8.96

2019
Monthly 42.13 6.55 43.22 6.73 42.77 6.98 42.07 6.26
Quarterly 36.55 6.61 37.61 6.72 37.26 7.01 37.88 6.80
Yearly 30.85 3.81 32.16 4.02 31.07 4.54 31.00 3.98

2020
Monthly 21.10 12.90 23.15 13.71 23.02 12.85 23.16 11.50
Quarterly 29.65 7.07 28.03 7.74 30.02 8.01 31.07 7.15
Yearly 29.80 2.95 29.78 2.87 30.16 2.55 30.65 2.70

Notes: All metrics are averaged over the entire lifetime of a contract. We cluster all contracts by
their type and average over all contracts of the same type. The months August and September 2019
contain missing observations and are not considered in this sample.

Continuous trading with workups

We report our results in terms of average volume transacted, average price, volatility, and bid-ask

spread. Average volume refers to the volume average in MWh transacted per 1 hour of trading

during the trading session, averaged over all contracts in our sample. We consider this a measure

of allocative efficiency. Average prices indicate how much a workup session influences the price

process. Price volatility is the average intra-hourly volatility of the price. From the perspective

of market participants with physical positions in power markets, this is a measure of risk. Last,

the bid-ask spread is taken as a measure of liquidity.

We find that workup sessions positively influence the transacted volume with an increase in the

transacted volume of up to 16%. The effect is especially pronounced for monthly contracts.

This result follows directly from the fact that we are matching more limit orders at any point

in time. The impact on the average price is insignificant, meaning that neither the demand nor

the supply side pays for the speedup in reallocation by getting a significantly higher (or lower)

price. We see, however, that the prices are slightly increasing. This is most likely explained by

the ranking of liquidity on the bid and the ask side. We find that for most contracts, the ask
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Table 3.3: Continuous trading with workups: market metrics

Trading mechanisms

Metric CT WU 1 WU 2 WU3 WU 4

Monthly Avg. volume 43.01 45.20 45.35 45.02 49.95
Avg. price 34.25 34.98 34.50 35.01 34.30

σ 9.95 9.84 9.85 9.11 9.15
BAS 0.27 0.35 0.49 0.47 0.43

Quarterly Avg. volume 58.20 66.28 66.33 65.01 66.98
Avg. price 35.09 35.01 35.12 35.59 34.72

σ 7.95 7.99 7.18 7.24 7.63
BAS 0.22 0.30 0.34 0.31 0.35

Yearly Avg. volume 46.01 51.15 51.47 51.99 51.85
Avg. price 31.74 31.89 31.58 31.77 32.12

σ 4.20 4.34 4.11 4.30 4.35
BAS 0.15 0.20 0.21 0.25 0.23

buywu – 0.90 0.90 0.95 1.00
γwu – 0.05 0.10 0.10 0.10

Notes: All metrics are averaged over the entire lifetime of a contract. σ represents price volatility as
described above. We cluster all contracts by their type and average over all contracts of the same
type. The months August and September 2019 contain missing observations and are taken out of our
test.

side exhibits flatter slopes, meaning that the ask side is less price sensitive. This asymmetry

between the bid and the ask-side liquidity is a commonly observed phenomenon (Cenesizoglu

and Grass, 2018, Sensoy, 2019). For that reason, the amount of participants in a workup session

for any given moment is higher on the bid side. This, in turn, might be driving the prices up. We

observe a slight decrease in volatility, which is to be expected because market participants are

transacting higher volumes in a workup session without influencing the price. Last, the average

bid-ask spreads increase, as workup sessions take liquidity out of the market. This is again in

line with extant studies on the impact of dark pools (Buti et al., 2017). We found this effect to

not be very robust and to depend a lot on the parametrization of the workup session. In terms of

how fast an order book recovers to the old state of liquidity after a workup session, we consider

again the slopes of the bid and ask side and check how fast these revert to their old levels after a

size-discovery session. Figure 3.6 displays an exemplary development of ψbid. We find that the

recovery in slopes is observable, but the slopes typically do not recover to their old, pre-workup

level.



3 Optimal Liquidation in Continuous Markets with Workups 62

0.8604

0.8608

0.8612

0.8616

9 12 15 17

time [hours]

s
lo

p
e

Slopes

bid wu
bid

Figure 3.6: ψbid development over time for the trading session on 27th of December, 2019. The effect of the
workup session can be seen in the difference between the two slope time series. Overall, the workup sessions bring
up the price sensitivity of the bid side of the order book. Towards the end of the session, workups stabilize the
liquidity. This can be explained by the majority of orders already being filled.

3.5 Conclusion

We have introduced a market model which combines important features of the optimal liquidation

problem, such as continuous time execution, various order types, size discovery sessions, risk

aversion, temporary and permanent price impacts, and order flow.

We have used this model to show that workup sessions speed up the reallocation, at the expense

of reducing liquidity supplied to the market via limit orders. On the other hand, we have

found that traders following the optimal liquidation strategy reduce their market orders, thereby

consuming less liquidity. In a numerical setting, we have illustrated that the inventory paths

generated by our model are effective in liquidating the undesired inventory when parametrized

with the right risk preference. Empirically, we have shown that following the optimal strategy

yields less variance in settlement prices. We have also argued that introducing a random workup

to an existing LOB can speed up the reallocation.

Nevertheless, practical issues arise when adapting such a mechanism: First, traders’ strategies

are extremely sensitive with respect to the random volume arriving in a workup session. Second,

price impact and liquidity calculations become significantly more complex, resulting in higher

complexity in product pricing and risk management. Third, price discovery might be impaired.

On the other hand, adopting such a regime would potentially result in the reunification of

continuous markets and OTC trading in dark pools, thus bringing the overall liquidity available

on the markets up. It is a classical result that higher liquidity results in more efficient allocations.
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The reporting of corporate insiders’ trading (Directors’ Dealings, DD) is a cornerstone of reg-

ulatory efforts to foster market efficiency. However, little is known about its effectiveness. We

investigate regulatory effectiveness based on an event study methodology, adjusted to our pur-

poses. We employ recent data on DD from Germany, the UK, and the USA. We argue that

the DD regulations are not as effective as shown in previous studies, especially in the case of

the UK and the USA. Our findings suggest that an indicator effect is achieved at the expense

of fairness. Further, we find that trade volume, insider level, and publication period of DD

influence regulation effectiveness. In addition, we provide empirical evidence that the regulatory

framework is poorly enforced. Based on these insights, we derive policy implications.

29Author contributions: This essay is based on a joint paper with co-authors. My contribution was the design of
the empirical strategy, the empirical work and the draft of major parts of the paper.
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4.1 Introduction

Company directors, officers, and other employees are insiders enjoying the possibility to trade

company’s stocks. This gives them an informational advantage over other market participants,

as they might have access to private knowledge about the state of their company. This poses a

problem, because insiders utilize this advantage to achieve excess returns of up to five percent

over 20 days after the trade, as shown by numerous studies (Seyhun, 1986, Lakonishok and Lee,

2001, Friederich et al., 2002, Hillier and Marshall, 2002, Gregory et al., 2009, Dymke, 2011).

This calls for regulatory measures to control insiders’ trading30 via disclosure. The reasoning

is that if insiders disclose their positions, the information becomes public and can be priced in.

However, the exact implementation of the disclosure regime poses a challenge. On the one hand,

insiders fulfill an important signaling role when conducting their trades. Disclosing these too far

in advance would potentially harm insiders and reduce their incentives to trade.31 On the other

hand, fairness of market outcomes is an important aim, too. If the insiders are not obliged to

disclose their trades, they are more likely to reach excess returns. An effective disclosure policy

has to balance the aim of signaling (indicator effect) with the aim of fairness.

The ability to measure the signaling effect (in the following referred to as the indicator effect)

and the fairness is a key prerequisite for effective regulation. A common statistical approach

to measure the effect of insiders’ trades are event studies (Corrado, 1989, MacKinlay, 1997).

Event studies aim to measure the excess return induced by the trade compared to a "normal",

counterfactual return. These methods, however, exhibit drawbacks when it comes to assessing

insider trading. The first issue is the correct compounding of returns. As McLean (2012) shows,

compounding can introduce a substantial bias in event studies. Not compounding, however,

introduces a (downward) bias, too. Second, the studies mostly consider the impact of the event

by taking only the pre-event or only the post-event time into account. In the case of insiders’

trades, both the pre-event time and the post-event time play a role.32 Last, and more generally,

the event studies typically establish a link between the event and the excess return, but not

between regulations in a given country and their effect on the fulfillment of regulatory aims.
30The corporate officers’ transactions in the scope of disclosure regulation (hereinafter: "insiders’ tradings")
should not be confused with the illegal trading of public shares based on material, nonpublic information about
the company (hereinafter: "insider trading").

31For example, a large sale transaction by an insider could result in a downward spiral, as other market participants
react to this signal.

32Pre-event time plays a role in judging the optimality of the point in time when an insider decides to trade.
Post-event time plays a role in judging how insiders’ position develops.
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In our study, we address these two issues: the balance of two opposing regulatory aims, and the

drawbacks of event studies and corresponding statistical methods. In particular, we conduct a

comparative study over three of the largest financial markets (Germany, UK, USA) and derive

the magnitude of excess returns of insiders (indicator effect), as well as their imitators (fairness).

Our aim is to enable regulators to make a sensible choice of appropriate measures based on these

findings. In addition, we are the first, to our knowledge, to consider excess returns between

the day the trade takes place, and the day it is disclosed. We use this measure to determine

actual returns achieved by corporate officers between the trade and its disclosure. This provides

an important metric for regulators aiming to choose the right policy on the maximum duration

between the trade and its disclosure.

We address the statistical drawbacks by providing the following methodological enhancements to

the current event study approach: first, we explicitly model compounding returns of each trade.

Apart from receiving a better estimator for the holding positions’ excess performance, this helps

to ameliorate the issue of rebalancing bias as described by Lyon et al. (1999), McLean (2012).

Second, we introduce a timing estimator. The timing estimator takes the pre-event returns, and

the post-event returns into account and measures the optimality of a given day to perform a

DD transaction. For example, a well-timed purchase transaction takes place after a downward

trend, right before it shifts to an upward trend. For inference and hypothesis testing, we employ

both, parametric and more recent non-parametric statistical tests, as introduced by Kolari and

Pynnonen (2011). We moreover perform a set of binary regressions to establish a link between

trade volume, insider level in the company, publication period, and abnormal returns.

Our data comprises Directors’ Dealings(DD) from July 2005 to September 2015 as reported to

the corresponding authorities in Germany, the UK, and the USA. The dataset is compiled by

2iQ, an external data provider specializing in the reporting of insiders’ trades. The information

on insiders’ trades is enriched with metadata on companies and insiders.

We show that abnormal returns of insiders vary between 0.4% and 0.8% in all three financial

markets. We also find that German insiders achieve particularly good timing when trading their

stock: their transactions take place at ex-post optimal points in time more often. Our results

also demonstrate that a longer time until the publication of the DD transaction is negatively

affecting fairness in the German market. In contrast, for the UK and the USA markets, our

results show that more fairness is promoted by a longer publication period. Lastly, the insider-

level variable is positively correlated with excess returns. In particular, executive-level insiders
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of German companies earn an additional 1.2% excess return within ten days after the transaction

as opposed to their non-executive-level colleagues. This applies similarly to UK and USA with

0.7% and 1.7%, accordingly. We, therefore, suggest regulating the ability to purchase own stock,

especially for executive insiders, in order to achieve a higher level of fairness.

We relate to the extant literature on DD disclosure in several ways. Empirical studies by Hillier

and Marshall (2002), Bajo and Petracci (2006), Dymke (2011), Lee et al. (2011), King et al.

(2015), Hodgson et al. (2020) find that insiders are able to generate excess returns. This is in

line with our results. However, these studies focus on just one market, whereas we study excess

returns among different financial markets with different disclosure regulations.

Dardas and Güttler (2011) investigate European stock markets and compare the magnitude of

the announcement effect (indicator effect) among them. Similar to our study, they link these

returns to the properties of the transaction, such as insider level or volume. However, they do

not compute the returns actually achieved by insiders and the link between these returns and

the returns of their imitators.

Some studies find that insiders do not achieve abnormal returns. Friederich et al. (2002) study

abnormal returns on the London Stock Exchange. They find that after adjusting for transaction

costs, the abnormal returns become insignificant. Dickgiesser and Kaserer (2010) come to a

similar conclusion for the German market. We address the problem of transaction costs by only

considering the most liquid securities in each of the markets. These securities exhibit lower

bid-ask spreads, thereby reducing bias in our estimates.

We also relate to studies distinguishing between excess returns of insiders when buying or selling

shares. Lakonishok and Lee (2001), Tebroke and Wollin (2005), Dardas and Güttler (2011), King

et al. (2015) find that the sale of shares generates lower to non-existent excess return, as opposed

to share purchases. In our study, the highest excess returns are also generated by purchases of

shares. However, we still find a significant effect for parts of sales transactions, too.

Gregory et al. (2009), Knewtson et al. (2010) study the timing of trades by corporate insiders.

They show that insiders are contrarian investors in the sense that they exhibit a particularly

good timing for their transactions. In our study, we introduce a metric for timing consistent

with abnormal returns and confirm the hypothesis that insiders exhibit particularly good timing

when placing their trades compared to the general market.
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We also relate to the information hierarchy hypothesis established by Seyhun (1986) who pro-

vided empirical evidence that in the US market, insiders with higher ranks, such as chairmen,

achieve higher returns. Our analysis confirms these results, but also relates excess returns to

other properties of the DD transaction, such as volume and the period between publication and

the trade.

Goncharov et al. (2013) study the effects of governance on excess returns of insiders. We relate

to this discussion by showing the role of regulatory enforcement on the effectiveness of disclosure

policies.

The remainder of the article is organized as follows: in Section 4.2, we lay out the theoretical

foundations for DD regulation and introduce the main purposes of DD regulation. In Section

4.3 we derive statistical properties of CAAR and apply this new metric to our data. We also

introduce a timing indicator. In Section 4.4, we present our results. Section 4.5 discusses

regulatory shortcomings which might explain our results and derive policy implications. Section

4.6 concludes.

4.2 Director’s Dealings Regulation

4.2.1 Regulatory Purposes

DD regulation primarily focuses on the promotion of fairness and efficiency through transparency.

There are three main regulatory aims. First, the prevention and detection of prohibited insider

trading; second, facilitation of an indicator effect for other market participants (mostly non-

insiders) through disclosure of DD transactions; third, promotion of fairness by limiting the

excess returns that insiders can generate in comparison to other market participants via timely

disclosure.33 We concentrate on the indicator effect and fairness goals.

Indicator Effect

It is widely agreed that DD transactions are an indicator for the development of a company, as

well as for the development of related financial instruments.34 DD disclosure informs the markets
33For regulatory goals of securities regulation as defined by the International Organization of Securities Commis-
sions, we refer to International Organization of Securities Commissions (2010).

34Regulation (EU) No 596/2014 on market abuse (hereinafter: MAR).
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about sales or purchases made by a corporate officer. Assuming that the officer is rationally

motivated, the disclosed transaction could give other market participants an indication about

the issuer’s wellbeing in the future. By disclosing information relevant for the valuation of shares,

the information gap between insiders and other potential investors narrows.

However, DD transactions are not always a reliable indicator. Insiders can have various reasons

for buying or selling shares. In particular, the sale of shares can be triggered by sudden cash-flow

requirements or by tax considerations. Another trigger can be liquidity needs or diversification

purposes (Dymke and Walter, 2008), as well as strategic behaviour (Rahman et al., 2020).

Another possible explanation for the systematic difference of reliability of the indicator effect

between buy and sell transactions argued about is the higher litigation risk associated with DD

sales. If an insider buys stock withholding private information (i.e., the stock is undervalued),

the harm caused by this transaction is limited, since it represents only a missed opportunity to

generate returns. In contrast, if an insider sells stock withholding private information (i.e., the

stock is overvalued), then investors holding a long position in the stock are actually harmed, as

the stock prices might fall, thus providing grounds for litigation (Alldredge and Cicero, 2015).

But despite these uncertainties, the indicator effect is not just a theoretical deliberation. In the

US, specialized service providers have been established to focus on the collection and analysis

of DD disclosure statements, achieving excess returns of three to five percent by trading on the

DD disclosure information. (Fried, 1997)

Fairness

Fairness is one of the cornerstones of the integrity of securities markets. The aim is to create

a "level playing field" for market participants. The theory of market integrity stipulates that

more investors are willing to invest in fair markets (Seligman et al., 2011) and that markets

without equally informed market participants will deteriorate in the long run (Akerlof, 1978).

The overall economic effect of strengthened market fairness is increased investor confidence,

resulting in a higher demand for financial instruments, and ultimately in lower capital costs.

The most common way of promoting confidence is transparency (MAR, Rec. 58).

The idea that insiders’ superior knowledge allows them to generate excess returns is a stark

contradiction to the idea of a level playing field. This tension is the main reason why – despite

theoretical deliberations about the merits of permitting insider trading in general (Manne, 1966)
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– insider trading is prohibited. Consequently, DD regulation also seeks to promote fairness by

limiting the excess returns that corporate officers can generate. Even the mere perception of

unfairness can tamper with the trust of market participants in a well-functioning market. For

this reason, regulation should not just try to limit unfairness, but also try to avoid the appearance

of unfairness.35

4.2.2 Regulatory Approaches

To achieve the main goals of promoting fairness and the indicator effect, regulators employ three

distinct approaches.

First, DD transactions can be disclosed after they have been executed (so-called "post-trading

disclosure"). This "disclose or abstain" approach relies on the idea of market efficiency in its

semi-strong form (Fama et al., 1969). 36 The challenge for policymakers here is to find the

right time period until disclosure. For example, if the disclosure occurs one week after the

transaction, the indicator effect and perceived market fairness will be low. This means that

only timely disclosure can be an effective regulatory tool (Fleischer, 2002, Weiler and Tollkühn,

2002). As of today, the vast majority of DD regulation relies on post-trading disclosure.37

Second, regulation could require disclosure before a transaction is executed (Fried, 1997).38

Pre-trading disclosure can achieve a higher level of fairness, because corporate officers can only

generate low excess returns. Similar to post-trading disclosure, the disclosure period needs to

be kept short. If the corporate officer needed to inform the markets too much in advance, the

market price could adapt before the transaction is carried out, and the insider would suffer

financial losses.

A third option and ultima ratio is to prohibit DD transactions entirely. While this option

maximizes the fairness effect, it harms the indicator effect. It would also harm young companies,
35See, e.g., U.K. Model Code, Introduction, Listing Rule 9, Annex 1: "... ensure that persons discharging man-
agerial responsibilities do not abuse, and do not place themselves under suspicion of abusing, inside information
that they may be thought to have...".

36Popular examples are sec 16(a) of the US Securities Exchange Act of 1934, the new Art. 19 MAR, as well as
its predecessor, Art. 6(4) of the Market Abuse Directive (No. 2003/6/EC, hereinafter "MAD").

37The only exceptions are Rule 9.2.8 (UK) and Rule 144 (US). The first comprises a duty to request clearance
to deal from the company and to complete the deal within two trading days of clearance being received. The
second rule requires pre-trading registration with the SEC for the sale of certain restricted securities.

38A system resembling pre-trading disclosure can be found in Rule 144 regarding the Securities Act of 1933 (17
C.F.R § 230.144, 1994), which requires pre-trading registration with the SEC for the sale of certain restricted
securities (Coffee Jr et al., 2015).
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which are often owned by the directors, who are usually also the founders. Temporary bans

represent a less severe alternative.39 One commonly used example is the restricted period of

30 days before the quarterly reporting date.40 To sum up, the trade-off between the indicator

effect and the fairness can be found by the right combination of disclosure periods (i.e., periods

between the transaction and its disclosure), as well as prohibition of insiders’ trades around

critical dates.

4.3 Data and Empirical Strategy

We consider the excess returns of the corporate officer and of the imitating trader (imitator).

The excess returns of the imitator constitute the indicator effect, and the excess returns of the

corporate officer constitute the fairness effect. This allows us to measure fairness and indication

separately.

Our focus lies on three important capital markets: Germany, the UK, and the USA. The basis

of our empirical analysis is a dataset obtained by 2iQ Research, a data provider that gathers

commercial information from various sources such as supervisory authorities, stock exchanges,

and economic information services. 2iQ Research continuously checks the quality of the data

acquired. We cross-check the German and the US part of the data with the data obtained

directly from regulatory authorities.41 It should be mentioned that especially the regulatory

data sources can suffer from poor data quality.42

We filter the dataset to only include securities of the German, British, and the US-American

benchmark indices (DAX, FTSE100, DJIA). We delete all trades that took place before July 1,

2005, the date the Market Abuse Directive (MAD) was to be implemented by the EU member

states (Ventoruzzo, 2015). These deletions result in a sample of trades in most liquid stocks that

took place in a stable regulatory environment.
39These bans are also called "closed periods" or "restricted periods".
40As imposed, for example, in the UK Listing Rule 9.2.8. Similar regulations can be found in Listing Rules 12.9
– 12.12 of the Australian Securities Exchange.

41In the case of Germany, we received an extract of DD transactions directly from BaFin.
42A prominent example for the poor data quality is the so-called Satterwhite stunt: 61 invented trades by the
fictitious person "Johnny Earl Satterwhite" were published in the American EDGAR system in the year 2011.
The reported shares on Microsoft alone would have been 1.500 times those of Bill Gates, and the number of
shares would have exceeded the existing amount of Microsoft shares by a factor of 118.
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Overall, our data set consists of DD transactions exercised from July 2005 to September 2015

for German, the UK, and the US-American companies with high market capitalization. For an

overview of the sample and sample statistics, we refer to Table 4.1.

Table 4.1: Characteristics of the obtained 2iQ dataset.

Germany UK USA

Number/% of trans. types N [%] N [%] N [%]

Buy 1,070 41 % 3,482 13 % 865 1 %
Sell 973 37 % 11,128 41 % 43,113 74 %
Award 91 3 % 8,047 30 % 6,923 12 %
Subscription 22 1 % 394 1 % 0 0 %
Derivative 457 17 % 4,128 15 % 7,391 13 %

Transaction volume [TEUR] µ Mdn µ Mdn µ Mdn

Buy 2,989 57 22,658 41 1,156 81
Sell 6,481 648 6,790 227 878 101
Award
Subscription 23,411 58 6,161 23 0 0
Derivative 873 197 405 81 894 275

Notes: All DD transactions from July 2005 until September 2015 are reported for securities belonging
to DAX, FTSE100 and DJIA indices. N is the number of transactions in the sample. The transaction
types are classified as follows: Buy means a share purchase on the open capital market, sell means a
share disposal on the open capital market, award means a share-compensation for employees, subscrip-
tion means subscribing to a capital increase, derivative means the exercise of derivatives (e.g. options,
share rights, conversion rights, employee stock options etc.), the transaction volume for each trade is
calculated as the product of the actually paid price and the number of shares traded. µ denotes the
volume’s mean and Mdn its median. The skewness of the distribution of the transaction volumes is
due to transactions with exceptionally high volumes as traded by corporate officers via private fonds
or family offices.

We observe a relatively small percentage of sell transactions in Germany in comparison to the UK

and the USA. An explanation could be that in Germany, stock-based compensation is less com-

mon than in the Anglo-Saxon financial markets (Kaserer and Moldenhauer, 2008). Surprisingly

(but in line with the aforementioned explanation), in Germany, the most common transaction

type is a share purchase. In contrast, the US-American stock purchases account for only one

percent of reported DD transactions.43

We now introduce definitions used throughout our study.
43A possible reason is a duty for handing over short-swing profits according to Sec. 16(b) Securities Exchange
Act from 1934, requiring the insider to keep the stock for at least six months if profits are to be retained. A
plausible consequence would be a lower attractiveness level of own stock purchases.



4 Fairness vs. Welfare: Disclosure in Financial Markets 72

Event An event is defined as either the insider’s transaction or the imitator’s transaction.

The imitator’s transaction event takes place the moment the insider’s transaction is being made

public, as the imitation takes place by a trader observing the publication of the DD transaction

and placing the same trade.

Estimation period and event window The estimation period is used to compute expected

(regular) market returns. These are then used to derive abnormal returns. The estimation period

usually starts up to 110 days prior to the event and ends at the latest 20 trading days before the

event to avoid interference with pre-event price movements (Freyaldenhoven et al., 2019). This

results in an estimation window of 90 days. The abnormal returns are then measured between

two points in time, t1, t2, chosen within the event window, see Figure 4.1.

t0

[ Estimation period ) [ event window ]

t2t1 t20t-20t-110

Figure 4.1: Timeline for the event analysis (days relative to event days). Estimation period comprises the days
t−110 to t−21 and the event window comprises the days t−20 to t20.

Expected Market Return In line with MacKinlay (1997), expected returns of asset i are

defined as

E[Ri,t] = αi + βiRm,t, (4.1)

with Rm,t being the market return, as observed using an appropriate market index at time t. We

chose CDAX for the German sample, FTSE ALL-SHARE for the UK sample and S&P500 for the

US sample. The choice of the market indices is based on both, size and relevance considerations.

We estimate the parameters αi and βi by performing an ordinary least squares (OLS) regression

between the returns’ time series of security i and its corresponding index. For OLS estimation,

we select a 90 days estimation period as described above. This procedure is repeated for each

considered event of every security i.
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Abnormal Return The abnormal return of asset i at time t (trading day relative to event

day) is the difference between actual return and normal (or expected) return, i.e.

ARi,t = Ri,t − E[Ri,t]. (4.2)

Average Abnormal Return (AAR) The AAR for trades j ∈ N at time t (relative to the

event day) is defined as

AARt =
1

N

N∑
j=1

ARj,t. (4.3)

Cumulative Average Abnormal Return (CAAR) We define

CAAR[t1, t2] =
1

N

N∑
j=1

(
t2∏
t=t1

(1 +ARj,t)− 1

)
, (4.4)

i.e. we compute the compounded part of abnormal return caused by the event for every trade

j and then average over all j’s. This expression is commonly approximated by a pure sum over

ARj,t in the literature (McLean, 2012). We find that the difference between the approximation

and the true value (considering compounding) can be substantial in several cases. Based on our

sample, the difference for some trades accounted for up to 16% for CAAR[1, 10]. We thus choose

to compound only the abnormal part of investors’ returns. This is equivalent to measuring the

direct effect of excess returns by virtually buying the abnormal return derivative and holding it.

Thereby, we consider compounding of abnormal returns, but we do not distort our excess return

measure with compounded normal returns.44

Timing Estimator (TE) We define the timing estimator as

TE[t] = (CAAR[1, t]− CAAR[(−t+ 1), 0]) ∗ 100. (4.5)

The timing estimator is an additional measure based on the CAAR. This estimator relates

the excess returns before and after the regarded event. This relation serves as a measure of

the impact of the event on the returns. By considering CAAR before and after the event, the

underlying timing in relation to the market can be measured. Timing refers to the extent to
44We refer to Table A.1 in the appendix for an exemplary comparison between BHAR, CAR w/o compounding
and CAR.
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which a given transaction meets the peak (or trough) of the share price in relation to the market

movement, i.e., good timing means to buy at the lowest point in a given window or to sell at

the highest. The interpretation is as follows: High TE for a purchase transaction indicates high

negative abnormal return before the purchase and high positive return after the purchase. If the

slope of the CAAR does not change within a symmetric event window, TE is equal to zero. The

observations of insiders’ purchase transactions usually show negative abnormal returns before

the purchase trade and positive abnormal returns after the purchase trade. The opposite applies

to sell transactions. The timing estimator is usually positive for purchases and negative for sales.

Last, we refer to the Appendix A.3.1 for definitions of statistical tests employed in this study

and their properties.

4.4 Hypotheses and Results

4.4.1 Hypotheses

We introduce two groups of hypotheses. The first group of hypotheses tests the overall effective-

ness of regulation. We measure the effectiveness using CAAR and TE as metrics.

The second group of hypotheses evaluates the effect of DD transactions’ properties (publication

period, transaction volume, insider level) on regulation effectiveness. We utilize CAAR as our

metric and combine it with binary regression modeling.

Regulatory Effectiveness

We differentiate between two main regulatory goals and reflect them as sets of hypotheses.

Hypotheses belonging to the set H1 reflect the goal of fairness, hypotheses from the set H2

reflect the goal of indication.

To test the regulatory goal of fairness, we use the insiders’ trading day as the event day and

compute excess returns and timing indicators.

To test for the indicator effect, we perform the same procedure, but choose the date of disclosure

as the event day, thereby measuring the excess return of an imitator.
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H1 Insiders do not achieve abnormal returns or particularly good timing with their trades, i.e.,

the goal of fairness is achieved, as no unfair advantage of DD transactions is present.

H2 Imitators of insiders’ DD transactions achieve abnormal returns or particularly good timing,

i.e., the goal of indication is achieved.

Note that H1 and H2 are stated with respect to the desired regulatory outcome. For H1 no

excess returns is the desired outcome, while for H2, it is the opposite: imitators achieving excess

returns means that the indicator effect is working. The hypotheses H1 and H2 are further

divided into sub-hypotheses pertaining to transaction type, as summarized in Table 4.2.

Table 4.2: Hypotheses and corresponding sub-hypotheses for DD regulation effectiveness

Hypothesis H1 (fairness) H2 (indication)

Event trading day publication day

Trans. type buy sell buy sell

Sub-hypoth. H1.1 H1.3 H1.2 H1.4 H2.1 H2.3 H2.2 H2.4

Accept if CAAR ≤
0

TE ≤ 0 CAAR ≥
0

TE ≥ 0 CAAR >
0

TE > 0 CAAR <
0

TE < 0

Confirmation of any sub-hypotheses indicates that the main hypotheses might be true. For

example, H1.1 is true, if CAAR is not positive for buy transactions on a trading day, and

similarly, H1.2 is true, if CAAR is not negative for sell transactions on trading day.

DD Properties and their Effect on Regulatory Effectiveness

The second group of our hypotheses is employed to investigate whether certain properties of DD

transactions affect the achievement of fairness and indication goals. We test these hypotheses

using binary regression. The hypotheses are formulated along two dimensions: The first dimen-

sion represents regulatory goals, fairness, and indication. The second dimension represents the

properties of a particular DD transaction: publication period, transaction volume, and insider

level. These are the properties we observe in our dataset. To summarize, our framework is set

up according to Table 4.3.
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Table 4.3: Hypotheses for possible determinants of DD regulation effectiveness

Properties of DD transactions

Regulatory goal Pub. period (a) sign Volume (b) sign Insider level (c) sign

Fairness (1) H1a + H1b + H1c +
Indication (2) H2a – H2b – H2c –

Notes: The sign of the binary regression coefficient needed to affirm the hypothesis is given in the
columns denoted with "sign".

Each of the six hypotheses is verified using CAAR as a metric for abnormal returns. Note that

each of the hypotheses can be evaluated for both, buy and sell transactions. However, due to

inherent differences between buy and sell transactions, we only consider buy transactions to

verify our hypotheses. As explained above, sell transactions might have a different motivation

than just trading the stock.

Publication Period Hypotheses A shorter publication period, meaning the time between

an insider trade and its publication, reduces the information asymmetry of insiders and outsiders

with respect to time. H1a is an indicator of fairness, and H2a represents the indicator effect.45

H1a CAAR is lower for insiders that trade in short publication periods.

H2a CAAR is higher for imitators of trades with short publication periods.

The variable Publication period is defined as:

Publication period =


1 , if publication period ≥ 2 days

0 , if publication period < 2 days.
(4.6)

Transaction Volume Hypotheses The second possible determinant for the DD regulation

effectiveness is the transaction volume. De minimis thresholds under which insiders are not

obliged to report their trades are mainly established for two reasons: first, small transactions

are of limited significance for market participants, and second, the surveillance of many small

transactions incurs disproportionate effort. We examine whether smaller transactions result in

more fairness (H1b) and whether smaller transactions trigger a higher indicator effect (H2b):
45We select two days as a threshold, because it subdivides our observations into two about equal groups.
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H1b CAAR is lower for low-volume insider trades.

H2b CAAR is higher for imitators of low-volume insider trades.

The variable Volume is defined as:

V olume =


1 , if transaction volume ≥ x0.25 quantile

0 , if transaction volume < x0.25 quantile.
(4.7)

The x0.25-quantile represents the upper bound of the bottom 25% of all DD buy transactions’

volumes on the corresponding market. We made this choice based on the distribution of volumes.

As most observations contain relatively small volumes, the 25% quantile allows distinguishing

between "regular", small transactions, and large purchases/sales. Our results are robust with

respect to this choice, in that slightly smaller and larger quantiles yield similar results.

Insider Level Hypotheses We test whether the goals of DD regulation are better achieved

for executive insiders’ trades or non-executive insiders’ trades (information hierarchy concept as

described in Seyhun (1986)). If the two hypotheses can be confirmed, the goals of fairness (H1c)

and indicator effect (H2c) are better achieved for trades of non-executive insiders than for trades

of executive insiders:

H1c CAAR is lower for non-executive insiders.

H2c CAAR is higher for imitators of non-executive insiders’ trades.

The variable Insider level is defined as:

Insider level =


1 , if trading corporate officer is an executive-level insider

0 , if trading corporate officer is not an executive-level insider.
(4.8)

4.4.2 Results on Fairness and Indication

Figures 4.2 and 4.3 present our main results on CAARs attained by insiders graphically. We

observe that within the event window, the curve progression is as follows: negative slope before

and positive slope after purchases, meaning insiders are contrarian investors. For sales, we find
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the opposite behavior, with less prominent slope changes. This is in line with the theoretical

reasons why purchases and sales differ, as presented in Section 4.1. In particular, sales transac-

tions can be motivated by other reasons than making profit. It also shows that insiders are able

to time the market entry better than an average investor.

Table 4.4 summarizes our results for the H1 hypothesis. We consider CAAR[1, 10], i.e., the

returns are measured between days 1 and 10 relative to the event day. The purchase transactions

of corporate officers of UK companies show the highest CAAR[1, 10] with 0.84%, similar to the

US-American ones with 0.89%. In contrast, German insiders achieve only 0.40%. These findings

indicate that insiders generate significant excess returns with their DD transactions. This applies

to all investigated markets. In terms of timing, we are able to confirm the Hypothesis H1.3

meaning that the timing of the buy transactions outperforms the market. For sales, we cannot

confirm or reject our hypothesis. While the Hypothesis H1.2 is significant statistically, the

economic significance here is much lower compared to H1.1, meaning that the outperformance

of insiders is more prominent for purchases.

Interestingly, we find that CAAR[1, Disclosure]46 is positive and significant for the US sales,

meaning US-American insiders miss excess returns within the time from their sell transaction

until its disclosure. This is a further indication for "other-than-return-motives" of DD sell trans-

actions. In addition, by calculating CAAR[1, Disclosure], we demonstrate that the insiders’

excess returns do not only exist due to the outsiders’ imitation of insiders, but are based on the

insiders’ private information. This applies to both, the UK and the US purchase transactions.

Table 4.5 summarizes our results on the performance of imitators (H2 ). Our findings here are

similar to those on the performance of insiders (H1 ).47 We find that the purchase transactions

of imitators of the US-American companies show the highest CAAR[1, 10] with 0.90%, similar

to the UK with 0.81%. In contrast, German insiders achieve only 0.23% and the result here is

not significant.

This clarifies that, considering timing and relative returns, an indicator effect correlates positively

with a lack of fairness through insiders’ timing and profit benefits. Therefore, the indicator effect
46We calculate and report CAAR[1, Disclosure] and CAAR[1, 10]. The latter metric is used to affirm or reject
the stated hypotheses, while the former one is employed to account for returns achieved until trade publication.
CAAR[1, Disclosure], therefore, serves as an additional direct proof of an existing unfairness for DD transac-
tions, because it reflects the excess return generated by corporate officers without the signaling effect of the
corresponding transaction.

47Note that H1 is stated negatively (absence of excess returns is a confirmation of H1 ), while H2 is stated
positively (excess returns are a confirmation of H2 ).
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Figure 4.2: Purchase transactions CAAR, with transaction day as event day.
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Figure 4.3: Sales transactions CAAR, with transaction day as event day.

requires insiders to outperform the market, and we confirm that the two regulatory goals oppose

each other.

In line with this observation, Figures 4.4 and 4.5 show that the change of the slope of the curves

is less sharp than for insiders and does not occur at t0, but slightly earlier around t−2. This

suggests that not the publication itself causes the price movements, but the value of information

that the corporate officers can materialize by trading their companies’ shares.48

We also consider the timing exhibited by corporate officers. As can be seen in Table 4.4, corporate

officers not only perform well but also do this by finding an optimal point in time for their trades,

showing that insiders and imitators are contrarian investors. The best timing is achieved for

German DD transactions as insiders have a TE[5] of 2.3. Intuitively, this means that there

is a clear, positive change in trend within five days before and after the event. The TE of
48See also the results for CAAR[1,Disclosure] in table 4.4).
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Table 4.4: Excess returns, timing estimators and hypotheses testing results for H1. In this table, we use the
2iQ data as described in Table 4.1.

CAAR TE Affirmation of hypotheses?

[−5, 0] [1,Disclosure] [1,10] [5] H1.1 H1.2 H1.3 H1.4

GER
Buy −2.16%∗∗∗′′′ −0.17% 0.40%∗∗∗′′′ 2.3 ∗∗∗+

no no no n/a
Sell 0.91%∗∗∗′′′ 0.05%′′′ −0.31%∗∗∗′′ −1.2 ∗∗∗

UK
Buy −0.92%∗∗∗′′′ 0.65%′′′ 0.89%∗∗∗′′′ 1.5 ∗∗∗+

no no no n/a
Sell 0.27%∗∗∗′′′ −0.02%′ −0.13%∗∗∗′′ −0.3 ∗∗∗

USA
Buy −0.65%∗∗∗′′′ 0.85%∗∗∗′′′ 0.84%∗∗∗′′′ 1.2 ∗∗∗+

no no no n/a
Sell 0.74%∗∗∗′′′ 0.35%∗∗∗′′′ −0.02%∗∗∗′′ −0.7 ∗∗∗

Notes: In this table, CAAR[t1, t2] is defined as in Section 4.3. We set the event date to the trading
day on which the DD transaction takes place (e.g. CAAR[−5, 0] stands for the period from 5 days
before the trade until the day of the trade). The CAAR[1,Disclosure] is the average of all CARs
from the day after the transaction until the corresponding disclosure day of that transaction. ∗∗∗/∗∗/∗
identify significant excess returns and timing estimators based on the 1%/5%/10%-level of the one-
tailed parametric t-test. ′′′/′′/′ identify the significant excess returns for the GRANK-test. +++/++/+

identify significant timing estimators on the 1%/5%/10%-level of the bootstrapped test as described
in the methodology section. The hypotheses are answered considering the CAAR[1,10] with the
GRANK-test and the TE[5] with the bootstrapped test. In the "Affirmation of hypotheses" block,
"n/a" stands for cases where we are not able to either affirm or reject the hypothesis.

imitators, on the other hand, is not statistically significant. The German DDs are followed in

timing performance by the UK and the US DD transactions.
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Figure 4.4: Purchase transactions CAAR, with publication day as event day.
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Figure 4.5: Sales transactions CAAR, with publication day as event day.

Table 4.5: Excess returns, timing estimators and hypotheses testing results for H2. In this table, we use the
2iQ data as described in Table 4.1.

CAAR TE Affirmation of hypotheses?

[−5, 0] [1, 10] [5] H2.1 H2.2 H2.3 H2.4

GER
Buy −1.57%∗∗∗′′′ 0.23%∗′ 1.4 ∗∗∗

yes yes n/a n/a
Sell 0.42%∗∗∗′′′ −0.25%∗′′′ −0.5 ∗∗∗

UK
Buy −0.94%∗∗∗′′′ 0.81%∗∗∗′′′ 1.4 ∗∗∗+

yes yes yes n/a
Sell 0.15%∗∗∗′′ −0.03%∗∗∗′′ −0.1 ∗∗∗

USA
Buy −0.67%∗∗∗′′′ 0.90%∗∗∗′′′ 1.0 ∗∗∗+

yes yes yes n/a
Sell 0.62%∗∗∗′′′ −0.17%∗∗∗′′′ −0.7 ∗∗∗

Notes: In this table, CAAR[t1, t2] is defined as in Section 4.3. We set the event date to the publication
day on which the DD transaction is disclosed (e.g., CAAR[−5, 0] stands for the period from 5 days
before the disclosure until the day of the disclosure). The CAAR[1,Disclosure] is the average of all
CAR from the day after the transaction until the particular disclosure day. ∗∗∗/∗∗/∗ identify significant
excess returns and timing estimators based on the 1%/5%/10%-level of the one-tailed parametric t-
test. ′′′/′′/′ identify the significant excess returns for the GRANK-test. +++/++/+ identify significant
timing estimators on the 1%/5%/10%-level of the bootstrapped test as described in the methodology
section. The hypotheses are answered considering the CAAR[1,10] with the GRANK-test and the
TE[5] with the bootstrapped test. In the "Affirmation of hypotheses" block, "n/a" stands for cases
where we are not able to either affirm or reject the hypothesis.
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4.4.3 Results on Properties of Transactions

We now turn to our results on DD properties and how these influence excess returns. We refer

to the Appendix A.3.3 for tables with complete regression results.

Our results for the possible determinants of excess returns and timing advantages indicate that

a longer time until the publication of the DD transaction is negatively affecting fairness in the

German market. In contrast, for the UK and the USA markets, our results show that fairness is

promoted by a longer publication period. Therefore, we obtain mixed results for the hypothesis

H1a and cannot establish a definitive link between the time to disclosure and excess returns.

This might be because the excess returns of corporate officers are mainly driven by the timing

of the trade itself, as opposed to the time until the trade’s disclosure.

Pertaining trade volume (H1b) as a determinant of excess returns, our results are mixed, too.

Smaller deals exhibit less fairness in Germany, while it is the other way round in the UK. For the

US-American market, there is no significant connection between trade volume and additional

excess returns.

Lastly, the insider level variable (H1c) is positively correlated with excess returns. In particular,

executive-level insiders of German companies earn an additional 1.2% excess return within ten

days after the transaction as opposed to their non-executive-level colleagues. This difference

becomes even more severe when considering CAAR[1, 20] as a dependant variable: within 20

days, executive-level insiders generate an additional return of 3.3% compared to non-executive-

level ones. The coefficients of the insider-level variable related to DD transactions of the USA and

the UK securities are also significant. In the case of the UK market, the economic significance

of the coefficient is not high.

Our analysis of the determinants of excess returns of imitators shows a similar picture. In terms

of publication period (H2a), traders imitating DD transactions tend to perform best by imitating

DDs with a shorter publication period. This applies in particular to DD transactions of the US

and UK companies. In Germany, the publication does not have a significant impact on imitators’

returns.

When considering the trade volume as a possible determinant of excess returns (H2b), the

results once again depend on the market: imitators of insiders’ transactions in the USA and the
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UK perform best by mimicking the trades with a higher transaction volume. In Germany, no

connection between trade volume and insiders’ imitators’ excess returns is observed.

For the insider level (H2c), our results show that the CAARs of imitators of executive-level DD

transactions of German and the US-American companies achieve significantly higher returns

as compared to the non-executive ones. The UK is an exception with no significant connec-

tion between insider-level and imitators’ performance here. In summary, transactions made by

executive insiders exhibit a particularly good indication.

4.5 Policy Suggestions

In this section, we give an overview of the implications of our findings for optimal regulation.

We also shed light on enforcement as a possible reason for differences in excess returns across

countries.

4.5.1 Proposed Changes in Regulations

First, our results suggest that only purchase DD transactions exhibit a strong effect in terms

of CAAR and in terms of market timing TE. The sale transactions, in general, provide less

valuable information to the market and do not generate the same excess returns for the corporate

officers. The fact that sell transactions do not allow for economically significant excess returns

of insiders and imitators question the necessity of reporting such trades.

Furthermore, we examined DD transactions’ properties as possible determinants for achieving

the regulatory goals. We found that a higher insider level leads to higher excess returns for

insiders and imitators. Our results indicate that if policymakers and regulators focus on fairness,

they should restrict DD transactions of executives in particular. In order to ensure an informed

market, the disclosure could take place at the time of the transaction (continuous disclosure).

The transaction volume as a possible determinant of fairness and indicator effect leads to con-

flicting statements. If the regulatory focus was on providing an indicator effect, the reporting

threshold for the UK and the US trades could be raised to achieve additional valuable information

for each DD on average.49

49This would imply a detrimental effect on fairness, especially for the UK trades.
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For the UK and the US market, we found that trades with a shorter publication period provide

better indication than trades with a longer publication period. These results do not apply to

Germany. This implies that if regulators choose a longer reporting period, the mitigation of the

lack of fairness by the indicator effect becomes weaker. Consequently, the delay between trade

and disclosure should be as small as possible to ensure a maximum indicator effect and possibly

complete mitigation of the lack of fairness. If the new EU regulatory requirement to disclose not

later than three trading days after the transaction (Art. 19(1) MAR) is enforced properly, this

would be a first step in the right direction.

4.5.2 Regulatory Effectiveness

We want to put our findings on excess returns into perspective by considering the enforcement

of disclosure policies, in this case, disclosure obligations by corporate insiders.

The lack of enforcement of the DD regime is a known issue (Maume and Kellner, 2017). There

is evidence that the lack of enforcement might be rendering otherwise effective policies useless

(Bhattacharya and Daouk, 2002, Beny, 2005, Bris, 2005). A good regulation regime that is not

enforced properly can even have worse consequences than a lack of regulation, as discussed, e.g.,

by Bhattacharya and Daouk (2009).

In the context of DD transactions, the offender (the corporate officer breaching the disclosure

obligation) benefits in two ways. First, the omission to disclose the transaction saves time and

money. Second, the offender retains an information advantage over the market participants who

comply with the disclosure obligation, allowing him to reap unfair rewards (excess returns).

Similar to illegal insider trading, breaches of DD obligations are considered victimless crimes

(Manne, 1984). As a result, there is hardly any private enforcement.

Data published by BaFin further supports our claim that disclosure policies are not properly

enforced.50 Table A.4 demonstrates that hardly any fines were imposed in the years 2005 to

2015. A higher number of fines can only be observed in 2006 and 2007, most likely relating to

investigations which had been opened between 2002 and 2004.
50Other major European regulators such as the French AMF or the Italian CONSOB do not disclose their actions
against DD regulation infringements at all.
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Second, even if fines were imposed, they were strikingly low. The average fine over the period

2005 to 2015 was 12,700 EUR (a fine of up to 100,000 EUR would have been possible).51

Third, the decreasing number of notifications is peculiar. Between 2005 and 2015, the number

of notifications dropped from 5,100 to 1,800. Of course, it is possible that officers simply did

not engage in DD transactions as often as they had done in the past. However, it is unclear

why this should be the case. Moreover, the number of equity trades in the regulated market of

Frankfurter Wertpapierbörse (FWB) significantly increased between 2005 and 2015, see Table

A.5. In light of this development, the decreasing number of notifications is even more peculiar.

To support this finding, we refer to Table A.6.

4.6 Conclusion

We argue that while DD regulation primarily seeks to promote fairness and market efficiency

via the indicator effect, these are two opposing goals. A sensible trade-off needs to be found

by selecting the right form of disclosure for DD transactions. In any case, promoting market

efficiency comes at the expense of fairness.

We provided extensions to the standard event study methodology by introducing a timing es-

timator, deriving its statistical properties, and considering compounding in the calculation of

excess returns. Applying our methodology, we showed that DD transactions provide valuable

information for the markets. We demonstrated that insiders achieve excess returns due to their

information advantage.

The US-American purchases showed the highest performance for insiders and their imitators,

with similar results for the UK and German trades. We affirmed the information hierarchy hy-

pothesis that a higher insider level leads to higher excess returns for insiders and their imitators.

Evaluating the effect of transaction volume and publication period on fairness and indicator

effect, we come to different results in the three analyzed markets. We question one-size-fits-all

approaches and suggest a less incremental approach towards DD regulation.
51For comparison: in September 2014 the US Securities and Exchange Commission (SEC) announced in a press
release that it had opened investigations against 34 companies and officers for alleged breaches of sec 16(a)
Securities Exchange Act. 33 of the alleged offenders agreed to settlements of 2.6m USD in total, resulting in
an average of approximately 80,000 USD per offender.
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We provided possible reasons for the existence of relatively high excess returns. The problem

of effective enforcement is often overlooked. Based on enforcement statistics provided by the

German BaFin, we illustrate that there is an obvious lack of enforcement in one of the EU’s

main capital markets. We conjecture that this is a potential reason for the persisting excess

returns generated by insiders. Shorter reporting periods and increased fine limits are important

steps towards a fairer and more efficient reporting regime. It may be popular among policymak-

ers to increase enforcement by increasing maximum sentences and fines because it is cost-free.

In contrast, increasing funding to enable the enforcement agencies to exercise their functions

properly is less popular.

To sum up, our results suggest a less incremental and more strongly enforced approach towards

DD transactions and plead for either a pre-trading disclosure or for an instantaneous reporting

mechanism, similar to continuous disclosure.



5 | Conclusion: Market Design and its

Implications

Traders, exchanges and regulators all aim to better understand market design and which impli-

cations it has on various aspects of market activity. For traders, this understanding is mainly

tied to the question of how to best implement their desired position in various markets under

uncertainty. Exchanges form a market themselves, competing for volume and traders. One of

the key competitive advantages in this market are mechanisms that attract traders or make

transactions more efficient. Regulators are pursuing different targets still, looking for ways to

increase welfare on both sides of the market and trying to avoid strategic behavior of market

participants, which harms producers or consumers. For regulators in electricity markets, these

questions are even more complex, as, on the one hand, electricity is the key commodity for a

functioning economy, and on the other hand, it bears an inherent complexity making the tech-

nical and the financial aspects of its delivery inextricable. This thesis sheds light on various

aspects of market design and how it affects these three parties. In this chapter, I provide an

overview of the key results and their implications.

In the second chapter of this thesis, I focus on measuring demand elasticity in electricity whole-

sale markets. My essay demonstrates how demand elasticity can be measured using instrument

variables in the presence of endogeneity concerns. Such concerns arise when the equilibrium

quantity is subject to simultaneous supply and demand shocks. This problem makes it dif-

ficult to correctly estimate demand elasticity, which is an important factor in a multitude of

electricity market applications, including fundamental market models, policy evaluations, and

optimal trading. I investigate how machine learning approaches (Bajari et al., 2015, Abadie

and Kasy, 2019) can be applied to improve elasticity estimates. In electricity markets, the true

submitted demand curves are known and can be used as a benchmark for model estimates.

87
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This provides a setting for comparing different estimators. In particular, I argue that, in the

presence of many and possibly unfit instruments, applying regularization in the first stage of

the estimation problem can help to select the right instrumental variables, thereby making the

estimates more precise. I demonstrate this effect empirically based on a dataset from the Eu-

ropean Energy Exchange (EEX) day-ahead market. I show how, over time, fuel prices become

less relevant as supply shifters, while renewable feed-in forecasts remain relevant throughout.

My results have several implications. First, they should be taken into account by researchers

designing econometric models with instrumental variables. Second, regulators interested in the

true demand elasticity of a market can apply these results to estimate it more precisely. Third,

market participants can design their pricing strategy based on these estimates.

Apart from measuring market outcomes, another key problem faced by exchanges and regula-

tors is designing market mechanisms. For traders, the problem is to optimally act within these

mechanisms. In the third chapter, I focus on workup sessions and, in particular, size discov-

ery sessions (Duffie and Zhu, 2017). Size discovery sessions represent a mechanism to address

strategic bid shading in continuous LOB markets. Strategic bidding can take place when traders

refrain from submitting their true quantities to the LOB market, fearing a price impact. As the

transaction price is frozen during a size discovery session, traders are incentivized to submit their

true quantities without fearing a price impact. However, evidence on the overall effect of size

discovery on market outcomes is mixed. Empirical studies argue that the introduction of size

discovery sessions incentivizes traders to reduce their positions posted to the continuous LOB

market, harming its liquidity. This, in turn, harms price discovery which requires up-to-date

market prices. Theoretically, the evidence on the effect of workups is scarce. Antill and Duffie

(2020) show that only pre-trading workups are effective. I extend this branch of research by

proposing an optimal liquidation model which captures the effects of workups, market orders,

and limit orders on the trader’s decision-making process. My results show that traders have

a high incentive to reduce the quantities sent to the LOB market and trade them in workups,

instead. This effect can be considered welfare-harming, as it impedes price discovery. In sim-

ulation studies, I find that, on the other hand, the reallocation speed increases when workups

are introduced. Faster reallocation can be considered welfare-enhancing, as holding unwanted

inventory is costly. I extend my study with an empirical application that further demonstrates

that workups can increase the transacted volume at the expanse of slightly worse average prices

for the less elastic part of the market. My results should be taken into account by traders
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designing optimal liquidation strategies, exchanges considering alternative trading mechanisms,

and regulators interested in improving market outcomes.

Apart from micro-structural adjustments, the efficiency of financial markets is also determined

by appropriate regulations that balance the interests of market participants. In the fourth essay,

I focus on disclosure as one such measure. I consider the disclosure of trades conducted by

company insiders trading companies’ stocks. In most financial markets, such trades have to be

disclosed either in advance or, more commonly, after the transaction took place. This regulation

promotes equal access to information, as company insiders might be in possession of privileged

knowledge of the company. Disclosure also fosters fairness, as insiders who disclose their trades

cannot, in theory, attain excess returns by utilizing privileged information. However, multiple

studies show that insiders achieve excess returns in practice (Bajo and Petracci, 2006, Goncharov

et al., 2013, Hodgson et al., 2020). In my essay, I concentrate on the German, the UK, and the

US-American financial markets and investigate the common features of excess returns attained

by insiders and their imitators, relating these to the security regulation goals. I find that in

all three markets, insiders achieve excess returns and that these are correlated with insider’s

position within the company, the period between trade and its publication, and the trade’s

volume. In addition, I identify post-trade disclosure and lack of enforcement as the main causes

of the ineffectiveness of current regulations. My findings equip regulators with insights on how

the current disclosure rules can be improved to foster overall welfare.



Appendix

A.1 Demand Elasticity Estimation

A.1.1 Submitted Curve Sampling

As mentioned in Section 2.4, market participants are permitted to submit bids in the range

from -500 EUR/MWh to 3,000 EUR/MWh. The functional form of demand changes drastically

across this range of minimum and maximum bid caps. During our sample period, prices remain

below 220 EUR/MWh. We apply the log-log specification in Equation (2.5) only to the part

of the demand curve between the minimum and the maximum observed equilibrium price for

the corresponding month. Hence if an hourly demand curve falls in the week, say, 28, we only

estimate the elasticity for this curve for all observed equilibrium prices p∗ ∈ [max(p∗),min(p∗)],

where max and min refer to the minimum and maximum prices observed in July. Figure A.1

depicts a selected demand curve for the entire price range (upper graph) and the corresponding

relevant part of the demand that we seek to estimate (lower graph). The demand curve relates to

hour 10 on July 11, 2019. The maximum equilibrium price in July was observed at p∗max = 74.06

EUR/MWh, while the minimum price was observed at p∗min = 26.72 EUR/MWh.
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(a) Full aggregated curve of submitted bids.
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(b) Relevant sector of the curve (seen in part (a) as dashed red lines).

Figure A.1: Quantity (y-axis) over price(x-axis) of a complete demand curve for a representative hour, along with
a zoomed-in version of the relevant part of the curve. Hour 10 of July 11th, 2019, is chosen as the representative
hour. Note that the whole price range from -500 EUR/MWh to 3,000 EUR/MWh is observed in the bids.

A.2 Optimal Liquidation in Continuous Markets with Workups

A.2.1 Choice of the Limit Order Fill Probability

This choice of linear/triangular distribution is primarily made to ensure analytical tractability. A

quadratic (or higher-degree) (in δ) polynomial distribution implies a cubic (or higher-degree) (in

Z) polynomial in the δ-controlled part of the HJB Equation 3.10. This would require a higher

degree ansatz for Z and complicate the solution significantly. An exponential distribution is

possible, but would require an approximation of the exp function, e.g. via exp(−x) ≈ 1 − x to
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find the optimal control δ. A uniform distribution like δ ∼ U(0, δ̄) would also yield a tractable

solution but is considered less realistic than the assumed linear one.

A.2.2 Solving the HJB Equation

In this section, we provide a formal background for the choice of the HJB for the jump diffusion

process as found in both specifications of the theoretical market model. We follow the verification

Theorem 5.1 from Øksendal and Sulem (2019) and show that all conditions of the verification

theorem are fulfilled in our model.

First, we embed our problem into the framework established in Øksendal and Sulem (2019),

following the notation of the theorem. We set k = ` = 4, m = 1, and p = 3. We set S = R3 ×

(0,∞) to capture that Z is positive. Further, we set T = [0, T ], and collect the four state variables

in a vector, Y (u)(t) = [Ct, Pt, µt, Zt]
>. Similarly, we organize the drift terms, b(Y (t), u(t)) =

[(Pt − κmt)mt, b(µt −mt),−κfµt,−mt]
>, diffusion volatility terms, σ(Y (t), u(t)) = [0, σ, 0, 0]>,

compensated Poisson jump measure terms, N̄(dt,dζ) = m(dζ) � [dL+
t , dL

−
t , dN

w
t , dN

δ
t ]> and

Wiener process, B(t) = Wt. Further, we set the control space, U = R3, the objective functional,

J (u)(y) = Ju(t, C, P, µ, Z), stopping time, τS = τ , (inventory) holding penalty, f(Y (t), u(t)) =

−ηf
τ

∫ τ
t (Zs)

2ds, (cash-stock) portfolio value, g(Y (τS)) = Cτ + Zτ (Pτ − αZτ ), value function,

Φ(y) = J(t, C, P, µ, Z), and jump volatility:

γ(Y (t−), u(t−), ζ) =


0 0 Ptwt Pt + δt

0 0 0 0

η −η 0 0

0 0 − wt −1


In addition to embedding our problem into the framework in Øksendal and Sulem (2019), some of

the conditions of the Theorem 5.1 require an explicit formulation of the value function. Recalling

all ansätze assumed in the foregoing development, the explicit value function is given by:

J(t, C, P, µ, Z) = C + ZP +m0(t) + µm1(t) + µ2m2(t) + Z[`0(t) + µ`1(t)] + Z2j2(t), (A.1)

subject to the terminal conditions, 0 = m0(T ) = m1(T ) = m2(T ).
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Noting that Lµj0 = 2(η2λf − µ2κf )m2 − κfµm1, by the same procedure as in Appendix A.2.9,

we find m1,2 as given by:

m1(t) =
1

4

T∫
t

e− κf (s−t)
(

2

[
1

κ
− λd
j2(s)

+ λf
κ2
`

2

]
`0(s)`1(s)− λfκ`[2 + κ`j2(s)]`1(s)

)
ds,

m2(t) =
1

4

T∫
t

e−2κf (s−t)
[

1

k
− λd
j2(s)

+ λf
κ2
`

2

]
`21(s)ds.

(A.2)

And further, m0 is given by:

m0(t) =
1

4

T∫
t

(
8η2λfm2(s) +

[
1

κ
− λd
j2(s)

+ λf
κ2
`

2

]
`20(s)

+λfκ`[2 + κ`j2(s)]

[
1

κ`
− `0(s) +

j2(s)

2

])
ds.

(A.3)

In the following, we use these implicit definitions of m0,m1,m2 to prove the conditions of

Theorem 5.1 of Øksendal and Sulem (2019), as an explicit calculation requires a restriction of

the model parameters and is not necessary.

With these preparations, we now proceed to verify the conditions of Theorem 5.1 from Øksendal

and Sulem (2019).

First, note that the optimal controls (3.23)-(3.25) are determined to satisfy the HJB (3.21), and

constrained to lie in the admissible set of strategies, A, thereby fulfilling condition (v) of the

Theorem 5.1 of Øksendal and Sulem (2019). The remaining conditions are addressed as follows:

(i) Note that the image under the Lévy generator, Au, of the value function, φ(y) ≡ J(t, Ct, Pt, µt, Zt),

is given by the right-hand side of the HJB Equation (3.21) without the term −ηfZ2 ≡
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f(y, u). Using (A.1), we get:52

∂th︷ ︸︸ ︷
m′0 + µm′1 + µ2m′2 + Z(`′0 + µ`′1) + Z2j′2 +

Lµj︷ ︸︸ ︷
2(η2λf − µ2κf )m2 − κfµm1 − Zκfµ`1 +bµZ

+ sup
m
{−κm2 −m(bZ + `0 + µ`1 + 2Zj2)}

+ λf sup
δ
{ κ`(1− κ`δ/2)(δ + j2 − `0 − µ`1 − 2Zj2)}

+ λd sup
w
{ w2j2 − w(`0 + µ`1 + 2Zj2)},

(A.4)

where primes (′) denote time-derivatives. By condition (v) the optimal controls (3.23)-

(3.25), u∗ ∈ A, satisfy the HJB Equation (3.21), (∀y ∈ S) Au
∗
φ(y) + f(y, u∗) = 0, and

each control, {m, δ, w}, only indirectly affects terms outside its optimization problem via

the state variables, µ and Z.53 From this, we follow that if any other controls, u∗ 6= v ∈ U ,

are taken, the (supremum) optimization objectives may only decrease, whilst the rest of

the HJB Equation (3.21), remains unchanged: Symbolically,

(∀v ∈ U, y ∈ S) Avφ(y) + f(y, v) ≤ Au∗φ(y) + f(y, u∗) = 0

(ii) In case the stopping time, τ = T ∧ inf{t : Zt = 0} = T , it is clear that y 6∈ S implies

that Zt ≤ 0 and so t = T = τ . But then the value function (A.1) and terminal conditions,

0 = `0(T ) = `1(T ) = m0(T ) = m1(T ) = m2(T ) and j2(T, µ) = −α, yield

φ(y) ≡ J(τ, Cτ , Pτ , µτ , Zτ ) = Cτ + Zτ (Pτ − αZτ ) ≡ g(y)

In the case τ < T , none of the equations, 0 = `0(τ) = `1(τ) = m0(τ) = m1(τ) = m2(τ) =

α+ j2(τ, µ) hold generally. Because (∀0 < t < T ) τ = t is possible given Z0 > 0, imposing

these equations would require that all functions concerned (including α + j2(t)) vanish

identically, yielding (∀y ∈ S) φ(y) = g(y). In practice, once the stopping time, t = τ ,

is reached, liquidation stops and so does time itself, i.e., whatever occurs for t ≥ τ is

‘irrelevant,’ and in this sense, the values of mappings f ∈ {`0, `1,m0,m1,m2, α+ j2} may

be set arbitrarily for such times; in particular, the assignments f ← 1[t<τ ]f may be made,

52None of the subsequent Equations (A.16)-(A.18), (A.19), (A.22) may be used, as they were all derived by
assuming at least one optimal control, whereas condition (i) must be fulfilled for all controls.

53That is, each control only explicitly enters the HJB Equation 3.21 within its own optimization problem.
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so that 0 = `0(τ) = `1(τ) = m0(τ) = m1(τ) = m2(τ) = α+ j2(τ, µ). From this, condition

(ii) follows.

(iv) [And (vi).] Verification of the uniform integrability54 of (∀u ∈ A, y ∈ S) {φ−(Y (t))}t≤τ

[{φ(Y (û)(t))}t≤τ ] is straightforward, taking into account the following bounds:55

• Applying the triangle inequality to both numerator and denominator of the rightmost

factor in formula (A.21) for χ,

|χ| ≤
√
c

ξ

ζe2γT + 1

ζ − 1
≡ χ̄

• Recalling that j2 = χ− β
ξ and applying the preceding and triangle inequalities,56

0 < j ≡ β

ξ
− χ̄ ≤ |j2| ≤

β

ξ
+ χ̄ ≡ j̄

• Applying these and the triangle inequalities to formulas (A.23) for `0 and `1,

|`0| ≤ Λ0 ≡ Tλfκ2
` h̄

[
1

κ`
+
j̄

2

]
0 ≤ `1 ≤ Λ1 ≡ Tb

• Applying the preceding and triangle inequalities to formulas (A.2) for m1 and m2,

|m1| ≤ K1 ≡
T

4

(
2

[
1

κ
+
λd
j

+ λf
κ2
`

2

]
Λ0Λ1 + λfκ`[2 + κ`j̄]Λ1

)
|m2| ≤ K2 ≡

T

4

[
1

κ
+
λd
j

+ λf
κ2
`

2

]
Λ2

1

• Similarly applying the preceding and triangle inequalities to formula (A.3) for m0,

|m0| ≤ K0 ≡
T

4

(
8η2λfK2 +

[
1

κ
+
λd
j

+ λf
κ2
`

2

]
Λ2

0 + λfκ`[2 + κ`j̄]

[
1

κ`
+ Λ0 +

j̄

2

])
54For more details on this verification, we refer to Chapter 13 of Williams (1991), Section 4 of Chapter 5 of Gut
(2013), Appendix A.4 of Bass (2011), and Section 4.5. of Bogachev (2007).

55It is assumed that αξ > β + γ > 0 < c, in order that ζ > 1 and j2 < 0 > χ.
56In order to uniformly bound j2 below zero, it is further assumed that |β| > ξχ̄ > γ, which, together with
β + γ > 0, implies that β > γ > 0.
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Denoting J̄ ≡ max{K0,K1,K2,Λ0,Λ1, j̄}, the value function (A.1) satisfies57

|J(t, C, P, µ, Z)| ≤ C + ZP + J̄
[
(1 + |µ|)(1 + Z) + µ2 + Z2

]
(A.5)

The integrability of this polynomial upper bound in C, P , µ, and Z, of (∀u ∈ A, y ∈

S) {φ−(Y (t))}t≤τ [{φ(Y (û)(t))}t≤τ ], establishes the uniform integrability of the latter.

From this, (iv) and (vi) follow.58

(iii) The integrability of |φ(Y (t))|, i.e., that (∀u ∈ A, 0 ≤ t ≤ T ) Ey|φ(Y (t))| < ∞, likewise

follows immediately from bound (A.5). Establishing the same for
∫ τ

0 |A
uφ(Y (s))|ds is

straightforward, taking into account the following additional bounds:59

• We note that j′2 = χ′ = − 4cζe2γ(T−t)

[1−ζe2γ(T−t)]2
,

|j′2| ≤
4cζe2γT

(ζ − 1)2
≡ j̄′

• Time-differentiating formulas (A.23) for `0 and `1,

|`′0| ≤ Λ′0 ≡ Λ0

[
1

T
+ ξχ̄+

λd
2

]
|`′1| ≤ Λ′1 ≡ Λ1

[
1

T
+ ξχ̄+

λd
2

+ κf

]

• Similarly differentiating formulas (A.2)-(A.3) for m0, m1 and m2,

|m′0| ≤ K ′0 ≡ K0
1

T

|m′1| ≤ K ′1 ≡ K1

[
1

T
+ κf

]
|m′2| ≤ K ′2 ≡ K2

[
1

T
+ 2κf

]
57The processes P , Z, and C are almost surely nonnegative.
58cf. the two sentences immediately following definition and formula 4.5.1 of Bogachev (2007).
59The parametric assumptions of footnotes 55 and 56 are retained.
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• Applying the preceding and triangle inequalities to formula (A.4) for Auφ(y),60

1

τ

τ∫
0

|Auφ(Y (s))|ds ≤ K ′0 + |µ|K ′1 + µ2K ′2 + Z(Λ′0 + |µ|Λ′1) + Z2j̄′

+ 2(η2λf + µ2κf )K2 + κf |µ|K1 + Z|µ|(κfΛ1 + b)

+ κ(m∗)2 + |m∗|(bZ + Λ0 + |µ|Λ1 + 2Zj̄)

+ λd[(w
∗)2j̄ + |w∗|(Λ0 + |µ|Λ1 + 2Zj̄)]

+ λf [κ`(1 + κ`δ
∗
/2)(δ∗ + j̄ + Λ0 + |µ|Λ1 + 2Zj̄)]

The integrability of this polynomial upper bound in C, P , µ, and Z, establishes that

(∀u ∈ A) Ey
∫ τ

0 |A
uφ(Y (s))|ds <∞ and so, altogether, condition (iii):

(∀u ∈ A, 0 ≤ t ≤ T ) Ey
[
|φ(Y (t))|+

∫ τ

0
|Auφ(Y (s))|ds

]
<∞

Finally, note that Theorem 5.1 of Øksendal and Sulem (2019) requires that the value function,

φ(y) ≡ J(t, Ct, Pt, µt, Zt) ∈ C2(S) ∩ C(S̄), where the closure is given by: S̄ ≡ {Z ≥ 0} ≡

R3 × [0,∞). This is the case for the polynomial value function (A.1) of the state variables, y,

i.e., the dependence on time, t, through the mappings, m0, m1, m2, `0, `1, and j2, is irrelevant

for this consideration.

A.2.3 Separability of sup-terms

We want to show that:

sup
(x,y)∈Ax×Ay

{X(t, x) + Y (t, y)} = sup
x∈Ax

X(t, x) + sup
y∈Ay

Y (t, y). (A.6)

60Here, m∗, δ∗, and w∗ respectively denote the optimal controls (3.23)-(3.25), that achieve the supremum values
in their respective optimization problems, and to which the triangle inequality is then applied.
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Let x∗ ∈ Ax [y∗ ∈ Ay] solve supx∈Ax X(t, x) [supy∈Ay Y (t, y)]; then (x∗, y∗) ∈ Ax ×Ay and

sup
x∈Ax

X(t, x) + sup
y∈Ay

Y (t, y) = X(t, x∗) + Y (t, y∗) ≤ sup
(x,y)∈Ax×Ay

{X(t, x) + Y (t, y)} (A.7)

Let (x∗, y∗) ∈ Ax ×Ay solve sup(x,y)∈Ax×Ay{X(t, x) + Y (t, y)}; then x∗ ∈ Ax, y∗ ∈ Ay and

sup
(x,y)∈Ax×Ay

{X(t, x) + Y (t, y)} = X(t, x∗) + Y (t, y∗) ≤ sup
x∈Ax

X(t, x) + sup
y∈Ay

Y (t, y) (A.8)

Taken together, inequalities (A.7) and (A.8) yield Equation (A.6).

A.2.4 Base Model Optimal Controls

First, we derive m∗. We have that ∂zj = j1 + 2Zj2. Substituting this into supm{−κm2−m∂zj}

and taking the partial derivative with respect to m, we get:

−2κm− j1 − 2Zj2 = 0.

solving for m yields:

m∗t =
−j1 − 2Zj2

2κ
.

Similarly, to find δ∗, we substitute j(t, Z) into the supδ expression in (3.11) and derive with

respect to δ:

a(−2δ + j1 − aj2 + 2Pmax + 2j2Z)

P 2
max

= 0,

which yields

δ∗t =
1

2

(
j1 − aj2 + 2j2Z + 2Pmax

)
.

To find w∗, we find the derivative of the supw term of the Equation (3.11):
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−j1 − 2Zj2 + 2j2w = 0,

and solve for w:

w∗t =
j1 + 2zj2

2j2
.

A.2.5 System of PIDEs

Resubstitute optimal controls u = (m∗, l∗, w∗) into (3.11) yields:

0 = ∂tj − ηz2

+
(j1 + 2j2Z)2

4κ

+ λδ
a(j1 − aj2 − Pmax + 2j2Z)2

4P 2
max

+ λw
−(j1 + 2j2Z)2

4j2
.

(A.9)

Using ∂tj = ∂tj0 + ∂tj1Z + ∂tj2Z
2, we collect all terms for Z0 first:

∂tj0 +
j2
1

4κ
+ λδ

a(−j1 + aj2 + Pmax)2

4P 2
max

+ λw
−j2

1

4j2
= 0. (A.10)

Similarly, we collect Z1:

∂tj1 +
j1j2
κ

+ λδ
−aj2(−j1 + aj2 + Pmax)

P 2
max

+ λw(−j1) = 0, (A.11)

and Z2:

∂tj2 − η +
j2
2

κ
+ λδ

aj2
2

P 2
max

+ λw(−j2) = 0. (A.12)

This yields the system of PIDEs.
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A.2.6 Solution to the System of PIDEs

First, note that j0 = 0, because (A.10) only depends on ∂tj0 and the remainder is just a function

of j1, j2. Next, we note that (A.11) is linear in j1 and therefore j1 = 0, as j1 = 0. Last, to derive

j2, note that it is a Riccati-type PDE with constant coefficients.

Rearranging the equation yields:

∂tj2 = η + λwj2 −
(

1

k
+ λδ

a

P 2
max

)
j2
2 .

We set θ =
(

1
k + λδ

a
P 2
max

)
, then ∂tj2 = −θj2

2 + λwj2 + η and by solving the quadratic equation

and rearranging with linear factors, we get ∂tj2 = −θ(j2 − C1)(j2 − C2), where

C1/2 =
λw ±

√
λ2
w + 4θη

2θ
.

Next, to avoid quadratic terms in j2 (which would turn cubic when integrating), we decompose

this equation into fractions and integrate:

∫ (
1

j2 − C1
− 1

j2 − C2

)
dτ =

∫
−θ(C1 − C2)dτ,

to obtain j2, and applying j2 = −α:

1 +
C1 − C2

j2 − C1
= exp {−θ(C1 − C2)(T − t)} α+ C2

α+ C1
.

Therefore, we find:

j2 =
C1 − C2

exp {−θ(C1 − C2)(T − t)} α+C2
α+C1

− 1
+ C1. (A.13)

This solution exists, because C1/2 always exist (θ, η, λδ,w > 0).



5 Appendix 101

A.2.7 Rate of Market Orders

The rate is given by:

m∗t =
−Z
κ

C2 − C1Λ exp(−Θ(T − t))
1− Λ exp(−Θ(T − t))

.

To see the sign of the rate m∗, we first note that 0 ∈ [C2, C1], because λw <
√
λ2
w + 4ηθ. Wh

therefore can assume C1 > 0 and C2 < 0. Now consider two cases:

Case 1: α > |C2|. In this case we know that Λ > 0 and because C1 > C2, Λ ≤ 1. With

exp(−Θ(T − t)) > 0 by definition, the nominator of m∗ is positive, as −Z multiplied with a

negative factor is positive. With a positive denominator the total rate is positive in this case.

The trader is therefore selling throughout the entire trading session.

Case 2 α < |C2|: In this case, we know that C1
α+C2
α+C1

< 0. We set C2−C1Λ exp(−Θ(T − t)) = 0.

Solving for t, we find t = log
(
C2α+C1C2
C1α+C1C2

)
1
Θ + T and therefore, the root is larger than T , i.e. no

change of sign takes place in [O, T ]. Plugging in t = T , we find that the rate m∗ is positive, and

because it does not change the sign, the seller is also selling throughout the whole session.

A.2.8 Rate of Limit Orders

We know that C1 > C2 and θ > 0 by construction, therefore Θ > 0. We know that C1/2 are

symmetrical by construction (either around 0 or around a positive number). We also know that

Λ < 1. From this, it follows that exp(−Θ(T − t)) ≤ 1 and therefore the denominator of (3.17)

is positive. Similarly, if C2 < 0, we know that the nominator is negative. If C2 > 0, using that

C1Λ exp(−Θ(T − t)) < C2, we also know that the nominator is negative.

A.2.9 Derivation of Order Flow Strategies

First, we assume κ, λf , ηf , κf , b, λd, κ`, η, and α to be (non)strictly positive. From their forms

(A.20), we have that a > 0, c ≥ 0, such that γ =
√
ac ∈ R.

Using the ansatz, J(t, C, P, µ, Z) ≡ C + ZP + j(t, µ, Z), j satisfies:

0 = ∂tj + Lµj + bµZ − ηfZ2 + sup
m
{−κm2 −m(bZ + ∂Zj)}

+ λf sup
δ
{ κ`(1− κ`δ/2)[δ + j(t, µ, Z − 1)− j]}

+ λw sup
w
{ j(t, µ, Z − w)− j},

(A.14)
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with the terminal condition j(T, µ, Z) = −αZ2. The optimal feedback controls, m∗ and δ∗,

respectively follow from the corresponding supremum first-order conditions (FOCs):

m∗ =
(bZ + ∂zj)

2κ

δ∗ =
1

κ`
+
j − j(t, µ, Z − 1)

2

w∗ =
j1 + Zj2

2j2

(A.15)

From the ansatz, j(t, µ, Z) ≡ j0(t, µ)+Zj1(t, µ)+Z2j2(t, µ), a coupled system of partial integro-

differential equations follows:

0 =(∂t + Lµ)j0 +
1

4κ
j2
1 − λd

4j2
j2
1 + λf

κ2
`

2

[
1

κ`
− j1 − j2

2

]2

(A.16)

0 =(∂t + Lµ)j1 +
1

2κ
j1(b+ 2j2) + bµ− λd j1 − λf κ2

`

[
1

κ`
− j1 − j2

2

]
j2 (A.17)

0 =(∂t + Lµ)j2 +
1

4κ
(b+ 2j2)2 − ηf − λd j2 + λf

κ2
`

2
j2
2 , (A.18)

with terminal conditions, j1(T, µ) = 0 and j2(T, µ) = −α.

The terms of the Equation (A.18) and the terminal condition j2(T, µ) = −α, are independent

of µ, thereby j2 is independent and satisfies a Riccati Equation that may be solved exactly:

0 =∂tj2 +
1

4k
(b+ 2j2)2 − ηf − λdj2 + λf

κ2
`

2
j2
2 (A.19)

Define the following parameters:

ξ ≡1

κ
+
λfκ

2
`

2

β ≡ b

2κ
− λd

2

−c ≡ b
2

4κ
− ηf −

β2

ξ

(A.20)

The Riccati Equation (A.19) for χ(t) ≡ j2 + β
ξ is then:

1 =
∂tχ

c− ξχ2
=

[
1√

c+
√
ξχ

+
1√

c−
√
ξχ

]
∂tχ

2
√
c
.
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Integrating from t to T , and denoting γ ≡
√
ξc and ζ ≡

α−β
ξ

+
√
c
ξ

α−β
ξ
−
√
c
ξ

,

2γ(T − t) = log

√
c
ξ + β

ξ − α√
c
ξ −

β
ξ + α

− log

√
c
ξ + χ√
c
ξ − χ

⇐⇒ χ(t) =

√
c

ξ

1 + ζe2γ(T−t)

1− ζe2γ(T−t) (A.21)

We make an ansatz, j1(t, µ) ≡ `0(t) + µ`1(t)61, and subject to the terminal conditions, `0(T ) =

0 = `1(T ), Lµj1 = −κfµ`1, Equation (A.17) for j1 reads

0 =∂t`0 +

(
ξχ− λd

2

)
`0 − λfκ2

`

[
1

κ`
+
j2
2

]
j2 + µ

[
∂t`1 +

(
ξχ− λd

2
− κf

)
`1 + b

]
(A.22)

Non-trivial solutions for the "linear" terms (not) multiplied by µ may be written:

`0(t) =− λfκ2
`

T∫
t

e−
λd
2

(s−t) exp

[∫ s

t
ξχ(u)du

] [
1

κ`
+
j2(s)

2

]
j2(s)ds,

`1(t) = b

T∫
t

e
−
(
λd
2

+κf

)
(s−t)

exp

[∫ s

t
ξχ(u)du

]
ds.

(A.23)

And rewriting (A.23):

`0(t) =− λfκ2
`

T∫
t

e−
λd
2

(s−t) ζe
γ(T−s) − e−γ(T−s)

ζeγ(T−t) − e−γ(T−t)

[
1

κ`
+
j2(s)

2

]
j2(s)ds

=− λfκ2
`
¯̀
0(t, T ;λd).

0 ≤ `1(t) = b ¯̀
1(T − t) ≡ b¯̀1(τ ′)

≡ b

ζeγτ ′ − e−γτ ′

ζeγτ ′ 1− e−
(
λd
2

+κf+γ
)
τ ′

λd
2 + κf + γ

− e−γτ ′ 1− e
−
(
λd
2

+κf−γ
)
τ ′

λd
2 + κf − γ


(A.24)

One special case in which explicit solutions are available is (∃n ∈ N) λd = nγ: our investigations

reveal that the resulting expressions are of a "binomial" form, with increasingly many similar

summands as n grows. The cases with odd n, including λd = γ are more complicated in that

considerations of complex roots arise: it is expected that the cases with even and odd naturals,

or all naturals together, may satisfy some sort of recursion relation(s), e.g., integrating by parts,
61We propose an affine ansatz (in µ) for j1 analogously to the quadratic one (in Z) for j: the corresponding HJB
Equation (A.17), in addition to the terminal condition, j1(T, µ) = 0, is affine in µ.
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but we consider the case λd = 2γ for concreteness and simplicity:

¯̀
0(t, T ; 2γ) =

1

γξ2[ζe2γ(T−t) − 1]

(
γ2 log

ζe2γT − e2γt

ζ − 1
(A.25)

+
ζ

2

[
(β + γ)

(
β + γ

2
− ξ

κ`

)
e2γ(T−t) − β

(
β

2
− ξ

κ`

)]
− 2tγ3

(A.26)

−γ
2

[
(T − t)

([
γ +

ξ

κ`
− β

]2

− ξ2

κ2
`

)
+
ζ

2
γ − ζ

(
ξ

κ`
− β

)])
(A.27)

Note also that the constraint λd = nγ must be solved in conjunction with the nonlinear system

(A.20):

β±n ≡
b

2κ
− n

2

√(
1

κ
+
λfκ

2
`

2

)(
ηf +

β2
±n
ξ
− b2

4κ

)

=
1

4− n2

[
2b

k
± n

√(
ξn2

2
− λfκ2

`

)(
b2

2κ
− 2ηf

)
+

4ηf
κ

]

In the case considered with λd = 2γ, the limit is taken:

lim
n→2

β±n = ±
[
b

4κ
+
ξκ

2b

(
b2

2κ
− 2ηf

)]

Substituting formulas (A.24) into the ansatz, j1(t, µ) ≡ `0(t) + µ`1(t), together with the result

of substituting formulas (A.20) and (A.21) into the equation, j2 = χ(t)− β
ξ , both j1 and j2 are

explicitly determined and thereby the optimal controls.

A.2.10 Slopes of an Order Book
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Figure A.2: visualization of the bid-ask slopes of the order book. The parameter ψbid/ask is estimated from the
current state of the order book by finding the average slope over cumulative orders on both sides. This graph
also shows that we observe the complete queue on both sides, and order cancellations.

A.3 Fairness vs. Welfare: Disclosure in Financial Markets

A.3.1 Statistical Tests

T-test for CAARs The first employed test for the null hypothesis "ĈAAR = E[CAAR]"

is student’s t-test. This test is often employed in event studies (see Dutta, 2014) and the

corresponding test statistic is defined as

Tt−test =
ARj,t
σAR

, (A.28)

with σAR being the standard deviation of all calculated ARs. This test can be adapted to CAAR

(see Campbell et al., 2012):

Tt−test =
CAAR[t1, t2]

σCAAR
. (A.29)

We apply the Kolmogorov-Smirnov and the Shapiro-Wilk tests (see Royston, 1995, Sheskin,

2020) to verify that the samples of CAARs are normally distributed. Both tests reject this

hypothesis at the 0.1% significance level. This applies to all trades within the scope of this

work. Thus, we also apply a non-parametric test to account for the irregular distribution of

CAARs.
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GRANK test GRANK test as introduced by Kolari and Pynnonen (2011) is a nonparametric

rank test. One of the established non-parametric tests for event studies (testing abnormal

returns) was introduced by Corrado (1989). It later turned out to be suited only for well-

behaved situations, such as short (or even one-day) event windows and a "regular" distribution

of returns (i.e., no excess kurtosis or outliers). It is furthermore very sensitive to event window

length and does not account for cross-correlation of returns or event-induced volatility. GRANK

test addresses these issues and is, therefore, the test of choice for our work.

Following Kolari and Pynnonen (2011) and Campbell et al. (2012), let L1 = T1 − T0 + 1 be the

estimation window length with T0 being the first and T1 being the last day of estimation. Further,

let L2 = T2 − T1 be the event window length with T2 being the last day of the event window.

Further, let N be the number of observations as defined above. We define the standardised

abnormal return as

SARi,t =
ARi,t
σARi,t

, (A.30)

where

σARi,t =
1

L1 − 2

T1∑
t=T0

(ARi,t)
2. (A.31)

Furthermore, the standardized cumulative abnormal return is

SCARi,τ =
CARi,τ
σCARi,τ

. (A.32)

Methods for computing σCARi,τ can be found in Campbell et al. (2012). This estimate needs to

be further standardized to account for event-induced volatility:

SCAR∗i,τ =
SCARi,τ
σSCARτ

, (A.33)

with

σSCARτ =

√√√√ 1

n− 1

N∑
i=1

(SCARi,τ − SCARτ )2, (A.34)

where SCARτ = 1
N

∑N
i=1 SCARi,τ . Next, we define the generalized, standardized abnormal

return

GSARi,t =


SCAR∗i for t1 + 1 ≤ t ≤ t1 + τ

SARi,t for t = T0 + 1, . . . , t1, t1 + τ + 1, . . . , T2

(A.35)
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where T1 ≤ t1 ≤ T2 − τ and 1 ≤ τ ≤ L2. Next, we compute ranks for GSARi,t:

Ui,t = Rank(GSARi,t)/(T + 1)− 0.5. (A.36)

Apart from that, all of the event period returns are combined into one. This makes the test less

sensitive to varying event window lengths. Finally, the t-statistic is defined as:

tGRANK = Z

√
T − 2

T − 1− Z2
∼ tT−2, (A.37)

where

Z =
U0

SU
with: U0 =

1

N

N∑
i=1

Ui,0 and SU =

√
1

T

∑
t∈T

Ut
2
. (A.38)

T-test for significance of timing estimator (TE) The most straightforward way to test

for significance of the timing estimator is to assume it is t-distributed. In this case,

TTE−t−test =
TE[t]

σTE[t]
, (A.39)

where σTE[t] is the sample standard deviation. This assumption is partially fulfilled since by

building averages (CAARs), the distribution is converging towards normal.

Bootstrapping test for significance of timing estimator (TE) Because the theoretical

distribution of the TE cannot be derived in closed form, a bootstrapping strategy is employed,

similar to Lyon et al. (1999). By applying this strategy, we are able to approximate the true

distribution of the timing estimator and thus make a statement about its significance. In par-

ticular, we first approximate the distribution of ARi,t using bootstrapping. This distribution is

then used to construct a distribution of CAAR. Then, for a given t, we approximate the dis-

tribution of TE[t] by building the difference between randomly sampled CAARs. In our study

we set t = 5. To approximate TE[5], we randomly and independently sample CAAR[1, 5] and

CAAR[−4, 0]. After that, we build TE[5] = CAAR[1, 5]− CAAR[−4, 0]. Lastly, the empirical

quantiles of TE[5] are used to test for significance on the corresponding level.
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A.3.2 Return Metrics

In the following table, we exemplary show the results for different return metrics used in event

studies to quantify the abnormal returns. The metrics are defined as follows.

Buy-and-hold abnormal return (BHAR) (Lyon et al., 1999) is defined as the difference between

the buy-and-hold abnormal return of security i and the benchmark portfolio m:

BHAR [t1, t2] =

t2∏
t=t1

(1 +Ri,t)−
t2∏
t=t1

(1 +Rm,t). (A.40)

Cumulative abnormal returns CAR without compounding (i.e. sum instead of product) are

defined as follows:

CAR [t1, t2] =

t2∑
t=t1

ARi,t. (A.41)

Lastly, the compounded version of CAR, the CAR∗ is defined as:

CAR∗ [t1, t2] =

t2∏
t=t1

(1 +ARi,t)− 1. (A.42)

BHAR is considered superior to aggregated excess returns in reflecting an investor’s position.

However, this method of compounding fails to assess an event’s impact in longer-term studies,

as compounding effects drown out the event’s abnormal return (Borusyak and Jaravel, 2017)
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Table A.1: Comparison of return metrics

t BHAR CAR w/o comp. CAR w/ comp.

1 2.00% 2.00% 2.00%

2 4.08% 4.00% 4.04%

3 4.12% 4.00% 4.04%

4 4.16% 4.00% 4.04%

5 4.20% 4.00% 4.04%

10 4.42% 4.00% 4.04%

20 4.88% 4.00% 4.04%

250 13.20% 4.00% 4.04%

Notes: For the calculation of return metrics we assume constant returns of the benchmark portfolio

of 1% for each time interval t. The security’s return is 3% in t = 1, 3% in t = 2 and follows the

benchmark return of 1% thereafter for all t > 2.
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A.3.3 Binary Regression Results

Table A.2: Binary regression results for buy trades on publication day

Independent variable

Publ. Period Trade Volume Insider Level
(a) (b) (c)

Binary regression coefficients Germany

Publ. Period 0.008∗

(0.004)
Volume −0.002

(0.004)
Insider Level 0.011 ∗∗∗

(0.004 )
Constant −0.004 0.004 −0.007 ∗

(0.004) (0.003) (0.004 )

Observations 1,067 1,067 1,067
Residual Std. Error (df = 1065) 0.056 0.056 0.056
F Statistic (df = 1; 1065) 3.235∗ 0.352 7.350 ∗∗∗

Threshold trade volume: 8,666 EUR

Binary regression coefficients UK

Publ. Period −0.008∗∗∗

(0.002)
Volume 0.006∗∗∗

(0.002)
Insider Level 0.003

(0.002 )
Constant 0.013∗∗∗ 0.003 0.007 ∗∗∗

(0.002) (0.002) (0.001 )

Observations 3,457 3,457 3,457
Residual Std. Error (df = 3455) 0.062 0.062 0.062
F Statistic (df = 1; 3455) 12.975∗∗∗ 6.791∗∗∗ 1.972 ∗

Threshold trade volume: 2,180 EUR

Binary regression coefficients USA

Publ. Period −0.022∗∗∗

(0.005)
Volume 0.013∗∗

(0.004)
Insider Level 0.021 ∗∗∗

(0.004 )
Constant 0.026∗∗∗ −0.001∗ −0.003

(0.004) (0.004) (0.002 )

Observations 844 844 844
Residual Std. Error (df = 842) 0.057 0.057 0.057
F Statistic (df = 1; 842) 22.29 ∗∗∗ 8.645∗∗ 24.636 ∗∗∗

Threshold trade volume: 6,500 EUR

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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Table A.3: Binary regression results for buy trades on transaction day

Independent variable

Publ. Period Trade Volume Insider Level
(a) (b) (c)

Binary regression coefficients Germany

Publ. Period 0.010∗∗

(0.005)
Volume −0.010∗∗

(0.006)
Insider Level 0.012 ∗∗∗

(0.004 )
Constant −0.004 0.013∗∗ −0.005

(0.004) (0.006) (0.004 )

Observations 1,068 1,068 1,068
Residual Std. Error (df = 1066) 0.060 0.0060 0.060
F Statistic (df = 1; 1066) 4.615∗∗ 2.824∗ 7.255 ∗∗∗

Threshold trade volume: 8,666 EUR

Binary regression coefficients UK

Publ. Period −0.007∗∗∗

(0.002)
Volume 0.007∗∗

(0.003)
Insider Level 0.004 ∗

(0.0032)
Constant 0.013∗∗∗ 0.003 0.007 ∗∗∗

(0.002) (0.003) (0.001 )

Observations 3,458 3,458 3,458
Residual Std. Error (df = 3456) 0.062 0.062 0.062
F Statistic (df = 1; 3456) 9.470∗∗∗ 3.943∗∗ 3.797 ∗

Threshold trade volume: 2,180 EUR

Binary regression coefficients USA

Publ. Period −0.023∗∗∗

(0.005)
Volume 0.010

(0.006)
Insider Level 0.017 ∗∗∗

(0.004 )
Constant 0.026∗∗∗ −0.0002 0.003

(0.004) (0.006) (0.002 )

Observations 843 843 843
Residual Std. Error (df = 841) 0.055 0.055 0.055
F Statistic (df = 1; 841) 25.000∗∗∗ 2.316 16.833 ∗∗∗

Threshold trade volume: 6,500 EUR

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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In Table A.2, CAAR[1, 10] is the dependent variable in each of the binary regressions. The

time period from 1 to 10 is relative to the publication day. For each of the binary variables,

the state "0" is defined as: publication period < 1 day (publication period); transaction volume

< x0.25 quantile (volume); trading corporate officer is not an executive-level insider (insider level).

Accordingly, the state "1" is defined as follows: publication period ≥ 1 day (publication period);

transaction volume ≥ x0.25 quantile (volume); trading corporate officer is an executive-level

insider (insider level). In Table A.3, the time period from 1 to 10 is relative to the transaction

day.

A.3.4 Disclosure Statistics

Table A.4: DD notifications and BaFin investigations 2005-2015 (from: BaFin Annual Reports 2005-2015)

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of
notifications 5,118 4,687 4,603 4,978 2,673 2,258 2,869 2,281 2,187 1,800 1,809

New investigations 2 11 5 7 4 3 2 7 2 2 3

Open investigations
(from previous
years)

152 92 24 9 9 11 10 4 8 8 7

Fines imposed 3 8 10 2 1 1 4 2 1 3 0

Open investigations
(in total) 92 24 9 9 11 10 4 8 8 7 6

Highest fine
[in thousand EUR] 8 5 38 16 2 4 12 35 6 15 0

Investigations
closed (for legal
reasons or factual
reasons)

5 2 3 0 1 0 0 0 0 0 0

Investigations
closed (for reasons
of convenience)

54 69 7 5 0 3 4 1 1 0 4

Table A.5: DD notifications and equity trades at FWB (from: World Federation of Exchanges’ monthly reports).
The numbers of equity trades are rounded to millions with one decimal.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Notifications 5,118 4,687 4,603 4,978 2,673 2,258 2,869 2,281 2,187 1,800 1,809
Equity trades in [m.] 87.7 109.0 145.0 141.9 101.9 116.5 137.7 104.7 104.3 110.3 136.7
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Under the pre-MAR regime, the reporting period was five business days. About half of all

notifications were made within two business days, see table A.6. The median is exactly two

business days. About 7 percent of trades were reported after the five-day limit. Between 2005

and 2015, 3,206 transactions were reported on average per year. In this period, only four

investigations were opened per year, which resulted in three fines on average, which equates to

0.14 percent investigations and 0.1 percent fines per year. It is surprising that 7 percent of trades

were reported too late, but only 0.14 percent of trades resulted in investigations, see Table A.6.

These numbers allow for the conclusion that a very high number of breaches of DD rules go

unpunished – even though they have been detected and found their way into the regulator’s

database. We refer to Table A.6 for an overview.

Table A.6: Reporting time of DD notifications in Germany

Reporting time Reported trades Reported trades (only trades
above 5,000 EUR)

Up to and including 2 days 51% 55%
> 2 days 49% 45%
> 3 days 33% 30%
> 4 days 18% 17%
> 5 days 17% 10%
> 6 days 7% 7%

Average 4.84 days
Median 2.00 days
Standard deviation 22.85 days

Notes: In this table, we use the 2iQ data as described in Table 4.1 to analyze the reporting time for
German DD transactions. The sample consists of DD transactions from July 2005 until September
2015 for all DAX companies. All reported transaction types (including purchases, sells, awards,
subscriptions and derivatives) are relevant for the descriptive statistics. The column "reported trades"
represents all trades reported during the respective period, while column three represents only those
above the de minimis threshold for reporting of DD transactions in Germany (above 5,000 EUR).
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