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Abstract— The future motion of traffic participants is inher-
ently uncertain. To plan safely, therefore, an autonomous agent
must take into account multiple possible trajectory outcomes
and prioritize them. Recently, this problem has been addressed
with generative neural networks. However, most generative
models either do not learn the true underlying trajectory distri-
bution reliably, or do not allow predictions to be associated with
likelihoods. In our work, we model motion prediction directly as
a density estimation problem with a normalizing flow between
a noise distribution and the future motion distribution. Our
model, named FloMo, allows likelihoods to be computed in a
single network pass and can be trained directly with maximum
likelihood estimation. Furthermore, we propose a method to
stabilize training flows on trajectory datasets and a new data
augmentation transformation that improves the performance
and generalization of our model. Our method achieves state-
of-the-art performance on three popular prediction datasets,
with a significant gap to most competing models.

I. INTRODUCTION

For autonomous agents like vehicles and robots, it is
essential to accurately predict the movement of other agents
in their vicinity. Only with this ability collisions can be
avoided and interactions become safe. However, trajectories
can never be predicted with absolute certainty and multiple
future outcomes must be taken into account.

To address this problem, research on generative models
for motion prediction has recently gained attention. An ideal
generative model is expressive and able to learn the true
underlying trajectory distribution. Furthermore, it allows the
assignment of a likelihood value to each prediction. The
knowledge of how likely certain trajectories are is important
to prioritize, because it is infeasible for an agent to take into
account all possible future behaviors of surrounding agents.

Yet, most methods do not have all of these desirable
properties. For example, Generative Adversarial Networks
(GANs) have been used extensively for motion predic-
tion [1], [2], [3], but suffer from mode collapse and are
not guaranteed to learn the true distribution of the data [4],
[5]. Variational Autoencoders (VAEs) are a popular type of
generative models as well [6], [7], [8], [9] and approximate
the true distribution with a lower bound. Unfortunately,
likelihoods cannot be calculated directly with VAEs and
must be estimated with computationally expensive Monte
Carlo methods. Other contributions try to overcome the
problem of missing likelihoods with the use of parametric
density functions, most commonly normal distributions [10],
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Fig. 1: Trajectory predictions of our model (orange). More
likely trajectories are drawn more opaque. The distributions
our model learned are highly multi-modal.

[11]. However, this often requires unrealistic independence
assumptions and provides only limited expressive power.

In this work, we propose a novel motion prediction
model that addresses the aforementioned issues. In particular,
our model FloMo is based on normalizing flows that we
condition on observed motion histories. It is expressive and
able to learn complex multi-modal distributions over future
trajectories (see Fig. 1). With FloMo, trajectories can be
efficiently sampled and likelihoods are computed in closed
form. These tractable likelihoods allow us to train our model
with maximum likelihood estimation, instead of a proxy
loss. Because, as we show, trajectory data is prone to cause
divergence of likelihoods during training, we apply a novel
noise injection method that significantly stabilizes training
and enables the use of our model’s likelihoods in downstream
tasks. Furthermore, we propose a new data augmentation
transformation that helps our model to generalize better and
improves its performance. We demonstrate with an extensive
evaluation on three popular motion prediction datasets that
our method achieves state-of-the-art performance and we
show, both qualitatively and quantitatively, that the likeli-
hoods our model produces are meaningful.

II. RELATED WORK

Many classic approaches have been developed to make
trajectory predictions [12], [13], [14], and are still relevant
today [15].

Neural Networks. However, after successes on vari-
ous other computer vision problems, neural networks have
become popular for motion prediction as well. Alahi et
al. [16] use Long Short-Term Memories (LSTMs) to predict
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pedestrian trajectories and share information between agents
with a social hidden state pooling. Similarly, Pfeiffer et
al. [17] provide an LSTM with an occupancy grid of static
objects and an angular grid of surrounding pedestrians. But
also Convolutional Neural Networks (CNNs) [18], spatio-
temporal graphs [19] or state refinement modules [20] have
been proposed to predict single trajectories.

Generative Models. To predict not only a single tra-
jectory, but multiple possible outcomes, prediction methods
based on generative neural networks have been developed.
Sadeghian et al. [2] as well as Gupta et al. [1] utilize GANs
that are provided with additional context information. To
fight mode collapse, Amirian et al. [3] use an Info-GAN
with an attention pooling module. The Trajectron++ model
of Salzmann et al. [21] combines a conditional VAE, LSTMs
and spatio-temporal graphs to produce multi-modal trajectory
predictions. Inspired by BERT, Giuliari et al. [22] propose
to use a transformer architecture for motion prediction. Xue
et al. [9] propose the Scene Gated Social Graph that models
the relations between pedestrians with a dynamic graph that
is used to condition a VAE. Mohamed et al. [23] model
social interactions with a spatio-temporal graph on which
they apply graph convolutions and a temporal CNN to
make predictions. Instead of directly predicting trajectories,
Mangalam et al. [24] use a conditional VAE to first predict
trajectory endpoints and a recursive social pooling module
to make trajectory predictions. The prediction model of
Pajouheshgar et al. [25] is fully convolutional and outputs
a discrete probability distribution over image pixels.

Normalizing Flows. While originally developed for den-
sity estimation [26], normalizing flows have recently been
applied to various data generation problems [27], [28]. In the
area of motion prediction, normalizing flows have been rarely
used. To generate trajectories for a planner, Agarwal et al. [7]
sample from a conditional β-VAE [29] that uses a Neural Au-
toregressive Flow [30] as a flexible posterior. Bhattacharyya
et al. [8] use a conditional Flow VAE with condition and
posterior regularization to predict trajectories. In their re-
cently published work [31], they use a Block Autoregressive
Flow based on Haar wavelets to learn distributions for motion
prediction and also adapted FlowWaveNet [27] for motion
prediction. Ma et al. [32] recently showed how to find those
trajectories sampled from affine flows that are both likely
and diverse to make predictions.

The method we propose in this work is a flow-based
generative model that can learn complex multimodal dis-
tributions. It allows tractable likelihood computation and
can be trained directly with maximum likelihood estimation.
Most existing generative models only possess some of these
properties. In contrast to the flow-based prediction models
proposed in concurrent works [31], [32], the flow we use
is based on splines and hence is more flexible, which our
results demonstrate. Furthermore, we propose a novel noise
injection method that significantly stabilizes training and a
data augmentation transformation that further improves our
model’s generalization and performance. In our extensive
experiments we show that our model achieves state-of-the-

art results on popular motion prediction datasets and that the
likelihoods it produces are meaningful and can be used to
modulate how concentrated our model’s predictions are.

III. PROBLEM AND NOTATION

The motion of an agent can be defined as a finite sequence
φ=(p0, ...,pT ) of positions pt=(xt, yt) over discrete
timesteps t ∈ {0, ..., T}. For predicting the future motion
x=(pt+1, ...,pt+n) of an agent, only a part o=(p0, ...,pt)
of its past trajectory is observable. From the perspective
of generative modeling, the goal is to learn the conditional
distribution p(x |o). Future trajectories can then be predicted
by sampling x̂ ∼ p(x |o).

One way to learn such a distribution is to use normalizing
flows. Normalizing flows are probabilistic models that can
learn complex data distributions by transforming noise sam-
ples u from a simple base distribution pu(u) into samples x
from the target distribution:

x = f(u) where u ∼ pu(u). (1)

By defining the transformation f(u) such that it is invert-
ibe and differentiable, the probability density of x can be
obtained by a change of variables [33]:

px(x) = pu(u)|det Jf (u)|−1. (2)

Here Jf (u) denotes the Jacobian matrix of the function f(u).
In the same manner, by the inverse function theorem, it is
also possible to express px(x) in terms of x and Jf−1 :

px(x) = pu(f
−1(x))

∣∣det Jf−1(x)
∣∣ . (3)

For the base distribution, usually a standard normal is chosen
and the invertible transformation is implemented by a neural
network. To make the flow more flexible, several such trans-
formations can be composed. It is important that the Jacobian
determinant can be computed efficiently and, depending on
the use case, the flow must be easy to invert. Furthermore,
to represent complex distributions the transformations in the
flow must be expressive.

IV. METHOD

The objective of our model is to learn the conditional
motion distribution p(x |o), where o is an observed tra-
jectory and x is the trajectory to predict (see Sec. III).
We learn this distribution by utilizing normalizing flows. To
then make a prediction, we sample from a standard normal
base distribution u ∼ N (µ=0, σ=1) and pass the sample
through our model, which we condition with the encoded
observed trajectory o. The output of our model is a sampled
trajectory prediction x̂. By evaluating Eq. 2, we can directly
compute the likelihood of each sample in the same network
pass. An overview of our architecture is given in Fig. 2.
The main components of our model are a motion encoder
and neural spline flows as proposed by Durkan et al. [34],
consisting of conditional coupling layers [35] and monotonic
spline transformations [36].

In this work we focus on the prediction of individual
agents, because tests with integrating common interaction



Fig. 2: Our model is composed of multiple flow modules, each containing a coupling layer for conditioning, a monotonic
rational-quadratic spline (RQS) transformation and – except the last module – a permutation layer. It receives an encoded
observed trajectory and a noise vector, and outputs a prediction sample along with its likelihood.

modules in our model’s conditioning did not lead to relevant
performance improvements. This is in line with the findings
in [15], [1] and [22]. In the following sections, we explain
each component of our model in detail, including how we
prepare our data to achieve stable training, our objective
function, and a novel trajectory augmentation transformation
that we apply to increase generalization and performance.

A. Motion Encoder

The first module of our model is the motion encoder,
which encodes the observed trajectory o. Before we encode
o, we subtract from each position pt ∈ o its preceding
position, i.e. p′t=pt − pt−1. This means instead of encod-
ing absolute coordinates, we encode relative displacements,
which has proven to be beneficial for motion prediction [37],
[15]. From now on, we will denote the resulting relative ob-
served trajectory as o′ and its encoding as c. We implement
the encoder as a recurrent neural network with three Gated
Recurrent Units (GRUs) [38] and a hidden state size of 16.
Before we pass each displacement step to the encoder, we
embed it with a linear layer in a 16 dimensional vector. The
output of the last GRU is then passed through an Exponential
Linear Unit (ELU) [39] and again linearly transformed, while
keeping 16 output dimensions. We determined these hidden
and embedding sizes empirically. Because the ELU function
is non-zero everywhere, it helps to avoid dying neurons in the
network recursion. The recurrent architecture of our encoder
enables it to work with input trajectories of various lengths.

B. Conditional Coupling Layer

One way to design a normalizing flow is to modularize it
into a transformation and a conditioner [30]. The conditioner
takes the input u and parameterizes the transformation that
in turn transforms u into x. In our work, it is important
that our flow is fast to evaluate both in the forward and
inverse direction. For sampling trajectories, we must trans-
form forward from u to x, but during training we have to
compute the likelihood of x in the inverse direction (Eq. 3).
Furthermore, it would be desirable for our model to allow
the computation of likelihoods for trajectories that an agent

could possibly take, but that were not sampled. This also
requires the inverse direction.

For the flow to be fast to invert, both the transformation
and conditioner must be fast to invert. To achieve this for the
conditioner, we use coupling layers [35], [34] to implement
our flow. Coupling layers are just as fast to invert, as they
are to compute forward. Our coupling layer computes the
output x as follows (⊕ denotes concatenation):

x1:d−1 = u1:d−1

θ = NN(u1:d−1 ⊕ c)

xi = τ(ui;θi) for i ≥ d.
(4)

First, we split the input u in half and assign the first part
u1:d−1 directly to the output. Then we concatenate u1:d−1
with trajectory encoding c (see Sec. IV-A) and feed it to
the conditioner network that computes the parameters θ.
Using θ to parameterize the invertible transformation τ ,
we transform the second half ud:n of u element-wise to
the remaining corresponding outputs. The resulting Jacobian
matrix is lower triangular, and hence its determinant can be
easily computed as the product of its diagonal elements [35].
By concatenating c to the conditioner input, we make our
flow conditional on the observed trajectory, such that it learns
the density p(x |o).

We implement the conditioner as a regular feed forward
neural network with five hidden layers. Each layer has
32 neurons and is followed by an ELU activation. This
configuration worked well empirically. Because half of the
inputs are not transformed in a coupling layer, it is crucial to
stack several such modules and randomly permute the input
vectors between the modules. As permutations are volume-
preserving, the Jacobian determinant of such a permutation
layer is simply 1.

C. Monotonic Spline Transforms

Transformations used in normalizing flows must be ex-
pressive, invertible and differentiable. In motion prediction,
expressive power is crucial to represent complex distri-
butions and only fast invertibility allows the computation



of likelihoods for query trajectories at runtime and short
training times. However, most expressive flows, e.g. neural
flows [30], cannot be inverted analytically and we have to
resort to iterative methods like bisection search [33]. On the
other hand, flows that are fast to invert often use simple
transformations, e.g. affine or linear transformations, and
hence are not very expressive.

However, recently Durkan et al. [34] proposed using
monotonic rational-quadratic splines (RQS) [36] as flow
transformations. In conjunction with coupling layers, this
kind of flow becomes both expressive and fast to invert. The
spline transformation described in the following corresponds
to the function τ in Sec. IV-B.

The spline is defined by K different rational-quadratic
functions that pass through K + 1 knot coordinates{(
xk, yk

)}K
k=0

. These knots monotonically increase between(
x0, y0

)
=(−B,−B) and

(
xK , yK

)
=(B,B). In accor-

dance with Durkan et al., we assign the spline K−1 arbitrary
positive derivatives

{
δk
}K−1
k=1

for the intermediate knot con-
nection points and set the boundary derivatives δ0 = δK =1
to match the linear ‘tails’ outside of the rational-quadratic
support [−B,B]. This support is a hyper-parameter and is
set manually. With these parameters, the spline is smooth and
fully defined. The neural network that is parameterizing it
can learn the knot positions and boundary derivatives during
training.

The spline transformation is then applied element-wise,
e.g. to a given scalar input xin. If xin is outside the support,
the identity transformation is applied. Otherwise, the correct
knot bin is determined first, and then

sk =
(
yk+1 − yk

)
/
(
xk+1 − xk

)
ξ =

(
xin − xk

)
/
(
xk+1 − xk

) (5)

are computed. After this, the forward transformation

αk(ξ)

βk(ξ)
= yk +

(
yk+1 − yk

) [
skξ2 + δkξ(1− ξ)

]
sk + [δk+1 + δk − 2sk] ξ(1− ξ)

(6)

defined by the kth bin can be evaluated. For the inverse trans-
formation, derivatives to compute the Jacobian determinant
and further details, we refer the reader to [34].

In practice, the knot coordinates and derivatives come
from the conditioner network. Its output θi=

[
θwi ,θ

h
i ,θ

d
i

]
is

simply partitioned into vectors of length K, K and K−1 for
the knot widths and heights, as well as the knot derivatives.
To compute the actual knot coordinates, θwi and θhi are
softmax normalized, multiplied by 2B and their cumulative
sums starting from −B are computed.

Finally, the sampled output of our model (after the last
spline transformation) represents the predicted trajectory as
relative displacements. As for using relative coordinates in
the motion encoding (see Sec. IV-A), this has proven to be
beneficial for motion prediction [15], and it also limits the
numeric range of the output. This is important to stay within
the support [−B,B] of the spline transformations. We denote
this estimated relative displacements as x̂′. To convert it back
to absolute coordinates, we compute the cumulative sum over

Fig. 3: Comparison between normally training our model
and with our proposed noise injection. The training becomes
more stable and likelihoods stay in a reasonable range.

all positions p ∈ x̂′, starting from the last observed position
pt of o. Because both the relative observed trajectory o′

and the relative future trajectory x′ can be unambiguously
mapped back to o and x, it holds that p(x′ |o′)= p(x |o).
Hence we learn the target distribution.

Furthermore, like in [40], before making a prediction we
rotate the trajectory of the target agent around pt, such that
the last relative displacement pt − pt−1 is aligned with the
vector (1, 0). After sampling from our model, we rotate the
predicted trajectories back. This transformation simplifies
the distribution our model must learn and makes it rotation
invariant. Because rotations are volume preserving, we do not
have to consider this in our flow’s likelihood computation.

D. Preventing Manifolds

Whenever data is distributed such that it – or a subset of
it – is residing on a lower-dimensional manifold, this leads to
infinite likelihood spikes in the estimated density. Consider
the two-dimensional example with joint density p(x, y),
where x is normally distributed and y = x. The distribution
resides on a line and for

∫ ∫
p(y |x)p(x)dydx = 1 to hold,

the likelihoods where y is defined must be infinite.
In practice, this problem also arises when certain di-

mensions in the dataset samples frequently take on equal
values, or when one dimension frequently takes the same
value. Because we predict relative displacements x′ instead
of absolute coordinates, this can happen if pedestrians stand
still (values become zero), or if they move with constant
velocity for multiple timesteps (values are equal). During
training this can cause numerical instabilities, loss volatility
and the overestimation of certain samples’ likelihoods.

To mitigate this problem and inspired by [41], we define
three hyper-parameters α, β and γ. While training, when
transforming x′ to u through the inverse of our flow, we
augment x′ before our first flow module as follows:

x′′ = αx′

x′′i = x′i + εβi for all x′i = 0

x′′i = x′i + εγi for all x′i 6= 0.

(7)



We sample noise vectors εβ and εγ from zero-centered
normal distributions with standard deviation β and γ, re-
spectively. However, we only apply noise during the training
phase and not at inference time. In the forward pass, we
always compute x′=α−1x′′ after our last flow module to
normalize predicted trajectories. By adding the noise during
training, we essentially lift data off potential manifolds.
Generally speaking, we apply less noise to zero-valued
dimensions and more to non-zero displacement vectors.
Scaling x′ with α allows us to inject more noise, while
controlling the impact of the noise on the trajectory.

The lower training curves in Fig. 3 show how the loss
of our model behaves when trained normally, without our
noise injection. The loss is very volatile, especially for
the validation dataset, and the likelihoods produced by our
model are very large. Because we use the negative log
likelihood loss (see Sec. IV-E), these large likelihoods lead
to an artificially low overall loss. However, empirically these
inflated likelihoods do not correlate with better prediction
performance and are meaningless. The upper curves in Fig. 3
show how the training behaves with our noise injection.
The magnitudes of the likelihoods are significantly reduced,
because samples that originally lied on manifolds get smaller
likelihood values assigned. Hence, they stop to dominate
the training and this reduces the volatility of our validation
loss. With our method, we experienced more reliable conver-
gence during our experiments. Furthermore, it helps to avoid
numerical problems during training and makes the model’s
likelihoods easier to use in downstream tasks (e.g. those that
require normalization with softmax).

E. Objective Function

Because our model makes it easy to compute likelihoods
for training examples (see Eq. 3), we simply train it with
maximum likelihood estimation. In particular, we minimize
the negative log likelihood

NLL = − 1

N

N∑
i=1

log(p(xi |oi)). (8)

F. Trajectory Augmentation

To increase the diversity of our data, we augment trajec-
tories by randomly scaling them. In particular, for each tra-
jectory we sample a scalar in range [smin, smax] from a trun-
cated normal distribution. Before multiplying the trajectory
element-wise with the scalar, we first center the trajectory
by subtracting its mean position to avoid translating it with
the scaling, and then move it back. Scaling a trajectory does
not influence its direction and motion pattern, but simulates
varying movement speeds. It is crucial to stay within realistic
limits by applying this transformation and the correct choice
for the sampling interval depends on the used data.

V. EXPERIMENTS

We evaluate our model with the publicly available
ETH[13], UCY [42] and Stanford Drone [43] motion
datasets. All datasets are based on real-world video record-
ings and contain complex motion patterns. The ETH/UCY

datasets are evaluated jointly and focus on pedestrians that
were recorded in city centers and at university campuses.
They cover a total of five distinct scenes with four unique
environments and 1950 individual pedestrians. The larger
Stanford Drone dataset contains 10300 individual traffic par-
ticipants, it covers roads and besides pedestrians it includes
also other agent types like cyclists and vehicles. All datasets
are heavily used in the motion prediction domain [16], [15],
[21], [31], [2], [1].

We follow for all datasets the most common evaluation
regimes. For the ETH/UCY datasets we always train on
four scenes and evaluate on the remaining one. We slice
each trajectory with a step-size of one into sequences of
length 20, of which 8 timesteps are observed and 12 must
be predicted. This corresponds to an observation window
of 3.2 s and a prediction of 4.8 s. For the Stanford Drone
dataset we randomly split into training and testset but ensure
that both sets do not contain parts of the same video
sequences. We observe for 20 timesteps and predict the next
40 timesteps, which corresponds to 2 s and 4 s, respectively.
For comparability, we follow [6], [31] and scale the dataset
trajectories by a factor of 1/5.

For training our model, we only take into account
trajectories of full length, because padding would cause
issues as described in Sec. IV-D. However, in our evaluation
we use all trajectories that have a length of at least 10
timesteps for ETH/UCY, and at least 22 timesteps for
Stanford Drone, i.e. at least two timesteps to predict. Note
that we also compare tractable models only based on
displacement errors and not on log likelihoods. While our
model’s likelihoods are meaningful, as we show in Sec. V-B,
the overall log likelihood for trajectory datasets is largely
dominated by manifold artifacts and hence not ideal for
comparison.

Training. We trained our model with the Adam Opti-
mizer [44], learning rate 0.001, and batch size 128 for
150 epochs. We randomly split a 10% validation set for
ETH/UCY and a 5% validation set for Stanford Drone
from each training set to detect overfitting. Furthermore, we
define the support for each spline flow as B=15 and use 8
knot points. For ETH/UCY we set α=10, β=0.2, γ=0.02
and for Stanford Drone α=3, β=0.002, γ=0.002. In our
scaling transformation we set µ=1 for all datasets, but for
ETH/UCY σ = 0.5, smin=0.3, smax=1.7 and for Stanford
Drone σ=0.2, smin=0.8, smax=1.2. In total, we stack 10
flow layers in our model. All hyper-parameters described
were determined empirically.

Metrics. As proposed by [1], we allow each model to
predict multiple samples. For the ETH/UCY datasets we
report errors in meters, and for the Stanford Drone dataset
in pixels. We evaluate with the following metrics:
• Minimum Average Displacement Error (minADE) — Er-

ror of the sample with the smallest average L2 distance
between all corresponding positions in the ground truth
and the predicted trajectory.

• Minimum Final Displacement Error (minFDE) — Error



Model ETH-Uni Hotel UCY-Uni Zara1 Zara2 AVG

SGSG [9] 0.54 / 1.07 0.24 / 0.45 0.57 / 1.19 0.35 / 0.79 0.28 / 0.59 0.40 / 0.82
S-STGCNN [23] 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75

S-GAN [1] 0.59 / 1.04 0.38 / 0.80 0.27 / 0.49 0.18 / 0.33 0.19 / 0.35 0.32 / 0.60
CVM-S [15] 0.44 / 0.81 0.20 / 0.35 0.34 / 0.71 0.25 / 0.49 0.22 / 0.45 0.29 / 0.56

Trajectron++ [21] 0.39 / 0.83 0.12 / 0.21 0.20 / 0.44 0.15 / 0.33 0.11 / 0.25 0.19 / 0.41
TFq [22] 0.61 / 1.12 0.18 / 0.30 0.35 / 0.65 0.22 / 0.38 0.17 / 0.32 0.31 / 0.55

FloMo (ours) 0.32 / 0.52 0.15 / 0.22 0.25 / 0.46 0.20 / 0.36 0.17 / 0.31 0.22 / 0.37

TABLE I: Displacement errors for scenes in the ETH/UCY datasets and on average. We compare our model to six state-of-
the-art models. Each model predicted 20 trajectory samples and the errors are shown as minADE / minFDE.

Model @1 s @2 s @3 s @4 s

STCNN [25] 1.20 2.10 3.30 4.60
FlowWaveNet [27][31] 0.70 1.50 2.40 3.50

HBA-Flow [31] 0.70 1.40 2.30 3.20
FloMo (ours) 0.27 0.56 0.90 1.27

TABLE II: Errors for the Stanford Drone dataset, evaluated
with a five-fold cross-validation, the Oracle Top 10% metric
and 50 predicted trajectories. All models are tractable and
allow exact likelihood computation.

Model minADE minFDE

SocialGAN [1] 27.23 41.44
SoPhie [2] 16.27 29.38

CF-VAE [8] 12.60 22.30
HBA-Flow [31] 10.80 19.80

PECNet [24] 9.96 15.88
FloMo (ours) 2.60 4.43

TABLE III: Evaluation results for Stanford Drone with a
single dataset split, 20 predicted trajectories and the minADE
/ minFDE metrics. Here we also include intractable models.

of the sample with the smallest L2 distance between the
last position in the ground truth and the last position in
the predicted trajectory.

• Oracle Top 10% — Average error of the top 10% best
predicted trajectories at different timesteps. It has been
shown that this measure is robust to random guessing
and simply increasing the number of drawn samples
does not affect it [8].

Baselines. We compare our model with a variety of state-
of-the-art prediction models. Except the CVM-S [15], all
other models are based on neural networks. S-STGCNN [23],
SGSG [9] and Trajectron++ [21] utilize neural networks
in combination with graphs. TFq [22] is based on the
transformer architecture. S-GAN [1], SoPhie [2] are GANs.
STCNN [25], FloWaveNet and HBA-Flow are exact infer-
ence models and the latter two based on normalizing flows.
Besides the Trajectron++, also CF-VAE[8] and PECNet [24]
use a conditional VAE as their core network.

Fig. 4: Relationship between our model’s prediction errors
and associated likelihood ranks for the ETH/UCY datasets.

A. Displacement Errors

For the ETH/UCY datasets, we compare our model with
state of the art in Tab. I. Following the standard protocol,
each model was allowed to predict 20 trajectory samples
in this evaluation. Except for the Trajectron++, our model
significantly outperforms all other models on average errors,
both in terms of minADE and minFDE. Compared to the
Trajectron++, our model performs better on the ETH-Uni
scene, while on the other Scenes the Trajectron++ achieves
lower errors, especially for minADE. However, for the
minFDE both models perform close on all scenes except
ETH-Uni and Zara2. In total, the Trajectron++ achieves
lower errors averaged over the whole trajectories with a
minADE of 0.19, but FloMo performs better on the endpoint
prediction where it achieves a minFDE of 0.37. Hence, the
prediction performance of both models can be considered as
approximately equivalent. However, unlike the Trajectron++
our model is tractable and allows direct likelihood computa-
tion. The close performance of both models could indicate
that the noise floor for ETH/UCY predictions is approached.

On the Stanford Drone dataset we evaluated with two
different protocols. For the results in Tab. II we performed
a five-fold cross-validation and let each model predict 50
samples. Then we evaluated with the Oracle Top 10% metric
that we described earlier. All models in this evaluation
allow tractable likelihood computation, and the concurrently
proposed models HBA-Flow and FlowWaveNet (applied to



(a) Regular predictions

(b) Top-k predictions

Fig. 5: Comparison of our model’s regular predictions with
top-k predictions for the same sample.

motion prediction by [31]) are also based on normalizing
flows. The displacement errors are evaluated at four different
timesteps. Our model significantly outperforms all other
models at each timestep with an improvement of 60% at
4 s over the second best model HBA-Flow. This results show
that our model captures the true underlying distribution better
than the other tractable models.

In Tab. III we performed a second evaluation on the Stan-
ford Drone dataset with a single dataset split, 20 trajectory
predictions, and the minADE and minFDE metrics. In this
case we also compare to intractable models. The results on
this experiment confirm those of the previous experiment.
Our model significantly outperforms all compared models,
with a margin of 74% in minADE and 72% in minFDE
compared to the second best model PECNet.

B. Likelihoods

To verify that the likelihoods our model provides are
relevant, we rank each of the 20 trajectory samples generated
by our model for the ETH/UCY datasets in descending order
by likelihood. Then we compute the expected ADE and FDE
for each likelihood ranking position across all testsets. As
for the evaluation in the previous section, for each testset
evaluation we use the FloMo trained on the remaining scenes.
Fig. 4 shows graphs of how the expected errors change with
likelihood ranking. As expected, a higher likelihood (lower
rank) corresponds to lower errors for both ADE and FDE.
This proves that the likelihoods computed by our model are
meaningful and can be used for decision making.

To qualitatively demonstrate how likelihoods relate to
the predicted trajectories, in Fig. 5a we show 20 regularly
predicted trajectories and in Fig. 5b a top-k prediction for

Method ETH/UCY Stanford Drone

No Scaling 0.27 / 0.46 2.92 / 5.02
Scaling 0.22 / 0.37 2.60 / 4.43

TABLE IV: Ablation results for our scaling transformation.

the same example. For the top-k prediction we sample 100
trajectory candidates and only keep the 20 most likely ones.
The regular predictions are much more spread out. Our
model predicts sudden turns, acceleration, or deceleration.
The top-k predictions are more concentrated around the
true and most likely outcome of the pedestrian’s movement.
Furthermore, the predicted velocities are more regular. This
results demonstrate that an autonomous agent can utilize the
likelihoods our model provides to decide which predictions
it should prioritize in its planning.

C. Ablation

To understand the impact of our scaling transformation
on our model’s performance, we conducted an ablation
study. The results of this study for the ETH/UCY and the
Stanford Drone datasets are shown in Tab. IV. Applying
our transformation improved our model’s performance on all
datasets. By simulating varying movement speeds and thus
diversifying the training data, our model learned to generalize
better. We also analyzed our noise injection and found that
it does not have a significant impact on average prediction
performance. Most likely because the inflated density points
are sparsely distributed. However, the injection’s stabilizing
effect on the training of our model, along with its numerical
and practical advantages, make it a useful tool for training
flows for motion prediction.

VI. CONCLUSION

In this work we proposed a motion prediction model based
on spline flows that is able to learn a distribution over the
future motion of agents. It makes it possible to directly com-
pute likelihoods that are necessary for autonomous agents
to prioritize predictions. Because training on trajectory data
directly causes loss volatility and numerical instabilities, we
proposed a method of injecting noise, such that training
is stabilized, but the motion information in the trajectories
is preserved. Furthermore, we suggested an augmentation
transformation that improves our model’s generalization.

To evaluate our model we conducted extensive experi-
ments, in which we showed that our model achieves state-of-
the-art performance in terms of displacement errors. We also
showed at a quantitative and qualitative level that the likeli-
hoods our model provides are meaningful and can be used
for decision making in autonomous agents. With an ablation
study, we ensured that our data augmentation transformation
contributes positively to our model’s performance.
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