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Factorization and Resummation at
Subleading Powers

Faktorisierung und Resummation zu höherer Potenz

Sebastian E. Jaskiewicz

Abstract

In this work, we investigate subleading power effects in Drell-Yan and Higgs production
processes. We discuss the emergence of collinear functions, a critical new ingredient to
factorization at next-to-leading power. We derive the factorization theorem valid near the
kinematic threshold of the partonic processes in the diagonal and off-diagonal channels. We
calculate the collinear functions and the soft functions at one and two loops, respectively.
Using renormalization group methods, we perform leading logarithmic resummation for
the diagonal channels.

Zusammenfassung

In dieser Arbeit untersuchen wir Effekte höherer Potenz zu Drell-Yan und Higgsproduk-
tionsprozessen. Wir diskutieren das Auftreten von kollinearen Funktionen, ein entscheiden-
der neuer Baustein bei der Faktorisierung zu NLP. Wir leiten ein Faktorisierungstheorem
gültig in der Nähe des kinematischen Schwellenwerts für partonische Prozesse in mehreren
Kanälen her. Desweiteren berechnen wir die kollinearen und soften Funktionen zur Ein-, re-
spektive Zwei-Schleifenordnung. Unter Anwendung von Renormierungsgruppenmethoden
resummieren wir die führenden Logarithmen in den diagonalen Kanälen.
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1

Introduction

Particle physics is tasked with the noble goal of understanding the fundamental constituents
of Nature and their interactions. Considering the current status of this field of research,
it is difficult to imagine a time filled with more anticipation. On the one side stands a
tremendously successful field-theoretic description known as the Standard Model (SM)
of particle physics [1, 2, 3, 4], completed in 2012 with the discovery of the Higgs Boson
by the ATLAS and CMS groups based at the Large Hadron Collider (LHC) accelerator
complex at CERN [5, 6]. On the other side lies a heap of observational data which hints
at the existence of physics beyond the SM, such as the gravitationally detected presence of
dark matter (DM), no sign of which has as of yet been measured at collider experiments.
The field remains delicately poised in this way and eagerly awaits the completion of
the High Luminosity upgrade of the LHC (HL-LHC). Over its lifetime, the HL-LHC
will deliver a ten-fold increase in the total integrated luminosity achieved thus far [7],
making the experimental measurements of fundamental interactions ever more precise. The
technological advancement in experimental observations challenges the status of theoretical
predictions and makes it critically important to understand better the components which
form the SM. It is crucial to increase the precision of theoretical predictions in order to
be able to draw meaningful conclusions in comparison of the results of the calculations
within the SM to experimental data. Only this interplay between precise experimental
measurements and theoretical calculations can enable us to discover signs of New Physics
beyond the SM at the particle level in colliders.

The SM is made up of the electroweak (EW) and strong sectors, with Quantum
Chromodynamics (QCD) describing the strong interactions. Since the LHC collides
protons made up of quarks and gluons at very high energies (∼13TeV), a large part of
the effort to increase the precision of theoretical predictions is devoted to improving the
understanding of QCD processes which inevitably feature in the experiments. Due to
the phenomenon of Asymptotic Freedom [8, 9], the strong coupling αs becomes weak
for processes involving large momentum transfers. Concretely, αs becomes perturbative
already at a few GeV [10]. Therefore, theoretical calculations can be organised in a
perturbative series and systematically improved by computations of higher and higher
order corrections in the αs expansion.

Naturally, the calculation of the higher order corrections becomes increasingly more
complex. However, with the value of the strong coupling at αs ∼ 0.1, the first order
correction, so-called next-to-leading order (NLO), is around 10% of the leading order
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6 Chapter 1. Introduction

value. The next-to-next-to-leading order (NNLO) ∼1%, and so on. Therefore, the key
point is that precise predictions can be obtained through calculation of the first few
orders in perturbation theory, as these already describe the physical processes well. It is
therefore not surprising that the calculation of high fixed-order predictions has evolved
into a whole rich research field of its own. We do not provide here a reference guide
to the many research works that can be found in literature. For us it suffices to note
that the current state-of-the-art predictions for inclusive cross-sections are available at
the next-to-next-to-next-to leading order (N3LO) for certain phenomenologically relevant
process such as Higgs boson production via gluon-gluon fusion [11, 12] and via vector
boson fusion [13], and Drell-Yan production [14, 15]. These processes require as input
amplitudes exhibiting a 2 → 1 topology at leading order. Recently, for the first time,
four-point amplitudes at N3LO have been reported [16]. Many observables relevant for
LHC phenomenology are known at NNLO, see [17] and [18] for recent reviews.

Despite the clear success of the fixed-order calculations approach, there exist noteworthy
drawbacks. It is a well-known fact that fixed-order perturbation theory is unreliable in
application to processes which involve widely separated scales. Examples of such processes
include production of particles near kinematic threshold or with small (or large) transverse
momentum. In such regions of phase space, close to singular limits of the theory, the
higher-order corrections are supplemented by large logarithms of the scale ratios. We
denote a sample scale ratio by ζ. These large logarithms multiply the small coupling
constant which is a priori the expansion parameter of the theory. This leads to a dangerous
situation that threatens the convergence of the perturbatvie series on which the predictive
power of the theoretical calculations is based. Namely, the coupling constant αs is no
longer a reliable expansion parameter. Rather, we should consider αs ln(ζ) ∼ O(1) or
αs ln2(ζ) ∼ O(1), depending on the process, as such a combination appears at every order
in the calculation. In a setting of this type, it is apparent that each next order in the
perturbative expansion is numerically as important as the previous one. Hence, to make a
reliable theoretical prediction we must capture the all-order behaviour of these terms.

The solution to this issue is to divide the problem into pieces which each depend only
on one physical scale. This is known as derivation of a factorisation theorem. The all-order
expressions can then be obtained using scale evolution by solving the renormalization
group equations (RGEs) for each of the pieces appearing in the factorisation formula. This
step is known as resummation. Pioneering results on factorisation were derived using
traditional diagrammatic techniques [19]. In order to better understand the landscape
of applicability of the various all-order results, we consider as an example the schematic
expansion of the cross-section for the Drell-Yan (DY) process A+B → γ∗(Q) +X near
the threshold regime z = Q2/ŝ→ 1, where ŝ is the centre-of-mass energy squared. The
cross-section has the following form

σ̂ab(z) =
∞∑
n=0

αns

[
cnδ(1− z) +

2n−1∑
m=0

(
cnm

[
lnm(1− z)

1− z

]
+

+ dnm lnm(1− z)
)

+ . . .

]
. (1.1)

We see that the most singular terms in the z = 1 limit are ones with the coefficients
cn, cnm. These contributions are known as the leading power (LP) singular terms. For
the purposes of resummation, instead of counting orders in αs as is done in fixed-order
calculations where we discuss LO, NLO, NNLO and so on, we count which towers of
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logarithms are included in the all order result. For instance, the terms c0 and cn(2n−1)
constitute the leading logarithms (LL). Terms suppressed by one power in the logarithmic
counting, cn(2n−2), are known as the next-to-leading logarithms (NLL), and so on. The
first all-order summation of the LP logarithms has been obtained in [20, 21]. Equivalent
results have later been derived using soft-collinear effective field theory (SCET) methods
[22, 23, 24], and the current state-of-art is the resummation of LP threshold logarithms
up to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy [24, 25]. SCET is an
effective field theory of QCD in which the work presented here is grounded. We give an
introduction to this formalism in chapter 2.

Similarly, to DY, the deep-inelastic scattering (DIS) process has been resummed at
LP first using traditional diagrammatic techniques [26], and later in SCET [27], up to
N3LL accuracy. Indeed, large logarithms appearing in many other relevant observables
have been resummed at leading power to date [28, 29, 30].

We now focus on the terms with the dnm coefficients in equation (1.1) which are
suppressed by one power of (1 − z) with respect to the leading power terms that we
have discussed above. These terms are referred to as the next-to-leading power (NLP)
contributions. The leading logarithmic series at NLP is given by the logarithms with
dn(2n−1) coefficients, where n = 1, 2, . . . to all orders.

The next-to-leading power logarithms are less singular than their leading power coun-
terparts, and historically have received far less attention in the literature. Consequently,
the structure of factorisation and resummation at NLP is not as well understood. It is
precisely the investigation of these terms within the soft-collinear effective field theory
that we are concerned with in this work.

We chose to investigate the NLP effects in the Drell-Yan process as it is one of the
simplest hadron-hadron collision processes. Several fixed-order calculations have also
explored the subleading power effects in this setting. For example, explicit computations
of partonic cross-sections at NLP up to NNLO, and partly beyond, were performed by
employing the expansion-by-regions method in [31, 32] and diagrammatic factorisation
techniques in [33, 34, 35, 36, 37, 38, 39].

The leading logarithmic resummation of the Drell-Yan and Higgs production processes
was first achieved in [40, 41]. We describe the SCET methods used in [40, 41] in this
work. A confirmation of the result in the diagrammatic framework was obtained later
in [42, 43]. In addition to the threshold region, the analysis of subleading power corrections
for Drell-Yan and single Higgs production has been investigated at fixed-order for resolution
variables such as N-jettiness [44, 45, 46, 47, 48, 49] and the qT of the lepton pair or the
Higgs boson [50, 51]. The qT resummation of fiducial power corrections has been achieved
in [52]. NLP threshold effects were also recently studied for processes such as prompt
photon production [53]. The resummation of NLP leading logarithms for an event shape
has been reported in [54, 55]. Factorisation theorem for Higgs production or decay through
light-quark loops has been given in [56, 57]. Corresponding resummation was performed
at LL in [58, 59, 60] and in [61, 62] up to NLL. Power-enhanced QED corrections to
Bq → µ+µ− were summed in [63, 64].

The resummation of NLP leading logarithms [40, 41] is dependent on the general
factorisation formula derived in [65]. We discuss the derivation of the factorisation formula
with additional details in this work. The all order factorisation formula is also a necessary
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for taking the non-trivial step beyond the NLP leading logarithmic resummation, which
we discuss here.

The factorisation formula, which achieves the separation of scales through operator
definitions of the relevant functions, and its check against the known NNLO NLP results
from the expansion-by-regions approach, are one of the key results presented in this
work. We consider the diagonal channel as in [65], and additionally present results for the
off-diagonal gluon-antiquark channel.

The factorisation theorem must be regarded as a formal result, because it applies to
bare regularized quantities. As will be explored in detail, when one attempts to renormalize
these quantities by subtracting the divergent parts, the convolution of the various factors
becomes itself divergent. This complicates the resummation of NLP logarithms beyond the
LL accuracy with renormalization group methods in the standard paradigm of SCET. An
attempt at understanding divergent convolutions in the effective field theory framework
has been reported in [66].

Another important result discussed in this work, which has been extensively explored
in [65] and used in [40, 41], is the identification of NLP collinear functions or radiative
jet functions at the amplitude level in the factorisation formula at NLP. We discuss their
origin, the reason why they do not appear in the well-known LP factorisation formula
with explicit one-loop examples, and provide their precise operator definition in SCET.
We also calculate the collinear functions at O(αs) for both diagonal and off-diagonal
channels, which illustrates the concept at the practical level and is required for the NNLO
comparison mentioned above.

We have so far motivated the consideration of NLP terms in factorisation theorems
with phenomenological arguments. Indeed, these terms do impact precision calculations.
However, the extension of calculations to next-to leading power (NLP) brings with it
non-trivial conceptual challenges which are interesting to purse in their own right as a way
of gaining insight into the intricate structure of gauge theories at high perturbative orders
beyond what is known so far at leading power. These effects are interesting study from the
field theoretic point of view, since new physical effects and conceptual challenges emerge.

Many of the results regarding factorisation and resummation at next-to-leading power
in this thesis have been included in existing publications

• M. Beneke, A. Broggio, M. Garny, S. Jaskiewicz, R. Szafron, L. Vernazza et al.,
Leading-logarithmic threshold resummation of the Drell-Yan process at next-to-leading
power, JHEP 03 (2019) 043, [1809.10631]

• M. Beneke, M. Garny, S. Jaskiewicz, R. Szafron, L. Vernazza and J. Wang, Leading-
logarithmic threshold resummation of Higgs production in gluon fusion at next-to-
leading power, JHEP 01 (2020) 094, [1910.12685]

• M. Beneke, A. Broggio, S. Jaskiewicz and L. Vernazza, Threshold factorization of
the Drell-Yan process at next-to-leading power, JHEP 07 (2020) 078, [1912.01585]

and conference proceedings

• S. Jaskiewicz, Next-to-leading power threshold factorization for Drell-Yan production,
in Proceedings, 14th International Symposium on Radiative Corrections: Application

https://doi.org/10.1007/JHEP03(2019)043
https://arxiv.org/abs/1809.10631
https://doi.org/10.1007/JHEP01(2020)094
https://arxiv.org/abs/1910.12685
https://doi.org/10.1007/JHEP07(2020)078
https://arxiv.org/abs/1912.01585
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of Quantum Field Theory to Phenomenology (RADCOR 2019): Avignon, France,
September 8-13, 2019, 2019, 1912.08882, DOI.

Moreover, chapter 6 contains material to be published

• A. Broggio, S. Jaskiewicz and L. Vernazza, in preparation .

1.1 Outline
The contents of this work are organised as follows. In chapter 2, we discuss the soft-collinear
effective field theory framework on which our investigations are grounded. We briefly
review important leading power concepts and provide a more extensive look at general
next-to-leading power features.

In chapter 3, the focus is on the threshold Drell-Yan process. We put the framework
discussed in chapter 2 to use and derive formal all order factorisation formulas for the
diagonal and off-diagonal channels before specialising to next-to-leading power. Much
emphasis is placed on new objects appearing in factorisation formulas for the first time
at next-to-leading power. These are the NLP collinear functions, subsequently computed
to next-to-leading order accuracy in chapter 4, and generalised soft functions, which are
discussed in chapter 5. We find that the calculation of complete NNLO generalised soft
functions is far from trivial and we dedicate chapter 6 to the discussion of the techniques
we applied to arrive at the results.

In chapter 7, the separate ingredients calculated in preceding chapters are brought
together according to the factorisation formulas to obtain results at fixed order in the αs
expansion. Comparison with results found in literature serves to verify the correctness of
the derived factorisation formulas.

In chapter 8, we specify the factorisation formula for the diagonal channel in Drell-Yan
production to leading logarithmic accuracy and preform resummation to all orders in
perturbation theory using renormalization group equations and scale evolution. A related
process of threshold Higgs production via gluon-gluon fusion is investigated in chapter 9.
We conclude and provide an outlook in chapter 10.

The appendices are a collection of useful auxiliary results and expressions to which
we point in the relevant places in the main text. Appendix A contains list of NLP
Lagrangian terms, helpful spin and colour relations, and useful integrals. Appendix B
contains results for the power-suppressed one-loop one-soft emission Drell-Yan amplitude.
Appendix C provides more details on the one-soft-particle-reducible contributions which
are first discussed in section 4.1.1.

https://arxiv.org/abs/1912.08882
https://doi.org/10.22323/1.375.0039
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Nanos gigantum humeris insidentes

The work contained in this thesis is rooted in the framework of soft-collinear effective
field theory (SCET) [69, 70, 71, 72, 73]. SCET describes low energy degrees of freedom
in processes with energetic particles. This effective field theory originates from efforts
to resum large logarithms which appear in heavy meson decays, for example B → Xu`ν
and B → Xsγ where Xu and Xs are clusters of collinear quarks and gluons, in cases
where the phase space of the final state is restricted [74, 75, 76, 77, 78]. Since this time,
SCET has been applied to a plethora of processes which involve energetic particles in
a variety of contexts such as inclusive hadron-collider cross-sections, event shapes, jet
physics, electroweak Sudakov logarithms, and even gravity. For a more complete review of
applications of SCET see for example chapter 9 of [79].

Needless to say, the literature on SCET is by now extremely extensive and here we
do not aim to provide a complete overview nor discuss all the intricacies that can arise
in SCET in the various contexts to which it has been applied. Instead, we introduce the
necessary key concepts required to follow the discussion of the developments presented
in this work. In particular, we focus on highlighting some of the novel features of SCET
emergent only beyond the well-understood leading power regime. For extra information
regarding SCET we refer to lecture notes [80, 81, 82, 83, 84] and books [79, 85] in addition
to the original publications cited above.

2.1 Soft-collinear effective field theory
SCET describes the dynamics of collinear and soft partons. Collinear partons are charac-
terized by a large momentum component along one light-like direction, and suppressed
momentum components along the remaining directions. In order to describe the dynamics,
it is therefore convenient to choose light-like reference vectors nµi− and nµi+ for each collinear
direction i. These vectors are given by

nµi− = (1, ~ni), nµi+ = (1,−~ni). (2.1)

The ~ni is a three-vector, and the light-like reference vectors satisfy ni− · ni+ = 2 and
n2
i− = n2

i+ = 0. Using these reference vectors, the metric tensor is decomposed in the
following way

gµν = nµi+
nνi−
2 + nµi−

nνi+
2 + gµνi⊥ (2.2)

11
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which defines gµνi⊥ . This leads to the realisation that a general four-vector can be written
in terms of its light-cone components

pµ = pνg
νµ = (ni+p)

nµi−
2 + (ni−p)

nµi+
2 + pµi⊥, pµ = (ni+p, ni−p, pi⊥), (2.3)

where we have also written the four-vector utilising the component notation. It follows
that the scalar product of the vector pµ with itself (and with another arbitrary vector qµ)
is given by

p2 = (ni+p)(ni−p) + p2
i⊥

(
p · q = 1

2(ni+p)(ni−q) + 1
2(ni−p)(ni+q) + pi⊥ · qi⊥

)
. (2.4)

The power-counting parameter λ is identified by the perpendicular, ⊥, component of
the collinear momenta, pi⊥ ∼ Qλ, where Q is a generic large scale in the process, whose
virtuality is O(λ2). In this work we concern ourselves with physical processes for which
the virtuality of the collinear modes in any of the collinear directions, i, is of the same
order, O(λ2), and which is parametrically larger than the virtuality of the soft mode which
is O(λ4), as all of the component of the soft momentum scale as Qλ2. This set up leads to
a version of the soft-collinear effective field theory known as SCETI. The Lagrangian for
this theory with power suppressed interactions out up to O(λ2) has been worked out in
[73]. The subleading power interactions between collinear and soft fields given here play a
central role in much of the considerations presented in this work, and we will return to
discuss them in far greater detail. However, we first intend to start from the beginning
and show how the expansion-by-regions method simplifies loop calculations of Feynman
diagrams with a hierarchy of scales present. We then discuss the leading power effective
field theory construction, which gives the expanded integrals directly, that is, SCETI at
leading power. After this discussion, we introduce the framework which extends these
considerations from leading power to subleading powers. This framework was developed
in a formal setting for the calculation of anomalous dimensions of subleading-power N -jet
operators in a series of papers [86, 87, 88] to which we refer the interested reader for all
the technical details. Below we aim to introduce the concepts necessary in the analysis
that follows and to set up the notation.

2.2 Expansion-by-regions method
The technique of expansion-by-regions [89, 90] is a method that enables asymptotic
expansion of loop integrals in dimensional regularization around different kinematic limits.
As will be demonstrated here for a simple example, the idea is that a given integral is
separated into different regions. The integrand can then be expanded in an appropriate
kinematic limit for each individual region. This yields simpler intermediate integrals,
and we recover the result for the original integral once the results for different regions
are recombined. The expansion-by-regions method is a useful technique that allows one
to obtain results for Feynman diagrams which are too difficult for direct evaluation, for
example, if a large number of disparate scales are involved. This by itself is a very useful
tool in fixed-order perturbative calculations. However, the expansion-by-regions technique
forms the foundation of even more powerful methods if we interpret the non-vanishing
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on-shell regions as contributing propagating degrees of freedom to an effective field theory.
Within the effective field theory framework, the different contributing regions are described
by different sets of fields, and the expanded integrals are in one-to-one correspondence
with the Feynman diagrams of the effective field theory in dimensional regularization.
Importantly, the concept of scale separation is built-in to the constructed effective field
theory. This facilitates the derivation of factorisation theorems which give access to results
valid to all orders in perturbation theory via solutions of systems of renormalization group
equations.

Moreover, the effective field theory Lagrangian, unlike individual Feynman diagrams,
is manifestly gauge invariant and allows for the systematic inclusion of subleading power
corrections. The expansion-by-regions method underpins all of the above important
concepts. Therefore we dedicate this section to a short example of this method at work.

As the example, we choose a one-loop vertex correction considered in detail in chapter 2
of [79] since the contributing modes found here are also relevant for the discussion presented
in the following chapters. The integral which we consider is given by

I = i π−d/2µ4−d
∫
ddk

1
(k2 + iδ)

1
[(k + l)2 + iδ]

1
[(k + p)2 + iδ] , (2.5)

which corresponds to the propagator structure of the diagram depicted in figure 2.1. We
ignore here the Dirac spin structure for simplicity as it does not alter the contributing
momentum regions. In order to apply the expansion-by-regions method the problem must
exhibit a hierarchy of scales, therefore we insist that the external quark lines carry large
momenta l and p, but their respective invariant masses are small, such that L2, P 2 � Q2,
where L2 = −l2 − iδ, P 2 = −p2 − iδ, and Q2 = −(l − p)2 − iδ. For convenience we
introduce a small expansion parameter defined by

λ2 ∼ P 2

Q2 ∼
L2

Q2 . (2.6)

The integral in (2.5) is in fact finite in d = 4 and can be evaluated directly. The full result
is a complicated function of polylogarithms which we do not write here. To leading order
in the λ expansion, it is given by

I = 1
Q2

(
ln
(
Q2

P 2

)
ln
(
Q2

L2

)
+ π2

3 +O(λ)
)
. (2.7)

We reiterate that the aim of the expansion-by-regions method is to identify modes which
give a non-zero contribution to the integral in (2.5). If we identify these modes correctly,
they will conspire to reproduce the result in (2.7).

We begin the investigation by parametrising the momenta. In this example there are
only two directions of large momentum flow, therefore we can use the basis of light-like
reference vectors given in (2.1) and drop the i subscript by choosing a back-to-back
configuration such that we work in the frame where ~Q = 0. The directions of large
momentum flow are pµ ≈ Qnµ−/2 and lµ ≈ Qnµ+/2. The components of the external
momenta scale in the following way

pµ ∼ Q(1, λ2, λ), lµ ∼ Q(λ2, 1, λ), (2.8)
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k

k + p

k + l

Figure 2.1: One-loop eēγ vertex correction. The external fermion legs are kept slightly off-shell,
p2 6= 0 and l2 6= 0. The discussion in the text focuses on the scalar propagators and
we neglect the Dirac structures in the numerators.

which satisfies p2 ∼ l2 ∼ λ2Q2 in (2.6). We must now find which modes of the loop
momentum, k in the diagram in figure 2.1, contribute to the integral. To this end, we first
parametrise each component of the loop momentum with the expansion parameter λ raised
to an arbitrary power kµ ∼ Q(λa, λb, λc). It turns out that only combinations satisfying
a + b = 2c are relevant. If c > 0, these modes describe to particles which are on-shell
in the λ → 0 limit and which correspond to the propagating degrees of freedom in the
effective field theory, as eluded to above. As will become evident momentarily, four regions
give non-zero contributions to the integral. In the first region, the components of the loop
momentum scale with a = b = c = 0, which gives kµ ∼ Q(1, 1, 1). This is known as a hard
region. Next we have regions collinear to pµ and lµ. These take on kµ ∼ Q(1, λ2, λ) and
kµ ∼ Q(λ2, 1, λ) scaling respectively. The final contributing region with loop momentum
scaling as kµ ∼ Q(λ2, λ2, λ2) is known as the soft region.

To demonstrate that these regions indeed reproduce the result in equation (2.7), we
now consider each region separately and expand the integrand accordingly. We begin with
the hard region where k2 ∼ λ0Q2. Writing the scalar products in component form as in
equation (2.4), we expand the integrand in λ and keep only the leading terms. This yields
the following integral

Ihard = i π−d/2µ4−d
∫
ddk

1
(k2 + iδ)

1
[k2 + (n−l)(n+k) + iδ]

1
[k2 + (n+p)(n−k) + iδ] . (2.9)

Note that in this region (n+p)(n−k) ∼ λ0Q2, whereas p⊥ · k⊥ ∼ λQ2 and (n−p)(n+k) ∼
λ2Q2. Hence, the latter two scalar products are suppressed with respect to the first and
are therefore omitted in the integrand above. An analogous analysis yields the propagator
with the momentum lµ. We can integrate (2.9) which gives the following result

Ihard = 1
(n−l)(n+p)

1
ε2

(
(n−l)(n+p)

µ2

)−ε Γ[1 + ε]Γ[1− ε]2
Γ[1− 2ε] . (2.10)

Next, we begin with the integral in (2.5) again and find that in the region of loop momentum
kµ collinear to pµ the integrand is expanded as

Icollinear = i π−d/2µ4−d
∫
ddk

1
(k2 + iδ)

1
[(n−l)(n+k) + iδ]

1
[(k + p)2 + iδ] , (2.11)
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again to leading order in λ, which yields

Icollinear = 1
(n−l)(n+p)

1
ε2

(
P 2

µ2

)−ε Γ[1 + ε]Γ[1− ε]2
Γ[1− 2ε] . (2.12)

Similarly, in the region collinear to lµ, which we call anticollinear in order to distinguish it
from the region collinear to pµ, the expanded integrand takes the form

Icollinear = i π−d/2µ4−d
∫
ddk

1
(k2 + iδ)

1
[(k + l)2 + iδ]

1
[(n+p)(n−k) + iδ] , (2.13)

for which we obtain

Ianticollinear = 1
(n−l)(n+p)

1
ε2

(
L2

µ2

)−ε Γ[1 + ε]Γ[1− ε]2
Γ[1− 2ε] . (2.14)

Finally, we consider the soft region where the integral is given by

Isoft = i π−d/2µ4−d
∫
ddk

1
(k2 + iδ)

1
[(n−p)(n+k) + l2 + iδ]

1
[(n+p)(n−k) + p2 + iδ] , (2.15)

and the result is

Isoft = 1
(n−l)(n+p)

1
ε2

(
L2P 2

(n−l)(n+p)µ2

)−ε
Γ[1 + ε]Γ[1− ε]2 . (2.16)

We now expand all of the above results in ε to expose explicitly the pole and logarithm
structure contained in the individual regions

Ihard = Γ[1 + ε]
Q2

(
1
ε2

+ 1
ε

ln
(
µ2

Q2

)
+ 1

2 ln2
(
µ2

Q2

)
− π2

6 +O(λ)
)
, (2.17)

Icollinear = Γ[1 + ε]
Q2

(
− 1
ε2
− 1
ε

ln
(
µ2

P 2

)
− 1

2 ln2
(
µ2

P 2

)
+ π2

6 +O(λ)
)
, (2.18)

Ianticollinear = Γ[1 + ε]
Q2

(
− 1
ε2
− 1
ε

ln
(
µ2

L2

)
− 1

2 ln2
(
µ2

L2

)
+ π2

6 +O(λ)
)
, (2.19)

Isoft = Γ[1 + ε]
Q2

(
1
ε2

+ 1
ε

ln
(
µ2Q2

P 2L2

)
+ 1

2 ln2
(
µ2Q2

P 2L2

)
+ π2

6 +O(λ)
)
,(2.20)

where we have used (n−l)(n+p) = Q2. We see that each region depends on a single scale,
such that the logarithms can be made small by a suitable choice of µ in each region.
Moreover, individual regions contain divergences in ε. However, upon summation of all
the different regions these poles cancel and in the end we obtain a result for the integral
(2.5) in the limit P 2 ∼ L2 � Q2. Concretely, we recover the result in (2.7) which is
accurate to leading power in the λ expansion. The effective field theory framework is then
construcuted to give each of the contributing regions directly, we outline this construction
in the following sections.



16 Chapter 2. Nanos gigantum humeris insidentes

The example presented here is only meant to illustrate the expansion-by-regions method
in one of the simplest possible scenarios. In general, this method allows for systematic
inclusion of terms suppressed by powers of λ. Indeed, power corrections are the central
theme of the work presented here. In the sections that follow, we describe SCET at leading
power and how subleading power corrections are included in this effective field theory. In
appendix B.2 we present results for a full (including the numerator structure) amplitude
for the Drell-Yan process valid up to next-to-leading power in λ expansion. We obtain the
results using the SCET framework and find agreement with the results obtained by the
means of expansion-by-regions method.

2.3 SCET at leading power
In this section we introduce the soft-collinear effective field theory framework at leading
power in the λ expansion. We focus on the construction of SCET with modes found to
contribute to the example integral above, this is the so-called SCETI field theory. An
important remark is that different versions of SCET may be applicable to different processes,
for example the so-called SCETII is the appropriate effective field theory construction
for proceses where the contributing “soft” region has the same virtuality as the collinear,
kµ ∼ Q(λ, λ, λ).

2.3.1 SCETI: field decomposition and the Lagrangian
We consider SCET in a general case where there exist N collinear directions. The quark
and gluon fields are split into N -collinear and a soft parts

ψ(x) → ψ1(x) + · · ·+ ψN(x)︸ ︷︷ ︸
N collinear fermion fields

+q(x), (2.21)

Aµ(x) → Aµ1(x) + · · ·+ AµN(x)︸ ︷︷ ︸
N collinear gluon fields

+Aµs (x), (2.22)

where q is the soft part of the fermion field and Aµs is the soft part of the gauge field. Note
that no fields corresponding to the hard modes are included in the above splitting of the
full theory fields. Contributions from the hard regions are included in the effective field
theory framework through matching coefficients, named Wilson coefficients, of operators
constructed from the collinear and soft fields. This is where SCET differs from traditional
effective field theories, here we integrate out a mode of the full theory rather than a full
heavy field.

The fermion field in each collinear sector is further split into two components

ψi(x) ≡ ξi(x) + ηi(x), (2.23)

where the ξi(x) and ηi(x) fields are defined using projection operators in the following way

ξi(x) = n/i−n/i+
4 ψi(x), ηi(x) = n/i+n/i−

4 ψi(x). (2.24)
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The above definitions enable us to determine the power in λ with which the different
components of the SCET fermion field scale. This is achieved using the two-point correlators
in QCD

〈0|T
[
ξi(x)ξ̄i(0)

]
|0〉 = n/i−n/i+

4

[∫ d4p

(2π)4
i

p2 + iδ
e−ip·x/p

]
n/i+n/i−

4 = λ2, (2.25)

where we have used decomposition in equation (2.3) to write pµ in terms of light-like
components before contracting it with a γµ and using the fact that /ni−/ni− = /ni+/ni+ = 0,
such that

n/i−n/i+
4 /p

n/i+n/i−
4 = (ni+p)

/ni−
2 ∼ λ0 . (2.26)

Hence, from (2.25) we see that the ξi(x) field scales as ξi ∼ λ. A similar analysis reveals
that the ηi(x) field scales as ηi ∼ λ2, and the soft field q(x) scales as q ∼ λ3. The gauge
field scales like its momentum, hence Aµc (x) ∼ pµc and Aµs (x) ∼ pµs , where the momenta pµc
and pµs are some collinear and soft momenta. For this reason only the n−As component is
not power suppressed with respect its counterpart within the collinear gluon field Aµc (x).
The suppressed component of the collinear field ηi(x) is integrated out using equations of
motion.

We will shortly present the leading power Lagrangian. However, we must first make two
important remarks regarding the interaction terms of the SCET Lagrangian. Firstly, the
fields belonging to different collinear directions do not directly interact with each other as
this is forbidden by momentum conservation – only soft exchanges are permitted between
the collinear sectors. Secondly, each interaction term which is permitted by momentum
conservation and which contains a mixture of collinear and soft fields must be multipole
expanded to achieve homogeneous power counting [72]. We elaborate on the latter remark
by considering a Fourier transform of an interaction term in the Lagrangian, schematically
we have ∫

ddxξ̄c(x)Aµs (x) ξc(x) =
∫
ddx

∫ ddp1

(2π)d
ddp2

(2π)d
ddps
(2π)d

˜̄ξc(p1) Ãµs (ps) ξ̃c(p2)

× e−i(p1+p2+ps)·x, (2.27)

where momenta p1, p2 are collinear and momentum ps is soft. Focusing on the exponent,
we note that sum of momenta p1, p2, and ps scales as pµ1 + pµ2 + pµs ∼ Q(1, λ2, λ) which
implies that the position variable xµ scales as xµ ∼ (1/Q)(1/λ2, 1, 1/λ). With this, we
can see that all components of the collinear modes by construction contribute equally.
However, if we consider now the scalar product of xµ with a soft momentum, we find that
not all components contribute equally

ps · x = 1
2 (n−ps)(n+x)︸ ︷︷ ︸

O(λ0)

+1
2 (n+ps)(n−x)︸ ︷︷ ︸

O(λ2)

+ ps⊥ · x⊥︸ ︷︷ ︸
O(λ1)

(2.28)

where we have denoted that the first term is dominant, (n−ps)(n+x) ∼ λ0, and the
remaining terms are power suppressed with respect to the (n−ps)(n+x) term. Therefore, the
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soft field in contact with collinear fields must be Taylor expanded around xµ− = (n+x)nµ−/2.
This yields

∫
ddx ξ̄c(x)Aµs (x) ξc(x) =

∫
ddx ξ̄c(x)

Aµs (x−) + x⊥ · ∂⊥Aµs (x−)︸ ︷︷ ︸
O(λ)

+O(λ2)

 ξc(x)

=
∫
ddx ξ̄c(x)Aµs (x−)ξc(x) +O(λ) . (2.29)

Hence, soft fields multiplying collinear fields in the SCET Lagrangian are evaluated at a
position xµ−, rather than a full xµ position. Importantly, we evaluate the soft fields at xµ−
after the derivatives are taken.

The soft-collinear effective field theory Lagrangian for QCD is separated into a soft
and N collinear parts as follows

LSCETI
= Ls +

N∑
i=1
Li, (2.30)

where each of the collinear sectors is systematically power expanded in the small power
counting parameter λ

Li = L(0)
i︸︷︷︸

O(λ0)

+ L(1)
i︸︷︷︸

O(λ1)

+ L(2)
i︸︷︷︸

O(λ2)

+ . . . (2.31)

The first term in the expansion, L(0)
i , is known as the leading power contribution, and the

remaining terms denote the power corrections. The number in the superscript in terms on
the right-hand side of (2.31) denotes the relative power suppression in λ with respect to
the leading power term. The soft Lagrangian is given by

Ls = q̄si /Dsqs −
1
4

(
F s,A
µν

)2
(2.32)

where A is the adjoint colour index and the soft covariant derivative is defined as

iDs
µ(x) = i∂µ + gsA

s
µ(x), (2.33)

in terms of which we define the soft field strength tensor

igsF
s
µν =

[
iDs

µ, iD
s
ν

]
. (2.34)

The different collinear sectors in (2.30) have identical structure, here we give the leading
power contribution to the i-th collinear sector

L(0)
i = ξ̄i

/ni+
2

[
ini−Di + +gsni−As(xi−) + i /Di⊥

1
ini+Di

i /Di⊥

]
ξi −

1
4

(
F µν,A
i

)2
, (2.35)

where we have made the dependence on ni−As(xi−) explicit. The covariant derivative is
given by

iDµ
i (x) = i∂µ + gsA

µ
i (x) . (2.36)
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As emphasised above, the position argument of the soft field in (2.35) is only the component
xµ−. The collinear fields are evaluated at xµ. The field strength in equation (2.35) is defined
by

igsF
µν
i =

[
iDµ

i + gsni−A
s(xi−)n

µ
+

2 , iDν
i + gsni−A

s(xi−)n
µ
+

2

]
, (2.37)

where Dµ
i is decomposed as

Dµ
i = (ni−Di)

nµi+
2 + (ni+Di)

nµi−
2 +Dµ

i⊥ (2.38)

according to (2.3).
At leading power, soft gluons couple to collinear partons through eikonal vertices, this

is explicit in the leading power Lagrangian of SCET in (2.35).

Gauge transformations

Manifest gauge invariance built into the Lagrangian and non-local operators, which we
introduce below, is one of the key features of SCET. It enables us to make all-order
statements and predictions. We discuss it briefly here and remark that a detailed study of
gauge transformation properties of the non-abelian SCET Lagrangian has been performed
in [73].

The gauge transformations of QCD must be expanded so that the scaling of the soft
and collinear fields in the SCET Lagrangian is not altered by gauge transformations. The
soft and i-collinear gauge transformations are defined by

Vs(x) = exp
[
i αAs (x)TA

]
, Vi(x) = exp

[
i αAi (x)TA

]
, (2.39)

where the gauge functions αAs (x) and αAi (x) have a soft and collinear scaling respectively.
Under a soft gauge transformation, the soft fields transform in the standard way, see

for example [91]. However, the i-collinear fields transform according to

ξi(x) → Vs(xi−) ξi(x), (2.40)

Aµi (x) → Vs(xi−)Aµi (x)V †s (xi−) . (2.41)

Note that the soft gauge transformation here is expanded and depends only on the xµi−
component to keep a homogeneous power counting.

Next we consider the i-collinear gauge transformations. The soft fields do not transform
under these transformations since this would alter their power counting. The i-collinear
fields transform as

ξi(x) → Vi(x) ξi(x), (2.42)

Aµi (x) → Vi(x)Aµi (x)V †i (x) + 1
gs
Vi(x)

[
i∂µ + gs

nµi+
2 ni−As(xi−), V †i (x)

]
. (2.43)

To summarise, the fermion fields transform according to

ψ → Vs/iψ (2.44)
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and all covariant derivatives transform as

Dµ → Vs/iD
µV †s/i , (2.45)

with the arguments replaced xµ → xµi− in the correct places. The Lagrangian in (2.35) is
manifestly invariant under both soft and collinear gauge transformations separately. Mani-
fest gauge invariance can be systematically included in the subleading power Lagrangian,
as is carried out in detail in [73].

Wilson lines

Wilson lines are objects which play a critical role in ensuring gauge invariance of SCET.
We define the i-collinear Wilson line with the large component of the associated gauge
field in the exponent

Wi(x) = [x,−∞ni+] = P exp
[
igs

∫ 0

−∞
ds ni+Ai(x+ sni+)

]
, (2.46)

and the soft Wilson lines with the ni−As component of the soft gauge field 1

Yi+ (x) = P exp
[
igs

∫ 0

−∞
ds ni−As (x+ sni−)

]
. (2.47)

The symbol P in both of the above equations denotes a path ordering operator such that
gauge fields with a larger s are placed to the left of those with a smaller s. The limits of
the integrals in the exponents of equations (2.46) and (2.47), namely from −∞ to 0, arise
due to the fact that for concreteness we are considering incoming particles. In Wilson
lines describing outgoing particles the limits extend from 0 to ∞. Explicit expressions
for Wilson lines describing QED and QCD particles and antiparticles can be found in
equations (A.16) – (A.23) of [64].

The usefulness of Wilson lines in the construction of SCET becomes apparent upon
consideration of the behaviour of these objects under gauge transformations. Namely,
taking as an example the collinear gauge transformations we find that the Wilson lines
transform as follows

Wi(x)→ Vi(x)Wi(x)V †i (−∞ni+) . (2.48)
If we then consider gauge functions which vanish at infinity, such that V †i (−∞ni+) = 1,
then the following building blocks are collinear-gauge invariant [92]

ψi(x) ∈


χi(x) = W †

i (x)ξi(x) i-collinear quark

Aµi⊥(x) = W †
i (x)

[
iDµ

i⊥Wi(x)
]

i-collinear gluon
(2.49)

Using the scaling of the fields which make up the building blocks, as discussed below
equation (2.25), we see that the scaling of each collinear building block is O(λ) [72].

1When there are only two, back-to-back, collinear directions present, we will use the soft Wilson line
Y± (x) = P exp

[
igs
∫ 0
−∞ ds n∓As (x+ sn∓)

]
, where the + and − correspond to soft Wilson lines for the

collinear and anticollinear directions.
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Since Wilson lines appear ubiquitously in SCET, we briefly comment on their contri-
bution to calculation of Feynman diagrams. A Wilson line may source any number of
gluons by keeping higher orders in the expansion of the exponential in equations (2.46)
and (2.47). The higher number of emissions are suppressed by corresponding powers of
gs. For illustration, we consider the O(gs) term. The momentum-space Feynman rule
can be obtained Fourier transforming the gauge field and performing the ds integral. By
requiring that the Wilson line is well-behaved at infinity, we can fix the iδ prescription.
For example, considering the soft Wilson line in equation (2.47) and expanding to first
order we find the following

Yi+ (x) = 1 +
∫ d4k

(2π)4 e
−ik·x

[
−gs

nµi−
ni−k − iδ

TA

]
ÃAs,µ(k) +O(g2

s), (2.50)

where the term in the square bracket is the momentum-space Feynman rule. This Feynman
rule has an eikonal form as expected, namely, it contains a linear dependence on the
momentum.

We note that the appearance of eikonal propagators is common within soft-collinear
effective field theory since it deals with the kinematic situation where the soft momentum is
parametrically smaller than other momenta in the process and a consistent expansion can be
performed. This linear dependence on momentum is in contrast to the momentum squared
behaviour usually encountered in the propagators in calculations using full, unexpanded,
QCD.

2.3.2 Decoupling transformation
An important feature of the SCET Lagrangian is that the soft-collinear interactions can
be completely removed at leading power. This is achieved by the so-called decoupling
transformation [71] which is defined by the field redefinition below. For simplicity, we
focus on one collinear direction, c. However, the decoupling transformation can be applied
to every collinear sector present in a given problem. The decoupling transformation is
given by

ξc(x) → Y+(x−) ξ(0)
c (x) , (2.51)

Aµc (x) → Y+(x−)A(0)µ
c (x)Y †+(x−) . (2.52)

Corresponding decoupling transformations for outgoing particles are given in equa-
tion (A.15) of [64].

Focusing on the fermion piece of the leading power Lagrangian given in (2.35), we see
that the soft-collinear interactions arise only due to the presence of the soft gauge field,
As, in the in−D piece. Therefore, considering this term in the Lagrangian, and performing
the decoupling transformation we see that

ξ̄c (in−Dc + gsn−As)
/n+
2 ξc = ξ̄(0)

c in−D
(0)
c

/n+
2 ξ(0)

c , (2.53)

where the right-hand side of this equation, written in terms of the decoupled collinear
fields, does not contain any soft fields. Effectively, the field redefinitions in equations (2.51)
and (2.52) remove all soft-collinear interactions from the leading power Lagrangian in (2.35).
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Alternatively, we can write the decoupled leading power Lagrangian in terms of the
decoupled collinear gauge-invariant fields introduced in (2.49). In this case, the interaction
term takes the following form

ξ̄c (in−Dc + gsn−As)
/n+
2 ξc = χ̄(0)

c

(
in−∂ + n−A(0)

c

) /n+
2 χ(0)

c , (2.54)

where Aµc = W †
c [iDµ

c Wc] according to the second line of (2.49). The superscript (0) on
the decoupled fields is customarily dropped after the field redefinition is performed. This
convention is followed in this work, unless for clarity we make this superscript explicit in
which case this will be noted.

2.3.3 Matching procedure
In equations (2.21) and (2.22) we have specified how the full QCD fields decompose into
effective field theory fields and remarked that hard modes are contained in the so-called
Wilson, hard-matching, coefficients. In this section we outline how this procedure is
performed in practice. To construct the effective field theory, we write down all possible
operators compatible with the symmetries of the theory and assign a matching coefficient
to each operator – the Wilson coefficients. We then compute identical quantities in the
full and effective theories, and adjust the value of the Wilson coefficient such that the
two results match. In SCET, the Lagrangian is not modified by the matching corrections.
The hard-matching corrections are received only by operators which contain at least two
collinear fields in separate directions. As an example we consider the matching of the
QED vector current to the SCET fields. This quantity will become useful in the following
chapters.

The matching of the vector current requires only two back-to-back collinear directions.
Therefore they can be described by one set of light-like vectors nµ±. As usual, the
(n1+p) = (n+p) component of the momentum p is large in the first sector which we call
collinear, and in the second sector, which we call anticollinear, the large component is
(n−p), where (n2+p) = (n−p).

We construct the leading power current operator using the collinear gauge-invariant
fields given in (2.49). It is important that we include all possible operators in the effective
field theory. With this in mind, we note that derivatives of a field with respect to its
large component are not power suppressed, n+∂ χc(x) ∼ λ0 χc(x). Hence, we have to keep
an arbitrary number of these derivatives in the current operators. This is achieved by
considering the expansion of the collinear field in the direction of the large momentum flow

χc(x+ tn+) =
∞∑
k=0

tk

k! (n+∂)k χc(x) , (2.55)

which implies that the inclusion of any number of unsuppressed derivatives acting on
the collinear field is equivalent to making the field non-local along the collinear direction.
Sometimes this is referred to as “smearing” along the light-cone.

The matching of the vector current in the full theory onto the SCET fields at leading
power is described by the following equation

ψ̄ γρψ(0) =
∫
dt dt̄ C̃A0,A0(t, t̄ )χ̄c̄(t̄n−) γρ⊥χc (tn+) , (2.56)
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Figure 2.2: Momentum-space pictorial representation of the hard matching relation given in
equation (2.56). Hard fluctuations in full theory diagrams appear on the left-hand
side of the matching equation. On the right-hand side we find SCET fields and the
Wilson coefficient, CA0, for the leading power DY current operator. The value of
CA0 is found by the requirement that the two sides of the matching equation are
equal.

where we have used the χc, χ̄c̄ fields which are not decoupled. Here we use the “bar”
notation to denote variables which account for the anticollinear direction, t̄, and we keep
this convention in the following chapters. The physical interpretation of this equation
is that the hard fluctuations in the full theory, on the left-hand side, are integrated out
and contained in the matching, Wilson, coefficient C̃A0,A0(t, t̄ ) in the effective field theory,
on the right-hand side. The A0 notation will be explained in section 2.4.1. A pictorial
representation of the matching equation in (2.56) is presented in momentum space in
figure 2.2, where we have used the Fourier transform of the Wilson coefficient defined by

CA0,A0(n+p, n−p̄ ) =
∫
dt dt̄ e−i (n+p) t−i (n−p̄) t̄ C̃A0,A0(t, t̄ ) . (2.57)

The operator matching equation given in (2.56) is valid to all orders in perturbation
theory. In practical applications, information about the Wilson coefficient is required
up to a certain accuracy in αs. Currently, it is known up to three loops [93, 94]. In the
present work, we use the d-dimensional hard matching coefficient at the one-loop order.
The result for this quantity can be found in equation (2.23) of [95]

CA0,A0(n+p, n−p̄) = 1 + αs
4πCF

(
−Q2

µ2

)−ε (
− 2
ε2
− 3
ε
− 8 + π2

6

+ ε

(
π2

4 + 14ζ(3)
3 − 16

)
+O(ε2)

)
+O(α2

s) , (2.58)

where Q2 = (n+p)(n−p̄) and we keep terms up to O(ε). For later purposes, we define
the H function which is given by the product of the hard matching coefficient and its
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complex conjugate, H = |CA0,A0|2. Taking care to treat the imaginary part correctly, up
to one-loop accuracy the hard function is given by

H(Q2) = 1 + αsCF
4π

(
− 4
ε2
− 1
ε

(
4 ln

(
µ2

Q2

)
+ 6

)

−
(

2 ln2
(
µ2

Q2

)
+ 6 ln

(
µ2

Q2

)
− 7π2

3 + 16
)

+ε
(
− 2

3 ln3
(
µ2

Q2

)
− 3 ln2

(
µ2

Q2

)
+
(7

3π
2 − 16

)
ln
(
µ2

Q2

)

+28
3 ζ(3) + 7

2π
2 − 32

)
+O(ε2)

)
+O(α2

s) . (2.59)

As discussed in section 2.3.2, the decoupling of soft-collinear interactions is an important
property of the leading power Lagrangian. The decoupling transformation can also be
applied to the SCET fields present in the hard matching equation. We state again here
the field redefinition for the collinear-gauge-invariant collinear quark building block for
the incoming particles which we consider in this work

χc(x) → Y+(x−)χ(0)
c (x). (2.60)

Application of the decoupling transformation in (2.60) to the SCET current in equa-
tion (2.56) has the following effect

ψ̄ γρψ(0) =
∫
dt dt̄ C̃A0,A0(t, t̄ ) χ̄c̄(t̄n−)Y †−(0)γρ⊥Y+(0)χc (tn+) , (2.61)

where on the right-hand side of the equation we now use the decoupled fields, but have
already dropped the superscript (0). The consequence of this field redefinition we depict in
the two diagrams in figure 2.3. The soft interactions are now governed by the Wilson lines
as can be seen on the right panel of figure 2.3 and there are no soft-collinear interactions, in
contrast to the non-decoupled theory presented in the left panel. The leading power Wilson
coefficient is represented by the circle connecting collinear and anticollinear directions
labelled A0.

2.4 SCET at next-to-leading power
Since its inception, the formalism of the soft-collinear effective field theory has been applied
to many processes and by now many relevant LHC observables are resummed to a high
logarithmic accuracy at leading power. The subleading power corrections have received
comparatively less attention, although the first studies of next-to-soft emissions from
amplitudes using diagrammatic techniques date back to the work of Low [96] and Burnett
and Kroll [97] in the late 1950s and 1960s. The effective field theory framework is ideally
suited to investigations beyond the leading power as systematic power expansion and
gauge invariance are built into the formalism. Indeed, exploration of power corrections in
various contexts by the means of SCET has received increased interest in recent times. On
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Figure 2.3: The left panel depicts the QED vector current matched onto SCET fields prior to
the application of the decoupling transformation. The right panel corresponds to
the same object after the decoupling transformation, in equation (2.60), has been
applied.

the one hand, the motivation is to improve the accuracy of phenomenological predictions,
and on the other hand, purely to advance our understanding of gauge theories beyond
leading power to all orders in perturbation theory. There exist interesting field theoretic
phenomena and intricate structures to study.

It is noteworthy that some of the ingredients necessary for computations beyond leading
power have been worked out some time ago, for instance the non-abelian SCET Lagrangian
has been presented as early as 2002 in [73] and power corrections in 1/mB have been studied
in the context of B-physics in [75]. The basis for subleading N -jet operators, on which the
work presented here is grounded, has been introduced by M. Beneke, M. Garny, R. Szafron,
and J. Wang in [86, 87] along with a first complete computations of the soft-anomalous
dimensions at subleading power. There exist specific cases for which the subleading power
anomalous dimensions were computed earlier, such as the heavy-to-light current [98, 99]
and the power suppressed tree-level currents relevant for the production of two jets in
electron-positron collisions [100, 101]. Moreover, formal insights and investigations of
properties of subleading currents and divergent operators were discussed aforementioned
authors in [88]. We direct the interested reader to these references for the many technical
details and considerations in the position-space formalism which we now introduce in a
practical manner.2

2.4.1 Basis for subleading N-jet operators
We begin the discussion by writing down the Lagrangian of SCET up to O(λ2) in the power
expansion. We do this in full since the Lagrangian will be extensively used throughout this
work and it makes clear the structure of subleading power Feynman rules that we discuss
in section 2.4.2. The Lagrangian is invariant under N collinear gauge transformations
and a soft gauge transformation. We have briefly discussed the manifest gauge invariance
of the SCET Lagrangian at leading power in section 2.3.1, the extension beyond leading
power is intricate and was developed for the non-abelian case in [73].

The full SCET Lagrangian, given schematically in (2.30), is constructed from the soft
2An operator basis at next-to-leading power in the momentum-space SCET formulation can be found

in [102, 103, 104, 105].
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Lagrangian, Ls, and N copies of the collinear Lagrangian, Li. To avoid cluttering of the
expressions with additional indices, we focus on a single collinear direction and drop the
corresponding index i distinguishing between the different collinear directions. Then, using
the notation in (2.31) the Lagrangian up to O(λ2) is given by [73]

L = L(0) + L(1)
ξ + L(2)

ξ + L(1)
ξq + L(2)

ξq + L(1)
YM + L(2)

YM , (2.62)

where L(0) is written in equation (2.35), and for completeness the subleading power terms
are explicitly given by

L(1)
ξ = ξ̄

(
xµ⊥n

ν
−Wc gsF

s
µνW

†
c

) /n+
2 ξ, (2.63)

L(2)
ξ = L(2)

ξ,I + L(2)
ξ,II + L(2)

ξ,III (2.64)

= 1
2 ξ̄
(
(n−x)nµ+nν−Wc gsF

s
µνW

†
c

) /n+
2 ξ + 1

2 ξ̄
(
xµ⊥x

η
⊥n

ν
−Wc

[
Ds
η, gsF

s
µν

]
W †
c

) /n+
2 ξ

+ 1
2 ξ̄
(
i /Dc⊥

1
in+Dc

xµ⊥γ
ν
⊥Wc gsF

s
µνW

†
c + xµ⊥γ

ν
⊥Wc gsF

s
µνW

†
c

1
in+Dc

i /Dc⊥

)
/n+
2 ξ,(2.65)

L(1)
ξq = q̄ W †

c i /Dc⊥ξ − ξ̄i
←
/Dc⊥W

†
c q (2.66)

L(2)
ξq = q̄ W †

c

(
in−D + i /Dc⊥

1
in+Dc

i /Dc⊥

)
/n+
2 ξ + q̄ x⊥µ

←
DsW

†
c i /Dc⊥ ξ

− ξ̄
/n+
2

in−←D + i
←
/Dc⊥

1
in+

←
Dc

i
←
/Dc⊥

Wc q − ξ̄ i
←
/Dc⊥Wc x⊥µD

µ
s q , (2.67)

L(1)
YM = Tr

(
nµ+F

c
µν⊥

Wc i
[
xρ⊥n

σ
−F

s
ρσ ,W

†
c [iDν⊥

c Wc]
]
W †
c

)
− Tr

(
n+νF

µν⊥
c Wc n

ρ
−F

s
ρν⊥

W †
c

)
, (2.68)

L(2)
YM = 1

2Tr
(
nµ+F

c
µν⊥

Wc i
[
n−xn

ρ
+n

σ
− F

s
ρσ + xρ⊥x⊥ωn

σ
−

[
Dω
s , F

s
ρσ

]
,W †

c [iDν⊥
c Wc]

]
W †
c

)
− 1

2Tr
(
nµ+F

c
µν⊥

Wc i
[
xρ⊥ F

s
ρν⊥

, W †
c in−DWc in−Ds

]
W †
c

)
+ Tr

(
F µ⊥ν⊥
c Wc i

[
xρ⊥ F

s
ρµ⊥

, W †
c [iDcν⊥Wc]

]
W †
c

)
+ 1

2Tr
(
nµ+n

ν
+F

c
µνWcn

ρ
+n

σ
+F

s
ρσW

†
c

)
− Tr

(
F µ⊥ν⊥
c WcF

s
µ⊥ν⊥

W †
c

)
− Tr

(
n+µF

µν⊥
c Wcn

ρ
−x⊥σ

[
Dσ
s , F

s
ρν⊥

]
W⊥
c

)
. (2.69)

In the above expressions, just as in the leading power Lagrangian, the soft fields are
evaluated at position x−, we do not write this explicitly to avoid cumbersomeness.

We recall that the number in brackets in the superscript of L denotes the power
suppression of the term with respect to the leading power expression. We demonstrate
the counting briefly using the power counting of the fields given in equation (2.25) for the
collinear fields, and discussed below this equation for the soft fields. The leading power
action is O(λ0), and now we consider the action for the L(1)

ξ Lagrangian term in (2.63)∫
d4xL(1)

ξ =
∫

d4x︸︷︷︸
∼1/λ4

ξ̄︸︷︷︸
∼λ

(
xµ⊥︸︷︷︸
∼1/λ

nν−Wc gs F
s
µν︸︷︷︸
∼λ4

W †
c

) /n+
2 ξ︸︷︷︸
∼λ

∼ O(λ) , (2.70)
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as required.
The form of this Lagrangian can seem intimidating at first, especially the appearance

of explicit position arguments which arise as a consequence of multipole expansion. In
momentum space, these give rise to derivatives that act on delta functions which ensure
momentum conservation at every vertex in a Feynman diagram. This is not a standard
feature in the usual QCD Feynman diagram calculation, and a point which we will return
to in section 2.4.2, where we present how these rules can nonetheless be worked out and
applied consistently in a calculation.

An important feature of the SCET Lagrangian is that explicit homogenous power
counting is manifest in each term, this fact makes the SCET framework ideally suited to
deriving all order factorisation theorems.

Another important observation is that there are no purely collinear subleading interac-
tions as every term in equations (2.63) – (2.69) contains a soft field. This remains true even
after the decoupling transformation is performed as will be shown in section 2.4.3. This
feature leads to new physical effects at subleading powers and has profound consequences
for the structure of factorisation beyond leading power. This fact we mention now without
a proper explanation or example, however, we will return to this discussion in far greater
detail in our case study of the factorisation in the Drell-Yan process and Higgs production
at threshold in chapters 3 and 9 respectively.

Having written down the Lagrangian up toO(λ2), we proceed to outline the construction
of a complete basis for subleading power N -jet operators as described in [86]. In chapter 3
we specialise to a particular number of jet directions, N = 2, for the Drell-Yan process.
However, for the purposes of the construction of the N -jet basis we keep the discussion
general.

The structure of an N -jet operator is captured by [86]

J =
∫ [∏

ik

dtik

]
C({tik}) Js(0)

N∏
i=1

Ji(ti1 , ti2 ...) (2.71)

where C({tik}) is a generalised Wilson coefficient, Js is a soft operator, and Ji is a product
of ni collinear-gauge-invariant collinear building blocks associated to a particular collinear
direction ni+

Ji(ti1 , ti2 ...) =
ni∏
k=1

ψik(tikni+). (2.72)

The elementary collinear-gauge-invariant collinear building blocks we have already given
above in the context of the leading power discussion in equation (2.49).

As the starting point for the construction, we consider the leading power N -jet operator
to which only a single building block contributes in each direction. In the expressions,
this means that we take ni = 1 for every direction i = 1, 2, ...N . This is labelled by a
superscript A0, and explicitly, we write

JA0
i (ti) = ψi(tini+), (2.73)

for every i. We have depicted the leading power N -jet operator in the top-left diagram of
figure 2.4.
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We proceed to consider the contributions which are suppressed by O(λ). As explained
in [86], there are effectively two ways in which power suppression in the N -jet operator
can arise up to and including O(λ2).

The first way is through derivatives, ∂i⊥, acting on the building blocks ψik . Up to and
including order O(λ2), the basis is given by

JA1
i (ti) = i∂µi⊥J

A0
i (ti) O(λ), (2.74)

JA2
i (ti) = i∂µi⊥i∂

ν
i⊥J

A0
i (ti) O(λ2) . (2.75)

Within the label “An” in the superscript, A means that there is only one field present
in the current, and n gives the order of the power suppression in λ. Such operators are
depicted in the top-right and bottom-left diagrams of figure 2.4.

The second way of inducing power suppression in the N -jet operator is by introducing
another i-collinear building block in a particular collinear direction, since each building
block scales as O(λ). These operators are labelled by JBn, with the letter B indicating that
there are two fields present in one collinear direction. We have the following possibilities
at O(λ) [86]

JB1
i (ti1 , ti2) = ψi1(ti1ni+)ψi2(ti2ni+) ∈



χi(ti1ni+)χi(ti2ni+)

Aµi⊥(ti1ni+)χi(ti2ni+)

Aµi⊥(ti1ni+)Aνi⊥(ti2ni+)

χi(ti1ni+)χ̄i(ti2ni+)

(2.76)

and the conjugate operators. As an illustration, a JB1 operator in the i-th direction is
present in the bottom-left diagram of figure 2.4, alongside a JA1 operator in the j-th
direction.

We can also envisage that derivatives acting on the JB1 operators will give rise to
operators of type JB2, where there is still one extra field present in a particular collinear
direction with respect to the leading power, and a ∂i⊥ derivative is acting on the building
blocks. The possibilities are [86]

JB2
i (ti1 , ti2) ∈


ψi1(ti1ni+)i∂i⊥ψi2(ti2ni+)

i∂i⊥
[
ψi1(ti1ni+)ψi2(ti2ni+)

] (2.77)

where any of the JB1 currents can make up the ψi1(ti1ni+)ψi2(ti2ni+) combination.
At O(λ2) another type of power suppressed current is possible, namely, one where

two extra collinear building blocks are included in a particular direction, on top of the
leading power building block. In accordance with the labelling scheme we follow here, the
operator of this type is labelled JC2 as it is made up by a total three fields in one collinear
direction, and it is given by [86]

JC2
i (ti1 , ti2) = ψi1(ti1ni+)ψi2(ti2ni+)ψi3(ti3ni+). (2.78)

A JC2 operator is depicted to be present in the ith direction in the bottom-right diagram
of figure 2.4.
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To summarise the above discussion, we have thus far considered two ways of including
power suppression in the current operators in a particular collinear direction, that is,
through inclusion of derivatives on the building blocks, and the addition of extra building
blocks themselves.

As discussed in [86], there exists a third way that power suppression can enter the
subleading power operator basis, and that is through appearance of completely new types
of operators such as contributions to the pure soft building block, Js. However, it has
been shown in [86] that any new type of collinear building block can be recast in the
basis already given above, and the pure soft contributions start at O(λ3). We refer to the
discussion in [86] for more details. Here we only give examples of the pure soft building
blocks for concreteness, since the formal factorisation theorem derived in chapter 3 is an
all order and all power expression which does contain Js, but the calculations we perform
are at the next-to-leading power, O(λ2), level. The covariant, pure soft, building blocks
which can make up Js are for example

q(x) ∼ O(λ3), F µν
s (x) ∼ O(λ4), iDµ

s q(x) ∼ O(λ5). (2.79)

Note that the fields retain the full x dependence in the purely soft sector. The covariant
derivative, which acts only on soft building blocks, is iDµ

s (x) = i∂µ + gsA
µ
s (x), and the

soft field strength tensor is given by igsF µν
s =

[
iDµ

s , iD
ν
s

]
as in equations (2.33) and (2.34)

respectively. Note that in equation (2.71) Js(x) appears with the argument x = 0 on the
grounds that when the purely soft building block appears in a product with operators in
N collinear directions, the multipole expansion must be carried out in each of the collinear
directions effectively requiring that x = 0 in Js(x).

This concludes the discussion of how power suppression can be included in each leg of
an N -jet scattering process. It is then easy to see how the total power suppression for the
N -jet operator in (2.71) is obtained. One simply has to sum all the possible combinations
which give rise to power suppression. For example, at O(λ2) the power suppression could
be induced by a JA2, JB2, or JC2 operator on a single leg, with N − 1 directions remaining
at leading power, or by two JA1 or JB1 operators on two separate i-collinear legs and
N − 2 directions kept at leading power. One could also consider a mixture of JA1 and
JB1 currents on two separate legs. We show these examples in several panels of figure 2.4.
Such an investigation is systematically performed in chapter 3 for the Drell-Yan process
up to O(λ2).

These considerations do not yet yield a full picture regarding N -jet operator basis in
SCET. We continue to follow the framework introduced in [86] and adopt the interaction
picture. This means that it is understood that all operator matrix elements are evaluated
with the leading-power SCET Hamiltonian and that we treat the subleading SCET
Lagrangian insertions as perturbations. The basis of subleading power N -jet operators
then contains further operators which are “non-local” and are built from time-ordered
products of the current operators J defined above with terms from the subleading SCET
Lagrangian, given here in equations (2.63) – (2.69). At O(λ) these time-ordered product
operators take the following form

JT1
i (ti) = i

∫
ddxT

{
JA0
i (ti)L(1)

i (x)
}
, (2.80)
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Figure 2.4: Sample contributions to the N -jet scattering process. In panel (a) we have schemat-
ically drawn a leading power N -jet operator with one collinear field present in each
of the N collinear directions. Panels (b), (c), and (d) show possible power correc-
tions to the leading power process in (a). We have coloured the collinear sectors
which receive power corrections. Panel (b) contains O(λ) contribution where the
power suppression is provided by a ∂⊥ derivative acting on the fermion field in the
i-th collinear direction. The remaining legs are kept at leading power. Panels (c)
and (d) show an overall λ2 suppressed N-jet operator. In panel (c), the O(λ2)
suppression comes from two different collinear sectors, i and j in this example.
The O(λ) power suppression in the i-th collinear sector is provided by the presence
of an additional field in that direction and the power suppression of the same order
is provided in the j-th collinear sector by a ∂⊥ derivative. In panel (d), the O(λ2)
suppression originates in the i-th sector with two additional collinear fields present,
with respect to the leading power case. Many more other possible combinations
exist.

where L(1)
i (x) are terms of the subleading power Lagrangian in the relevant collinear

sector L(1)
i (x) = L(1)

iξ (x) + L(1)
iξq(x) + L(1)

iYM(x) given in equations (2.63), (2.66), and (2.68)
respectively. At higher powers, the basis includes single and multiple higher-power
Lagrangian insertions L(n) in time-ordered products with power-suppressed currents, such
as JA1

i , JB1
i , JA2

i and so on, as well as the leading power JA0 current. We stress here that
the time-ordered product operators do contain soft fields, through the subleading power
Lagrangian terms. This is in stark contrast to the operators of the A, B, C . . . - type,
which, as discussed above, contain only the derivatives on collinear building blocks or
additional building blocks in any particular direction.
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2.4.2 Feynman rules
Explicit calculation of the NLP collinear functions at one-loop order, carried out in
chapter 4, is one of the main new contributions of the work presented here. For this
reason, and since the next-to-leading power SCET Feynman rules are more involved than
QCD Feynman rules, we now discuss how they are derived and how they can be used
in calculations. We also give explicitly the subleading SCET Feynman rules which are
extensively used in this work. For a full set of Feynman rules up to O(λ2) we point to
appendix A of [87].

To avoid unnecessary clutter in the expressions, we now focus on one collinear sector and
set nµi± → nµ±. As stated above, we work in the interaction picture where the subleading
SCET Lagrangian terms are used as perturbations. To find the Feynman rules we consider
the interaction part of the action, in particular, for the purpose of this example, we
concentrate on the first term in L(2)

ξ in equation (2.65) which we name L(2)
ξ,I :

L(2)
ξ,I = 1

2 ξ̄
(
(n−x)nρ+nν−Wc gsF

s
ρνW

†
c

) /n+
2 ξ . (2.81)

The matrix element of this Lagrangian term with an incoming quark and soft gluon, and
an outgoing quark, carrying momenta p, k, and p′ respectively, is given by

〈q̄(p′)|i
∫
ddxL(2)

ξ,I (x)|q(p) gA(k)〉 = 〈q̄(p′)|i
∫
ddx

1
2 ξ̄(x)

(
(n−x)nρ+nν−Wc gsF

s
ρνW

†
c

)
×
/n+
2 ξ(x)|q(p) gA(k)〉, (2.82)

where A is the adjoint colour index of the soft gluon.
Using standard mode decomposition and taking the derivatives which appear in the

soft field strength tensor gives the following expression

〈q̄(p′)|i
∫
ddxL(2)

ξ,I (x)|q(p) gA(k)〉 = 1
2 v̄(p′)i

∫
ddx (n−x)nρ+nν−

(
− ikρεν(k) + ikνερ(k)

)
×
/n+
2 gsTA u(p)eip′·xe−ip·xe−ik·x− , (2.83)

where we have set the (conjugate)collinear Wilson lines, Wc(W †
c ), to unity, and we suppress

spin and fundamental colour indices. We stress that here, since we consider subleading
power terms of the SCET Lagrangian, due to multipole expansion the derivatives acting
on the soft fields here are performed before the position is set to xµ = xµ−, where
xµ− = (n+x)nµ−/2. Only after the derivative acting on the soft field As is performed, can
xµ be set to xµ− as we have done in the argument of the exponential e−ik·x− . Therefore,
the n+k component of the soft momentum survives in the numerator of equation (2.83),
although it is not conserved in the momentum-conserving delta function which we show
below.

In the standard derivation of Feynman rules, the next step after reaching the analogue
of (2.83) would be to perform the d-dimensional integral over the position of the interaction
vertex which yields the momentum conserving delta function. At subleading powers, as
in (2.83), this step cannot be directly performed due to (n−x) component appearing in
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the expression. We first replace this term with a derivative with respect to the incoming
momentum p acting on e−ip·x, (n−x)e−ip·x = inµ−

∂
∂pµ

e−ip·x. Then the
∫
ddx integral can be

performed and we obtain

〈q̄(p′)|i
∫
ddxL(2)

ξ,I (x)|q(p) gA(k)〉 = 1
2igsT

A v̄ (n−Z)nρ+nν−
(
kρεν − kνερ

) /n+
2 u. (2.84)

On the right-hand side v̄ ≡ v̄(p′), u ≡ u(p), εν(ρ) ≡ εν(ρ)(k), and

Zµ = ∂

∂pµ
(2π)d δ(d)

(
p+ k+ − p′

)
, (2.85)

where kµ+ = (n−k)nµ+/2 in the argument of the delta function. Finally, in the last step, to
obtain the Feynman rule for this power suppressed interaction we strip off the polarisation
vector and the spinors. The result, along with the Feynman rules for the remaining terms
in L(2)

ξ (x), will be given shortly. We first remark two important features of the above
result.

First, perhaps the most non-standard feature, is the derivative in (2.85) which acts on
the momentum conserving delta function. Because of this fact, momentum conservation
cannot be naively imposed at the subleading power interaction vertices in Feynman
diagrams. In practice, in a Feynman diagram calculation, the above result means that
we first have to integrate by parts, such that this derivative acts on the rest of the
expression, and only after this derivative is evaluated can the momentum conservation
at the subleading power vertex be imposed using the delta function in (2.85). Standard
Feynman rules often have the momentum conserving delta function stripped off, as it is
implied that momentum is conserved at every vertex, and this is often implemented as
soon as one draws the Feynman diagram. Here, the momentum conserving delta function
remains in the Feynman rules explicitly and it has to be dealt with carefully as will be
shown in chapter 4 in a concrete calculation. For example, see the discussion between
equations (4.31) and (4.33).

The second crucial feature that we point out is already present at leading power,
however, it is nonetheless important from the point of view of constructing a consistent
effective field theory framework. It is namely the fact it is only the (n−k) component of
the soft momentum which enters the momentum conserving delta function, as can be seen
in (2.85). This is a consequence of multipole expansion which guarantees homogeneous
power counting. This component is of the same order as the small component of the
collinear momentum, O(λ2), hence it remains after the multipole expansion is performed.
This is in contrast to n+k and k⊥ components of the soft momentum which are power
suppressed with respect to the corresponding components of the collinear momentum in
SCETI as explained below equation (2.4) and which therefore do not enter the momentum
conserving delta function. To illustrate this point explicitly, consider a Feynman graph
where there is a collinear quark propagator attached to the above soft-collinear interaction.
Due to the interaction, soft momentum is injected into the collinear propagator (given
below in equation (2.87)), however only the kµ+ component survives3∫ ddp

(2π)d
i(n+p)
p2

/n−
2 (2π)d δ(d)

(
p+ k+ − p′

)
= i(n+p

′)
(p′ − k+)2

/n−
2 . (2.86)

3We take a simple example where the derivative described in detail above is taken to be acting on
another part of the amplitude and not on the nearest propagator which we write here.
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We stress that this does not mean that we set (n+k) component to zero in the Feynman
rule for the subleading soft-collinear interaction like the one which we have derived above
in (2.84), the soft momentum appearing there keeps all the components as explained above.
Similarly to the previous remark, for an explicit example we direct the reader to chapter 4
and specifically the expression in equation (4.33).

We have now presented a detailed example of next-to-leading power Feynman rule
derivation. Moreover, having discussed its important features, which are also more generally
present at subleading powers, we now for ease of access and completeness give most relevant
Feynman rules for the work presented here. In line with our presentation thus far, we
continue to focus on one collinear direction, however of course the form of these Feynman
rules is the same in each collinear sector.

We begin with writing down the collinear quark propagator which takes the following
form

i(n+p)
p2 + iδ

/n−
2 . (2.87)

The collinear gluon propagator on the other hand takes the standard form. In Feynman
gauge it is given by −igµν/(p2 + iδ). Similarly, the soft quark propagator also takes the
standard form: i/k/(k2 + iδ).

For the introduction of the subleading power SCET Feynman rules, it is also necessary
to generalise Z which is given in (2.85) for the specific case we considered. We now change
the label to X in accordance with [87] and define the following structures

Xµ = ∂µ
[
(2π)dδ(d)

(∑
pin −

∑
pout

)]
, (2.88)

XµXν = ∂µ∂ν
[
(2π)dδ(d)

(∑
pin −

∑
pout

)]
, (2.89)

where the partial derivative ∂µ = ∂/∂pinµ if the derivative acts on any of the incoming
momenta (this can be freely chosen), or ∂µ = −∂/∂poutµ if the derivative instead acts on
any of the outgoing momenta.

The collinear-quark soft-gluon interaction vertex is given by

← k

p

p′

Aµa
s

ξ̄

ξ

igsTa



/n+
2 n−µ O(λ0)

/n+
2 Xρ

⊥n
ν
−(kρgνµ − kνgρµ ) O(λ)

Sρν(k, p, p′)
/n+
2 (kρgνµ − kνgρµ) O(λ2)

(2.90)

where

Sρν(k, p, p′) ≡ 1
2

 (n−X)nρ+nν−︸ ︷︷ ︸
I

+ (kX⊥)Xρ
⊥n

ν
−︸ ︷︷ ︸

II

+Xρ
⊥

(
/p′⊥
n+p′

γν⊥ + γν⊥
/p⊥
n+p

)
︸ ︷︷ ︸

III

. (2.91)

We note that, as the underlying low-energy physics dictates, the very first term in (2.90),
O(λ0), is simply the eikonal vertex. The eikonal soft-collinear coupling is explicit in the
leading power SCET Lagrangian (2.35).
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The Feynman rule for the O(λ) suppressed soft-collinear interaction derives from the
Lagrangian term L(1)

ξ given in (2.63).
The three terms of Sρν(k, p, p′) in equation (2.91) of the O(λ2) vertex in the last

entry of (2.90) correspond directly to the three terms in the power-suppressed SCET
Lagrangian written down in (2.64),(2.65) (originally given in equation (28) of [73]). We
have underbraced the three contributions and labelled them with Roman numerals, I, II,
and III, in light of the discussion presented in chapter 4. The first Feynman rule labelled
by I is due to the first Lagrangian term in (2.64), (2.65), which we call L(2)

ξ,I (as defined
in (2.81)). Analogously the second and third Feynman rules come from L(2)

ξ,II and L
(2)
ξ,III

respectively. We also see that we have agreement for the Feynman rule given by the
Lagrangian term L(2)

ξ,I , which we have derived with identical conventions for incoming and
outgoing partons in (2.84) and which is given here in the first term, I, in equation (2.91).

For the purposes of the calculations performed in chapter 4 we find it useful to also
present explicitly the collinear-soft three-gluon interaction vertex. In equation (A.45) of
[87] we find

← k

ր
p

q
ց

Aµa
s

Aνb
c

Aρc
c

1
2gsf

abc


V (0)
µνρ(k, q, p) O(λ0)
V (1)
µνρ(k, q, p) O(λ)∑6
i=1 V

(2),i
µνρ (k, q, p) O(λ2)

(2.92)

where, in the Feynman gauge, the leading power interaction is given by

V (0)
µνρ(k, q, p) ≡ −2gνρ(n+p)n−µ . (2.93)

The interaction at O(λ) is given by

V (1)
µνρ(k, q, p) ≡ V (1),λ⊥

νρ (q, p)f−µλ⊥(k) , (2.94)

where

f±ν⊥µ (k) = nκ±g
νσ
⊥ (kκgµσ − gµκkσ) , (2.95)

and

V (1),λ⊥
νρ (q, p) ≡ f+σ⊥

ν (q)f+
ρσ⊥

(p)
(

1
n+q
− 1
n+p

)
Xλ
⊥ +H+λ⊥

νρ (q, p) . (2.96)

The H+λ⊥
νρ (q, p) term in (2.96) is given by

H+λ⊥
νρ (q, p) ≡ f+λ⊥

ν (q)
n+ρ

n+p
− f+λ⊥

ρ (p)n+ν
n+q
− nσ+(gσνgκρ − gσρgκν)gκλ⊥ . (2.97)

The two terms on the right-hand side of equation (2.96) originate from the two terms of
L(1)

YM given in equation (2.68).
The interaction at O(λ2) is most involved. It is made up of the following six contribu-

tions

V (2),1
µνρ (k, q, p) ≡ V (2),1

νρ (q, p)
(
−n−Xf+−

µ (k) + kX⊥X
λ
⊥f
−
µλ⊥

(k)
)
,
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V (2),2+3
µνρ (k, q, p) ≡ V (2),2+3,λ⊥

νρ (q, p)Xκ
⊥fµκ⊥λ⊥(k) ,

V (2),4
µνρ (k, q, p) ≡ V (2),4

νρ (q, p)f+−
µ (k) ,

V (2),5
µνρ (k, q, p) ≡ V (2),5,λ⊥σ⊥

νρ (q, p)fµλ⊥σ⊥(k) ,
V (2),6
µνρ (k, q, p) ≡ V (2),6,λ⊥

νρ (q, p)kX⊥f−µλ⊥(k) , (2.98)

These six vertex factors correspond directly to the six terms of the L(2)
YM Lagrangian which

we write in equation (2.69). The number of the precise term to which each Feynman rule
corresponds to is indicated in the superscript. The f+−

µ (k) and fρ⊥ν⊥µ (k) terms are defined
as

f+−
µ (k) = nκ+n

σ
−(kκgµσ − gµκkσ) = (n+k)n−µ − (n−k)n+µ , (2.99)

fρ⊥ν⊥µ (k) = gρκ⊥ g
νσ
⊥ (kκgµσ − gµκkσ) = kρ⊥δ

ν
⊥µ − kν⊥δ

ρ
⊥µ, (2.100)

respectively, and the coefficients on the right-hand sides of the Feynman rules in (2.98)
are given by

V (2),1
νρ (q, p) ≡ 1

2f
+σ⊥
ν (q)f+

ρσ⊥
(p)

(
1
n+q
− 1
n+p

)

V (2),2+3,λ⊥
νρ (q, p) ≡ (q − p)λ⊥gνρ + pq

n+p
(n+ρδ

λ
⊥ν + n+νδ

λ
⊥ρ)− qρδλ⊥ν + pνδ

λ
⊥ρ

−
qλ⊥pνn+ρ + pλ⊥qρn+ν

n+p
,

V (2),4
νρ (q, p) ≡ 1

2
n+νn+ρ

n+p
n−(p+ q) ,

V (2),5,λ⊥σ⊥
νρ (q, p) ≡

(
pλ⊥
n+νδ

σ
⊥ρ − n+ρδ

σ
⊥ν

n+p
+ δλ⊥ρδ

σ
⊥ν

)
− (λ↔ σ) ,

V (2),6,λ⊥
νρ (q, p) ≡ −

n+νn+ρ

n+p
(p+ q)λ⊥ . (2.101)

It should be noted that in the derivation of the above contributions, except for the first
line, n+(p+ q) = 0 has been used. Moreover, for terms without X⊥, (p+ q)⊥ = 0 has been
used in simplifications of the Feynman rules.

2.4.3 Decoupling transformation
We have seen how a priori in the leading power Lagrangian soft-collinear interactions
are present and give rise to eikonal vertices. We have also seen how an application of a
field redefinition, the decoupling transformation, separates the soft and collinear sectors
completely at leading power, this is detailed in section 2.3.2. Although the structure of
the soft fields in the subleading Lagrangian terms in equations (2.63) - (2.69) is more
complicated, one might wonder whether a similar feat could be achieved for these terms.
As we will now show through the explicit application of the decoupling transformation
this is not the case [75, 40, 54].

To illustrate the fact that soft-collinear interactions persist at subleading powers even
after the decoupling transformation is performed, we begin with the lowest order, O(λ),
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power suppressed term in the quark Lagrangian, L(1)
ξ , given in (2.63). For convenience we

write L(1)
ξ again here

L(1)
ξ = ξ̄

(
xµ⊥n

ν
−Wc gsF

s
µνW

†
c

) /n+
2 ξ = χ̄

(
xµ⊥n

ν
− gsF

s
µν

) /n+
2 χ, (2.102)

where in the second step we have used (2.49) to write the collinear fields in terms of
the collinear-gauge-invariant collinear building blocks. Now performing the decoupling
transformation as defined in (2.60) yields the following result

L(1)
ξ = χ̄(0) xµ⊥n

ν
− gsY

†
+F

s
µνY+

/n+
2 χ(0). (2.103)

Note that in this section we keep the (0) superscript on the decoupled fields to emphasise
that the field redefinition has been applied. We now define F+

µν = Y †+F
s
µνY+ and make use

of the following relation

igsn
ν
−F

+
µν =

[
− in−∂B+

µ

]
, (2.104)

where on the right-hand side the square brackets remind that the n−∂ derivative acts
only on the introduced soft gluon building block, B+, which is built from a soft covariant
derivative and soft Wilson lines. In fact, in what follows we will use two sets of soft gluon
and soft quark building blocks which are defined as

Bµ± = Y †± [iDµ
s Y±] , (2.105)

q± = Y †± qs . (2.106)

Using the above relations, the L(1)
ξ Lagrangian term in (2.103) becomes

L(1)
ξ = χ̄(0) ixµ⊥

[
in−∂B+

µ

] /n+
2 χ(0). (2.107)

We recall that, as in the Lagrangian given above in equation (2.62), the soft field is
evaluated at the multipole-expanded position, xµ−. In this result, we draw attention to
the fact that the collinear fields present here are decoupled. We see that even after the
decoupling transformation is performed, soft-collinear interactions persist at subleading
power. The vast implications of this observation for the description of physical processes
at subleading powers will be explored in detail in chapter 3.

Following the above considerations leads to the same results at further subleading
powers. For example, we focus again on the L(2)

ξ,I term found in (2.81), which we have used
in the explicit Feynman rule derivation in the previous subsection. By analogy with L(1)

ξ

in (2.102) we can simply write down the result since the field content of both terms is
identical. Explicitly we have

L(2)
ξ,I = 1

2 ξ̄(n−x)nρ+nν−WcgsF
s
ρνW

†
c

/n+
2 ξ = 1

2 χ̄
(0)(in−x)nρ+

[
in−∂B+

ρ

] /n+
2 χ(0) = L(2)

1ξ . (2.108)

In the last step we introduce notation from [40], which we will often use to refer to the
decoupled Lagrangian. The manipulations become more cumbersome for the remaining
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terms in the subleading power SCET Lagrangian. The L(2)
ξ,II Lagrangian term splits into

two parts in the decoupled basis L(2)
ξ,II = L(2)

2ξ + L(2)
3ξ which are given by

L(2)
2ξ = 1

2 χ̄
(0)
c xµ⊥x

ν
⊥

[
i∂νin−∂B+

µ

] /n+
2 χ(0)

c , (2.109)

L(2)
3ξ = 1

2 χ̄
(0)
c xµ⊥x

ν
⊥

[
B+
ν , in−∂B+

µ

] /n+
2 χ(0)

c , (2.110)

Similarly, L(2)
ξ,III Lagrangian term splits into L(2)

ξ,III = L(2)
4ξ + L(2)

5ξ which are given by

L(2)
4ξ = 1

2 χ̄
(0)
c

(
i/∂⊥ + /A(0)

c⊥

) 1
in+∂

ixµ⊥γ
ν
⊥

[
i∂νB+

µ − i∂µB+
ν

] /n+
2 χ(0)

c + h.c., (2.111)

L(2)
5ξ = 1

2 χ̄
(0)
c

(
i/∂⊥ + /A(0)

c⊥

) 1
in+∂

ixµ⊥γ
ν
⊥

[
B+
ν ,B+

µ

] /n+
2 χ(0)

c + h.c., (2.112)

The A(0)
c⊥ is the decoupled collinear-gluon field. For completeness we also write down here

the terms of the fermion Lagrangian which contains the soft quark. After the decoupling
transformation these terms are given by

L(1)
ξq = q̄+ /A

(0)
c⊥χ

(0)
c + h.c., (2.113)

L(2)
ξq = q̄+

[
in−∂ + n−A(0)

c +
(
i∂/⊥ +A/(0)

c⊥

) 1
in+∂

(
i∂/⊥ +A/(0)

c⊥

)]
n/+

2 χ(0)
c

+ q̄+

(
i
←−
∂ µ + Bµ+

)
x⊥µ

(
i∂/⊥ +A/(0)

c⊥

)
χ(0)
c + h.c. . (2.114)

In what follows, the (0) superscripts will not be made explicit to keep the notation as light
as possible. The Yang-Mills Lagrangian in the decoupled basis is provided in appendix A.1.

2.4.4 Matching beyond leading power
The formal N -jet operator basis we have described above in section 2.4.1. In this subsection,
we find it instructive to illustrate features of the matching procedure beyond leading power
using the example of hard matching of the vector current which we have considered at
leading power and given the results for, up to O(αs), in section 2.3.3. We write down the
possible basis of operators following the formal discussion above, and explicitly perform
tree-level matching in momentum space for the subleading SCET currents at O(λ). In this
example we focus on O(λ) contributions as the size of the basis of subleading operators
remains manageable and suitable for an introductory discussion.

As in section 2.3.3, we restrict the discussion to only two collinear directions which
are back-to-back. In a general setting, the total power suppression of an N -jet operator
is given by summation of the power suppression in each i-collinear sector. At O(λ), the
power suppression can arise in one sector only, with the second sector remaining at leading
power. Moreover, the only two possible types of power suppressed building blocks are
JA1
i and JB1

i given in equations (2.74) and (2.76) respectively. The hard matching of the
vector current at O(λ) is given by

ψ̄γρψ(0)|O(λ) =
∫
dtdt̄ C̃A0,A1(t, t̄ )JA0,A1

ρ (t, t̄ ) +
∫
dt1dt2dt̄ C̃

A0,B1(t1, t2, t̄ )JA0,B1
ρ (t1, t2, t̄ )
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+
∫
dt dt̄ C̃A1,A0(t, t̄ ) JA1,A0

ρ (t, t̄ ) +
∫
dt dt̄1dt̄2 C̃

B1,A0(t, t̄1, t̄2) JB1,A0
ρ (t, t̄1, t̄2)

+ c↔ c̄, (2.115)
where

JA0,A1
ρ (t, t̄ ) = χ̄c̄(t̄n−) ΓA0,A1

ρµ i∂µ⊥χc(tn+), (2.116)

JA0,B1
ρ (t1, t2, t̄ ) = χ̄c̄(t̄n−) ΓA0,B1

ρµ Aµc⊥(t2n+)χc(t1n+), (2.117)

JA1,A0
ρ (t, t̄ ) = χ̄c̄(t̄n−)

←
i∂µ⊥ ΓA1,A0

ρµ χc(tn+), (2.118)

JB1,A0
ρ (t, t̄1, t̄2 ) = χ̄c̄(t̄1n−)Aµc̄⊥(t2n−)ΓB1,A0

ρµ χc(t1n+). (2.119)
We see that placing power suppression in the anticollinear sector takes the same form as
in the collinear one, hence without loss of generality we next focus on the case where the
power suppression arises in the collinear sector. The purpose of the current discussion is
two-fold. Firstly, we discuss the possible spinor and Lorentz structure which can make up
the ΓA0,A1

ρµ and ΓA0,B1
ρµ structures. Secondly we compute tree-level matching coefficients

CA0,A1 and CA0,B1 in momentum space. In general, the Fourier transform of the hard
matching Wilson coefficients is given by

C̃
(
{tk}, {t̄k̄}

)
=
∫ {

dn+pk
2π

}{
dn−p̄ k̄

2π

}
ei (n+pk) tkei (n−p̄ k̄) t̄k̄ C({n+pk}, {n−p̄ k̄}), (2.120)

where we have suppressed the superscript labels and we see that for this example the sets
are either {tk} = {t} for the JA1

c current, or {tk} = {t1, t2} for the JB1
c and we always

keep {t̄k̄} = {t̄ }. In the exponents we use Einstein’s summation convention. As noted in
section 2.3.3, the unbarred positions and momenta refer to the collinear direction, and the
barred to the anticollinear.

The structures which could make up ΓA0,A1
ρµ and ΓA0,B1

ρµ are constrained by symmetries
of QCD, since we know that helicity and chirality must be preserved. This for example
excludes the γ5, γ⊥ργ⊥µ, and σρµ spin structures from the basis. It is clear that the allowed
structures must carry two Dirac and two Lorentz indices, and not vanish due to projection
properties of the (anti)collinear fermion fields sandwiching the Γ structures. Another
constraint is that the µ index is contracted with a ⊥ structure, ∂µ⊥ or Aµ⊥ in equations
(2.116) and (2.117) respectively. This for example excludes γ⊥ρn±µ. In the end, the only
structures which fulfil the requirements for both of the O(λ) suppressed currents are
n±ργ⊥µ.

To find the exact coefficients we now perform the subleading hard matching in mo-
mentum space. We restrict our calculation to tree-level. The matching coefficients can be
obtained by appropriately selecting matrix elements of the operator matching equation
in (2.115).

To this end, we first target the CA0A1 coefficient of the JA0,A1
ρ (t, t̄ ) operator. Choosing

the matrix element with an initial state made up of a collinear quark with momentum p
and an anticollinear antiquark with momentum l gives the tree-level amplitudes written
below. This situation corresponds to the equation written in terms of momentum-space
diagrams in figure 2.5. We find

v̄c̄(l) iγρ
1

(n+p)
/p⊥
/n+
2 uc(p) = CA0A1

tree v̄c̄(l) iΓA0,A1
ρµ pµ⊥ uc(p), (2.121)
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= CA0A1
tree (n+p, n−l)

c

c̄

∂c⊥

A1

Figure 2.5: Momentum-space representation of the tree-level matrix elements of the hard
matching operator equation (2.115). Initial state is made up of a collinear quark
with momentum p and an anticollinear antiquark with momentum l.

where the expanded QCD result is on left-hand side and the SCET expression is presented
on the right-hand side. We keep only the O(λ) term for QCD amplitude. Using projection
properties of the spinors, we simplify the QCD expression on the left-hand side and find

−v̄c̄(l) in+ρ
1

(n+p)
/p⊥ uc(p) = CA0A1

tree v̄c̄(l) iΓA0,A1
ρµ pµ⊥ uc(p), (2.122)

which implies that

CA0A1
tree = − 1

(n+p)
, ΓA0,A1

ρµ = n+ργ⊥µ . (2.123)

Next, we target the CA0B1 coefficient of the JA0,B1
ρ (t1, t2, t̄ ) operator. The investigation

follows the same steps as for the example above. This time we consider a different
matrix element of the operator matching equation in (2.115) such that we can tag the
JA0,B1
ρ (t1, t2, t̄ ) contribution. The operator JA0,B1

ρ (t1, t2, t̄ ) contains an additional gluon
field in the collinear direction on top of the collinear quark field. Hence, we choose
to calculate the matrix element with a collinear quark and gluon with momenta p and
q respectively, and an anticollinear antiquark with momentum l. The corresponding
amplitudes, in momentum-space, are given in figure 2.6. As can be seen in the figure,
the situation is complicated by the fact that the JA0,B1

ρ (t1, t2, t̄ ) operator is not the only
O(λ) operator which has a non-zero contribution to the matrix element we have chosen to
calculate. Indeed, the JA0,A1

ρ (t, t̄ ) has two possible contributions. A collinear gluon can be
attached to the collinear Wilson line which is used in defining the collinear gauge-invariant
building block, see equation (2.49). A collinear gluon can also attach directly to the
collinear quark via a leading power interaction. Fortunately, we have calculated the CA0A1

tree
coefficient above, and therefore the only unknown variable in our matching calculation is
the value of the CA0B1

tree coefficient for which we can solve the equation.
We spare the details of this calculation and give directly the result. We find that there

are in fact two ΓA0,B1
ρµ contributions to the JA0,B1

ρ (t1, t2, t̄ ) operator in (2.117) each with
its own matching coefficient. We find

CA0B1
tree+ = 1

n+(p+ q) , ΓA0,B1
ρµ,+ = n+ργ⊥µ , (2.124)
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= CA0B1
tree

c

c̄

+ +CA0A1
tree

∂c⊥
c

c̄

+CA0A1
tree

∂c⊥
c

c̄

B1 A1 A1

Figure 2.6: Similar to figure 2.5, we again present the momentum-space tree-level matrix
element of the hard matching operator equation in (2.115). However, for a different
initial state. The initial state here is made up of a collinear quark with momentum
p and a collinear gluon with momentum q, along with an anticollinear antiquark
with momentum l. The QCD diagrams have to be expanded to O(λ).

CA0B1
tree− = − 1

(n−l)
, ΓA0,B1

ρµ,− = n−ργ⊥µ . (2.125)

The matching coefficients for operators suppressed in the anticollinear direction can be
found in an analogous manner.
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3

Drell-Yan: factorisation theorem

Massive lepton-pair production in hadron-hadron collisions was first studied in 1970 by
S.D. Drell and T.M. Yan [106]. The process - named the Drell-Yan (DY) process after the
authors - is schematically written as

A(pA) +B(pB)→ DY(Q2)[→ `(l1)¯̀(l2) ] +X(pX), (3.1)

where A(B) denotes the incoming hadron with momentum pA(pB), DY(Q2) is an uncoloured
intermediate state with a large invariant mass Q2 which decays into the two leptons `, ¯̀with
momenta l1 and l2 respectively, and X is the unobserved QCD radiation with momentum
pX . The hadronic centre-of-mass energy squared is given by s = (pA+pB)2. The Drell-Yan
process in the centre-of-mass frame is shown in figure 3.1.

The Drell-Yan process has played an incredibly important role in shaping the un-
derstanding of the nature of particles and their interactions, both theoretically and
experimentally. The study of the behaviour of time-like photons in reactions of the type
given in (3.1) and the search for new particles which decay into e+e− and µ+µ− pairs has
formed a large experimental program since 1970 [107]. The resonance searches performed
in this program have been fruitful and already in 1974 have led to the discovery of J/Ψ
meson at the Brookhaven National Laboratory [108] and at the Stanford Linear Accelerator
Center [109]. The two respective independent research groups were led by Ting and Richter
who were later awarded the 1976 Nobel Prize in Physics. The same philosophy led to
the confirmation of the existence of W± and Z bosons postulated by the electroweak
theories at the CERN Super Proton Synchrotron using proton-antiproton (pp̄) collisions
[110, 111, 112, 113].

Because of its clean final-state experimental signature, the Drell-Yan process continues
to be important in the precision phenomenology program at the LHC. For instance, it
is a key ingredient in the extraction of parton distribution functions (PDFs) from LHC
measurements, which are subsequently used to make theoretical predictions for other
processes. It also plays a role in searches for New Physics beyond the Standard Model.
This heavy experimental use of the Drell-Yan process is one motivation for the advancement
in the theoretical understanding of the process over the years. Since the 1970s, there exists
a practical, phenomenologically motivated, need to obtain precise theoretical predictions
and have a clear understanding of the perturbative uncertainties. Consequently, the
theoretical predictions for the Drell-Yan process at next-to-leading order in strong coupling
have been obtained already in 1978 [114, 115]. The complete next-to-next-to-leading
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B

A

xa
xb

ℓ(l1)

ℓ̄(l2)

Figure 3.1: Schematic representation of the Drell-Yan process in the centre-of-mass frame.
Partons with momentum fractions xa and xb are drawn from their respective PDFs,
A and B, and interact to produce a lepton-antilepton pair, `(l1)¯̀(l2), in the final
state.

order results were published in 1991 [116] (partial results were already presented earlier
in [117, 118, 119, 120] and see also [121, 122] for complete results), and the current state-
of-the-art at fixed αs order is the calculation at N3LO recently obtained in [14] for a
neutral current and [15] for the charged current. In addition to the QCD corrections,
the electroweak (EW) corrections were studied in [123, 124], and recently [125, 126] have
considered the mixed QCD-EW corrections.

Similar to the advancement of fixed-order computations, the Drell-Yan process has
served an important role in the development of resummation techniques. This procedure
is necessary in certain kinematic configurations, for example in the threshold region where
the invariant mass of the pair of leptons squared is close to the centre-of-mass energy
squared, since the perturbative expansion of the cross-section develops large logarithms
and can not be trusted unless these are under control to all orders in αs. Again, this
is on the one hand of phenomenological importance, because even if in the reactions at
hadron colliders the lepton pair production does not occur close to the threshold regime
in practice, the parton luminosity dynamically enhances the contribution of the partonic
threshold region as observed in [24]. On the other hand, it is important from a theoretical
perspective, since the Drell-Yan process shares features with other phenomenologically
relevant processes studied at the LHC, such as Higgs boson production via gluon fusion,
it provides a physically relevant case study to advance the accuracy of resummation and
develop new techniques, which can then be applied on other processes, such as Higgs
production. This will be evident in chapter 9.

The first summation of enhanced logarithms has been first achieved in seminal publica-
tions [20, 21]. With the advent modern of effective field theories and resummation using
renormalization group techniques, this process was again considered within the framework
of SCET [22, 23, 24] , and at leading power in the threshold expansion is now known to a
very high logarithmic accuracy, N3LL [24, 25].

As we have established, the Drell-Yan process is an excellent test ground. Investigations
away from strict threshold have been considered recently in [127]. Yet another direction
where the exploration of the Drell-Yan process can provide insights into the structure of
field theories is the investigation beyond leading power in the threshold expansion.

As mentioned in the introduction, the DY process was previously studied at NLP
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at fixed order using expansion-by-regions method and diagrammatic techniques. These
studies aimed at extension of the Low-Burnett-Kroll (LBK) theorem for amplitudes by
introducing the concept of a radiative jet functions. We discuss the relation to our
formalism in section 4.3.

The effective field theory approach to this problem is where the contents of this work are
relevant. The SCET framework is designed with the view of resummation as it possesses
manifestly gauge-invariant Lagrangian and systematic power counting. With the threshold
resummation at leading power already obtained to a very high logarithmic accuracy, the
next-to-leading power factorisation and resummation is the next natural challenge. The first
resummation of the threshold DY process at next-to-leading power and leading logarithmic
accuracy has been achieved in [40]. The relevant all order theorem factorisation has been
presented in [65] and forms the core of this work. Here we construct the foundation for
resummation beyond leading logarithms through a derivation of factorisation theorem
in the effective field theory framework. We present both, formal all-power factorisation
formula, and the specification of it to next-to-leading power.

This chapter proceeds as follows. In section 3.1 we specify the effective field theory
framework introduced above to the case of the Drell-Yan process and discuss its kinematic
set up at threshold. We review the leading power factorisation and discuss the emergence
of collinear functions at subleading powers in detail. At the end of this section, we provide
formal definitions for these new objects. Section 3.2 is dedicated to the derivation of
the subleading power factorisation formula for the diagonal, qq̄-channel, of the Drell-Yan
process. We obtain a formal all-power expression before specifying to the next-to-leading
power case and provide operatorial definitions for the objects which enter the factorisation
formulas. We also investigate the form of the factorisation formula at fixed next-to-next-to
leading order. In section 3.3 we follow a similar pattern and derive the subleading power
factorisation formula for the off-diagonal, qq̄-channel, of the Drell-Yan process. We again
first perform an all-power derivation before also presenting the result at next-to-leading
power.

3.1 Preliminaries, dynamics, and collinear functions
The focus of this work is the investigation of the partonic version of the process given
in (3.1). For simplicity, the DY(Q2) particle in equation (3.1) is chosen to be a highly
virtual photon, γ∗. Conceretly, we consider the partonic Drell-Yan channel initiated by
a qq̄ pair

q(xapA)q̄(xbpB)→ γ∗(Q2) [→ `(l1)¯̀(l2) ] +X(pX), (3.2)

for which the factorisation theorem is derived in section 3.2, and the partonic Drell-Yan
channel initiated by gq̄

g(xapA)q̄(xbpB)→ γ∗(Q2) [→ `(l1)¯̀(l2) ] +X(pX), (3.3)

which is explored in section 3.3. Diagrams representing these channels of the Drell-Yan
process at the cross-section level are depicted in figure 3.2.
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Figure 3.2: Schematic representations of the Drell-Yan process cross-section in the qq̄-channel
(left) and gq̄-channel (right). The grey ovals labelled A and B represent colliding
protons. In each diagram, two partons drawn from their respective parton distribu-
tion functions interact to create a virtual photon, γ∗, which then decays to pair of
leptons. We have also included additional QCD radiation, the red coloured lines
represent soft partons at threshold. Only these are permitted to enter the final state
at threshold.

The machinery set up in section 2.1 enables the treatment of N -jet processes beyond
leading power. For the specific case of the Drell-Yan production we require two back-to-back
directions and hence need to specify only two light-like vectors

nµ− = (1, 0, 0, 1), nµ+ = (1, 0, 0,−1). (3.4)

The momenta are decomposed in this case as in equation (2.3) with the index i dropped.
As discussed above, the effective field theory framework is best suited to the study of
the Drell-Yan process in the kinematic threshold region. We make this precise here. The
partonic kinematic threshold corresponds to the case where almost all of the energy in the
interaction between the two incoming partons is carried away by the intermediate boson, γ∗.
This in turns means that the kinematic phase space for the unobserved radiation X is
highly constrained as it can only be made up of very low energy radiation, also known as
soft radiation. The partonic centre-of-mass energy squared is given by ŝ = xaxbs, where xa
and xb are the momentum fractions of the incoming partons as prescribed in (3.2) and (3.3)
and s is the hadronic centre-of-mass energy squared as given below (3.1). We define the
kinematic variable z = Q2/ŝ, using which the kinematic threshold region discussed here is
captured by the limit z → 1. Using this variable, the small power counting parameter λ,
in terms of which the power expansion of the Lagrangian has been carried out in chapter 2,
is defined as λ =

√
1− z � 1. The relevant momentum regions are given by [24]

ph ∼ Q(1, 1, 1), ps ∼ Q(λ2, λ2, λ2),

pc ∼ Q(1, λ2, λ), pc̄ ∼ Q(λ2, 1, λ). (3.5)

The hard fluctuations are integrated out and encoded in hard matching Wilson coefficients
as explained in sections 2.3.3 and 2.4.4. Hence the remaining free degrees of freedom
in the effective field theory are (anti)collinear and soft. We stress that in the threshold
configuration the threshold-(anti)collinear virtuality, pc(pc̄) ∼ Q2λ2, is too large to enter
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the final state X. However, there is enough energy available such that the soft radiation
ps ∼ Q2λ4 is permitted in the final state X.

In addition to the threshold-collinear modes written above, at the hadronic level the
effective field theory description contains (anti)collinear-PDF modes which have the scaling

pXPDF
c

∼ (Q,Λ2/Q,Λ), pXPDF
c̄
∼ (Λ2/Q,Q,Λ), (3.6)

where Λ is the strong interaction scale. It is assumed that the strong interaction scale
is parametrically smaller than the threshold-collinear scale Λ � Qλ = Q(1 − z)1/2 and
as such, the modes with (c̄)c-PDF scaling can be radiated into the hadronic final state.
The standard parton distribution functions (PDFs) are defined in terms of these modes.
The work here concerns power corrections in the threshold-collinear scale λ, and we work
at leading power in the Λ/Q expansion, the latter is also known as the leading-twist
approximation.

Having described the relevant mode structure, we begin the derivation of the factori-
sation theorem beyond leading power by writing down the standard expression of the
d-dimensional cross-section which, in the centre-of-mass frame, reads

dσ = 1
2sd

dq
∫ dd−1l1

(2π)32E1

dd−1l2
(2π)32E2

δ(d)(l1 + l2 − q)

×
∑
X

|〈`¯̀X|AB〉|2 (2π)d δ(d)(pA + pB − q − pX), (3.7)

where pX = pXs − pXPDF
c
− pXPDF

c̄
since, as discussed above, the soft and (c̄)c-PDF modes

can be radiated into final state, hence we write them here explicitly.
We do not consider corrections to the electromagnetic interaction between the off-shell

photon and the final state leptons, hence the hadronic and leptonic parts of the amplitude
factorise. Evaluating the phase-space for the final state leptons in, d = 4 since it is finite,
results in the transverse lepton tensor and the expression for the cross-section in terms of
the hadronic tensor Wµρ, which is kept in d-dimensions, is as follows

dσ = 4πα2
em

3s q2
ddq

(2π)d
(
− gµρWµρ

)
, (3.8)

where

gµρWµρ =
∫
ddx e−iq·x 〈A(pA)B(pB)|J† ρ(x)Jρ(0)|A(pA)B(pB)〉

=
∑
X

(2π)dδ(d)
(
pA + pB − q − pXs − pXPDF

c
− pXPDF

c̄

)
×〈A(pA)B(pB)|J†ρ(0)|X〉〈X|Jρ(0)|A(pA)B(pB)〉 , (3.9)

and the electromagnetic quark current is given by Jρ = ∑
q eqψ̄qγ

ρψq. In order to not
obscure the considerations at subleading powers through an overloading of the notation,
we work with a single quark flavour with charge eq = 1. In the threshold configuration,
where the unobserved QCD final state X is forced to only contain soft radiation, the
hard matching to SCET fields can be performed at amplitude level, since there are
no contributions to the hadronic tensor where the currents at positions 0 and x are
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connected by hard partons. Therefore, for the derivation of the factorisation theorem
for the Drell-Yan process at threshold it is sufficient to consider the hard matching of
the electromagnetic quark current as presented in leading-power and subleading-power
examples in sections 2.3.3 and 2.4.4 respectively, and by extending it to all powers. This
line of investigation is pursued in sections 3.2 for the qq̄ and 3.3 for the gq̄ channels.

For the moment however, following the pedagogical presentation in [65] we review the
leading power considerations which gives us the opportunity to introduce the concept
of amplitude-level collinear functions which are new objects that emerge and play an
important role in factorisation at subleading powers.

3.1.1 Factorisation and collinear functions at leading power
We begin with the leading power hard matching equation before the decoupling trans-
formation has been performed. This is given in (2.56) and we write it here again for
convenience

ψ̄γρψ(0) =
∫
dt dt̄ C̃A0,A0(t, t̄ ) JA0,A0

ρ (t, t̄ ) (3.10)

where in the notation for N -jet operators described above

JA0,A0
ρ (t, t̄ ) = χ̄c̄(t̄n−)γ⊥ρχc(tn+) . (3.11)

The fields χc are the collinear-gauge-invariant collinear quark fields as discussed in sec-
tion 2.1, and the corresponding momentum-space coefficient is related to the position-space
matching coefficient by the Fourier transform defined in equation (2.57).

The first step in the derivation is to perform the field redefinition which decouples the
soft-collinear interactions. This is given in equation (2.61). We consider here the matrix
element of the resulting operator as dictated by (3.9)

〈X|ψ̄ γρψ(0)|A(pA)B(pB)〉 =
∫
dt dt̄ C̃A0,A0(t, t̄ )

× 〈X|χ̄c̄(t̄n−)Y †−(0)γρ⊥Y+(0)χc (tn+) |A(pA)B(pB)〉 . (3.12)

Here, since the field redefinition which decouples the soft and collinear fields has already
been performed and the final state is only composed of soft and (c̄)c-PDF collinear radiation
due to kinematic constraints, it also factorises 〈X| = 〈Xs|〈XPDF

c̄ |〈XPDF
c |. It follows that

at leading power the matrix element for Drell-Yan production factorises into a soft matrix
element, composed of soft Wilson lines only, times the two matrix elements which each
contain solely the (anti)collinear physics

〈X|ψ̄ γρψ(0)|A(pA)B(pB)〉 =
∫
dt dt̄ C̃A0,A0(t, t̄ ) 〈XPDF

c̄ |χ̄c̄ (t̄n−)|B(pB)〉 γρ⊥
×〈XPDF

c |χc (tn+) |A(pA)〉 〈Xs|T
[
Y †−(0)Y+(0)

]
|0〉 . (3.13)

We draw attention to the fact that the final states of the (anti)collinear matrix elements are
(c̄)c-PDF collinear whereas the fields appearing in those matrix elements, χc (tn+)(χ̄c̄ (t̄n−)),
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c̄− PDF
c̄− threshold

A0
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Figure 3.3: Leading twist depiction of separated sectors in a Drell-Yan scattering amplitude
after the decoupling transformation has been performed. Marked in the diagram are
the c(c̄)-PDF collinear modes of the incoming (anti)quark and the purely threshold-
(anti)collinear loops which are scaleless and zero in dimensional regularization.
The red double lines represent the soft Wilson lines which are present due to the
field redefinition which decouples the soft and collinear sectors. For clarity we
do not include virtual loops with soft scaling which also vanish in dimensional
regularization.

are threshold-collinear. Therefore, a matching between the fields with these different modes
must be performed. At leading power, this matching is trivial and takes the form

χc(tn+) =
∫
du J̃(t, u)χPDF

c (un+), (3.14)

with a similar relation for the anticollinear direction up to a n− ↔ n+ replacement. The
matching coefficient, J̃(t, u), which we call the collinear function, is a delta function to all
orders in perturbation theory J̃(t, u) = δ(t− u) and for this reason it is usually omitted
in the discussion of leading power factorisation. Nonetheless, we find it instructive to
investigate precisely how this result is obtained at leading power, as this will allow us to
contrast this case with next-to-leading power considerations.

We begin by noting again that the decoupling transformation has already been per-
formed. Therefore, since all the sectors are decoupled, only purely threshold-(anti)collinear
loop corrections to the Drell-Yan process can occur at amplitude level1. This is shown
schematically in figure 3.3. We remark that by “purely” threshold-(anti)collinear it is
meant that there are no soft attachments. Taking the initial (anti)collinear partons
on-shell, such loop corrections lead only to scaleless integrals, which are zero in dimen-
sional regularization. Hence, at this level it is easy to see that indeed the leading power
collinear function is simply given by a delta function to all orders in αs which converts the
threshold-(anti)collinear fields to (c̄)c-PDF collinear fields.

In order to show the consistency of this approach, we consider now the theory prior
to the application of the decoupling transformation. In this case, at leading power the
soft-collinear interactions do occur, albeit solely through eikonal vertices as discussed in
section 2.1. Consequently, in the calculation of the Drell-Yan amplitude diagrams with
threshold-collinear corrections such as the one presented in figure 3.4 are present. Since

1Purely soft loop corrections can occur as well, but the same conclusion will be drawn for the virtual
soft corrections as for the purely threshold-collinear loops. Only soft real radiation contributes to the soft
function at the cross-section level.
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Figure 3.4: Example of a leading power diagram with a threshold-collinear loop and a leading
power (eikonal) soft emission. This diagram yields a non-zero result.
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Figure 3.5: Collinear loop contributions to the Drell-Yan scattering amplitude with one soft
emission. The blue(green) colour denotes the (anti)collinear momentum flow. The
incoming momentum is p(l). The red line represents the outgoing soft gluon with a
soft momentum labelled by k. In the second row of the figure, the emission of the
collinear gluon from the JA0 current comes from the collinear Wilson line present
in the definition of the collinear-gauge-invariant collinear building block as defined
in (2.49).

there is an external soft attachment to the threshold-collinear leg, the loop correction is no
longer scaleless, but rather, in dimensional regularization, it is proportional to the collinear
invariant [µ2/(n−k)(n+p)]ε, where the threshold-collinear and soft momenta p and k are
labelled in the figure and (n−k)(n+p) ∼ λ2. Considering therefore, a single diagram it
seems that an object resembling the collinear function appears already at leading power
and has non-vanishing loop corrections. This is seemingly in clear contradiction with the
conclusions we have reached when considering the decoupled theory. However, the picture is
saved when we include all the possible diagrams with a threshold-collinear loop. These are
shown in figure 3.5. The external partons are on-shell, p2 = l2 = k2 = 0, and the incoming
(anti)collinear (anti)quark carries only its largest momentum component, pµ = (n+p, 0, 0)
(lµ = (0, n−l, 0)). As example, diagram a is explicitly calculated in appendix B.1. The
results for each of the diagrams, labelled a - f as in figure 3.5, are given by

MLP
a = −v̄c̄(l)iγρ⊥

αs
4πgsT

BCF
n−ν

(n−k)

[
(n+p)(n−k)

µ2

]−ε (1− ε)
ε

f[ε]uc(p), (3.15)
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MLP
b = v̄c̄(l)iγρ⊥

αs
4πgsT

BCA
2

n−ν
(n−k)

[
(n+p)(n−k)

µ2

]−ε (1− ε)
ε

f[ε]uc(p), (3.16)

MLP
c = v̄c̄(l)iγρ⊥

αs
4πgsT

B
(
CF −

CA
2

)
n−ν

(n−k)

[
(n+p)(n−k)

µ2

]−ε (1− ε)
ε

f[ε]uc(p), (3.17)

MLP
d = v̄c̄(l)iγρ⊥

αs
4πgsT

BCF
n−ν

(n−k)

[
(n+p)(n−k)

µ2

]−ε2(1− ε)
ε2

f[ε]uc(p), (3.18)

MLP
e = −v̄c̄(l)iγρ⊥

αs
4πgsT

BCA
n−ν

(n−k)

[
(n+p)(n−k)

(µ)2

]−ε (1− ε)
ε2

f[ε]uc(p), (3.19)

MLP
f = −v̄c̄(l)iγρ⊥

αs
4πgsT

B
(
2CF − CA

) n−ν
(n−k)

[
(n+p)(n−k)

µ2

]−ε (1− ε)
ε2

f[ε]uc(p), (3.20)

where in all of the above expressions we have defined a factor containing a finite combination
of Γ functions and the Euler-Mascheroni constant γE

f[ε] ≡ eεγEΓ[1 + ε]Γ[1− ε]2
Γ[2− 2ε] . (3.21)

The index ρ belongs to the external photon, γ∗, and we have omitted polarisation ε∗ν(k)
for the soft emitted gluon, which also carries the colour index B. It is also noteworthy that
in obtaining these results, we have used neither the on-shell, k2 = 0, nor the transversality,
k · ε∗(k) = 0, conditions for the emitted soft gluon. We see that the sum ofMLP

a in (3.15)
and MLP

b in (3.16) gives the negative of MLP
c in (3.17). Similarly, the sum of MLP

d

in (3.18) andMLP
e in (3.19) results in the negative ofMLP

f in (3.20). Therefore, indeed
it is clear that individually these diagrams are not scaleless and in general are non-zero,
however, when summed they vanish to all orders in ε. We have shown this through explicit
calculation at one-loop order, but the same must hold to all orders in the αs expansion.
It is a consequence of the decoupling of the soft-collinear interactions at leading power
in the threshold expansion. Therefore, we can consider the theory before decoupling
transformation, and same conclusions about the leading power collinear functions are
reached.

It should be noted that here we have focused on the threshold-collinear correction to
the DY amplitude, and not directly the collinear function, however, these two objects are
closely related. In what follows, this description will be refined and the threshold-collinear
fluctuation will indeed be identified with another object at subleading powers, but the
physical origin of this cancellation is identical here. Statement that leading power collinear
functions vanish is equivalent to one that the amplitudes with a threshold-collinear loop
vanish at leading power, as the same physics is captured. The former gives a clearer
physical picture due to factorisation.

After the matching in equation (3.14) is performed for the (anti)collinear fields appearing
in (3.13), the derivation of the leading power factorisation follows the usual steps. The
matrix element in (3.13), now with (c̄)c-PDF fields, is combined with its conjugate that is
translated to position x according to (3.9). This procedure yields standard PDFs fa/A(xa)
and fb/B(xb) from the collinear matrix element

〈A(pA)|χ̄PDF
c,ηi (x+ g′n+)χPDF

c,βb (gn+)|A(pA)〉



52 Chapter 3. Drell-Yan: factorisation theorem

= δbi
Nc

(
/n−
4

)
βη

(n+pA)
∫ 1

0
dxa e

i(x+g′n+−gn+)·pAxa fa/A(xa), (3.22)

and the anticollinear matrix element

〈B(pB)|χ̄PDF
c̄,αa (ḡn−)χPDF

c̄,δj (x+ ḡ′n−)|B(pB)〉

= −δja
Nc

(
/n+
4

)
δα

(n−pB)
∫ 1

0
dxb e

−i(ḡn−−ḡ′n−−x)·pBxbfb/B(xb), (3.23)

respectively. We have explicitly written the spin, α, β, δ, η, and fundamental colour,
a, b, i, j, indices for concreteness. After performing the remaining integrals over the
positions, simplifying the result, and combining the hadronic tensor with the leptonic one
according to (3.8) one arrives at

dσ

dQ2 = 4πα2
em

3NcQ4

∫
ddx

∫ 1

0
dxadxb fa/A(xa)fb/B(xb)

dd−1~q (1− ε)
(2π)d−1 2

√
Q2 + ~q 2

1
(2π)Q

2

× ei(xapA+xb pB−q)·x|C(−ŝ)|2 1
Nc

Tr〈0|T̄
[
Y †+(x)Y−(x)

]
T
[
Y †−(0)Y+(0)

]
|0〉, (3.24)

where we have used for hard Wilson matching coefficients C∗A0 (xa(n+pA), xb(n−pB))
CA0 (xa(n+pA), xb(n−pB)) = |C(−ŝ)|2. The minus in the argument of C(−ŝ) is conven-
tional. We also note the non-standard factor of (1− ε) appearing in the above equation.
The derivation performed here is for the bare partonic cross-section σ̂ and contains d-
dimensional quantities. Therfore, care has to be taken when these are evaluated. For
example, the lepton trace appearing here already at leading power when evaluated in
d-dimensions yields a factor Tr

[(
/n−
4

)
γ⊥ρ

(
/n+
4

)
γρ⊥
]

= −(1− ε), which is the origin of the
extra (1− ε) factor in equation (3.24) compared with standard derivations which use d = 4.

The next step in the derivation of the factorisation formula is the expansion of the phase
space. In general, the phase space is process specific and does not have a homogeneous
power counting unlike the terms in the SCET Lagrangian. For the moment we focus on
leading power contribution, however, power corrections can generally arise from expansion
of the phase space as will be shown explicitly at next-to-leading power in section 3.2.2.
Note that in equation (3.24) the Wilson lines in the anti time-ordered product contain full
x dependence. However, since the derivation is performed in the partonic centre-of-mass
frame where xa ~pA + xb ~pB = 0, it follows that the three-momentum of the DY boson must
to be balanced by the soft radiation, ~q = −~pXs . Expanding the soft radiation energy in
powers of λ gives the following

(
xapA + xbpB − q

)0
= p0

Xs =
√
ŝ−

√
Q2 + ~q 2 = Ω∗

2 −
~q 2

2Q +O(λ6) , (3.25)

where Ω∗ is further expanded in powers of (1− z),

Ω∗ = 2Q(1−
√
z)√

z
= Q (1− z) + 3

4 Q (1− z)2 +O(λ6) . (3.26)

As can be seen from this expansion, power corrections to the DY partonic cross-section at
a given order in λ can arise from a lower power matrix element contribution, multiplied
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by the power suppressed phase space terms. As mentioned above, this will be obtained
explicitly at next-to-leading power in what follows, however, this statement holds at general
subleading powers. At leading power we keep only the first term in this power expansion,
which means that we can then perform the integral over ~q which yields a δ(d−1)(x) delta
function, which upon evaluation sets the dependence of the soft matrix element to the x0

component rather than on the full x coordinate. We then arrive at the following result

dσDY

dQ2 = 4πα2
em

3NcQ4

∑
a,b

∫ 1

0
dxadxb fa/A(xa)fb/B(xb) z

σ̂ab(z)
z

. (3.27)

We have inserted a factor of 1 = z/z into the formula since the results in literature, for
example in the full next-to-next-to leading order computation in [116], are often written for
the quantity σ̂ab(z)/z. The partonic cross-section σ̂ab(z) is factorised into a hard function,
given by H(ŝ) = |C(−ŝ)|2 = H(Q2) +O(λ2), and a soft function:

σ̂(z) = H(Q2)QSDY(Q(1− z)) , (3.28)

where we have for the moment set d = 4, and the objects appearing here are understood
to be renormalized, as this is the leading power factorisation formula for Drell-Yan used
for resummation and the aim here is to make contact with the known leading power result
in literature. The soft function for Drell-Yan at leading power is given by [128]

SDY(Ω) =
∫ dx0

4π eiΩx0/2 S̃0
(
x0
)
, (3.29)

where the leading power position-space soft function is

S̃0(x) = 1
Nc

Tr 〈0|T̄
[
Y †+(x)Y−(x)

]
T
[
Y †−(0)Y+(0)

]
|0〉 . (3.30)

The soft function is defined at amplitude squared level, with scale supplied by the energy
of the partons crossing the cut denoted by Ω in (3.29). Recent investigations of this object
and its relation to other soft functions have been reported in [129].

In figure 3.6 we present a schematic picture of factorisation at leading power encap-
sulated by the expression in equation (3.27). The PDFs are depicted by the black ovals
labelled A and B connected by solid lines, and the partonic picture is contained within the
yellow frame. Only two ingredients make up the partonic cross-section. The first is the
hard function, H(Q2) in equation (3.28), which is built from the hard Wilson matching
coefficient and its conjugate. The matching coefficients are represented by the purple
circles labelled A0 on the left and right-hand sides of the cut in figure 3.6. The second
element are the double red lines which represent soft Wilson lines, the vacuum matrix
element of which yields the soft function SDY(Ω) in (3.28), as defined by equations (3.29)
and (3.30).

We note that in equation (3.27) we have also included the contribution to the cross-
section from the SCET current where it is the incoming quark that is anticollinear, and
the antiquark that is collinear.

It is worth mentioning here that at next-to-leading power, the factorisation theorem
which will be derived below must be understood as a formal result containing regularized
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A A

B B

γ∗ γ∗A0 A0

Figure 3.6: Schematic representation of factorisation of the Drell-Yan cross-section at leading
power. The corresponding equation is given in (3.27) with the partonic cross-section
σ̂(z), contained within the yellow frame here, in (3.28). The soft emissions are
sourced by soft Wilson lines drawn in red. Here, for clarity, we show only one soft
gluon emission, however the soft function in (3.29) captures the emissions to all
orders.

quantities, that is, we work with d-dimensional soft, hard, and collinear functions. There-
fore, in order to compare with literature we find it convenient to define the quantity ∆(z),
which is given by

∆(z) = 1
(1− ε)

σ̂(z)
z

. (3.31)

This corresponds to the object ∆ for which results are given in [117, 116], with the extra
factor of (1− ε) divided out. This step is convenient due to the fact that we evaluate the
leptonic spin trace in d-dimensions as explained above, contrary to setting d = 4 as is
done conventionally [117, 116]. We will again remind of this fact in the relevant sections
to avoid confusion.

Only once we reach chapter 8, where the leading logarithmic resummation is carried
out at next-to-leading power, will we renormalize the quantities which appear in the formal
factorisation in section 3.2.2 and not encounter divergent convolutions, which does not
hold for next-to-leading power resummations beyond the leading logarithmic accuracy.
These statements will be clarified in due course, at the moment we simply aim to put the
considerations of the above discussion in a broader context of the contents presented in
this work.
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3.1.2 Collinear functions at subleading powers
Having discussed and outlined the well-known derivation of the factorisation formula for
the Drell-Yan process near the kinematic threshold at leading power, and in particular,
having highlighted the existence of trivial collinear functions, we promptly advance
the discussion to subleading powers. The crucial ingredient present in the discussion of
factorisation carried out in sections 3.2 and 3.3 is the concept of subleading power, amplitude
level, collinear functions which are non-trivial starting from next-to-leading power. This
subsection aims to show the origin of these new objects through a pedagogical example
contrasting against the leading power discussion presented in the previous subsection.
After we motivate the existence of the collinear functions, we provide formal definitions
valid to any order in the power expansion. These definitions are used in the derivation of
the factorisation formulas in sections 3.2 and 3.3 and in the calculation of the collinear
functions themselves in chapter 4.

The critical observation is that the new physical ingredients in factorisation formulas at
subleading power, the collinear functions, arise from soft-collinear interactions present in the
power-suppressed Lagrangian. Recall that these were absent in the leading power discussion
after the decoupling transformation was performed. The soft-collinear interactions at
next-to-leading power technically appear as a consequence of Lagrangian insertions in
time-ordered product operators. As an illustrative example, we consider the insertion of
the next-to-leading power soft-collinear interaction Lagrangian L(2)

2ξ after the decoupling
transformation has been performed which is given in (2.109) and which we write here
again for convenience

L(2)
2ξ (x) = 1

2 χ̄c(x)xµ⊥xν⊥
[
i∂νin−∂B+

µ (x−)
] /n+

2 χc(x). (3.32)

In contrast to section 2.4.3, we have here already dropped the (0) superscript, however
it is understood that the fields present in the above Lagrangian term are decoupled.
The B± field is a soft building block built from a soft covariant derivative and soft
Wilson lines as defined in equation (2.105). We stress that despite the application of
the decoupling transformation, the soft-collinear interactions remain in the Lagrangian
term. Following the construction presented in [86], as explained in section 2.4.1, and in
particular below equation (2.80), the basis of subleading power operators contains ones
built from time-ordered products of current operators with terms from the subleading
SCET Lagrangian. The Lagrangian insertions are treated as perturbations and appear in
the non-local operators with an integral over the position of the insertion, for instance, in
this particular example we have

J T2
c (t) = i

∫
ddx T

[
χc(tn+)L(2)

2ξ (x)
]
, (3.33)

where the field χc(tn+) is taken from the leading power JA0,A0 current. We illustrate this
situation in figure 3.7. It is important to note that whereas the collinear fields in (3.32)
depend on all components of the x coordinate, the soft B±(x−) field only depends on the
xµ− = (n+x)n

µ
−
2 component due to multipole expansion. This dependence links the collinear

and soft fields in (3.33), leading to a collinear invariant for collinear loop integrals. The
existence of such invariant is in stark contrast to the situation at leading power, where
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c− PDF

c− threshold

s

2

Figure 3.7: A collinear quark line with an insertion of the power-suppressed Lagrangian term
L(2)

2ξ .

after the application of the decoupling transformation the (c̄)c-threshold loops were all
scaleless, as depicted in figure 3.3. In order to make our statements more concrete, we
now consider the matrix element of the electromagnetic current matched to SCET fields
with an insertion of the Lagrangian in (3.32),

〈X|ψ̄γρψ(0)|A(pA)B(pB)〉 =
∫
dt dt̄ C̃A0,A0(t, t̄ ) 〈XPDF

c̄ |χ̄c̄,αa(t̄n−)|B(pB)〉γρ⊥,αγ

× i
∫
ddx 〈XPDF

c |12x
ν
⊥x

µ
⊥(in−∂x)2 T

[
χc,γf (tn+) χ̄c (x)TA /n+

2 χc (x)
]
|A(pA)〉

× 〈Xs|T
([
Y †−(0)Y+(0)

]
af

i∂µ⊥
in−∂

B+A
⊥ν (x−)

)
|0〉 . (3.34)

We have made use of the fact that the insertion of the subleading power Lagrangian
terms is treated as a perturbation. Hence the states are eigenstates of the leading power
Hamiltonian and therefore factorise in the same way as in the leading power computation
in the previous section, 〈X| = 〈Xs|〈XPDF

c̄ |〈XPDF
c |. Comparing (3.34) to the leading power

expression given in (3.13), we first note that there are additional threshold collinear fields
in the c-PDF matrix element. Secondly, there is a convolution in x− between the collinear
and soft matrix elements. Momentum with a soft scaling is injected into the collinear
matrix element due to the presence of this extra convolution, which in turn induces a
scale and leads to the emergence of collinear functions. Another difference is present in
the soft matrix element itself. Namely, written here in the last line, it now contains an
explicit gauge field insertion in addition to the Wilson lines. This soft matrix element
will form a part of the generalised soft function. There are no changes to the anticollinear
matrix element compared to the leading power result since we consider placing the power
suppression only in the collinear sector in this illustrative example. The anticollinear matrix
element, after trivial leading power matching, will form part of a PDF at cross-section
level.

We now concentrate on the collinear matrix element, which is written in the second
line of (3.34). As mentioned above, due to threshold kinematics, the threshold-collinear
modes cannot radiate into the final state. At leading power in the Λ/Q expansion, also
known as the leading twist expansion, the threshold-collinear fields present in the collinear
matrix element must be integrated out and matched to c-PDF mode operators consisting
of a single quark (or gluon) field. After squaring the amplitude, the matrix elements of
c-PDF fields will form the standard PDFs. Below we refine this picture and provide formal
matching equations. However, a prototype for this matching step is the equation

i
∫
ddx T

[
{ψc(tn+)}L(2)

c (x)
]

= 2π
∫
du
∫
dx− J̃(t, u;x−)χPDF

c (un+) , (3.35)
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where L(2)
c (x) contains only the collinear pieces of a Lagrangian insertion. The perturbative

matching coefficient J̃(t, u; z−) is the collinear function. The amplitude level collinear
physics is contained in J̃(t, u; z−). We emphasise once more that it first appears in a non-
trivial way in power-suppressed corrections to the Drell-Yan process. The equation in (3.35)
provides an operator definition for the concept of the “radiative jet amplitude” [130, 36, 37].
We note now that in a general case we must perform the matching in the presence of
soft structures which, acting as projectors, define independent collinear functions. The
soft structure is omitted in the above example as we only consider a single Lagrangian
insertion. However, we must include all possible Lagrangian insertions in an all-order
derivation of factorisation, and there exist relations between them. Formal definitions of
this matching procedure are given in section 3.1.3 below.

We now continue with the representative example and calculate the tree-level contribu-
tion to a subleading power collinear function due to the fields in the second line of (3.34).
For this purpose, it is useful to introduce the momentum-space operator which contains
only collinear fields,

J µν,A
γ,f (n+p, ω) ≡

∫
dt ei (n+p) t i

∫
ddx eiω(n+x)/2

× 1
2x

ν
⊥x

µ
⊥(in−∂x)2 T

[
χc,γf (tn+) χ̄c (z)TA /n+

2 χc (x)
]
. (3.36)

In order to calculate the perturbative threshold-collinear matching coefficient defined in
(3.35), instead of the hadronic matrix element in (3.34) we consider its partonic analogue.
This amounts to exchanging the incoming hadron by an incoming quark, and the vacuum
state replaces the PDF-collinear final state. The incoming quark carries momentum q and
fundamental colour index e. Hence, we have at this point

〈0|J µν,A
γ,f (n+qa, ω) |q(q)e〉 =

∫
dtei(n+qa) t i

∫
ddx

[
(in−∂x)2eiω (n+x)/2

]
× 1

2x
ν
⊥x

µ
⊥ 〈0|T

[
χc,γf (tn+) χ̄c (x)TA /n+

2 χc (x)
]
|q(q)e〉

=− 1
2iω

2 (2π)
∫ ddk

(2π)d δ (n+qa − n+k)
∫
ddx

[
∂

∂k⊥ν

∂

∂k⊥µ

i(n+k)
k2

]
× eiω (n+x)/2eik·xTA

fe uc,γ(q) e−i x·q , (3.37)

where in the step between the two equations we have contracted two of the collinear fields
to form the collinear quark propagator according to

χc(y)χ̄c(z) =
∫ ddk

(2π)d
i(n+k)

(k)2 + iδ

/n−
2 e−ik·(y−z) , (3.38)

we have performed the in−∂x-derivatives and the integral over dt, we have also used the
following relation

χc,γd(x)|q(q)e〉 = δde uc,γ(q)e−ix·q |0〉 (3.39)
for the incoming quark with momentum q. The d in the subscript is a fundamental colour
index. The momentum derivatives and the d-dimensional x-integral can be performed next.
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The latter yields delta functions which remove the remaining integral over the momentum
k. Then we find

〈0|J µν,A
γ,f (n+qa, ω) |q(q)e〉 = (2π)Jµν,A2ξ,γβ,fe (n+qa, n+q; ω) uc,β(q) , (3.40)

where

Jµν,A2ξ,γβ,fe (n+qa, n+q; ω) ≡ δ (n+qa − n+q)
−gνµ⊥
(n+q)

TA
fe δγβ (3.41)

This matching coefficient defines the momentum-space tree-level collinear function. Al-
though we have so far only explicitly obtained a tree-level result for a single Lagrangian
insertion, the appearance of collinear functions beyond leading power is generic and
constitutes a key concept in next-to-leading power investigations. Importantly, in this
section we have argued that the soft-collinear interactions persist at subleading powers
even after the application of the decoupling transformation, which changes the physical
picture of factorisation in Drell-Yan production at threshold. We observed the emergence
of new objects, the collinear functions, and in chapter 4 we explicitly calculate the one-loop
corrections to these functions.

Before we continue, we draw attention to the fact that in this subsection, we have
considered only the time-ordered product operator type of power correction. We recall
from section 2.4.1 that the suppressed operator basis includes also type A, B, C... oper-
ators which provide power suppression by including derivatives and additional fields in
a particular collinear direction. Crucially, they do not include soft-collinear interactions.
One may argue that power suppression in the Drell-Yan amplitude, and eventually cross-
section, can arise from these operators alone, without the need for insertions of power
suppressed SCET Lagrangian terms. However, without time-ordered product operators,
performing the decoupling transformation achieves the same result as at leading power.
Namely, the soft and collinear sectors become separated. With the calculation restricted
to leading-twist—that is leading order in Λ/Q—the additional threshold fields must form
loops at amplitude level as the threshold collinear modes also cannot be radiated into the
final state since their virtuality is too large. The matching is then trivially null since, in
the same way as at leading power in the threshold expansion, the threshold collinear loops
are scaleless. This is shown in figure 3.8 for JB2

c and JC2
c operators. Therefore, we clearly

see that soft-collinear interactions that enter through time-ordered products operators
with subleading SCET Lagrangian terms are critical to factorisation at next-to-leading
power. We exploit this fact in the derivation of subleading power factorisation formula in
sections 3.2 and 3.3.

3.1.3 Collinear matching: formal definitions
The collinear functions are important new objects appearing in the factorisation theorem
beyond leading power. Having now motivated the existence of the collinear functions, we
find it useful to write down here the formal, generic collinear matching equations. We
will use these in much of what follows and having understood the physics behind these
new objects, it is helpful to have the definitions collected before diving into the technical
derivation of the factorisation theorem itself.
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c− PDF

c̄− PDF
c̄− threshold

B2

c− threshold

(a)

c− PDF

c̄− PDF
c̄− threshold

C2

c− threshold

(b)

Figure 3.8: The anticollinear leg is kept at leading power, and the label in the hard interaction
refers to the power suppressed current in the collinear direction, JB2

c and JC2
c in

panels (a) and (b) respectively.

Suppressing the indices, we have for a general collinear matching in the qq̄ - channel
the following equation

im
∫
{ddzj}T

[
{ψc(tkn+)} ×

{
L(l)(zj)

}]
= 2π

∑
i

∫
du
∫
{dzj−} J̃i ({tk}, u; {zj−}) χPDF

c (un+) si({zj−}) , (3.42)

and for the case where the incoming parton is a gluon, we define the following general
collinear matching equation

im
∫
{ddzj}T

[
{ψc(tkn+)} ×

{
L(l)(zj)

}]
= 2π

∑
i

∫
du
∫
{dzj−} G̃i ({tk}, u; {zj−}) APDF

c⊥ (un+) si({zj−}) . (3.43)

Since the above equations are general, they are rather notation heavy, consequently we
take a moment to go through and explain each piece:

• {zj−} denotes the set of m positions at which the insertions of the soft building
blocks are located.

• {ddzj} = ∏m
j=0 d

dzj and {dzj−} = ∏m
j=0 dn+zj/2. The upper limit in both products

originates from the total number of the Lagrangian insertions.

•
{
L(l)(zj)

}
denotes a set of m Lagrangian insertions suppressed by a power of order

λl, where l can be different for each insertion.

• {ψc(tkn+)} is a set of n fields chosen from the elementary collinear-gauge-invariant
collinear building blocks given in equation (2.49). Each building block is dependent
on a variable from the set {tk} which is also of size n. We write again the building
blocks from for convenience

ψi(tini+) ∈
 χi(tini+) ≡ W †

i ξi collinear quark

Aµi⊥(tini+) ≡ W †
i [iDµ

i⊥Wi] collinear gluon
(3.44)

for a collinear quark and gluon field in the i-th direction, respectively.
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• si( {zj−}) is a soft operator. The sum with index i runs over a basis of the soft
structures,

si({zj−}) ∈
{
1,

i∂µ⊥
in−∂

B+
µ⊥

(z1−), i∂[µ⊥
in−∂

B+
ν⊥](z1−), (3.45)

1
(in−∂)2

[
B+µ⊥(z1−),

[
in−∂B+

µ⊥
(z1−)

]]
,

1
(in−∂)

[
B+
µ⊥

(z1−),B+
ν⊥

(z1−)
]
,

B+
µ⊥

(z1−)B+
ν⊥

(z2−), 1
(in−∂z1)(in−∂z2)q+σ(z1−)q̄+λ(z2−), . . .

}
.

Here [µ, ν] denotes antisymmetrisation µν − νµ. The presence of the soft structures
in the collinear matching equation may seem out of place at first. However, the
soft structures play an essential role in defining independent collinear functions as
coefficients of independent soft structures. The ellipses in (3.45) include all possible
independent soft structures. We emphasise the word “independent” as there exist
relations between the soft structures which link the individual insertions of power
suppressed Lagrangian terms. It is understood that the set of soft structures in
(3.45) is written after the application of the equation of motion

n+B+(z−) = −2 i∂µ⊥
in−∂

B+
µ⊥

(z−)− 2 1
(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]]
−2 g2

s

(in−∂)2T
A q̄+(z−)TA/n−q+(z−). (3.46)

In appendix B.2, we explicitly show an example where this definition of collinear
functions, belonging to particular soft structures, is imperative. We discuss how
failing to take into account the relations between the soft structures can lead to
an inconsistent description. Specifically, see equations (B.13) – (B.23) and the
explanations there. It should be noted that for our convenience, the list in (3.45) is
still partially redundant. In particular, the two-gluon soft structures in the second
line can be considered as special cases of the bi-local structure B+

µ⊥
(z1−)B+

ν⊥
(z2−).

The formal all-order and all-power matching in equation (3.42) will be used extensively
in the following sections. We appreciate that even with detailed explanations, it can still
appear abstract. Therefore, in order to make it more transparent, a graphical illustration
is provided in figure 3.9.

3.2 Quark-antiquark channel
With the description of the theoretical framework of subleading power operators in SCET
completed, and having reviewed leading power factorisation and introduced the concept
of collinear functions we now turn our attention to one of the main results of this work.
Namely, the derivation of factorisation formula for the Drell-Yan process near threshold
beyond leading power in the (1− z) expansion.

We remind the reader that the derivation of the factorisation formula in SCET at
leading power [24] involves matching the electromagnetic current to the leading power
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c− PDF

ω1 ωm. . .

c− threshold

n+p1

n+pn

...J

soft

Figure 3.9: A momentum-space pictorial representation of the matching equation (3.42). The
oval labelled J is a collinear function. The ωi variables are conjugate to the
respective positions of the insertions of subleading-power Lagrangian terms. It is
permitted that many threshold-collinear fields join to the (possibly power-suppressed)
SCET currents of the A,B,C... - type. However, there is only a single c-PDF field
at leading twist in the Λ/Q expansion.

SCET current as written in equation (3.10). We give the leading power current before the
application of the decoupling transformation in equation (3.11). The matching coefficient
in position space is related to the momentum-space matching coefficient by equation (2.57).

In order to derive the factorisation formula valid beyond the leading power in the (1−z)
expansion, we must alter the matching equation (3.10) to include higher orders in the λ
expansion as discussed in section 2.4.4. We accomplish this first in general, by including
all possible combinations of power-suppressed currents, which extends the O(λ) example
in equation (2.115). It is also necessary to include insertions of subleading Lagrangian
terms into the general power-suppressed currents. We make use of the formalism discussed
in section 2.4.1. In section 3.2.1 we obtain a general factorisation formula valid to all
powers. This is a formal result. To show the consistency of the approach, in section 3.2.2,
we specialise the general result to next-to-leading power accuracy. For this case, we give
explicit results for objects constituting the factorisation formula in the following sections.
These are then used to cross-check the SCET computation against known QCD results
directly up to the NNLO order.

3.2.1 Factorisation at general subleading powers
In this section we present the derivation of the formal factorisation formula beyond leading
power. Since in the threshold kinematic configuration only soft radiation is permitted
to enter the final state, the hard matching is done at amplitude level. In general, power
suppressed contributions at any order in λ can arise in the collinear, anticollinear, or
both sectors. As presented in section 2.4.1, the power suppression can come from power
suppressed currents of type A,B,C... in the (anti)collinear direction, and from time-ordered
products of currents with terms from the subleading power SCET Lagrangian. Therefore,
in a general, all power, hard matching of the vector current we must sum over all the
possibilities. Omitting the index structure, such general matching equation is given by
specifying (2.71) to two directions

ψ̄γρψ(0) =
∑

m1,m2

∫
{dtk} {dt̄k̄} C̃ m1,m2

(
{tk}, {t̄k̄}

)
Js(0) J m1,m2

ρ

(
{tk}, {t̄k̄}

)
. (3.47)
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The equation is written in a compact form, which we now unpack. The sizes of the sets
{dtk} and {tk} depend on the type of collinear current present in a particular term on
the right-hand side of the matching equation. In the same way, sizes of {dt̄k̄} and {t̄k̄}
correspond to anticollinear currents present in each term. The indices m1 and m2 label
the basis of SCET operators according to the building blocks out of which each current
is constructed and their corresponding short-distance matching coefficients C̃ m1m2 . We
use the formalism and notation developed in [86, 87], which we have already described
in detail in section 2.4.1. The simplest example is the leading power case, as is written
in equation (3.10) where m1 = A0 and m2 = A0. The sum over the indices m1 and m2
accounts for the inclusion of all possible contributions.

As already mentioned, the collinear and anticollinear directions can both support
sources of power suppression. Therefore, the SCET currents in (3.47) are built in the
following way

J m1,m2
ρ

(
{tk}, {t̄k̄}

)
= J m1

c̄

(
{t̄k̄}

)
Γm1,m2
ρ J m2

c ({tk}) . (3.48)

The J m2
c ( {tk}) is constructed using collinear-gauge-invariant collinear building blocks

given in equation (2.49) and derivatives acting on these building blocks, as discussed in
section 2.4.1. We recall from section 2.4.1 that the letter A, B, C, . . . which labels
the operator JAn, JBn, JCn, . . . denotes the number of fields in a particular collinear
direction. The number n = 0, 1, 2, etc. gives the overall power of λ of the current with
respect to the leading power. Explicit examples of JA1, JA2, JB1, JB2, and JC2 are given
in (2.74), (2.75), (2.76), (2.77), and (2.78), respectively. Identical operators exist for the
anticollinear direction, and the total power suppression of J m1,m2

ρ

(
{tk}, {t̄k̄}

)
is given by

the sum of power suppression in J m1
c̄

(
{t̄k̄}

)
and J m2

c ({tk}). Γm1,m2
ρ in (3.48) stands for

the appropriate spinor and Lorentz structure of the operator. We have already encountered
the expression for the leading power case ΓA0,A0

ρ = γ⊥ρ in (3.11). We have also discussed
the more involved case at O(λ) in section 2.4.4. We have found that ΓA0,A1

ρ = n+ρ and
ΓA0,B1
ρ = n±ρ . We remark that in the construction presented here, the Γm1,m2 structure

carries only the index of the vector boson, ρ, which is common to all operators participating
in the matching. However, this way of proceeding is slightly different to the one presented
in the example in section 2.4.4. In particular, in equations (2.116) – (2.119) we have
defined Γm1,m2 to carry also the leftover indices of the corresponding currents used in the
matching. That is, currents JA1 and JB1 in equations (2.74) and (2.76). The reason for
this choice is that the general basis of subleading power operators keeps open any indices
which appear. In section 2.4.4 we found what structures are contracted with these indices
such that the only remaining open index is one of the vector boson. Here, in order to keep
the derivation general but also transparent, we choose to move any such structures into the
definition of J m1

c̄ and J m2
c since we consider arbitrarily power suppressed currents and the

specific spinor and Lorentz structure can in general be found by explicit matching at any
one power. We note that in what follows, we give the complete basis at the next-to-leading
power.

In addition to the SCET subleading currents, as discussed in section 2.4.1, there exist
time-ordered products of the currents with terms from the subleading SCET Lagrangian.
Following [86] we denote these operators by Tn, where n indicates the order of power
suppression. An example for an i-collinear direction at O(λ) is given in equation (2.80).
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For a collinear direction at O(λ2) we have for instance

J T2
c (t ) = i

∫
ddz T

[
JA0
c (t)L(2)(z)

]
. (3.49)

Similarly to (2.80), here L(2) = L(2)
ξ + L(2)

ξq + L(2)
YM are the power-suppressed terms in the

SCET Lagrangian [73] given here in section 2.4.1.
We stress here again, as was done already in section 3.1.2, that the time-ordered

product operators are crucial ingredients of the factorisation of the Drell-Yan process at
next-to-leading power. To yield a non-zero subleading power amplitude at least one leg
must have such a time-ordered product. The underlying reason for this fact is that as
shown in section 2.4.3, the decoupling transformation does not remove the soft-collinear
interactions in the subleading SCET Lagrangian terms, and as illustrated in section 3.1.2,
the injection of soft momentum into collinear loops is necessary to form non-vanishing
collinear functions.

Following the construction of subleading power operator basis presented in [86], we also
have in the generalised Drell-Yan matching equation (3.47), as in equation (2.71) for the
general N -jet case, the purely soft building blocks, Js(0). As discussed in section 2.4.1, the
purely soft building blocks start contributing to the current operator, in addition to the
collinear fields, from O (λ3). We keep Js(0) in the derivation of the formal fractionation
theorem for arbitrary powers. The soft fields will form a part of generalised soft functions.

We focus now on the (anti)collinear pieces. As we have discussed in detail in section
3.1.2, only the (c̄)c-PDF modes are permitted to radiate into the final state in the z → 1
threshold kinematic region. The virtuality of the threshold collinear modes is too large.
Therefore, a second collinear matching onto c̄-PDF and c-PDF fields has to be performed
using equation (3.42) for the threshold (anti)collinear modes appearing in equation (3.48).
The time-ordered product of the collinear fields, denoted by J m2

c ({tk}), of a general SCET
operator in equation (3.48) with terms from the subleading power SCET Lagrangian makes
up the top line of (3.42). Hence, we apply the general matching in (3.42) both to the
collinear and anticollinear sectors, which then yields the following for the Drell-Yan matrix
element of the generalised matching in (3.47)

〈X|ψ̄γρψ(0)|A(pA)B(pB)〉 =
∑

m1,m2

∑
i,̄i

∫
{dtk} {dt̄k̄} C̃ m1,m2

(
{tk}, {t̄k̄}

)
× 2π

∫
dū
∫
{dz̄ j̄+} ¯̃J m1

ī

(
{t̄k̄}, ū; {z̄ j̄+}

)
〈XPDF

c̄ |χ̄PDF
c̄ (ūn−)|B(pB)〉

× 2π
∫
du
∫
{dzj−} J̃ m2

i ( {tk}, u; {zj−}) 〈XPDF
c |χPDF

c (un+)|A(pA)〉

×Γm1,m2
ρ 〈Xs|T

(
s̄ ī ( {z̄ j̄+})

[
Y †− Js Y+

]
(0) si ({zj−})

)
|0〉 . (3.50)

We take a moment to go through the notation used in this equation. The index k (k̄)
counts the number of collinear (anticollinear) building block fields within each current, and
a sum over all possible currents is performed. The number of insertions of the subleading
power Lagrangian terms into the collinear (anticollinear) sector is indexed by j ( j̄ ), and
the sum is again over all possibilities. As we have stressed in section 3.1.2, a non-vanishing
subleading-power amplitude can only arise when at least one subleading power Lagrangian
insertion is included. Finally, the J̃i ( ¯̃J ī) are the collinear (anticollinear) functions and
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si({zj−}) (s̄ ī ( {z̄ j̄+})) are constructed with explicit B+, q+ (B−, q−) field products and
their derivatives. The possible structures are listed in (3.45). It is understood that at
leading power, or when a single time-ordered product is present on one leg only, both or
one of the collinear functions are trivial, and the corresponding soft build block is unity.
We point out that in the above equation, and throughout the text, the barred notation (̄ )
is used to denote the anticollinear direction, and the tilde (˜) refers to the quantities with
dependence on the position arguments such as t, t̄. This notation, which we also use for
indices, is meant to help keep track of the origin of the many different contributions to
the factorisation theorem.

In the next steps of the derivation of the general factorisation formula, we require the
Fourier transform of the generalised hard matching Wilson coefficients written in (2.120),
and for the c-PDF and (c)-PDF fields, which are given by

χPDF
c (un+) =

∫ d(n+pa)
2π e−i(n+pa)u χ̂PDF

c (n+pa) , (3.51)

χ̄PDF
c̄ (ūn−) =

∫ d(n−pb)
2π e+i(n−pb) ū ˆ̄χPDF

c̄ (n−pb) . (3.52)

Moreover, remembering that zj− = n+zj/2
(
z̄ j̄+ = n−z j̄/2

)
we make the following defini-

tion for the collinear (anticollinear) functions∫
{dtk}

∫
du J̃ m2

i ( {tk}, u; { zj−}) ei (n+pk) tk e−i(n+pa)u

=
∫ {

dωj
2π

}
e−iωj zj− J m2

i ({n+pk}, n+pa; {ωj}) , (3.53)

∫
{dt̄k̄}

∫
dū ¯̃Jm1

ī

(
{t̄k̄}, ū; {z̄j̄+}

)
ei(n−p̄k̄) t̄k̄e+i(n−pb) ū

=
∫ {

dω̄j̄
2π

}
e−iω̄ j̄ z̄ j̄+ J̄m1

ī

(
{n−p̄n̄},−n−pb; {ω̄j̄}

)
. (3.54)

With {ωj} ({ω̄j̄}) we have labelled the set of variables conjugate to { zj−} ({z̄j̄+}), we
use Einstein’s summation convention in the exponents, and

{
dωj
2π

}
= dω1

2π × ... × dωm
2π({

dω̄j̄
2π

}
= dω̄1̄

2π × ...×
dω̄m̄
2π

)
. The variables {ωj} ({ω̄j̄}) have a soft scaling. Implementing

equations (2.120) and (3.51) – (3.54) in (3.50) yields the following result

〈X|ψ̄γρψ(0)|A(pA)B(pB)〉 =
∑

m1,m2

∑
i,̄i

∫ {
dn+pk

2π

} {
dn−p̄ k̄

2π

}

×
∫
d(n+pa) d(n−pb)C m1,m2({n+pk}, {n−p̄k̄})

×
∫ {

dω̄ j̄
2π

}
J̄ m1
ī

(
{n−p̄k̄},−n−pb; {ω̄ j̄}

)
〈XPDF

c̄ | ˆ̄χPDF
c̄ (n−pb)|B(pB)〉

×
∫ {

dωj
2π

}
J m2
i ( {n+pk}, n+pa; {ωj}) 〈XPDF

c |χ̂PDF
c (n+pa)|A(pA)〉
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×Γm1,m2
ρ

∫
{dz̄ j̄+ }

∫
{dzj−} e−iω̄ j̄ z̄ j̄+ e−iωj zj−

×〈Xs|T
(
s̄ ī ({z̄ j̄+})

[
Y †− Js Y+

]
(0) si({zj−})

)
|0〉 . (3.55)

The next steps in the derivation of the factorisation formula involve squaring the amplitude,
which results in the hadronic tensor Wµρ defined in (3.9), and introducing the PDFs using
the definitions in (3.22) and (3.23). For these reasons, it is useful to inverse Fourier
transform the c-PDF and c̄-PDF fields into position space. This yields the following for
the amplitude and its conjugate,

〈X|ψ̄γρψ(0)|A(pA)B(pB)〉 =
∑

m1,m2

∑
i,̄i

∫ {
dn+pk

2π

} {
dn−p̄k̄

2π

}

×
∫
d(n+pa) d(n−pb)

∫
dg dḡ ei(n+pa)ge−i(n−pb)ḡ C m1,m2({n+pk}, {n−p̄k̄})

×
∫ {

dω̄j̄
2π

}
J̄ m1
ī

(
{n−p̄k̄},−n−pb; {ω̄j̄}

)
〈XPDF

c̄ |χ̄PDF
c̄ (ḡ n−)|B(pB)〉

×
∫ {

dωj
2π

}
J m2
i ( {n+pk}, n+pa; {ωj}) 〈XPDF

c |χPDF
c (g n+)|A(pA)〉

×Γm1,m2
ρ ×

∫
{dz̄j̄+ }

∫
{dzj− } e−iω̄ j̄ z̄ j̄+ e−iωj zj−

×〈Xs|T
(
s̄ ī( {z̄j̄+})

[
Y †− Js Y+

]
(0) si( {zj−})

)
|0〉 , (3.56)

and

〈A(pA)B(pB)|ψγµψ̄(0)|X〉 =
∑

m′1,m
′
2

∑
i′ ,̄i′

∫ {
d(n+p

′
k′)

2π

} {
d(n−p̄′k̄′)

2π

}

×
∫
d(n+p

′
a) d(n−p′b)

∫
dg′dḡ′ e−i(n+p′a)g′ e+i(n−p′b)ḡ

′
C∗m

′
1,m
′
2( {n+p

′
k′}, {n−p̄′k̄′})

×
∫ {

dω̄′j̄′

2π

}
J̄
∗m′1
ī′

(
{n−p̄′k̄′},−n−p

′
b; , {ω̄′j̄′}

)
〈B(pB)|χPDF

c̄ (ḡ′ n−)|XPDF
c̄ 〉

×
∫ {

dω′j′

2π

}
J
∗m′2
i′

(
{n+p

′
k′}, n+p

′
a; {ω′j′}

)
〈A(pA)|χ̄PDF

c (g′ n+)|XPDF
c 〉

× Γ̄m′1,m
′
2

µ ×
∫
{dz̄′j̄′+}

∫
{dz′j′−}e

+iω̄′
j̄′ z̄
′
j̄′+ e

+iω′
j′z
′
j′−

×〈0|T̄
(
s̄′i′({z′j′−})

[
Y †+J

†
s Y−

]
(0) s′ ī′({z̄′j̄′+})

)
|Xs〉 , (3.57)

respectively. The expressions become cumbersome at this point and beyond, in particular
since the next step involves bringing together the above two expressions according to (3.9).
Therefore, to keep the size of the expressions manageable we define the following coefficient
function which contains both, the collinear, anticollinear, and hard matching functions at
the amplitude level,

Dm1,m2
i ī ρ

(n+pa,−n−pb; {ωj}, {ω̄ j̄}) = (2π)2
∫ {

dn+pk
2π

}{
dn−p̄ k̄

2π

}
×C m1,m2({n+pk}, {n−p̄ k̄}) J̄ m1

ī
({n−p̄ k̄},−n−pb; {ω̄ j̄})
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×Γm1,m2
ρ J m2

i ({n+pk}, n+pa; {ωj}) , (3.58)

D
∗m′1,m

′
2

i′ ī′ µ
(n+p

′
a,−n−p′b; {ω′j′}, {ω̄′j̄′}) = (2π)2

∫ {
d(n+p

′
k′)

2π

} {
d(n−p̄′k̄′)

2π

}
×C∗m′1,m′2( {n+p

′
k′}, {n−p̄′k̄′})J̄

∗m′1
ī′

(
{n−p̄′k̄′}, −n−p

′
b; {ω̄′j̄′}

)
× Γ̄m′1,m

′
2

µ J
∗m′2
i′

(
{n+p

′
k′}, n+p

′
a; {ω′j′}

)
. (3.59)

As mentioned above, we now square the amplitude, which gives the hadronic tensor Wµρ

defined in (3.9). The hadronic tensor is related to the d-dimensional cross-section as
dictated by equation (3.8).

Many simplifications can be made at this stage. The c-PDF and c̄-PDF matrix elements,
with corresponding fields written in coordinate space, are identified with the PDFs, which
are given in equations (3.22) and (3.23) for the derivation of factorisation formula at
leading power. We perform integrations over the auxiliary variables g, ḡ, g′, and ḡ′. This
gives delta functions which are then used in evaluation of integrals over n+pa, n−pb, n+p

′
a,

and n−p′b. When the dust settles, we end up with an all-power version of equation (3.24)2.
Extracting then the convolution with the PDFs from the hadronic Drell-Yan spectrum as
given in (3.27), we obtain the expression

σ̂ =
∑

m′1,m
′
2

m1,m2

∑
i′ ,̄i′

i,̄i

∫ {
dω̄′j̄′

2π

}{
dω′j′

2π

} {
dω̄ j̄
2π

}{
dωj
2π

}

× (−Q2)
[(

/n−
4

)
D
∗m′1,m

′
2 ρ

i′ ī′
(xan+pA, xbn−pB; {ω′j′}, {ω̄′j̄′})

×
(
/n+
4

)
Dm1,m2

i ī ρ
(xan+pA, xbn−pB; {ωj}, {ω̄ j̄})

]

×
∫ dd−1~q

(2π)d−1 2
√
Q2 + ~q 2

1
2π

∫
ddx ei(xapA+xb pB−q)·x

× S̃ i ī i′ ī′(x; {ωj}, {ω̄ j̄}, {ω′j′}, {ω̄′j̄′}) (3.60)

for the most general form of the power-suppressed qq̄-induced partonic cross-section near
threshold. We remind the reader that the barred and tilde notation is used to refer to
the anticollinear direction and objects which depend on the coordinate-space arguments,
respectively. The complex conjugate amplitude contributions to the factorisation formula
are marked throughout the text with a prime ( ′ ) symbol. We note that this use of notation
also applies to the indices and can be mixed, in such a way that for example ī′ denotes
the contribution from the anticollinear piece of the complex conjugate amplitude.

In the last line of the above equation we have introduced the generalised multi-local
soft function, S̃ i ī i′ ī′(x; {ωj}, {ω̄ j̄}, {ω′j′}, {ω̄′j̄′}), which is given by

S̃ i ī i′ ī′(x; {ωj}, {ω̄ j̄}, {ω′j′}, {ω̄′j̄′})
2Except for the fact that here we do not evaluate the lepton trace since we keep Γm1,m2

ρ and Γ̄m′
1,m

′
2 ρ

structures general.
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=
∫
{dz̄′j̄′+}

∫
{dz′j′−}

∫
{dz̄ j̄+}

∫
{dzj−} e+iω̄′

j̄′ z̄
′
j̄′+ e

+iω′
j′z
′
j′− e−iω̄ j̄ z̄ j̄+ e−iωjzj−

× 1
Nc

Tr 〈0|T̄
(
s̄′i′ ( {x+ z′j′−})

[
Y †+ J

†
s Y−

]
(x) s′ī′ ({x+ z̄′j̄′+})

)
×T

(
s̄ ī ({z̄ j̄+})

[
Y †− Js Y+

]
(0) si ({zj−})

)
|0〉 . (3.61)

With this we conclude the derivation of the general factorisation formula for the Drell-Yan
cross-section in the z → 1 limit including power corrections in (1− z). These results have
appeared in equations (2.1) and (2.2) of [40] without a derivation, which is carried out here
as in [65] with additional details and explicit intermediate equations. We remark here that
up to this point no phase space expansion has been carried out. This is in contrast to the
result for the leading power factorisation formula in equation (3.28) with the soft function
given in (3.29), where the spatial dd−1q and dd−1x integrals were performed leaving behind
dependence only on the energy component of the soft radiation crossing the cut. The
phase space is not homogeneous in the λ power counting, which is manifested in equations
(3.25) and (3.26). To these type of power corrections, originating in the expansion of
the phase space, we will refer to as kinematic power corrections. Power corrections due
to subleading power currents and insertions of subleading Lagrangian terms are named
dynamical power corrections. At leading power only the lowest orders in both kinematic
and dynamic power corrections is kept hence we can unambiguously write down the result
as in (3.28) with the soft function in (3.29). However, at any given higher order in the
power expansion, one has to account for all possible contributions due to interference from
these two types of power corrections. Since the formula in equation (3.60) is general and
accurate to all powers, we keep the phase space unexpanded.

3.2.2 Factorisation at next-to-leading power
In this section we restrict the discussion general subleading power effects to only the
next-to-leading power. At this level, we can make certain simplifications in the general
formula given in equation (3.60).

The first observation we make is that the total number of ω variables at next-to-leading
power is highly constrained. This is due to the fact that the ω variables are connected
to the soft emissions from collinear functions, which means that they originate in time-
ordered product insertions of subleading-power Lagrangian terms. On the one hand, at
least one ω variable must appear since at least one time-ordered product operator must
be present in the SCET amplitude to induce a threshold-collinear scale. Otherwise, as we
have discussed in section 3.1.2, all of the threshold-collinear corrections to the (c̄)c-PDF
matrix element are scaleless and a trivial null result is obtained. On the other hand,
the total power suppression at next-to-leading power is O(λ2). Therefore, no more than
two separate ω variables can be present. These would correspond to two L(1) insertions,
each providing O(λ) suppression. The limit on the total number of subleading power
soft-collinear interactions also constrains the total number of soft structures si from the
set (3.45), that are required at next-to-leading power.

Another simplification occurs due to the fact that in the position-space SCET framework,
as we discussed in section 2.4.1, the purely soft building blocks start contributing to the
current operator only from O(λ3) [86]. Therefore, at next-to-leading power the purely soft
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part Js(0) does not appear in the factorisation formula. The soft structures originate only
from single insertions of the O(λ2) SCET Lagrangian terms, L(2)

ξ and L(2)
YM, in equations

(2.65) and (2.69), and double insertions of the single power-suppressed Lagrangian terms,
L(1)
ξ , L(1)

ξq , and L
(1)
YM, in equations (2.63), (2.66), and (2.68), respectively.

We next consider the kinematic set up of the process itself. In the centre-of-mass
frame, the kinematic set up does not support power suppression induced by an operator
with O(λ) scaling on the collinear or anticollinear leg. This simplification arises because
the incoming collinear (anticollinear) momentum may be chosen to carry only its large
component, pµ = (n+p, 0, 0) (lµ = (0, n−l, 0)) with n+p ∼ Q (n−l ∼ Q for the anticollinear
leg), as we have chosen in section 3.1.1 for the calculation of the amplitude with one
collinear loop at leading power. We recall also that the components of the soft momentum
all scale as O(λ2). The key observation is that in order for the collinear (anticollinear) leg
to carry O(λ) suppression, it would necessarily have to be proportional to pµ⊥(lµ⊥) ∼ Qλ,
the transverse component of the collinear (anticollinear) momentum. This is because
there exists no other momentum component in the threshold kinematics which has a
O(λ) scaling. However, the transverse momentum component of both the collinear and
anticollinear momenta vanishes. This, therefore, implies that the O(λ2) power suppression
cannot arise due to two separate insertions of L(1)

ξ (or L(1)
YM) Lagrangian terms on two

different legs of a diagram. The above arguments also imply that in the qq̄ channel a
non-vanishing O(λ) amplitude does not exist. It should be noted however, that this does
not mean that a non-vanishing O(λ) cannot contribute in general. Indeed, the emission of
a soft quark does give rise to an amplitude with such scaling, however this forms a part of
the (anti)quark-gluon (qg, q̄g) channel and will be explored in more detail in section 3.3.

In consequence, at cross-section level at next-to-leading power, the O(λ2) power
correction must arise in the amplitude which is then interfered with the leading power
amplitude as dictated by (3.9). This yields the next-to-leading power, O(λ2) suppressed,
cross-section. There still exist numerous possibilities for the generation ofO(λ2) suppression
in the amplitude. One of the types of possibilities is a time-ordered product operator, such
as J T2(t), built from a L(1) insertion and a subleading current of type JA1 or JB1. We have
discussed the O(λ) power suppressed currents in the example matching in section 2.4.4.
For convenience, we write the two possible types of currents here, including explicitly the
Γρ structure

JA0,A1
ρ (t, t̄ ) = χ̄c̄(t̄n−)n+ρ i/∂⊥χc(tn+), (3.62)

JA0,B1
ρ (t1, t2, t̄ ) = χ̄c̄(t̄n−)n±ρ /Ac⊥(t2n+)χc(t1n+), (3.63)

There also exist the corresponding power suppressed currents with the power suppression
in the anticollinear direction, which we do not write explicitly here. The most significant
aspect of the two O(λ) currents is that both are proportional to n±ρ. This is an important
feature because at the cross-section level the amplitude in which the JA1 and JB1 currents
could appear, is interfered with the leading power amplitude. As can be seen in (3.11),
the latter is proportional to γ⊥ρ. The contraction of n±ρ and γ⊥ρ yields a null result.
Therefore, a potential contribution of this type vanishes at cross-section level to all
orders in perturbation theory. This is a major simplification in the type and number of
contributions possible at next-to-leading power in the general factorisation formula derived
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in section 3.2.1. At next-to-leading power, the sum over the indices in m1,2 in the formula
in equation (3.60) contains only the JA0-type current, along with the time-ordered product
operators built from the leading power JA0 current and insertions of subleading power
SCET Lagrangian terms. This also implies that in the next-to-leading power factorisation
formula, the only the hard matching coefficient of the leading power current, C A0,A0,
appears.

The consequence of the above considerations is that the soft structures which are
relevant at next-to-leading power are the explicitly presented terms in (3.45) and the
ellipsis is dropped. This statement holds after the equation of motion, written in (3.46), is
used to eliminate the soft structure n+B+, which is redundant.

The above discussion of the simplifications which occur at next-to-leading power, but
may not necessarily apply beyond that accuracy, allows us to present a more compact,
next-to-leading power, version of the general subleading-power factorisation formula given
in equation (3.60). Specifically, up to and including O(λ2) the general formula in (3.60)
simplifies to the following

σ̂(z) =
5∑

i,i′=0

∫ {
dωj
2π

}{
dω′j′

2π

}
Tr
[(

/n−
4

)
D∗ ρi′ (xan+pA, xbn−pB; {ω′j′})

×
(
/n+
4

)
D iρ(xan+pA, xbn−pB; {ωj})

]

× (−Q2)
∫ dd−1~q

(2π)d−1 2
√
Q2 + ~q 2

1
2π

∫
ddx ei(xapA+xb pB−q)·xS̃ ii′ (x; {ωj}, {ω′j′})

+ c̄-terms , (3.64)
The set notation, namely {ωj} = {ω1, ω2}, is necessary only for the i = 4, 5 terms. These
correspond to contributions where the soft structures are made up of insertions of the
fields at different positions. This can be verified by considering the explicit expressions
written below. The remaining terms require only a single ω variable. An exception
to this statement is the leading power position space soft function, written above in
equation (3.30), which naturally does not require any ω variables as it is solely made up
of products of Wilson lines.

In equation (3.64), the terms, where the power suppression is placed on the anticollinear
leg, are denoted by “c̄-terms”. This is done both for the amplitude and its conjugate.
We do not write these terms explicitly to keep the expressions as concise as possible.
Eventually, these terms contribute a factor of 2 to the power-suppressed terms in the
formula in the above equation.

We have argued in detail above, that at next-to-leading power only the J A0,A0 current
is required in formation of time-ordered products with subleading-power Lagrangian
insertions in the matching to the Drell-Yan vector current. This implies that the general
structure Γρ which is defined in equation (3.48) in simply given by γ ρ⊥ at next-to-leading
power. Moreover, the anticollinear functions J̄ m1

ī
({n−p̄ k̄},−n−pb; {ω̄ j̄}) in the general

definition (3.58) are in fact delta functions in Diρ(xan+pA, xbn−pB; {ωj}) since the power
suppression in Diρ(xan+pA, xbn−pB; {ωj}) is placed on the collinear leg. This means that
the Diρ(xan+pA, xbn−pB; {ωj}) coefficient function simplifies to

Diρ(xan+pA, xbn−pB; {ωj} ) =
∫
d(n+p) d(n−p̄) CA0,A0(n+p, n−p̄)
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× δ(n−p̄− xb n−pB) γ⊥ρ Ji (n+p, xa n+pA; {ωj}) . (3.65)

In order to keep the expression general and notation not too cumbersome, we have chosen
the index i, that is summed over in (3.64), to stand in place of all necessary indices—Dirac,
Lorentz, and colour—that are needed by each separate term depending on the specific
soft structure that acts as a projector in the collinear matching given in equation (3.42).
We point out that in the evaluation of this factorisation formula, one must contract these
indices before the spin trace is performed in equation (3.64). The reason for this is that
particular soft functions, such as S5 which we write explicitly below, can contain open
spin indices that connect it to the collinear function. There also exists a similar expression
to one given in equation (3.65) for the conjugate amplitude D∗ ρi′ with variables {ωj}
replaced by {ω′j′}. It should also be noted that at leading power, both the collinear and
anticollinear functions are simply delta functions as we have seen in section 3.1.1 with the
trivial matching example. In this case, the Diρ reduces to γ⊥ρCA0,A0.

In the same way as in equation (3.60) for the general factorisation formula, the final-state
phase-space integral over the lepton-pair momentum ~q is still contained in equation (3.64)
in its exact form. As we have discussed in section 3.2.1, equations (3.25) and (3.26)
indicate that the phase-space integral also adheres to a threshold power expansion in
(1 − z). Therefore, in addition to the dynamical power corrections originating through
time-ordered product insertions into the amplitude, there exist also kinematic power
corrections where the amplitudes are kept at leading power in λ and it is the integration
over the phase space that provides the power correction. This type of correction we denote
by ∆kin

NLP(z) making use of the definition in (3.31) and it will be discussed in more detail
below.

Before we proceed to explore the factorisation formula in (3.64) further, we focus on the
appearing collinear functions themselves. We already discussed that in the next-to-leading
power factorisation only the leading power hard current JA0,A0 is required to form the
time-ordered product operators with insertions of subleading-power Lagrangian terms.
This leads us to the conclusion that in the next-to-leading power case the set {ψc(tkn+)}
in the general collinear matching equation (3.42) is in fact made up of only a single
quark or antiquark collinear field. Moreover, the set {L(l)(zj)} of Lagrangian insertions is
either formed by only O(λ2) insertions {L(2)(z)} or two O(λ) insertions {L(1)(z1),L(1)(z2)}.
Making use of the momentum-space collinear functions which were defined in (3.53), leads
us to conclude that the collinear matching equation at next-to-leading power is either
given by

i
∫
ddzT

[
χc,γf (tn+) L(2)(z)

]
= 2π

∑
i

∫ dω

2π

∫ dn+p

2π e−i (n+p) t
∫ dn+pa

2π

× Ji;γβ,µ,fbd (n+p, n+pa;ω) χ̂PDF
c,βb (n+pa)

∫
dz− e

−i ω z− si;µ,d(z−) (3.66)

for the L(2)(z) insertions, or

i2
∫
ddz1

∫
ddz2 T

[
χc,γf (tn+)L(1)(z1)L(1)(z2)

]
= 2π

∑
i

∫ dω1

2π
dω2

2π

∫ dn+p

2π e−i(n+p) t

×
∫ dn+pa

2π Ji;γβ,µ,fbd (n+p, n+pa;ω1, ω2) χ̂PDF
c,βb (n+pa)



3.2. Quark-antiquark channel 71

×
∫
dz1−dz2− e

−i ω1 z1−e−i ω2 z2− si;µ,d(z1−, z2−) (3.67)

for the double L(1)(z1)L(1)(z2) insertions. The indices µ and d connecting the Ji and si
structures stand for the collective Lorentz and colour indices suitable for the particular soft
structure. As we have mentioned previously, and as can be seen on the right-hand side of
equations (3.66) and (3.67), for each independent soft structure si we have a corresponding
collinear function Ji.

In the following steps, we further simplify the factorisation formula in equation (3.64).
In order to avoid confusion, we discuss the kinematic and dynamical next-to-leading
power corrections separately. Before we continue, we recall the discussion in the vicinity of
equation (3.31). The important remark there is that the next-to-leading power factorisation
formula we have derived and written in equation (3.64) is for the bare partonic cross-
section σ̂. Care has to be taken when dealing with this d-dimensional quantity. For
example, the collinear singularities are still contained in σ̂. These are usually subtracted
by PDF renormalization. Moreover, the spin trace gives the following in d-dimensions
Tr
[(

/n−
4

)
γ⊥ρ

(
/n+
4

)
γρ⊥
]

= −(1− ε) as we have already discussed in section 3.1.1. Therefore,
in order to conveniently be able to compare the results obtained here with literature such
as [117, 116], in what follows we consider the quantity ∆ as defined in equation (3.31).
The 1/(1− ε) factor accounts for the fact that we work in d-dimensions, and the 1/z factor
is also conventional in literature [117, 116].

NLP kinematic correction ∆kin
NLP(z)

As explained above, contributions to the next-to-leading power cross-section can originate
in expanding the kinematic factors to next-to-leading power accuracy, while keeping the soft
and hard functions at leading power (recall that collinear functions are trivial at leading
power). We now investigate these kinematic corrections to the Drell-Yan cross-section.
The starting point is to take the leading power soft function term in (3.64). Noting that
at leading power no time-ordered product insertions appear in the factorisation formula,
such that the D coefficients can simplified as explained below equation (3.65), we begin to
classify the kinematic corrections from the following expression

∆kin
LP+NLP(z) = H(ŝ) 1

z

Q

4π

∫ dd−1~q

(2π)d−1

∫
ddx ei(Ω∗/2)x0−i(~q 2/(2Q))x0−i~q·~x S̃0 (x) , (3.68)

where H(ŝ) = |CA0,A0(xan+pA, xbn−pB)|2. We have also already used the fact that the
energy of the soft hadronic final state can be expanded as in equation (3.25). A number
of kinematic corrections can be identified in the above expression. It is understood that
in this discussion while we consider a certain source of power corrections, the remaining
factors which could give power suppression must be taken at leading power in order to
yield overall power suppression for the cross-section at next-to-leading power and not
beyond.

The first kinematic correction, which we label “K1”, arises due to the power suppression
provided by the second term in the exponent in equation (3.68). Performing Taylor
expansion of the exponent, writing ~q in terms of spatial derivatives, and evaluating the
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dd−1~q and dd−1~x integrals, we find the approximation

∆K1
LP+NLP(Ω) = H

(
Q2
) Q

4π

∫
dx0 eix

0Ω/2

 1︸︷︷︸
LP

+ ix0∂2
~x

2Q︸ ︷︷ ︸
NLP

+O
(
λ4
) S̃0(x)

∣∣∣
~x=0

(3.69)

valid to next-to-leading power. The unity in the bracket is in fact the leading power
term and should be ignored as it does not form part of the kinematic correction, we
have kept it here for clarity regarding the Taylor expansion. The next-to-leading power
kinematic correction ∆K1

NLP(Ω) constitutes the second term in the bracket in (3.69), which
we have underbraced for clarity. As is usually done, the ~x = 0 is set only after the spatial
derivatives are performed. This result is general, and the derivative can in principle act
on any soft function. However, since we work up to next-to-leading power, the kinematic
correction needs to only be applied to the leading power soft function.

The second kinematic correction, labelled “K2”, originates in the expansion of Ω∗ in the
first exponent in (3.68). The power expansion of Ω∗ itself can be found in equation (3.26).
We proceed in the same way as above, perform the Taylor expansion of the exponent and
evaluate the dd−1~q and dd−1~x integrals

∆K2
LP+NLP(Ω) = H

(
Q2
) Q

4π

∫
dx0 eix

0Ω/2

 1︸︷︷︸
LP

+ 3i
8Qx

0 Ω2

︸ ︷︷ ︸
NLP

+O
(
λ4
) S̃0(x)

∣∣∣
~x=0

. (3.70)

Similarly to ∆K1
NLP(Ω) in (3.69), ∆K2

NLP(Ω) is in fact given only by the second term in the
bracket. The first term is the leading power contribution which does not form a part
of ∆K2

NLP(Ω). In both ∆K1
NLP(Ω) and ∆K2

NLP(Ω), the linear x0 term can be replaced by a
derivative with respect to Ω and taken out of the integral, the terms which remain form
the momentum-space leading power Drell-Yan soft function SDY(Ω) which can be found
in (3.29).

The third kinematic correction, labelled “K3”, comes from the expansion of the 1/z
factor in (3.68). Straightforwardly, we find

∆K3
LP+NLP(Ω) = H

(
Q2
) 1

4π

 Q︸︷︷︸
LP

+ Ω︸︷︷︸
NLP

+O
(
λ4
)∫ dx0 eix

0Ω/2S̃0(x)
∣∣∣
~x=0

. (3.71)

Here, similarly to above, the first term in the bracket belongs to the leading power result
and should be dropped.

The fourth kinematic correction, labelled “K4”, is due to the expansion of the argument
of the hard function H(ŝ) itself. Incorporating the expansion of the hard matching
coefficient, H(ŝ) = H(Q2) +Q2(1− z)H ′(Q2) +O(λ4), into (3.68) gives

∆K4
LP+NLP(Ω) =

H(Q2)︸ ︷︷ ︸
LP

+Q2ΩH ′(Q2)︸ ︷︷ ︸
NLP

+O(λ4)

 1
4π

∫
dx0 eix

0Ω/2S̃0(x)
∣∣∣
~x=0

. (3.72)



3.2. Quark-antiquark channel 73

Again the first term in the expansion of the hard function forms part of the leading power
result.

For concreteness, we drop the leading power terms which were pointed out as the
leading terms in the above expansions, and write again the four kinematic corrections at
next-to-leading power. These are given by the following

∆K1
NLP(Ω) = H

(
Q2
) ∂
∂Ω ∂2

~x SDY(Ω, ~x)|~x=0 = H
(
Q2
)
SK1(Ω), (3.73)

∆K2
NLP(Ω) = H

(
Q2
) 3

4 Ω2 ∂

∂ΩSDY(Ω, ~x)|~x=0 = H
(
Q2
)
SK2(Ω), (3.74)

∆K3
NLP(Ω) = H

(
Q2
)

ΩSDY(Ω, ~x)|~x=0 = H
(
Q2
)
SK3(Ω), (3.75)

∆K4
NLP(Ω) = H ′

(
Q2
)
Q2 ΩSDY(Ω, ~x)|~x=0= H ′

(
Q2
)
Q2 SK3(Ω). (3.76)

As we have mentioned, SDY(Ω, ~x ) is the leading power soft function defined in (3.29), with
a difference that the x0 argument is generalised to contain a non-zero spatial contribution ~x.
The sum of the above four terms, gives the full next-to-leading power kinematic correction,
which we denote by ∆kin

NLP(z). We explicitly evaluate these formulas with the relevant
ingredients and present the results up to NNLO in chapter 7.

For the purposes of leading logarithmic resummation at next-to-leading power developed
in chapter 8, in equations (3.73), (3.74), and (3.75) we have implicitly defined the three
kinematic soft functions

SK1(Ω) = ∂

∂Ω ∂2
~x SDY(Ω, ~x)|~x=0 , (3.77)

SK2(Ω) = 3
4 Ω2 ∂

∂ΩSDY(Ω, ~x)|~x=0 , (3.78)

SK3(Ω) = ΩSDY(Ω, ~x)|~x=0 . (3.79)

The role of the kinematic corrections in the next-to-leading power resummation is discussed
in section 8.2. Next, we consider contributions to the next-to-leading power cross-section
from a different source.

Dynamical NLP power correction ∆dyn
NLP(z)

In this section we consider the contribution to the next-to-leading power cross-section
where the phase space kinematics are kept at leading power, and the power suppression
originates in the insertions of subleading-power Lagrangian terms. This means that, in
the same manner as in section 3.1.1, we keep only the first term in the expansions given in
equations (3.25) and (3.26). We can again perform the dd−1~q integral which yields a delta
function for the spatial part of x, which then allows us to evaluate the dd−1~x integral and
set ~x = 0 in the soft functions. Following these steps in equation (3.64) and remembering
to switch to ∆dyn

NLP(z) which is defined in equation (3.31) yields the following

∆dyn
NLP(z) = − 1

(1− ε)Q
5∑

i,i′=0

∫ {
dωj
2π

}{
dω′j′

2π

}
Tr
[(

/n−
4

)
D∗ ρi′ (xan+pA, xbn−pB; {ω′j′})
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×
(
/n+
4

)
D iρ(xan+pA, xbn−pB; {ωj})

] ∫ dx0

4π eiΩx0
S̃ ii′ (x0; {ωj}, {ω′j′})

+ c̄-terms , (3.80)

where Ω = Q(1− z).
In contrast to the case of the kinematic correction, the collinear functions which appear

in the dynamical power correction are non-trivial. We recall that the collinear functions
are tied to a particular soft function and they will carry the same indices. Moreover,
in addition to the indices which connect the collinear function to its soft structure, the
collinear functions have two Dirac and two colour indices, γβ and fb, from the threshold-
collinear and c-PDF fields in the matching equation (3.66). It is understood that the
various collinear functions, Ji, in equation (3.80) have their indices dictated by matching
equations (3.66) and (3.67). As an example we can consider the first soft structure in
the set in (3.45). This soft structure contains one B+ field and hence carries in addition
one adjoint index A through which it is connected to the collinear function. This implies
that J1 carries one adjoint index which is tied to the colour generator. We make this
example concrete by writing the J1 (n+p, xan+pA;ω) in (3.80) with the indices that it
carries explicitly, which is then JA1;γβ,fb (n+p, xan+pA;ω).

The ∆dyn
NLP(z) part of the factorisation formula in (3.80) can be simplified further through

decomposition of the collinear functions into all allowed colour and spinor structures. We
accomplish this in what follows. To continue the example case studied above, we consider
the JA1;γβ,fb (n+p, xan+pA;ω) collinear function again. This collinear function must be
proportional to the colour generator TA

fb as this is the only structure which has one adjoint
A, and two fundamental, fb, colour indices. Taking advantage of this fact, we can now
define a scalar collinear function which is multiplied by the colour generator TA

fb . At
which point, we are free to move the colour factor into the soft function where it forms of
the trace over the colour indices. In much the same fashion, the colour factors belonging
to the other collinear functions can be absorbed by their corresponding soft functions. In
this way, we can simplify the dynamical next-to-leading power part of the factorisation
formula in (3.80) which gives the following result

∆dyn
NLP(z) = − 2

(1− ε) Q
[(

/n−
4

)
γ⊥ρ

(
/n+
4

)
γρ⊥

]
βγ

×
∫
d(n+p)C A0,A0 (n+p, xbn−pB)C∗A0A0 (xan+pA, xbn−pB)

×
5∑
i=1

∫
{dωj} Ji,γβ (n+p, xan+pA; {ωj}) Si(Ω; {ωj}) + h.c. , (3.81)

where as above Ω = Q(1− z).
As in (3.80) and as explained below equation (3.64), the double-valued set {ωj} =

{ω1, ω2}, is only necessary for terms i = 4, 5. We have also discussed below equation (3.65)
that care is needed for the case of the i = 5 structure, since as well as the Dirac indices
βγ which are written explicitly, J5 and S5 carry further Dirac indices contracted among
them. This can be explicitly seen in the definition of S5 below. The factor of 2 in the
top line is attributed to the c̄-terms in the last line of (3.80). Another simplification is
realised when we make use of the fact that power suppression at O(λ2) is always generated
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in one of the amplitudes and that an O(λ) amplitude does not exist in the qq̄-channel
as we have discussed above. Therefore, one of the coefficient functions, Dρ or D∗ρ, is
always reduced to the leading power expression, γ⊥ρCA0,A0 or γρ⊥C∗A0,A0 respectively. We
emphasise here once more, that the main and crucial difference with respect to the leading
power factorisation formula in equation (3.28), is the appearance of convolutions between
the collinear jet functions and the generalised, multi-local, soft functions. We would also
like to draw attention to the fact that the aforementioned structure resembles the power
suppressed corrections in 1/mb in the SCET description of the semi-leptonic B decay in
the so-called shape function region [75, 131, 132].

In the factorisation formula written in equation (3.81) we have used the generalised,
multi-local, soft functions in momentum space as the Fourier transforms defined in the
following way,

Si(Ω; {ωj}) =
∫ dx0

4π eiΩx0/2
∫ {

dzj−
2π

}
e−iωjzj−Si(x0; {zj−}) , (3.82)

where the position-space soft functions, Si(x0; {zj−}), which contribute at the next-to-
leading power are given by

S1(x0; z−) = 1
Nc

Tr〈0|T̄
[
Y †+(x0)Y−(x0)

]
T
([
Y †−(0)Y+(0)

] i∂ν⊥
in−∂

B+
ν⊥

(z−)
)
|0〉 , (3.83)

S2;µν(x0; z−) = 1
Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
×T

([
Y †−(0)Y+(0)

] 1
(in−∂)

[
B+
µ⊥

(z−),B+
ν⊥

(z−)
])
|0〉 , (3.84)

S3(x0; z−) = 1
Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
×T

([
Y †−(0)Y+(0)

] 1
(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]])
|0〉 , (3.85)

SAB4;µν,bf (x0; z1−, z2−) = 1
Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
ba

×T
([
Y †−(0)Y+(0)

]
af
B+A
µ⊥

(z1−)B+B
ν⊥

(z2−)
)
|0〉 , (3.86)

S5;bfgh,σλ(x0; z1−, z2−) = 1
Nc

〈0|T̄
[
Y †+(x0)Y−(x0)

]
ba

×T
([
Y †−(0)Y+(0)

]
af

g2
s

(in−∂z1)(in−∂z2)q+σg(z1−)q̄+λh(z2−)
)
|0〉 . (3.87)

We recall from the discussion of the list in (3.45) that the NLP soft functions S2 and S3
are redundant and could in principle be eliminated by relating them to S4.

At this point, we would like to point out that in principle, there could exist another
soft function,

S̃A6;bf,µν(x;ω) =
∫
dz− e

−iω z− 1
Nc

〈0|T̄
[
Y †+(x)Y−(x)

]
ba
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×T
([
Y †−(0)Y+(0)

]
af

i∂[µ⊥
in−∂

B+A
ν⊥] (z−)

)
|0〉 , (3.88)

with the defining soft structure given by the second term (3.45). Indeed, this soft structure
is needed to obtain the complete result for the next-to-leading power one-soft-gluon
emission amplitude, as can be seen in appendix B.2 where the results are presented.
However, the soft function with the i∂[µ⊥

in−∂
B+A
ν⊥] (z−) soft structure does not contribute at the

cross-section level at any order in perturbation theory. The reason for this is as follows.
The soft functions, as can be seen in (3.83) – (3.87), are vacuum matrix elements of Wilson
lines and the soft field insertions. Therefore, the only possible structure which could carry
the Lorentz indices of the anti-symmetric soft building block i∂[µ⊥

in−∂
B+A
ν⊥] (z−) in S̃A6;bf,µν(x;ω)

is the epsilon tensor. However, the epsilon tensor, by parity conservation, is excluded in
QCD. Hence, we conclude that required in the factorisation formula at next-to-leading
power are only the five soft functions given in equations (3.83) to (3.87), along with their
corresponding collinear functions.

The all-order formulation of next-to-leading power threshold factorisation given above,
and the operator definitions of the contributing collinear jet and soft functions, is one of
the principal results of this work.

3.2.3 Expansion up to next-to-next-to-leading order
The next-to-leading power factorisation formula is verified in chapter 7 through the
comparison of the results obtained using the factorisation formula and its elements to
the existing fixed-order O(αs) and O(α2

s) results in the literature. In order to facilitate
the comparison carried out in chapter 7, we now expand the factorisation formula in
equation (3.81) to obtain the terms which arise up to and including the next-to-next-to-
leading order in αs.

The objects which appear in the factorisation formula in equation (3.81), a hard Wilson
matching coefficient CA0,A0(n+p, n−p̄), the collinear functions Ji (n+p, xa n+pA; {ωj}), the
soft functions S̃i(x; {ωj}), each have a perturbative expansion in the strong coupling αs.
At next-to-leading power, the generalised soft functions are made up of at least one explicit
soft field insertion and its derivatives, instead of containing solely the soft Wilson lines
as in the leading power case. Therefore, the lowest order at which the generalised soft
functions can contribute to the cross-section is O(αs). On the other hand, the hard and
the collinear functions can have tree-level contributions O(α0

s). Hence, to obtain the NLO
result from the factorisation formula, only one possible combination of the contributing
functions is possible. Namely, we require tree-level hard and collinear functions and a NLO
soft function. Then, one order higher in αs, to obtain the NNLO fixed order results, we
must consider three possible contributing combinations. These are: (1) A tree-level hard
function along with one-loop collinear function and a NLO soft function, (2) one-loop hard
function, a tree-level collinear function and a NLO soft function, and lastly (3) tree-level
hard and collinear functions, together with the NNLO, O(α2

s), soft functions.
Before we proceed, we make an important observation regarding the structure of

collinear functions. It is the fact that since the kinematic set-up only allows for soft radiation
into the final state, the large component (n+p) of the incoming c-PDF momentum has to be
the same as the sum of the large components of the outgoing threshold collinear momenta of
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A A

B B

γ∗ γ∗A0 A0

c− threshold

J

c− PDF

ω

Figure 3.10: This diagram is the next-to-leading power version of the diagram presented in
figure 3.6. It is worth to compare and contrast the two. Since we work at leading
twist, the parton distribution functions remain the same in both cases. The next-to-
leading power cross-section, ∆dyn

NLP(z) in (3.81), is schematically drawn inside the
golden frame. We have picked a representative contribution of the sum in the third
line of equation (3.81). We immediately see that the structure of the factorisation
beyond leading power is more intricate than the leading power result. We note the
appearance of collinear functions originating in the matching of threshold-collinear
fields to c-PDF fields. These are connected to generalised soft functions via a
variable ω with a soft scaling. Explicit soft gauge field insertions into the soft
function, denoted by large red dot, mean that the soft function contains at least
one soft gluon emission and therefore starts at order αs. As at leading power, only
the JA0A0 hard current contributes to the next-to-leading power cross-section.

a particular collinear function. Next, we note that for the JA0 current we require only one
outgoing collinear momentum from the collinear function. Therefore, the collinear functions
at the next-to-leading power must be proportional to δ(n+p−xan+pA). However, on top of
the collinear function being proportional to the delta function in momenta δ(n+p−xan+pA),
due to the fact that n−z components appear in the soft-collinear interactions, which in
momentum space translate to n+p derivatives, the momentum-space collinear functions
may also contain derivatives of the momentum-conserving delta function. This is for
example the case for the J1(n+p, xa n+pA;ω) collinear function. It is also diagonal in the
Dirac indices, hence we can write the J1(n+p, xa n+pA;ω) collinear function in terms of
two scalar components in the following way:

J1;γβ (n+p, xa n+pA;ω) = δγβ

[
J1,1 (xan+pA;ω) δ(n+p− xan+pA)
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+ J1,2 (xan+pA;ω) ∂

∂(n+p)
δ(n+p− xan+pA)

]
. (3.89)

We can now make use of this decomposition in the factorisation formula. Namely, using
integration by parts this derivative is moved to act on the amplitude hard-scattering
coefficient. Therefore, the derivative collinear-function term, J1,2 (xan+pA;ω), only con-
tributes to the cross-section when the hard Wilson matching coefficient has momentum
dependence. This happens only from the first loop order, O(αs) for CA0,A0. Once we
perform the derivative on the hard Wilson matching coefficient, one can evaluate the
remaining d(n+p) integral using the delta function in the second line of (3.89), which after
these manipulations does not have a derivative acting on it.

Considering the list of soft functions in equations (3.83) – (3.87), the only soft function
in this list which begins at the lowest, next-to-leading αs order is S1. The remaining soft
functions are made from at least two explicit insertions of soft fields. Therefore, the leading
contribution from these soft functions to the cross-section is at next-to-next-to-leading
order. Hence, keeping only the contributions to next-to-leading order, we have

∆dyn (1)
NLP (z) = 4QH(0)(Q2)

∫
dω J

(0)
1,1 (xan+pA;ω)S (1)

1 (Ω;ω) , (3.90)

where the spin trace, Tr
[(

/n−
4

)
γ⊥ρ

(
/n+
4

)
γρ⊥
]
, has already been evaluated to yield a factor

of −(1− ε).
Moreover, here and below in this section, the Ω variable is related to the threshold

variable 1− z by Ω = Q(1− z). We may greatly simplify equation (3.90) by substituting
in the tree-level result for the hard coefficient H(0)(Q2) = 1, and the tree-level collinear
function, which we write below in equation (4.19):

∆dyn (1)
NLP (z) = −4

∫
dω S

(1)
1 (Ω;ω) . (3.91)

We now continue our considerations at the next-to-next-to-leading order. Above we have
discussed the three possible types of contributions, they take the following expressions
respectively:

• Collinear: tree-level hard function, one-loop collinear function, and a NLO soft
function

∆dyn (2)
NLP−coll(z) = 4QH(0)

(
Q2
) ∫

dω J
(1)

1,1 (xan+pA;ω) S (1)
1 (Ω;ω) . (3.92)

• Hard: one-loop hard function, tree-level collinear function, and a NLO soft function

∆dyn (2)
NLP−hard(z) = 2Q

∫
dω S

(1)
1 (Ω;ω )

(
H(1)

(
Q2
)
J

(0)
1,1 (xan+pA;ω)

−C∗A0 (0) (xan+pA, xbn−pB) J (0)
1,2 (xan+pA;ω)

× ∂

∂xa(n+pA)C
A0 (1)(xan+pA, xbn−pB)

)
+ h.c. (3.93)
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• Soft: tree-level hard function, tree-level collinear function, and NNLO soft functions

∆dyn (2)
NLP−soft(z) = − 4

(1− ε) Q
[(

/n−
4

)
γ⊥ρ

(
/n+
4

)
γρ⊥

]
βγ

H(0)
(
Q2
)

×
5∑
i=1

∫
{dωj} J (0)

i,γβ (xa n+pA; {ωj}) S(2)
i (Ω; {ωj}) . (3.94)

In ∆dyn (2)
NLP−soft(z) the derivative terms in the collinear functions do not contribute,

since the hard function takes its tree-level value which is a constant, and hence
vanishes when the derivatives are applied.

The above expressions can be simplified by making use of the tree-level values for the
relevant contributing objects. Specifically, since H(0)(Q2) = 1, we have

∆dyn (2)
NLP−coll(z) = 4Q

∫
dω J

(1)
1,1 (xa n+pA;ω)S(1)

1 (Ω;ω) (3.95)

for the collinear term.
Next we consider the simplifications to the hard contribution ∆dyn (2)

NLP−hard(z) in (3.93).
∆dyn (2)

NLP−hard(z) is simplified by using tree-level values for the collinear functions in (4.19)
and (4.20). We remind the reader that since this expression refers to d-dimensional
regularized objects, care has to be taken when dealing with this quantity. In particular, the
one-loop d-dimensional hard matching coefficient depends on Q2 = xaxbn+pAn−pB only
through an overall multiplicative factor (−Q2/µ2)−ε. Therefore, performing the derivative
yields the hard matching coefficient again, now multiplied by a factor of −ε/Q. Along with
the hermitian conjugate term in (3.93), from the derivative term we obtain the following:
−ε/Q × (C∗A0(0)CA0(1) + C∗A0(1)CA0(0)) = −εH(1)/Q. Then ∆dyn (2)

NLP−hard(z) in equation
(3.93) simplifies to

∆dyn (2)
NLP−hard(z) = −4 (1− ε)H(1)(Q2)

∫
dω S

(1)
1 (Ω; ω ) . (3.96)

The soft contribution to the cross-section ∆dyn (2)
NLP−soft(z) in equation (3.94) can also be

simplified through the use of tree-level collinear functions. However, we do not present it
here.

This concludes our discussion of the power corrections to the diagonal qq̄-channel of the
Drell-Yan process at threshold. In chapters 4, 5, and 6 we compute the relevant collinear
and soft functions, before putting them together in chapter 7 to obtain explicit results up
to next-to-next-to-leading order accuracy. In chapter 8, we again pick up discussion of
the next-to-leading power factorisation formula, given here in equation (3.81), where after
specifying the formula to the leading logarithmic accuracy we perform resummation at
next-to-leading power.

3.3 Gluon-antiquark channel
In this section we consider the off-diagonal channel contribution to the Drell-Yan partonic
cross-section at threshold as given in equation (3.3) and shown schematically in the right
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panel of figure 3.2. For the process g(xapA) q̄(xbpB) → γ∗(Q2) [→ `(l1)¯̀(l2) ] + X(pX)
to take place in the z → 1 limit, the incoming c-PDF gluon must be converted to a
threshold collinear quark through the emission of a soft antiquark. The threshold-collinear
quark retains almost all of the momentum of the incoming c-PDF gluon. The soft-quark
interaction with collinear fields is inherently a subleading power effect. This can be
deduced from the fact that soft quarks only appear in the soft term, q̄si /Dsqs, in the leading
power Lagrangian written in (2.35), and the soft quarks first appear in soft-collinear
interaction terms at O(λ) in, L(1)

ξq , in equation (2.66). Therefore, unlike in the case of the
qq̄-channel discussed in section 3.2, the contribution to the Drell-Yan cross-section from the
gq̄-channel does not begin at leading power as this process vanishes. Rather, the process
is first realised at next-to-leading power through time-ordered product insertions of L(1)

ξq

Lagrangian terms into the amplitudes. The cross-section is then obtained by interference
of two such amplitudes.

The layout of this section resembles one of section 3.2, we first outline the derivation
of the general factorisation formula for the gq̄-channel of the partonic Drell-Yan process,
before specifying the formula to the next-to-leading power accuracy.

3.3.1 Factorisation at general subleading powers

The derivation of the formal factorisation formula beyond leading power for the gq̄-channel
follows closely the derivation presented in section 3.2.1 for the qq̄-channel. Here we follow
the structure of section 3.2.1 and draw attention to the differences for the gq̄-channel.

Following the formalism described in section 2.4.1, the general, all power, hard matching
of the vector current is given in equation (3.47) with the SCET currents written in (3.48).
As discussed above, in addition to the SCET subleading power currents, there exist non-
local time-ordered products of the subleading currents with subleading power Lagrangian
terms. Of particular importance for the gq̄-channel are the L(l)

ξq insertions, which can
convert the incoming c-PDF gluon into a threshold collinear quark through the emission
of a soft antiquark.

As for the qq̄-channel, the threshold kinematics still forbids the radiation of threshold
collinear modes into the final state. Therefore, in the same way as in section 3.2.1,
we perform a second collinear matching of the threshold collinear fields appearing in
the generalised SCET currents and their time-ordered products with subleading SCET
Lagrangian terms, onto c-PDF and c̄-PDF fields. The matching for the anticollinear leg,
with an incoming antiquark, uses equation (3.42) as for the diagonal channel case. In the
matching of the threshold collinear fields to the c-PDF gluon building block, we use the
general matching equation written in (3.43).

Performing these steps, we arrive at the following result for the Drell-Yan matrix
element of the generalised matching for the gq̄-channel, which is the analogue of the
diagonal channel expression in (3.50)

〈X|ψ̄γρψ(0)|A(pA)B(pB)〉 =
∑

m1,m2

∑
i,̄i

∫
{dtk} {dt̄k̄} C̃ m1,m2

(
{tk}, {t̄k̄}

)
× 2π

∫
dū
∫
{dz̄ j̄+} ¯̃J m1

ī

(
{t̄k̄}, ū; {z̄ j̄+}

)
〈XPDF

c̄ |χ̄PDF
c̄ (ūn−)|B(pB)〉
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× 2π
∫
du
∫
{dzj−} G̃m2

i ( {tk}, u; {zj−}) 〈XPDF
c |APDF

c⊥ (un+)|A(pA)〉

×Γm1,m2
ρ 〈Xs|T

(
s̄ ī ( {z̄ j̄+})

[
Y †− Js Y+

]
(0) si ({zj−})

)
|0〉 . (3.97)

Explicit Dirac, Lorentz, and colour indices are suppressed and the notation used here is
the same as in equation (3.50). Namely, we use the index k (k̄) to count the number of
collinear (anticollinear) building block fields in a given current, and we sum over all of
the possible currents. The index j ( j̄ ) counts the number of insertions of the subleading
power Lagrangians into each collinear (anticollinear) sector, and again we sum over all
of the occurrences. At least one subleading power Lagrangian insertion is necessary to
give a non-vanishing subleading-power amplitude, as discussed in section 3.1.2. Moreover,
as discussed above, already at O(λ2) in the gq̄-channel an insertion of L(1)

ξq is needed at
tree-level to yield a non-vanishing amplitude. In the anticollinear direction the matching
is performed on the c̄-PDF antiquark field as in the qq̄-channel case and the anticollinear
functions are denoted in the same way, ¯̃J ī. In the collinear direction we match to the c-PDF
gluon field and G̃i are the collinear functions. The soft structures si({zj−}) (s̄ ī ( {z̄ j̄+}))
are built from products of B+, q+ (B−, q−) fields and their derivatives. The list of possible
structures is given (3.45).

Next, we use (3.52) for the Fourier transform of the c̄-PDF field and for the c-PDF
gluon field we use

APDF
c⊥ (un+) =

∫ dn+pa
2π e−i(n+pa)uÂPDF

c⊥ (n+pa). (3.98)

Similarly, to rewrite the anticollinear functions ¯̃J ī in momentum space we use the definition
given in equation (3.54). For the collinear functions we make an analogous definition to
one in equation (3.53) by replacing J̃i → G̃i∫

{dtk}
∫
du G̃m2

i ( {tk}, u; { zj−} ) ei(n+pk) tke−i(n+pa)u

=
∫ {

dωj
2π

}
e−iωjzj− Gm2

i ( {n+pk}, n+pa; {ωj}) . (3.99)

As before, the set {ωj} denotes the variables with a soft scaling that are conjugate to { zj−}
and in the exponents Einstein’s summation convention is used. Also

{
dωj
2π

}
= dω1

2π × ...×
dωm
2π .

We now make use of equations (2.120), (3.52), (3.98), (3.54), and (3.99) in the general
Drell-Yan matrix element written in (3.97) which leads us to the following expression

〈X|ψ̄γρψ(0)|A(pA)B(pB)〉 =
∑

m1,m2

∑
i,̄i

∫ {
dn+pk

2π

} {
dn−p̄ k̄

2π

}

×
∫
d(n+pa) d(n−pb)C m1,m2({n+pk}, {n−p̄k̄})

×
∫ {

dω̄ j̄
2π

}
J̄ m1
ī

(
{n−p̄k̄},−n−pb; {ω̄ j̄}

)
〈XPDF

c̄ | ˆ̄χPDF
c̄ (n−pb)|B(pB)〉

×
∫ {

dωj
2π

}
Gm2
i ( {n+pk}, n+pa; {ωj}) 〈XPDF

c |ÂPDF
c⊥ (n+pa)|A(pA)〉
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×Γm1,m2
ρ

∫
{dz̄ j̄+ }

∫
{dzj−} e−iω̄ j̄ z̄ j̄+ e−iωj zj−

×〈Xs|T
(
s̄ ī ({z̄ j̄+})

[
Y †− Js Y+

]
(0) si({zj−})

)
|0〉 . (3.100)

In the next step, we obtain the hadronic tensor Wρµ by taking the square of the amplitude
according to equation (3.9) and combining it with the final state leptons as in (3.8).
Therefore, we define the following amplitude level coefficient functions in order to render
the expressions handleable. For an amplitude we have

Dm1,m2 ρ
i ī

(n+pa,−n−pb; {ωj}, {ω̄j̄}) = (2π)2
∫ {

dn+pk
2π

} {
d(n−p̄k̄)

2π

}
×C m1,m2({n+pk}, {n−p̄k̄})× J̄m1

ī

(
{n−p̄k̄},−n−pb; {ω̄j̄}

)
×Γm1,m2 ρGm2

i ( {n+pk}, n+pa; {ωj}) , (3.101)

and for use in the conjugate amplitude we define

D∗m
′
1,m
′
2

i′ ī′ ρ
(n+p

′
a,−n−p′b; {ω′j′}, {ω̄′j̄′}) = (2π)2

∫ {
d(n+p

′
k′)

2π

} {
d(n−p̄′k̄′)

2π

}
×C∗ m′1,m′2( {n+p

′
k′}, {n−p̄′k̄′})× J̄

∗m′1
ī′

(
{n−p̄′k̄′},−n−p

′
b; {ω̄′j̄′}

)
× Γ̄m′1,m′2ρ G

∗m′2
i′

(
{n+p

′
k′}, n+p

′
a; {ω′j′}

)
. (3.102)

We next write the general amplitude expression and its conjugate in terms of these
coefficient functions. Also the (c̄)c-PDF fields are inverse Fourier transformed, in which
case we obtain

〈X|ψ̄γρψ(0)|A(pA)B(pB)〉 = 1
(2π)2

∑
m1,m2

∑
i,̄i

∫
d(n+pa) d(n−pb)

∫ {
dω̄j̄
2π

}∫ {
dωj
2π

}

×
∫
dg dḡ ei(n+pa)ge−i(n−pb)ḡ Dm1,m2 ρ

i ī
(n+pa,−n−pb; {ωj}, {ω̄j̄})

× 〈XPDF
c̄ |χ̄PDF

c̄ (ḡ n−)|B(pB)〉 〈XPDF
c |APDF

c⊥ (g n+)|A(pA)〉

×
∫
{dz̄j̄+ }

∫
{dzj− } e−iω̄ j̄ z̄ j̄+ e−iωj zj−

×〈Xs|T
(
s̄ ī( {z̄j̄+})

[
Y †− Js Y+

]
(0) si( {zj−})

)
|0〉 (3.103)

for the amplitude in (3.100), and

〈A(pA)B(pB)|ψγµψ̄(0)|X〉 = 1
(2π)2

∑
m′1,m

′
2

∑
i′ ,̄i′

∫
d(n+p

′
a) d(n−p′b)

∫ {
dω̄′j̄′

2π

}∫ {
dω′j′

2π

}

×
∫
dg′dḡ′ e−i(n+p′a)g′ e+i(n−p′b)ḡ

′ D∗m
′
1,m
′
2

i′ ī′ µ
(n+p

′
a,−n−p′b; {ω′j′}, {ω̄′j̄′})

× 〈B(pB)|χPDF
c̄ (ḡ′ n−)|XPDF

c̄ 〉 〈A(pA)|APDF
c⊥ (g′ n+)|XPDF

c 〉

×
∫
{dz̄′j̄′+}

∫
{dz′j′−}e

+iω̄′
j̄′ z̄
′
j̄′+ e

+iω′
j′z
′
j′−
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×〈0|T̄
(
s̄′i′({z′j′−})

[
Y †+J

†
s Y−

]
(0) s′ ī′({z̄′j̄′+})

)
|Xs〉 , (3.104)

for its conjugate. We now interfere the amplitudes and combine the hadronic tensor with
the leptonic part according to equations (3.9) and (3.8) respectively. At this point, we use
equation (3.23) to rewrite the c̄-PDF matrix element in terms of PDFs, and for the c-PDF
matrix element we use the following relation from appendix A of [133]:

〈A(pA)|AA
′,PDF

c⊥η′ (x+ g′n+)AA,PDF
c⊥η (gn+)|A(pA)〉 = −g⊥ηη′

(d− 2)
δAA

′

(N2
c − 1)

×
∫ 1

0

dxa
xa

fg/A(xa)eixa(x+g′n+−gn+)·pA . (3.105)

We remark that the we do not make indices explicit in this general derivation, it is
understood however, that the indices appearing in (3.105) are absorbed by the collinear
functions. Finally, we perform the integrations over auxiliary variables g, ḡ, g′, and ḡ′ and
the momenta n+pa, n+pb, n+p

′
a, and n+p

′
b which gives the following for the Drell-Yan

cross-section in the gq̄-channel

dσ

dQ2 = 4πα2
EM

3NcQ4

∫ 1

0

dxa
xa

fa/A(xa)
∫ 1

0
dxb fb/B(xb) σ̂ab (3.106)

where a = g, b = q̄, and

σ̂gq̄ =
∑

m′1,m
′
2,

m1,m2

∑
i′ ,̄i′

i,̄i

∫ {
dω̄′j̄′

2π

}{
dω′j′

2π

} {
dω̄j̄
2π

}{
dωj
2π

}

× 1
2(d− 2)

[
Dm1,m2 ρ
i ī

(xan+pA, xbn−pB; {ωj}, {ω̄j̄})
(
/n+
4

)

×D∗m
′
1,m
′
2

i′ ī′ ρ
(xan+pA, xbn−pB; {ω′j′}, {ω̄′j̄′})

]

×
∫ dd−1~q

(2π)3 2
√
Q2 + ~q 2

1
2π Q

∫
ddxei(pAxa+pBxb−q)·x

×S̃gq̄; i ī i′ ī′(x; {ωj}; {ω̄j̄}; {ω′j′}; {ω̄′j̄′}). (3.107)

This is the result for the general form of the power-suppressed gq̄-induced partonic cross-
section in the z → 1 limit. The notation with bars (̄ ) and tildes (˜) is used here in
the same way as in the derivation of the qq̄-induced partonic cross-section. They refer
to the anticollinear direction and objects with dependence on the coordinate variables
respectively. Also, the contributions from the complex conjugate amplitude are denoted
with a prime ( ′ ) symbol.

In the last line of equation (3.107) the generalised multi-local soft function for the
gq̄-channel was introduced. It is given by

S̃gq̄; i ī i′ ī′(x; {ωj}; {ω̄j̄}; {ω′j′}; {ω̄′j̄′}) =
∫
{dz̄′j̄′+}

∫
{dz′j′−}

∫
{dz̄j̄+ }

∫
{dzj− }

× e
+i
(
ω̄′
j̄′ z̄
′
j̄′+

)
e

+i
(
ω′
j′z
′
j′−

)
e−i(ω̄ j̄ z̄ j̄+) e−i(ωjzj−)
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× 1
CF CA

〈0|T̄
(
s̄′i′( {x+ z′j′−})

[
Y †+(x)J†sY−(x)

]
s′ ī′( {x+ z̄′j̄′+})

)
×T

(
s̄ ī( {z̄j̄+})

[
Y †−(0)JsY+(0)

]
si( {zj−})

)
|0〉 . (3.108)

We recall that in the same fashion as the qq̄-channel result in equation (3.60), the result
in equation (3.107) is a formal d-dimensional result with regularized quantities.

3.3.2 Factorisation at next-to-leading power
In this section we specify the general subleading power result in (3.107) to the case of
next-to-leading power. We follow the steps of the analysis performed in section (3.2.2) for
the qq̄-channel.

As we will describe in what follows, the main simplification arises due to the required
change in fermion number between the initial c-PDF gluon and the field content of the
vector current onto which the first hard matching step is performed in (3.47). Since in the
threshold kinematics the collinear quarks cannot enter the final state, due to their large
virtuality, the necessary change in fermion number must be realised through an emission
of a soft quark into the final state. In general, this could be achieved through insertions of
subleading-power Lagrangian terms, such as L(1)

ξq and L(2)
ξq in (2.66) and (2.67) respectively,

in time-ordered products with current operators, and using soft quark fields in the purely
soft building block Js(0) in equation (3.47). However, as discussed in section 2.4.1, and
shown explicitly in (2.79), the purely soft building block Js(0) in position-space formulation
of SCET does not contribute below O(λ3) and therefore can be ignored in the next-to-
leading power considerations. At O(λ2) at the cross-section level, we can also ignore all
subleading power Lagrangian terms L(l)

ξq with l ≥ 3. Additionally, the aforementioned
L(2)
ξq Lagrangian insertion can also be dropped as the amplitude with the L(2)

ξq Lagrangian
insertion would have to be interfered with a leading power amplitude in order to yield
O(λ2) power suppressed cross-section. However, such contribution vanishes. With this, we
conclude that in the gq̄-amplitude the power suppression must originate via the emission
of a soft quark through a time-ordered product insertion of a L(1)

ξq Lagrangian term with
the JA0 current.

Having established that there exists only one possibility of generating power suppression
up to O(λ2) at cross-section level, we now for concreteness give the collinear matching
equation specified to the needed next-to-leading power case with explicit indices. Using
the Fourier transforms in equations (3.98) and (3.99) we write the collinear function in
momentum space

i
∫
ddzT

[
χc,γf (tn+) L(1)(z)

]
= 2π

∫ dω

2π

∫ dn+p

2π e−i(n+p)t
∫ dn+pa

2π
×Gη,A

ξq;γα,fa (n+p, n+pa;ω) ÂPDFA
c⊥η (n+pa)

∫
dz− e

−iω z− sξq;α,a(z−), (3.109)

where α is a Dirac index, η is a Lorentz index, and a and A are a fundamental and
adjoint colour indices respectively. This is an analogue of equations (3.66) and (3.67) used
in the qq̄-channel next-to-leading power derivation. Here we do not sum over possible
structures as the only the L(1)

ξq insertion gives rise to a soft structure, which is the soft
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quark. Therefore, here we have

sξq;α,a(z−) = gs
in−∂z

q+
α,a(z−) . (3.110)

In order to simplify the next-to-leading power factorisation formula as much as possible,
we make use of generic properties of the collinear function Gη,A

ξq;γα,fa (n+p, n+pa;ω) in the
matching equation (3.109). Firstly, as discussed in section (3.2.3), this collinear function
must be proportional to the delta function in the collinear momenta, δ (n+p− n+pa), since
the kinematic set-up does not allow for threshold collinear radiation into the final state.
Therefore the incoming c-PDF momentum is the same as the outgoing threshold collinear
momentum. Additional simplification for the gq̄-case is the fact that no n−z components
appear in the L(1)(z). Hence, momentum-space derivatives will not act on the collinear
momentum delta function. Moreover, Gη,A

ξq;γα,fa (n+p, n+pa;ω) carries one adjoint colour
index A and two fundamental colour indices fa, therefore we can extract a TA

fa colour
generator and transfer it into the definition of the soft function. The collinear function also
carries a single Lorentz index η and two Dirac indices γα. From the matching equation
in (3.109) we deduce that the Lorentz index is contracted with a ⊥ structure. Therefore,
in the collinear function a γη⊥ must appear, as only other possible single Lorentz index
carrying structures are nη± which would vanish upon contraction with ÂPDFA

c⊥η . We define
the scalar collinear function as

Gη,A
ξq,γα,fa(n+p, n+pa;ω1) = Gξq(n+p;ω1) δ ((n+p)− (n+pa)) TA

fa

[
/n−γ

η
⊥

]
γα
. (3.111)

We also note that similarly to the qq̄-case, the Γm1,m2 ρ and Γ̄m
′
1,m
′
2

ρ structures in (3.101)
and (3.102) reduce to γρ⊥ and γ⊥ρ as again only the leading power hard matching current
appears in the next-to-leading power factorisation formula. At this point we consider the
spin structure in the second and third lines of equation (3.107). Namely, the D ρ

(
/n+
4

)
D∗ρ

terms for which the spin structures take the form
[
γ⊥η/n−

]
σβ

(γ⊥ρ)βδ

(
/n+
4

)
δλ

(γρ⊥)λγ
[
/n−γ

η
⊥

]
γα

= 4
/n−σα

4 (d− 2)2 . (3.112)

The factor of /n−σα/4 is absorbed into the definition of the soft function which we give
below.

Another major simplification for the gq̄-channel Drell-Yan cross-section at next-to-
leading power occurs due to the fact that, as discussed at the beginning of this section, the
leading power amplitude for the process gq̄ → γ∗ +X vanishes. Therefore, the so-called
kinematic correction considered in section 3.2 for the qq̄ induced cross-section does not
exist for the gq̄-channel. Here, at O(λ2) accuracy, it is only necessary to keep the leading
power contribution to the phase-space kinematics. This implies that we take the first term
in the power expansion of equation (3.68) (explicitly, the first term in (3.69)), and we can
perform the dd−1~q integral in equation (3.107). This yields a delta function in ~x which is
subsequently evaluated with the dd−1~x integral setting the ~x dependence to ~x = 0. Only
the x0 dependence remains in the soft function.

Taking into consideration all of the above simplifications and making use of the
definition of ∆ in equation (3.31), we start from (3.107) and write down the factorisation
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formula for the gq̄-channel of the Drell-Yan partonic cross-section at next-to-leading power
accuracy

∆gq̄ = 4H(Q2)
∫
dω1 dω2

×G∗ξq(xan+pA;ω2)Gξq(xan+pA;ω1)S(Ω, ω1, ω2) . (3.113)

We have used the expanded hard function H(ŝ) = |CA0,A0(xan+pA, xbn−pB)|2 = H(Q2) +
O(λ2), and the soft function S(Ω, ω1, ω2) is given by

Sgq̄(Ω, ω1, ω2) =
∫ dx0

4π

∫ dz1−

2π

∫ dz2−

2π e−iω1z1−e+iω2z2−e+iΩx0/2

× 1
CF CA

〈0|T̄
(

gs
in−∂z2

q̄+(x0 + z2−) TA
{
Y †+(x0)Y−(x0)

})

×
/n−
4 T

({
Y †−(0)Y+(0)

}
TA gs

in−∂z1
q+(z1−)

)
|0〉 . (3.114)

The L(1)
ξq insertion in the amplitude is at position z1− whereas in the conjugate amplitude

we place the same insertion at position z2−. The conjugate variables to these coordinate-
space variables are ω1 and ω2 respectively. We note that the factorisation formula in
equation (3.113), in the same way as the results for the qq̄-channel Drell-Yan cross-section,
is a d-dimensional formal result with regularized quantities. The objects appearing in the
factorisation formula, Jξq(xan+pA;ω1), J∗ξq(xan+pA;ω2), and Sgq̄(Ω, ω1, ω2), should not be
treated as renormalized objects as the convolution linking the collinear and soft functions
must be performed in d-dimensions. We compute these objects up to next-to-leading
order in the following two chapters, and verify the validity of the factorisation formula at
the fixed next-to-leading order in section 7.2, and discuss the consequences for leading
logarithmic resummation in section 8.5.
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4

Drell-Yan: NLP collinear functions

The appearance of collinear functions in the next-to-leading power Drell-Yan partonic
cross-section is one of the main findings of this work. We dedicate this section to the further
exploration of the collinear functions through the direct computation of these objects to
one-loop accuracy. We will use the one-loop collinear functions results in chapter 7 to
verify the next-to-leading power factorisation formula derived in the previous section up
to next-to-next-to-leading order in αs.

We begin with the computation of collinear functions relevant for the qq̄-channel
factorisation formula considered in section 3.2 and in the following section we calculate
the collinear functions relevant for the gq̄-channel of the Drell-Yan process obtained in
section 3.3.

In general, the collinear functions are defined by the operator matching equations
given in (3.42) and (3.43). The left-hand side of each matching equation contains the
threshold-collinear fields which come from the time-ordered products of hard matching
currents with subleading-power Lagrangian terms. In the set-up of the problem we
assume that the collinear scale is much greater than the scale of strong interactions,
Q2(1−z)� Λ2. Therefore the collinear functions, J̃i ({tk}, u; {zj−}) and G̃i ({tk}, u; {zj−}),
are perturbatively calculable short-distance coefficients in the matching equations (3.42)
and (3.43). The collinear functions can be extracted from these operator matching
equations by taking appropriate matrix elements between relevant partonic states. We
perform these steps in detail in the following sections for the qq̄ and gq̄ channels at
next-to-leading power.

4.1 Quark-antiquark channel

The relevant next-to-leading power matching equations are given in (3.66) and (3.67) for
the single and double insertions of the subleading-power Lagrangian terms respectively. In
order to keep the discussion clear, we introduce the following abbreviations

T̃ a
γf (t) ≡ i

∫
d4zT

[
χc,γf (tn+)L(2)(z)

]
, (4.1)

T̃ b
γf (t) ≡ i2

∫
ddz1

∫
ddz2 T

[
χc,γf (tn+)L(1)(z1)L(1)(z2)

]
, (4.2)
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for the left-hand sides of equations (3.66) and (3.67) respectively. The Fourier transforms
of these objects are given by

T a
γf (n+q) =

∫
dt ei(n+q) t T̃ a

γf (t) , (4.3)

T b
γf (n+q) =

∫
dt ei(n+q) t T̃ b

γf (t) . (4.4)

We also apply the Fourier transform to the right-hand sides of equations (3.66) and (3.67),
and with this obtain the momentum-space matching equations as follows

T a
γf (n+q) = 2π

∑
i

∫ dn+pa
2π

∫
du ei (n+pa)u

∫ dω

2π

× Ji;γβ,µ,fbd (n+q, n+pa;ω) χPDF
c,βb (un+)

∫
dz− e

−iωz− si;µ,d(z−) (4.5)

for the single insertion, and

T b
γf (n+q) = 2π

∑
i

∫ dn+pa
2π

∫
du ei (n+pa)u

∫ dω1

2π
dω2

2π
× Ji;γβ,µ,fbd (n+q, n+pa;ω1, ω2) χPDF

c,βb (un+)

×
∫
dz1−dz2− e

−i ω1 z1−e−i ω2 z2− si;µ,d(z1−, z2−) (4.6)

for the double insertions of power-suppressed Lagrangian terms.
In order to obtain the perturbative collinear functions Ji;γβ,µ,fbd (n+q, n+pa;ω) and

Ji;γβ,µ,fbd (n+q, n+pa;ω1, ω2) we choose appropriate partonic matrix elements of the match-
ing equations above. For example, for the case of a collinear matching where only a single
external soft gluon is present, the simplest partonic matrix element that we can consider
is one with a soft gluon and a c-PDF quark, 〈g(k)|...|q(p)〉. Having made this choice, we
calculate both sides of the relevant matching equation with the leading power collinear
Lagrangian where the soft fields have been decoupled. In this case, the soft fields on
both sides of the matching equation are external. Therefore, the soft matrix element
〈g(k)|si;µ,d(z−)|0〉 must take its tree-level value, as only soft loops can contribute to αs
corrections of the soft matrix element and these are not present in the collinear matching.
The c-PDF matrix element, 〈0|χPDF

c,βb (un+)|q(p)〉, also takes its tree-level value because
here the loop corrections are scaleless as discussed in section 3.1.2.

To perform the calculation, we use momentum-space Feynman rules for the soft-collinear
interaction vertices, such as the collinear-quark soft-gluon interaction vertex in (2.90),
complete list of which is given in appendix A of [87]. The Feynman rules originate from the
the power-suppressed SCET Lagrangian terms (2.63) – (2.69). An important feature of the
next-to-leading power Feynman rules is the appearance of momentum-conservation delta
functions with derivatives acting on them. As described in section 2.4.2, these derivatives
acting on momentum-conserving delta functions arise due to the explicit presence of
position-space arguments, xµ, in the subleading-power SCET Lagrangian terms owing
to multipole expansion [72]. In this section, we show explicitly how to deal with this
complication, by first integrating by parts such that the derivatives act on the rest of the
amplitude before momentum conservation is imposed.
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4.1.1 Tree-level collinear functions
For the qq̄-channel of the Drell-Yan process, we only require insertions of the quark-gluon
subleading SCET Lagrangian terms to obtain the collinear functions at tree level. In order
to include the Yang-Mills subleading power terms, at least one collinear gluon loop would
be necessary such that a L(l)

YM Lagrangian insertion could be connected to the diagram
via a triple-gluon interaction. Contributions of this type are considered explicitly in the
section 4.1.2. We divide the computation of the tree-level collinear functions for the
qq̄-channel into two sections. First, we calculate the collinear functions connected to single
soft gluon structures, and in the second part, we consider the collinear functions connected
to soft structures which support the emission of at least two soft partons.

Single soft gluon structures

Considering the quark-gluon subleading SCET Lagrangian given in equations (2.107) –
(2.114), we find that only two soft gluon building blocks can support a tree-level single-gluon
matrix element at next-to-leading power, O(λ2). These structures are

sA1 (z−) = i∂µ⊥
in−∂

B+A
µ⊥

(z−) and sA6 (z−) = i∂[µ⊥
in−∂

B+A
ν⊥](z−) . (4.7)

Therefore, the sum over i in the operator matching equation given in (4.5) is reduced
to contain only two contributions, i = 1, 6. Explicitly, taking the 〈g(k)|...|q(p)〉 matrix
element of the collinear matching equation in (4.5) yields the following expression

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉 = 2π

∫ dn+pa
2π du ei (n+pa)u

∫ dω

2π

∫
dz− e

−i ω z−

×
(
JA1;γβ,fb (n+q, n+pa;ω) 〈0|χPDF

c,βb (un+)|q(p)e〉 〈gK(k)|sA1 (z−) |0〉

+ Jµν,A6;γβ,fb (n+q, n+pa;ω) 〈0|χPDF
c,βb (un+)|q(p)e〉 〈gK(k)|sA6;µν(z−) |0〉

)
, (4.8)

where K is the adjoint colour index and e is the fundamental colour index of the external
state. We have also added another label, 1g, to the operator to remind that we are taking
a soft gluon matrix element of this operator. The soft structure does contain soft Wilson
lines and so in principle many more emissions could be considered. We choose the simplest
case. We next evaluate the separate pieces making up (4.8) beginning with the c-PDF
collinear matrix element 〈0|χPDF

c,βb (un+)|q(p)e〉 on the right-hand side which becomes

〈0|χPDF
c,βb (un+)|q(p)e〉 = δbe

√
Zq,PDF uc,β(p) e−i(n+p)u . (4.9)

The
√
Zq,PDF is the on-shell wave renormalization factor of the c-PDF field. We turn our

attention to the soft matrix elements 〈gK(k)|sA1 (z−) |0〉 and 〈gK(k)|sA6;µν(z−) |0〉, which are
found to yield

〈gK(k)| i∂
ν
⊥

in−∂
B+A
ν⊥

(z−) |0〉 = δAK
gs

(n−k)

[
kη⊥ −

k2
⊥

(n−k)n
η
−

]
ε∗η (k) eiz−k +O(αs),(4.10)
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〈gK(k)| i∂[µ⊥
in−∂

B+A
ν⊥] (z−)|0〉 = δAK

gs
(n−k)

[
kµ⊥ g

νη
⊥ − kν⊥ g

µη
⊥

]
ε∗η(k) eiz−k +O(αs) . (4.11)

We now insert the results in (4.9), (4.10), and (4.11) into equation (4.8), for which we
then obtain

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉 = 2π gs

(n−k)

(
JK1;γβ,fe (n+q, n+p;n−k)

[
kη⊥ −

k2
⊥

(n−k)n
η
−

]

+ Jµν,K6;γβ,fe (n+q, n+p;n−k)
[
kµ⊥ g

νη
⊥ − kν⊥ g

µη
⊥

])√
Zq,PDF uc,β(p)ε∗η (k) . (4.12)

This expression is the final result for our chosen partonic matrix element of the right-hand
side of the operator matching equation given in (4.5) for soft structures supporting single
gluon emissions. As we have explained above, we do not require loop corrections to the
c-PDF and soft matrix elements in equations (4.9), (4.10), and (4.11) since the c-PDF
and soft fields act only as external fields on both sides of the matching equation, which
means that the expression in (4.12) is exact to all orders in perturbation theory.

We next compute the left-hand side of the matching equation (4.5) by considering the
same matrix element 〈gK(k)|...|q(p)e〉 as we have used in obtaining the expression in (4.12)
for the right-hand side.

Since the Yang-Mills and soft quark subleading power Lagrangian terms cannot con-
tribute to the tree-level collinear function tied to a single soft gluon emissions structure,
the only relevant terms in L(2) in (4.1) are terms with one soft gauge field in L(2)

ξ,I , L
(2)
ξ,II,

and L(2)
ξ,III, as given in (2.65). These terms give rise to the next-to-leading power soft-gluon

vertex given in equation (2.91). The calculation at tree-level accuracy yields the following
expression

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉 = 2π gs

(n−k)TK
fe


−
[
kη⊥ −

k2
⊥

(n−k)n
η
−

]
1
n+p

δ(n+q − n+p)δγβ

− [(n−k)nη+ − (n+k)nη−] ∂

∂n+q
δ(n+q − n+p)δγβ

−
[
kµ⊥g

νη
⊥ − kν⊥g

µη
⊥

] 1
2

1
n+p

δ(n+q − n+p)
[
γµ⊥γ

ν
⊥

]
γβ


× ε∗(k)η

√
Zq,c|tree uc,β(p) +O(αs) . (4.13)

In the effective field theory, including the threshold-collinear mode, the tree-level value of
the on-shell wave function renormalization factor of the quark field is given by

√
Zq,c|tree = 1.

The expression in equation (4.13) has been calculated directly using the next-to-leading
power Feynman rule in (2.91). We note that this gives rise to three separate contributions,
each proportional to a different soft structure. Inspection of (4.12) reveals only two soft
structures onto which terms in equation (4.13) can be matched. The observation that must
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2

p s
k

p1

Figure 4.1: Diagram contributing to the tree level collinear functions. Through calculation
of this diagram using Feynman rules from [87] we can obtain the J1 and J6 tree-
level collinear functions, corresponding to insertions of L(2)

1ξ and L(2)
2ξ , and L

(2)
4ξ ,

respectively.

be made, is that the soft structures appearing in the direct calculation in equation (4.13)
are not independent. In fact, they are connected by the equation-of-motion identity given
in equation (3.46). Considering now the emitted gluon, we can use the transversality and
on-shell conditions k · ε∗ = 0 and k2 = 0, respectively. These relations have not yet been
applied in the calculation leading to the result in equation (4.13). To make use of these
relations, we first rewrite k · ε∗ = 0 in light-cone components which gives the following

(n+k)(n−ε∗ ) = 2
(
−(n−k)(n+ε

∗ )
2 − k⊥ · ε∗⊥

)
. (4.14)

This relation allows us to express the second soft structure in the curly bracket of (4.13)
in terms of the first,

[
(n−k)nν+ − (n+k)nν−

]
ε∗ν(k) = −2

[
kν⊥ −

k2
⊥

(n−k)n
ν
−

]
ε∗ν(k) . (4.15)

This result should not come as a surprise, since it is known that the two soft structures,
n+B+(z−) and i∂µ⊥

in−∂
B+
µ⊥

(z−), are connected via the equation-of-motion identity in (3.46).
Therefore, the two Lagrangian insertions which are built from these two soft structures,
L(2)

1ξ and L(2)
2ξ respectively, must contribute to the same collinear function, J1.

Finally, we insert the relation written in equation (4.14) into the tree-level computation
result in (4.13) and arrive at the following

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉 = 2π gs

(n−k)TK
fe

[
kη⊥ −

k2
⊥

(n−k)n
η
−

](
− 1
n+p

δ(n+q − n+p) + 2 ∂

∂n+q
δ(n+q − n+p)

)
δγβ

−
[
kµ⊥g

νη
⊥ − kν⊥g

µη
⊥

] 1
2

1
n+p

δ(n+q − n+p)
[
γµ⊥γ

ν
⊥

]
γβ


× ε∗(k)η

√
Zq,c|tree uc,β(p) +O(αs) . (4.16)

At this point we can compare the result for the left-hand side of the matching equation
in (4.16), to the right-hand side given in (4.12), through which we obtain the tree-level
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collinear functions

J
K(0)
1;γβ,fe(n+q, n+p;ω) = TK

feδβγ

(
− 1
n+p

δ(n+q − n+p) + 2 ∂

∂n+q
δ(n+q − n+p)

)
, (4.17)

J
µν,K(0)
6;γβ,fe (n+q, n+p;ω) = −1

2
1
n+p

TK
fe

[
γµ⊥γ

ν
⊥

]
γβ
δ(n+q − n+p) . (4.18)

We note here the factor of −2 which appears in the second term of (4.17) in relation to
the first term. This factor was not present the result prior to the use of on-shell and
transversality relations given in equation (4.13). The origin of the factor of −2 can be
traced all the way back to the equation-of-motion relation in (3.46), as the soft fields in
the two terms which induce this contribution are connected by the equation-of-motion
relation precisely with this weight.

We recall the scalar collinear function, J1, decomposition which we introduced in (3.89).
This decomposition we now apply to the result in equation (4.17) which implies

J
(0)
1,1 (n+p;ω) = − 1

n+p
, (4.19)

J
(0)
1,2 (n+p;ω) = 2 . (4.20)

We also note again that, as described in section 3.2.2, the collinear function J6 does not
contribute to the Drell-Yan partonic cross-section at any order in αs.

Double soft parton structures

We now turn our attention to calculation of the collinear functions which multiply soft
structures that contain at least two soft fields, for example 1

(in−∂)

[
B+
µ⊥

(z1−),B+
ν⊥

(z1−)
]

and 1
(in−∂z1 )(in−∂z2 )q+σ(z1−)q̄+λ(z2−) from the set in (3.45). Focusing on the graphical

representation of the general collinear function presented in figure 3.9, these collinear
functions are given by diagrams with a single external quark to the left and right, the
c-PDF and threshold-collinear quarks respectively, and two external soft gluons or a soft
quark-antiquark pair attached to the collinear function J . Here we perform the collinear
matching computation at tree-level accuracy, for which the relevant diagrams are shown
in figure 4.2. For concreteness, we state that the required subleading power Lagrangian
insertions are single insertions of the L(2)

3ξ and L(2)
5ξ Lagrangian terms, and the double

insertions of L(1)
ξ and L(1)

ξq Lagrangian terms. The explicit forms of these terms are given
in equations (2.110), (2.112), (2.107), and (2.113) respectively.

On top of the contributions due to Lagrangian insertions mentioned above, which
explicitly contain at least two soft fields, we must also consider contributions due to
one-soft-particle-reducible diagrams for the L(2)

1ξ Lagrangian insertion. These contributions
are shown in the last diagram in the top and bottom rows of figure 4.2. The reason for
the inclusion of these diagrams as part of the contribution to the collinear functions with
two soft partons is that in the derivation of the factorisation formula, specifically in the
step where we perform the collinear matching, the n+B+ has been eliminated from the
list of soft structures using the equation-of-motion relation in equation (3.46). We see
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Figure 4.2: Diagrams contributing to the matching of the two soft parton collinear functions.
The soft lines are labelled with an “s”. As described in the main text (and ap-
pendix C), the contributions from the one-soft-particle reducible diagrams, when
the internal gluon originates from n+B+ term in L(2), are reproduced by the two
parton terms in the equation-of-motion relation (3.46) applied to (4.13).

in the equation-of-motion relation in (3.46) that the n+B+ structure is proportional to
another single gluon structure i∂µ⊥

in−∂
B+
µ⊥

(z−), but also the two parton soft structures. The
one-soft-particle-reducible diagrams must reproduce precisely those contributions. We
discuss this in greater detail below, and show explicit computation in appendix C.

We begin the discussion by considering the collinear functions which are connected
to soft structures that support two soft gluon emission at the same coordinate z−. We
start with the collinear functions which are induced by time-ordered product insertions
of Lagrangian terms L(2)

3ξ and L(2)
5ξ . These are calculated in the same manner as the

collinear functions in the case of a single soft gluon emission. The right-hand side
of the matching equation is a generalisation of (4.8) to the two-parton case. This is
achieved by considering the si structures given by third and fourth terms in (3.45),

1
(in−∂)2

[
B+µ⊥(z1−),

[
in−∂B+

µ⊥
(z1−)

]]
and 1

(in−∂)

[
B+
µ⊥

(z1−),B+
ν⊥

(z1−)
]
. We note that both

of these terms are made from B+
µ⊥

building blocks only. Hence, the extraction of collinear
functions is simplified by the choice of ⊥ polarisations for the external soft gluons in the
calculation.

We next turn our attention to the left-hand side of the matching equation. The results
for this part are obtained by the computation of the third diagram in figure 4.2 with the
L(2)

3ξ and L(2)
5ξ Lagrangian insertions. The collinear function J3, as defined by (3.81) with

the soft function written in equation (3.85), is given by

J3;γβ (n+p, xa n+pA;ω) = δγβ

[
J3,1 (xan+pA;ω) δ(n+p− xan+pA)

+ J3,2 (xan+pA;ω) ∂

∂(n+p)
δ(n+p− xan+pA)

]
(4.21)

with J3,1 and J3,2 still to be determined.
We now inspect closer the relevant subleading-power SCET Lagrangian terms. Con-

sidering first the terms L(2)
3ξ and L(2)

5ξ in equations (2.110) and (2.112) respectively, we
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notice that after the soft fields are stripped off, the leftover collinear pieces of L(2)
3ξ are

identical to the collinear pieces of L(2)
2ξ in (2.109), and the leftover collinear pieces of

L(2)
5ξ are identical to those of L(2)

4ξ in equation (2.111). This fact leads to the conclusion
that the collinear functions induced by Lagrangian insertions of L(2)

3ξ and L(2)
5ξ are the

same as those induced by terms L(2)
2ξ and L(2)

4ξ respectively. Namely, J3,1 is equal to J1,1,
and J2 to J6. As briefly discussed above, we must also take care of the one-soft-particle
reducible diagrams, due to the fact that the n+B+ soft field was eliminated from the basis
of soft structures. The already determined single-soft-gluon emission collinear function
J1,2 only partly reproduced the one-soft-particle reducible diagram. Namely, in terms of
the equation-of-motion relation in (3.46), only the first term i∂µ⊥

in−∂
B+
µ⊥

(z−) is accounted for
so far. There exist a number of ways to determine the as of yet unaccounted for pieces
of this diagram. It could for example be obtained by explicit matching, or by using the
single-gluon matrix element in equation (4.13) prior to the application of the on-shell and
transversality relations on the external soft gluon. Following the latter way of working, we
replace the nη+ by the operator n+B+. We then employ the operator equation-of-motion
identity given in equation (3.46), which results in a term that is proportional to the
two-soft gluon structure s3. This term originates in the second term on the right-hand side
of (3.46). At this point we make the deduction that J3,2 in (4.21) must be equal to J1,2
calculated earlier for the single-soft-gluon collinear function. Another way of obtaining
the same result is to use the equation-of-motion identity in (3.46) directly in L(2)

1ξ . This
leads to L(2)

1ξ containing identical soft-gluon structure as L(2)
3ξ . We can then obtain J3,2

from the newly generated qq̄gg vertex. More details and explicit calculations regarding
the contribution of one-soft-particle reducible diagrams are given in appendix C.

The only contributions which are left to consider come from double insertions of O(λ)
Lagrangian terms L(1) at two different positions. The relevant collinear matching operator
equation for double insertions of subleading-power Lagrangian terms is given in equation
(3.67), which for convenience we give here again with the χPDF

c field written in coordinate
space

i 2
∫
d4z1 d

4z2 T
[
χc,γf (tn+) L(1)(z1)L(1)(z2)

]
= 2π

∑
i

∫ dn+pa
2π du ei (n+pa)u

×
∫ dω1

2π dz1− e
−iω1 z1−

∫ dω2

2π dz2− e
−iω2 z2−

∫ dn+p

2π e−i (n+p)t

× Ji;γβ,µ,fbd (n+p, n+pa;ω1, ω2)χPDF
c,βb (un+) si;µ,d(z1−, z2−) . (4.22)

To obtain the collinear function tied to the soft structure with two soft gluons emitted
from two different positions we calculate the 〈g(k1)g(k2)|...|q(p)〉 partonic matrix element
of the above operator matching equation. The right-hand side of the matrix element of
the matching equation is then given by

〈g(k1)K1g(k2)K2|T b,2g
γf (n+q)|q(p)e〉 = 2π

∫ dn+pa
2π du ei (n+pa)u

∫ dω1

2π dz1− e
−iω1z1−

×
∫ dω2

2π dz2− e
−iω2z2−

(
Jµν,AB4;γβ,fb (n+q, n+pa;ω1, ω2)

×〈0|χPDF
c,βb (un+)|q(p)e〉 〈g(k1)K1g(k2)K2|sAB4;µν(z1−, z2−) |0〉

)
, (4.23)
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The left-hand side of the matching equation in (4.22), with L(1)
ξ in (2.107) in place of

the two L(1) insertions in the time-ordered product, is calculated using subleading-power
Feynman rules in the same manner as for the single soft gluon case above. The diagrams
which we need to compute are the first two in the first line of figure 4.2. After obtaining
the result, we equate both sides of the matching equation and arrive at the following result
for the collinear function

J
µν,AB (0)
4;γβ,fb (n+q, n+p;ω1, ω2) = 2gµν⊥

n+p (ω1 + ω2)2

(
ω1 TATB + ω2 TBTA

)
fb

× δγβ δ(n+q − n+p) . (4.24)

It now remains to calculate the tree-level collinear function tied to the soft quark-antiquark
pair soft structure. This computation proceeds in the same way as the two soft gluon
calculation above after we replace the L(1) in (4.22) with L(1)

ξq from equation (2.113).
Taking the 〈q(k1)k1 q̄(k2)k2 |...|q(p)〉 partonic matrix element of (4.22) with the double L(1)

ξq

Lagrangian insertion yield the following for the right-hand side of the matching equation

〈q(k1)k1 q̄(k2)k2|T
b,2q
γf (n+q)|q(p)e〉 = 2π

∫ dn+pa
2π du ei (n+pa)u

∫ dω1

2π dz1− e
−iω1z1−

×
∫ dω2

2π dz2− e
−iω2z2−

(
Jfghb5;γσλβ (n+q, n+pa;ω1, ω2)

×〈0|χPDF
c,βb (un+)|q(p)e〉 〈q(k1)k1 q̄(k2)k2|s5;σλ,gh(z1−, z2−) |0〉

)
. (4.25)

The left-hand side of the matching equation is captured by the first diagram in the second
line of figure 4.2. Moreover, the one-soft-particle reducible diagram in the same figure
where the emitted soft gluon splits into two soft quarks also contributes to the collinear
function J5. This is because in the quark-antiquark case we have used a non-redundant
basis of soft structures with the single bi-local term s5. The piece which is unaccounted for
is the single emission from n+B followed by a purely soft interaction, and this is recovered
here in the same way as the two-gluon contribution. Namely, from the quark-antiquark
term in the operator equation-of-motion identity given in (3.46). More explicit details are
presented in appendix C. We combine both contributions, which yields the final result

J
fk1k2e (0)
5;γσλβ (n+q, n+p;ω1, ω2) = −TA

fk2T
A
k1e

1
n+p

ω2

(ω1 + ω2)
/n−γη

2 γµ⊥,ησγ⊥µ,λβ δ(n+q − n+p)

+ 2 TK
feTK

k1k2

ω1ω2

(ω1 + ω2)2 /n−λσδγβ
∂

∂n+q
δ(n+q − n+p) . (4.26)

4.1.2 One-loop collinear functions
Calculation of the one-loop collinear functions for the qq̄-channel of the Drell-Yan process
within SCET is one of the key results in this work. Obtaining the one-loop results for the
collinear functions enables us to demonstrate the consistency of the concept of collinear
functions and establish validity of the SCET framework.

In this section we compute the collinear functions J1 and J6 to one-loop accuracy. As
can be seen in equation (3.95), the J1 collinear function is needed at O(αs) in order to
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Figure 4.3: One-loop collinear diagrams with one external soft gluon which is labelled “s”. The
dot at the right end of the solid quark line denotes the χc field from the leading
power current. The collinear gluon in the loop can attach to either the collinear
quark or the collinear Wilson line in the definition of the χc field.

verify the next-to-leading power factorisation formula in the comparison with the fixed
next-to-next-to-leading order results in existing literature. We do not explicitly calculate
the O(αs) corrections to the collinear functions corresponding to soft structures with
two soft emitted partons. Corrections of this order would constitute a next-to-next-to-
next-to-leading order effect at the cross-section level which is beyond the scope of this
work.

In equation (4.12) we have already obtained the right-hand side of the matching
equation that is valid to all orders in perturbation theory. We keep in mind that we
must also obtain the on-shell wave function renormalization factor with O(αs) accuracy.
However, since the calculation is carried out with dimensional regularization employed
to treat ultraviolet and infrared divergences, the on-shell wave function renormalization
factor is unity to all orders in perturbation theory,

√
Zq,PDF = 1, as the loops are scaleless.

The same argument holds true for the
√
Zq,c factor appearing on the left-hand side of

the matching equation. The coupling renormalization is also identical on the right- and
left-hand sides of the matching equation, and cancels out at O(αs).

Keeping in mind the above considerations, in this section we perform the O(αs)
calculation of the 〈gK(k)|T a,1g

γf (n+q)|q(p)e〉 matrix element appearing on the left-hand side
of (4.5). This computation requires the calculation of the Feynman diagrams with one
collinear loop and a single soft emission. The soft emission is power-suppressed and enters
the diagrams through insertions of the power-suppressed Lagrangian. The diagrams which
are necessary in SCET are given in figure 4.3. All of the vertices appearing in the diagrams
are taken to be interactions at leading-power, aside from the circled vertex which indicates
the insertion of a subleading-power SCET Lagrangian term.
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Figure 4.4: One of the diagrams contributing to the one-loop collinear functions. Through
calculation of this diagram using NLP Feynman rules we can obtain the J1 and
J6 collinear functions, corresponding to insertions of L(2)

1ξ and L(2)
2ξ , and L(2)

4ξ ,
respectively.

Detailed computation

As mentioned in the discussion of the next-to-leading power Feynman rules in section
2.4.2, unfamiliar features, such as derivatives on delta functions which conserve momentum
at vertices, arise during calculation of the diagrams in the effective theory at subleading
powers. In order to highlight the differences to a usual QCD Feynman diagram calculation,
we first compute the top-left diagram in figure 4.3 in considerable detail. The diagram
with labelled momenta is shown in figure 4.4.

Applying the relevant NLP Feynman rules to the diagram in figure 4.4 and keeping
track of all the indices explicitly gives the following expression

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉fig4.4 = (2π)

∫ ddp1

(2π)d
∫ ddp2

(2π)d δ(n+q − n+p1 − n+p2)

× gsTA
fa

n+µ

(n+p2)
i(n+p1)
p2

1

/n−γα
2

× igsTK
abS

σδ
αβ(−k, p− p2, p1)

/n+βζ

2
(
− kσgδν + kδgσν

)in+(p− p2)
(p− p2)2

/n−ζλ
2

×igsTA
beC

µ(p− p2, p)
/n+λτ

2 × −i
p2

2
× ucτ (p) ε∗ν(k) (4.27)

where the indices γ, α, β, ζ, λ, and τ are Dirac indices, f, a, b, and e are fundamental
colour indices, A, K are adjoint colour indices, and µ, σ, δ, and ν are Lorentz indices. The
leading power Cµ(p− p2, p) vertex is given by

Cµ(p− p2, p) = nµ− + /p⊥ − /p2⊥
(n+(p− p2))γ

µ
⊥ + γµ⊥

/p⊥
(n+p)

− /p⊥ − /p2⊥
(n+(p− p2))n

µ
+

/p⊥
(n+p)

. (4.28)

We recall that in the chosen kinematics the incoming collinear momentum carries only its
large component, pµ = (n+p)

nµ−
2 . Therefore, the leading power vertex Cµ(p− p2, p) reduces

to
Cµ(p− p2, p) = nµ− −

/p2⊥
(n+(p− p2))γ

µ
⊥ . (4.29)

In the starting expression in (4.27), the leading power vertex Cµ(p− p2, p) is contracted
with the gluon absorbed by the Wilson line in the hard current with index µ. This is
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denoted by a dot on in the diagram in figure 4.4. Therefore only the nµ− term in 4.29
contributes. We use projection properties for the collinear spinnor

/n−/n+
4 uc(p) = uc(p) (4.30)

and manipulate the colour generator as given in (A.40). We then arrive at a simplified
version of the expression in equation (4.27)

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉fig4.4 = −2(2π)ig3

s

(
CF −

1
2CA

)
TK
fe

∫ ddp1

(2π)d
∫ ddp2

(2π)d

× δ(n+q − n+p1 − n+p2) 1
(n+p2)

n+p1

p2
1

n+(p− p2)
(p− p2)2

1
p2

2

×
[
Sσδ(−k, p− p2, p1)uc(p)

]
γ

(
− kσgδν + kδgσν

)
ε∗ν(k). (4.31)

The subleading power vertex, based on (2.91), is given by

Sσδ(−k, p− p2, p1) = 1
2

[ (
n−X

)
nσ+n

δ
−︸ ︷︷ ︸

I

+
(
− kX⊥

)
Xσ
⊥n

δ
−︸ ︷︷ ︸

II

+Xσ
⊥

(
/p1⊥
n+p1

γδ⊥ + γδ⊥
/p⊥ − /p2⊥
n+(p− p2)

)
︸ ︷︷ ︸

III

]
, (4.32)

where we have also indicated which of the three subleading-power Lagrangian terms in
(2.64) induces each piece of the Feynman rule. We remind the reader that the Xµ and
XµXν terms, given in equations (2.88) and (2.89) respectively, contain derivatives with
respect to outgoing momentum p1 acting on the momentum conservation delta function
δ(d)(p− p2 − k+ − p1).

In the next step of the calculation, we substitute in the expression for Sσδ(−k, p−p2, p1)
from (4.32). We then integrate by parts the momentum derivatives with respect to p1
which are present in the Xµ and XµXν terms. Once this integration is performed, these
derivatives act on the rest of the integrand including the δ(n+q − n+p1 − n+p2) delta
function in second line of (4.31). After this point, the momentum conservation delta
function δ(d)(p− p2 − k+ − p1) present at the subleading-power interaction vertex can be
evaluated with the integral over ddp1. This imposes momentum conservation and identifies
pµ1 = pµ − pµ2 − k

µ
+. We then arrive at the following expression

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉fig4.4 = −(2π)ig3

s

(
CF −

1
2CA

)
TK
fe

∫ ddp2

(2π)d

× 1
(n+p2)

n+(p− p2)
(p− p2)2

1
p2

2

(
− kσgδν + kδgσν

)
ε∗ν(k)

×

n− · ∂∂p1

(
δ(n+q − n+p1 − n+p2) n+p1

p2
1

)
nσ+n

δ
− uc,γ(p)

−
(
k⊥ ·

∂

∂p1⊥

)
∂

∂p1⊥σ

(
δ(n+q − n+p1 − n+p2) n+p1

p2
1

)
nδ− uc,γ(p)
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+ ∂

∂p1⊥σ

(δ(n+q − n+p1 − n+p2) n+p1

p2
1

)

×
(
/p1⊥
n+p1

γδ⊥ − γδ⊥
/p2⊥

n+(p− p2)

)
γβ

uc,β(p)

∣∣∣∣∣∣
p1=p−p2−k+

. (4.33)

The third line in the above expression corresponds to the contribution labelled by I in
(4.32), the fourth line to term II, and the fifth and sixth lines correspond to the term III.
In what follows, in order to keep track of the details of the computation and expressions
manageable, we separate the expression for the diagram in figure 4.4 in equation (4.33)
into the three parts labelled I, II, and III in (4.32).

We begin with part I which is defined by

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part I

fig4.4 = −(2π)ig3
s

(
CF −

1
2CA

)
TK
fe

∫ ddp2

(2π)d

× 1
(n+p2)

n+(p− p2)
(p− p2)2

1
p2

2

(
− kσgδν + kδgσν

)
ε∗ν(k)

×n− ·
∂

∂p1

(
δ(n+q − n+p1 − n+p2) n+p1

p2
1

)
nσ+n

δ
− uc,γ(p) }

∣∣∣∣∣∣
p1=p−p2−k+

. (4.34)

We apply the product rule and simplify the expression. In the case of the derivative n− · ∂
∂p1

acting on the propagator we use the following

n− ·
∂

∂p1

(n+p1)
p2

1
= 2

p2
1
− 2(n+p1)(n−p1)

p4
1

p1=p−p2−k+= 2
(p− k+ − p2)2 + 2(n+(p− p2))(n−(k + p2))

(p− k+ − p2)4 , (4.35)

where in the second line we have imposed momentum conservation at the power-suppressed
vertex p1 = p− p2 − k+, and (4.34) becomes

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part I

fig4.4 = 2(2π)ig3
s

(
CF −

1
2CA

)
TK
fe

(
(n+k)n−ν − (n−k)n+ν

)
×
∫ ddp2

(2π)d

(
(n+(p− p2))

(n+p2)

)
1

(p− p2)2
1
p2

2

− (n+(p− p2))
(p− k+ − p2)2

∂

∂n+q
δ(n+q − n+p)

+δ(n+q − n+p)
[

1
(p− k+ − p2)2 + (n+(p− p2))(n−(k + p2))

(p− k+ − p2)4

]uc,γ(p) ε∗ν(k) . (4.36)

As expected, two types of terms appear in this expression. One piece which is proportional
to the derivative of the δ(n+q − n+p) delta function, and another proportional to the
δ(n+q − n+p) delta function itself. Moreover, we note that because of the momentum
derivative n− · ∂

∂p1
acting on the internal propagators of the diagram, we now encounter

terms with double propagators ∼ 1/(p− k+ − p2)4.
It now remains to carry out the integration over loop momentum in this contribution

to the diagram. We perform one of the necessary integrals in detail as an example. All
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the rest of the integrals that we need were performed using the same techniques and are
listed in appendix A.5.

The integral which we consider here as an example is

A(p, k) = g2
s

∫ ddp2

(2π)d
1

(p− k+ − p2)2
1

(p− p2)2
1
p2

2

1
(n+p2) . (4.37)

We perform the integral over the loop momentum using contour integral methods. For
this purpose we expand the propagators, restore the iδ prescription, and for conciseness
use component notation where p− = n+p and k+ = n−k. Note that this should not be
confused with the vector kµ+ = (n−k)nµ+/2 which appears in the first propagator of (4.37).
We have

A(p, k) = g2
s

1
2

∫
dp2+dp2−

dd−2p2⊥

(2π)d
1
p2−

(
p2−p2+ + p2

2⊥ + p2−k+ − p2+p− − p−k+ + iδ
)−1

×
(
p2−p2+ + p2

2⊥ − p−p2+ + iδ
)−1 (

p2−p2+ + p2
2⊥ + iδ

)−1
, (4.38)

where we have also rewritten the integral measure in component form∫ ddp2

(2π)d = 1
2

∫
dp2+dp2−

dd−2p2⊥

(2π)d . (4.39)

We first make use of the Residue theorem to integrate over the p2+ component. For this
purpose we rearrange the integrand in the following way

A(p, k) = g2
s

1
2

∫
dp2+dp2−

dd−2p2⊥

(2π)d
1

(p2− − p−)2

(
p2+ + p2

2⊥
(p2− − p−) + iδ

(p2− − p−)

)−1

×
(
p2+ + p2

2⊥
(p2− − p−) + p2−k+

(p2− − p−) −
p−k+

(p2− − p−) + iδ

(p2− − p−)

)−1

× 1
(p2−)2

(
p2+ + p2

2⊥
p2−

+ iδ

p2−

)−1

. (4.40)

We now analyse the range of integration over the component p2−. There are three separate
cases to consider. First, we look at the region where p2− < 0. In this case all of the
poles are above the real p2+ axis. Therefore, we can close the contour in the lower half
plane which yields zero. Second, we consider the region where p2− > p−. Here, similarly
to above, all three poles are below the real p2+ axis. Hence, closing the contour in the
upper half plane again gives zero for the integral. Third, we consider the case where
0 < p2− < p−. This is the only contributing region since the poles now appear above and
below the real p2+ axis. We choose to close the contour in the lower half plane. This gives
an additional minus sign due to the clockwise path. After some minor simplifications and
rearrangements the integral in (4.40) becomes

A(p, k) = g2
s

(−2πi)
(2π)2

1
2

∫ p−

0
dp2−

∫ dd−2p2⊥

(2π)d−2
1

(p−)2

(
p2

2⊥

)−1
(
p2

2⊥ + p2−k+(p2− − p−)
p−

)−1

.

(4.41)
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Next, we make use of the fact that there is no dependence on angles between ⊥ vectors
in the above integral. Therefore, we can perform all the angular integrals in the ⊥-plane
immediately. This amounts to using the following d-dimensional result

∫ dd−2p2⊥

(2π)d−2 = 2π(d−2)/2

Γ[(d− 2)/2]

∫ ∞
0

dp2T p
d−3
2T

(2π)d−2 . (4.42)

Substitution of this result into the integral in (4.41) yields

A(p, k) = g2
s

(−i)
4π

∫ p−

0
dp2−

2π(d−2)/2

Γ[(d− 2)/2]

∫ ∞
0

dp2T p
d−3
2T

(2π)d−2

(
−p2

2T

)−1

×
(
−p2

2T + k+p2−(p2− − p−)
p−

)−1 1
(p−)2 , (4.43)

where we have also switched to the three vector notation p2
2⊥ = −p2

2T . We next simplify the
integrand and change the radial integration measure to dp2T = dp2

2T/2p2T . Also defining
M2 = k+p2−(p− − p2−)/p− allows us to write (4.43) in the following way

A(p, k) = g2
s

(−i)
4π

∫ p−

0
dp2−

(p−)−2

Γ[(d− 2)/2]

∫ ∞
0

dp2
2T

[
p2

2T

](d−6)/2

(4π)(d−2)/2

(
1 + p2

2T
M2

)−1

M−2. (4.44)

In the next step, we rescale the transverse integration variable p2
2T = p

′2
2TM

2, drop the ′ on
the rescaled p′22T , and choose the dimension d = 4− 2ε

A(p, k) = −g2
s

i

4π

∫ p−

0
dp2−

(p−)−2

Γ[1− ε]

∫ ∞
0

dp2
2T

[
p2

2T

]−1−ε

(4π)(1−ε)

(
1 + p2

2T

)−1
M−2−2ε . (4.45)

For the integration over the transverse component dp2
2T we use the integral representation

of the Beta function, B(−ε, 1 + ε), given in equation (A.3). We also render the coupling
dimensionless and arrive at

A(p, k) = −iαs e
εγE

4π

[
1
µ2

]−ε ∫ p−

0
dq−

(p−)−2

Γ[1− ε]
Γ[1 + ε]Γ[−ε]

Γ[1] M−2−2ε . (4.46)

Using the expression for M2, M2 = k+p2−(p− − p2−)/p− , and rescaling p2− = p′2−p− after
which we drop the ′ on p′2−, the expression for the integral in (4.46) becomes

A(p, k) = −iαse
εγE

4π

[
p−k+

µ2

]−ε 1
(n−k)

∫ 1

0
dp2−

Γ[1 + ε]Γ[−ε]
Γ[1− ε]

(
1− p2−

)−1−ε (p2−)−1−ε

(p−)2 .

(4.47)

In the last step, we identify the Beta function B(−ε,−ε) using the integral representation
in (A.2). After some simplification we arrive at

A(p, k) = iαse
εγE

4π

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)2(n−k)Γ[ε] Γ[−ε]2

Γ[−2ε]
(4.48)
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In this way we have obtained the result for the needed integral in (4.37), which we write
here explicitly and give again in equation (A.74) of appendix A.5 along with the rest of
the necessary integrals

g2
s

∫ ddp2

(2π)d
1

(p− k+ − p2)2
1

(p− p2)2
1
p2

2

1
(n+p2) = iαs

4π

[
(n+p)(n−k)

µ2

]−ε 2(1− 2ε)
(n−k)(n+p)2

×e
εγEΓ[ε]Γ[−ε]Γ[1− ε]

Γ[2− 2ε] . (4.49)

In appendix A.5 we provide all the integrals needed for the one-loop collinear functions
computation. In particular, the results for integrals that are needed to obtain the final
integrated expression for the calculation of the matrix element 〈gK(k)|T a,1g

γf (n+q)|q(p)e〉part I
fig4.4

in (4.36) can be found in (A.69), (A.75), (A.76), (A.77), (A.78), (A.79), (A.80), and
(A.81). Making use of all the necessary integral results, the expression in (4.36) for
〈gK(k)|T a,1g

γf (n+q)|q(p)e〉part I
fig4.4 takes the following form

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part I

fig4.4 = 2(2π)αs4πgsT
K
fe

(
CF −

1
2CA

) [(n+p)(n−k)
µ2

]−ε

×

 1
(n+p)

δ(n+q − n+p)−
∂

∂n+q
δ(n+q − n+p)

(1− ε)
ε2


×e

εγEΓ[1 + ε]Γ[1− ε]2
Γ[2− 2ε]

(
(n+k)
(n−k)n−ν − n+ν

)
uc,γ(p)ε∗ν(k) . (4.50)

This result is valid to all orders in ε and we have not made use of on-shell, k2 = 0, or
transversality conditions, k · ε∗(k) = 0. We now continue, and in the same manner obtain
results for part II and part III of the expression in (4.33). Part II is defined as

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part II

fig4.4 = (2π)ig3
s

(
CF −

1
2CA

)
TK
fe

∫ ddp2

(2π)d

× 1
(n+p2)

n+(p− p2)
(p− p2)2

1
p2

2

(
− kσgδν + kδgσν

)
nδ− uc,γ(p) ε∗ν(k)

×
(
k⊥ ·

∂

∂p1⊥

)
∂

∂p1⊥σ

(
δ(n+q − n+p1 − n+p2) n+p1

p2
1

)∣∣∣∣∣∣
p1=p−p2−k+

. (4.51)

Here the ⊥ derivatives yield zero when acting on the δ(n+q− n+p1− n+p2) delta function.
Hence the result for this part is only proportional to δ(n+q − n+p) and not its derivatives.
Taking the derivatives, simplifying the resultant expression, and using integrals in (A.76),
(A.77), (A.78) and (A.109) yields the following result

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part II

fig4.4 = (2π)αs4πgsT
K
fe

(
CF −

1
2CA

) [(n+p)(n−k)
µ2

]−ε

× 1
(n+p)

δ(n+q − n+p) 2(1 + ε) 1
ε2

(
−1 + 3ε− ε2

(1− ε)

)
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×e
εγEΓ[1 + ε]Γ[1− ε]2

Γ[2− 2ε]

(
k2
⊥n−ν

(n−k)2 −
k⊥ν

(n−k)

)
uc,γ(p)ε∗ν(k) .(4.52)

Part III of the expression in (4.33) is defined as

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part III

fig4.4 = −(2π)ig3
s

(
CF −

1
2CA

)
TK
fe

∫ ddp2

(2π)d

× 1
(n+p2)

n+(p− p2)
(p− p2)2

1
p2

2

(
− kσgδν + kδgσν

)
ε∗ν(k)

× ∂

∂p1⊥σ

(δ(n+q − n+p1 − n+p2) n+p1

p2
1

)

×
(
/p1⊥
n+p1

γδ⊥ − γδ⊥
/p2⊥

n+(p− p2)

)
γβ

uc,β(p)
∣∣∣∣∣∣
p1=p−p2−k+

. (4.53)

As in the calculation of parts I and II, we take the derivative with respect to the p1
momentum, simplify the expression, and this time use results for integrals given in (A.74)
and (A.69) upon which we arrive at the following result

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part III

fig4.4 = (2π)αs4πgsT
K
fe

(
CF −

1
2CA

) [(n+p)(n−k)
µ2

]−ε
× 1

(n+p)
δ(n+q − n+p)

1
ε2

(1− 2ε)

×e
εγEΓ[1 + ε]Γ[1− ε]2

Γ[2− 2ε]

[
/k⊥, γ⊥ν

]
γβ

(n−k) uc,β(p)ε∗ν(k) . (4.54)

We now collect the results for the three parts, I, II, and III, which make up the expression
in (4.33) for the diagram in figure 4.4. The final expressions, given in (4.50), (4.52), and
(4.54) respectively, are valid to all orders in ε. Upon putting the results together, we
expand in ε for illustrative purposes

〈gK(k)|T 1g
γf (n+q)|q(p)e〉fig4.4 = (2π) gsαs4π

(
CF −

1
2CA

) TK
fe

(n+p)

[
(n+p)(n−k)

µ2

]−ε

×

δ(n+q − n+p)
[
2δγβ

(
(n+k)
(n−k)n

ν
− − nν+

)

+ δγβ

(
k2
⊥ n

ν
−

(n−k)2 −
kν⊥

(n−k)

)(
− 2
ε2
− 2
ε

+ 2 + π2

6

)

+

[
γν⊥ , /k⊥

]
γβ

(n−k)

(
− 1
ε2

+ π2

12

)
+O(ε)

]

+ (n+p)
∂

∂n+q
δ(n+q − n+p) δγβ

(
(n+k)
(n−k)n

ν
− − nν+

)

×
(
− 2
ε2
− 2
ε
− 4 + π2

6 +O(ε)
)uc,β(p)ε∗ν (k) . (4.55)



106 Chapter 4. Drell-Yan: NLP collinear functions

2
p2

p
p− p2

s
k

p1
p1 + p2

Figure 4.5: Similar to figure 4.4 but now the collinear loop does not end at the field from the
hard current Wilson line, but rather attached to the collinear quark before.

We stress that in obtaining (4.55), the transversality k · ε∗(k) = 0 and on-shell k2 = 0
conditions for the emitted gluon have not been used. We point out the presence of 1/ε2
poles in the final result for this individual diagram. We discuss the implications of the
appearance 1/ε2 poles in the collinear functions in greater detail in section 8. Here, it
suffices to note that the double ε poles in the collinear function would produce leading
(double) logarithmic contributions from the collinear functions to the cross-section, and as
we see in equation (4.55), 1/ε2 poles do appear and multiply a number of terms in a NLP
diagram.

Results

Without further details of the computations, we now give the results for the remaining
diagrams in figure 4.3. The results are separated in a similar manner to the above
example, according to the subleading-power Lagrangian insertion which produces the
power suppression in each contribution to the diagram. In order to keep the expressions
as concise as possible, we define the following renormalization scale dependent loop factor

K[µ] =
[

(n+p)(n−k)
µ2

]−ε
, (4.56)

and the ε dependent factor containing Γ functions which we have defined in the context of
leading power amplitude calculation in (3.21). We state it here again for convenience

f[ε] = eεγEΓ[1 + ε]Γ[1− ε]2
Γ[2− 2ε] . (4.57)

We begin with the results for the second diagram in the top line of figure 4.3. We draw
this diagram again with labelled momenta in figure 4.5. The results for parts I, II, and III
associated with L(2)

1ξ , L
(2)
2ξ , and L

(2)
4ξ Lagrangian insertions respectively are as follows

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part I

fig4.5 = (2π)αs4πgsT
K
fe

(
CF −

1
2CA

)
K[µ]f[ε]

×
(

1
(n+p)

δ(n+q − n+p)
1
ε

(
− 1 + 2ε− ε2

)
+ ∂

∂n+q
δ(n+q − n+p)

1
ε
(1− ε)

)

×
(

(n+k)
(n−k)n−ν − n+ν

)
uc,γ(p)ε∗ν(k) (4.58)
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2

p2

p s k

p1

Figure 4.6: Diagram corresponding to
equation (4.61).

2

p2

p s k

p1
p1 + p2

Figure 4.7: Diagram corresponding to
equation (4.62).

for part I,

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part II

fig4.5 = −(2π)αs4πgsT
K
fe

(
CF −

1
2CA

)
K[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)
1
ε
(3− ε+ ε2)

(
k2
⊥

(n−k)2n−ν −
k⊥ν

(n−k)

)
uc,γ(p)ε∗ν(k) (4.59)

for part II, and for part III we have

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part III

fig4.5 = (2π)αs4πgsT
K
fe

(
CF −

1
2CA

)
K[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)

(
3 + 2ε)

2ε

[
/k⊥, γ⊥ν

]
γβ

(n−k) uc,β(p)ε∗ν(k) . (4.60)

Next, we consider the third diagram in the first row of figure 4.3. We draw the diagram
with labelled momenta in figure 4.6. This contribution is identically zero, because the
contraction of the terms in the Feynman rules directly with a collinear gluon originating
from the Wilson line in the hard current vanishes. Hence,

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉fig4.6 = 0 . (4.61)

A contribution which does not vanish is one originating from the first diagram in the
second row of figure 4.3. It is depicted once more in figure 4.7 with labelled momenta.
The contribution to part I is given by

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part I

fig4.7 = (2π)αs4πgsT
K
feCAK[µ]f[ε]

×
(

1
(n+p)

δ(n+q − n+p)
1
ε

(
1− ε

)
+ ∂

∂n+q
δ(n+q − n+p)

1
ε2

(
1− ε

))

×
(

(n+k)
(n−k)n−ν − n+ν

)
uc,γ(p)ε∗ν(k). (4.62)

This result is very similar to result for 〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part I

fig4.8 in equation (4.65). In
fact, it is related by the replacement CF → CA/2. For Part II of the same diagram we
find the following

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part II

fig4.7 = (2π)αs4πgsT
K
feCAK[µ]f[ε]
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2

p2

p s k

p1 p1 − p2

Figure 4.8: Diagram corresponding to
equation (4.65).

2

p2

p s k

p1
p1 − p2

p1

Figure 4.9: Diagram corresponding to
equations (4.68), (4.69).

× 1
(n+p)

δ(n+q − n+p)
1
ε2

(1− ε2)
(

k2
⊥

(n−k)2n−ν −
k⊥ν

(n−k)

)
uc,γ(p)ε∗ν(k) . (4.63)

We note that this result is very similar to 〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part II

fig4.8 in equation (4.66).
Indeed, the only adjustment we are required to make is the replacement CF → CA/2.
Next, we consider Part III

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part III

fig4.7 = (2π)αs4πgsT
K
fe K[µ]f[ε] 1

(n+p)
δ(n+q − n+p)

×
(
−1
ε
CF −

1
2ε2 (1− 2ε)CA

) [/k⊥, γ⊥ν]γβ
(n−k) uc,β(p)ε∗ν(k) . (4.64)

We next focus on the diagram in figure 4.8. Part I is given by

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part I

fig4.8 = (2π)αs4πgsT
K
feCF K[µ]f[ε]

×
(

1
(n+p)

δ(n+q − n+p)
2 (1− ε)

ε
+ ∂

∂n+q
δ(n+q − n+p)

2 (1− ε)
ε2

)

×
(

(n+k)
(n−k)n−ν − n+ν

)
uc,γ(p)ε∗ν(k) . (4.65)

Part II takes the following form

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part II

fig4.8 = (2π)αs4πgsT
K
feCF K[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)
2 (1− ε2)

ε2

(
k2
⊥

(n−k)2n−ν −
k⊥ν

(n−k)

)
uc,γ(p)ε∗ν(k),(4.66)

with part III being

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part III

fig4.8 = −(2π)αs4πgsT
K
feCFK[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)
(1− ε)
ε2

[
/k⊥, γ⊥ν

]
γβ

(n−k) uc,β(p)ε∗ν(k). (4.67)

We now give the results for the diagram in figure 4.9. Part I is given by

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part I

fig4.9 = −(2π)αs4πgsT
K
feCF K[µ]f[ε]
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2

p2p s k

p1
p− p2

Figure 4.10: Diagram corresponding to
equation (4.71).

2

p2p s k

p1p− p2

p + p1 − p2

Figure 4.11: Diagram corresponding to
equation (4.72).

×
(

1
(n+p)

δ(n+q − n+p)(1− ε) + ∂

∂n+q
δ(n+q − n+p)

(1− ε)
ε

)

×
(

(n+k)
(n−k)n−ν − n+ν

)
uc,γ(p)ε∗ν(k). (4.68)

Part II takes the form

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part II

fig4.9 = −(2π)αs4πgsT
K
feCFK[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)
(1− ε2)

ε

(
k2
⊥

(n−k)2n−ν −
k⊥ν

(n−k)

)
uc,γ(p)ε∗ν(k), (4.69)

and lastly we write part III

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉part III

fig4.9 = (2π)αs4πgsT
K
feCF K[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)
(1− ε)

2ε

[
/k⊥, γ⊥ν ]γβ

(n−k) uc,β(p)ε∗ν(k). (4.70)

Comparing the results in equations (4.65), (4.66), and (4.67) to (4.68), (4.69), and (4.70)
we note that at one-loop accuracy the contribution to the 〈gK(k)|T a,1g

γf (n+q)|q(p)e〉fig4.8

matrix element is proportional to 〈gK(k)|T a,1g
γf (n+q)|q(p)e〉fig4.9. Namely, we see that

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉fig4.8 = (−2/ε)〈gK(k)|T a,1g

γf (n+q)|q(p)e〉fig4.9.
We carry on and consider the leftmost diagram in the last row of figure 4.3 which

yields a vanishing contribution.
The last two diagrams left to consider are the second and third diagrams in the third

row of figure 4.3. As for the diagrams with a power-suppressed quark-gluon interaction
considered above, we present the results for the diagrams with a power-suppressed three-
gluon interaction according to the Feynman rule used in the computation of each piece.
These Feynman rules can be traced back to particular power-suppressed Lagrangian terms
in (2.69) as we discussed in section 2.4.2.

We now focus on the second diagram in the last row of figure 4.3. This is drawn again
with labelled momenta in figure 4.10. The contribution due to the first term in the O(λ2)
Feynman rule in (2.92) vanishes

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 1

fig4.10 = 0 . (4.71)
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The V (2),2+3
µνρ (k, q, p) piece in equation 2.98 gives a non-zero contribution

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 2+3

fig4.10 = (2π)αs4πgsT
K
feCAK[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)
1
4ε

[
/k⊥, γ⊥ν

]
γβ

(n−k) uc,β(p)ε∗ν(k) . (4.72)

The rest of the contributions, due to V (2),4
µνρ (k, q, p), V (2),5

µνρ (k, q, p), and V (2),6
µνρ (k, q, p) in (2.98),

all vanish

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 4

fig4.10 = 0, (4.73)

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 5

fig4.10 = 0, (4.74)

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 6

fig4.10 = 0 . (4.75)

The final diagram left to consider is the third one in the last row of figure 4.3. It is
presented again in figure 4.11 with labelled momenta. The results are again divided
according to the terms in (2.92). The first term we split into two parts according to the
soft structure and we find

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 1 part I

fig4.11 = (2π)αs4πgsT
K
feCAK[µ]f[ε]

×
(

1
(n+p)

δ(n+q − n+p)
(2− ε)

2ε(1 + ε)(1− ε)2 + ∂

∂n+q
δ(n+q − n+p)

(
− 2
ε2

+ 5
2ε −

1
2

))

×
(

(n+k)
(n−k)n−ν − n+ν

)
uc,γ(p)ε∗ν(k) (4.76)

for term 1 part I, and

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 1 part II

fig4.11 = (2π)αs4πgsT
K
feCAK[µ]f[ε] 1

(n+p)
δ(n+q − n+p)

1
(1 + ε)

×(−1)
2ε2

(
4− 5ε− 2ε2 − 4ε3 + ε4

)(
k2
⊥

(n−k)n−ν − k⊥ν
)
uc,γ(p)ε∗ν(k) (4.77)

for term 1 part II. Next, we have the following

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 2+3

fig4.11 = (2π)αs4πgsT
K
feCAK[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)
(−1)
ε

[
/k⊥, γ⊥ν

]
γβ

(n−k) uc,β(p)ε∗ν(k). (4.78)

For term 4 we find

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 4

fig4.11 = (2π)αs4πgsT
K
feCAK[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)
(1− ε)(1− 2ε)

2ε2(1 + ε)

(
(n+k)
(n−k)n−ν − n+ν

)
uc,γ(p)ε∗ν(k) .(4.79)
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Term 5 yields

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 5

fig4.11 = (2π)αs4πgsT
K
feCAK[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)(2− ε)
1

2ε2

[
/k⊥, γ⊥ν

]
γβ

(n−k) uc,β(p)ε∗ν(k), (4.80)

and lastly for term 6 we find

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉term 6

fig4.11 = (2π)αs4πgsT
K
feCAK[µ]f[ε]

× 1
(n+p)

δ(n+q − n+p)(1− ε)
(1− 2ε)
ε2(1 + ε)

(
k2
⊥

(n−k)2n−ν −
k⊥ν

(n−k)

)
uc,γ(p)ε∗ν(k). (4.81)

This concludes the diagram-by-diagram presentation of the results for one-collinear-loop
contributions to the collinear functions connected to soft structures which support a
single soft gluon emission. The sum of these diagrams constitutes the one-loop result for
the 〈gK(k)|T a,1g

γf (n+q)|q(p)e〉 matrix element appearing on left-hand side of the matching
equation in (4.5). We denote this quantity by 〈gK(k)|T a,1g

γf (n+q)|q(p)e〉(1). Prior to the
use of on-shell k2 = 0 and transversality k · ε(k) = 0 conditions for the emitted soft gluon,
it is given by

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉(1) = (2π) αs4πgsT

K
fe K[µ]f[ε] 1

n+p
δ(n+q − n+p)

(
(n+k)
(n−k)n

η
− − nη+

)(
CF

(1 + ε)
ε
− CA

1
2ε2

(−1− 2ε+ 6ε2 + ε3)
(1 + ε)

)
δγβ

−
(

kη⊥
(n−k) −

k2
⊥

(n−k)2n
η
−

)(
CF

(2− 7ε+ ε2)
ε(−1 + ε) − CA

(1− 3ε2)
ε2(−1 + ε)

)
δγβ

+

[
kµ⊥g

νη
⊥ − kν⊥g

µη
⊥

]
(n−k)

1
2 (CF − CA)

[
γµ⊥γ

ν
⊥

]
γβ

 ε∗η(k) uc,β(p) . (4.82)

We note that remarkably the derivative delta function ∂
∂n+q

δ(n+q − n+p) vanishes in the
sum of all diagrams. Therefore, an O(αs) correction of this type is absent in equation
(4.82). We also draw attention to the fact that so far, even in the sum of diagrams, the
double ε poles do not vanish in coefficients of each soft structure. We now apply the
on-shell and transversality relations for the emitted gluon which relates the second and
third lines of the above equation. The relation is written in equation (4.15). The soft
structure in the fourth line is not connected to the second and third lines, and we see that
this term does not in fact contain any poles in ε. After the application of (4.15) we find

〈gK(k)|T a,1g
γf (n+q)|q(p)e〉(1)

= 2π gsαs4π TK
fe

[
kη⊥

(n−k) −
k2
⊥n

η
−

(n−k)2

]
ε∗η(k)uc,γ(p)

δ(n+q − n+p)
n+p

(
n−k n+p

µ2

)−ε

×
(
CF

(
−4
ε

+ 3 + 8ε+ ε2
)
− CA

(
−5 + 8ε+ ε2

)) eεγE Γ[1 + ε]Γ[1− ε]2
(−1 + ε)(1 + ε)Γ[2− 2ε]
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+ 2π gsαs4π TK
fe

[
kµ⊥ε

∗ν
⊥ (k)

n−k
− kν⊥ε

∗µ
⊥ (k)

n−k

]
uc,β(p) δ(n+q − n+p)

n+p

(
n−k n+p

µ2

)−ε

×
[
γµ⊥γ

ν
⊥

]
γβ

(CF − CA) e
εγE Γ[1 + ε]Γ[1− ε]2

2 Γ[2− 2ε] . (4.83)

We have here written explicitly the factors of K[µ] and f[ε] which can be found in equa-
tions (4.56) and (4.57) respectively. The result in equation (4.83) is our final expression
for the one-loop accurate left-hand side of matching equation (4.5). In other words,
〈gK(k)|T a,1g

γf (n+q)|q(p)e〉(1) is the one-loop extension of the tree-level result given in (4.16).
We draw attention to the fact that the expression in equation (4.83), which is the final
result after application of (4.15), does not contain 1/ε2 poles. The coefficient of the CF
term does contain a single pole in ε. Moreover, both the double and single poles in the
coefficient of the CA term present in (4.82) cancel, leaving the CA coefficient in (4.83)
finite.

We now compare the one-loop accurate result for the left-hand side of the matching
equation, with the right-hand side given in (4.12). With this, we obtain the one-loop
corrections to the collinear functions J1 and J6. We now first state the d-dimensional
results, followed by the expansion of the results in ε = (4− d)/2. We have

J
K (1)
1,1;γβ,fe (n+q, n+p; ω) = αs

4πδγβT
K
fe

1
(n+p)

(
n+p ω

µ2

)−ε
eε γE Γ[1 + ε]Γ[1− ε]2

(−1 + ε)(1 + ε)Γ[2− 2ε]

×
(
CF

(
−4
ε

+ 3 + 8ε+ ε2
)
− CA

(
−5 + 8ε+ ε2

))
δ(n+q − n+p) (4.84)

= αs
4π

1
(n+p)

δγβTK
fe

(
CF

(
4
ε

+ 5− 4 ln
(
n+p ω

µ2

))
− 5CA

)
δ(n+q − n+p)

+O(ε) , (4.85)

J
K (1)
1,2;γβ,fe (n+q, n+p; ω) = 0 , (4.86)

J
µν,K (1)
6;γβ,fe (n+q, n+p; ω) = αs

4π
1

(n+p)
[γµ⊥γν⊥]γβ TK

fe

(
n+p ω

µ2

)−ε

×e
ε γE Γ[1 + ε]Γ[1− ε]2

2 Γ[2− 2ε] (CF − CA) δ(n+q − n+p) (4.87)

= αs
4π

1
2

1
(n+p)

[γµ⊥γν⊥]γβ TK
fe (CF − CA) δ(n+q − n+p) +O(ε) . (4.88)

As we have pointed our earlier in the text, the collinear functions JK (1)
1,2;γβ,fe and J

K (1)
6;γβ,fe do

not contribute to the Drell-Yan cross-section at next-to-next-to-leading order .

4.2 Gluon-antiquark channel
In this section we follow the steps of the calculation performed in the section above for
the collinear functions appearing at tree and one-loop level in the qq̄-channel now for the
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case of the gq̄-channel. The relevant next-to-leading power matching equation is given in
(3.109). We introduce the short-hand notation

T̃ c
γf (t) ≡ i

∫
d4zT

[
χc,γf (tn+)L(1)(z)

]
, (4.89)

for the left-hand side of (3.109). The Fourier transform of this quantity is defined in the
following way

T c
γf (n+q) =

∫
dt ei(n+q) t T̃ c

γf (t) . (4.90)

Similarly to the considerations in the qq̄-channel, we now also perform the Fourier transform
of the right-hand side of the matching equation (3.109), which yields the matching equation
in momentum space

T c
γf (n+q) = 2π

∫ dn+pa
2π

∫
du ei (n+pa)u

∫ dω

2π
×G η,A

ξq;γα,fa (n+q, n+pa;ω) APDFA
c⊥η (un+)

∫
dz− e

−iω z− sξq;α,a(z−) . (4.91)

We now extract the perturbative collinear functions G η,A
ξq;γα,fa (n+q, n+pa;ω) by considering

suitable partonic matrix elements of the operator matching equation in the same way as
in the qq̄-channel. Here the relevant matrix element is one with an incoming c-PDF gluon
and an outgoing soft quark 〈q+(k)|...|g(p)〉. We then proceed to compute both sides of
the matching equation with the leading power decoupled Lagrangian. As in the qq̄ case,
the soft fields are external. Hence, the soft matrix element 〈q+(k)|sξq;α,a(z−)|0〉 retains its
tree-level value. Similarly, for the c-PDF matrix element 〈0|APDFA

c⊥η (un+)|g(p)〉 the loop
corrections are scaleless and 〈0|APDFA

c⊥η (un+)|g(p)〉 takes its tree-level value.
We again use the momentum-space Feynman rules given in appendix A of [87] to

carry out the calculation of the left-hand side of the matching equation. However, in
comparison to the calculation of the collinear functions relevant for the qq̄-channel, the
computation performed here is far more straightforward. The reasons are twofold. First,
since an emission of a soft quark in a time-ordered product insertion is necessary, there
exists only one single soft structure which needs to be considered at next-to-leading power
accuracy. Namely the sξq;α,a(z−) = gs

in−∂z
q+
α,a(z−) given in (3.110). Second, the Lagrangian

insertion which induces the power suppression, L(1)
ξq in equation (2.66), does not contain

any explicit position variables. This means that, in momentum space, no derivatives on
the momentum-conservation delta functions appear at subleading power soft-collinear
interaction vertices. This reduces drastically the number of terms one has to compute per
diagram and the number of integrals involved in the calculation.

4.2.1 Tree-level collinear function
We begin with the tree-level computation of the collinear function for the gq̄-channel.
First we consider the right-hand side, so explicitly taking the relevant matrix element of
equation (4.91) gives

〈q+
b (k)|T c

γf (n+q)|gB(p)〉 = 2π
∫ dn+pa

2π

∫
du ei (n+pa)u

∫ dω

2π

∫
dz− e

−iω z−
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1

p s
k

Figure 4.12: Tree-level effective field theory diagram in the gq̄-channel.

×G η,A
ξq;γα,fa (n+q, n+pa;ω) 〈0|APDFA

c⊥η (un+)|gB(p)〉 〈q+
b (k)|sξq;α,a(z−)|0〉 , (4.92)

where B is the adjoint colour index and b is the fundamental colour index of the external
final state. The c-PDF matrix element in (4.92) is evaluates to the following

〈0|APDFA
c⊥η (un+)|gB(p)〉 = δAB

√
Zg,PDF ε⊥η(p) e−i(n+p)u. (4.93)

The factor
√
Zg,PDF is the on-shell renormalization factor of the c-PDF gluon field. The

soft matrix element on the right-hand side of (4.92) becomes

〈q+
b (k)|sξq;α,a(z−)|0〉 = 〈q+

b (k)| gs
in−∂z

q+
α,a(z−)|0〉 = δba

(−gs)
(n−k) vα(k) eiz−k . (4.94)

In the second step we have used the form of the soft structure as given in (3.110). Using
now the evaluated matrix elements given equations (4.93) and (4.94) in (4.92) yields

〈q+
b (k)|T c

γf (n+q)|gB(p)〉 = (2π) (−gs)
(n−k) G

η,B
ξq;γα,fb (n+q, n+p;n−k)

× vα(k)
√
Zg,PDF ε⊥η(p) , (4.95)

This result constitutes our final expression for matrix element with the chosen partonic
external states of the right-hand side of the matching equation in (4.91). Since the matrix
elements in (4.93) and (4.94) have no loop corrections, the expression in (4.95) is valid to
all orders in αs.

Having obtained an expression for the right-hand side of the matching equation, we now
compute the 〈q+

b (k)|...|gB(p)〉 matrix element of the left-hand side of (4.91). As discussed
above, the only subleading-power Lagrangian term needed in (4.89), which is the left-hand
side of (4.91), is the L(1)

ξq Lagrangian term in (2.66). This term gives rise to the Feynman
rule given in equation (A.36) of [87]. Using this Feynman rule in computation of the
tree-level diagram in figure 4.12 yields the following result

〈q+
b (k)|T c

γf (n+q)|gB(p)〉 = (2π)δ(n+q − n+p)
1

(n−k) gsT
B
fb

×
(
/n−
2 γ⊥η

)
γα

vα(k)
√
Zg,c|treeε

η
⊥(p) +O(αs). (4.96)

The tree-level value of the on-shell wave function renormalization factor of the gluon field
is
√
Zg,c|tree = 1 in the effective field theory.
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1

p s k

p2

p1
p1 − p2

p1

Figure 4.13: Diagram corresponding to
equation (4.99).

1

p s k

p2
p1

p1 − p2

Figure 4.14: Diagram corresponding to
equation (4.100).

Since at next-to-leading power in the gq̄-channel only a single soft structure is relevant,
no additional manipulations relating to the use of equation-of-motion identity, or on-shell
and transversality conditions are necessary here. This is in contrast to the considerations
presented for the collinear functions in the qq̄-channel. At this point, we simply compare
the result for the left-hand side of the matching equation given in (4.96) to the right-hand
side in (4.95) and read off the tree-level result for the collinear function

G η,B
ξq;γα,fb (n+q, n+p;ω1) = − δ(n+q − n+p) TB

fb

(
/n−
2 γ⊥η

)
γα

+O(αs) . (4.97)

Using the decomposition introduced in (3.111) we can extract the scalar collinear function
Gξq(n+p;ω1) which appears in the factorisation formula in (3.113). Namely, we find

G
(0)
ξq (n+p;ω1) = −1

2 , (4.98)

where the superscript (0) denotes the fact that this is a tree-level result.

4.2.2 One-loop collinear function
Having obtained the tree-level value for the collinear function appearing in the factorisation
theorem for the gq̄-channel of the Drell-Yan partonic cross-section, we next consider the
O(αs) corrections.

For the right-hand side of the matching we use (4.95). Here, as in the qq̄ case discussed
in section 4.1.2, the on-shell wave function renormalization factor is unity to all orders
in perturbation theory,

√
Zg,PDF = 1. This holds in dimensional regularization, which

we use to treat IR and UV divergences, since the loop corrections are scaleless. The
situation is the same for the

√
Zg,c factor on the left-hand side of the matching equation.

The calculation the one-loop accurate collinear functions for the qq̄-channel carried out
in section 4.1.2 presents a higher degree of technical difficulty than the computation of
diagrams contributing to the O(αs) corrections to Gξq(n+p;ω1) due to a higher number of
contributing terms and presence of momentum derivatives. For this reason, we skip here
the details of the computation and rather present the results for individual diagrams which
form the one-loop accurate 〈q+

b (k)|T c
γf (n+q)|gB(p)〉 matrix element on the left-hand side

of the matching equation (4.91). In order to keep the expressions as concise as possible,
we again make use of the short-hand notation for the momentum-dependent loop factor K
in (4.56) and the finite combination of Γ functions f in (4.57).
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1
p s k

p2
p1

p− p2
p− p2 + p1

Figure 4.15: Diagram corresponding to
equation (4.101).

1
p s k

p2
p1

p− p2

Figure 4.16: Diagram corresponding to
equation (4.102).

The first diagram we consider is shown in figure 4.13. Performing the loop integral
yields the following result

〈q+
b (k)|T c

γf (n+q)|gB(p)〉fig4.13 = −(2π)αs4πgs TB
fbCF K[µ] f[ε]

× δ(n+q − n+p)
1
ε
(1− ε) 1

(n−k)

(
/n−
2 γ⊥η

)
γα

vα(k)εη⊥(p) . (4.99)

For the diagram in figure 4.13 we find

〈q+
b (k)|T c

γf (n+q)|gB(p)〉fig4.13 = 2(2π)αs4πgsT
B
fbCF K[µ] f[ε]

× δ(n+q − n+p)
1
ε2

(1− ε) 1
(n−k)

(
/n−
2 γ⊥η

)
γα

vα(k)εη⊥(p) , (4.100)

which is the result for 〈q+
b (k)|T c

γf(n+q)|gB(p)〉fig4.13 in (4.99) multiplied by a factor of
(−2/ε), similarly to the relation between 〈gK(k)|T a,1g

γf (n+q)|q(p)e〉fig4.8 and
〈gK(k)|T a,1g

γf (n+q)|q(p)e〉fig4.9 in the qq̄ case. Next, we consider the diagram in figure 4.15
for which we find

〈q+
b (k)|T c

γf (n+q)|gB(p)〉fig4.15 = −(2π)αs4πgsT
B
fb

(
CF −

1
2CA

)
K[µ] f[ε] δ(n+q − n+p)

× 1
ε2

(
(2− 5ε+ 3ε2 − 2ε3)

(1− ε)

)
1
n−k

(
/n−
2 γρ⊥

)
γα

vα(k)εη⊥(p) . (4.101)

The diagram in figure 4.16 is zero due to a vanishing contraction of Lorentz structures

〈q+
b (k)|T c

γf (n+q)|gB(p)〉fig4.16 = 0 . (4.102)

The result for the diagram in figure 4.17 is

〈q+
b (k)|T c

γf (n+q)|gB(p)〉fig4.17 = −(2π)αs4πgsT
B
fbCA K[µ] f[ε]δ(n+q − n+p)

× 1
2ε2

1
(1− ε)

(
2− 6ε+ 4ε2

) 1
(n−k)

(
/n−
2 γ⊥η

)
γα

vα(k)εη⊥(p) , (4.103)

whereas for the one in figure 4.18 we find

〈q+
b (k)|T c

γf (n+q)|gB(p)〉fig4.18 = −(2π)αs4πgsT
B
fbCA K[µ] f[ε]δ(n+q − n+p)
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1

p s
k

p2
p1

p− p2

p1 + p2

Figure 4.17: Diagram corresponding to
equation (4.103).

1

p s
k

p2
p1

p− p2

Figure 4.18: Diagram corresponding to
equation (4.104).

1

p s k

p2

p1
p1 + p2

Figure 4.19: Diagram corresponding to
equation (4.105).

1

p s k

p2

p1

Figure 4.20: Diagram corresponding to
equation (4.106).

× 1
2ε2

(
2− 3ε

) 1
n−k

(
/n−
2 γ⊥η

)
γα

vα(k)εη⊥(p) . (4.104)

The calculation of the diagram in figure 4.19 yields

〈q+
b (k)|T c

γf (n+q)|gB(p)〉fig4.19 = 2(2π)αs4πgsT
B
fb

(
CF −

1
2CA

)
K[µ] f[ε]

× δ(n+q − n+p)
1
ε2

(1− ε) 1
(n−k)

(
/n−
2 γ⊥η

)
γα

vα(k)εη⊥(p) , (4.105)

and lastly

〈q+
b (k)|T c

γf (n+q)|gB(p)〉fig4.20 = 0 . (4.106)

Moreover, the diagram in figure 4.21 does not contribute as the collinear loop does not
have a scale. We now perform a summation of all of the contributing diagrams, and write
down the result for the matrix element on the left-hand side of the matching equation
(4.91) at one-loop level. We denote it by 〈q+

b (k)|T c
γf (n+q)|gB(p)〉(1), for which we find

〈q+
b (k)|T c

γf (n+q)|gB(p)〉(1) = (2π)αs4π gs TB
fb K[µ] f[ε]δ(n+q − n+p)

× 1
ε2(1− ε)

(
CF

(
2− 4ε+ 3ε2 + ε3

)
− CA

(
2− 5ε+ 3ε2 + ε3

))
× 1

(n−k)

(
/n−
2 γ⊥η

)
γα

vα(k)εη⊥(p). (4.107)
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1

p s
k

p2

p1

p− p2

Figure 4.21: Scaless diagram which does not contribute to the collinear function result.

We now match this result to the right-hand side of (4.95), from which we extract the
perturbative matching coefficient, the collinear function, at one-loop order

G
η,B (1)
ξq;γα,fb (n+q, n+p;ω1) = − αs

4π TB
fb

(
(n+p)ω1

µ2

)−ε
δ(n+q − n+p)

× 1
ε2(1− ε)

(
CF

(
2− 4ε+ 3ε2 + ε3

)
− CA

(
2− 5ε+ 3ε2 + ε3

))
×e

εγEΓ[1 + ε]Γ[1− ε]2
Γ[2− 2ε]

(
/n−
2 γη⊥

)
γα

. (4.108)

This is the O(αs) correction to the tree-level collinear function presented in (4.97). The
result in (4.108) is valid to all orders in ε. Expanding in ε = (4− d)/2 yields the following
expression

G
η,B (1)
ξq;γα,fb (n+q, n+p;ω1) = − αs

4π TB
fb δ(n+q − n+p)

(
/n−
2 γη⊥

)
γα

×

CF
(

2
ε2
− 2
ε

(
ln
(
n+p ω1

µ2

)
− 1

)
+ ln2

(
n+p ω1

µ2

)
− 2 ln

(
n+p ω1

µ2

)
− π2

6 + 5
)

−CA
(

2
ε2
− 1
ε

(
2 ln

(
n+p ω1

µ2

)
− 1

)
+ ln2

(
n+p ω1

µ2

)
− ln

(
n+p ω1

µ2

)
− π2

6 + 2
)

+O(ε) . (4.109)

It is interesting to compare the above result for the collinear function appearing in the
gq̄-channel to the collinear functions in the qq̄-channel, which have been given in their
expanded form in equations (4.85) and (4.88). We note that here, in contrast to J (1)

1 and
J

(1)
6 , the collinear function G(1)

ξq exhibits 1/ε2 poles, and finite logarithms α ln2(n+p ω1/µ
2).

At cross-section level, as we show in section 8.5, these correspond to leading logarithmic
contributions appearing in the collinear sector. This fact complicates the adaptation of the
resummation treatment developed for the qq̄-channel to the off-diagonal gq̄-channel. We
provide additional details in chapter 8.5. It is noteworthy that the leading pole structure in
the above equation is proportional to CF − CA, this structure appears in several instances
where divergent convolution integrals are encountered [58, 59, 66, 134, 135].



4.3. Discussion 119

4.3 Discussion
The study of an amplitude with a next-to-soft emission has a long history beginning
with the Low-Burnett-Kroll [96, 97] formula in QED and the extension to also include
the soft gluon emission from jets [130]. The way in which next-to-soft LBK amplitude
is reproduced within SCET was discussed in [136, 137]. The calculation of the collinear
functions at the one-loop level presented above forms part of the generalisation of the LBK
formula to the one-loop order. The complete next-to-leading power, one-loop amplitude is
provided in appendix. B.2. The amplitude presented there includes terms which vanish
at the cross-section level, due to the interference with the complex-conjugated tree-level
amplitude. The result does not display any suggestive structure, and indeed, to our
knowledge there is no simple representation of the one-loop result in terms of the angular
momentum operator that would generalise the well-known expression of the tree-level
next-to-soft amplitude.

The diagrammatic approach has been applied in the past to study the next-to-soft
emission at the one-loop order in amplitudes with a colourless final state [36, 37, 39]. In
these investigations, the concept of a “radiative jet function” [130] is used to describe
the soft emission from jets. Ultimately, the NLP SCET formalism presented here must
capture the same physics, however some conceptual differences are present. The most
important one, is that the radiative jet function, as is given in equation (2.12) of [37],
is not a single scale object. This is in stark contrast to the collinear functions defined
in (3.42). We can see this fact in the result for the one-loop radiative jet function given
in equation (3.3) of [37]. In addition to the collinear contributions, one must include
subtraction terms which correct for the overlap of the radiative jet function with the soft
function. The NLP SCET formalism does not encounter such complications, which makes
the effective field theory framework more suitable for resummation using renormalization
group techniques. We discuss this further in chapter 8. Despite the complications outlines
above, NLP resummation for the Drell-Yan process near threshold has been achieved
using diagrammatic techniques at LL accuracy [42]. This is possible due to the fact that
the radiative jet or collinear functions do not contribute beyond the tree level at this
accuracy [40].

In order to compare our collinear functions with results for the radiative jet function
given in [37], it is necessary to multiply our collinear functions with their corresponding soft
structures, since the radiatieve jet functions contain both collinear and soft contributions.
For this reason, it is most convenient to compare the radiative jet function in [36, 37]
with our results for the soft emission amplitude at NLP calculated within SCET and
given in appendix B.2. We focus on the contributions given in equations (B.11), (B.12),
(B.24), and (B.25). After expanding in ε, these expressions are compared with J (1)

µ,F and
J

(1)
µ,A presented in [37]. We find agreement for all terms,1 except for contributions (B.24)

and (B.25) proportional to nρ−/(n−l). Given that our calculation gives the full amplitude
with the emission of a soft gluon, we conclude that the radiative jet function in [36, 37]
does not reproduce the complete amplitude, although the missing terms do not contribute
to the matrix element squared at next-to-leading power. It appears that contributions

1Noting the typo in (3.3) of [37] where one must replace (−2p · k)−ε → (2p · k)−ε and a overall minus
sign error in one-loop results given in [36].
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similar to those from the JA0,A1 and JA0,B1 SCET currents are needed in the radiative jet
function formalism. Recent progress in QED has been reported in [138].



5

Drell-Yan: NLP soft functions

We have presented the factorisation formulas for the Drell-Yan partonic cross-section beyond
leading power in the qq̄ and gq̄ channels in equations (3.60) and (3.107) respectively. In
the subsequent discussion and exploration of these results thus far, we have focused on the
amplitude level collinear functions which are the new objects appearing in the factorisation
formulas at subleading powers. However, objects which deserve further attention in their
own right are the generalised soft functions, defined at general subleading powers in
equations (3.61) and (3.108) for the diagonal and off-diagonal channels respectively. We
explore the structure of the next-to-leading power versions of the generalised soft functions
in this section.

We observe that in contrast to the leading power soft function, the generalised soft
functions contain explicit insertions of soft gauge fields B+ and soft matter fields q+.
The leading power soft function, which appears in equation (3.29), is a vacuum matrix
element of the time-ordered product of Wilson lines only. Wilson lines can be set to
unity at the lowest order in the αs expansion. Thus the leading power soft function is
non-zero already at O(α0

s), interchangeably referred to here as the leading order and the
tree-level contribution. Since the generalised soft functions contain explicit insertions of
soft gauge fields, the lowest order at which the next-to-leading power soft functions in
equations (3.83) – (3.87) and (3.114) start to contribute is O(αs). This is referred to here
as the next-to-leading order contribution, despite the fact that a non-zero result at O(α0

s)
does not exist for these soft functions.

The results for the next-to-leading power soft functions calculated here will be used
further in chapters 7 and 8. First in chapter 7, we will use the full information determined
with the fixed-order calculation of soft functions in order to obtain results for the Drell-Yan
cross-section up to O(α2

s), including finite terms. Then, in chapter 8, we will use the
information about coefficients of the leading poles in the ε expansion in order to construct
anomalous dimensions which govern the scale evolution of the soft functions and obtain
results for the leading logarithmic contributions to all orders in perturbation theory.

We begin with the diagonal channel of the Drell-Yan process in section 5.1 and focus
on the off-diagonal gq̄-channel in section 5.2.

121
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5.1 Quark-antiquark channel
There are two types of soft contributions to the factorisation formula for the diagonal
qq̄-channel as discussed in section 3.2.2. Namely, the generalised soft functions which
contribute to the dynamical part, denoted by ∆dyn

NLP(z) and given in (3.81), and the
kinematic soft functions which capture power corrections to the phase space and which
are expressed in terms of the leading power soft function SDY(Ω) given in equation (3.29).
The soft functions which contribute to the dynamical part of the factorisation formula
are listed in equations (3.83) – (3.87). We consider these in section 5.1.1. The kinematic
soft functions are defined in equations (3.77) – (3.79) and these in turn are considered in
section 5.1.2.

5.1.1 Generalised soft functions
In total, there are five possible generalised soft functions which contribute to the Drell-
Yan cross-section at next-to-leading power. As mentioned above, these are listed in
equations (3.83) – (3.87). However, only one soft function, namely S1 in (3.83), begins
at O(αs). The remaining soft functions contain at least two explicit insertions of soft gauge
or soft quark fields and therefore begin at O(α2

s). The complete calculation of the next-to-
next-to-leading order next-to-leading power soft functions is rather involved, in particular,
the most challenging part is the calculation of the two real emission contributions to the
soft functions. With this in mind, we separate our discussion into two parts. First, in
this section, we focus on the calculation of the contributions to the soft functions at next-
to-leading order and the real-virtual part of next-to-next-to-leading order contributions.
Second, we dedicate chapter 6 to a technical discussion regarding the calculation of the
real-real part of the soft functions at next-to-next-to-leading order.

As mentioned above, this section focuses on the calculation of the contributions to the
S1 soft function which is the only soft function beginning at O(αs). This soft function is
defined in equation (3.83), but for convenience we write down the operatorial definition of
this object here once more. The S1 soft function is given by

S1(Ω;ω) =
∫ dx0

4π eiΩx0/2
∫ dz−

2π e−iωz−S1(x0; z−) , (5.1)

with

S1(x0; z−) = 1
Nc

Tr〈0|T̄
[
Y †+(x0)Y−(x0)

]
T
([
Y †−(0)Y+(0)

] i∂ν⊥
in−∂

B+
ν⊥

(z−)
)
|0〉 . (5.2)

The soft function is an object defined at the cross-section level. We insert a complete set
of states between T̄ and T, and use the momentum operator to translate the fields in
the anti-time-ordered piece which, by performing the dx0 integral, gives rise to an energy
conserving delta function

S1 (Ω, ω) =
∑
Xs

∫ d(n+z)
4π e−iω n+z/2 δ(Ω− 2EXs) (5.3)

× 1
Nc

Tr〈0|T̄
[
Y †+(0)Y−(0)

]
|Xs〉 〈Xs|T

([
Y †−(0)Y+(0)

] i∂ν⊥
in−∂

B+
ν⊥

(z−)
)
|0〉 ,
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where EXs is the total energy of the soft partons entering the final state. Writing the soft
function in this way we see that it is of the amplitude squared form. The final state 〈Xs|
is general here, and we begin with the calculation of this object at O(αs), where the final
state is composed of a single soft gluon, before considering higher order corrections in
the αs expansion.

S1 at next-to-leading order

In order to yield a non-vanishing result, at the lowest order in αs, the soft parton emission
must be produced by the soft gauge field B+

ν⊥
in the time-ordered product piece and be

absorbed by one of the Wilson lines in the anti-time-ordered piece of (5.3). We depict this
situation in the diagram in figure 5.1. The virtual diagrams are scaleless and vanish in
dimensional regularization.

We now proceed to obtain the O(αs) result for S1 by calculating directly from the
matrix element definition in (5.3). With the help of the expression for the emission of a
single soft gluon from the soft building block in equation (4.10), we can write down the
result for a single soft gluon emission from the amplitude side of equation (5.3). We have
the following

〈gA(k)|T
(
Y †−(0)Y+(0) i∂ν⊥

in−∂
B+
ν⊥

(z−)
)
|0〉 = TA gs

(n−k)

[
kη⊥ −

k2
⊥

(n−k)n
η
−

]
ε∗η (k) eiz−k, (5.4)

where Xs is chosen to be a single gluon g(k)A with momentum k and the adjoint colour
index A. The soft Wilson lines

[
Y †−(0)Y+(0)

]
are set to unity at this order. We draw

attention to the eiz−k factor associated with the single soft gluon emission from the soft
building block at position z−. This factor will combine with e−iω n+z/2 in (5.3) giving rise
to a δ(ω − n−k) term.

According to (5.3), the above expression for the amplitude must be interfered with the
expression for the conjugate amplitude which is a leading power object containing only
the soft Wilson lines. For an incoming single soft gluon with momentum k and adjoint
colour index B we have

〈0|T̄
[
Y †+(0)Y−(0)

]
|gB(k)〉 = gs

1
n+k

TBnη+εη(k)− gs
1
n−k

TB nη−εη(k). (5.5)

The amplitude and the conjugate amplitude are combined according to the expression in
equation (5.3). Then, in order to obtain S1 at O(αs), it remains to calculate the following
integral

S
(1)
1 (Ω, ω) = 2 g2

s CF

∫ ddk

(2π)d
(
−2πδ(k2)θ(k0)

)
δ(Ω− n−k − n+k)

×δ(ω − n−k) 1
n+k

(
− k2

⊥
(n−k)2

)
, (5.6)

where we have dealt with the colour dependence using the colour algebra rules in ap-
pendix A.4, and the overall factor of 2 comes from the contraction of light-like vectors,
n+ · n− = 2. The reminder of the calculation follows the standard procedure of writing
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z−

Figure 5.1: The O(αs) contribution to the S1 NLP soft function in equation (5.3). The double
red lines are soft Wilson lines and the large red dot represents an explicit insertion
of the gauge field B+ at position z−. A direct calculation of the matrix elements in
equation (5.3) gives the result written in (5.7).

the integral measure in components, integrating over the angular dependence, and using
the on-shell delta function to fix the transverse integral. Finally, the d(n+k) and d(n−k)
integrals are fixed using the two remaining delta functions. This short calculation gives
the following result

S
(1)
1 (Ω, ω) = αsCF

2π
µ2εeεγE

Γ[1− ε]
1

ω1+ε
1

(Ω− ω)ε θ(ω)θ(Ω− ω) . (5.7)

The θ-functions enter this result due to a careful evaluation of the loop integral using the
delta functions in (5.6).

In the single soft gluon emission case presented here it is not a difficult task to calculate
the S1 soft function directly from its matrix element definition. However, for certain
contributions in the double real emission case, discussed in chapter 6, we find it convenient
to perform the calculation using the next-to-leading power momentum-space Feynman
rules. We now briefly discuss the equivalence.

The NLP momentum-space Feynman rules are straightforwardly applied to calculate
SCET amplitudes. The main idea behind using the NLP Feynman rules to calculate soft
functions is the fact that for the relevant soft functions, the tree-level hard and collinear
functions are simple multiplicative factors. Therefore, there exists a simple correspondence
between the diagrams with soft emissions obtained using the NLP Feynman rules and
the actual soft functions. This correspondence is demonstrated here using the O(αs) S1
calculation as an example.

Consider the single soft gluon emission amplitude shown in the left-most diagram of
figure 5.2, the result for this diagram obtained using the II piece of the Feynman rule in
equation (2.91) is

Fig. 5.2II[left] = v̄c̄(l) iγρ⊥gsTA
[

k2
⊥n−ν

(n+p)(n−k)2 −
k⊥ν

(n+p)(n−k)

]
uc(p)ε∗ν(k). (5.8)

The soft structure here already resembles the corresponding matrix element expression in
equation (5.4). Next, we strip off the pieces associated with the incoming anticollinear
antiquark and collinear quark, the hard interaction vertex, and the relevant tree-level
collinear function which is given in (4.19). We must also include the factor eiz−k, since it
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A0
2

z−

Figure 5.2: A pictorial representation of the discussion below equation (5.8). Starting from
the left-hand side, in the first diagram we depict a SCET amplitude with one power
suppressed soft gluon emission calculated using the II piece of the NLP Feynman
rule in equation (2.91). The diagram in the middle represents a related quantity,
but with the collinear, anticollinear, and vector current factors stripped off. Since
all these factors are not included, the middle diagram retains only the information
about soft dependence and hence, it is in one-to-one correspondence with the single
soft gluon matrix element of the soft building block i∂µ⊥

in−∂
B+
µ⊥

given in equation (5.4)
and represented pictorially in the right-most diagram.

is known that the power suppressed soft gluon emission occurs at position z−. The result
of this procedure is represented by the middle diagram in figure 5.2. Writing down the
expression,

Fig. 5.2II[middle] = gsTA
[
− k2

⊥n−ν
(n−k)2 + k⊥ν

(n−k)

]
ε∗ν(k) eiz−k, (5.9)

we see that it is in one-to-one correspondence with the expression for the matrix element
in equation (5.4), which is represented by the right-most diagram in figure 5.2.

We apply the same procedure for the conjugate amplitude, now using the leading power
Feynman rules in the top line of (2.90), which give rise to eikonal vertices. The resulting
expression is in one-to-one correspondence with the expression in (5.5) obtained directly
from matrix elements of soft Wilson lines.

Following on from the above considerations regarding the amplitude expressions, we
deduce that the calculation of the soft functions, defined at cross-section level, can be
performed using diagrams such as one in figure 5.3. We label the expression for the diagram
in figure 5.3, obtained using NLP Feynman rules with appropriate factors stripped off as
described above, by S(1)

1 (Ω, ω)fig:5.3. This labelling denotes the fact that this contribution
to the S(1)

1 soft function is calculated using the diagram in figure 5.3. Explicitly, we find
the following

S
(1)
1 (Ω, ω)fig:5.3 = 2 g2

s CF

∫ ddk

(2π)d
(
−2πδ(k2)θ(k0)

)
δ(Ω− n−k − n+k)

×δ(ω − n−k) 1
n+k

(
− k2

⊥
(n−k)2

)
, (5.10)

which, as expected, is equivalent to (5.6). Therefore, after performing the integral, we
obtain the same result as in equation (5.7). There is little computational gain in the
example presented here, however, as mentioned above, we find this way of performing the



126 Chapter 5. Drell-Yan: NLP soft functions

Figure 5.3: Diagram depicting an O(αs) contribution to the S1 soft function understood to be
evaluated using NLP Feynman rules but with collinear, anticollinear, and vector
current pieces stripped off as described below equation (5.8). This diagram is in
one-to-one correspondence with the diagram in figure 5.1.

calculation useful for the case of next-to-next-to-leading order computation discussed in
chapter 6.

In the process of finding the result for S(1)
1 (Ω, ω) in (5.7) we have kept the d-dimensional

dependence at every step in the calculation and not expanded in ε. This result will be
needed to obtain the fixed-order results for the cross-section presented in chapter 7.
However, for purposes of resummation discussed in chapter 8, we expand the above result
in ε which yields the following expression

S
(1)
1 (Ω, ω) = αsCF

2π

{
θ(Ω)δ(ω)

(
−1
ε

+ ln Ω2

µ2

)
+
[ 1
ω

]
+
θ(ω)θ(Ω− ω)

}
, (5.11)

where the plus distribution is defined as∫ Ω

0
dω

f(ω)
[ω]+

=
∫ Ω

0
dω

f(ω)− f(0)
ω

, (5.12)

and where f(ω) is well behaved at the end point ω = 0. The expansion of (5.7) given in
equation (5.11) has already been presented in [40].1

Next-to-next-to-leading order: real-virtual contributions

As mentioned above, the calculation of the soft functions at O(α2
s) is split into two parts.

Here we consider the so-called real-virtual contributions. This refers to the situation where
one soft gluon crosses the cut, as was already the case in the NLO diagrams in figures 5.1
and 5.3, and there is one soft virtual loop present. “Soft virtual loop” means that the
momentum flowing in the loop has a soft scaling and the loop is on either side of the
cut. In chapter 6, we present the calculation of real-real contributions to the O(α2

s) soft
functions which corresponds to two soft partons crossing the cut and no virtual loops.
There is no virtual-virtual contribution to the soft functions as this set up leads to scaleless
integrals which are zero in dimensional regularization.

Starting from O(α2
s), in addition to the S1 soft function in equation (3.83), the soft

functions S2 – S5 in equations (3.84) – (3.87) can receive contributions. From the explicit
1We have adapted the name of the soft function to the current notation, in [40] the same object is

denoted by S2ξ.
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calculation we find that only the S1 soft function receives a non-vanishing contribution of
the real-virtual type. Therefore, in the reminder of this section we discuss only the S1 soft
function. The soft functions S2 – S5 receive real-real contributions at O(α2

s) and so we
discuss them, along with real-real contribution to S1, in chapter 6.

S1 real-virtual

As discussed, one of the pieces of the S1 soft function at next-to-next-to-leading order is
the one-real, one-virtual contribution. The relevant diagrams are shown in figure 5.4.

The calculation is split into two steps. We first perform the virtual soft loop integrals
at amplitude level. This is needed for the NLP amplitudes in the top row of figure 5.4
and for leading power amplitude on the conjugate side on the bottom row of the same
figure. Then, we interfere the resulting expressions with either the leading power tree-level
result for the conjugate amplitude for the diagrams in the top row, or the NLP tree-level
amplitude for the bottom diagram. Lastly, we integrate over the soft radiation momentum
with the constraint on the total soft energy which gives rise to the scale Ω, as was the case
above for the NLO diagram in figure 5.1.

We find the following result for the one-real, one-virtual contribution to the two-loop
S1 soft function

S
(2)1r1v
1 (Ω, ω) = −4 α2

s

(4π)2 CF CA

(
−ω

2(Ω− ω)2

µ4

)−ε 1
ω

× 1
ε2
e2εγE Γ[1− ε]2

Γ[1− 2ε] Γ[1 + ε]2 θ(Ω− ω)θ(ω). (5.13)

The superscript 1r1v reminds us that this contribution to the next-to-next-to-leading
order S(2)

1 soft function is due to the one-real, one-virtual soft gluon contribution. The
integrals encountered in the NLO and the 1r1v NNLO calculation were similar to the
well-known leading power case and calculable by hand despite the additional dependence
on ω which is absent at leading power. The calculation of the real-real contributions to
the soft functions requires more sophisticated methods and will be discussed in chapter 6.
However, we first switch focus from the generalised soft functions to the investigation of
the next-to-leading power corrections to the phase-space itself, captured by the kinematic
soft functions.

5.1.2 Kinematic soft functions
The all order kinematic soft function definitions can be found in equations (3.77), (3.78),
and (3.79). We write these here once more for convenience

SK1(Ω) = ∂

∂Ω ∂2
~x SDY(Ω, ~x)|~x=0 , (5.14)

SK2(Ω) = 3
4 Ω2 ∂

∂ΩSDY(Ω, ~x)|~x=0 , (5.15)

SK3(Ω) = ΩSDY(Ω, ~x)|~x=0 , (5.16)
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z− z−

z−

Figure 5.4: The one-real, one-virtual contributions to the S1 NLP soft function defined in
equation (5.2). These diagrams form a part of the full O(α2

s) result for S1. Expres-
sion obtained through calculation of these diagrams is given in (5.13). We note that
the diagram on the right-hand side in the top line, where the soft gluon crossing the
cut attaches to the soft Wilson line on the collinear side, gives a vanishing result
due to contraction of the corresponding Lorentz structures.

where SDY(Ω, ~x) is the leading power soft function given in (3.29) with the position
argument generalised to contain ~x dependence. The derivatives ∂2

~x in (5.14) are understood
to be evaluated prior to setting ~x = 0.

In this section, we compute the next-to-leading order and next-to-next-to-leading order
contributions to the next-to-leading power kinematic soft functions SK1(Ω), SK2(Ω), and
SK3(Ω).

Next-to-leading order

We begin by considering the next-to-leading order contributions to the kinematic soft
functions. It is of course paramount that the derivatives in equations (5.14) and (5.15)
are taken prior to setting the position argument ~x = 0. Therefore, we require the NLO
position-space leading power soft function with the full x dependence. We use the result
in equation (30) of [139]. It is given by

SDY(x) = 1 + αs
π
CF

Γ[1− ε]
ε2

(
−1

4n−xn+xµ
2 eγE

)ε

× 2F1

(
−ε,−ε; 1− ε; −x2

⊥
n−xn+x

)
+O(α2

s). (5.17)



5.1. Quark-antiquark channel 129

We first perform the required derivatives in position space, set the argument ~x = 0, and
Fourier transform the result with respect to x0 back into momentum space for which we
use the definition

SDY(Ω) =
∫ ∞
−∞

dx0

(4π)e
iΩx0/2SDY(x0) . (5.18)

We begin with the most cumbersome contribution SK1(Ω). To make taking the spatial
derivatives easier, we split this contribution into transverse, ⊥, piece and the piece along a
third direction (or ẑ, in (x̂, ŷ, ẑ) coordinate space, with x̂, ŷ belonging to ⊥) as follows

SK1(Ω) = S3
K1(Ω) + S⊥K1(Ω). (5.19)

We begin with the S3
K1(Ω) piece, at next-to-leading order it is given by

S
3 (1)
K1 (Ω) = ∂

∂Ω ∂2
3 S

(1)
DY(Ω, ~x)|~x=0 . (5.20)

Starting from the full x dependent soft function, for which we find the expression in (5.17),
and taking the ∂3 derivatives leads us to

S
3 (1)
K1 (Ω) = ∂

∂Ω

∫ dx0

4π e
ix0Ω/2

(
αs
π
CF

µ2ε eεγEΓ[1− ε]
ε2

[
−2ε

(
−1

4x
2
0

)ε 1
x2

0

])

= ∂

∂Ω
αs
π
CF

eεγEΓ[1− ε]
ε2 Γ[−2ε] µ2ε2ε −Ω1−2ε

8ε− 16ε2

= −αs
π
CF

eεγEΓ[1− ε]
ε2 Γ[−2ε] µ2εΩ−2ε

4

= αs
2πCF

(1
ε

+ 2 ln
(
µ

Ω

)
+ ε

(
2 ln2

(
µ

Ω

)
− 1

4π
2
)

+O(ε2)
)
, (5.21)

where in the last step we have expanded in ε. Next, we consider the second piece making
up the SK1(Ω) term in equation (5.19). Namely, we focus on S⊥K1(Ω) piece. At NLO it is
given by

S
⊥ (1)
K1 (Ω) = ∂

∂Ω ∂2
⊥ S

(1)
DY(Ω, ~x)|~x=0 . (5.22)

Substituting the expression in (5.17) and taking the ∂⊥ derivatives we arrive at the
following

S
⊥ (1)
K1 (Ω) = − ∂

∂Ω

∫ dx0

4π e
ix0Ω/2αs

π
CF

Γ[1− ε]
ε2

(
−1

4x
2
0 µ

2 eγE
)ε −4 ε2

x2
0

= − ∂

∂Ω
αs
π
CF

eεγEΓ[1− ε]
ε2 Γ[−2ε] µ2ε4ε2

8ε
(−Ω1−2ε)
(1− 2ε)

= αs
2πCF

(
−2− 4ε ln

(
µ

Ω

)
+O

(
ε2
))

(5.23)
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where in the last step we have also expanded in ε.
The soft kinematic corrections SK2(Ω) and SK3(Ω) in equations (5.15) and (5.16) are

simpler to obtain as they do not involve a derivative of the position argument. Hence, we
can set ~x = 0 from the beginning, Fourier transform the soft function to momentum space
using (5.18), and perform the ∂/∂Ω derivatives where necessary, before expanding in ε.
For SK2(Ω), up to O(αs) we find

SK2 = αsCF
2π

(
3
ε

+ 6 ln
(
µ

Ω

)
+ 6

+ε
(

+6 ln2
(
µ

Ω

)
+ 12 ln

(
µ

Ω

)
− 3π2

4

)
+O

(
ε2
))

+O(α2
s) . (5.24)

The third kinematic soft correction also starts at O(αs) despite not being built from
derivatives acting on the leading power soft function. The O(α0

s) term vanishes as
SDY = δ(Ω)+O(αs), so the leading order contribution is set to zero and we find for SK3(Ω)
the following result

SK3(Ω) = αsCF
2π

(
−4
ε
− 8 ln

(
µ

Ω

)
+ ε

(
−8 ln2

(
µ

Ω

)
+ π2

)
+O

(
ε2
))

+O(α2
s) . (5.25)

In (5.24) and (5.25) we have again expanded in ε for illustration purposes, however, full ε
dependence is known.

Next-to-next-to-leading order

The calculation of the next-to-next-to-leading order contributions to the kinematic soft
functions follows the same steps as the next-to-leading order calculation above. We now
require the O(α2

s) corrections to equation (5.17). This result can be found in equation (35)
of [139].

Since the computation follows the same steps, but requires handling of much larger
expressions, we skip the details and directly present the NNLO results for the kinematic
soft functions. We find

S
3 (2)
K1 (Ω) = α2

s

π2C
2
F

(
1

2ε3 + 2
ε2

ln
(
µ

Ω

)
+ 1
ε

(
4 ln2

(
µ

Ω

)
− 7π2

12

)

+16
3 ln3

(
µ

Ω

)
− 7π2

3 ln
(
µ

Ω

)
− 31ζ(3)

3

)

+α
2
s

π2CFCA

(
11

48ε2 + 1
ε

(
11
12 ln

(
µ

Ω

)
− π2

48 + 67
144

)

+11
6 ln2

(
µ

Ω

)
− 1

12π
2 ln

(
µ

Ω

)
+ 67

36 ln
(
µ

Ω

)
− 7ζ(3)

8 + 101
108 −

77π2

288

)

+α
2
s

π2CFnf

(
− 1

24ε2 −
1
ε

(1
6 ln

(
µ

Ω

)
+ 5

72

)

−1
3 ln2

(
µ

Ω

)
− 5

18 ln
(
µ

Ω

)
+ 7π2

144 −
7
54

)
, (5.26)
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S
⊥ (2)
K1 (Ω) = α2

s

π2C
2
F

(
− 1
ε2
− 8 ln2

(
µ

Ω

)
− 4
ε

ln
(
µ

Ω

)
+ 7π2

6

)

+α
2
s

π2CFCA

(
− 11

12ε −
11
3 ln

(
µ

Ω

)
+ π2

12 −
41
18

)

+α
2
s

π2CFnf

(
1
6ε + 2

3 ln
(
µ

Ω

)
+ 4

9

)
, (5.27)

S
(2)
K2(Ω) = α2

s

π2C
2
F

(
3

2ε3 + 1
ε2

(
6 ln

(
µ

Ω

)
+ 6

)
+ 1
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(
12 ln2

(
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Ω

)
+ 24 ln

(
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Ω
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µ

Ω
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Ω
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2
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π2CFCA

(
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16ε2 + 1
ε

(
11
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(
µ

Ω

)
− π2

16 + 199
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)

+11
2 ln2
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µ

Ω

)
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4π
2 ln

(
µ

Ω

)
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12 ln
(
µ

Ω

)
− 21ζ(3)

8 − 101π2
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18

)

+α
2
s

π2CFnf

(
− 1

8ε2 −
1
ε

(1
2 ln

(
µ

Ω

)
+ 17

24

)
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(
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Ω

)
− 17

6 ln
(
µ

Ω

)
+ 7π2

48 −
11
9

)
, (5.28)

and

S
(2)
K3(Ω) = α2

s

π2C
2
F

(
− 2
ε3
− 8
ε2

ln
(
µ

Ω

)
+ 1
ε

(
7π2

3 − 16 ln2
(
µ

Ω
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−1
364 ln3

(
µ

Ω

)
+ 28π2

3 ln
(
µ

Ω

)
+ 124ζ(3)

3

)

+α
2
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π2CFCA

(
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12ε2 + 1
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−11
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µ

Ω
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(
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Ω
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+ 7ζ(3)

2 + 77π2

72 −
101
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+α
2
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π2CFnf

(
1

6ε2 + 1
ε

(2
3 ln

(
µ

Ω

)
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)

+4
3 ln2
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Ω

)
+ 10

9 ln
(
µ

Ω
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+ 14

27 −
7π2

36
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. (5.29)

These results will be used in section 7.1.2 where we present the full next-to-next-to-
leading order cross-section. Specifically, see equation (7.30) for prescription how kinematic
functions enter the result for the Drell-Yan process at O(α2

s).
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z1− z2−

Figure 5.5: Momentum-space representation of the O(αs) contribution to the soft function
relevant in the off-diagonal channel, S(Ω, ω1, ω2) in (5.30). Positions z1− and z2−
denote the insertions of the power suppressed Lagrangian terms, which include the
soft quark fields, in time-ordered product operators. Conjugate variables are ω1 and
ω2 respectively.

5.2 Gluon-antiquark channel

Due to the inherent power suppressed nature of the off-diagonal channel of the Drell-Yan
process the total number of possible soft contributions is smaller than in the diagonal
channel. Indeed, as we have seen in section 3.3, there are no kinematic power corrections,
since the soft radiation must contain a soft quark field which is included through a time-
ordered product insertion of the L(1)

ξq Lagrangian. Hence, an O(λ) suppression is already
provided. This is in contrast to the diagonal channel where the soft emissions can be
composed of Wilson line soft gluons only, in which case there is room for power corrections
to the phase-space.

The only soft function contributing at next-to-leading power is given in equation (3.114),
which we state here once more for convenience

Sgq̄(Ω, ω1, ω2) =
∫ dx0

4π

∫ dz1−

2π

∫ dz2−

2π e−iω1z1−e+iω2z2−eiΩx
0/2

× 1
CF CA

〈0|T̄
(

gs
in−∂z2

q̄+(x0 + z2−) TA
{
Y †+(x0)Y−(x0)

})

×
/n−
4 T

({
Y †−(0)Y+(0)

}
TA gs

in−∂z1
q+(z1−)

)
|0〉 . (5.30)

Similar to the NLP soft functions in the diagonal channel, it begins to contribute at O(αs).
The momentum-space diagram is presented in figure 5.5. An explicit calculation reveals
that the Sgq̄(Ω, ω1, ω2) soft function is given by the following expression

Sgq̄(Ω, ω1, ω2) = αs
4π µ

2ε 1
ω1+ε

1

1
(Ω− ω1)ε θ(Ω− ω1) θ(ω1) δ(ω1 − ω2) eεγE

Γ[1− ε]

+O(α2
s). (5.31)
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We use this result within the factorisation formula, given in equation (3.113), in section 7.2
in order to arrive at the next-to-leading order contribution to the cross-section from the
gq̄-channel of the Drell-Yan process.





6

Real-real contributions to the NLP
soft functions

In the previous chapter we have discussed the calculation of the next-to-leading order
S1 soft function, and its one-real, one-virtual contribution at the next-to-next-to-leading
order. To complete the investigation of the next-to-leading power soft functions up to next-
to-next-to-leading order in αs, we now present the calculation of their real-real corrections.
These corrections have a rich structure in their own right, one which proves to be far more
non-trivial than the one-virtual one-real contribution at the same order in the perturbative
expansion in the coupling. We explore the details of the calculation in this chapter.

6.1 Introduction
According to the next-to-leading power factorisation theorem in equation (3.81), there
exist five next-to-leading power soft functions. These are listed in equations (3.83) – (3.87)
and the contributions to each one will be discussed here.

The layout of this chapter is as follows. We first describe the organisation of the
calculation in terms of the matrix elements and diagrams which contribute to the respective
next-to-leading power soft functions. We find that many terms appear in the integrands
of the contributing expressions, leading to a significant number of two-loop integrals to
perform. Due to this fact, we employ integration-by-parts (IBP) techniques to reduce the
magnitude of the calculation to the necessary so-called “master” integrals [140, 141]. We
give a brief introduction to IBP techniques and how they are applied to the calculation
of real emissions. In section 6.4 we calculate the master integrals appearing in the
expressions for the soft functions at O(α2

s). While some of the master integrals can be
calculated directly, a subset proves to be composed of integrand structures which require
the application of more advances integration techniques, such as the differential equations
method [142]. We outline this procedure in section 6.4.1. The results for the soft functions
are shown in section 6.5.

The final results for the soft functions at O(α2
s) are checked through their substitution

into the next-to-leading power factorisation theorem in section 7.1.2 of the next chapter.
There, we perform the convolution of the soft functions with the relevant collinear functions
and compare to the expressions obtained with the expansion-by-regions method at the
cross-section level.

135



136 Chapter 6. Real-real contributions to the NLP soft functions

6.2 Organisation of the calculation
As we have seen for the S1 soft function at the next-to-leading order, the soft building
blocks making up the soft functions contain a dependence on the z− component of the
position of the insertion of a particular subleading power Lagrangian term in a time-ordered
product (two positions z1− and z2− for the case of two O(λ) insertions). The conjugate
variable in momentum-space is the ω variable (two variables, ω1 and ω2, for the double
insertions).

Explicitly, the soft matrix elements, such as for example

〈gK(k)| i∂
ν
⊥

in−∂
B+
ν⊥

(z−) |0〉 = TK gs
(n−k)

[
kη⊥ −

k2
⊥

(n−k)n
η
−

]
ε∗η (k) eiz−k , (6.1)

depend on the eiz−k factor which combined with the dz− integral in definition of the
momentum-space soft function in equation (3.82) yields a δ(ω− n−k) term, where k is the
total momentum emitted from the soft building block. We have already encountered this
specific example in equation (5.6) for the case of the S1 soft function at next-to-leading
order.

We note that the exact form of the ω dependent delta functions appearing in the integrals
describing the power suppressed soft functions depends on the total soft momentum emitted
from the soft building blocks at position z− (z1− and z2− in case of two O(λ) insertions).
The momenta of soft outgoing partons from the power suppressed building blocks are
labelled by ki, where i counts the number of the partons emitted. For example, if only a
single gluon emission originates from the next-to-leading power soft building block, the
delta function in the corresponding integral will be δ(ω − n−k1). However, if instead two
gluons are emitted, then the relevant constraint appearing in the corresponding integrals
will be δ(ω − n−k1 − n−k2), and so on for more emissions. Due to this fact, in the
presentation below, we separate the calculation of the relevant integrals as defined by their
dependence on the ω dependent delta function structure.

Before we discuss the calculations of the relevant integrals appearing in the real-real
contributions to the soft functions, we briefly describe how the calculation is organised. As
we have noted, there are five next-to-leading power soft functions which could contribute
at this order. We begin by outlining how the expressions for the relevant soft functions
were constructed at O(α2

s).
The S1 soft function is discussed in section 6.2.1 and the S3 soft function in section 6.2.2.

Both of these soft functions were calculated directly from their matrix element definitions.
We give all the necessary expressions in the relevant sections below. The S2 soft function
vanishes at O(α2

s) therefore we do not purse it further here. In chapter 5, we have described
how the NLP Feynman rules can be used to directly obtain expressions for soft functions
in momentum-space. We use this method for the calculation of S4 and S5 soft functions
for which further details are provided in section 6.2.3.

6.2.1 S1 soft function
We begin with S1 and follow the strategy used in chapter 5 for the calculation of its
next-to-leading order correction. Here, we present considerations at the next order in
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perturbation theory. Hence, instead of the 〈Xs| state in equation (5.3) being made up of
a single gluon, it now contains two partons. It follows that, instead of the single gluon
emission matrix element given in equation (5.4), we require expressions for matrix elements
with two external partons. These partons can be soft gluons, quarks, and ghosts, since
we work in Feynman gauge. We label the momenta of the emitted partons k1 and k2 for
concreteness. Note that here, not all soft emissions must come from the power suppressed
building block i∂µ⊥

in−∂
B+
µ⊥

(z−), soft emissions can also originate from the soft Wilson lines
present in the soft matrix element due to the decoupling transformation applied to the
leading power SCET current (these Wilson lines are already present at leading power).
We give explicit expressions and discuss the origin of every term below.

The two real-real soft gluon emission matrix element for the S1 soft function is given
by

〈gK1(k1)gK2(k2)|T
[
Y †−(0)Y+(0) i∂µ⊥

in−∂
B+
µ⊥

(z−)
]
|0〉 =

g2
sTK2 TK1

1
(n−k1)

nη2
−

(n−k2)

[
kη1

1⊥ −
k2

1⊥
(n−k1)n

η1
−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k1

+g2
sTK1 TK2

1
(n−k2)

nη1
−

(n−k1)

[
kη2

2⊥ −
k2

2⊥
(n−k2)n

η2
−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k2

−g2
sTK2 TK1

1
(n−k1)

nη2
+

(n+k2)

[
kη1

1⊥ −
k2

1⊥
(n−k1)n

η1
−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k1

−g2
sTK1 TK2

1
(n−k2)

nη1
+

(n+k1)

[
kη2

2⊥ −
k2

2⊥
(n−k2)n

η2
−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k2

+g2
s if

K1K2KTK 1
n−(k1 + k2)

− (kη2
1⊥ + kη2

2⊥)nη1
−

(n−k1) + (kη1
1⊥ + kη1

2⊥) nη2
−

(n−k2)

− nη1
− n

η2
−

n−(k1 + k2)(n−k1)(n−k2)

[
(n−k1)

(
k2

1⊥ + k1⊥ · k2⊥
)

−(n−k2)
(
k2⊥ · k1⊥ + k2

2⊥

) ]ε∗η1(k1)ε∗η2(k2) eiz−(k1+k2)

+g2
s if

K1K2KTK 1
(n−(k1 + k2))2

1
(k1 + k2)2

[nη1
− (2k1 + k2)η2

−nη2
− (k1 + 2k2)η1 − gη2η1(n−(k1 − k2))

]
(k1⊥ + k2⊥)2

+
[
(kη1

1⊥ + kη1
2⊥)(−2k1 − k2)η2 + (kη2

1⊥ + kη2
2⊥)(k1 + 2k2)η1

+gη2η1
(
k2

1⊥ − k2
2⊥

)]
(n−(k1 + k2))

ε∗η1(k1)ε∗η2(k2) eiz−(k1+k2). (6.2)

We take a moment to describe the terms appearing in the above expression. The first
four lines correspond to a single gluon being emitted from the explicit soft building block
i∂µ⊥
in−∂
B+
µ⊥

(z−) and the second gluon being emitted from one of the Wilson lines, either
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Y+(0) or Y †−(0). Therefore, these contributions are proportional to the eiz−k1 or eiz−k2

phase factor, depending on whether the emitted power suppressed soft gluon carries soft
momentum k1 or k2. We sum over all possibilities.

In the following three lines, we encounter the contribution which describes both of the
soft gluons originating from the soft gauge field B+

µ⊥
(z−). In this case the Wilson lines

which multiply the soft building block are set to unity. This contribution is proportional
to eiz−(k1+k2), since both of the emissions originate from the power suppressed building
block at the position zµ−.

The last four lines of the expression is equation (6.2) correspond to the case where
a single soft gluon with a total momentum k1 + k2 is emitted from the soft gauge field
B+
µ⊥

(z−) and which subsequently splits into two final state gluons with momenta k1 and
k2. As for the previous contribution, these terms are proportional to eiz−(k1+k2).

Naturally, we must consider all possible soft states which cross the cut in (5.3). In
addition to the matrix element with two gluons given above, we must also consider the cases
where two soft quarks and two ghosts cross the cut. Both of these terms are similar to the
contribution of the single soft gluon emitted from B+

µ⊥
(z−) which then splits into two gluons,

as given in the last three lines of the 〈gK1(k1)gK2(k2)|T
[
Y †−(0)Y+(0) i∂µ⊥

in−∂
B+
µ⊥

(z−)
]
|0〉

matrix element above. Instead of splitting into two gluons, the single gluon emitted
from B+

µ⊥
(z−) can also split into a quark-antiquark pair, and also into a pair of ghosts.

The individual partons carry away momenta k1 and k2. These matrix elements are also
proportional to eiz−(k1+k2). Explicitly, we require

〈q(k1)q̄(k2)|T
[
Y †−(0)Y+(0) i∂µ⊥

in−∂
B+
µ⊥

(z−)
]
|0〉 = g2

s

1
(n−(k1 + k2))2 TB

×
(
n−(k1 + k2)(k1⊥ν + k2⊥ν)− (k1⊥ + k2⊥)2n−ν

)
× 1

(k1 + k2)2 ū(k1)TBγνv(k2) eiz−(k1+k2) (6.3)

and

〈cK1(k1)c̄K2(k2)|T
[
Y †−(0)Y+(0) i∂µ⊥

in−∂
B+
µ⊥

(z−)
]
|0〉 = g2

s

1
(n−(k1 + k2))2 if

K1BK2TB

×
(
n−(k1 + k2)(k1⊥ν + k2⊥ν)− (k1⊥ + k2⊥)2n−ν

)
× 1

(k1 + k2)2 k
ν
1 e

iz−(k1+k2) . (6.4)

Next, according to (5.3), the above amplitudes need to be interfered with the leading
power amplitudes on the conjugate side of the cut. Hence, we require the expression for
absorption of two partons by two Wilson lines. First, for two incoming gluons we have the
following

〈0|T̄
[
Y †+(0)Y−(0)

]
|gK1(k1)gK2(k2)〉 =

g2
s n

η1
− n

η2
−

(
1

n−k2

1
n−(k1 + k2)TK2 TK1 + 1

n−k1

1
n−(k1 + k2)TK1 TK2

)
εη1 (k1)εη2 (k2)
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+g2
s n

η1
+ n

η2
+

(
1

n+k2

1
n+(k1 + k2)TK1 TK2 + 1

n+k1

1
n+(k1 + k2)TK2 TK1

)
εη1 (k1)εη2 (k2)

+g2
s

(
−nη1
− n

η2
+

1
n−k1

1
n+k2

TK1 TK2 − nη1
+ n

η2
−

1
n+k1

1
n−k2

TK2 TK1

)
εη1 (k1)εη2 (k2)

− g2
s

(
i fK1K2K TK

) 1
n−(k1 + k2)

1
(k1 + k2)2

×
(
− nη1

− (2k1 + k2)η2 + gη1η2 n−(k1 − k2) + nη2
− (2k2 + k1)η1

)
εη1 (k1)εη2 (k2)

+ g2
s

(
i fK1K2K TK

) 1
n+(k1 + k2)

1
(k1 + k2)2

×
(
− nη1

+ (2k1 + k2)η2 + gη1η2 n+(k1 − k2) + nη2
+ (2k2 + k1)η1

)
εη1 (k1)εη2 (k2). (6.5)

The top two lines describe the capture of two emitted gluons directly by the Y †+(0) and
Y−(0) Wilson lines respectively. The third line, describes the capture of one of the soft
gluons by Y †+(0) and the other by Y−(0). The following two lines describe two soft gluons
combining into a single one via a triple gluon vertex. The gluon formed by the incoming
two is then captured by the Y †+(0) Wilson line. In the last two lines we have a corresponding
term where the formed gluon is captured by Y−(0) Wilson line.

Similarly to the last four lines of the expression in (6.5), where two gluons combine to
a single one which is subsequently captured by the Wilson lines, we have non vanishing
leading power matrix elements with soft quarks and soft ghosts. These partons again
interact with a single soft gluon which then is captured by one of the Wilson lines.
Explicitly, the relevant expressions are

〈0|T̄
[
Y †+(0)Y−(0)

]
|q(k1)q̄(k2)〉 = g2

s TA 1
(k1 + k2)2

×
(
− n+ν

n+(k1 + k2) + n−ν
n−(k1 + k2)

)
v̄(k2)TAγνu(k1) (6.6)

and

〈0|T̄
[
Y †+(0)Y−(0)

]
|cK1(k1)c̄K2(k2)〉 = g2

s if
K1K2A TA

×
(

n+k2

n+(k1 + k2) −
n−k2

n−(k1 + k2)

)
1

(k1 + k2)2 . (6.7)

Now we are in possession of all the necessary two parton matrix elements. In the next
step of the calculation, these are combined according to (5.3) in the same way as at the
next-to-leading order. We do not provide the full interfered expressions here, simply due to
their size. Indeed, to render the calculation practically viable, we employ IBP relations to
reduce the calculation to the minimal set of master integrals which need to be computed.
In section 6.3 we motivate and describe this procedure on a specific example and provide
the expressions for S1 in terms of the master integrals. As can be seen by the appearance
of both eiz−k1 and eiz−(k1+k2) factors in the matrix element expression in (6.2), the S1 soft
function is described by integrals with δ(ω − n−k1) and δ(ω − n−k1 − n−k2) constraints.
We denote the contributions to the real-real S1 soft functions due to integrals with a



140 Chapter 6. Real-real contributions to the NLP soft functions

Figure 6.1: Sample diagrams showing a subset of the contributing expressions after the in-
terference of the next-to-leading power matrix elements with their leading power
counterparts. Not all contributions are depicted here.

δ(ω − n−k1) constraint by S(2)2r0v
1 (Ω, ω)δ(ω−n−k1). The relevant expressions are presented

in section 6.3.1. Similarly, the contributions to the real-real S1 soft function made from
integrals with a δ(ω− n−k1− n−k2) constraint, are labelled by S(2)2r0v

1 (Ω, ω)δ(ω−n−k1−n−k2)

and given in section 6.3.2.
Thus far, we have only provided analytic expressions for the objects which we calculate,

however, we find it instructive to also show the contributions as diagrams which survive
the interference of the matrix elements. We provide a small subset of the contributions in
figure 6.1. These diagrams are meant to help to visualise the above discussion, but are not
exhaustive. For example, we can identify the left diagram in the top row of figure 6.1 as
the part of the matrix element in (6.2) which describes single soft power suppressed gluon
emission from the soft building block that splits into two gluons, interfered with the third
line of the leading power matrix element in (6.5).

6.2.2 S3 soft function
We now turn our attention to the S3 soft function defined in (3.85). We write this soft
function here again for convenience, with the position of the Wilson lines translated as
in (5.3) for the S1 soft function

S3 (Ω, ω) =
∑
Xs

∫ d(n+z)
4π e−iω n+z/2 δ(Ω− 2EXs)

1
Nc

Tr〈0|T̄
[
Y †+(0)Y−(0)

]
|Xs〉
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Figure 6.2: The cross-section level diagrams for the S3 soft function. Both of the soft gluons
are emitted from the power suppressed soft building block represented here by the
red dot.

×〈Xs|T
([
Y †−(0)Y+(0)

] 1
(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]] )
|0〉 . (6.8)

We have already given the necessary expression for the leading power matrix element in
section 6.2.1 above. The power suppressed soft building block characterising S3 contains
two explicit B+ fields, hence at O(α2

s) the state 〈Xs| must contain two soft gluons. The
result we require is

〈gK1(k1)gK2(k2)|T
([
Y †−(0)Y+(0)

] 1
(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]])
|0〉

= g2
s if

K1K2KTK 1
(n−(k1 + k2))2

[
(n−k1 − n−k2)gη1η2

⊥

+(n−k2)
(n−k1)k

η2
1⊥n

η1
− −

(n−k1)
(n−k2)k

η1
2⊥n

η2
− + kη1

2⊥n
η2
− − kη2

1⊥n
η1
−

−
(
k1⊥ · k2⊥

n−k1
− k1⊥ · k2⊥

n−k2

)
nη1
− n

η2
−

]
ε∗η1(k1)ε∗η2(k2)eiz−(k1+k2). (6.9)

This expression is much simpler than the S1 counterpart in (6.2) due to the fact that
Wilson lines here can be set to unity as the emission of soft gluons must occur from the
B+ fields.

Since the expression in (6.9) is only proportional to the eiz−(k1+k2) factor, the ω
dependent delta function in the relevant integrals yielding S3 is δ(ω − n−k1 − n−k2). We
provide the representation of the interference in (6.8) in terms of diagrams in figure 6.1
and the reduced cross-section level expression in section 6.3.2.
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Figure 6.3: Diagrams with O(λ) power suppressed interactions inserted at two different posi-
tions z1− and z2−. These diagrams contain insertions of the L(1)

ξ Lagrangian and
contribute to the S4 soft function defined in equation (3.86). The corresponding
two loop integrals contain δ(ω1 − n−k1)δ(ω2 − n−k2) constraints.

Figure 6.4: Similarly to figure 6.3, these diagrams contain two O(λ) power suppressed inter-
actions at two different positions z1− and z2−. However, here we consider two
insertions of the L(1)

ξq Lagrangian with two soft quarks travelling across the cut.
These diagrams correspond to the soft function S5 in equation (3.87). The relevant
integrals contain δ(ω1 − n−k1)δ(ω2 − n−k2) constraints in the integrands.

6.2.3 S4 and S5 soft functions
Lastly, we consider the contributions to the soft functions S4 and S5 in equations (3.86)
and (3.87) respectively. These soft functions contain two O(λ) power suppressed insertions
at two different positions. Therefore, the corresponding soft matrix elements are propor-
tional to eiz1−k1 eiz2−k2 , which gives rise to the δ(ω1−n−k1)δ(ω2−n−k2) dependence of the
integrals which appear for these contributions. In contrast to the calculation of the S1 and
S3 soft functions, we calculate the contributions to S4 and S5 using the momentum-space
NLP Feynman rules since the collinear functions in chapter 4 were already obtained by
stripping off the corresponding soft dependence from the NLP Feynman diagrams.

The diagrams contributing to the S4 soft function are shown in figure 6.3 and the
diagrams relevant for S5 can be found in figure 6.4. In both of these figures, the red dots
correspond to a O(λ) suppressed interaction, in contrast to the previous figures where the
power suppressed interactions are at O(λ2).

As we have found in chapter 4, the tree-level collinear functions corresponding to these
soft functions are rather complicated objects with many open indices. Specifically, the
relevant equations are (4.24) and (4.26) for collinear functions Jµν,AB (0)

4;γβ,fb and J
fk1k2e (0)
5;γσλβ

respectively. Since we perform this investigation at fixed αs order and only require the
collinear functions at tree-level accuracy, we can redefine the collinear functions to be
much simpler multiplicative factors and absorb the remaining pieces into the soft functions
which we calculate using the next-to-leading power Feynman rules.
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To be precise, in the following we recast the Jµν,AB (0)
4;γβ,fb and Jfk1k2e (0)

5;γσλβ collinear functions
as

J
µν,AB (0)
4;γβ,fb → J4 = 1

n+p
, (6.10)

and

J
fk1k2e (0)
5;γσλβ → J5 = 1

n+p
, (6.11)

which implicitly defines the corresponding soft functions.
One more remark is necessary regarding the S5 soft function with two insertions of

the Lξq term of the next-to-leading power Lagrangian. This soft function has open Dirac
indices which connect to the spin structure describing the Drell-Yan current and PDFs,
namely the

[(
/n−
4

)
γ⊥ρ

(
/n+
4

)
γρ⊥
]
βγ

factor in the first line of the factorisation theorem given
in equation (3.81). To simplify the calculations, we move this factor inside of the soft
function forming a trace over the terms which contain a Dirac structure.

6.3 Reduction of the integrals
As explained above, we organise the calculation according to the deduced ω, (ω1, ω2),
dependent delta function structure present in the two-loop integrals describing the O(α2

s)
NLP soft functions.

The two loop integrals involve integrating over the radiated soft momentum, which
as mentioned we labelled k1 and k2. Therefore, naturally, the delta functions discussed
above do not appear in the final answer for the soft functions, but rather are present
in the integrands of the relevant integrals and serve to identify the n−ki components of
the momentum with the soft variable ωi. The delta functions help us to organise the
calculation, as it is naturally separated into three families of integrals each with integrand
dependence on one of the above delta functions. Therefore, in the following subsections
we separate the contributions according to the delta function structure which appears in
the master integrals.

The matrix elements and diagrams contributing to the next-to-next-to-leading order
soft functions are given above. As explained, due to the size of the expressions, we do
not provide here the raw corresponding expressions obtained by combining the pieces
presented above. In fact, in order to render the calculation itself manageable, we employ
the IBP integral reduction technique. This technique is widely used in multi-loop Feynman
integral calculations and we briefly describe the key principles below.

Just before we jump into this discussion, we motivate the need of employing these IBP
techniques on a specific example of a diagram appearing in our calculation. Namely, we
consider the gluon-gluon cut gluon bubble diagram shown in figure 6.1 and draw again
for convenience in figure 6.5. This diagram is formed by the last three lines of the matrix
element expression given in (6.2) interfered with the last two lines of (6.5). Writing down
the cross-section level expression for this term in momentum space yields the following
result

S
(2)
1 (Ω, ω)fig:6.5 = 1

2g
4
sCFCA

∫ ddk1

(2π)d
∫ ddk2

(2π)d
(
− 2πδ(k2

1)θ(k0
1)
)(
− 2πδ(k2

2)θ(k0
2)
)
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Figure 6.5: One of the diagrams in figure 6.1 contributing to the S1 soft function. We present
it here again singled out for the purpose an example of integration-by-parts relations.
The expression for this diagram obtained using next-to-leading power Feynman rules
is given in equation (6.12).

× δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω − n−k1 − n−k2)

×

− 1
n+(k1 + k2)

1
(k1 + k2)4

1
(n−(k1 + k2))2


×

 (k1⊥ + k2⊥)2
[
− 4(k1 + k2)2 + n−(2k1 + k2)n+(k1 + 2k2)

+n+(2k1 + k2)n−(k1 − k2)
]
− n−(k1 + k2)

[
n+(k1 + 2k2)

(
2k2

1⊥

+3k1⊥ · k2⊥ + k2
2⊥

)
+ n+(2k1 + k2)

(
k2

1⊥ − k2
2⊥

)]
+n+(k1 − k2)

[
(1− d)n−(k1 − k2)

(
k1⊥ + k2⊥

)2
+ n−(k1 + k2)

(
k2

2⊥

−k2
1⊥ + d

(
k2

1⊥ − k2
2⊥

))]
+ (k1⊥ + k2⊥)2

[
n−(2k2 + k1)n+(2k1 + k2)

−4(k1 + k2)2 − n+(k1 + 2k2)n−(k1 − k2)
]

+n−(k1 + k2)
[
− n+(2k1 + k2)

(
k2

1⊥ + 3k1⊥ · k2⊥ + 2k2
2⊥

)
+n+(k1 + 2k2)

(
k2

1⊥ − k2
2⊥

)], (6.12)

where the 1/2 in the first line is a symmetry factor for the diagram, and we have already
performed the colour trace yielding the CFCA factor. The subscript on S(2)

1 (Ω, ω)fig:6.5
denotes the fact that this expression is the contribution to the S(2)

1 soft function due to
matrix element terms represented by figure 6.5.

The usefulness of reduction techniques can be seen by comparing the above large
expression to the result in equation (6.13) below, which gives the result for the same
diagram but now in terms of a reduced set of integrals. In fact, it turns out that only one
master integral needs to be computed. After reduction we find

S
(2)
1 (Ω, ω)fig:6.5 = CFCA

(1− ε)(19− 12ε)
2ε (3− 2ε)ω2 (Ω− ω) I6 . (6.13)

The expression for I6 is given in equation (6.30). This is the only integral which needs to
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be computed in practice in order to find a result for the diagram in figure 6.5.
The diagram in figure 6.5 contains two triple gluon interactions, hence it is one of the

terms with one of the most complicated numerator structures in the calculation. However,
we find that application of IBP relations also simplifies the calculation of the remaining
contributions.

Having showcased the appeal of reduction techniques to our calculation, we now explain
the principles on a simpler example. The IBP method begins with the realisation that in
dimensional regularization the integral of a total derivative vanishes∫

ddk1 . . . d
dkl

∂

∂kµi

vµ

Dn1
1 . . . Dnk

k

= 0, (6.14)

which produces linear relations between the integrals [140, 141]. In the above equation, ki
are loop momenta, Di are propagators raised to some power ni, and vµ is an arbitrary
vector. The idea is that IBP identities can be applied systematically to yield algebraic
relations between the numerous integrals that are present in a calculation, which reduces
the number of integrals that have to be calculated. One of the most successful IBP
reduction methods in the Laporta algorithm [143] which is implemented in many computer
programs which automatise the IBP reduction. In the end, we are left with a smallest
set of integrals which have to be computed and these integrals are the so-called “master”
integrals.

For concreteness, let us consider a simple example of a single loop massless triangle
diagram, that is, containing three propagators which are raised to arbitrary powers α, β,
and γ. We define

Aαβγ =
∫ ddk

(2π)d
1

Dα
1 D

β
2 D

γ
3

(6.15)

with external momenta p2
1 = p2

2 = 0 and p2
3 = s and the propagators given by

D1 = k2, D2 = (k + p1)2, D3 = (k + p1 + p2)2 . (6.16)

The IBP identities yield the following relations between the integrals Aαβγ

(d− 4)A111 − A102 − A201 = 0, (6.17)

sA102 + (d− 3)A101 = 0, (6.18)

sA201 + (d− 3)A101 = 0 . (6.19)

Therefore, we see that in order to obtain a result for the triangle diagram with three
propagators, A111, the integral which actually has to be performed is a simpler bubble
diagram with only two propagators, and that the A111 integral is related to the simpler
integral through

A111 = −2(d− 3)
s (d− 4) A101 . (6.20)

The IBP reduction techniques were developed for calculation of higher loop virtual
diagrams in QCD. Hence, most publicly available codes cannot be blindly applied out of the
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box. Indeed, there are two complications with which we must deal in order to apply these
techniques to the calculation of the two-loop soft functions at hand. Firstly, the calculation
in SCET contains linear propagators originating from Wilson lines, see section 2.1. And
secondly, this is not a two-loop virtual calculation, but rather a calculation of two real
emitted partons, therefore we must deal with phase-space constraints. A number of publicly
available packages can overcome these obstacles and be applied our problem. We chose
to use the LiteRed package [144, 145] to perform the integral reduction. Regarding the
first issue, LiteRed simply allows for construction of linear propagators. As for the second
issue, the delta functions constraining the phase-space can be handled using an internal
function in LiteRed which enables us to implement cut propagators. This method relies
on reverse unitarity [146]. Reverse unitarity allows us to write the phase-space integrals
as loop integrals, by identifying the phase-space constraining delta functions with the
difference of propagators as dictated by the equation

1
k2 + iδ

− 1
k2 − iδ

= −2π i δ
(
k2
)
. (6.21)

There are two remarks to make regarding this implementation. First, we note that some
codes used for reduction of integrals such as FIRE [147] and REDUZE [148] do not distinguish
between different iδ prescriptions which can yield spurious contributions. However, we have
applied the cut propagator command in LiteRed which behaves as expected. Secondly,
we note that virtual loop integrals do not have θ(k0

1) like constraints on the energy of
the partons crossing the cut. This fact is not problematic, as it has been shown that
application of IBP reduction algorithms and application of cuts commutes [146]. Hence,
we can apply the reduction techniques to arrive at a set of master integrals, and compute
them with the appropriate constraints. For example, see the θ(k0

1)θ(k0
2) structure in (6.23).

With this, we are now in a position to present the results for matrix elements and the
expressions for the diagrams shown in the above figures in terms of the small set of eight
master integrals. We separate the presentation of these results into three sections, according
to the ω dependent delta function structure in the corresponding master integrals.

6.3.1 δ(ω − n−k1)
We begin with the reduced expressions for the contributions to the S1 soft function which
are characterised by a single soft gluon emission from the power suppressed soft building
block and another from one of the soft Wilson lines, as explained in section 6.2.1. The
below expression is obtained by interfering the top four lines of equation (6.2) with (6.5),
and reducing the result to a set of master integrals. We find

S
(2)2r0v
1 (Ω, ω)δ(ω−n−k1) = C2

F

8 (2− 9ε+ 9ε2)
ε2 ω (Ω− ω)2 I1

+CFCA

(2− 3ε) (−4Ω + ε (ω + 19Ω) + 4ε2 (ω − 7Ω)− 16ε3(ω − Ω))
ε2(1− 2ε)ωΩ (Ω− ω)2 I1

−(1− 4ε2)
ε ωΩ I2 + (3Ω− 10εΩ + 16ε2(ω + Ω))

2(1− 2ε)ωΩ I3
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+(Ω− 3ω)
2ω I4 + Ω I5

 , (6.22)

where the master integrals Ii appearing in the above expression are given by

I1 = g4
s

∫ ddk1

(2π)d
∫ ddk2

(2π)d
(
− 2πδ(k2

1)θ(k0
1)
) (
− 2πδ(k2

2)θ(k0
2)
)

×δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω − n−k1) , (6.23)

I2 = g4
s

∫ ddk1

(2π)d
∫ ddk2

(2π)d
(
− 2πδ(k2

1)θ(k0
1)
) (
− 2πδ(k2

2)θ(k0
2)
)

× 1
(n−(k1 + k2))δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω − n−k1) , (6.24)

I3 = g4
s

∫ ddk1

(2π)d
∫ ddk2

(2π)d
(
− 2πδ(k2

1)θ(k0
1)
) (
− 2πδ(k2

2)θ(k0
2)
)

× 1
(k1 + k2)2 δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω − n−k1) , (6.25)

I4 = g4
s

∫ ddk1

(2π)d
∫ ddk2

(2π)d
(
− 2πδ(k2

1)θ(k0
1)
) (
− 2πδ(k2

2)θ(k0
2)
) 1

(n+k2)

× 1
(k1 + k2)2 δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω − n−k1) , (6.26)

I5 = g4
s

∫ ddk1

(2π)d
∫ ddk2

(2π)d
(
− 2πδ(k2

1)θ(k0
1)
) (
− 2πδ(k2

2)θ(k0
2)
) 1

(n+k2)
1

(k1 + k2)2

× 1
(n−(k1 + k2))δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω − n−k1) . (6.27)

We see explicitly now the dependence on δ(ω − n−k1). The calculation of these master
integrals and the corresponding results are provided in section 6.4.1.

6.3.2 δ(ω − n−k1 − n−k2)
We now give the reduced expressions for contributions to S1 and S3 which depend on
master integrals with a δ(ω − n−k1 − n−k2) constraint. For S1, this contribution does not
only include the interference of eiz−(k1+k2) proportional terms in (6.2) with the leading
power two gluon matrix element in (6.5), but rather, in addition, the soft quark and soft
ghost contributions in the matrix elements in (6.3) and (6.4).

The expression for S3 is obtained by interfering (6.8) with (6.5). We do not label the
S3 soft function with a δ(ω − n−k1 − n−k2) superscript as this is its only contribution.

Most of the terms forming the S1 soft function give rise to CFCA colour structure,
with the exception of the piece where the soft gluon splits into a soft quark-antiquark pair
which is proportional to CFnf where nf is the number of flavours. Concretely, we find
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S
(2)2r0v
1 (Ω, ω)δ(ω−n−k1−n−k2) = CFCA

[
9− 20ε+ 12ε2 − 2ε3
ε2 (3− 2ε)ω2(Ω− ω)I6 + (Ω− ω)I7

]

−CF nf
4(1− ε)2

ε (3− 2ε)ω2(Ω− ω) I6 , (6.28)

where we see that two new master integrals I6 and I7 appear. These are given in equa-
tions (6.30) and (6.31) respectively. For the S3 soft function we find

S
(2)
3 (Ω, ω) = CFCA

2(1− ε)
(3− 2ε)ω2(Ω− ω)I6 . (6.29)

The two new master integrals appearing in the above expressions are given by

I6 = g4
s

∫ ddk1

(2π)d
∫ ddk2

(2π)d
(
− 2πδ(k2

1)θ(k0
1)
) (
− 2πδ(k2

2)θ(k0
2)
)

×δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω − n−k1 − n−k2) (6.30)

and

I7 = g4
s

∫ ddk1

(2π)d
∫ ddk2

(2π)d
(
− 2πδ(k2

1)θ(k0
1)
) (
− 2πδ(k2

2)θ(k0
2)
) 1

(k1 + k2)2
1

(n+k2)

× 1
(n−k1)δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω − n−k1 − n−k2) . (6.31)

We see that the I6 master integral in equation (6.30) is very similar to the I1 master integral
in equation (6.23). They both do not contain any propagators, and hence, are simply
integrals over phase-space only. The sole difference is the δ(ω − n−k1) term in I1, which is
replaced by δ(ω− n−k1− n−k2) in I6. The master integral I7 in equation (6.31) contains a
new propagator structure on top of the change in the argument of the δ(ω − n−k1 − n−k2)
delta function.

6.3.3 δ(ω1 − n−k1)δ(ω2 − n−k2)
Lastly, we present the results for the diagrams in figures 6.3 and 6.4 which correspond
to contributions to the S4 and S5 soft functions. As explained above in section 6.2.3, we
have redefined the collinear functions for these objects, such that the collinear functions
are rendered to be simple multiplicative factors and the complicated ω1, ω2 dependence is
contained within the soft functions only.

We again find a new master integral, due to the fact that the power suppressed emissions
in these diagrams occurs at two different positions z1− and z2− which gives rise to the
δ(ω1 − n−k1)δ(ω2 − n−k2) dependence of the necessary soft integrals.

For the diagrams in figure 6.3 we find

S
(2)
4 (Ω, ω1, ω2) = −CFCA

2(1− ε)ω2(ω1 − ω2)
(ω1 + ω2)4(Ω− ω1 − ω2)I8 . (6.32)
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The soft quark contributions due to L(1)
ξq Lagrangian insertions in the diagrams in figure 6.4

yields the following expression

S
(2)
5 (Ω, ω1, ω2) =

(
C2
F −

1
2CFCA

) 8(−1 + ε)ω2

(ω1 + ω2)3(Ω− ω1 − ω2)I8, (6.33)

with the relevant master integral given by

I8 = g4
s

∫ ddk1

(2π)d
∫ ddk2

(2π)d
(
− 2πδ(k2

1)θ(k0
1)
) (
− 2πδ(k2

2)θ(k0
2)
)

×δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω1 − n−k1)δ(ω2 − n−k2) . (6.34)

Similarly to the I1 and I6 master integrals given in equations (6.23) and (6.30) respec-
tively, the I8 master integral does not contain any propagator structure and differs to
aforementioned integrals only through the dependence on the ω of the delta function.

6.4 Master integrals
Having obtained the expressions for the two-loop soft functions in terms of a set of master
integrals, it now remains only to calculate the master integrals themselves. We do not
present full calculation of every master integral as some are lengthy and tedious to write
down, but are in general rather straightforward to solve. Instead, we will present one
example of an uncomplicated integral, and further describe how the trickier master integrals
were calculated. The presentation, as above, is again divided according to the δ(ω−n−k1),
δ(ω − n−k1 − n−k2), and δ(ω1 − n−k1)δ(ω2 − n−k2) dependence appearing in each master
integral.

6.4.1 δ(ω − n−k1)
We begin with the set of master integrals I1 – I5 given in equations (6.23) – (6.27). As
we go down the list, the master integrals get progressively more complicated through the
appearance of additional propagators.

Indeed, the leading power soft functions have been previously calculated to a high
loop accuracy and for many processes. One could envisage that it is possible to apply
similar methods to the next-to-leading power calculation presented here. However, a glace
at the complicated structure of the results given below already suggests the additional
non-trivial complexity is present in the master integrals containing a constraint on the
n−ki components of the soft momentum.

The calculation is differential in one more variable than at leading power, which can be
seen as having one more scale in the problem. The more scales appear in a calculation the
more involved it becomes. The identification of one of the components of loop integration
momentum with ω places it on a different footing to the other components. We find that
this greatly complicates the calculation of some of the master integrals, in particular I3, I4,
and I5. We can see this indirectly, for example, by considering a set of diagrams computed
in SCET using the NLP Feynman rules without the δ(ω − n−k1) constraint (equivalent to
calculation using the expansion-by-regions method). This set up simply corresponds to the
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J ⊗ S contribution to the factorisation theorem after the dω integral has been performed.
In this case, only two master integrals appear in the whole calculation, hinting at the
reduced complexity1. This would be a perfectly acceptable way to proceed if our aim was
to simply reproduce the next-to-next-to-leading order cross-section. However, here we
wish to obtain information about the soft functions themselves. Therefore, we must retain
the dependence on the ωi variables.

We begin by outlining the calculation of the I1 given in equation (6.23). First, the
integral is written in components

I1 = g4
s

1
(4π)2

∫ ∞
0

d(n+k1)d(n−k1)d(n+k2)d(n−k2)

×
∫ dd−2k1⊥

(2π)d−2

∫ dd−2k2⊥

(2π)d−2 δ
(
(n−k1)(n+k1) + k2

1⊥

)
δ
(
(n−k2)(n+k2) + k2

2⊥

)
× δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω − n−k1) (6.35)

Next, we perform the angular integrals. Followed by the dk1⊥dk2⊥ using the δ
(
(n−k1)(n+k1)+

k2
1⊥

)
and δ

(
(n−k2)(n+k2) + k2

2⊥

)
delta functions. Additionally, setting the dimension to

d = 4− 2ε yields the following expression

I1 = g4
s

1
(4π)2

∫ ∞
0

d(n+k1)d(n−k1)d(n+k2)d(n−k2) 1
Γ[1− ε]2

1
(4π)2−2ε

(
n−k1n+k1

)−ε
×
(
n−k2n+k2

)−ε
δ(Ω− n−k1 − n+k1 − n−k2 − n+k2)δ(ω − n−k1) (6.36)

Next we perform the dn+k1 and dn−k1 integrals using the two remaining delta functions,
the leftover theta functions set the upper limits on the last two integrals. These can be
performed using equation (A.2). The final result for I1 in equation (6.23) is

I1 = α2
s

(4π)2
µ4ε

ωε
(Ω− ω)2−3ε e

2 ε γE Γ[1− ε]
Γ[3− 3ε] θ(Ω− ω) θ(ω) . (6.37)

The remaining integrals are more difficult to calculate directly. However, we found that they
form a system of coupled differential equations which enables us to obtain the necessary
results. To be precise, by implicitly defining a dimensionless variable, ω = rΩ, we found
the following relation between the master integrals I1 and I2, and master integrals I1 and I3(

µ

Ω

)−4ε
Ω−1 d

dr
I2 = (2− 3ε)

(r − 1)r I1 −
2ε
r

I2, (6.38)

(
µ

Ω

)−4ε d

dr
I3 = (2− 9ε(1− ε))

ε(r − 1)2r
I1 −

2ε
r

I3 . (6.39)

Next, we find that I4 is related to I1 and I3 through the following differential equation
linking all three(

µ

Ω

)−4ε
Ω d

dr
I4 = (2− 9ε(1− ε))

ε(r − 1)3r
I1 + 2ε

(r − 1)r I3 −
(1 + 4ε)
(r − 1) I4 . (6.40)

1For a direct example see the discussion below equation (6.56).
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Lastly, the differential equation for I5 links together the I1, I3, and I4 master integrals. It
is given by(

µ

Ω

)−4ε
Ω2 d

dr
I5 = (2− 9ε(1− ε))

ε(r − 1)3r
I1 + 2ε

(r − 1)r I3 −
1 + 4ε

(r − 1)r I4 −
(1 + 2ε)

r
I5 . (6.41)

We see that we can solve the above system of differential equations iteratively. The first
two equations in (6.38) and (6.39) enable us to obtain I2 and I3 from the knowledge about
I1 which is solved above and the result given in equation (6.37). Then, since we have
obtained result for I1 and I3, we can solve the next differential equation in (6.40) for I4.
Similarly, once we have knowledge of I4 through a solution of (6.40), we can solve for I5
in (6.41).

Naturally, each of the solutions of the differential equations in (6.38) – (6.41) will be
correct up to an ε dependent constant, which we must fix through an appropriate choice
of boundary conditions. We can obtain the necessary boundary conditions by solving
the integrals I2 – I5 in equations (6.24) – (6.27) without the δ(ω − n−k1) constraint. Or,
equivalently, solving

∫ Ω
0 dω Ii for i = 2, . . . , 5, which formally eliminates the δ(ω − n−k1).

We refer to these results as inclusive versions of I2 – I5. Without the additional constraint
on ω (or equivalently r) the integrals are not difficult, and we find∫ Ω

0
dω I2 = α2

s

(4π)2 Ω2
(
µ

Ω

)4ε 1
(1− 2ε)

e2ε γEΓ[1− ε]2
Γ[2− 4ε] , (6.42)

∫ Ω

0
dω I3 = − α2

s

(4π)2 Ω
(
µ

Ω

)4ε 2
ε

e2ε γEΓ[1− ε]2
Γ[3− 4ε] , (6.43)

∫ Ω

0
dω I4 = − α2

s

(4π)2

(
µ

Ω

)4ε 1
2ε3

e2ε γEΓ[1− ε]2
Γ[1− 4ε] , (6.44)

∫ Ω

0
dω I5 = − α2

s

(4π)2
1
Ω

(
µ

Ω

)4ε 1
ε3
e2ε γEΓ[1− ε]2

Γ[1− 4ε] . (6.45)

The reason why this is useful is that the results for integrals I2 – I5 found through solutions
of the above differential equations must correspond to the above respective inclusive results
after the dω (dr) integral has been performed over the former. For example, solving the
differential equation in (6.38) for I2 yields the following result

I2 = α2
s

(4π)2 Ω
(
µ

Ω

)4ε
r−ε

(−2 + 3ε)e2ε γEΓ[1− ε]
εΓ[3− 3ε] 2F1 (ε,−1 + 3ε; 1 + ε; r) + r−2εc1, (6.46)

where c1 is a constant of integration still to be determined. As described above, we fix it
by integrating (6.46) with respect to r and matching to the inclusive result in (6.42). We
find the following

I2 = α2
s

(4π)2 Ω
(
µ

Ω

)4ε (2− 3ε) e2 ε γE Γ[1− ε]
εΓ[3− 3ε] θ(1− r) θ(r)

×
(
r−2εΓ[2− 3ε]Γ[1 + ε]

Γ[2− 2ε] − r−ε 2F1 (ε,−1 + 3ε; 1 + ε; r)
)
. (6.47)
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Having calculated I2, we have all the ingredients necessary to solve the differential equation
in (6.39) for I3. Using (6.43) as a boundary condition after a further dω (dr) integration
yields the final result

I3 = α2
s

(4π)2

(
µ

Ω

)4ε e2εγE Γ[1− ε]Γ[1 + ε]
ε2 Γ[1− 3ε]Γ[1− 2ε] θ(1− r) θ(r)

×
(
−r−2εΓ[1− 3ε] + r−ε

Γ[1− 2ε]
Γ[1 + ε] 2F1 (ε, 3ε; 1 + ε; r)

)
. (6.48)

Next, by solving the differential equation in (6.40) we find the following result for the
master integral I4. The result is

I4 = − α2
s

(4π)2 Ω−1
(
µ

Ω

)4ε 1
(1− r)1+4ε

e2εγE Γ[1− ε]
ε2

θ(1− r)θ(r)
Γ[1− ε]Γ[1 + ε]

Γ[1− 3ε]

+ ε

Γ[1− 3ε]
(
B1−r(1 + ε,−ε) +Br(−ε, 1 + ε)

)
+ Γ[1 + ε]

Γ[−2ε] Br(−2ε, 1 + 4ε)

− 3
Γ[1− 3ε]

(1
r
− 1

)ε
3F2

(
1,−ε, 1 + 3ε; 1− ε, 1 + ε; r

r − 1

) , (6.49)

where the incomplete Beta functions are defined by

Bz(a, b) =
∫ z

0
ua−1(1− u)b−1 du (6.50)

in contrast to the complete Beta function with upper integral limit of 1 as shown in
equation (A.2). For later convenience we also implicitly define Ī4 which corresponds to the
terms in the parenthesis of equation (6.49), explicitly

I4 = − α2
s

(4π)2 Ω−1
(
µ

Ω

)4ε
(1− r)−1−4ε e

2εγE Γ[1− ε]
ε2

θ(1− r)θ(r)̄I4 . (6.51)

Lastly, we solve equation (6.41) for I5. A complete d-dimensional result turns out to
be too complicated to obtain here. Therefore, we resort to isolating the problematic limits
of r → 0 and r → 1 and evaluating those pieces in d-dimensions, and expanding the rest.
We find

I5 = α2
s

(4π)2 Ω−2
(
µ

Ω

)4ε
θ(1− r)θ(r)

×

− 1
2ε3

(
δ(1− r) + δ(r)

)
+ 1
ε2

(
2
[ 1
1− r

]
+

+
[1
r

]
+

)

+ 1
12ε

(
π2
(

5δ(1− r)− δ(r)
)
− 24

(
4
[

ln(1− r)
1− r

]
+

+
[

ln(r)
r

]
+

)

−48
r

ln (1− r)− 12
(1− r) ln(r)

)
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+ζ(3)
3
(
28δ(1− r)− 5δ(r)

)
− 5π2

3

[ 1
1− r

]
+

+ π2

6

[1
r

]
+

+4
(

8
[

ln2(1− r)
1− r

]
+

+
[

ln2(r)
r

]
+

)
+ (6− 7r)

(r − 1)rLi2(r) + π2

6(r − 1)

+8
r

ln2(1− r) + 1
2(r − 1) ln2(r)− 2(r + 1)

r(r − 1) ln(r) ln(1− r) +O(ε)
. (6.52)

As for I4, we implicitly define Ī5 as

I5(r) = α2
s

(4π)2 Ω−2
(
µ

Ω

)4ε
θ(1− r)θ(r) Ī5 . (6.53)

This concludes the presentation of the results of master integrals with a δ(ω − n−k1)
constraint.

6.4.2 δ(ω − n−k1 − n−k2)
In this section we present the results for the master integrals I6 and I7 which are needed
in equations (6.28) and (6.29).

The calculation of the master integral I6 defined in equation (6.30) follows the same
steps as the calculation of I1 presented between equations (6.35) and (6.37) except for the
fact that the δ(ω − n−k1) function in equation (6.35) is replaced by δ(ω − n−k1 − n−k2).
We find the following result

I6 = α2
s

(4π)2 µ
4εω1−2ε(Ω− ω)1−2ε e

2εγE Γ[1− ε]2
Γ[2− 2ε]2 θ(Ω− ω) θ(ω). (6.54)

Next, we consider the I7 master integral defined in equation (6.31). This integral contains
a more intricate propagator structure and for this reason we consider it in greater detail
here.

We begin the calculation by inserting the identity 1 =
∫
ddQδ(d)(Q − k1 − k2) into

equation (6.31) and changing the order of integration. Then we have

I7 = g4
s

1
(2π)2d−2

∫
ddQ

1
Q2 δ(Ω− n−Q− n+Q) δ(ω − n−Q) (6.55)

×
∫
ddk1

∫
ddk2

(
δ(k2

1)θ(k0
1)
) (
δ(k2

2)θ(k0
2)
) 1

(n−k1)
1

(n+k2) δ
(d)(Q− k1 − k2) .

Now, we use an auxiliary integral from [149] to write down the result for the double
integral in the second line of the above expression. We find

I7 = g4
s

1
(2π)2d−2

∫
ddQ

1
Q2 δ(Ω− n−Q− n+Q) δ(ω − n−Q) (6.56)

× π1−ε Γ[−ε]
Γ[1− 2ε] (n−Qn+Q)ε (QT )−2−2ε

(
Q2
)−ε

2F1

(
−ε,−ε, 1− ε, Q2

n+Qn−Q

)
.
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As a side remark, the corresponding step in the calculation of I3, I4 and I5 is precisely
where the direct integration is too complicated, as the δ(ω − n−k1) piece must remain
in the ddk1 d

dk2 integrals unlike here, where we could factor out the δ(ω − n−Q) outside
of the ddk1 d

dk2 integrals. Concretely, the issue is that the auxiliary integrals are usually
performed in a special frame and later related to the general result using Lorentz invariance.
The issue we encountered is that the presence of the δ(ω−n−k1) term singles out the n−k1
component. This makes the calculation more difficult in two ways. Firstly, the auxiliary
integrals themselves become complicated, and second, their results reach beyond the 2F1
hypergeometric function in equation (6.56), such that further manipulation is hindered.

Returning to the integral of I7 at hand, decomposing the ddQ integral into components
the calculation from here follows along similar lines to I1. We utilise the two remaining
delta functions and finally arrive at

I7 = α2
s

(4π)2
µ4ε

ω1+2ε(Ω− ω)1+2ε θ(Ω− ω) θ(ω)

× 2 e2εγE

Γ[1− ε]
Γ[−ε]2

Γ[1− 2ε]
Γ[−2ε]
Γ[−3ε] 3F2 (−ε,−ε,−ε;−3ε, 1− ε; 1) , (6.57)

where 3F2 ({−ε,−ε,−ε}, {−3ε, 1− ε}, 1) is a hypergeometric function.

6.4.3 δ(ω1 − n−k1)δ(ω2 − n−k2)
Lastly, we present the result for the master integral I8 defined in equation (6.34). This
calculation is straightforwardly related to the calculation of I1 which is obtained starting
from equation (6.30). Considering a similar expression with an additional delta function,
namely δ(ω2 − n−k2), yields the following result

I8 = α2
s

(4π)2
µ4ε

ωε1 ω
ε
2
(Ω− ω1 − ω2)1−2ε e2εγE

Γ[2− 2ε] θ(Ω− ω1 − ω2)θ(ω1)θ(ω2). (6.58)

With this, we conclude the presentation of the results of the master integrals. We are
now in possession of all the ingredients necessary to write down the next-to-next-to-leading
order soft functions.

6.5 Results
We now collect the results presented in the above sections to arrive at the final results for
the real-real contributions to the soft functions.

First, we provide the result for the S1 soft function. The result is written in terms of
the dimensionless variable r defined by r = ω/Ω. By summing the contribution dependent
on integrals with a δ(ω − n−k1) constraint in (6.22) and the expression in (6.28) with
master integrals containing a δ(ω − n−k1 − n−k2) term, and inserting the relevant master
integral results from the section above, we find

S
(2)2r0v
1 (Ω, r) = 8 α2

s

(4π)2 C
2
F

1
Ω

(
Ω
µ

)−4ε

r−1−ε (1− r)−3ε 1
ε2
e2εγEΓ[1− ε]

Γ[1− 3ε] θ(1− r)θ(r)
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−4 α2
s

(4π)2CF nf
1
Ω

(
Ω
µ

)−4ε

r−1−2ε(1− r)−2ε (1− ε)2

ε(3− 2ε)
e2εγEΓ[1− ε]2

Γ[2− 2ε]2 θ(1− r)θ(r)

+ α2
s

(4π)2CFCA
1
Ω

(
Ω
µ

)−4ε [(2− 3ε) (−4 + ε (r + 19) + 4ε2 (r − 7) + 16ε3(1− r))
ε2(1− 2ε)

×r−1−ε(1− r)−3ε e
2 ε γE Γ[1− ε]
Γ[3− 3ε]

+(9− 20ε+ 12ε2 − 2ε3)
ε2 (3− 2ε) r−1−2ε(1− r)−2ε e

2εγE Γ[1− ε]2
Γ[2− 2ε]2

+r−1−2ε(1− r)−2ε2 e2εγE

ε2
Γ[1− ε]
Γ[1− 2ε]

Γ[−2ε]
Γ[−3ε] 3F2 (−ε,−ε,−ε;−3ε, 1− ε; 1)

−(1− 4ε2)(2− 3ε) e2 ε γE Γ[1− ε]
ε2 Γ[3− 3ε]

×
(
r−1−2εΓ[2− 3ε]Γ[1 + ε]

Γ[2− 2ε] − r−1−ε
2F1 (ε,−1 + 3ε; 1 + ε; r)

)

+(3− 10ε + 16ε2(1 + r))
2(1− 2ε)

e2εγE Γ[1− ε]
ε2 Γ[1− 3ε]

×
(
−r−1−2εΓ[1− 3ε]Γ[1 + ε]

Γ[1− 2ε] + r−1−ε
2F1 (ε, 3ε; 1 + ε; r)

)

−(1− 3r)
2r (1− r)−1−4ε 1

ε2
e2εγE Γ[1− ε] Ī4 + Ī5

]
θ(1− r)θ(r) . (6.59)

Next, we provide the result for the two-loop contribution to the S3 soft function by
inserting the master integral in (6.54) into equation (6.29) arriving at the following final
expression

S
(2)
3 (Ω, ω) = 2 α2

s

(4π)2CFCA

(
ω2(Ω− ω)2

µ4

)−ε 1
ω

(1− ε)
(3− 2ε)

e2εγE Γ[1− ε]2
Γ[2− 2ε]2 θ(Ω− ω)θ(ω), (6.60)

where we have kept the dimensionful convolution variable ω. Similarly, inserting the
master integral into the reduced expression in (6.32) we find the final result for the S4 soft
function to be

S
(2)
4 (Ω, ω1, ω2) = − α2

s

(4π)2CFCA

(
ω1 ω2(Ω− ω1 − ω2)2

µ4

)−ε 2(1− ε)ω2(ω1 − ω2)
(ω1 + ω2)4

× e2εγE

Γ[2− 2ε] θ(Ω− ω1 − ω2)θ(ω1)θ(ω2) (6.61)

and the result for the S5 soft function is

S
(2)
5 (Ω, ω1, ω2) = − α2

s

(4π)2

(
C2
F −

1
2CFCA

)(
ω1 ω2(Ω− ω1 − ω2)2

µ4

)−ε 8(1− ε)ω2

(ω1 + ω2)3
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× e2εγE

Γ[2− 2ε] θ(Ω− ω1 − ω2)θ(ω1)θ(ω2) . (6.62)

The above two-loop results are verified in the next chapter. By insertion into the
relevant parts of the factorisation formula, combining with the corresponding collinear
functions, and integrating over the convolution variables ω, ω1, and ω2 as appropriate find
the correct contributions at the next-to-next-to-leading order at the cross-section level.
Explicit details are presented in the chapter below.



7

Drell-Yan: fixed-order results

In this chapter we combine the results for collinear functions calculated in chapter 4 with
the fixed order results for the generalised subleading-power soft functions presented in
chapters 5 and 6, and the leading power hard function. This is done according to the
factorisation formulas derived in chapter 3. For the purposes of this chapter we continue to
work with regularized objects and perform the convolutions between the soft and collinear
functions in d-dimensions. With the results obtained in this way, we verify the validity
of the bare next-to-leading power factorisation formulas derived in chapter 3. This is
achieved through a direct comparison against the next-to-leading power results for partonic
Drell-Yan process at NLO and NNLO in αs [31, 35, 36, 37, 116, 150] calculated by a direct
evaluation of the QCD diagrams and using the expansion-by-regions method [89].

7.1 Quark-antiquark channel
The expansion of the next-to-leading power factorisation formula for the qq̄-channel in
equation (3.81) at fixed αs and α2

s orders has been performed in section 3.2.3. We make
use of these expansions below.

7.1.1 Next-to-leading order
The NLO accurate factorisation formula is given in equation (3.91). The tree-level collinear
function given in (4.19) and the tree-level hard matching coefficient, H(0)(Q2) = 1, have
already been implemented. We find only the one dynamical contribution to the cross-
section. This is because the next-to-leading power soft functions begin at lowest O(αs).
The result for the relevant one-loop soft function is given in (5.7). At NLO we then find
for the cross-section

∆dyn (1)
NLP (z) = −4αs2πCF

µ2εeεγE

Γ[1− ε]

∫ Ω

0
dω

1
ω1+ε

1
(Ω− ω)ε . (7.1)

Performing now the convolution integral over ω yields the following result at next-to-leading
order in αs

∆dyn (1)
NLP (z) = αs

4πCF
8
ε
(1− 2ε)µ

2ε

Ω2ε
eεγEΓ[1− ε]

Γ[2− 2ε] . (7.2)
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Expanding this result in ε, we arrive at

∆dyn (1)
NLP (z) = αs

4πCF
(8
ε
− 16 ln(1− z)− ε

(
2π2 − 16 ln2(1− z)

)
+O(ε2)

)
, (7.3)

where we set the renormalization scale µ = Q.
In addition to the dynamic contribution to the next-to-leading power cross-section, we

must also consider the kinematic corrections at this order in αs, namely the ∆kin (1)
NLP (z)

term. This contribution is given by the sum of ∆K1
NLP(Ω), ∆K2

NLP(Ω), and ∆K3
NLP(Ω) defined

in equations (3.73), (3.74), and (3.75) respectively. The fourth kinematic correction
∆K4

NLP(Ω) in equation (3.76) does not contribute as the derivative of the tree-level hard
function vanishes. The listed kinematic corrections require the input of the kinematic soft
functions SK1, SK2, and SK3 the results for which at next-to-leading order are given in
equations (5.21), (5.23), (5.24), and (5.25). Since all of the kinematic soft functions begin
to contribute at O(αs), we only require the tree-level hard function contribution H(0) = 1
to each piece of the cross-section. Combining together the relevant pieces, we arrive at the
following results

∆K1 (1)
NLP (z) = αsCF

2π

(
1
ε

+ 2 ln
(
µ

Ω

)
− 2 + ε

(
2 ln2

(
µ

Ω

)
− 4 ln

(
µ

Ω

)
− π2

4

)
+O(ε2)

)

µ=Q= αsCF
2π

(
1
ε
− 2 ln (1− z)− 2 + ε

(
2 ln2 (1− z) + 4 ln (1− z)− π2

4

)
+O(ε2)

)
, (7.4)

for the first kinematic correction in (3.73). For the second in (3.74) we find

∆K2 (1)
NLP (Ω) = αsCF

2π

(
3
ε

+ 6 ln
(
µ

Ω

)
+ 6 + 3ε

(
2 ln2

(
µ

Ω

)
+ 4 ln

(
µ

Ω

)
− π2

4

)
+O(ε2)

)

µ=Q= αsCF
2π

(
3
ε
− 6 ln (1− z) + 6 + 3ε

(
2 ln2 (1− z)− 4 ln (1− z)− π2

4

)
+O(ε2)

)
. (7.5)

Lastly, for the third in (3.75) we have

∆K3 (1)
NLP (z) = αsCF

2π

(
−4
ε
− 8 ln

(
µ

Ω

)
+ ε

(
−8 ln2

(
µ

Ω

)
+ π2

)
+O(ε2)

)
µ=Q= αsCF

2π

(
−4
ε

+ 8 ln (1− z) + ε
(
−8 ln2 (1− z) + π2

)
+O(ε2)

)
. (7.6)

Upon summation of the above results, for the total contribution due to kinematic corrections
at next-to-leading order we find

∆kin (1)
NLP (z) = αsCF

4π

(
8− ε 16 ln(1− z)

)
. (7.7)

Results for next-to-leading power contributions to the Drell-Yan cross-section at NLO
have been previously reported in [35] within a diagrammatic approach. In this approach
the power-suppressed soft radiation is taken into account by generalised next-to-soft
Wilson lines. Our dynamical result, ∆dyn (1)

NLP (z) in equation (7.3), is in agreement with
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the corresponding expression in equation (6.17) of [35]. The kinematic correction result
obtained here, ∆kin (1)

NLP (z) in equation (7.7), is confirmed by the corresponding result in
equation (6.13) of [35]. In the diagrammatic approach, this contribution arises as a phase
space power correction to the leading power matrix element. We can also compare to
results in literature the sum of ∆dyn (1)

NLP (z) and ∆kin (1)
NLP (z) in equations (7.3) and (7.7)

respectively. We must first apply subtractions originating from PDF renormalization to
the total result, after which we can compare with the next-to-leading order next-to-leading
power result given in equation (B.29) of [116] with which we find agreement.

7.1.2 Next-to-next-to-leading order
In section 3.2.3 we have discussed the three possible types of dynamical next-to-leading
power contributions to the cross-section appearing at next-to-next-to-leading order. Namely,
we have the collinear, hard, and soft contributions. The simplified expressions for each of
these can be found in equations (3.95), (3.96), and (3.94), respectively. The aim of this
section is to combine the ingredients computed in previous chapters in order to obtain the
explicit results for the collinear, hard, and soft contributions and check these against the
results existing in literature. Moreover, a complete result for the one-loop next-to-leading
power Drell-Yan amplitude with one real soft emission is presented in appendix B.2

We also present the kinematic contribution to the NNLO Drell-Yan next-to-leading
power cross-section, making use of the results for kinematic soft functions in section 5.1.2.

Collinear contribution

We begin with the contribution which includes the one-loop collinear function results
obtained in chapter 4. We have already simplified the expression describing this contribution
using the tree-level result for the hard function. This result can be found in equation (3.95),
and we write it here again for convenience

∆dyn (2)
NLP−coll(z) = 4Q

∫
dω J

(1)
1,1 (xa n+pA;ω)S(1)

1 (Ω;ω) . (7.8)

We see that the one-loop collinear function is combined with the corresponding NLO soft
function. It is also noteworthy that only the J (1)

1,1 can in principle contribute here. This is
because the J (1)

1,2 piece of the collinear function multiplies a delta-function derivative term
(see the decomposition in (3.89)). After partial integration this derivative acts on the hard
function which at tree level is a constant and so this term cannot feature in (7.8). Moreover,
we found in (4.86) that J (1)

1,2 = 0. The expression for the J (1)
1,1 (xa n+pA;ω) one-loop collinear

function which does enter the expression in (7.8) can be found in equation (4.84) with
colour generator and Dirac-index Kronecker-symbol removed.

As we have stressed above, in order to obtain the NNLO fixed-order result we do not
expand neither the collinear nor the soft function in ε. Rather, we keep the d-dimensional
expression of the collinear function and perform the last integral over the convolution
variable ω while also using the d-dimensional soft function which is given in equation (5.7).
We find

∆dyn (2)
NLP−coll(z) = 8 α2

s

(4π)2

(
QΩ3

µ4

)−ε
e2εγEΓ[1 + ε]Γ[1− ε]2Γ[1− 2ε]

Γ[1− 3ε]Γ[3− 2ε]
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×

− C2
F

1
ε2

(4− 7ε− ε2) + CFCA
(5− 8ε− ε2)
ε(1 + ε)

. (7.9)

Only now, after this convolution is performed, we expand the resulting expression in ε.
We set the soft scale to Ω = Q(1− z) and µ = Q. The sequence of above steps yields

∆dyn (2)
NLP−coll(z) = α2

s

(4π)2

C2
F

(
− 16
ε2

+ 48 ln(1− z)− 20
ε

+
(
−72 ln2(1− z) + 60 ln(1− z) + 8π2 − 24

)
+O(ε)

)

+CACF

(20
ε
− (60 ln(1− z)− 8) +O(ε)

) . (7.10)

We draw attention to the fact that no leading logarithmic contributions, which are of the
form α2

s ln3(1− z), are present in the collinear contribution to the Drell-Yan cross-section.
The highest encountered logarithmic power in the finite terms in the second line of the
above equation is at the next-to-leading logarithmic accuracy. Namely, it is proportional
to α2

s ln2(1− z).
Studies regarding virtual collinear radiation at one-loop level with an emission of a soft

gluon have been reported in literature, see for example [31] which is carried out within
the expansion-by-regions method [89], and [36, 37] performed within a diagrammatic
approach. The information regarding effects due to presence of collinear loops is contained
within the so-called “radiative jet function” [130]. We can compare the C2

F term given
in (7.10) against the corresponding contribution found in equations (13), (14) of [31]
and equation (4.22) of [36], where only the abelian contribution is considered. We find
agreement with those results, although these references drop all contributions which are
proportional to transcendental numbers, such as π2. A corresponding result for the second
colour structure, CACF , which appears in our result in equation (7.10) does not separately
exist in the literature. It is provided in a sum with the hard and soft contributions which
we consider next.

Hard contribution

Here we consider the contribution to the Drell-Yan cross-section which is made up of the
one-loop hard function, the tree-level collinear functions, and the one-loop soft function.
Unlike in the case of the collinear contribution considered above, the piece of the tree-level
collinear function attached to the derivative-delta function gives a non-vanishing result.
This is because the hard matching coefficient is momentum-dependent beyond tree level.

The formula for the cross-section simplified to this case is given in equation (3.96). We
state it again here for convenience

∆dyn (2)
NLP−hard(z) = −4 (1− ε)H(1)(Q2)

∫
dω S

(1)
1 (Ω; ω ) . (7.11)

In order to obtain this expression we have already utilised the results for the collinear
functions at tree level. The necessary one-loop soft function can be found in equation (5.7).
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The one-loop hard function H = |CA0,A0|2 up to finite order in ε expansion is given above
in equation (2.59). With these results at hand, we perform the dω integration in (7.11)
over the d-dimensional expression for the soft function, we set µ = Q, and only then
expand in ε which leads to the following result

∆dyn (2)
NLP−hard(z) = α2

sC
2
F

(4π)2

(
− 32
ε3

+ 64 ln(1− z)− 16
ε2

+
−64 ln2(1− z) + 32 ln(1− z) + 80

3 (π2 − 3)
ε

− 8
3

(
− 16 ln3(1− z) + 12 ln2(1− z) + 20

(
π2 − 3

)
ln(1− z)

− 56ζ(3)− 5π2 + 48
)

+O(ε)
)
, (7.12)

where ζ(3) is a Riemann zeta value. Unlike in the collinear contribution to the next-to-
leading power cross-section, leading logarithmic contributions are present in this expression.
These terms are proportional to α2

s ln3(1− z). This implies that the hard function must
be resummed to capture all leading logarithmic contributions to all orders in perturbation
theory. This was achieved in [40] and is considered below in chapter 8.

The result for ∆dyn (2)
NLP−hard in (7.12) can be compared against a result obtained by making

use of the expansion-by-regions method for an amplitude with one hard one-loop and
one real soft gluon emission. This expression has been presented in equation (12) of [31],
and is in agreement with our result in (7.12).1 In the diagrammatic approach [36, 37],
the hard contribution presented here in equation (7.12) originates from the dressing of
the non-radiative amplitude with one real soft gluon emission, as dictated by the LBK
theorem.

Soft contribution

We now turn our attention to the soft contribution to the cross-section. Here we provide
both the one-real, one-virtual contribution to the cross-section and the double real con-
tributions due to several soft functions. In section 5.1.1, we have obtained the one-real,
one-virtual result for the S1 soft function. In principle, other soft functions could contribute
to this part of the NNLO cross-section as can be seen in equation (3.94). However, remark-
ably, only one soft structure, the one corresponding to the S1 soft function, contributes.
This is explored in more detail in appendix B.2.3. Since only the S1 soft function and its
corresponding tree-level soft function contribute to this piece of the NNLO cross-section,
the simplified factorisation formula has the following form

∆dyn (2)1r1v
NLP−soft (z) = 4QH(0)(Q2)

∫
dωJ

(0)
1,1 (xa(n+pA);ω)S(2)1r1v

1 (Ω, ω). (7.13)

We now make use of the one-real, one-virtual result for the S1 next-to-leading power soft
function, S(2)1r1v

1 (Ω, ω), written in equation (5.13), along with the corresponding tree-level
1The following typo has to be accounted for in [31]: in equation (12) the

[
1 + 4 log(1− z)

]
/ε2 should

in fact be
[
− 1 + 4 log(1− z)

]
/ε2.
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collinear function given in equation (4.19). Combining the expressions as dictated by (7.13),
integrating over ω, and only then expanding in ε and setting µ = Q yields

∆dyn (2)1r1v
NLP−soft (z) = α2

s

(4π)2 CFCA

(
− 8
ε3

+ 32 ln(1− z)
ε2

− 64 ln2(1− z)
ε

+ 28π2

3ε

+256
3 ln3(1− z)− 112

3 π2 ln(1− z) + 448ζ(3)
3 +O(ε)

)
. (7.14)

It is not straightforward to compare this result directly with literature, as the non-abelian
CFCA term of the one-real, one-virtual contribution has been reported in a sum with the
collinear pieces, kinematic corrections, and other soft contributions (see equation (4.6)
of [37]). The result in equation (7.14) has been checked against the soft region of the
one-real, one-virtual correction within the expansion-by-regions method [150].

In section 6.5, we have presented the ω dependent real-real results for the S1, S3, S4,
and S5 next-to-leading power soft functions. We now consider the contribution of these
terms to the Drell-Yan cross-section.

We first focus on the C2
F part of the S1 soft function, this contribution is given in the

top line of the result in equation (6.59). Making the variable transformation r = ω/Ω, the
relevant part of the factorisation formula is given by

∆dyn (2)2r0v
NLP−soft,S1,C2

F

(z) = 4QΩH(0)(Q2)
∫
drJ

(0)
1,1 (xa(n+pA);ω)S(2)2r0v

1,C2
F

(Ω, r) , (7.15)

where S(2)2r0v
1,C2

F
denotes the C2

F proportional terms of S(2)2r0v
1 in (6.59). Inserting the result

for the S(2)2r0v
1,C2

F
(Ω, r) soft function and the tree-level collinear function from (4.19), and

then integrating over the convolution variable dr in d-dimensions yields

∆dyn (2)2r0v
NLP−soft,S1,C2

F

(z) = 32 α2
s

(4π)2 C
2
F

(
Ω4

µ4

)−ε 1
ε3
e2εγEΓ[1− ε]2

Γ[1− 4ε] . (7.16)

Setting the soft scale to Ω = Q(1− z), the scale µ = Q, and finally expanding in ε we find
the following expression

∆dyn (2)2r0v
NLP−soft,S1,C2

F

(z) = α2
s

(4π)2 C
2
F

(
32
ε3
− 128

ε2
ln(1− z) + 256

ε
ln2(1− z)− 112π2

3ε

+32
3
(
−32 ln3(1− z) + 14π2 ln(1− z)− 62ζ(3)

)
+O (ε)

)
. (7.17)

This result can be checked against equation (5.2) in [37]. However, care must be taken
as the result presented there includes also the leading power contribution to the double
real emission which we must subtract, and the transcendental pieces have been dropped.
Additionally, the above result is in agreement with the calculation of next-to-leading power
real-real emission using the expansion-by-regions method [150].

Similarly to the above considerations, we can insert into the factorisation theorem the
piece of S(2)2r0v

1 proportional to CFnf which we label by S(2)2r0v
1,CFnf . The relevant result can

be found in the second line of (6.59). The contribution to the Drell-Yan cross-section is

∆dyn (2)2r0v
NLP−soft,S1,CF nf

(z) = −8 α2
s

(4π)2 CFnf

(
Ω4

µ4

)−ε 1
ε2

1
(1− 2ε)2(3− 2ε)

e2εγEΓ[2− ε]2
Γ[1− 4ε] . (7.18)
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The above result still contains d - dimensional information, we now set the soft scale to
Ω = Q(1− z), the scale µ = Q. Then, expanding in ε yields

∆dyn (2)2r0v
NLP−soft,S1,CF nf

(z) = α2
s

(4π)2 CFnf

(
− 8

3ε2 −
32
9ε (3 ln(1− z)− 2)

+ 4
27
(
−144 ln2(1− z) + 21π2 + 192 ln(1− z)− 122

)
+O (ε)

)
. (7.19)

This is the only CFnf proportional contribution to the cross-section. Our result obtained
through calculation of objects appearing in the factorisation formula and presented in (7.19)
has been verified by a calculation of QCD diagrams using the expansion-by-regions method
[150].

Lastly for the S1 soft function, we must consider the CFCA proportional pieces in (6.59).
This contribution is labelled by S(2)2r0v

1,CFCA . Inserting this piece into an analogue of (7.15),
we find2

∆dyn (2)2r0v
NLP−soft,S1,CF CA

(z) = −4 α2
s

(4π)2 CFCA

(
Ω4

µ4

)−ε
e2εγEΓ[1− ε]2

ε3(1− 2ε)2Γ[1− 4ε] (7.20)

×
(

(3− 25ε+ 50ε2 − 23ε3)
(3− 2ε) − 3Γ[2− 2ε]2

Γ[1− ε]Γ[1− 3ε] 3F2(−ε,−ε,−ε; 1− ε,−3ε; 1)
)
.

The hypergeometric functions in the d - dimensional result must be carefully expanded,
this can be accomplished the using HypExp package [151], which yields

∆dyn (2)2r0v
NLP−soft,S1,CF CA

(z) = α2
s

(4π)2 CFCA

(
8
ε3
− 4

3ε2 (24 ln(1− z)− 11)

−16
9ε
(
−36 ln2(1− z) + 33 ln(1− z) + 6π2 − 16

)
−256

3 ln3(1− z) + 352
3 ln2(1− z) + 128

3 π2 ln(1− z)

−1024
9 ln(1− z)− 616ζ(3)

3 − 154π2

9 + 1484
27 +O(ε)

)
. (7.21)

An interesting observation is that leading logarithmic contributions of form α2
s ln3(1− z)

appearing here are exactly cancelled by the one-real one-virtual contributions for the S1 soft
function in (7.14), such that there are no leading logarithmic contributions proportional
to the CFCA colour structure in the cross-section.

The CFCA result for the cross-section due to S1 cannot a priori be directly compared
against an expansion-by-regions calculation, as the latter is organised by collecting together

2We note that this result is d-dimensional, whereas I5 above was obtained only in ε expansion. This is
because we have performed the reduction without an additional ω dependent delta function for terms that
produce the tricky ω dependent master integrals, we then checked that they agree in the ε expansion, and
used these expressions instead of the expanded integrals after the dr integration. This means that our
inclusive result is more general than what is available in the literature, as it has complete d-dimensional
dependence. We are only able to compare the results for the cross-section order by order in ε.



164 Chapter 7. Drell-Yan: fixed-order results

all diagrams with the same final state, for example real-real gluon emission. However,
in the SCET calculation these contributions are separated between S1, S3, and S4 soft
functions. Hence, we can only compare the CFCA proportional pieces in the cross-section
after considering also the contributions to the cross-section due to S3 and S4.

We begin with S3. The relevant piece of factorisation formula is

∆dyn (2)2r0v
NLP−soft,S3(z) = 4QH(0)(Q2)

∫
dωJ

(0)
3,1 (xa(n+pA);ω)S(2)

3 (Ω, ω) . (7.22)

Inserting now the result in (6.60) and integrating over the convolution variable yields the
following expression

∆dyn (2)2r0v
NLP−soft,S3(z) = 4 α2

s

(4π)2 CFCA

(
Ω4

µ4

)−ε 1
ε

(1− ε)
(1− 2ε)2(3− 2ε)

e2εγEΓ[1− ε]2
Γ[1− 4ε] . (7.23)

Next, setting the soft scale to Ω = Q(1 − z), and the scale µ = Q, we expand in ε and
arrive at

∆dyn (2)2r0v
NLP−soft,S3(z) = α2

s

(4π)2 CFCA

(
4
3ε −

4
9 (12 ln(1− z)− 11) +O (ε)

)
. (7.24)

Now, we consider the S4 soft function contribution. The adapted factorisation formula,
with the scalar collinear function in (6.10), is

∆dyn (2)2r0v
NLP−soft,S4(z) = 4QH(0)(Q2)

∫
dω1dω2J

(0)
4 (xa(n+pA))S(2)

4 (Ω, ω1, ω2) . (7.25)

Inserting (6.61) and performing the convolution integrals yields

∆dyn (2)2r0v
NLP−soft,S4(z) = −4 α2

s

(4π)2 CFCA

(
Ω4

µ4

)−ε 1
ε

(1− ε)
(1− 2ε)2(3− 2ε)

e2εγEΓ[1− ε]2
Γ[1− 4ε] , (7.26)

which is identical to ∆dyn (2)2r0v
NLP−soft,S3(z) in (7.23) up to a minus sign, such that the two cancel

each other in the expression for the full Drell-Yan cross-section at this order.
With this observation, it becomes apparent that we can in fact directly compare the

result for the CFCA proportional cross-section due to the S1 soft function contribution
against the calculation employing the expansion-by-regions method. Indeed, the result
in (7.21) is reproduced by sum of expanded QCD diagrams with two radiated soft gluons
and two radiated soft ghosts [150].

Last, we consider the contribution the Drell-Yan cross-section due to the S5 NNLO
soft function with two insertions of the Lξq terms of the next-to-leading power Lagrangian.
As explained in section 6.2.3, the spin trace in (3.81) has already been performed and is
included in the soft function, therefore the factorisation formula we must consider here is

∆dyn (2)2r0v
NLP−soft,S5(z) = 4QH(0)(Q2)

∫
dω1dω2J

(0)
5 (xa(n+pA))S(2)

5 (Ω, ω1, ω2) , (7.27)

with the soft function given by (6.62) and the scalar collinear function by (6.11). Performing
the integrals, we arrive at

∆dyn (2)2r0v
NLP−soft,S5(z) = 8 α2

s

(4π)2

(
C2
F −

1
2CFCA

) (Ω4

µ4

)−ε (1− ε)
ε(1− 2ε)2

e2εγEΓ[1− ε]2
Γ[1− 4ε] . (7.28)
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Setting µ = Q and expanding this result

∆dyn (2)2r0v
NLP−soft,S5(z) = α2

s

(4π)2

(
C2
F −

1
2CFCA

) (8
ε
− 32 ln(1− z) + 24 +O(ε)

)
, (7.29)

we find agreement with the calculation using the expansion-by-regions method [150].
A concluding remark regarding the soft functions beginning at α2

s, namely S3, S4, and
S5, is in order. We can see from the results of expansion in ε for these soft functions in (7.24)
and (7.29), that they do not contribute leading logarithmic terms to the cross-section.
This confirms an assumption made in [40]. Specifically, this confirms that there is no
logarithmically enhanced off diagonal mixing of these soft functions with the single gluon
soft function, hence, they do not contribute leading logarithmic terms to the cross-section.

Kinematic contribution

Lastly, we consider the NNLO contribution to the next-to-leading power Drell-Yan cross-
section due to kinematic corrections which are listed in equations (3.73)–(3.76). Consid-
ering the perturbative expansion of each of the contributing objects, the total kinematic
correction at NNLO is given by

∆kin (2)
NLP (z) = H ′

(1)(
Q2
)
Q2 S

(1)
K3(Ω) +

∑
i

[
H(1)

(
Q2
)
S

(1)
Ki (Ω) +H(0)

(
Q2
)
S

(2)
Ki (Ω)

]
. (7.30)

The required one-loop hard function is written in equation (2.59) and the one-loop
kinematic soft functions are listed in equations (5.21), (5.23), (5.24), and (5.25). We also
now need the two-loop kinematic soft functions. The results for these objects are listed in
equations (5.26) – (5.29). Combining these elements together, we find

∆kin (2)
NLP (z) = α2

s

(4π)2

C2
F

(
16
ε2
− 192 ln(1− z) + 96

ε
+ 512 ln2(1− z)

+ 192 ln(1− z)− 40π2 − 256
)

+ CFCA

(
88
3ε −

352 ln(1− z)
3

− 8π2

3 + 476
9

)
+ CFnf

(
− 16

3ε + 64 ln(1− z)
3 − 56

9

) . (7.31)

We observe that there are no leading logarithmic contributions in the NLP cross-section
due to kinematic corrections.

The corrections due to integration over leading power matrix elements with the phase
space expanded to next-to-leading power, which corresponds to the kinematic corrections,
has been previously considered within the expansion-by-regions or the diagrammatic
approach. However, an expression which could directly be compared to (7.31) has not
been provided explicitly. It forms a part of equation (4.6) and (5.2) in [37], but it cannot
be disentangled from the contribution due to the next-to-leading power matrix element.
Therefore, we compare (7.31) to a calculation using the expansion-by-regions method in
which the leading power matrix elements describing double-real, and one-real, one-virtual
emissions is integrated over the phase space which is expanded to next-to-leading power
[150]. We find agreement.
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7.1.3 Next-to-next-to-next-to-leading order
The current perturbative knowledge about the ingredients making up the NLP factorisation
formula in (3.81) does not allow us to verify it completely at N3LO. However, partial
results can be obtained. For example, in the N3LO expansion of (3.81) there exists a
contribution due to one-loop collinear functions convoluted with their respective two-loop
soft functions. Interestingly, there exist published results which allow us to check one
such contribution. Namely, in [32] the expansion-by-regions method is used to compute
one-virtual two-real gluon emission contribution to the Drell-Yan cross-section at threshold.
Part of this calculation is the contribution due to a collinear virtual loop, with two
soft gluons radiated. The analogue in SCET is precisely the combination of one-loop
collinear functions with two-loop soft functions. In [32], the C3

F proportional pieces of
the cross-section are presented. In the NLP SCET framework, we can reproduce this
result since only the S1 soft function contains a C2

F term that originates from the cut
two-soft gluon contribution (there is a C2

F contribution in S5, however this is due to soft
quarks in the final state and the authors of [32] do not consider such contributions) and its
corresponding collinear function at one-loop carries terms proportional to CF . Therefore,
we now focus on the following part of the factorisation formula expanded to the third
order in the coupling constant

∆dyn (3)
NLP−coll, C3

F
(z) = 4Q

∫
dω J

(1)
1,1 (xa n+pA;ω)S(2)

1,C2
F

(Ω;ω) . (7.32)

For the one-loop collinear function we use the CF part of the result given in (4.84) after the
colour generator and Dirac-index Kronecker-symbol are removed. The relevant two-loop
soft function is given in the top line of (6.59). For concreteness, we write it again in terms
of the variable ω here

S
(2)2r0v
1,C2

F
(Ω, ω) = 8 α2

s

(4π)2 C
2
F

(
ω (Ω− ω)3

µ4

)−ε 1
ω

1
ε2
e2εγEΓ[1− ε]

Γ[1− 3ε] θ(Ω− ω)θ(ω). (7.33)

We perform the convolution according to (7.32) and arrive at the following d-dimensional
result

∆dyn (3)
NLP−coll, C3

F
(z) = 32 α3

s

(4π)3C
3
F

(
QΩ5

µ4

)−ε 1
ε4

(−4 + 7ε+ ε2)

×e
3εγEΓ[1 + ε]Γ[1− ε]2Γ[1− 2ε]

Γ[1− 5ε]Γ[3− 2ε] . (7.34)

Setting Ω = Q(1− z) and µ = Q, and expanding in ε we find

∆dyn (3)
NLP−coll, C3

F
(z) = α3

s

(4π)3C
3
F

− 64
ε4

+ 80(4 ln(1− z)− 1)
ε3

+ 16
ε2

(
− 50 ln2(1− z)

+25 ln(1− z) + 7π2 − 6
)

+ 1
ε

(4000
3 ln3(1− z)− 1000 ln2(1− z)

−560π2 ln(1− z) + 480 ln(1− z) + 2624ζ(3) + 140π2 − 128
)
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−5000
3 ln4(1− z) + 5000

3 ln3(1− z) + 1400π2 ln2(1− z)

−1200 ln2(1− z)− 700π2 ln(1− z) + 640 ln(1− z)

+ζ(3)(3280− 13120 ln(1− z)) + 62π4

5 + 168π2 − 192
. (7.35)

The finite constant terms are not quoted in [32]. However, aside from the finite constant
terms, our expanded result in (7.35) agrees with equation (45) of [32] after the latter is
multiplied by a factor of two, to account for the anticollinear contribution.

Similarly to the C2
F contribution to the soft functions, the colour structure CFnf

appears only in the S1 soft function, see second line of (6.59). This enables us to make a
prediction for contributions to the N3LO cross-section due to a collinear virtual loop and
two real-parton emission proportional to C2

Fnf and CFCAnf . We consider

∆dyn (3)
NLP−coll, (CF ,CA)CFnf (z) = 4Q

∫
dω J

(1)
1,1 (xa n+pA;ω)S(2)

1,CFnf (Ω;ω) , (7.36)

where, as before, we use equation (4.84) for the one-loop collinear function. We write here
again the CFnf proportional contribution to S1 from the second line in equation (6.59).
We have in terms of the ω variable

S
(2)
1,CFnf (Ω, ω) = −4 α2

s

(4π)2CF nf

(
ω2(Ω− ω)2

µ4

)−ε 1
ω

(1− ε)2

ε(3− 2ε)

×e
2εγEΓ[1− ε]2
Γ[2− 2ε]2 θ(Ω− ω)θ(ω). (7.37)

We again obtain a d-dimensional result. Then, setting Ω = Q(1 − z) and µ = Q, we
expand in ε and find the following expression

∆dyn (3)
NLP−coll, (CF ,CA)CFnf (z) = α3

s

(4π)3

C2
Fnf

(
64
9ε3 −

16(60 ln(1− z)− 47)
27ε2

− 16
81ε

(
− 450 ln2(1− z) + 705 ln(1− z) + 57π2 − 418

)

+
(
− 4000

27 ln3(1− z) + 9400
27 ln2(1− z) + 1520

27 π2 ln(1− z)

−33440
81 ln(1− z)− 2368ζ(3)

9 − 3572π2

81 + 53552
243

))

+CFCAnf
(
− 80

9ε2 + 16(75 ln(1− z)− 46)
27ε

+20
81
(
−450 ln2(1− z) + 552 ln(1− z) + 57π2 − 340

)). (7.38)
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7.2 Gluon-antiquark channel
In this section we focus on the fixed-order results we can obtain in the off-diagonal channel
of the Drell-Yan process. The next-to-leading power factorisation formula is written in
equation (3.113). Since this channel does not contain a leading power contribution, the
structure at NLP is somewhat simpler than the one encountered in the diagonal channel
and the number of contributing terms is smaller.

The generalised soft function with soft quark insertions relevant for this channel starts
at O(αs) and the result is given in equation (5.31). Therefore, to obtain the cross-section
result at O(αs) we must combine the soft function with just the tree-level results for the
hard and collinear functions according to the next-to-leading order accurate factorisation
formula

∆(1)
gq̄ (z) = 4H(0)(Q2)

∫
dω1 dω2

×G∗(0)
ξq (xan+pA;ω2)G(0)

ξq (xan+pA;ω1)S(1)
gq̄ (Ω, ω1, ω2) . (7.39)

The hard function H(0)(Q2) is the same as at leading power and the necessary result is
given in equation (2.59). The tree-level result for the collinear function is given in (4.98).
Collecting together all the individual ingredients, performing the integrals over convolution
variables ω1 and ω2, then expanding in ε, yields

∆(1)
gq̄ (z) = αs

4π

(
−1
ε

+ 2 ln(1− z)− 2 ln
(
µ

Q

))
. (7.40)

This result was compared against a calculation performed using the expansion-by-regions
method [150] and we find agreement. After the 1/ε pole is subtracted using PDF renor-
malization we can also compare this result with equation (B.37) of [116] again finding
agreement.
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8

Drell-Yan: resummation at
next-to-leading power

Resummation is a powerful concept, not only supplementing fixed-order computations
and increasing the predictive power of theoretical calculations, but in certain cases simply
making the predictions possible. Factorisation theorems form the basis for resummation
by segregating physical effects manifest at different energy scales into objects which
naturally exist at the respective relevant scales. In dimensional regularization, each
of these objects may contain divergences. Renormalization renders each object finite
separately and introduces spurious scale dependence into each object, however the physical
observable cannot depend on this scale. One then derives renormalization group equations
which govern the evolution of each piece in the factorisation formula. By solving the
renormalization group equations, we can obtain results to all orders in αs.

We have thus far derived formal d-dimensional factorisation theorems for the qq̄ and gq̄-
channels of the Drell-Yan process in the threshold regime in chapter 3 and validated their
correctness at next-to-next-to-leading fixed perturbative order in chapter 7. In this section,
we make a conceptual leap from performing calculations at fixed orders in αs to obtaining
results valid to all orders in perturbation theory. This includes shifting the outlook on
the role of the factorisation theorems. Up to this point, we have presented formal results
containing regularized quantities. For the purpose of resummation, we adopt the more
traditional understanding, where each object in the factorisation formula is separately
renormalized. The analysis presented here is based on the published work [65]. We focus
on the leading logarithmic resummation carried out in the qq̄-channel. Issues related to
convolutions between collinear and soft functions complicate resummation beyond leading
logarithmic accuracy in the qq̄-channel and already at the leading logarithmic level in the
gq̄-channel. In section 8.5 we showcase these issues using the collinear functions results
from chapter 4.

8.1 Factorisation formula: leading logarithmic accu-
racy

In equation (3.81) we have presented the all order next-to-leading power factorisation
formula for the qq̄-channel of the Drell-Yan process at threshold. Indeed, we saw in

171



172 Chapter 8. Drell-Yan: resummation at next-to-leading power

chapter 7 that the fixed-order results found in literature can be reproduced by bringing
together the expressions for the objects appearing in the factorisation formula, each
one computed to the appropriate accuracy, and performing the convolution integrals in
d-dimensions. In particular, not only the leading logarithms at NNLO, α2

s ln3(1 − z),
were correctly obtained in the results given in section 7.1.2, but also the subleading
logarithms, α2

s ln2(1 − z), and α2
s ln(1 − z), along with the constant terms. Since the

aim of the considerations presented in this section is to calculate the resummed result
at next-to-leading power at the leading logarithmic accuracy, we must first determine
which are the relevant contributing pieces in the total sum of five contributions found in
equation (3.81).

We first stress that in this section, as mentioned above, we move from the formal
d-dimensional treatment of factorisation presented in chapter 3 towards the more common
view of factorisation formulas. Here, the objects appearing in the formulas are renormalized
and no longer exhibit divergences. The dimension is understood to be set to d = 4.
Concretely, this implies that all the factors in the factorisation formula in (3.81) depend
on µ. This includes the partonic cross-section on the left-hand side of equation (3.81).
The scale dependence cancels upon convolution of the partonic cross-section with the
parton distribution functions. Each of the factors, the hard, collinear, and soft functions,
appearing in (3.81) depend on one characteristic scale. We chose the renormalization scale
µ to be of the order of the collinear scale, O(Qλ). With the scale µ ∼ Qλ there are no
large logarithms in the collinear functions at any order in perturbation theory. However,
the large logarithms of (1− z) are contained in the hard and soft functions. We sum these
logarithms to all orders in αs at the leading logarithmic accuracy.

The leading logarithmic series at next-to-leading power is given by the αns ln2n−1(1− z)
terms. The soft functions which appear in the next-to-leading power factorisation formula
in (3.81), and are given in equations (3.83) – (3.87), begin contributing at O(αs) or higher.
This is due to the fact that the generalised soft functions contain explicit insertions of
B+ or q+ soft building blocks and therefore involve at least one soft parton radiated into
the final state. A leading logarithmic contribution at next-to-leading power is generated
at one-loop accuracy only if the soft function at one-loop contains a αs ln(1 − z) term
and the corresponding collinear function starts at O(α0

s). For the purpose of leading
logarithmic resummation, the terms for which the relevant collinear functions do not have
a tree-level contribution can be dropped. At next-to-leading power, we have already found
that the only hard current which contributes is the leading power hard current. This
hard current does contain a tree-level contribution. Considering the list of next-to-leading
power soft functions in equations (3.83) – (3.87) we find that for leading logarithmic
resummation, only the contributions from operators with a single soft gluon are necessary.
The reason for this is that the soft functions with an insertion of soft building blocks which
begin with the emission of two soft gluons start at O(α2

s). These soft functions could in
principle contribute to the leading logarithmic series at next-to-leading power if the O(α2

s)
contribution would contain a α2

s ln3(1− z) term. Such a term could arise, if the one-loop
mixing with a one-gluon soft function is logarithmically enhanced. However, logarithmic
enhancements of the cusp anomalous dimension of this type are not known for off-diagonal
operator mixing. We also assume that the logarithmically enhanced mixing of this type is
absent in this case. By this reasoning the soft functions S2 and S3 in equations (3.84) and
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(3.85) respectively are excluded. Soft functions which are induced by the double insertion
of L(1)

ξ and the double insertion of L(1)
ξq also start at O(α2

s). This fact also excludes the
possibility of leading logarithmic contributions arising from such soft functions by the
same reasoning as above. Therefore, we can drop soft functions S4 and S5 in equations
(3.86) and (3.87) respectively.

Considering the list of soft functions appearing at next-to-leading power given in
equations (3.83) – (3.87) we arrive at the conclusion that the only soft function which
contains a leading logarithmic contribution at next-to-leading power is the first soft function
in the list, namely S1 given in equation (3.83). We remind the reader that there exists
one more soft function, S6, which starts at O(αs) with a single soft gluon emission. The
S6 soft function is given in equation (3.88). However, we have excluded its contribution
to all orders in perturbation theory due to parity conservation in QCD as detailed below
equation (3.88).

Following the above considerations, we now write down the dynamical next-to-leading
power factorisation formula at leading logarithmic accuracy, starting from the general
next-to-leading power formula in equation (3.81). We find

∆dyn
NLP−LL(z) = 4H(Q2, µc)Q

∫
dω J

(0)
1,1 (xan+pA;ω, µc) S1(Q(1− z);ω, µc) . (8.1)

A few explanations regarding the simplifications performed in arriving at such a simple
expression are in order.

In the above formula, we have explicitly written the scale dependence of the hard,
collinear, and soft functions. As we have explained earlier in the text, the H and S1
functions are evolved from the hard, µh ∼ Q, and soft, µs ∼ Q(1− z), scales to a common
collinear scale, µc ∼ Q

√
1− z.

We have made use of the collinear function decomposition into parts multiplying a
collinear momentum delta function, δ(n+p− xan+pA), and its derivative, ∂

∂(n+p)δ(n+p−
xan+pA), as given in (3.89). Only the term proportional to δ(n+p−xan+pA), the J1,1 piece,
appears in (8.1). This is due to the fact that the leading logarithmic series is generated by
contributions for which the hard function starts at tree level. However, we know that the
tree-level hard function is momentum independent. Therefore, the derivative contained in
the collinear function, multiplying the J1,2 piece, evaluates to zero once it is integrated by
parts to act on the tree-level hard function and hence cannot contribute to the leading
logarithms.

At this point, one makes use of the collinear momentum delta function which multiplies
the J1,1 term to trivially evaluate the d(n+p) integral in (3.81). Moreover, we have combined
the Kronecker delta δγβ in the decomposition of the collinear function in (3.89) with the[(

/n−
4

)
γ⊥ρ

(
/n+
4

)
γρ⊥
]
βγ

spin structure in (3.81). This yields a trace over the spin structures
which evaluates to −(1− ε). Additionally, since we no longer need the contributions to
the collinear functions which are associated with derivatives on collinear momentum delta
functions and with this we do not have to distinguish between the momentum derivatives
acting on either the C or C∗ hard matching coefficients, the h.c. piece in (3.81) simply
contributes a factor of two to the cross-section in (8.1).

The last simplification on which we wish to comment is with regards to the argument
of the hard function. The hard function which we obtain in (3.81) is given by H(ŝ) =
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|CA0,A0(xan+pA, xbn−pB)|2. However, in (8.1) we keep only the H(Q2) piece. This is
the leading power contribution which is the only necessary piece here due to the fact
that the power suppression here is provided by time-ordered product insertions of the
subleading-power Lagrangian terms.

8.2 Soft functions and kinematic corrections
The lowest-ordered solution for the soft function appearing in the leading logarithmic
factorisation formula in (8.1) is given in (5.7). The expansion of this result in ε, presented
in (5.11), shows that already at the lowest order in the αs expansion the soft function S1
contains a divergence. This divergence is interpreted as mixing of the S1 soft function into
the Sx0 soft function [40], which in turn is defined as

Sx0(Ω) =
∫ dx0

4π eix
0Ω/2 −2i

x0 − iε
1
Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
T
[
Y †−(0)Y+(0)

]
|0〉. (8.2)

This object is related to the leading power soft function, that is given in equation (3.30),
by a factor of −2i/x0. This factor provides a O(λ2) power suppression and leads to
the appearance of the theta function, θ(Ω), in the tree-level result for this auxiliary soft
function, Sx0(Ω) = θ(Ω) +O(αs), that is needed to cancel the divergence in (5.11). At
leading power, the introduction of such auxiliary soft functions is not necessary, as the
soft function in (3.30) is not divergent at tree level. Hence, the appearance of such a
soft function beyond leading power could seem peculiar. However, we note that similar
functions with collinear fields were needed in the renormalization of subleading gluon jet
functions [152]. Moreover, the Sx0 soft function in (8.2) is the position-space and Drell-Yan
process equivalent of the “θ-soft functions” which were introduced in [54] for the treatment
of thrust distribution at subleading-power .

The soft functions are renormalized by writing

SA(Ω, ωi)|ren =
∑
B

∫
dΩ′

∫
dω′j ZAB(Ω, ωi; Ω′, ω′j)SB(Ω′, ω′j)|bare (8.3)

where ωi, ω′j denote sets, that could possibly be empty, of continuous variables which
parameterise the non-locality of the soft functions. This is in addition to the dependence of
the particular soft function on Ω. The number of arguments ωi could be different than the
number of arguments ω′j . The integration in (8.3) is over all ω′j that the bare soft function
depends on. If the dependence of the soft function is only on Ω, then the integration

∫
dω′j

is omitted. Focusing now on the case at hand, the S1 soft function satisfies

S1(Ω, ω)|ren =
∫
dΩ′

∫
dω′ Z1,1(Ω, ω; Ω′, ω′)S1(Ω′, ω′)|bare

+
∫
dΩ′ Z1,0(Ω, ω; Ω′)Sx0(Ω′)|bare (8.4)

with

Z1,1(Ω, ω; Ω, ω′) = δ(Ω− Ω′)δ(ω − ω′) +O(αs) , (8.5)
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Z1,0(Ω, ω; Ω′) = αsCF
2π

1
ε
δ(Ω− Ω′)δ(ω) +O(α2

s) . (8.6)

The first term on the right-hand side of (8.4) is known as the “diagonal term”. The term in
the second line of (8.4) is called the “mixing term” and it subtracts the divergent part of
the diagonal term present in the first line. This procedure results in a finite, renormalized
soft function at O(αs).

The complete one-loop anomalous dimension matrix for the above soft functions
required for LL resummation at next-to-leading power is derived in appendix A.2 of [40].

A priori, one could also expect that the kinematic soft functions, SK1 (Ω), SK2 (Ω), and
SK3 (Ω) defined in equations (3.77), (3.78), and (3.79) respectively, could also contribute
to leading logarithms at next-to-leading power. Each of the three soft functions SKi(Ω)
vanishes at tree-level order, O(α0

s). However, they all mix into Sx0(Ω) through a 1/ε pole
at O(αs). The one-loop order results for the three kinematic soft functions are separately
divergent, and each produces a next-to-leading power leading logarithmic contribution
at O(αs). Concretely, in section 5.1.2 we have explicitly calculated the kinematic soft
functions contributions and found the following results

SK1 (Ω) = αsCF
2π

(1
ε

+ 2 ln µ

Ω − 2
)
θ (Ω) +O(α2

s), (8.7)

SK2 (Ω) = αsCF
2π

(3
ε

+ 6 ln µ

Ω + 6
)
θ (Ω) +O(α2

s), (8.8)

SK3 (Ω) = αsCF
2π

(
−4
ε
− 8 ln µ

Ω

)
θ (Ω) +O(α2

s) . (8.9)

However, we note that when these contributions are summed, the divergences cancel and
the contribution of all three kinematic corrections taken together is finite

3∑
i=1

SKi(Ω) = 2 αsCF
π

θ(Ω) . (8.10)

Therefore, these three kinematic soft functions do not contribute to the series of leading
logarithms in the Drell-Yan cross-section. The kinematic soft functions all come from
the same S0(x), hence the diagonal renormalization of all three kinematic soft functions
involves the same cusp anomalous dimension. The general structure of the renormalization
group equation then ensures that the cancellation of the leading logarithmic contributions
coming from the kinematic soft functions in the Drell-Yan partonic cross-section ∆qq̄(z)
(however, not σ̂qq̄(z) as SK3 does not exist for σ̂qq̄(z)) holds to all orders in αs, see appendix
A.1 of [40] for more details.

Lastly, additional power corrections do arise from expanding the hard matching
coefficient H(ŝ) = H(Q2) +Q2(1− z)H ′(Q2) +O(λ4), as is described by equation (3.76).
However, similarly to the first three kinematic corrections, these terms do not give leading
logarithmic contributions at next-to-leading power. The reason for this occurrence is the
fact that the tree-level leading power soft function is given by δ(1− z). This delta function
sets the O(αs ln(1− z)) term, which H ′(Q2) starts with, to zero. Any further term which
comes from the product of (1− z)H ′(Q2) with the leading power soft function can at most
contribute at the next-to-leading logarithmic accuracy.
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To summarise, we have shown how there are no leading logarithmic contributions to
the Drell-Yan partonic cross-section coming from the kinematic correction part ∆kin

NLP(z).
Therefore, resummation at leading logarithmic accuracy at next-to-leading power is
achieved by obtaining all order results for the objects appearing in the dynamic contribution
to the partonic cross-section ∆dyn

NLP−LL(z) given in equation (8.1). We focus on this next.

8.3 Resummation

The necessary ingredients are now in place for us to sum the leading logarithms at
next-to-leading power to all order in perturbation theory. The logarithms in the cross-
section originate from ratio of scales which are present in the process. Here, we use
the renormalization group equations (RGEs) for the hard and soft functions to sum the
logarithms. This is done by evolving the hard function from the hard scale µh ∼ Q and the
soft functions from the soft scale µs ∼ Q(1−z) to a common collinear scale, µc ∼ Q

√
1− z.

We chose µc to be of the order of the collinear scale for convenience, this way no large
logarithms appear in the collinear function and we do not require the RGE of the collinear
function. We focus on the expansion of the quantity ∆(z) = σ̂(z)/z as is customary in the
literature. Moreover, this simplifies the discussion since, as we have explained above, the
kinematic corrections cancel at leading logarithmic accuracy for ∆(z), which, on the other
hand, is not the case for σ̂(z).

We have found in section 3.2.2 that only the leading power JA0 hard current contributes
to the Drell-Yan cross-section at next-to-leading power. Therefore the RGE for the hard
matching function H(Q2, µ) is given by

d

d lnµH(Q2, µ) =
(

2Γcusp ln Q
2

µ2 + 2γ
)
H(Q2, µ), (8.11)

which follows from the anomalous dimension of the leading power SCET JA0 operator.
It is known that the time-ordered products formed by insertions of subleading power
Lagrangian terms with the JA0 operator do not mix into subleading power currents [87].
This is in agreement with the fact that the power-suppressed current operators, such as
JA1 and JB1, do not appear in the next-to-leading power factorisation formula at leading
logarithmic accuracy. In fact, as we have pointed out, we have found that the subleading
power currents do not contribute at any logarithmic accuracy at next-to-leading power.

The anomalous dimensions are given by

Γcusp = αs
π
CF +O(α2

s), γ = −3
2
αs
π
CF +O(α2

s). (8.12)

We denote the MS QCD coupling at the scale µ by αs. The general solution to the RGE
for the hard matching function in equation (8.11) reads

H(Q2, µ) = exp [4S(µh, µ)− 2aγ(µh, µ)]
(
Q2

µ2
h

)−2aΓ(µh,µ)

H(Q2, µh) , (8.13)
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where [24]

S(ν, µ) = −
αs(µ)∫
αs(ν)

dα
Γcusp(α)
β(α)

α∫
αs(ν)

dα′

β(α′) , (8.14)

aΓ(ν, µ) = −
αs(µ)∫
αs(ν)

dα
Γcusp(α)
β(α) , aγ(ν, µ) = −

αs(µ)∫
αs(ν)

dα
γ(α)
β(α) . (8.15)

Up to leading logarithmic accuracy, we can set aΓ and aγ to zero, and evaluate S(ν, µ)
with the one-loop approximation to the cusp anomalous dimension and the beta function
given by

β(αs) = d

d lnµαs = −2 β0α
2
s

4π +O(α3
s), β0 = 11

3 Nc −
2
3nf . (8.16)

These approximations give the following result

SLL(ν, µ) = CF
β2

0

4π
αs(ν)

(
1− αs(ν)

αs(µ) + ln αs(ν)
αs(µ)

)
. (8.17)

As we have described above, the S1 soft function mixes into the Sx0 soft function.
Therefore, to evolve S1 it is necessary to solve the coupled system of RGEs derived in
appendix A.2 of [40]

d

d lnµ

(
S1 (Ω, ω)
Sx0 (Ω)

)
= αs

π

 4CF ln µ

µs
−CF δ(ω)

0 4CF ln µ

µs


(
S1 (Ω, ω)
Sx0 (Ω)

)
. (8.18)

The scale µs here is an arbitrary soft scale O(Q(1− z)). A general solution for a coupled
system of equations of this type has been derived in appendix A.1 of [40]. We make
use of this solution to write down the final expression for the S1 soft function at leading
logarithmic accuracy

SLL
1 (Ω, ω, µ) = 2CF

β0
ln αs(µ)
αs(µs)

exp
[
−4SLL(µs, µ)

]
θ(Ω)δ(ω) . (8.19)

Here, the scale µ can be chosen freely, and does not necessarily have to be of order of the
soft scale Q(1− z). If that is the case, the solution then sums the large leading logarithms
ln(µ/µs) to all orders in perturbation theory.

The expressions for the solved RGEs for the hard and soft functions can now be used to
evaluate the next-to-leading power partonic cross-section which is given by its dynamical
contribution in (8.1). All the quantities are evaluated at the collinear scale as indicated
in (8.1). Inserting the tree-level result for the collinear function given in equation (4.19),
J

(0)
1,1 (xan+pA;ω, µc) = −1/(xan+pA), and using xan+pA = Q+O(Q(1− z)) we arrive at

the following formula

∆dyn
NLP−LL(z) = −4H(Q2, µc)

∫
dω S1(Q(1− z);ω, µc) . (8.20)
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We now insert into the above formula the leading logarithmic solutions for the hardH(Q2, µ)
and soft S1(Ω, ω, µ) functions, given in (8.13), (8.19) respectively. This procedure yields

∆dyn
NLP−LL(z) = − exp

[
4SLL(µh, µc)− 4SLL(µs, µc)

]
× 8CF

β0
ln αs(µc)
αs(µs)

θ(1− z) , (8.21)

where we also used H(Q2, µh) = 1 + O(αs). The scales appearing above can be set to
µh = Q, µs = Q(1− z), and µc = Q

√
1− z up to next-to-leading logarithmic corrections.

At this point, we draw attention to the fact that the result in equation (8.21) is not in
its most general form. This is because it implies that the factorisation scale µ in the PDFs
must be set to the collinear scale given by µc = Q

√
1− z. However, the scale dependence

in (8.21) can be restored to an arbitrary scale µ using the evolution equation for the
partonic cross-section

d

d lnµσ̂ab(z, µ) = −
∑
c

∫ 1

z
dx
(
Pca(x)σ̂cb

(
z

x
, µ
)

+ Pcb(x)σ̂ac
(
z

x
, µ
))

, (8.22)

where the objects Pxy are the Altarelli-Parisi splitting kernels. The details of this analysis
are presented in [40]. The important point is that in the end, the functional form of the
result in (8.21) remains the same and the only change is to replace the collinear scale µc
by an arbitrary scale µ. For concreteness, we find

∆dyn
NLP−LL(z, µ) = exp

[
4SLL(µh, µ)− 4SLL(µs, µ)

]
× −8CF

β0
ln αs(µ)
αs(µs)

θ(1− z) .(8.23)

This result for the summed next-to-leading power leading logarithms is one of main results
presented here.

We make one more observation regarding the above result. Since the form of (8.21) and
(8.23) is identical, we deduce that the collinear function cannot contain leading logarithms
when it is evaluated at an arbitrary scale µ which is different from the collinear scale µc.
This fact can be verified by inspecting the one-loop collinear function result in (4.85).
Indeed, no leading logarithmic αs ln2 term is present in that expression which validates
the assumptions made in the derivation of the resummed result.

8.4 Fixed-order expansion
The next step in our analysis involves the expansion in αs of the resummed next-to-leading
power cross-section obtained in the section above. This is done in order to check our
result against known expressions obtained with fixed-order calculations of the partonic
cross-section, and to give explicit new results that go beyond the ones at fixed αs.

In order to produce the fixed-order logarithms from our result in (8.23), we expand
the ratios of the running strong coupling into a series in αs(µ) and logarithms. At leading
logarithmic accuracy, the following approximations can be made

SLL(µ1, µ2) = −αsCF2π ln2 µ2

µ1
,

1
β0

ln αs(µ1)
αs(µ2) = αs

2π ln µ2

µ1
. (8.24)
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We do not indicate the exact scale of αs on the right-hand sides of the above equations,
since the precise value of this scale dependence is a NLL effect. With µ taken to be the
free renormalization and factorisation scale, the next-to-leading power cross-section in
(8.23) then reduces to

∆dyn
NLP−LL(z, µ) = exp

[
−2αsCF

π
ln2 µ

µh

]
exp

[
+2αsCF

π
ln2 µ

µs

]

×(−4)αsCF
π

ln µs
µ
θ(1− z) . (8.25)

It is an interesting observation that the two exponential terms cancel to leading logarithmic
accuracy for the special choice of the scale µ = µc. Then the next-to-leading power leading
logarithmic series becomes very simple

∆LL
NLP(z, µc) = −2 αsCF

π
ln(1− z) θ(1− z) . (8.26)

However, we also provide results for arbitrary scale µ. We expand (8.25) along with setting
µh = Q and µs = Q(1− z). For brevity, we also define Lµ = ln(µ/Q). We then find for
the expansion of (8.25)

∆dyn
NLP−LL(z, µ) = − θ(1− z)

{
4CF

αs
π

[
ln(1− z)− Lµ

]

+ 8C2
F

(
αs
π

)2 [
ln3(1− z)− 3Lµ ln2(1− z) + 2L2

µ ln(1− z)
]

+ 8C3
F

(
αs
π

)3 [
ln5(1− z)− 5Lµ ln4(1− z) + 8L2

µ ln3(1− z)− 4L3
µ ln2(1− z)

]
+ 16

3 C
4
F

(
αs
π

)4 [
ln7(1− z)− 7Lµ ln6(1− z) + 18L2

µ ln5(1− z)− 20L3
µ ln4(1− z)

+ 8L4
µ ln3(1− z)

]
+ 8

3C
5
F

(
αs
π

)5 [
ln9(1− z)− 9Lµ ln8(1− z) + 32L2

µ ln7(1− z)− 56L3
µ ln6(1− z)

+ 48L4
µ ln5(1− z)− 16L5

µ ln4(1− z)
]}

+ O(α6
s × (log)11) , (8.27)

where (log)11 stands for any combination of the two logarithms, Lµ and ln5(1− z), to the
11th power.

We now detail how our expanded leading logarithmic results at next-to-leading power
can be compared to those existing in the literature. We begin with the first two lines
of (8.27), these can be compared to known exact results in [116]. For reference, our ∆(z, µ)
corresponds to ∆ij(x,Q2,M2) in the notation of [116], where ij = qq̄, x = z, and the hard
scale is given by M = µ. To be more precise, the O(αs) result in the first line of (8.27) is
in agreement with equation (B.29) of [116] and the O(α2

s) terms in the second line of (8.27)
are in agreement with those in equation (B.31) found in [116]. The agreement is up to
subleading terms in the expansion in logarithms, as our resummed expression captures
the leading logarithmic contributions. Next, our O(α3

s) term confirms the conjecture
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[153, 154] that the leading logarithm at this order is given through the inclusion of the
next-to-leading power term in the Altarelli-Parisi splitting kernels within the standard
leading power resummation formalism. The O(α3

s) and O(α4
s) terms with Lµ = 0 have

already been given in equations (B.4) and (B.5) of [155]. These results were based on
the observation that the “physical evolution kernels”, which govern the scale dependence
of a given quantity in terms of the quantity itself, exhibit only single logarithms in the
threshold region, as z → 1, to the respective order in the strong coupling expansion. Our
direct derivation using factorisation and RGE methods also agrees with these expressions.

The O(α5
s) term in the last two lines of (8.27) is a new result. Moreover, the expansion

to any desired order can be easily obtained from (8.25).

8.5 Resummation beyond LL at NLP

By construction, the purpose of a factorisation theorem is to serve as a stepping stone
towards the ultimate goal of obtaining results valid to all orders in perturbation theory.
As we have demonstrated above, resummation can be achieved via renormalization group
evolution techniques once the contributions to the cross-section are separated into single
scale objects. It is often the case that the soft-collinear factorisation involves convolutions
C ⊗ F of hard with collinear functions, as occurs for example in deep-inelastic scattering
and in the relation between PDFs and partonic cross-sections. Soft-collinear factorisation
can also involve convolutions J ⊗ S of jet and soft functions, as is the case for radiation
from jets in the final state. In the process of resummation, each object is renormalized
separately from the others. In dimensional regularization, the poles are subtracted and we
solve a renormalization group equation for the renormalized factor which can also have
the form of a convolution. The summation of large logarithms is then achieved through
scale evolution of one of the objects from its own characteristic scale, to the characteristic
scale of the other object. The last step in the procedure is to perform the convolution
between the two factors.

It is clear that a necessary requirement in this procedure is that the final convolution
between the renormalized objects is itself well defined in four dimensions, without the
need for any extra regularization. However, as we show in what follows, it has been
observed [65] that the final convolution integral between the soft and collinear functions
in the next-to-leading power factorisation formula for the Drell-Yan process is not well
defined. Issues arise at next-to-leading logarithmic accuracy in the diagonal qq̄-channel,
and are already manifest at the leading logarithmic accuracy in the off-diagonal gq̄-channel.
In a perturbative setting, the endpoint-divergent convolution integrals have been reported
in the study of the exclusive decay B → χcJK [156] and in the study of non-local power
corrections to the inclusive radiative decay B → Xsγ [157].

In order to pin point the issue here, we focus on the functional form of the collinear
and soft functions appearing at NNLO in the one-loop collinear times one-loop soft term
in the factorisation formula written in (3.95). We first consider the diagonal qq̄-channel
and use the one-loop collinear function result, J (1)

1,1 , given in equation (4.84) along with
the soft function taken from equation (5.7). Stripping off the factors which do not depend
on the convolution variable ω, the final convolution integral between the soft and collinear
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functions reads ∫ Ω

0
dω

(
n+p ω

)−ε
︸ ︷︷ ︸
collinear piece

1
ω1+ε

1
(Ω− ω)ε︸ ︷︷ ︸

soft piece

. (8.28)

Evidently, the integral can be well defined using a regularization prescription such as
dimensional regularization in which we keep exact ε dependence. Indeed, in chapter 7
we have obtained and reproduced the fixed-order NNLO next-to-leading power results
by performing the dω convolution integral in d-dimensions. However, as outlined above,
this procedure is unsatisfactory from the point of view of resummation, in which the
parts originating in the collinear function, (n+p ω)−ε, and the parts originating in the
soft function, ω−1−ε (Ω− ω)−ε, are treated independently. Following the renormalization
procedure, we must first expand each in ε to subtract the divergent parts and define
renormalized functions. It is at the point of expansion in ε that we encounter a complication
if the procedure is applied to (8.28). We see that the expansion in ε of the 1/ω1+ε factor
in the soft piece yields the standard plus distribution, whereas the expansion of ω−ε factor
in the collinear piece gives rise to a logarithmic contribution. In combination with each
other, these contributions lead to a divergent integral

∫
dω δ(ω) ln(ω) and other ill-defined

integrals.
We can expose the issue in a more explicit manner by making use of the ε-expanded

one-loop collinear function which can be found in (4.85) and the ε-expanded one-loop
soft function given in equation (5.11). We write both of these results again below for
convenience. For the collinear function we have

J
(1)
1,1 (n+p; ω) = αs

4π
1

(n+p)

(
CF

(
4
ε

+ 5− 4 ln
(
n+p ω

µ2

))
− 5CA

)
+ O(ε) , (8.29)

and

S
(1)
1 (Ω, ω) = αsCF

4π

(
2 δ(ω) θ(Ω)

(
−1
ε

+ ln
(
Ω2/µ2

))
+ 2

[ 1
ω

]
+
θ(ω)θ(Ω− ω)

)
(8.30)

for the soft function. We now use these expanded expressions as ingredients in (3.95)
and perform the final convolution integral in the variable ω. We then find the following
expression

∆dyn (2)
NLP−coll(z) = α2

s

(4π)2

C2
F

(
− 32
ε2
− 8
ε

[
5− 8 ln(1− z)− 4

∫
dω δ(ω) ln

(
ω

Q

)])

+CACF
40
ε

+O(ε0)
 (8.31)

where we have set the scale µ = Q as in chapter 7 and have only displayed the pole terms
in ε.

We discover two ways in which this result is problematic. The first clear point of failure
we have raised in the discussion above, namely the fact that one the terms which contains
a 1/ε divergence is completely ill-defined as the ε pole is multiplied by the divergent
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integral
∫
dω δ(ω) ln(ω). Second, less obvious issue, is that the coefficients of the C2

F/ε
2

and CFCA/ε pole terms, which are not themselves divergent, are different from the correct
result given in equation (7.10). We recall that the result in equation (7.10) was obtained
by performing the convolution in d-dimensions and only after expanding the resultant
expression in ε.

It may seem possible that the issue could be resolved by moving factors of ω between
the soft and collinear functions. Indeed, it is possible to move integer ω powers from the
collinear to the soft functions by changing the power of 1/in−∂ factor in the definition
of the soft function. However, this does not solve the issue to all orders in perturbation
theory, as factors of ω−nε tied to the collinear function will always appear at the n-th order
in the strong coupling expansion.

The above analysis clearly shows that it is not possible to calculate the next-to-leading
power logarithms of (1− z) correctly to arbitrary logarithmic accuracy using the standard
renormalization methods and convolutions defined in four dimensions. This situation is in
stark contrast to the leading power case, where the extension of the resummation to any
logarithmic order is a technical challenge of obtaining results for the relevant ingredients at
high loop orders. However, although it is not possible to sum the logarithms of (1− z) in
Drell-Yan production to arbitrary accuracy, it is possible to sum the leading logarithms in
the qq̄-channel [40], as we have shown in section 8.3. It is also possible to sum the leading
logarithms in the diagonal gg-channel in Higgs production via gluon fusion [41], which
will be explored in chapter 9. The summation of leading logarithms in these channels is
possible as only the tree-level collinear functions are required and the loop corrections to
the collinear functions do not themselves contribute to the leading logarithmic series. This
fact is manifest in equation (8.29), the highest logarithm appearing is αs ln (n+p ω/µ

2),
which contributes only at the next-to-leading logarithmic level to the cross-section. For
this reason the ill-defined convolution prevents the extension of the resummation formalism
beyond the leading logarithmic series in the diagonal channel. We see that the convolution
itself is divergent and a subtraction procedure is needed. The convolution contributes to
the next-to-leading logarithms, which implies that these cannot be fully obtained from
individual renormalization group equations for the collinear and soft functions.

With the above considerations in mind, we could attempt to find an all order expression
for the Drell-Yan cross-section at threshold in the off-diagonal gq̄-channel. However, we find
that the complications regarding the ill-defined convolution which hamper the resummation
at next-to-leading logarithmic accuracy in the diagonal qq̄-channel, already play a role at
the leading logarithmic accuracy in the off-diagonal channel. Indeed, the issue becomes
transparent when we consider the result for the one-loop collinear function in the gq̄-channel
given in equation (4.109), which we write here again for convenience

G
(1)
ξq (n+p;ω) = − αs

4π

CF
[

2
ε2
− 2
ε

(
ln
(
n+p ω

µ2

)
− 1

)
+ ln2

(
n+p ω

µ2

)

−2 ln
(
n+p ω

µ2

)
− π2

6 + 5
]
− CA

[
2
ε2
− 1
ε

(
2 ln

(
n+p ω

µ2

)
− 1

)

+ ln2
(
n+p ω

µ2

)
− ln

(
n+p ω

µ2

)
− π2

6 + 2
]+O(ε) . (8.32)
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We see that in this expression there appear terms of order αs ln2 (n+p ω/µ
2), as opposed to

only terms of order αs ln (n+p ω/µ
2) in the result for the one-loop collinear function for the

qq̄-channel in (8.29). The αs ln2 (n+p ω/µ
2) terms from the collinear function contribute

to the leading logarithmic series in the gq̄-channel and spoil the resummation already at
this accuracy.

Despite the issues regarding the use of factorisation formulas for resummation, the
next-to-leading power factorisation formulas for the qq̄-channel and the gq̄-channel derived
in this work consistently factorise the different momentum scales appearing in the Drell-Yan
process at the level of regularized matrix elements of the collinear and soft operators. For
this reason these justifiably are valid factorisation formulas.

This concludes our specific example regarding the emergence of divergent convolutions
in the Drell-Yan production at threshold. However, the appearance of endpoint divergent
convolutions is ubiquitous in next-to-leading power investigations and an active area of
research. Recently, leading logarithms at next-to-leading power in the off-diagonal parton-
scattering channel q + φ∗ in deep-inelastic scattering were resummed using d-dimensional
consistency relations and refactorisation techniques [66]. These expressions are in agreement
with earlier results obtained using diagrammatic techniques [134, 158, 159] and confirm the
curious appearance of Bernoulli numbers in the quark-gluon splitting function. Another
type of divergent convolution integrals with the hard matching coefficients is discussed
in [88]. The endpoint contributions in event shapes were studied in [135], and factorisation
at subleading power, treatment of endpoint divergences, and next-to-leading logarithmic
resummation in h→ γγ decay were recently reported [56, 57, 62].





9

Higgs production: resummation at
next-to-leading power

In the previous chapters we have presented in detail the effective field theory framework
for threshold resummation at next-to-leading power. Thus far, we have concentrated
on the case study of the Drell-Yan process in the diagonal and off-diagonal channels.
In this chapter we broaden the scope of our investigations and implement within the
next-to-leading power framework the process of Higgs production via gluon-gluon fusion
at threshold.

The Higgs boson was the last piece of the Standard Model to be discovered, however,
questions about its nature such as the coupling to other particles and shape of potential
are still currently studied. It should then not be surprising that also on the side of
theoretical computations the Higgs production cross-section has attracted substantial
attention [160, 161, 162, 163]. In the fixed order perturbation theory it is known at N3LO
in the heavy-top approximation [12, 164, 165, 166, 167] and the leading power threshold
resummation is at the N3LL accuracy [23, 25, 168, 169, 170, 171]. As such, it is one of the
most precisely computed observables in hadron-hadron collisions to date.

With these considerations in mind, it is clear that the Higgs production via gluon-gluon
fusion is important to study both due to its phenomenological relevance and as a test
ground for application of new theoretical methods. Hence, we dedicate this chapter to
the discussion of the next-to-leading power factorisation and resummation for the Higgs
production process in the threshold regime. The analysis presented here largely follows the
one presented in the previous chapters for the case of virtual photon production, therefore
to avoid repetition we will focus on the similarities and differences between these two
processes. In addition to the analytic considerations, in the last section of this chapter we
explore the numerical contribution due to the next-to-leading power leading logarithms
and find that it is not negligible compared to the numerical size of the leading power terms.
Bulk of the considerations presented in this chapter have been published in [41].

The outline of this chapter is as follows. In section 9.1 we follow section 3.2 and derive
the next-to-leading power factorisation formula for single Higgs production in gluon-gluon
fusion. A notable difference to the derivation presented in section 3.2 is that here we
target the leading logarithmic contributions for the outset. In section 9.2 we first perform
the resummation of the next-to-leading power leading logarithms via renormalization
group evolution of the hard, soft, and collinear functions and later expand the obtained

185
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expression for the resummed result in the strong coupling constant, αs. The latter serves
as a check of our final all-order expression through a comparison against the fixed-order
results found in literature. Lastly, section 9.3 contains the details of the numerical study
regarding the contribution of the next-to-leading power leading logarithms to the threshold
Higgs production cross-section.

9.1 Factorisation at next-to-leading power
We begin with the derivation of the next-to-leading power factorisation formula for Higgs
production in gluon-gluon fusion at the leading logarithmic accuracy. To this end, we
consider the following process

A(pA) +B(pB)→ H(q) +X, (9.1)

where A(pA), B(pB) denote the incoming protons with momenta pA and pB, H(q) is the
Higgs boson produced in the collision between the two protons with momentum q, and
X describes the unobserved QCD final state. The hadronic cross-section for the process
described here is given by

σ = α2
s

576πv2

∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb fa/A(xa)fb/B(xb) σ̂ab(z). (9.2)

Similarly to the corresponding equation for the Drell-Yan process given in (3.27), the
fi/I(xi) here are the parton distribution functions. Higgs vacuum expectation value is
denoted by v and its value is given by v2 = 1/(

√
2GF ), where GF is the Fermi constant.

As in the Drell-Yan analysis in preceding chapters, the strong coupling constant without a
scale argument, αs, denotes to the strong coupling constant at the MS scale µ. In the work
presented here, only the diagonal gg-channel of Higgs production is considered. Therefore
the indices a, b can be dropped in what follows.

The production of a Higgs boson in gluon-gluon fusion in mediated by a top quark
loop, through which the Higgs boson and the gluons are coupled. As depicted by the first
arrow in the diagram in figure 9.1, we work in the heavy-top-quark mass limit mt � mH ,
in which the coupling of the Higgs boson to the pair of gluons is given by the following
effective Lagrangian term

Leff = Ct (mt, µ) αs
12π

H

v
FA
µνF

µνA. (9.3)

The matching coefficient Ct (mt, µ) is

Ct (mt, µ) = 1 + αs
4π (5CA − 3CF ) +O(α2

s) . (9.4)

In the same fashion as in our Drell-Yan analysis, the partonic cross-section denoted
by σ̂ ≡ σ̂gg is also a function of the dimensionless variable z = m2

H/ŝ. The invariant
mass Q2 is replaced by m2

H from the Drell-Yan case, however the partonic centre-of-mass
energy squared remains identical, ŝ = xaxb s. The incoming gluon momenta are given by



9.1. Factorisation at next-to-leading power 187

mt ≫ mh z → 1

A0

c

c̄

Figure 9.1: The progression of the effective field theory description. In the first step, we assume
that the mass of the top quark is much larger than the mass of the Higgs boson,
and so it is integrated out. In the second step, we consider the kinematics in the
threshold z → 1 regime, for which SCET is the appropriate framework.

pµa = xa
√
snµ−/2 and pµb = xb

√
snµ+/2 where the variables xa and xb measure the momentum

fractions of the gluons in their respective hadrons.
As in the Drell-Yan resummation, presented in chapter 8, the aim here is to sum the

next-to-leading power leading logarithms in the series ∑∞n=1
∑2n−1
m=0 dnm lnm(1 − z). The

starting point for our analysis is the cross-section for Higgs production which is written as
follows

σ = 1
2s

∫ d3~q

(2π)32Eq
∑
X

|〈HX|AB〉|2(2π)4δ(4)(pA + pB − q − pX). (9.5)

The squared matrix element is itself given by the following expression in terms of the QCD
fields

∑
X

|〈HX|AB〉|2 = α2
s(µ)C2

t (mt, µ)
144π2v2

×
∑
X

〈AB|
[
FA′

ρσF
ρσA′

]
(0)|X〉〈X|

[
FA
µνF

µνA
]
(0)|AB〉. (9.6)

Following the discussion on the construction of N -jet operator basis in section 2.4.1, the
QCD operator here, namely FA

µνF
µνA, is matched onto the SCET operators. Only one

operator is needed at leading power, which we give here for concreteness

FA
µνF

µνA(0) =
∫
dt dt̄ C̃A0(t, t̄ ) JA0(t, t̄ ) , (9.7)

where

JA0(t, t̄ ) = 2gµν n−∂AνAc̄⊥(t̄n−)n+∂AµAc⊥(tn+) , (9.8)

CA0(n+p, n−p̄ ) =
∫
dt dt̄ e−i(n+p)t−i(n−p̄)t̄ C̃A0(t, t̄ ) . (9.9)

The Aµc⊥ field is the collinear-gauge-invariant transverse collinear gluon building block
of SCET given in equation (2.49). As we have shown in the rightmost diagram of figure 9.1,
this leading power operator sources a collinear and an anticollinear field. The operator is
non-local along the respective light-ray directions and the derivatives acting on the collinear
and anticollinear fields correspond to their respective large momentum components. The
hard matching coefficient in equation (9.7) in position space is given by C̃A0(t, t̄ ) =
δ(t)δ(t̄) +O(αs) which in momentum space takes the form CA0(n+p, n−p̄) = 1 +O(αs)
according to the Fourier transform in equation (9.9).
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At subleading powers in position-space SCET, the matching equation relating the
hard gluon-gluon-Higgs vertex to the SCET operator in (9.7) must be extended to include
operators of the JAn, JBn, JCn . . . – type, where we have at least one n > 0. This
subleading power basis was described in section 2.4.1 based on the construction developed
in [86, 87, 88].

The discussion regarding the appearance of collinear functions first at next-to-leading
power presented in section 3.1.2 applies also to the case at hand. The central objects are
again the time-ordered product insertions of the subleading power Lagrangian terms which
induce a collinear scale in the threshold loops. Similarly to the qq̄ → γ∗ investigation, the
leading logarithms in the dynamical part of the cross-section for Higgs production come
from the time-ordered product of the leading power SCET current JA0 with the O(λ2)
Lagrangian terms. For concreteness, we write such time-ordered product operator here
again

JT2
A0, j(t, t̄ ) = i

∫
d4zT

[
JA0(t, t̄ )L(2)

j (z)
]
. (9.10)

As before, the index j labels the various terms in the next-to-leading power Lagrangian
L(2)(z) given in [73]. In practice, we add the operator in (9.10) to (9.7) which, once we
consider the appropriate matrix element, extends the accuracy of the amplitude to contain
the next-to-leading power leading logarithmic terms.

In the next step, the decoupling transformation [71] is used to separate the soft and
collinear sectors of the leading power Lagrangian. Here, the required field redefinition is
one where the adjoint soft Wilson lines Y+ (Y−), defined below, multiply the (anti)collinear
gluon fields. The Y+ (Y−) are given by

YAB± (x) = P exp
{
gs

∫ 0

−∞
ds fABC n∓A

C
s (x+ sn∓)

}
. (9.11)

In the derivation of the factorisation theorem, we make use of the decoupled (anti)collinear
fields. In terms of these fields, the leading power hard matching current in (9.8) takes the
form

JA0(t, t̄ ) = 2gµν YAC− (0)n−∂AνCc̄⊥ (t̄n−)YAD+ (0)n+∂AµDc⊥ (tn+) . (9.12)

As is the case for the hard matching current, we use the decoupled collinear fields and
the soft-gluon building blocks, given in equation (2.105), to rewrite the subleading power
interaction Lagrangian. The relevant analysis was presented in section 2.4.3 and the
complete Yang-Mills Lagrangian is written in appendix A.1.

In contrast to the derivation presented for Drell-Yan production at threshold, here we
do not derive the next-to-leading power factorisation theorem to arbitrary logarithmic
accuracy before restricting to the leading logarithmic contributions in order to perform
resummation. Rather, we identify the terms in the Yang-Mills SCET Lagrangian which
contribute to the leading logarithmic series from the outset. These interaction terms are
L(2)

1YM and L(2)
2YM in the Yang-Mills Lagrangian given in equation (A.1). We write these

again here for convenience

L(2)
1YM = − 1

2g2
s

tr
([
n+∂Acν⊥

][
n−x in−∂ n+B+, Aν⊥c

])
(9.13)
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and

L(2)
2YM = − 1

2g2
s

tr
([
n+∂Acν⊥

] [
xρ⊥x⊥ω

[
∂ω, in−∂ B+

ρ

]
, Aν⊥c

])
. (9.14)

As in the Drell-Yan analysis, the inclusion of the Lagrangian insertions as interaction
terms in the amplitude calculation leads to a surplus of threshold (anti)collinear fields
with a virtuality too large to be radiated into the final state in the threshold kinematics,
m2
H(1 − z) � Λ2. This brings about the need for the introduction of the main new

feature in subleading power factorisation theorems, namely the collinear functions [40, 65].
Discussed at length in section 3.1.2, the collinear functions are defined as the perturbative
matching coefficients in the relation between the threshold (anti)collinear fields and the
(c̄)c-PDF collinear fields (with virtuality Λ2), in the presence of the soft fields (with
virtuality m2

H(1− z)2).
The soft fields appearing in the Lagrangian terms L(2)

1YM and L(2)
2YM, given in equations

(9.13) and (9.14) respectively, can be written in terms of the same soft building block by
an application the equation-of motion identity in equation (3.46). Therefore, despite two
Lagrangian terms contributing to the Higgs production cross-section at next-to-leading
power, only one collinear function appears. This collinear function has the following
operatorial definition

i
∫
d4zT

[
n+∂AYc⊥µ(tn+)

(
L(2)

1YM(z) + L(2)
2YM(z)

)]
= 2π

∫
du
∫ d(n+z)

2 J̃ YBC
YMµρ

(
t, u; n+z

2

)
ACρ,PDF
c⊥ (un+) ∂ ω⊥

in−∂
B+B
ω⊥

(z−) . (9.15)

Note the difference between the definition given here for the Yang-Mills collinear function
and one given in equation (3.66) for Drell-Yan. In addition to the trivial change of the χc
to Ac⊥, the soft building block is defined without the imaginary i factor. By exchanging
with n+ and n− we define a similar anticollinear function relevant for the anticollinear
gluon field.

In the calculation of the Higgs production amplitude we use Fourier transforms of the
gluon field and the collinear function. The inverse Fourier transform of the gluon field has
been written in (3.98). For clarity, here we use

ÂC,PDF
c⊥µ (n+p) =

∫
du ei(n+p)uAC,PDF

c⊥µ (un+), (9.16)

for the collinear gluon field. For the Yang-Mills collinear function, we use the following
relation

J YBC
YMµρ (n+p, n+p

′;ω) =
∫
dt ei(n+p)t

∫
du e−i(n+p′)u

×
∫ d(n+z)

2 eiω(n+z)/2 J̃ YBC
YMµρ

(
t, u; n+z

2

)
. (9.17)

The Yang-Mills collinear function arising due to the insertions of the above Lagangain
terms starts to contribute at O(α0

s). We find for this lowest order result the following
expression in momentum space

JYBCYMµρ(n+p, n+p
′;ω) = −2i TR fYBC g⊥µρ

[
2− 2n+p

′ ∂

∂n+p

]
δ(n+p− n+p

′) (9.18)
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where TR = 1/2. The contribution to this result from the L(2)
1YM Lagrangian insertion is(

1− 2n+p
′ ∂
∂n+p

)
, and the L(2)

2YM Lagrangian insertion contributes the remaining 1. As for
the leading logarithmic resummation in the Drell-Yan process at threshold, here we also
only require the lowest order, tree-level, expression for the collinear function.

We are now in possession of all the ingredients needed to write the factorised form
of the next-to-leading power contribution to the matrix element 〈X|

[
FA
µνF

µνA
]
(0)|AB〉

which is a part of the expression given in equation (9.6). Using the fact that the final
state 〈X| is made up of threshold-soft and (c̄)c-PDF states, and decomposes as 〈X| =
〈Xs| ⊗ 〈Xc,PDF| ⊗ 〈Xc̄,PDF|, we have

〈X|
[
FA
µνF

µνA
]

(0) |A(pA)B(pB)〉NLP = −2i
∫ dn+p

2π
dn−p̄

2π gµν CA0(n+p, n−p̄)

×
∫
dn−pb δ(n−p̄− n−pb)n−pb 〈Xc̄PDF |Â

X,PDF
c̄⊥ν (n−pb)|B(pB)〉

×
∫
dn+pa 〈XcPDF|Â

Cρ,PDF
c⊥ (n+pa)|A(pA)〉

∫ dω

4π J
YBC

YMµρ(n+p, n+pa;ω) (9.19)

×
∫
d(n+z) e−iω(n+z)/2 〈Xs|T

[
Y AX
− (0)Y AY

+ (0) ∂ ω⊥
in−∂

B+B
ω⊥

(z−)
]
|0〉+ c̄-term .

We focus on the Yang-Mills NLP collinear function given in equation (9.18) and notice
the presence of the derivative which acts on the collinear-momentum conserving delta
function in the square bracket. This derivative is integrated by parts in (9.19) such that
it is acting on the rest of the matrix element. The only n+p dependent term in (9.19) is
the short-distance hard matching coefficient CA0(n+p, n−p̄) which has the tree-level value
CA0(n+p, n−p̄) = 1 +O(αs) as noted below equation (9.9). Since for the resummation of
leading logarithmic series we do not requite the O(αs) momentum dependent contributions
to CA0(n+p, n−p̄), the derivative term in (9.18) can be dropped. In the next step, we
simply extract the momentum, colour, and Lorentz structure of JYBCµρ (n+p, n+p

′;ω) and
substitute

JYBCYMµρ(n+p, n+pa;ω) → ifYBC g⊥µρ JYM(n+pa;ω) δ(n+p− n+pa) (9.20)

in (9.19). At lowest order, the scalar collinear function J (0)
YM(n+pa;ω) has the following

value
J

(0)
YM(n+pa;ω) = −4TR = −2. (9.21)

Inserting also this result into the expression for the next-to-leading power matrix element
in (9.19) we get

〈X|
[
FA
µνF

µνA
]

(0) |A(pA)B(pB)〉NLP = 2
∫ dn+pa

2π
dn−pb

2π g µν CA0(n+pa, n−pb)

×n−pb 〈Xc̄PDF |Â
X,PDF
c̄⊥ν (n−pb)|B(pB)〉 〈XcPDF |Â

C,PDF
c⊥µ (n+pa)|A(pA)〉

×
∫ dω

4π JYM(n+pa;ω)
∫
d(n+z) e−iω(n+z)/2

×〈Xs|T
[
YAX− (0)YAY+ (0) fYBC ∂ ω⊥

in−∂
B+B
ω⊥

(z−)
]
|0〉+ c̄-term. (9.22)
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This equation can be compared with (3.56) for the Drell-Yan production case. We note
that the expressions are very similar once we account for the fact that Higgs production
entails gluonic initial states, instead of a quark-antiquark pair, and that only a single
collinear function remains at leading logarithmic accuracy.

The next step of the calculation involves squaring the matrix element which yields
the factorised expression for the cross-section in equations (9.5) and (9.6). Gluon parton
distribution functions are obtained by summing over the (c̄)c-PDF final state as in the case
of the derivation of the factorisation formula in the gq̄-channel of the Drell-Yan process in
section 3.3. The d-dimensional expression is given in equation (3.105), however here we
require〈

A(pA)
∣∣∣AA′,PDF

c⊥ρ′ (x+ u′n+)AA,PDF
c⊥ρ (un+)

∣∣∣A(pA)
〉

= −g⊥ρρ
′

2
δAA

′

N2
c − 1

×
∫ 1

0

dxa
xa

fg/A(xa) eixa(x+u′n+−un+)·pA . (9.23)

The sum over the final state soft radiation gives the next-to-leading power soft function
SYM(Ω, ω) which we define below.

We then perform the integration over n+pa, n−pb and strip off the gluon parton
distribution functions. This leads us to the expression for the partonic cross-section, as
defined in equation (9.2), that accurate to next-to-leading power in the threshold expansion.
Including also the leading power term, and prior to performing any expansion in the phase
space, we find

σ̂(z) = 8C2
t (mt)

N2
c − 1 ŝH(ŝ)

∫ d3~q

(2π)3 2
√
m2
H + ~q 2

1
2π

∫
d4x ei(xapA+xbpB−q)·x

×
{
S̃0(x)− 2√

ŝ

∫
dω JYM(xan+pA;ω) S̃YM(x, ω) + c̄-term

}
. (9.24)

The hard function H(ŝ, µh) here, is given by

H(ŝ, µh) = |CA0(−ŝ)|2 . (9.25)

As only the JA0 hard matching current plays a role in the factorisation up to next-to-
leading power, this hard function is the same for the leading power and next-to-leading
power term.

Th leading power position-space soft function that is defined as the vacuum expectation
value of adjoint Wilson lines and with the position argument generalised to x0 → xµ =
(x0, ~x ) is denoted in (9.24) by S̃0(x). The Fourier transform of S̃0(x) with respect to x0

will be written as S0(Ω, ~x), such that SH(Ω) = S0(Ω,~0 ). The next-to-leading power soft
function is represented by S̃YM(x, ω). It is defined as the Fourier transform

S̃YM(x, ω) =
∫ d(n+z)

4π e−iω(n+z)/2 1
N2
c − 1 〈0|S̃YM(x, z−)|0〉 , (9.26)

of the vacuum matrix element of the following operator, with an explicit insertion of the
soft building block

S̃YM (x, z−) = T̄
[
Y A′C

+ (x)Y A′X
− (x)

]
T
[
Y AX
− (0)Y AY

+ (0) fYBC ∂ σ⊥
in−∂

B+B
σ⊥

(z−)
]
. (9.27)
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The Fourier transform of the next-to-leading power soft function S̃YM(x, ω)|~x=0 with respect
to x0 will be denoted as SYM(Ω, ω). We also note that the factor of two which multiplies
the JYM ⊗ S̃YM term in the second line of (9.24) comes from two identical next-to-leading
power terms in the square of the amplitude.

As we have described in section 3.2.2, in addition to the so-called dynamic next-to-
leading power corrections, there exist kinematic power corrections. These arise from the
expansion of the first line of (9.24) and the combination of the next-to-leading power terms
from this expansion with the generalised leading power soft function S̃0(x). The relevant
equations in the centre-of-mass frame are the same as for Drell-Yan production in (3.25)
and (3.26). Moreover, as is conventionally done we consider the partonic cross-section
rescaled by a factor of 1/z,

∆(z) = σ̂(z)
z

, (9.28)

as we have done for the Drell-Yan case. The kinematic corrections for Higgs production
cross-section are obtained in the same way as for the Drell-Yan production. Hence we
do not repeat the analysis of section 3.2.2. We do note however, that a difference arises
due to an extra factor of ŝ = m2

H/z in (9.24), which is not present in γ∗ production. This
factor comes about from the derivatives corresponding to large momentum components in
the current operator written in equation (9.8). The extra ŝ factor here can be regarded as
an additional contribution to the third type of kinematic correction in equation (3.71).
We recall that the original K3 arises due to the 1/z factor (9.28). This implies that the
third soft kinematic function, SK3(Ω), given in (3.79) (and (8.9) at its lowest order) is
twice as large. Therefore, in the sum of all the kinematic corrections, we no longer find
a complete cancellation of the leading logarithmic terms. Instead, the Higgs production
cross-section valid up to next-to-leading power has the following form

∆(z) = 8C2
t (mt)

N2
c − 1 mH H(m2

H)
{
SH(mH(1− z)) + 1

mH

SK(mH(1− z))

− 2
mH

∫
dω JYM(xan+pA;ω)SYM(mH(1− z), ω) + c̄-term

}
, (9.29)

where the sum of kinematic soft functions is now

SK(Ω) = αsCA
2π

(
−8 ln µ

Ω + 4
)
θ(Ω) +O(α2

s) . (9.30)

Hence, we find that, in contrast to the Drell-Yan case, the kinematic corrections do
contribute to the next-to-leading power leading logarithmic series in the Higgs production
cross-section at threshold.

9.2 Resummation
As in section 8.3, the resummation of the next-to-leading power leading logarithms in Higgs
production is achieved via evolution of scale-dependent functions in (9.29) to a common
collinear scale µc ∼ mH

√
1− z using renormalization group equations. A difference

regarding the scale evolution in Higgs production with respect to the analysis performed
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for the Drell-Yan process appears due to the ggH vertex given by the effective Lagrangian
in equation (9.3). We see the presence of an additional short-distance coefficient Ct(mt)
which appears both for the leading and next-to-leading power contributions. At a generic
scale µ, the Ct coefficient has the value (see, for example [168])

Ct(mt, µ) =
β
(
αs(µ)

)
α2
s(µ)

α2
s(µt)

β
(
αs(µt)

) Ct(mt, µt). (9.31)

The initial condition at the scale µt ∼ mt is given by Ct(mt, µt) and where

β(αs) = d

d lnµαs = −2 β0α
2
s

4π +O(α3
s), β0 = 11

3 Nc −
2
3nf . (9.32)

The evolution of the hard function H(m2
H) from the hard scale, µh ∼ mH , to the

collinear scale, µc ∼ mH(1−z)1/2, is almost the same as for the case of Drell-Yan production.
The only difference in the hard RGE between the two processes is the relevant colour
factor. Therefore, for Higgs production up to leading logarithmic accuracy we simply
change CF → CA in (8.13) and (8.17). Concretely, here we need

H(m2
H , µ) = exp

[
4SLL(µh, µ)

]
H(m2

H , µh) (9.33)

with
SLL(ν, µ) = CA

β2
0

4π
αs(ν)

(
1− αs(ν)

αs(µ) + ln αs(ν)
αs(µ)

)
. (9.34)

Finally, it remains for us to consider the evolution of the next-to-leading power soft function
and the contribution from the kinematic corrections. The generalised soft function required
for Higgs production, written here in equations (9.26) and (9.27), has the same form as
one encountered in the γ∗ production discussed in section 8.2. We note that the difference
between the two cases is the appearance of Wilson lines in the adjoint rather than
fundamental representation. The evolution of the soft function is again from the soft
scale, µs ∼ mH(1− z), to the collinear scale, µc ∼ mH(1− z)1/2. Similarly as for the hard
function case, the structure of the RGE for the soft function necessary for resummation at
leading logarithmic accuracy and the O(αs) result for the soft function is the same as for
the Drell-Yan case in section 8.2 up to the exchange of the colour factor CF → CA.

The NLP soft function in Higgs production is divergent at its lowest contributing
order and mixes into a new type of soft function defined here, analogously to Sx0(Ω) in
equation (8.2), as follows

Sad
x0 (Ω) =

∫ dx0

4π eix
0Ω/2 −2i

x0 − iε
1

N2
c − 1 〈0|T̄

[
YA′Y+ (x0)YA′X− (x0)

]
T
[
YAX− (0)YAY+ (0)

]
|0〉.

(9.35)
The soft function Sad

x0 (Ω) is adjoint-representation equivalent to Sx0(Ω) and the leading
logarithmic series is generated in the mixing between the NLP soft function S̃YM(x, ω)
and Sad

x0 (Ω).
We do not repeat the discussion of the renormalization of these soft functions here

which was carried out in section 8.2, it suffices to state that the relevant RGE system is
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given by

d

d lnµ

(
SYM(Ω, ω)
Sad
x0 (Ω)

)
= αs

π

 4CA ln µ

µs
CAδ(ω)

0 4CA ln µ

µs


(
SYM(Ω, ω)
Sad
x0 (Ω)

)
. (9.36)

The scale µs is an arbitrary soft scale of order mH(1 − z). As we have discussed, in
Higgs production the kinematic corrections also give rise to the leading logarithmic series.
Therefore we must also consider the evolution of SK, for which we find

d

d lnµ

(
SK(Ω)
Sad
x0 (Ω)

)
= αs

π

 4CA ln µ

µs
−4CA

0 4CA ln µ

µs


(

SK(Ω)
Sad
x0 (Ω)

)
. (9.37)

A general solution for a system of RGEs of this type is given in appendix A of [40]. We
then obtain the following leading logarithmic solution for the two relevant soft functions

SLL
K (Ω, µ) = 8CA

β0
ln αs(µ)
αs(µs)

exp
[
−4SLL(µs, µ)

]
θ(Ω) , (9.38)

SLL
YM(Ω, ω, µ) = −2CA

β0
ln αs(µ)
αs(µs)

exp
[
−4SLL(µs, µ)

]
θ(Ω)δ(ω) . (9.39)

We are now in possession of all the necessary ingredients making up (9.29). Since we
evolve to the collinear scale, the collinear function does not contain large logarithms and
we can use the tree-level result in equation (9.21) and arrive at

∆(z, µc) = α2
s(µc)
α2
s(µ) C

2
t (mt, µc)H(m2

H , µc)
{
mH SH

(
mH(1− z), µc

)
+ SLL

K (Ω, µc)

+8
∫
dω SLL

YM

(
mH(1− z), ω, µc

)}
(9.40)

in terms of the hard and soft functions evolved to the collinear scale. We have inserted
the factor α2

s(µc)/α2
s(µ) multiplying C2

t (mt, µc) in order to compensate for the factor of
α2
s(µ) that is not included in ∆(z, µc) but which does appear in the hadronic cross-section

given in (9.2). Another simplification is the appearance of a factor of two multiplying the
second line of (9.40) which arises due to the c̄-term in (9.29) that gives a next-to-leading
power contribution identical the collinear one which we explicitly considered here.

It is also notable that the equation for ∆(z, µc) in (9.40) is written by assuming that
we do not distinguish between the scale of the effective Higss-gluon-gluon coupling and the
SCET factorisation scale. This in turn implies that the SCET anomalous dimension which
describes the evolution of the hard function H(m2

H , µ) must contain a contribution from
the anomalous dimension of the HFF operator. In this way, the evolution of C2

t (mt, µ)
below the hard scale is compensated for. In a conceptually clearer treatment the two
appearing scales would be distinguished, as is the case for example in the discussion of
tensor quark currents in [172]. However, the final result presented in equation (9.41) is
nonetheless identical in both cases.
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We continue by inserting the resummed soft functions in equations (9.38) and (9.39)
into the expression for the cross-section (9.40), we arrive at

∆LL(z, µc) = ∆LL
LP(z, µc)−

α2
s(µc)
α2
s(µ)

[
β
(
αs(µc)

)
α2
s(µc)

α2
s(µt)

β
(
αs(µt)

)]2

C2
t (mt, µt)

× exp
[
4SLL(µh, µc)− 4SLL(µs, µc)

] 8CA
β0

ln αs(µc)
αs(µs)

θ(1− z) , (9.41)

where we have also used H(m2
H , µh) = 1 +O(αs).

This final resummed result for the Higgs production cross-section can be compared
with the corresponding result for the Drell-Yan case given in equation (8.21). We see that
despite the differences in the derivation between the two processes, in particular regarding
the contribution from kinematic corrections to the leading logarithms in Higgs production,
remarkably the combination of kinematic contributions and the NLP soft function conspire
to give final results which are identical up to the exchange of the colour factors CF and
CA.

The main differences between the qq̄-channel in Drell-Yan production and the diagonal
channel in Higgs production via gluon-gluon fusion at threshold boil down to two points.
Firstly, there is a factor of two difference in the tree-level collinear function due to two
the Lagrangian terms in (9.13) and (9.14). Secondly, the aforementioned contribution
from the kinematic corrections. Both of these differences are related to the presence of
the derivatives in the operator in equation (9.8), and eventually they cancel to give the
expression in (9.41).

The term ∆LL
LP(z) in the final result in equation (9.41) is the leading logarithmic

contribution to the leading power partonic cross-section. In the present formalism it can
be found in [168]. We are free to set the hard, soft, and collinear scales to µh = mH ,
µs = mH(1 − z), and µc = mH

√
1− z respectively, since the differences in the precise

choices enter only beyond the leading logarithmic accuracy. However, the result in (9.41)
is not in its most general form. This is because in the derivation of the partonic cross-
section we have set the factorisation scale µ to the collinear scale µc = mH

√
1− z, which

implies that the factorisation scale in parton distribution functions is set to the collinear
µc = mH

√
1− z scale. Using the scale invariance of the hadronic cross-section, the result

can be translated to an arbitrary scale µ, as detailed in [40]. We find that the functional
form of the result for the resummed partonic cross-section at a arbitrary scale µ is the
same as the functional form of the result at the collinear scale µc. Similar to the Drell-
Yan production, here the collinear function cannot contribute at the leading logarithmic
accuracy when it is evaluated at a scale µ different from µc. We have for the resummed
partonic cross-section

∆LL
NLP(z, µ) =

[
β
(
αs(µ)

)
α2
s(µ)

α2
s(µt)

β
(
αs(µt)

)]2

C2
t (mt, µt)

× exp
[
4SLL(µh, µ)− 4SLL(µs, µ)

] −8CA
β0

ln αs(µ)
αs(µs)

θ(1− z) . (9.42)

The scale of the parton luminosity which is multiplying the partonic cross-section ∆LL
NLP(z, µ)
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is independent of z. The threshold logarithms of (1 − z) arise from setting the scale
µs ∼ mH(1− z).

Having obtained the main result of this section, that is the resummed next-to-leading
power leading logarithms in Higgs production in gluon-gluon fusion in (9.42), we proceed
to expand it in the strong coupling such that we can compare with existing results obtained
at fixed order in perturbation theory. The factors

[
β
(
αs(µ)

)
/α2

s(µ)α2
s(µt)/β

(
αs(µt)

)]2
and C2

t (mt, µt) can be omitted here since they are both equal to unity at O(α0
s) and do

not contribute to the leading logarithmic series at higher orders. This means that the
expansion of the result in equation (9.42) to fixed order in αs is the same, up to the
exchange of colour factor CF → CA, as the expansion we have found for the Drell-Yan
case in the qq̄ → γ∗ production channel given in equation (8.27). We keep the scale µ
arbitrary, and set µh = mH and µs = mH(1− z), we then obtain the following expression
for the expansion

∆LL
NLP(z, µ) = − θ(1− z)

{
4CA

αs
π

[
ln(1− z)− Lµ

]

+ 8C2
A

(
αs
π

)2 [
ln3(1− z)− 3Lµ ln2(1− z) + 2L2

µ ln(1− z)
]

+ 8C3
A

(
αs
π

)3 [
ln5(1− z)− 5Lµ ln4(1− z) + 8L2

µ ln3(1− z)− 4L3
µ ln2(1− z)

]
+ 16

3 C
4
A

(
αs
π

)4 [
ln7(1− z)− 7Lµ ln6(1− z) + 18L2

µ ln5(1− z)− 20L3
µ ln4(1− z)

+ 8L4
µ ln3(1− z)

]
+ 8

3C
5
A

(
αs
π

)5 [
ln9(1− z)− 9Lµ ln8(1− z) + 32L2

µ ln7(1− z)− 56L3
µ ln6(1− z)

+ 48L4
µ ln5(1− z)− 16L5

µ ln4(1− z)
]}

+ O(α6
s × (log)11) . (9.43)

In the above we have defined the abbreviation Lµ = ln(µ/mH), and as before in equa-
tion (8.27), the (log)11 takes the place of any combination of the two logarithms to the
11th power.

Our result in equation (9.43) is checked in the following ways. The exact calcula-
tion [173] and the “physical evolution kernels” method [155] provide the N3LO terms.
The relevant equations are in particular equation (2.12) in [173] and equation (B.2) in
[155]. We find agreement between these references and (9.43) at this order. Moreover,
the N4LO expression is provided in equation (B.3) of [155]. The relevant terms in equa-
tion (9.43) are in agreement with this result. The N5LO contribution in the last two lines
of equation (9.42) constitute a new result and an expression at any order in αs can be
obtained by expanding (9.42) without much effort. Our derivation of (9.42) justifies the
methods of [153, 154] which account for the next-to-leading power leading logarithms by
implementing the Altarelli-Parisi splitting kernels up to next-to-leading power accuracy
within the standard leading power resummation formalism.
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9.3 Numerical analysis
As mentioned in the introduction of this chapter, Higgs production in gluon-gluon fusion
is a phenomenologically relevant process for the LHC. It is therefore interesting to study
the numerical impact of the next-to-leading power leading logarithms on the resummed
cross-section which thus far could only formally include the leading power contributions,
albeit to a very high logarithmic accuracy. Hence, in this section, we numerically explore
the next-to-leading power resummed Higgs production cross-section in the large top mass
approximation. We take the centre-of-mass energy at the LHC as

√
s = 13TeV, and use

as the mass of the Higgs mH = 125GeV. The cross-section can be written in the following
way

σ = α2
s(µ)m2

H

576π v2s

∫ 1

τ

dz

z
L
(
τ

z
, µ

)
∆(z, µ). (9.44)

The ∆(z, µ) piece is the partonic cross-section rescaled by a factor of 1/z as we have
defined in equation (9.28) and the term L (τ/z, µ) is known as the luminosity function
which involves the parton distribution functions. Concretely, L (τ/z, µ) is defined in the
following way

L(y, µ) =
∫ 1

y

dx

x
fg/A(x, µ)fg/B

(
y

x
, µ
)
. (9.45)

For the numerical evaluation we make use of the PDF4LHC15nnlo30 PDF sets [174,
175, 176, 177, 178]. In section 9.2 we have computed the next-to-leading power leading
logarithmic contributions to ∆(z, µ) in equation (9.44). However, in the numerical study
we additionally consider the resummed leading power cross-section at next-to-next-to-
leading logarithmic accuracy. The size of these contributions will serve as a comparison
against the corresponding contributions due to next-to-leading power corrections. The
leading power resummed cross-section is provided in equations (30) and (31) of [168].
The leading power result is composed of a hard and soft functions at one loop order,
the anomalous dimension Γcusp taken up to and including the third loop order, and the
remaining anomalous dimensions enter at the two loop order. See for example the Table 1
of [24].

The formula for the resummed cross-section at next-to-leading power in (9.42) is a
function of the scales µt, µh, µc, µs, and the arbitrary factorisation scale µ. The scale
µt is chosen to be µt = 173.1GeV and we set µh = µ = mH . Moreover, as part of our
analysis we consider the scale of µh to be set to µ2

h = −m2
H − iε (the −iε is implied in

what follows below). This choice for µh includes factors of π2 in the resummation. These
factors of π2 are associated with logarithmic contributions which are evaluated with a
time-like momentum transfer [168]. As we have already discussed, at leading logarithmic
accuracy, the next-to-leading power cross-section in equation (9.42) does not explicitly
depend on the collinear scale, µc, and we do not consider it in the following.

Setting of the soft scale requires some careful attention. In section 9.2 we have applied a
parametric choice for the soft scale. Namely, we set it to µs = mH(1−z) and have obtained
the result expanded to fixed-order with this choice. However, as is well-known at leading
power, such a choice is not admissible in the evaluation of the resummed cross-section
due to the Landau pole. We explore this further in Table 9.1 and shortly discuss below.
Instead of applying the parametric µs = mH(1− z) choice for the soft scale, we set the
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(pb) σLL
LP σLL

NLP
µs = mH(1− z) µs = µdyn

s µs = µdyn
s µs = mH(1− z) µs = µdyn

s µs = µdyn
s

µ2
h = m2

H µ2
h = m2

H µ2
h = −m2

H µ2
h = m2

H µ2
h = m2

H µ2
h = −m2

H

O (α0
s) 12.94 12.94 12.94 – – –

O (αs) 4.70 1.95 8.82 4.35 3.57 3.57
O (α2

s) 6.49 1.72 4.58 7.50 1.38 3.28
O (α3

s) 15.35 1.03 2.49 18.67 0.35 1.58
O (α4

s) 51.09 0.61 1.45 62.97 0.07 0.52
O (α5

s) 217.53 0.36 0.87 269.10 0.01 0.13
O (α6

s) 1111.56 0.22 0.52 1376.45 0.002 0.03

Table 9.1: Comparison of the LL contributions to the Higgs production cross section in gluon
fusion expanded in powers of αs for various choices of the soft and hard scales, and
for LP and NLP, respectively. For the naive choice µs = mH(1− z) the series does
not converge at LP and neither at NLP, while higher-order contributions decrease
rapidly when using the dynamical soft scale µs = µdyn

s . Furthermore, we distinguish
the case in which µ2

h = m2
H and µ2

h = −m2
H .

soft scale dynamically [179] for which we use

µdyn
s = Q

s̄1(τ) , s̄1(τ) ≡ −eγE d lnL(y, µ)
d ln y

∣∣∣∣∣
y=τ

. (9.46)

For the value of the Higgs mass set at mH = 125GeV and the centre-of-mass energy at√
s = 13TeV as given at the beginning of the section, for the dynamically set soft scale we

find µdyn
s ' 38 GeV. An alternative way of performing the resummation is to transform to

Mellin space [180, 181], this can be regarded as implicitly setting an effective soft scale.
However, in this case we cannot keep the soft scale independent from the rest of the scales
which appear in the formula. Therefore, we choose to implement the dynamic soft scale
setting procedure and as part of the analysis we explore the effect of changing the value of
the soft scale µs. The relevant plots are given in figures 9.2 and 9.3.

We focus now on the results presented in Table 9.1. In this table, we give the values
of the contributions to the cross-section at each order in αs after having perturbatively
expanded the resummed formula. The goal of this investigation is to ensure that our
choice for the soft scale is indeed suitable. In order to arrive at the numerical values
shown in Table 9.1, we have evaluated both the leading and next-to-leading power results
at the leading logarithmic accuracy. The coefficient C2

t (mt, µt) and its evolution factor,
which is given in the first line of equation (9.42), are both set to unity. The running
coupling constant is taken at one loop. From the second and fifth column in Table 9.1, it
is clear that setting the soft scale to its parametric value of µs = mH(1− z) is problematic.
The series is numerically divergent at the leading and next-to-leading power as expected.
From the third and sixth column in Table 9.1 we see that for the dynamically set soft
scale, µs = µdyn

s , the higher order contributions in αs become suppressed. This behaviour
indicates that the expansion of the series is perturbatively convergent as required. We
see that this is the case for both the leading and next-to-leading power contributions. In
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the fourth and seventh column of Table 9.1, we also present the numerical values for the
expanded result found for the case where the hard scale is set to µ2

h = −m2
H . The different

choice of the hard scale does not cause the convergence of the perturbative expansion
of the leading logarithmic terms to break down. However, we do note that the rate of
convergence appears too slow as at any fixed αs order for µs = µdyn

s , the value for the
cross-section is larger for the scale choice µ2

h = −m2
H when compared with the value

obtained for µ2
h = m2

H .
We now shift the focus of the investigation to consider the all order effects. Within our

numerical study, we find it instructive to consider a generalised version of the resummed
leading logarithmic next-to-leading power cross-section presented in (9.42). To this end,
we consider ∆LL

NLP(z, µ) modified to the following form

∆LL
NLP(z, µ) =

[
β
(
αs(µ)

)
α2
s(µ)

α2
s(µt)

β
(
αs(µt)

)]2

C2
t (mt, µt) exp

[
4CA

(
SLL(µh, µ)− SLL(µs, µ)

)]

×
[
SNLP

(
mH(1− z), µs

)
− 8CA

β0
ln αs(µ)
αs(µs)

Sad
x0

(
mH(1− z), µs

)]
. (9.47)

The term SNLP
(
mH(1−z), µs

)
takes care of the initial condition of the evolution equations

given in (9.36) and (9.37) for the sum of the next-to-leading power soft function and the
kinematic soft function in equation (9.40) evaluated at the soft scale

SNLP
(
mH(1− z), µs

)
= SK

(
mH(1− z), µs

)
− 8

∫
dω SYM

(
mH(1− z), ω, µs

)
. (9.48)

In the following analysis, we choose to investigate two separate initial conditions. At the
soft scale, we can have

A) SNLP
(
mH(1− z), µs

)
= 0,

B) SNLP
(
mH(1− z), µs

)
= −4CA

αs(µs)
2π ln m

2
H(1− z)2

µ2
s

,
(9.49)

together with Sad
x0

(
mH(1− z), µs

)
= 1. The two initial conditions are equivalent at leading

logarithmic accuracy. We have used the choice labelled by A in the original derivation
above and it reproduces the result shown in equation (9.42). On the other hand, the choice
B ensures that the logarithmic part of the next-to-leading power next-to-leading order
contribution is included for every value of the soft scale µs.

To arrive at numerical values for the resummed next-to-leading power result, we use
the expression for C2

t (mt, µt) in equation (9.47) at the two loop accuracy. This ingredient
can be found in equation (12) of [168]. Moreover, we use the three-loop β-function for
αs. These considerations yield C2

t (mt, µ = mH) ' 1.22 for Ct which has been evolved
to the factorisation scale. For concreteness, the evolved Ct is given by the product of
the first two factors on the right-hand side of equation (9.47). The numerical result for
the leading power cross-section is obtained through the implementation of [168]. Here
the Ct is required at the soft scale. The value of Ct at the soft scale is found to be
C2
t (mt, µ = µs) ' 1.80.
The numerical results for the resummed leading logarithmic next-to-leading power

cross-section are presented in Table 9.2. We give the results for the two schemes discussed
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σ (pb) µs = µdyn
s

µ2
h = m2

H µ2
h = −m2

H

σNNLL
LP 24.12 28.04
σNNLO

LP 28.93
σN3LO

LP 29.24
σLL

NLP (A) 7.18 12.76
σLL

NLP (B) 8.82 15.68
σNNLO

non LP 11.90
σN3LO

non LP 16.27
σNNLL

LP + σLL
NLP (A) 31.30 40.80

σNNLL
LP + σLL

NLP (B) 32.94 43.72
σNNLO 40.82
σN3LO 45.52

Table 9.2: Resummed Higgs production cross section in gluon fusion at LP with NNLL, and
at NLP with LL accuracy. For NLP we present the result for the two cases defined
in (9.49). For comparison, we also show the fixed-order results for gluon fusion at
NNLO and N3LO based on the iHixs code [182]. In addition, we distinguish the LP
contribution and the difference between the full result and LP contribution (denoted
by nonLP) for the fixed-order results.

above, A and B in (9.49), and we compare the obtained values to the NNLL leading power
result. Additionally, we have included the fixed order results at NNLO and N3LO. These
were calculated using the iHixs code [182]. We discover that the leading logarithmic
next-to-leading power correction is sizeable and its value can be as large as 40% of the value
of the resummed NNLL leading power cross-section. We also find that the resummation
of π2 enhanced terms is numerically important. This effect formally reaches beyond the
leading logarithmic accuracy, however, its inclusion in the combined result for the NNLL
LP + LL NLP resummed cross-section yields a final result that is comparable to the N3LO
result [166, 12].

Lastly, we present a study of the dependence of the resummed leading and next-to-
leading power cross-section on the soft scale µs. The relevant plots are given in figures 9.2
and 9.3. We first note that the next-to-leading power cross-section is more sensitive to the
choice of µs compared to the leading power cross-section. This is within our expectations, as
only the leading logarithmic terms are available for the next-to-leading power cross-section,
compared to NNLL accurate expressions available for the LP cross-section. Although
the sensitivity to the soft scale µs for the next-to-leading power cross-section is sizable,
the values of the cross-section computed for the two initial conditions A and B in (9.49)
overlap in the region close to µs = µdyn

s . For µ2
h = m2

H the combination of the leading and
next-to-leading power cross-sections exhibits a smaller sensitivity to the soft scale µs.
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Figure 9.2: Dependence of the NNLL LP and LL NLP resummed Higgs production cross section
on the soft scale µs, for µ2

h = m2
H . For NLP we present the result for the two cases

defined in (9.49).
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Figure 9.3: Same information as in figure 9.2, however using µ2
h = −m2

H for the hard scale.
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Summary and outlook

At the core of the work presented here stands the investigation of elementary scattering
processes at subleading powers using soft collinear effective field theory. We have largely
focused on the Drell-Yan process near the threshold z → 1 limit, where large double
logarithms of (1− z) develop and must be resummed to all orders in perturbation theory.
Resummation at leading power has been well understood for some time, and can be
performed at high logarithmic accuracy in the effective field theory framework using
renormalization group equation techniques. However, resummation of subleading power
terms is a relatively recent development. It has been achieved for the threshold Drell-Yan
process in [40] and for event shapes in [54] within the last three years. As the details
presented in this work attest to, the step between a description of processes at leading
power and at the next-to-leading power is more of a leap. As we have seen for the
Drell-Yan process, new objects, the amplitude level NLP collinear functions, emerge in
the factorisation formula, and endpoint divergent convolutions hinder a straightforward
application of standard renormalization group methods to sum large logarithms to all
orders in the strong coupling. Except for special cases, such as the leading logarithmic
terms described here.

A broad understanding of the subleading power corrections can advance the accuracy of
phenomenological predictions for various processes. However, the benefits of the first next-
to-leading power investigations are already clear, as these studies help us to learn about
the intricate structure of gauge theories beyond the leading power regime. Subleading
power investigations can have a positive impact in many contexts. For example, our results
can be helpful in bootstrapping procedures. These techniques aim to derive quantities
of interest, such as cross-sections, by starting with a general ansätze and constraining
them using information from singular limits of QCD. Knowledge about infrared limits
of QCD beyond the leading power regime is therefore desirable for such considerations.
In other contexts, the subleading power corrections have helped to improve subtraction
techniques [47]. Moreover, the emergent issues, such as the divergent convolution problem
and collinear colour non-conservation (the leading pole structure proportional to CF − CA
as discussed in section 4.2.2), are interesting to study from the point of view of advancing
our knowledge about quantum field theories in a very broad sense. In particular, due to
the fact that the appearance of endpoint divergent convolutions is so ubiquitous beyond
leading power. Much recent progress has been made in this area of study, including
application of consistency relations and refactorisation to perform resummation [66, 56, 57].

205



206 Chapter 10. Summary and outlook

In the h → γγ process, the NLP resummation has been achieved at NLL [61, 62]. A
subleading power four dimensional factorisation formula for the Drell-Yan process at
threshold remains elusive. The considerations presented in this work provide a firm formal
grounding, with a factorisation formula which applies to bare regularized quantities, and
the new relevant ingredients such as the NLP collinear functions and generalised soft
functions computed to an accuracy in αs which enables us to verify the factorisation
formula up to next-to-next-to-leading order, and partly even at N3LO.

The analysis presented here is carried out within the position-space formulation of
SCET. In chapter 2, we have introduced the next-to-leading power SCET framework, and
kept the discussion largely general for N energetic directions in a given process. This part
highlights the important aspects of NLP SCET. However, the interested reader is directed
to original publications for details [86, 87, 88, 137].

The main contents of this work begin with Part II and the derivation of the formal
all order factorisation formulas for the diagonal and off-diagonal channels of the Drell-
Yan process at threshold presented in chapter 3. These formulas are then specialised to
next-to-leading power and the objects which appear in the factorisation formulas at this
accuracy are listed.

Then, in Part III we present the details of the technical calculations carried out to
obtain results for the objects appearing in the factorisation formulas at fixed orders in
perturbation theory. First, in chapter 4 we compute the amplitude level NLP collinear
functions to one-loop accuracy. These are important new ingredients, which only emerge
at subleading powers. Through the explicit one-loop calculation we confirmed the fact
that no leading logarithms are present in the relevant collinear functions. This knowledge
is subsequently used in chapter 8 in order to achieve leading logarithmic resummation for
the Drell-Yan process at threshold.

Chapters 5 and 6 contain fixed order calculations of the generalised soft functions.
These objects are functions of two scales and their calculations up to next-to-next-to-
leading order in αs prove to be far from trivial. In particular, the real-real soft parton
emission contributions considered in chapter 6 require us to employ advanced techniques
developed for high order loop calculations.

By combining together the d - dimensional results for the collinear and soft functions,
obtained in chapters 4, and 5 and 6 respectively, in chapter 7 we verify the correctness of
the factorisation formulas for bare regularized objects up to next-to-next-to-leading order
in perturbation theory. Partial N3LO results are presented in section 7.1.3.

With the fixed-order investigations concluded, we continue on to Part IV which consists
of two chapters discussing the leading logarithmic resummation for the Drell-Yan and
Higgs production processes. We begin with the Drell-Yan process at threshold in chapter 8,
where we first restrict the factorisation formulas to include only the leading logarithmic
terms, before setting up renormalization group equations and solving them. This yields
results valid to all orders in perturbation theory. Higgs production via gluon-gluon fusion
is investigated in chapter 9. Here, we first derive the leading logarithmic factorisation
formula and later proceed with similar steps to the Drell-Yan resummation also arriving
at all order results. Our result proves that, to all orders in the strong coupling constant,
the leading logarithmic terms at next-to-leading power are identical to those obtained for
the threshold expansion of the Drell-Yan process in the qq̄ channel up to an exchange of
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the colour factor, CF → CA.
Lastly, based on an explicit example, we discussed issues in the extension of the

resummation formalism within the standard paradigm of SCET due to the divergent
convolutions. As we have already mentioned above, this is an active field of research, with
new results appearing recently.

The next-to-leading power investigations of relevant collider processes is a captivating
field of research with plenty of developments still to be made. With the detailed calculations,
discussions, examples, and new results presented here, we hope that this work is a useful
resource in future investigations.





Part VI

Appendices

209





A

A.1 YM subleading SCET Lagrangian

The subleading-power gluon self-interaction terms of the soft-collinear Yang-Mills La-
grangian [73] expressed in terms of the collinear and soft gauge-invariant fields are given
by

L(1)
1YM = − 1

g2
s

tr
([
n+∂Acν⊥

][
xρ⊥ in−∂ B+

ρ ,Aν⊥c
])
,

L(1)
2YM = − 1

g2
s

tr
([
n+∂Aν⊥c

]
in−∂ B+

ν⊥

)
,

L(2)
1YM = − 1

2g2
s

tr
([
n+∂Acν⊥

][
n−x in−∂ n+B+, Aν⊥c

])
,

L(2)
2YM = − 1

2g2
s

tr
([
n+∂Acν⊥

] [
xρ⊥x⊥ω

[
∂ω, in−∂ B+

ρ

]
, Aν⊥c

])
,

L(2)
3YM = − 1

2g2
s

tr
([
n+∂Acν⊥

] [
xρ⊥x⊥ω

[
Bω+, n−∂ B+

ρ

]
, Aν⊥c

])
,

L(2)
4YM = − 1

2g2
s

tr
([
n+∂Acν⊥

] [
xρ⊥
[
i∂ρB+

ν⊥
− i∂ν⊥B+

ρ

]
, n−Ac

])
,

L(2)
5YM = − 1

2g2
s

tr
([
n+∂Acν⊥

] [
xρ⊥
[
B+
ρ ,B+

ν⊥

]
, n−Ac

])
,

L(2)
6YM = − 1

g2
s

tr
([
i∂µ⊥Aν⊥c − i∂ν⊥Aµ⊥c

][
ixρ⊥

[
i∂ρB+

µ⊥
− i∂µ⊥B+

ρ

]
, Acν⊥

])
,

L(2)
7YM = − 1

g2
s

tr
([
Aµ⊥c ,Aν⊥c

][
ixρ⊥

[
i∂ρB+

µ⊥
− i∂µ⊥B+

ρ

]
, Acν⊥

])
,

L(2)
8YM = − 1

g2
s

tr
([
i∂µ⊥Aν⊥c − i∂ν⊥Aµ⊥c

][
ixρ⊥

[
B+
ρ ,B+

µ⊥

]
, Acν⊥

])
,

L(2)
9YM = − 1

g2
s

tr
([
Aµ⊥c ,Aν⊥c

][
ixρ⊥

[
B+
ρ ,B+

µ⊥

]
, Acν⊥

])
,

L(2)
10YM = − 1

2g2
s

tr
([
n+∂ n−Ac

]
n−∂ n+B+

)
,

L(2)
11YM = 1

g2
s

tr
((
i∂µ⊥Aν⊥c − i∂ν⊥Aµ⊥c

) (
i∂µ⊥B+

ν⊥
− i∂ν⊥B+

µ⊥

))
,
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L(2)
12YM = 1

g2
s

tr
([
Aµ⊥c ,Aν⊥c

] (
i∂µ⊥B+

ν⊥
− i∂ν⊥B+

µ⊥

))
,

L(2)
13YM = 1

g2
s

tr
((
i∂µ⊥Aν⊥c − i∂ν⊥Aµ⊥c

) [
B+
µ⊥
,B+

ν⊥

])
,

L(2)
14YM = 1

g2
s

tr
([
Aµ⊥c ,Aν⊥c

] [
B+
µ⊥
,B+

ν⊥

])
,

L(2)
15YM = − 1

g2
s

tr
([
n+∂Aν⊥c

]
x⊥σ

[
∂σ, n−∂B

+
ν⊥

])
,

L(2)
16YM = 1

g2
s

tr
([
n+∂Aν⊥c

]
x⊥σ

[
iBσ

+, n−∂B
+
ν⊥

])
. (A.1)

A.2 Useful formulas for Feynman integration
The integral representation of the Beta function has the following form

B(r, s) =
∫ 1

0
dt tr−1(1− t)s−1 = Γ[r]Γ[s]

Γ[r + s] . (A.2)

We can also write the Beta function in terms of an integral from 0 to ∞, rather than the
lower limit of 0 and upper limit of 1. The formula reads

B(r, s) =
∫ ∞

0
dx

xr−1

(1 + x)r+s = Γ[r]Γ[s]
Γ[r + s] . (A.3)

We can show this by performing the following substitution x = y
1−y in (A.3), which with

further manipulations then leads to∫ ∞
0

dx
xr−1

(1 + x)r+s =
∫ 1

0
dy

1
(1− y)2

yr−1

(1− y)r−1
1(

1 + y
1−y

)r+s
=

∫ 1

0
dy

yr−1

(1− y)r+1 (1− y)r+s =
∫ 1

0
dy yr−1(1− y)s−1 . (A.4)

After the last step we arrive at the integral representation of the Beta function as given
in (A.2). The 2F1 hypergeometric function has the following integral representation

2F1(a, b, c, x) = Γ[c]
Γ[b]Γ[c− b]

∫ 1

0
dz zb−1(1− z)c−b−1(1− zx)−a (A.5)

For the evaluation of Feynman integrals the following parametrisation often appears in
SCET calculations

1
anbm

= Γ[n+m]
Γ[n]Γ[m]

∫ ∞
0

dy
ym−1

(a+ yb)n+m (A.6)

The above is proved using (A.3) and rescalling of variable y = (a/b)y′. One can also see
that using (A.6) twice, the following holds for more than two propagators

1
anbmcp

= Γ[n+m+ p]
Γ[n]Γ[m]Γ[p]

∫ ∞
0

dy
∫ ∞

0
dx

ym−1xp−1

(a+ yb+ xc)n+m+p (A.7)
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Euclidean-space integral results∫ ddlE
(2π)d

1(
l2E +M2

)n = 1
(4π)d/2

Γ[n− d
2 ]

Γ[n]

(
M2

) d
2−n

(A.8)

∫ ddlE
(2π)d

l2E(
l2E +M2

)n = 1
(4π)d/2

d

2
Γ[n− d

2 − 1]
Γ[n]

(
M2

) d
2 +1−n

(A.9)

Minkowski-space integral results∫ ddl

(2π)d
1(

l2 −M2
)n = (−1)ni

(4π)d/2
Γ[n− d

2 ]
Γ[n]

(
M2

) d
2−n

(A.10)

∫ ddl

(2π)d
l2(

l2 −M2
)n = (−1)n−1i

(4π)d/2
d

2
Γ[n− d

2 − 1]
Γ[n]

(
M2

) d
2 +1−n

(A.11)

∫ ddl

(2π)d
lµlν(

l2 −M2
)n = (−1)n−1i

(4π)d/2
gµν

2
Γ[n− d

2 − 1]
Γ[n]

(
M2

) d
2 +1−n

(A.12)

∫ ddl

(2π)d
lµlνlρlσ(
l2 −M2

)n = (−1)ni
(4π)d/2

Γ[n− d
2 − 2]

Γ[n]

(
M2

) d
2 +2−n

×1
4
[
gµνgρσ + gµρgνσ + gµσgνρ

]
(A.13)

These integrals are ubiquitous in loop integrals in quantum field theories, see for exam-
ple [183], and are stated here for ease of use.

A.3 Useful spinor relations
As in the main text, we decompose the metric

gµν = nµ+
nν−
2 + nµ−

nν+
2 + gµν⊥ . (A.14)

This is consistent as

pν = pµg
µν = pµn

µ
+
nν−
2 + pµn

µ
−
nν+
2 + pµg

µν
⊥ = (n+p)

nν−
2 + (n−p)

nν+
2 + pν⊥ . (A.15)

The following holds
{γµ⊥, γν⊥} = 2gµν⊥ . (A.16)

We prove it here. First write

γµ⊥ = γµ − /n+
nµ−
2 − /n−

nµ+
2 , (A.17)

so we have

{γµ⊥, γν⊥} = {γµ − /n+
nµ−
2 − /n−

nµ+
2 , γν − /n+

nν−
2 − /n−

nν+
2 }
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= {γµ, γν} − {γµ, /n+}
nν−
2 − {γ

µ, /n−}
nν+
2 −

nµ−
2 {/n+, γ

ν}+ nµ−
2 {/n+, /n+}

nν−
2

+n
µ
−

2 {/n+, /n−}
nν+
2 −

nµ+
2 {/n−, γ

ν}+ nµ+
2 {/n−, /n+}

nν−
2 + nµ+

2 {/n−, /n−}
nν+
2

= 2gµν − {γµ, γη}n+η
nν−
2 − {γ

µ, γη}n−η
nν+
2 −

nµ−
2 n+η{γη, γν}+ 0

+n
µ
−

2 {/n+, /n−}
nν+
2 −

nµ+
2 {/n−, γ

ν}+ nµ+
2 {/n−, /n+}

nν−
2

= 2gµν − nµ+nν− − n
µ
−n

ν
+ − n

µ
−n

ν
+ + nµ−n

ν
+ − n

µ
+n

ν
− + nµ+n

ν
−

= 2gµν − nµ+nν− − n
µ
−n

ν
+

= 2gµν⊥ . (A.18)

Using (A.14) in the last line. Then also

{γµ⊥, γ⊥µ} = 2d− 2− 2 = 4(1− ε) =⇒ γ2
⊥ = 2(1− ε) , (A.19)

γ2
⊥ = d− 2 . (A.20)

For a spinor
γµγνγµ = −γνγµγµ + 2γν = (2− d)γν . (A.21)

For perpendicular spinors

γµ⊥γ
ν
⊥γµ⊥ = −γν⊥γ

µ
⊥γµ⊥ + 2γν⊥ = −γν⊥(d− 2) + 2γν⊥ = (4− d)γν⊥ , (A.22)

using (A.20). Another useful result is

γµ⊥γ
ν
⊥γ

δ
⊥γµ⊥ = −γν⊥γ

µ
⊥γ

δ
⊥γµ⊥ + 2gνµ⊥ γδ⊥γ⊥µ = γν⊥γ

δ
⊥(d− 4) + 2γδ⊥γν⊥ = γν⊥γ

δ
⊥(d− 6) + 4gδν⊥ .

(A.23)

Σαµ in light cone coordinates .
This quantity appears often in the calculation using the expansion-by-regions method. We
writre it here using light-cone components for convenience. Σαµ is defined as

Σαµ = i

4

[
γα, γµ

]
. (A.24)

We use (A.17)

Σαµ = i

4

[
/n+
n−α

2 + /n−
n+α

2 + γ⊥α, /n+
n−µ

2 + /n−
n+µ

2 + γ⊥µ

]
, (A.25)

Σαµ = i

4

{(
/n+
n−α

2 + /n−
n+α

2 + γ⊥α
)(
/n+
n−µ

2 + /n−
n+µ

2 + γ⊥µ
)

−
(
/n+
n−µ

2 + /n−
n+µ

2 + γ⊥µ
)(
/n+
n−α

2 + /n−
n+α

2 + γ⊥α
)}

. (A.26)

Then we have

Σαµ = i

4

{(
/n−
n+α

2 /n+
n−µ

2 + γ⊥α/n+
n−µ

2 + /n+
n−α

2 /n−
n+µ

2
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+γ⊥α/n−
n+µ

2 + /n+
n−α

2 γ⊥µ + /n−
n+α

2 γ⊥µ + γ⊥αγ⊥µ
)

−
(
/n−
n+µ

2 /n+
n−α

2 + γ⊥µ/n+
n−α

2 + /n+
n−µ

2 /n−
n+α

2
+γ⊥µ/n−

n+α

2 + /n+
n−µ

2 γ⊥α + /n−
n+µ

2 γ⊥α + γ⊥µγ⊥α
)}

. (A.27)

Now we make use of the fact that {/n+, γ
ν
⊥} = 0 and {/n+, /n−} = 4 Then

Σαµ = i

4

{(
− /n+/n−n+α

n−µ
2 + γ⊥α/n+n−µ + /n+/n−n−α

n+µ

2 + γ⊥α/n−n+µ

+/n+γ⊥µn−α + /n−γ⊥µn+α + [γ⊥α, γ⊥µ]
)
−
(
n−αn+µ − n+αn−µ

)} (A.28)

Only now we specialise to the case where on the right-hand side we have a collinear spinor
χc. All the terms with /n− on the rightmost of the expression vanish.

Σαµuc(p) = i

4

{
γ⊥α/n+n−µ + /n+γ⊥µn−α + [γ⊥α, γ⊥µ]− n−αn+µ + n+αn−µ

}
uc(p) . (A.29)

Here on the left-hand side we assume that there is a generic spinor structure and not a γρ⊥.
This is why the /n− can survive here. We write γ⊥α in terms of the full γα

Σαµuc(p) = i

4

{(
γα − /n+

n−α
2 − /n−

n+α

2

)
/n+n−µ − n−αγ⊥µ/n+ + [γ⊥α, γ⊥µ]

−n−αn+µ + n+αn−µ

}
uc(p)

(A.30)

Then

Σαµuc(p) = i

4

{
n−µγα/n+ − n−µ/n−

n+α

2 /n+ − n−αγ⊥µ/n+ + [γ⊥α, γ⊥µ]

−n−αn+µ + n+αn−µ

}
uc(p)

(A.31)

Using {/n+, /n−} = 4 we can move /n− to the right in the second term which means that we
can annihilate it with uc. Then we have

i

4
[
γα, γµ

]
uc(p) = i

4

{
n−µγα/n+ − n−αγ⊥µ/n+ + [γ⊥α, γ⊥µ]− n−αn+µ − n+αn−µ

}
uc(p) .

(A.32)

We next take kα and εµ. Then we have from above (rearranging for [γ⊥α, γ⊥µ] )

[γ⊥α, γ⊥µ] =
[
γα, γµ

]
− n−µγα/n+ + n−αγ⊥µ/n+ + n−αn+µ + n+αn−µ (A.33)

[/k⊥, /ε⊥] =
[
/k, /ε

]
− (n−ε)/k/n+ + (n−k)/ε⊥/n+ + (n−k)(n+ε) + (n+k)(n−ε) (A.34)

However, for the comparison of SCET DY computation to the expansion-by-regions
method the most useful would be equation (A.29), since we can immediately combine this
expression with Γρ = γρ which appears to the left of this expression. For example

γρΣαµuc(p) = i

4γ
ρ
{
γ⊥α/n+n−µ + /n+γ⊥µn−α + [γ⊥α, γ⊥µ]− n−αn+µ + n+αn−µ

}
uc(p) .

(A.35)
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The last three terms will pick out only the γρ⊥ component because of the spinors v̄c̄ and
uc and their projection operators. Hence now we focus on the first two terms with a /n+
spinor appearing

(
/n−
nρ+
2 + /n+

nρ−
2 + γρ⊥

){
− /n+γ⊥αn−µ + /n+γ⊥µn−α

}
(A.36)

Now, /n+/n+ = 0 and v̄c̄γρ⊥/n+ = 0. We find that only one term yields a non-zero result

(
/n−
nρ+
2
){
− /n+γ⊥αn−µ + /n+γ⊥µn−α

}
(A.37)

Then forming projection operators and acting on v̄c̄ we have{
− 2nρ+γ⊥αn−µ + 2nρ+γ⊥µn−α

}
(A.38)

These are the terms not proportional to γρ⊥ coming from γρΣαµ, the three terms which are
proportional to γρ⊥ are the last three terms in (A.35).

A.4 Colour identities

We define a basis of colour generators TA
i which are matrices which act in colour space on

the colour index of the i-th parton [184] (for an example see equation (H.2) of [79]). We
use the notation TA

i TA
j = Ti ·Tj. We have

fABCfABD = CAδ
CD, (A.39)

where CA is the Casimir of the adjoint representation.

TA
1 TB

1 TA
1 = TA

1 TA
1 TB

1 + iTA
1 f

BACTC
1

= CFTB
1 + 1

2i
2fBACfACDTD

1 =
(
CF −

1
2CA

)
TB

1 (A.40)

where we have used the fact that we can always write

2TATB =
[
TA,TB

]
+
{
TA,TB

}
(A.41)

and that the symmetric part of TATB is zero when contracted with the fully anti-symmetric
structure constant fBAC .

A.5 List of useful integrals
In this appendix we collect solutions to the integrals appearing in various Feynman
diagrams encountered in the collinear function calculation in the Drell-Yan process. All
the integrals were calculated using contour and Feynman parametrisation methods, and
checked using reduction techniques. Note that the results presented here are not valid
for general kinematics. We assume that the collinear momentum pµ carries only its large
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component pµ = (n+p)
nµ−
2 and is on-shell, p2 = 0. Moreover, external the soft momentum

kµ+ = (n−k)n
µ
+
2 = k+

nµ+
2 as only the (n−k) component of the soft momentum survives in

soft-collinear interactions due to multipole expansion.

g2
s

∫ ddq

(2π)d
1

q2(p− k+ − q)2 = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε
eεγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.42)

g2
s

∫ ddq

(2π)d
1
q2

qσ⊥q
η
⊥

(p− k+ − q)4 = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε
gση⊥
4

×e
εγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.43)

g2
s

∫ ddq

(2π)d
1
q2

(
qσ⊥q

α
⊥

)
(p− k+ − q)6 = −iαs

(4π)

[
(n−k)(n+p)

µ2

]−ε 1
(n−k)(n+p)

× g
σα
⊥
4
eεγEΓ[1 + ε]Γ[−ε]Γ[2− ε]

Γ[2− 2ε] (A.44)

g2
s

∫ ddq

(2π)d
1
q2

1
(p− k+ − q)2

q2
⊥

(n+(p− q)) = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε
(n−k)

× 1
2
eεγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.45)

g2
s

∫ ddq

(2π)d
1
q2

1
(p− k+ − q)2

γ⊥µ/q⊥/q⊥γ
µ
⊥

(n+(p− q))2 = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε (n−k)
(n+p)

× 2(1− ε)e
εγEΓ[−ε]Γ[2− ε]Γ[ε]

Γ[2− 2ε] (A.46)

g2
s

∫ ddq

(2π)d
1

(p− k+ − q)4
1
q2

γ⊥µ/q⊥/q⊥γ
µ
⊥

(n+(p− q)) = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× 2(1− ε)2 e
εγEΓ[−ε]Γ[2− ε]Γ[ε]

Γ[2− 2ε] (A.47)

g2
s

∫ ddq

(2π)d
1
q2

1
(p− k+ − q)4

qσ⊥q
η
⊥

(n+(p− q)) = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× g
ση
⊥
2
eεγEΓ[−ε]Γ[2− ε]Γ[ε]

Γ[2− 2ε] (A.48)

g2
s

∫ ddq

(2π)d
1

(p− k+ − q)6
1
q2

(
qσ⊥q

α
⊥

)
q2
⊥

(n+(p− q)) = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)
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× gσα⊥
(2− ε)

4
eεγEΓ[−ε]Γ[3− ε]Γ[ε]

Γ[3− 2ε] (A.49)

g2
s

∫ ddq

(2π)d
1
q2

(n−(k + q))
(p− k+ − q)4

γ⊥µ/q⊥/q⊥γ
µ
⊥

(n+(p− q)) = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε (n−k)
(n+p)

×
(
2− 2ε+ ε2

)eεγEΓ[ε]Γ[−ε]Γ[2− ε]
Γ[2− 2ε] (A.50)

g2
s

∫ ddq

(2π)d
1
q2

(n−(k − q))
(p− k+ − q)4

γ⊥µ/q⊥/q⊥γ
µ
⊥

(n+(p− q)) = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε (n−k)
(n+p)

×
(
2− 6ε+ 3ε2

)eεγEΓ[ε]Γ[−ε]Γ[2− ε]
Γ[2− 2ε] (A.51)

g2
s

∫ ddq

(2π)d
1
q2

1
(p− k+ − q)4

qσ⊥q
η
⊥(n+q)

(n+(p− q)) = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε

× g
ση
⊥
2
eεγEΓ[−ε]Γ[3− ε]Γ[ε]

Γ[3− 2ε] (A.52)

g2
s

∫ ddq

(2π)d
1
q2

1
(p− k+ − q)2

1
(n+(p− q)) = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× e
εγEΓ[−ε]Γ[1− ε]Γ[ε]

Γ[1− 2ε] (A.53)

g2
s

∫ ddq

(2π)d
1
q2

1
(p− k+ − q)2 (n+q) = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε
(n+p)

× e
εγEΓ[1− ε]Γ[2− ε]

Γ[3− 2ε] Γ[ε] (A.54)

g2
s

∫ ddq

(2π)d
1

(n+q)
1
q2

1
(p− k+ − q)2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× e
εγEΓ[1− ε]Γ[−ε]Γ[ε]

Γ[1− 2ε] (A.55)

g2
s

∫ ddq

(2π)d
1

(n+q)
1
q2

(n−(k + q))
(p− k+ − q)4 = − iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)2

× (1 + ε)e
εγEΓ[ε]Γ[1− ε]Γ[−ε]

Γ[1− 2ε] (A.56)
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g2
s

∫ ddq

(2π)d
1
q2

1
(n+q)

1
(p− k+ − q)4 = − iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)2(n−k)

× e
εγEΓ[1 + ε]Γ[−ε]Γ[−ε]

Γ[−2ε] (A.57)

g2
s

∫ ddq

(2π)d
1
q2

(n−(k + q))
(p− k+ − q)4 = − iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× e
εγEΓ[1 + ε]Γ[1− ε]2

Γ[2− 2ε] (A.58)

g2
s

∫ ddq

(2π)d
1
q2

1
(p− k+ − q)4 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)

× e
εγEΓ[ε]Γ[1− ε]Γ[1− ε]

Γ[1− 2ε] (A.59)

g2
s

∫ ddq

(2π)d
1
q2

1
(n+q)

(
qσ⊥q

η
⊥

)
(p− k+ − q)4 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× g
ση
⊥
2
eεγEΓ[1− ε]Γ[1− ε]Γ[ε]

Γ[2− 2ε] (A.60)

g2
s

∫ ddq

(2π)d
1
q2

1
(n+q)

(
qσ⊥q

α
⊥

)
(p− k+ − q)6 = − iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)2(n−k)

× g
σα
⊥
4
eεγEΓ[1− ε]Γ[−ε]Γ[1 + ε]

Γ[1− 2ε] (A.61)

g2
s

∫ ddq

(2π)d
1

(n+q)
1
q2

(n+(p− q))
(p− k+ − q)2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε

× (1− ε)e
εγEΓ[ε]Γ[−ε]Γ[1− ε]

Γ[2− 2ε] (A.62)

g2
s

∫ ddq

(2π)d
1

(p− k+ − q)2
1

(p− q)2
q2
⊥

(n+(p− q))
1
q2 = iαeεγE

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× Γ[ε]Γ[−ε]Γ[2− ε]
Γ[2− 2ε] (A.63)

g2
s

∫ ddq

(2π)d
1

(p− k+ − q)2
1

(p− q)2
qη⊥q

δ
⊥

(n+(p− q))
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)
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× g
ηδ
⊥
2
eεγEΓ[ε]Γ[−ε]Γ[1− ε]

Γ[2− 2ε] (A.64)

g2
s

∫ ddq

(2π)d
q2
⊥

(p− k+ − q)4
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)

× e
εγEΓ[ε]Γ[1− ε]Γ[2− ε]

Γ[2− 2ε] (A.65)

g2
s

∫ ddq

(2π)d
q2
⊥(n−q)

(p− k+ − q)4
1

(p− q)2
1
q2 = − iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× 1
2
eεγEΓ[ε]Γ[2− ε]Γ[1− ε]

Γ[2− 2ε] (A.66)

g2
s

∫ ddq

(2π)d
q2
⊥

(p− k+ − q)2
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε

× e
εγEΓ[1− ε]Γ[1− ε]Γ[ε]

2Γ[2− 2ε] (A.67)

g2
s

∫ ddq

(2π)d
qα⊥q

η
⊥

(p− k+ − q)2
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε

× g
αη
⊥
2
eεγEΓ[ε]Γ[1− ε]Γ[1− ε]

Γ[3− 2ε] (A.68)

g2
s

∫ ddq

(2π)d
1

(p− k+ − q)2
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)

×(1− 2ε)e
εγEΓ[ε]Γ[−ε]Γ[1− ε]

Γ[2− 2ε] (A.69)

g2
s

∫ ddq

(2π)d
qα⊥q

η
⊥

(p− k+ − q)4
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)(n−k)

×g
αη
⊥
2
eεγEΓ[ε]Γ[1− ε]Γ[1− ε]

Γ[2− 2ε] (A.70)

g2
s

∫ ddq

(2π)d
(n+q)qα⊥q

η
⊥

(p− k+ − q)4
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)

×g
αη
⊥
2 (2− ε)e

εγEΓ[ε]Γ[1− ε]Γ[1− ε]
Γ[3− 2ε] (A.71)



A.5. List of useful integrals 221

g2
s

∫ ddq

(2π)d q
2
⊥q

α
⊥q

σ
⊥

1
(p− k+ − q)6

1
(p− q)2

1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)(n−k)

×(2− ε)gασ⊥
1
8
eεγEΓ[ε]Γ[1− ε]Γ[1− ε]

Γ[2− 2ε] (A.72)

g2
s

∫ ddq

(2π)d
qσ⊥q

δ
⊥q

2
⊥

(p− k+ − q)4
1

(p− q)2
1

(n+(p− q))
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

×(ε− 2)gσδ⊥
4ε

eεγEΓ[ε]Γ[1− ε]Γ[1− ε]
Γ[2− 2ε] (A.73)

g2
s

∫ ddq

(2π)d
1

(p− k+ − q)2
1

(p− q)2
1
q2

1
(n+q)

= iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)2

×2(1− 2ε)e
εγEΓ[ε]Γ[−ε]Γ[1− ε]

Γ[2− 2ε] (A.74)

g2
s

∫ ddq

(2π)d
(n−q)

(p− k+ − q)4
1

(p− q)2
1
q2

1
(n+q)

= iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)3

×(−2)(1− 2ε)e
εγEΓ[ε]Γ[1− ε]Γ[1− ε]

Γ[2− 2ε] (A.75)

g2
s

∫ ddq

(2π)d
1

(p− k+ − q)4
1

(p− q)2
1
q2

1
(n+q)

= − iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)2(n+p)3

×2(1 + 2ε)(1− 2ε)e
εγEΓ[ε]Γ[−ε]Γ[1− ε]

Γ[2− 2ε] (A.76)

g2
s

∫ ddq

(2π)d
1

(p− k+ − q)4
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)2(n+p)2

×2(1− 2ε)e
εγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.77)

g2
s

∫ ddq

(2π)d
(n+q)

(p− k+ − q)4
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)2(n+p)

×(1− 2ε)(1− ε)e
εγEΓ[ε]Γ[−ε]Γ[1− ε]

Γ[2− 2ε] (A.78)

g2
s

∫ ddq

(2π)d
(n−q)

(p− k+ − q)4
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)2(n−k)
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×(1− 2ε)e
εγEΓ[1 + ε]Γ[−ε]Γ[1− ε]

Γ[2− 2ε] (A.79)

g2
s

∫ ddq

(2π)d
(n+q)(n−q)

(p− k+ − q)4
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)

×(1− ε)e
εγEΓ[1 + ε]Γ[−ε]Γ[1− ε]

Γ[2− 2ε] (A.80)

g2
s

∫ ddq

(2π)d
1

(n+q)
1

(p− k+ − q)2
(n+(p− q))2

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)

×(−1 + ε)
ε

eεγEΓ[ε]Γ[1− ε]2
Γ[2− 2ε] (A.81)

g2
s

∫ ddq

(2π)d
(n+(p− q))
(q − k+)2

q2
⊥

(n+q)2
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× 1
ε(1 + ε)

eεγEΓ[ε]Γ[1− ε]Γ[3− ε]
Γ[2− 2ε] (A.82)

g2
s

∫ ddq

(2π)d
(n−(q − k))
(q − k+)4

q2
⊥

(n+q)
(n+(p− q))

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× (1− ε)
2(ε+ 1)

eεγEΓ[ε]Γ[3− ε]Γ[−ε]
Γ[2− 2ε] (A.83)

g2
s

∫ ddq

(2π)d
(n−(q − k))
(q − k+)4

q2
⊥

(p− q)2
1
q2 = − iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× 1
2
eεγEΓ[ε]Γ[2− ε]Γ[1− ε]

Γ[2− 2ε] (A.84)

g2
s

∫ ddq

(2π)d
(n−(q − k))
(q − k+)4

q2
⊥

(n+(p− q))
(n+q)

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× (1 + ε)
2

eεγEΓ[ε]Γ[1− ε]2
Γ[2− 2ε] (A.85)

g2
s

∫ ddq

(2π)d
q2
⊥

(n+(p− q))
1

(q − k+)2
1

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× e
εγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.86)
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g2
s

∫ ddq

(2π)d
1

(q − k+)4
1

(p− q)2
1
q2 q

λ
⊥q

η
⊥ = iαs

(4π)

[
(n−k)(n+p)

µ2

]−ε 1
(n−k)(n+p)

× g
λη
⊥
2
eεγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.87)

g2
s

∫ ddq

(2π)d
1

(q − k+)4
1

(p− q)2
1
q2
qλ⊥q

η
⊥

(n+q)
= iαs

(4π)

[
(n−k)(n+p)

µ2

]−ε 1
(n−k)(n+p)2

× g
λη
⊥
2

1
(1 + ε)

eεγEΓ[1 + ε]Γ[−ε]Γ[1− ε]
Γ[1− 2ε] (A.88)

g2
s

∫ ddq

(2π)d
1

(q − k+)2
1

(p− q)2
1
q2 q

2
⊥

1
(n+q)

= iαs
(4π)

[
(n−k)(n+p)

µ2

]−ε 1
(n+p)

× e
εγEΓ[ε]Γ[−ε]Γ[2− ε]

Γ[2− 2ε] (A.89)

g2
s

∫ ddq

(2π)d
1

(q − k+)2
1

(p− q)2
1
q2

q2
⊥(n+q)

(n+(p− q)) = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε

× 1
2
eεγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.90)

g2
s

∫ ddq

(2π)d
1

(q − k+)4
1

(p− q)2
1
q2

q2
⊥(n+q)

(n+(p− q)) = −iαse
εγE

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)(n−k)

× Γ[1 + ε]Γ[1− ε]2
Γ[2− 2ε] (A.91)

g2
s

∫ ddq

(2π)d
1

(q − k+)6
qα⊥q

λ
⊥q

2
⊥

(p− q)2
1
q2

1
(n+q)

= iαs
(4π)

[
(n−k)(n+p)

µ2

]−ε 1
(n−k)(n+p)2

× (2− ε)gαλ⊥
4(1 + ε)

eεγEΓ[1 + ε]Γ[−ε]Γ[2− ε]
Γ[2− 2ε] (A.92)

g2
s

∫ ddq

(2π)d
1

(q − k+)2
1

(n+q)
(n+(p− q)) 1

(p− q)2 = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε

× e
εγEΓ[ε]Γ[−ε]Γ[2− ε]

Γ[2− 2ε] (A.93)

g2
s

∫ ddq

(2π)d
1

(q − k+)2 (n+(p− q)) 1
(p− q)2

1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)
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× e
εγEΓ[ε]Γ[−ε]Γ[2− ε]

Γ[2− 2ε] (A.94)

g2
s

∫ ddq

(2π)d
(n−(q − k))
(q − k+)2 (n+(p− q)) 1

(p− q)2
1
q2 = − iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε

× 1
2(2− ε)e

εγEΓ[ε]Γ[1− ε]Γ[−ε]
Γ[2− 2ε] (A.95)

g2
s

∫ ddq

(2π)d
1

(q − k+)2
qη⊥q

λ
⊥

(n+q)
1

(p− q)2
1
q2 = iαs

(4π)

[
(n−k)(n+p)

µ2

]−ε 1
(n+p)

× g
λη
⊥
2
eεγEΓ[ε]Γ[−ε]Γ[1− ε]

Γ[2− 2ε] (A.96)

g2
s

∫ ddq

(2π)d
1

(q − k+)2 q
η
⊥q

λ
⊥

1
(p− q)2

1
q2 = iαs

(4π)

[
(n−k)(n+p)

µ2

]−ε

× g
λη
⊥
2
eεγEΓ[ε]Γ[1− ε]2

Γ[3− 2ε] (A.97)

g2
s

∫ ddq

(2π)d
1

(q − k+)4
qκ⊥q

λ
⊥(n−q)

(n+q)
1

(p− q)2
1
q2 = iαs

(4π)

[
(n−k)(n+p)

µ2

]−ε 1
(n+p)2

× g
κλ
⊥
2
eεγEΓ[ε]Γ[−ε]Γ[2− ε]

Γ[2− 2ε] (A.98)

g2
s

∫ ddq

(2π)d
(n−q)qκ⊥qλ⊥
(q − k+)4

1
(p− q)2

1
q2 = iαs

(4π)

[
(n−k)(n+p)

µ2

]−ε 1
(n+p)

× g
κλ
⊥
4
eεγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.99)

g2
s

∫ ddq

(2π)d
1

(q − k+)4
1

(n+(p− q))q
κ
⊥q

λ
⊥q

2
⊥

1
(p− q)2

1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n+p)

× g
κλ
⊥
4
eεγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.100)

g2
s

∫ ddq

(2π)d
(n+(p− q))

(p− q)2
1
q2

1
(q − k+)2

1
n+q

= − iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)

× (1− ε)(1− 2ε)
(1 + ε)

eεγEΓ[ε]Γ[−ε]Γ[1− ε]
Γ[2− 2ε] (A.101)
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g2
s

∫ ddq

(2π)d
(n+(p− q))

(p− q)2
1
q2 q

2
⊥

1
(q − k+)2

1
n+q

= − iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε

× (2− ε)
2ε

eεγEΓ[ε]Γ[1− ε]2
Γ[2− 2ε] (A.102)

g2
s

∫ ddq

(2π)d
(n+(p− q))

(p− q)2
1
q2 q

2
⊥

1
(q − k+)4

1
n+q

= − iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)

× (2− ε)(1− ε)
(1 + ε)

eεγEΓ[ε]Γ[1− ε]2
Γ[2− 2ε] (A.103)

g2
s

∫ ddq

(2π)d
(n+(p− q))

(p− q)2
1
q2

qλ⊥q
η
⊥

(q − k+)4
1
n+q

= − iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)

× (2− ε)gηλ⊥
2(1 + ε)

eεγEΓ[ε]Γ[1− ε]2
Γ[2− 2ε] (A.104)

g2
s

∫ ddq

(2π)d
(n+(p− q))

(p− q)2
1
q2

q2
⊥q

η
⊥q

λ
⊥

(q − k+)6
1
n+q

= − iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)

× g
ηλ
⊥ (3− ε)(2− ε)

8(1 + ε)
eεγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.105)

g2
s

∫ ddq

(2π)d
1

(p− q)2
1
q2

q2
⊥q

η
⊥q

λ
⊥

(q − k+)6 = iαs
(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)(n+p)

× (2− ε)gηλ⊥
8

eεγEΓ[ε]Γ[1− ε]2
Γ[2− 2ε] (A.106)

g2
s

∫ ddq

(2π)d
1

(q − k+)4
1

(p− q)2
1
q2 (n+q)q2

⊥ = − iαs
(4π)

[
(n−k)(n+p)

µ2

]−ε 1
(n−k)

× ε

2
eεγEΓ[ε]Γ[1− ε]2

Γ[2− 2ε] (A.107)

g2
s

∫ ddq

(2π)d
1

(q − k+)4
1

(p− q)2
1
q2 (n+q)qα⊥q

η
⊥ = − iαs

(4π)

[
(n−k)(n+p)

µ2

]−ε 1
(n−k)

× ε gαη⊥
4(1− ε)

eεγEΓ[ε]Γ[1− ε]2
Γ[2− 2ε] (A.108)

g2
s

∫ ddq

(2π)d
1

(n+q)
qα⊥q

σ
⊥

(p− k+ − q)6
(n+(p− q))2

(p− q)2
1
q2 = iαs

(4π)

[
(n+p)(n−k)

µ2

]−ε 1
(n−k)2(n+p)

× ε(1 + ε)gασ⊥
4(1− ε)

eεγEΓ[ε]Γ[1− ε]2
Γ[2− 2ε] (A.109)
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B.1 Drell-Yan: LP collinear-loop diagram calculation
In the main text, in equations (3.15) – (3.20), we have provided results for the calculation
of the leading power amplitude with one collinear loop and one soft real emission. The
relevant diagrams are presented in figure 3.5.

Here we calculate the first representative diagram as an example. This is a standard
leading power computation with eikonal vertices included here for completeness. The
incoming collinear momentum is on-shell and carries only the large component, pµ =
(n+p)

nµ−
2 .

The amplitude for diagram a in figure 3.5 is given by

MLP
a = v̄c̄(l)iγρ⊥

i(n+p1)
p2

1

/n−
2

∫ ddq

(2π)d igsT
ACµ(p1, p1 − q)

/n+
2
i(n+(p1 − q))

(p1 − q)2
/n−
2

×igsTACµ(p1 − q, p1)
/n+
2
i(n+p1)
p2

1

/n−
2 igsTB /n+

2 n−ν
−i
q2 uc(p) (B.1)

Momentum conservation at the soft-collinear vertex can be imposed immediately. Hence
pµ1 = pµ − kµ+ is set and yields

Cµ(p1, p1 − q) = Cµ(p− k+, p− k+ − q) = nµ− − γµ⊥
/q⊥

(n+(p− q)) (B.2)

since kµ+ and pµ do not have perpendicular to direction of motion components. Similarly

Cµ(p1 − q, p1) = Cµ(p− k+ − q, p− k+) = nµ− −
/q⊥

(n+(p− q))γ
µ
⊥ (B.3)

Substituting these into the expression, using Feynman parametrisation, completing the
square in the denominator, and shifting the integration momentum q → l gives

MLP
a = −v̄c̄g3

sγ
ρ
⊥CFTB 2n−ν

(n−k)2

∫ ddl

(2π)d
∫ ∞

0
dx1dx2

γµ⊥/l⊥/l⊥γ
µ
⊥

(1 + x1)3

{
l2 −M2

}−3
uc, (B.4)

where M2 =
[
x1(n+p)(n−k)

(1+x1)2 − x2(n+p)
(1+x1)2

]
. We can perform the integral in (B.4) directly using

result (A.12). Then substituting again for M2, simplifying the expression and rescaling
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the integration variables gives

MLP
a = 2n−ν v̄c̄(l)

igsαs
4π γρ⊥

CFTBeεγE

(n−k)

[
(n+p)(n−k)

µ2

]−ε
Γ[ε](1− ε)2

×
∫ ∞

0
dx1

∫ ∞
0

dx2
x1−ε

1
(1 + x1)3−2ε

(
1 + x2

)−ε
uc(p). (B.5)

Using (A.3) we obtain

MLP
a = −v̄c̄(l)iγρ⊥

αs
4πgsT

BCF
n−ν

(n−k)

[
(n+p)(n−k)

µ2

]−ε (1− ε)
ε

f[ε]uc(p), (B.6)

where, as defined in the main text in (3.21),

f[ε] ≡ eεγEΓ[1 + ε]Γ[1− ε]2
Γ[2− 2ε] . (B.7)

B.2 Drell-Yan: NLP amplitude results
In the main body of the text we focused on the factorisation formula at the cross-section
level. As a by-product of the computation of the collinear functions, which are amplitude-
level objects, we also calculated the power-suppressed one-loop one-soft emission DY
amplitude, which we summarise here. The results below, computed directly in SCET, are
in agreement with results obtained by applying the expansion-by-regions method to the
same quantity [150].

We consider the following operator, which is the right-hand side of (3.47) without the
soft current Js:∑

m1,m2

∫
{dtk} {dt̄k̄} C̃ m1,m2

(
{tk}, {t̄k̄}

)
J m1,m2
ρ

(
{tk}, {t̄k̄}

)
(B.8)

where

J m1,m2
ρ

(
{tk}, {t̄k̄}

)
= Jm1

c̄ ({t̄k̄}) Γm1,m2
ρ Jm2

c ({tk}) (B.9)

as in (3.48). The variables appearing in this expression are defined in section 3.2.1, and
the sum is performed over the different power-suppressed currents in the N -jet SCET
operator matched to the QCD current.

Below we focus solely on the case in which the power suppression is in the collinear
sector, thereby setting m1 = A0, and allow for structures which give power-suppression
up to O(λ2) (NLP). Specifically, we consider the time-ordered product of J m1,m2

ρ with
subleading-power Lagrangian insertions between an emitted soft gluon 〈gK(k)|, and an
incoming collinear quark and anticollinear antiquark, |q(p) q̄(l) 〉. This defines the amplitude

MK
ρ = 〈gK(k)|

∑
m

∫
{dtk} dt̄ C̃A0,m

(
{tk}, t̄

)
J A0,m
ρ

(
{tk}, t̄

)
|q(p) q̄(l)〉 , (B.10)
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Figure B.1: One-loop collinear diagrams with one soft gluon emission. Only the LP current,
A0, is used here. Power suppression is provided by the time-ordered product
insertion of L(2) Lagrangian terms. The collinear gluon in the loop attaches either
to the collinear quark or the collinear Wilson line of the χc field, which is a part
of the A0 current. Note the difference in the drawing of the diagrams in those in
figure 4.3: here we included the anticollinear leg and hard current.

that we calculate at the one-loop order. Concretely, we consider only the time-ordered
products of the collinear operator part Jm2

c in (B.9) with subleading-power soft-collinear
(not: soft-anticollinear) Lagrangian insertions. The complete result for the amplitude is
obtained by subtracting from the contributions given below the corresponding ones with
n+ and n− interchanged.

In the following sections we present the different contributions to this object. Partial
results found when the virtual loop is collinear (soft) carry a subscript c (s),Mc (Ms).
The NLO contributions from the one-loop hard matching coefficient are marked with h,
Mh. Moreover, we further split the results according to the polarisation of the off-shell
DY photon γ∗ produced by the vector current, that is, we separate the amplitude into the
terms proportional to γ⊥ρ, n+ρ, and n−ρ. Notice that the γ⊥ρ structure appears due to
the leading power current in (3.11), while n±ρ terms arise from the power-suppressed A1
and B1 currents in (3.62) and (3.63), respectively.

B.2.1 Collinear loop: γ⊥ρ
We begin with the results for the set of diagrams in which the virtual loop has collinear
momentum scaling and the virtual photon created by the vector current has a transverse ρ
index. In (B.10) this means taking the LP current, and index m spans over time-ordered
product insertions of the L(2) Lagrangian. The equations below are in fact related to the
results presented in (4.83) and originate from the calculation of the diagrams shown in
figure B.1.

We separate the resulting expression into the amplitude with colour factor CF and
CA. The former receives contributions from the diagrams in the top line of figure B.1, the
latter from those in the bottom line and the non-abelian part of the last two diagrams in
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the top line. We find

Mγ⊥ρK
c,CF

= v̄c̄(l)γρ⊥
igsαs
4π

[
(n+p)(n−k)

µ2

]−ε
CFTK

(n+p)(n−k)
eεγEΓ[1 + ε]Γ[1− ε]2

(1 + ε)(1− ε)Γ[2− 2ε]

×
{

(n+k)n−ν
(3
ε
− 4− 7ε

)
+ [/k⊥, γ⊥ν ]

1
2
(
1− ε2

)
(B.11)

+ k⊥ν

(2
ε
− 5− 6ε+ ε2

)
+ (n−k)n+ν

(
−1
ε
− 1 + ε+ ε2

)}
uc(p)ε∗ν(k) ,

Mγ⊥ρK
c,CA

= v̄c̄(l)γρ⊥
igsαs
4π

[
(n+p)(n−k)

µ2

]−ε
CATK

(n+p)(n−k)
eεγEΓ[1 + ε]Γ[1− ε]2

(1 + ε)(1− ε)Γ[2− 2ε]

×
{

(n+k)n−ν
1
2

(
− 1
ε2
− 1
ε
− 2 + 11ε+ ε2

)
+ [/k⊥, γ⊥ν ]

1
2
(
−1 + ε2

)
(B.12)

+ k⊥ν

(
− 1
ε2
− 1
ε

+ 3 + 3ε
)

+ (n−k)n+ν
1
2

(
− 1
ε2
− 1
ε

+ 8− 5ε− ε2
)}

uc(p)ε∗ν(k) .

In this appendix, we use the on-shell condition k2 = 0 to rewrite k2
⊥ = −(n−k)(n+k), but

we do not impose the transversality relation (4.14). Notice that in (B.12) there are still
1/ε2 poles. These only cancel once soft structures are combined as described in the main
text.

For completeness, we now give the individual contributions due to Lagrangian insertions
which make up the results in the above two equations. The on-shell condition and the
trasversality relation have not been used to obtain these

MρK

c,JA0L(2)
1ξ

= v̄c̄(l) γρ⊥
igsαs

4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)

(
CF

(
−2
ε
− 2

)
+ CA

(
−3
ε

+ 6− ε
))

×e
εγEΓ[1 + ε] Γ[1− ε]2

2Γ[2− 2ε]

(
nν+ − nν−

(n+k)
(n−k)

)
uc(p)ε∗ν(k) , (B.13)

MρK

c,JA0L(2)
2ξ

= v̄c̄(l) γρ⊥
igsαs

4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)
eεγEΓ[1 + ε]Γ[1− ε]2

2(1− ε)Γ[2− 2ε] (B.14)

×
(
CF

(4
ε
− 14 + 2ε

)
+ CA

(
− 4
ε2

+ 3
ε

+ 10− 6ε+ ε2
)) (

kν⊥
(n−k) −

k2
⊥n

ν
−

(n−k)2

)
uc(p)ε∗ν(k) ,

MρK

c,JA0L(2)
1YM

= v̄c̄(l) γρ⊥
igsαs
4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)
CA

(
−2
ε

+ 5− 4ε+ ε2
)

×e
εγEΓ[1 + ε]Γ[1− ε]2
2(1 + ε)Γ[2− 2ε]

(
nν+ −

(n+k)
(n−k)n

ν
−

)
uc(p)ε∗ν(k) , (B.15)

MρK

c,JA0L(2)
2YM

= v̄c̄(l) γρ⊥
igsαs
4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)
CA

( 4
ε2
− 5
ε
− 2− 4ε+ ε2

)
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× e
εγEΓ[1 + ε]Γ[1− ε]2
2(1 + ε)Γ[2− 2ε]

(
k⊥ν

(n−k) −
k2
⊥

(n−k)2n−ν

)
uc(p) ε∗ν(k) , (B.16)

MρK

c,JA0L(2)
10YM

= v̄c̄(l) γρ⊥
igsαs
4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)
CA

(
− 1
ε2

+ 3
ε
− 2

)

×e
εγEΓ[1 + ε]Γ[1− ε]2
2(1 + ε)Γ[2− 2ε]

(
nν+ −

(n+k)
(n−k)n

ν
−

)
uc(p)ε∗ν(k) , (B.17)

MρK

c,JA0L(2)
15YM

= igsαs
4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)
CA

(
− 2
ε2

+ 6
ε
− 4

)

×e
εγEΓ[1 + ε]Γ[1− ε]2
2(1 + ε)Γ[2− 2ε]

(
k⊥ν

(n−k) −
k2
⊥

(n−k)2n−ν

)
uc(p) ε∗ν(k) . (B.18)

MρK

c,JA0L(2)
4ξ

= v̄c̄(l) γρ⊥
igsαs
4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)(n−k) [/k⊥, γ⊥ν ]

×
(

2CF − CA
( 4
ε2
− 5
ε

+ 2
))

eεγEΓ[1 + ε]Γ[1− ε]2
4 Γ[2− 2ε] uc(p)ε∗ν(k), (B.19)

MρK

c,JA0L(2)
4+6YM

= v̄c̄(l) γρ⊥
igsαs
4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)(n−k) [/k⊥, γ⊥ν ]

×CA
(
− 3

4ε

)
eεγEΓ[1 + ε]Γ[1− ε]2

Γ[2− 2ε] uc(p)ε∗ν(k), (B.20)

MρK

c,JA0L(2)
11+12YM

= v̄c̄(l) γρ⊥
igsαs
4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)(n−k) [/k⊥, γ⊥ν ]

×CA
( 1
ε2
− 1

2ε

)
eεγEΓ[1 + ε]Γ[1− ε]2

Γ[2− 2ε] uc(p)ε∗ν(k), (B.21)

From the above results, we see the importance of defining the collinear functions as
coefficients of particular soft structures. For example,MρK

c,JA0L(2)
2ξ

in (B.14) is related to

the one-loop correction to the collinear function for the insertion of the L(2)
2ξ Lagrangian

term. Only the corresponding tree-level piece is needed for LL resummation. However, the
one-loop correction contains 1/ε2 poles proportional to the CA colour factor, as can be seen
in (B.14). Hence, using only this piece as the contribution to the collinear function which
is needed for LL resummation would lead to incorrect results. Rather, the correct objects
to consider are the coefficients of particular soft structures, for which the problematic
poles cancel once the contributions due to different Lagrangian insertions are combined.
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Finally, we combine the above results according to the momentum dependent structures.
We focus on equations (B.13) – (B.18). These correspond to the Lagrangian insertions
with n+B+ and ∂µ⊥

in−∂
B+
µ soft building blocks. Summing (B.19) – (B.21) gives the results

in (B.11) and (B.12) directly. We stress that here we still work without using the on-shell
and transversality relations. First we have

MρK

c,JA0L(2)
1ξ

+MρK

c,JA0L(2)
1YM

+MρK

c,JA0L(2)
10YM

= v̄c̄(l) γρ⊥
igsαs

4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)

×
(
CF

(
−2
ε
− 4− 2ε

)
+ CA

(
− 1
ε2
− 2
ε

+ ε+ 6
))

×e
εγEΓ[1 + ε] Γ[1− ε]2
2(1 + ε)Γ[2− 2ε]

(
nν+ − nν−

(n+k)
(n−k)

)
uc(p)ε∗ν(k) , (B.22)

MρK

c,JA0L(2)
2ξ

+MρK

c,JA0L(2)
2YM

+MρK

c,JA0L(2)
15YM

= v̄c̄(l) γρ⊥
igsαs

4π

(
(n+p)(n−k)

µ2

)−ε TK

(n+p)

×
(
CF

(4
ε
− 10− 12ε+ 2ε2

)
+ CA

(
− 2
ε2
− 2
ε

+ 6ε+ 6
))

× eεγEΓ[1 + ε]Γ[1− ε]2
2(1− ε)(1 + ε)Γ[2− 2ε]

(
kν⊥

(n−k) −
k2
⊥n

ν
−

(n−k)2

)
uc(p)ε∗ν(k) , (B.23)

We see that the 1/ε2 poles do not cancel for the collinear function corresponding to
the n+B+ soft structure in equation (B.22), nor for the collinear function proportional
to ∂µ⊥

in−∂
B+
µ which can be extracted from (B.23). Indeed, these are not independent soft

structures. The 1/ε2 poles only cancel after the seemingly different collinear functions are
combined using the equation-of-motion relation as done in the main text, or explicitly
at this level using

[
nν+ −

n+k
n−k

nν−
]
ε∗ν(k) = −2

[
kν⊥

(n−k) −
k2
⊥

(n−k)2n
ν
−

]
ε∗ν(k). Here is manifest a

subtle, yet critical point in a consistent definition of the collinear functions.

B.2.2 Collinear loop: nρ− and nρ+

These contributions are due to time-ordered products of the power-suppressed hard currents
defined in (3.62) and (3.63) with L(1) Lagrangian insertions. The corresponding diagrams
are shown in figure B.2. Separating the two colour structures, we find

Mn±ρK
c,CF

= v̄c̄(l)
(
nρ−
n−l
− nρ+
n+p

)
igsαs
4π

[
(n+p)(n−k)

µ2

]−ε
CFTK eεγEΓ[1 + ε]Γ[1− ε]2

(1 + ε)(1− ε)Γ[2− 2ε]

×
(
γ⊥ν −

/k⊥n−ν
(n−k)

)(
1 + 2ε+ ε2

)
uc(p)ε∗ν(k) , (B.24)

Mn±ρK
c,CA

= v̄c̄(l)
(
nρ−
n−l
− nρ+
n+p

)
igsαs
4π

[
(n+p)(n−k)

µ2

]−ε
CATK eεγEΓ[1 + ε]Γ[1− ε]2

(1 + ε)(1− ε)Γ[2− 2ε]

×
(
γ⊥ν −

/k⊥n−ν
(n−k)

)(1
ε
− 2 ε− ε2

)
uc(p)ε∗ν(k) . (B.25)
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Figure B.2: Collinear one-loop diagrams with one soft gluon emission. The O(λ1) power-
suppressed currents A1 and B1 defined in (3.62) and (3.63), respectively, are used
here. The collinear virtual gluon must attach to the B1 current, because of the
additional Ac⊥ gluon field present in this subleading current.

B.2.3 Soft loop: γ⊥ρ
In this section we present the result for the soft one-virtual, one-real soft gluon amplitude
proportional to γ⊥ρ. Only one SCET diagram, shown in figure B.3, is needed to reproduce
the corresponding virtual-real contribution from the expansion-by-regions method. Hence
only non-abelian contributions arise here and we find

Mγ⊥ρK
s,CA

= v̄c̄(l) γρ⊥
igsαs
4π

(
−(n−k)(n+k)

µ2

)−ε
CATK

(n+p)(n−k)
eεγEΓ[1 + ε]2Γ[1− ε]3

Γ[2− 2ε]

×
(
n+k n−ν + k⊥ν + 1

2[/k⊥, γ⊥ν ]
) ( 1

ε2
− 2
ε

)
uc(p)ε∗ν(k) . (B.26)

Details on the vanishing of numerous other a priori possible diagrams are provided
in figures B.4 and B.5. Note that the latter figure also includes diagrams that represent
insertions of both, the collinear (on the upper leg) and anticollinear (on the lower leg)
subleading soft-collinear interactions, when a = b = 1. However, as all these terms vanish,
there is a unique separation of contributions from collinear Lagrangian insertions and from
anticollinear Lagrangian insertions. In (B.26) we have given the a = 2, b = 0 contribution
from the last diagram in figure B.5, while the a = 0, b = 2 anticollinear one is obtained
by exchanging n+ ↔ n−. We further note that the absence of a contribution of the
second diagram in figure B.5, containing a power-suppressed two-soft gluon vertex, implies
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Figure B.3: The only diagram relevant to the one virtual, one-real contribution to the two-loop
soft function. Here the power suppression is placed on the collinear leg as indicated
by the O(λ2) vertex.

the statement made in section 7.1.2 that only the single soft-gluon structures with their
corresponding soft functions S1, S6 contribute at NNLO, of which only S1 is relevant at
cross-section level as explained in the main text.

B.2.4 Soft loop: nρ+
The relevant diagram is again the topology of figure B.3. However, since one power of λ is
used up by the power-suppressed current, at the soft-collinear vertex we now insert the
L(1) term from the SCET Lagrangian.

The JA0,B1 current cannot give a contribution here since it produces a collinear gluon,
that cannot be contracted to form a soft loop.

The diagrams shown in figures B.4 and B.5 are also present here. The only change is
that the LP hard current is replaced by JA0,A1 and the sum of a+ b (+ c) = 1 only. Once
again only the last diagram in figure B.5 does not vanish, and we find

Mn+ρK
s,CA

= v̄c̄(l)nρ+
igsαs
4π

(
−(n−k)(n+k)

µ2

)−ε
CATK

(n+p)
eεγEΓ[1 + ε]2 Γ[1− ε]3

Γ[2− 2ε] (B.27)

×

γ⊥ν 1
ε2

+ k⊥ν/k⊥
(n−k)(n+k)

1
ε2

+
(
n+ν

(n+k) −
n−ν

(n−k)

)
/k⊥

( 1
2ε2 −

1
ε

)uc(p)ε∗ν(k) .

There is no term proportional to nρ−.

B.2.5 Hard loop: γ⊥ρ
As discussed in the main text, there exists also a contribution to the NLO NLP amplitude
from the one-loop hard matching coefficient C A0,A0 given in (2.58). We obtain

Mγ⊥ρK
h,CF

= v̄c̄(l) γρ⊥
igsαs
4π

(
−(n−l)(n+p)

µ2

)−ε
CFTK

(n+p)(n−k) (B.28)

×

(n+k)n−ν
(

2
ε2

+ 1
ε

+ 5− π2

6

)
+
[
/k⊥, γ⊥ν

]( 1
ε2

+ 3
2ε −

π2

12 + 4
)
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Figure B.4: Diagrams with one soft emitted gluon and one soft loop. Since all the diagrams
here include the LP JA0,A0 current, the O(λ2) power suppression must be provided
by Lagrangian insertions. This means using all possible insertions such that
a+ b (+ c) = 2 at the indicated vertices. Out of the 20 possibilities, many vanish
immediately due to contractions which yield n2

± = n± ·γ⊥ = 0 or propagators which
give zero due to the vanishing external transverse momentum. The remaining
integrals, where the integrand does not immediately vanish, are either scaleless
or vanish by Cauchy’s theorem, because all propagator poles lie in one half of the
complex momentum plane.

+ k⊥ν

(
2
ε2

+ 3
ε
− π2

6 + 8
)

+ (n−k)n+ν

(
2
ε

+ 3
)

+O(ε)
uc(p)ε∗ν(k) ,

andMγ⊥ρK
h,CA

= 0.

B.2.6 Hard loop: nρ+
This contribution comes from the one-loop correction to the matching coefficient C A0,A1 of
the JA0,A1 current together with an insertion of the O(λ) piece of quark SCET Lagrangian.
C A0,A1 is related to C A0,A0 by reparametrisation invariance [102]. With the definition
(3.62) the relation reads C A0,A1 = −1/(n+p)C A0,A0. We then find

Mn+ρK
h,CF

= v̄c̄(l)nρ+
igsαs
4π

(
−(n−l)(n+p)

µ2

)−ε
CFTK

(n+p)(n−k)
(
/k⊥n−ν − (n−k)γ⊥ν

)
×
(
− 2
ε2
− 3
ε
− 8 + π2

6 +O(ε)
)
uc(p)ε∗ν(k) . (B.29)

There is no term proportional to nρ−.
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Figure B.5: Soft one-loop diagrams with one emitted soft gluon. As in the previous figure, only
the LP current is present in these diagrams, however now the virtual soft gluon
connects the collinear and anticollinear legs. Lagrangian insertions must again be
chosen such that a+ b (+ c) = 2. Note that all diagrams with b = 1 vanish, since
a single leg cannot carry a O(λ) suppression as explained in section 3.2.2. Only
the last diagram with a = 2 or b = 2 gives a non-vanishing result. The others are
either scaleless or vanish after momentum conservation is imposed.



C

One-soft-particle reducible
contributions

The results for tree-level collinear functions corresponding to double soft gluon structures
presented in section 4.1.1 contain contributions from one-soft-particle reducible diagrams.
The reasons for including these terms are stated in the main text, however, a technical
discussion is missing. In this appendix, we fill this gap.

Let us begin with reiterating the need for the inclusion of contributions due to one-
soft-particle reducible diagrams in these collinear functions.

The main point for the necessary inclusion of the one-soft-particle reducible diagrams
corresponding to a L(2)

1ξ insertion as part of the contribution to the collinear functions with
two soft partons is that in the derivation of the factorisation formula we have eliminated the
n+B+ soft structure from the basis using the equation-of-motion relation in equation (3.46).
We see in the equation-of-motion relation in (3.46) that the n+B+ structure can be written
in terms of the single gluon structure i∂µ⊥

in−∂
B+
µ⊥

(z−), but also the two parton soft structures.
The one-soft-particle-reducible diagrams must reproduce precisely those contributions.

In other words, had we not eliminated the n+B+ soft gluon building block from the
basis of possible soft structures, we would not need to consider one-soft-particle-reducible
diagrams from a L(2)

1ξ insertion. The main point is that identical contribution to the
amplitude must be produced in both basis. We show that this is the case here, by carefully
computing the relevant collinear functions.

We begin by targeting the J3 collinear function, so the starting point is the matching
equation and we choose the external state to contain gluons. The soft structures sA6;µν ,
s2,fb, and sAB4,µν are not affected by the equation-of-motion relations, so we do not include
them in the analysis here to avoid unnecessary clutter.

The matching is performed at operator level. Let us first consider the matrix element
of the operators with a single soft gluon final state. The right hand side of the matching
equation is

〈gK(k)|Tγf (n+q)|q(p)q〉 = 2π
∫ dn+pa

2π du ei (n+pa)u
∫ dω

2π

∫
dz− e

−i ω z−

×
(
JA1;γβ,fb (n+q, n+pa;ω) 〈0|χPDF

c,βb (un+)|q(p)q〉 〈g(k)K |sA1 (z−) |0〉

237
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+ J3;γβ (n+q, n+pa;ω) 〈0|χPDF
c,βb (un+)|q(p)q〉 〈g(k)K |s3,fb(z−) |0〉

)
. (C.1)

With a single soft gluon, the analysis is identical to the one performed in the main text.
Only the 〈g(k)K |sA1 (z−) |0〉 contribution is non-vanishing, and by comparing to the left-
hand side obtained by calculation using the NLP Feynman rules, we can immediately
write down the collinear function

J
K(0)
1;γβ,fq(n+q, n+p;ω) = TK

fqδβγ

(
− 1
n+p

δ(n+q − n+p) + 2 ∂

∂n+q
δ(n+q − n+p)

)
. (C.2)

Now, since the matching equation is an operator relation, we can choose a different external
state to perform the matching. Since we target the J3 and J4 collinear functions, we choose
a two soft gluon external state. The right-hand side of the matching equation is then

〈gK1(k1)gK2(k2)|Tγf (n+q)|q(p)q〉 = 2π
∫ dn+pa

2π du ei (n+pa)u
∫ dω

2π

∫
dz− e

−i ω z−

×
(
JA1;γβ,fb (n+q, n+pa;ω) 〈0|χPDF

c,βb (un+)|q(p)q〉 〈gK1(k1)gK2(k2)|sA1 (z−) |0〉

+ J3;γβ, (n+q, n+pa;ω) 〈0|χPDF
c,βb (un+)|q(p)q〉 〈gK1(k1)gK2(k2)|s3,fb(z−) |0〉

)
, (C.3)

where, for concreteness,

s3,fb(z−) = 1
(in−∂)2

[
B+µ⊥,(z−),

[
in−∂B+,

µ⊥
(z−)

]]
fb
. (C.4)

The two soft gluon matrix element of this operator has been already given in equation (6.9).
Here, we chose the gluon to be transversely polarised to eliminate Wilson line contributions
for transparency

〈gK1
⊥ (k1)gK2

⊥ (k2)| 1
(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]]
fb
|0〉 = (C.5)

1
(n−(k1 + k2))2 g

2
s(ifK1K2BTB

fb)
[
(n−k1 − n−k2)gη1η2

⊥

]
ei(k1+k2)z−ε∗⊥η1(k1)ε∗⊥η2(k2).

For the soft structure which begins with a single gluon emission, the two soft gluon matrix
element is given by

〈gK1
⊥ (k1)gK2

⊥ (k2)|sA1 (z−) |0〉 = gs
n−(k1 + k2)

[
(kη1⊥ + kη2⊥)− (k1⊥ + k2⊥)2

(n−(k1 + k2))n
η
−

]

× −i
(k1 + k2)2 ε

∗
⊥ν1(k1)ε∗⊥ν2(k2)gsfK1K2A (C.6)

(gν1η(2k1 + k2)ν2 − gην2(k1 + 2k2)ν1 + gν1ν2(k2 − k1)η) eiz−(k1+k2) .

We put this together according to (C.3) and perform the integrals. We arrive at

〈gK1
⊥ (k1)gK2

⊥ (k2)|Tγf (n+q)|q(p)q〉 =
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Figure C.1: Possible SCET diagrams with two gluon external states required for the calculation
of J3 collinear function.

× 2π JA1;γβ,fq (n+q, n+p;n−(k1 + k2)) uc,β(p) gs
n−(k1 + k2)

[
(kη1⊥ + kη2⊥)− (k1⊥ + k2⊥)2

(n−(k1 + k2))n
η
−

]

× −i
(k1 + k2)2 ε

∗
⊥ν1(k1)ε∗⊥ν2(k2)gsfK1K2A (gν1η(2k1 + k2)ν2 − gην2(k1 + 2k2)ν1 + gν1ν2(k2 − k1)η)

+2π J3;γβ (n+q, n+p;n−(k1 + k2)) uc,β(p) 1
(n−(k1 + k2))2 g

2
s(ifK1K2BTB

fq)

×
[
(n−k1 − n−k2)gη1η2

⊥

]
ε∗⊥η1(k1)ε∗⊥η2(k2) (C.7)

From the single external soft gluon matrix element calculation, we already have the J1
collinear function, hence we now substitute the result from (C.2) and we arrive at

〈gK1
⊥ (k1)gK2

⊥ (k2)|Tγf (n+q)|q(p)q〉 =

× 2πTA
fqδβγ

(
− 1
n+p

δ(n+q − n+p) + 2 ∂

∂n+q
δ(n+q − n+p)

)
uc,β(p)

× gs
n−(k1 + k2)

[
(kη1⊥ + kη2⊥)− (k1⊥ + k2⊥)2

(n−(k1 + k2))n
η
−

]

× −i
(k1 + k2)2 ε

∗
⊥ν1(k1)ε∗⊥ν2(k2)gsfK1K2A

× (gν1η(2k1 + k2)ν2 − gην2(k1 + 2k2)ν1 + gν1ν2(k2 − k1)η)

+2π J3;γβ (n+q, n+p;n−(k1 + k2)) uc,β(p) 1
(n−(k1 + k2))2 g

2
s(ifK1K2BTB

fq)

×
[
(n−k1 − n−k2)gη1η2

⊥

]
ε∗⊥η1(k1)ε∗⊥η2(k2) (C.8)

At this point, the only undetermined piece on the right-hand side of the matching equation
is the collinear function J3.

Therefore, we next proceed to compute the left-hand side of the matching equation
by computing the relevant SCET diagrams, shown in figure C.1. We have two objectives.
Firstly, we check that the structures corresponding to J1 are reproduced. Secondly, the
leftover pieces will be identified with J3.

After a short calculation using the NLP Feynman rules, we arrive at

〈gK1
⊥ (k1)gK2

⊥ (k2)|Tγf (n+q)|q(p)q〉 = 2π
(
− 1

(n+p)
δ(n+q − n+p) + 2 ∂

∂n+q
δ(n+q − n+p)

)
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×g2
s if

K1K2BTB
fb

1
(n−(k1 + k2))2

×
(
(n−k1)− (n−k2)

)
gν1ν2
⊥ uc,γ(p)ε∗⊥ν1(k1)ε∗⊥ν2(k2)

+2π
(
− 1

(n+p)
δ(n+q − n+p) + 2 ∂

∂n+q
δ(n+q − n+p)

)

× 1
(n−(k1 + k2)) gsT

B
fb ε

∗
⊥ν1(k1)ε∗⊥ν2(k2)

(
(k1⊥ν + k2⊥ν)−

(k1⊥ + k2⊥)2

(n−(k1 + k2))n−ν
)
uc,γ(p)

× −i
(k1 + k2)2 gsf

K1K2B (gνν2 (−k1 − 2k2)ν1 + gν2ν1 (k2 − k1)ν + gν1ν(2k1 + k2)ν2). (C.9)

In order to facilitate the comparison against the right-hand side of the matching equation
presented in (C.8), we have marked the last three lines of the above equation in green.
These pieces correspond to J1 and its soft structure, as can be seen in the top four lines
of (C.8). We see that these pieces are in agreement, which achieves our first objective.

Lastly, we can extract the collinear function J3 which contains a piece originating from
a L(2)

3ξ insertion, and another from the n+B one-soft-particle reducible diagram. Moreover,
we see that it is indeed the same as collinear function J1 after the colour generator has
been moved to the soft function. We find

J3,γβ = δγβ

(
− 1

(n+p)
δ(n+q − n+p) + 2 ∂

∂n+q
δ(n+q − n+p)

)
. (C.10)

The second term in the above equation originates from the one-soft-particle reducible
diagram due to L(2)

1ξ insertion. We see that it contains the derivative on the momentum
conserving delta function which only appears in the NLP Feynman rules from the L(2)

1ξ
Lagrangian term.

Before we continue, we show that in fact we can obtain this result at the operatorial
level directly from the equation of motion.

In the following we wish to focus on the piece coming from L(2)
1ξ , which we label the

matrix element with in the subscript. We have

〈gK(k)|T 1g
γf (n+q)|q(p)q〉L(2)

1ξ
= −2π gs

(n−k)TK
fq [(n−k)nη+ − (n+k)nη−] ε∗(k)η uc,γ(p)

×
(

∂

∂n+q
δ(n+q − n+p)

)
. (C.11)

We write the soft structure in matrix element form using

〈gK(k)|nν+B+
ν (z−) |0〉 = TK gs

(n−k) [(n−k)nη+ − (n+k)nη−] ε∗η (k) eiz−k , (C.12)

we have

〈gK(k)|T 1g
γf (n+q)|q(p)q〉L(2)

1ξ
= −2π 〈gK(k)|n+B+

fq(z−)|0〉 e−iz−k uc,γ(p)

×
(

∂

∂n+q
δ(n+q − n+p)

)
(C.13)
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Now using the equation of motion for the n+ component of the soft field, including the
two-gluon term

〈gK(k)|T 1g
γf (n+q)|q(p)q〉L(2)

1ξ
= −2π 〈gK(k)| − 2 i∂µ⊥

in−∂
B+
µ⊥,fq

(z−)

−2 1
(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]]
fq
|0〉 e−iz−k

× uc,γ(p)
(

∂

∂n+q
δ(n+q − n+p)

)
(C.14)

Now, we can see that the first term in the above equation gives the one-gluon soft structure,
which we have presented in equation ((4.16)). We have set

√
Zq,c|tree = 1.

We now focus on the two gluon term. We need to input the result from (C.5). Now
there are two gluons, momentum in the exponential is k = k1 + k2.

〈gK(k)|T 1g
γf (n+q)|q(p)q〉L(2)

1ξ
= 2 (2π) 〈gK(k)| 1

(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]]
fq
|0〉 e−iz−k

× uc,γ(p)
(

∂

∂n+q
δ(n+q − n+p)

)
(C.15)

where we actually need to take a two gluon state which is for ⊥ gluons from (C.5). Hence,
we have

〈gK1
⊥ (k1)gK2

⊥ (k2)|T 1g
γf (n+q)|q(p)q〉L(2)

1ξ
= 2π 1

(n−(k1 + k2))2 g
2
s(ifK1K2BTB

fq) (C.16)

×
[
(n−k1 − n−k2)gη1η2

⊥

]
ε∗η1(k1)ε∗η2(k2)uc,γ(p)

(
2 ∂

∂n+q
δ(n+q − n+p)

)
.

This can now be compared to the right-hand side of the matching equation, and directly
extract the J3,2 contribution. This result agrees with the above one-soft-particle reducible
SCET diagrams computation.

In the following, we repeat the discussion above, however, now instead of the soft
gluons, we choose soft quarks in the external state. This way we can find all contributions
to the J5 collinear function, including contributions due to one-soft-particle reducible
diagrams. The required right-hand side of the matching equation is

〈gK(k)|Tγf (n+q)|q(p)q〉 = 2π
∫ dn+pa

2π du ei (n+pa)u
∫ dω

2π

∫
dz− e

−i ω z−

×
(
JA1;γβ,fb (n+q, n+pa;ω) 〈0|χPDF

c,βb (un+)|q(p)q〉 〈gK(k)|sA1 (z−) |0〉

+
(∫ dω2

2π

∫
dz2− e

−i ω2 z2−

)
Jfghb5;γσλβ (n+q, n+pa;ω, ω2) 〈0|χPDF

c,βb (un+)|q(p)q〉

×〈gK(k)|s5;σλ,gh(z−, z2−) |0〉
)
, (C.17)

Matrix element for the single soft gluon emission is evaluated as before, with only the sA1
contributing. Inserting it and performing the integrals we obtain for the right-hand side of
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the matching equation

〈gK(k)|T 1g
γf (n+q)|q(p)q〉 = 2π gs

(n−k)

(
JK1;γβ,fq (n+q, n+p;n−k)

[
kη⊥ −

k2
⊥

(n−k)n
η
−

])
×uc,β(p)ε∗η (k) . (C.18)

The left-hand side is computed using the NLP Feynman rules, and after comparing the
two sides of the matching equation we arrive at the familiar collinear function

J
K(0)
1;γβ,fq(n+q, n+p;ω) = TK

fqδβγ

(
− 1
n+p

δ(n+q − n+p) + 2 ∂

∂n+q
δ(n+q − n+p)

)
, (C.19)

which is the same as in (C.2). Now, we consider the two soft quark external state.

〈q(k1)q̄(k2)|Tγf (n+q)|q(p)q〉 = 2π
∫ dn+pa

2π du ei (n+pa)u
∫ dω

2π

∫
dz− e

−i ω z−

×
(
JA1;γβ,fb (n+q, n+pa;ω) 〈0|χPDF

c,βb (un+)|q(p)q〉 〈q(k1)q̄(k2)|sA1 (z−) |0〉

+
(∫ dω2

2π

∫
dz2− e

−i ω2 z2−

)
Jfghb5;γσλβ (n+q, n+pa;ω, ω2) 〈0|χPDF

c,βb (un+)|q(p)q〉

× 〈q(k1)q̄(k2)|s5;σλ,gh(z−, z2−) |0〉
)
, (C.20)

Next, substituting into the equations

〈q(k1)q̄(k2)|sA1 (z−) |0〉 = gs
n−(k1 + k2)

[
(kη1⊥ + kη2⊥)− (k1⊥ + k2⊥)2

(n−(k1 + k2))n
η
−

]

× 1
(k1 + k2)2 ū(k1)gsTAγηv(k2) eiz−(k1+k2), (C.21)

and

〈qk1(k1)q̄k2(k2)|s5;σλ,gh(z−, z2−) |0〉 = g2
s

1
(n−k1)

1
(n−k2)

×ūλ(k1) δk1hvσ(k2)δk2g e
iz2−k1 eiz−k2 , (C.22)

and performing the integrals gives the right-hand side of the matching equation

〈q(k1)q̄(k2)|Tγf (n+q)|q(p)q〉 =

2π JA1;γβ,fq (n+q, n+p;n−(k1 + k2)) uc,β(p) gs
n−(k1 + k2)

×
[
(kη1⊥ + kη2⊥)− (k1⊥ + k2⊥)2

(n−(k1 + k2))n
η
−

]
1

(k1 + k2)2 ū(k1)gsTAγηv(k2)

+2π Jfk2k1q
5;γσλβ (n+q, n+p;n−k2, n−k1) uc,β(p) g2

s

1
(n−k1)

1
(n−k2) ūλ(k1) vσ(k2) (C.23)
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Figure C.2: Diagrams contributing to the matching of the two soft quark collinear functions.
Soft lines are labelled with an “s”. For the one-soft-particle reducible diagram, the
internal gluon originates from the n+B+ term in L(2).

The left-hand side of the matching equation is obtained by calculation of diagrams in
figure C.2 using the NLP Feynman rules

〈q(k1)q̄(k2)|Tγf (n+q)|q(p)q〉 = 2π gs
n−(k1 + k2)TK

fq

[
(kη1⊥ + kη2⊥)− (k1⊥ + k2⊥)2

(n−(k1 + k2))n
η
−

]

×
(
− 1
n+p

δ(n+q − n+p)
)
uc,γ(p)

1
(k1 + k2)2 ū(k1)gsTKγηv(k2)

−2π gs
(n−(k1 + k2))TK

fq

[
2(kη1 + kη2)− 2(kη1⊥ + kη2⊥)

−2 (k1 + k2)2

n−(k1 + k2)n
η
− + 2(k1⊥ + k2⊥)2

n−(k1 + k2) n
η
−

]
uc,γ(p)

×
(

∂

∂n+q
δ(n+q − n+p)

)
× 1

(k1 + k2)2 ū(k1)gsTKγηv(k2)

−2π δ(n+q − n+p)g2
s

1
n+p

1
(n−(k1 + k2))

1
n−k1

TA
f k2

/n−γη
2 γµ⊥,ησ vsσ(k2)

×ūsλ(k1) γ⊥,λβ,µTA
k1 q uc,β(p) . (C.24)

We can compare this with the right-hand side result (C.23) after substituting collinear
functions from (C.19). We see that there are terms proportional to s1 structure are
reproduced. The leftover terms are identified with the J5 collinear function, which is the
remaining degree of freedom in the matching procedure. In the following equation, we
have kept only the terms from the diagram calculation which were not obtained due to J1
contributions

〈q(k1)q̄(k2)|Tγf (n+q)|q(p)q〉extra = 2π gs
(n−(k1 + k2))TK

fq

[
−(kη1 + kη2) + (k1 + k2)2

n−(k1 + k2)n
η
−

]

×
(

2 ∂

∂n+q
δ(n+q − n+p)

)
uc,γ(p)

1
(k1 + k2)2 ū(k1)gsTKγηv(k2)

−2π δ(n+q − n+p)g2
s

1
n+p

1
(n−(k1 + k2))

1
n−k1

TA
f k2

/n−γη
2 γµ⊥,ησ vsσ(k2)
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×ūsλ(k1) γ⊥,λβ,µTA
k1 q uc,β(p) . (C.25)

The first term in the top line cancels using Dirac equation for the soft spinor /k2v(k2) = 0.
The bottom two lines correspond to the contributions due to two O(λ) insertions of the
Lagrangian terms with soft quarks. This leaves us with one extra term in the top line
where the propagator cancels and this one corresponds precisely to the double soft quark
term from the equation of motion relation for the n+B field. Simplifying, we have

〈q(k1)q̄(k2)|Tγf (n+q)|q(p)q〉rem = 2πTK
fq

(
2 ∂

∂n+q
δ(n+q − n+p)

)
uc,γ(p)

× gs
(n−(k1 + k2))2n

η
−ūs(k1)gsTKγηvs(k2)

−2π δ(n+q − n+p)g2
s

1
n+p

1
(n−(k1 + k2))

1
n−k1

TA
f k2

/n−γη
2 γµ⊥,ησ vsσ(k2)

×ūsλ(k1) γ⊥,λβ,µTA
k1 q uc,β(p) . (C.26)

Now matching the above left-hand side to the right-hand side of the matching equation
in (C.23), excluding the J1 proportional terms, namely

〈q(k1)q̄(k2)|Tγf (n+q)|q(p)q〉 = 2π Jfk2k1q
5;γσλβ (n+q, n+p;n−k2, n−k1) uc,β(p)

×g2
s

1
(n−k1)

1
(n−k2) ūλ(k1) vσ(k2) (C.27)

Then we have

Jfk2k1q
5;γσλβ (n+q, n+p;n−k2, n−k1) = TK

fqTK
k1k2

(
2 ∂

∂n+q
δ(n+q − n+p)

)

×δγβ
1

(n−(k1 + k2))2 (n−k1)(n−k2)/n−λσ

−TA
f k2T

A
k1 q

1
n+p

1
(n−(k1 + k2))n−k2

/n−γη
2 γµ⊥,ησ γ⊥,λβ,µ . (C.28)

We also obtain the derivative piece of the collinear function directly from (4.13) at the
operator level using the equation-of-motion relation as done between equations (C.11)
and (C.16) above

T 1g
γf (n+q)L(2)

1ξ
= −2π

{
− 2 i∂µ⊥

in−∂
B+
µ⊥

(z−)

−2 1
(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]]
−2 g2

s

(in−∂)2T
K q̄+(z−)TK/n−q+(z−)

}

× χc,γ

(
∂

∂n+q
δ(n+q − n+p)

)
. (C.29)

The top two terms we have discussed previously, and the last one with soft quarks is the
one-soft-particle reducible contribution to the J5 collinear function.
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