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ABSTRACT

ProteomicsDB (https://www.ProteomicsDB.org)
started as a protein-centric in-memory database for
the exploration of large collections of quantitative
mass spectrometry-based proteomics data. The
data types and contents grew over time to include
RNA-Seq expression data, drug-target interactions
and cell line viability data. In this manuscript, we
summarize new developments since the previous
update that was published in Nucleic Acids Research
in 2017. Over the past two years, we have enriched
the data content by additional datasets and extended
the platform to support protein turnover data. An-
other important new addition is that ProteomicsDB
now supports the storage and visualization of data
collected from other organisms, exemplified by
Arabidopsis thaliana. Due to the generic design of
ProteomicsDB, all analytical features available for
the original human resource seamlessly transfer
to other organisms. Furthermore, we introduce a
new service in ProteomicsDB which allows users to
upload their own expression datasets and analyze
them alongside with data stored in ProteomicsDB.
Initially, users will be able to make use of this feature
in the interactive heat map functionality as well as
the drug sensitivity prediction, but ultimately will be
able to use all analytical features of ProteomicsDB
in this way.

INTRODUCTION

ProteomicsDB (https://www.ProteomicsDB.org) is an in-
memory database initially developed for the exploration of
large quantities of quantitative human mass spectrometry-
based proteomics data including the first draft of the hu-
man proteome (1). Among many features, it allows the real-
time exploration and retrieval of protein abundance values
across different tissues, cell lines, and body fluids via inter-
active expression heat maps and body maps. Today, Pro-
teomicsDB supports multiple use cases across different dis-
ciplines and covering a wide range of data (2). For instance,
tandem mass spectra, peptide identifications and peptide
proteotypicity values can be used as starting points to de-
velop targeted mass spectrometry assays. Because of the re-
cent incorporation of a large amount of reference spectra
from the ProteomeTools project (3,4) as well as spectra pre-
dicted by the artificial intelligence Prosit (5), both experi-
mental and reference spectra can be used for assay devel-
opment and to validate the identification of so far unob-
served, or in fact any proteins. The integration of pheno-
typic data allows the exploration of the dose-dependent ef-
fect of drugs of interest (e.g. clinically approved drugs) on
multiple cell lines (6–9). The dynamic identifier mapping
in ProteomicsDB allows the integration of transcriptomics
data from e.g. the Human Protein Atlas project (10) and
Bgee (11), and thus facilitates the automated integration of
different data sources within ProteomicsDB. This, in turn,
allows the development of new tools. A wide range of drug-
target interaction data can be visualized in ProteomicsDB
as well, which enables the exploration of combination treat-
ments in a dose-dependent protein-drug interaction graph
in-silico.
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ProteomicsDB is becoming an increasingly valuable re-
source in (proteomic) life science research, evidenced by
the increasing number of external resources linking to Pro-
teomicsDB, such as UniProt (12) and GeneCards (13), as
well as resources making use of our application program-
ming interface (API) to show e.g. protein expression infor-
mation, as done by OmniPathDB (14) and Gene Info eX-
tension (GIX) (15).

In this version, we expanded the data content of Pro-
teomicsDB by including additional publically available as
well as in-house generated proteomic and transcriptomic
studies. Furthermore, we expanded the drug-target interac-
tion data now covering ∼1500 kinase inhibitors and tool
compounds. The cell line viability data were enriched with
an additional large dataset (16) now covering >20 000
drugs against 1500 cell lines. We further increased the
amount of protein property information that is stored in
ProteomicsDB, such as 13 000 melting points of proteins
obtained by thermal proteome profiling (17). In addition,
we expanded the biochemical assays section to include pro-
tein turnover data with synthesis and degradation curves for
>6000 proteins. We further increased the number of refer-
ence tandem mass spectra in ProteomicsDB to >5 million
from synthetic peptides and 40 million from predictions,
which, in total, are represented by 3 billion fragment ions.

RESULTS

Overview

ProteomicsDB aims to provide real-time analytical func-
tions to users, including computationally challenging tasks.
For this purpose, ProteomicsDB was carefully designed and
organized (Figure 1). It consists of a production unit, a
computing unit, and a storage unit, all intra-connected via
a 16Gbit local network. The production unit hosts the pro-
duction server as well as the entire development and test-
ing environment. The computing unit is one machine with a
fully dockerized environment which currently handles two
main tasks. First, an R server that handles R-procedures
from ProteomicsDB such as the clustering available in the
heat map. Second, a docker container with various services
handling requests to our deep learning tool Prosit which is
connected to two NVIDIA P100 GPU cards.

Over the past two years, the user interface and data con-
tent of ProteomicsDB were updated to accommodate new
requirements such as hosting data from other organisms.
Figure 2A shows the changes that were made to the front
page such that users can select the organism of interest.
Parts of the webpage have been renamed to be more generic
and cover every organism, such as the ‘Human Proteins’
tab, which was renamed to ‘Proteins’. The front page statis-
tics lists new information about the quantity of the data that
is available for the chosen organism, including information
about tissue coverage, quantitative multi-omics expression
values, biochemical assay measurements as well as cell via-
bility measurements. The main pane of the front page was
redesigned to show the main features of the platform. It is
now split into two sections. The left section provides direct
links to the protein centric visualizations, the analytics tool-
box, the new feature to upload custom data and a link to

Prosit. The right section includes links that trigger the se-
lection of the corresponding organism. To make organism
selection available throughout the web interface, we addi-
tionally adjusted the left sidebar to show one icon per avail-
able organism. The ‘Feedback’ button that that was previ-
ously located in that position was transferred to the right
pane below the ‘Help’ button. In light of these changes, all
internal procedures and endpoints (e.g. API) were adjusted
to support the new data types and organisms.

Figure 2B depicts the data expansion in ProteomicsDB
since 2017, grouped by categories. By re-analyzing and up-
loading more publically available proteomics studies, we in-
creased the tissue coverage of ProteomicsDB by ∼70 hu-
man tissues and cell lines (+∼30%), to a total of almost
300 tissues and cell lines. The broader coverage of biolog-
ical systems has direct impact on visualizations like the hu-
man body map or expression heat map. The plethora of data
in ProteomicsDB allows not only the further online explo-
ration of the proteome and its properties but also enables
the development of new tools integrating different omics
data sources. Currently, human proteomics and transcrip-
tomics data are available for ∼17 000 genes and ∼60 tissues
(Figure 2C, D). This large overlap enabled the implemen-
tation of a new missing value imputation approach which
makes use of transcriptomics or proteomics data to esti-
mate the presence and abundance of protein or RNA not
covered in individual data sets. For ∼13 000 proteins, ad-
ditional information derived from other biochemical assays
such as melting behavior or synthesis or degradation curves
are available. By integrating additional publicly available
datasets, the overlap at the tissue- and protein level will in-
crease further over the next years and eventually cover all
the >1000 (cancer) cell lines for which we already have cell
viability data. This, in turn, will aid the development of a
better understanding of the molecular factors that govern
the life of a particular cell.

New biochemical assay data, covering more protein properties

In addition to importing additional expression profile
datasets, we further extended our biochemical assay por-
tal by integrating the results of three additional studies
covering target information of small molecule kinase in-
hibitors, melting (thermal aggregation) behavior of proteins
and turnover data. First, in order to extend knowledge on
druggable protein kinases (18), we imported ∼500 000 ki-
nase inhibitor dose-response curves (Figure 3) covering 243
kinase inhibitors that are either approved for use or are in
clinical trials (18) and ∼1300 tool compounds targeting ki-
nases (unpublished). This data gives users a broader cov-
erage and thus more options to select inhibitors to study
a particular protein kinase. Various learnings might arise
from such analysis, such as assessing the repurposing po-
tential of clinical kinase inhibitors. Moreover, users can dis-
cover an appropriate molecule/inhibitor with respect to po-
tency and selectivity to study the function of a particular
kinase (19). Another use case is to identify inhibitors which
share the same target(s) but have different off-targets, which
can be used to identify and study the core signaling path-
way of the shared target(s) or general on-target effects (18).
In addition, the biochemical assay data and tools provided
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Figure 1. The architecture of ProteomicsDB. The production unit hosts the SAP HANA in-memory database management system which involves three
of the presented layers: the data layers, data content and the calculation layers. Parts of the calculation layers are shared between the production unit and
the compute node, such as the clustering and correlation procedures for the interactive expression heat map which are calculated by the Rserver. Part
of the data content is stored in the network storage unit, so that data are always available throughout the network if needed. The entire infrastructure is
intra-connected via a 16 Gbit bandwidth local network that enables rapid communication and data transfer between units.

in ProteomicsDB (e.g. Inhibitor potency/selectivity analy-
sis) can be used to discover new lead compounds for medic-
inal chemistry programs targeting a specific kinase of in-
terest (20,21). The dose-response curves can be explored
in the ‘Biochemical assay’ tab of the protein details view.
This view allows users to filter the data by different prop-
erties, so that only compounds that fit the desired criteria
will be displayed. For all curves, full experimental designs
are stored for the users to browse and explore. For dose-
response curves that belong to studies that are not published
yet, the curve information is available but the experimental
design, although fully imported, will only be shown when
these studies are published. Second, the meltome data of
ProteomicsDB was enriched with another study that cov-

ers the protein melting properties for many organisms (un-
published). Therefore, users can more thoroughly study the
effect of temperature on selected proteins. We now cover
the melting properties of ∼13 000 human proteins. Pro-
teomicsDB thus provides an extensive resource and data-
driven guidance on which temperature range should be used
for e.g. a thermal shift assay or which temperature would
be suitable for an isothermal dose response assay (ITDR).
Third, we introduced a new assay type in the ‘Biochemical
Assay’ tab which covers data from protein turnover mea-
surements (synthesis and degradation). Users can obtain
the half-life time of proteins of interest to assess their stabil-
ity (22). This data can support the analysis of the mode of
action of drugs (23) and might provide additional avenues

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/48/D

1/D
1153/5609531 by Technische U

niversitaet M
uenchen user on 29 M

arch 2021



D1156 Nucleic Acids Research, 2020, Vol. 48, Database issue

H
E

L
P

F
E

E
D

B
A

C
K

HOME PROTEINS PEPTIDES CHROMOSOMES ANALYTICS API PROJECTS FAQ ABOUT US NEWS

Status
Human Proteome
Coverage: 79%

Proteins: 15,479 of 19,628

Isoforms: 11,061 of 86,726

Unique Peptides (Isoform): 242,803

Unique Peptides (Gene): 838,376

Experimental spectra: 98,045,108

Synthetic reference spectra: 5,317,466

Predicted reference

spectra: 14,980,911

Tissues: 296

Quantitative data points: 39,533,195

Human Transcriptome
Quantitative data points: 170,919,548

Other statistics
Viability assays: 634,983

Biochemical assays: 1,591,907

Repository
Projects: 80

Experiments: 706

Recently Uploaded Projects

Zecha_MCP-2018

Klaeger_Science_2017

Cellzome_Cellsurface

Welcome to ProteomicsDB!

ProteomicsDB is an effort of the Technische Universität München (TUM). It is dedicated to expedite the identification of various proteomes and their use across the scientific community.

Tools

Proteins
Explore the proteome

Analytics Toolbox
Use our analytics tools to explore co-

expression patterns, etc.

Upload your Datasets
Use our analytics and visualization

tools on your data.

Prosit
Predict peptide properties using our

online service.

Organisms

Homo sapiens
Explore the Human proteome.

Arabidopsis thaliana
Explore the Arabidopsis proteome.

Mus musculus
Explore the Mouse proteome.

more organisms
Explore the proteome.

A

B C

1,441

362

4,646

176

210

209

12,435

Biochemical Assays

Proteomics
Transcriptomics

Gene Overlap Tissue Overlap

177

109

40

1,367

18

126

20

Cell Viability Assays

Proteomics
Transcriptomics

0

25

50

75

100

Dru
gs

(C
ell

 vi
ab

ilit
y

Ass
ay

s)

M
ea

su
re

m
en

ts

(C
ell

 V
iab

ilit
y

Ass
ay

s)Tiss
ue

s

(C
ell

 vi
ab

ilit
y

Ass
ay

s)

M
ea

su
re

m
en

ts

(B
ioc

ha
m

ica
l

Ass
ay

s)Tiss
ue

s

(P
ro

te
in

ex
pr

es
sio

n) Dru
gs

(B
ioc

he
m

ica
l

Ass
ay

s)

In
cr

ea
se

 in
 D

at
a 

P
oi

nt
s 

(%
)

Year

2019
2017

D

Tissues 254

1,467 219 716 287 8,186,911 3,855,372

63 77 20,131 1130 9,627,542 1,631,661

Figure 2. Additions to ProteomicsDB. (A) The front page of ProteomicsDB has been adjusted to host new organisms as well as provide information about
the quantity of the different data types that are stored in the database. (B) Barplot depicting the proportion and absolute number of data points added
to ProteomicsDB (in blue) since the previous update manuscript in 2017 (green). (C) Venn diagram showing the number and overlap of genes for which
proteomics, transcriptomics or biochemical assay data is available in ProteomicsDB. (D) Venn diagram showing the number and overlap of tissues (as well
as cell lines and body fluids) for which the respective data types are available in ProteomicsDB.

into understanding the effectiveness of drugs in light of the
stability of on- or off-target proteins (18). In total, ∼20 000
proteins (including isoforms) are covered by at least one and
∼3000 by all three biochemical assay types, providing po-
tentially valuable insight into additional aspects of a pro-
tein’s life cycle. As ProteomicsDB visualizes every curve (ac-
cessible via the ‘Biochemical assay’ tab in the ‘Protein De-
tails’ view), users can assess the quality of each individual
curve and underlying data points themselves.

Upload and online analysis of user expression data

Uploading expression profiles. ProteomicsDB’s ability to
interconnect and cross-reference data from various sources
is one of its core features. However, this was so far only
possible for data already stored in ProteomicsDB, limiting
its usefulness for the interpretation of data acquired in a

user laboratory. In order to fill this gap, we implemented
a new feature called ‘Custom User Data Upload’ (Figure
4). Here, users can temporarily upload their expression pro-
files and optionally normalize them to the data stored in
ProteomicsDB. On upload of a dataset, a temporary ses-
sion is created in the database which can be accessed by
a unique session ID. This session will automatically expire
after 14 days, which will result in the permanent and not
recoverable deletion of all corresponding data unless the
user chooses to extend this period. Users can save and use
their session ID to load their session to any other com-
puter or browser. Data stored in such sessions are available
via ODATA (https://www.odata.org) services within Pro-
teomicsDB and will ultimately allow the integration into
any existing analytical pipeline.

The first use case we highlight is the comparison of
custom expression data to expression data stored in Pro-
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Figure 4. Custom data analysis area of ProteomicsDB. The ‘Custom Data Upload’ tab enables users to upload their own expression datasets temporarily
to ProteomicsDB. The datasets are session-specific so that no other user has access to this uploaded data.

teomicsDB. For this to be successful, we highly recommend
making use of the normalization feature available upon up-
load. The uploaded expression profiles are normalized via
MComBat (24) using the total sum normalized proteomics
expression values of ProteomicsDB as a reference set. Be-
cause MComBat normalization depends on the calcula-
tion of a mean and variance for any given protein, only
datasets with three or more samples can be normalized
using this method. Every uploaded dataset has to adhere
to a pre-defined comma-separated format (.csv files) where
each row must provide the following information. (i) A gene
name––HGNC symbol as the identifier, which will help us
associate the uploaded proteins to the ones stored in Pro-
teomicsDB and enable cross-dataset comparisons. (ii) A tis-

sue or cell line name representing the origin of the mea-
sured sample, which will be used for visualizations. (iii) A
sample name, which is important to separate samples with
the same tissue of origin especially for the normalization
step, as samples with the same sample and tissue/cell line
name will be automatically aggregated as there is no way to
separate them. (iv) The expression value of the correspond-
ing protein in the sample in log10 scale, accompanied by
the quantification and calculation method that was used,
which will help with further comparisons of matching in-
ProteomicsDB data. (v) The taxonomy code of each sample,
which will allow dataset separation based on the selected or-
ganism, a feature which is discussed below. A detailed doc-
umentation on how to use this functionality as well as on
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the data upload format, can be found by clicking the ‘Help’
button that accompanies every view in ProteomicsDB (Fig-
ure 4).

Use of analytical tools on uploaded datasets. By upload-
ing an expression dataset, back-end procedures take care
of the data modelling and transformation, so that they are
compatible to existing tools with no major differences to
the data available in ProteomicsDB. The first tool mak-
ing use of this is the interactive expression heat map. The
heat map allows interactive visualization of expression pat-
terns of multiple groups of proteins. Upon upload, users
can choose a data source and focus their analysis on either
data from ProteomicsDB, their own datasets noted as ‘User
Data’ or the integration of both, noted as ‘Combined’. Be-
cause the heat map automatically aggregates tissues, dupli-
cated tissue names provided in the custom dataset will ap-
pear as one column. The automatic mapping enables users
to use all functionalities of the heat map, such as direct
links to the ProteomicsDB’s protein summary views and
perform GO enrichment analysis on the selected proteins.
The ‘Combined’ option allows users to compare their data
to data stored in ProteomicsDB. They can further allow a
comparison of some or all datasets that they have uploaded
to the in-database data. Users should expect that uploaded
datasets that were not subjected to normalization during
uploading, will clustered together. If the normalization step
was enabled, then user samples should cluster with tissues
or cell lines that have similar expression profiles in Pro-
teomicsDB, ideally from the same origin. Figure 4 shows
such an example where a custom dataset was co-clustered
with data stored in ProteomicsDB. Some of the uploaded
expression profiles of cell lines co-cluster with the respec-
tive cell lines stored in ProteomicsDB (here lung and liver
samples). There are cases though (here ovary) that cluster
with other tissues (here uterus). This feature enables users
to find the closest cell lines for which ProteomicsDB con-
tains, e.g. phenotypic information and explore compounds
that may be effective in user cell lines.

Extended heat map features––missing values imputation.
ProteomicsDB stores a large collection of transcriptomics
expression profiles alongside the respective proteomic pro-
files. Having access to expression data from both sources
and to the automatic mapping using the built-in Resource
Identifier Relation Model, ProteomicsDB is able to perform
data-driven missing value imputation using either data type.
Especially proteomics data (depending on the depth of mea-
surement) can show a large number of missing values. Data
selected for imputation might come from different projects
for both omics types. Even projects of the same omics type
might differ in the distribution of their expression values.
This phenomenon is commonly referred to as ‘batch effect’
and results in additional variance by the fact that we aggre-
gate data across multiple ‘batches’. Here, the term ‘batch’
refers to experiments processed in one laboratory over a
short time period using the same technological platform
(25). We performed intra-omics normalization and batch ef-
fect correction using ComBat (26). Next, we apply MCom-
Bat (24) to perform inter-omics correction of systematic dif-
ferences. MComBat, in contrast to ComBat, allows select-

ing a reference dataset so that all other datasets will be nor-
malized based on the reference. Transcriptomics data are
then transferred to the same scale of the proteomics expres-
sion data. Previous experiments showed that the correla-
tion across all tissues between mRNA and protein expres-
sion data is higher with than without such an adjustment
(27). Finally, we implemented the mRNA-guided missing
value imputation method, described in (27). For this pur-
pose, we train linear regression models and extrapolate pro-
tein abundance from transcriptomics abundance. To vali-
date the performance of the generated models, we created
artificial missing values in a random subset of the protein
expression data that are stored in ProteomicsDB. We then
used our models to extrapolate the protein abundances and
compared them to two other common missing value im-
putation strategies: (a) replacing missing values with the
minimum protein abundance of the corresponding sample
and (b) random sampling from the corresponding sample’s
protein abundance distribution, as the created missing val-
ues originate from the whole abundance distribution. The
mRNA-guided missing value imputation method showed
the best correlation to the measured values (Supplementary
Figure S1) which is why we implemented it. The entire pro-
cedure, from data normalization to training the regression
model is performed by the R server (Figure 1). This is pos-
sible because the SAP HANA in-memory database man-
agement system supports direct connections to the R-server
via proper adapters. Missing value imputation is available in
the interactive heat map (Figure 5) and can be activated by
the respective button. Once activated, and only if matching
expression profiles are available, the model trained above
and the adjusted transcriptomics expression data are used
to fill in missing values in the protein expression matrix.
The authors point out that missing value imputation can
lead to issues and should therefore be carefully considered
and evaluated on a case by case basis. Especially in the case
of mRNA-guided missing value imputation, it becomes less
accurate if the RNA dataset or protein expression data has
a limited number of samples. Moreover, not all missing val-
ues can be imputed if RNASeq matching data is missing.

Drug sensitivity prediction for proteomic profiles

ProteomicsDB already covers a lot of phenotypic drug sen-
sitivity information (Figure 2B) and to the best of our
knowledge, no other platform exists which shows the full
dose response curves across multiple resources including fil-
ters to the extent as ProteomicsDB’s cell viability viewer
does. However, the list of cell lines for which this data is
available is necessarily incomplete and likely entirely un-
available or impossible to generate if cells lines were de-
rived from say patient tissue in a particular laboratory. In
order to obtain an estimate of the susceptibility of such
cell lines to drugs, without performing an experiment, Pro-
teomicsDB provides a tool to model and estimate drug sen-
sitivity, based on expression profiles. Recent proteome pro-
filing of the NCI60 (28) and the CRC65 (27) cancer cell line
panels, and an additional panel of 20 breast cancer cell lines
(29) showed that protein signatures can predict drug sensi-
tivity or resistance. On this basis, we implemented elastic
net regression (30) in ProteomicsDB to model drug sensi-
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Figure 5. Combined interactive expression heat map. User datasets can be clustered along with data stored in ProteomicsDB for a combined analysis. User
datasets (marked in orange) that were normalized using MComBat subsequent to upload, cluster close to samples in ProteomicsDB (in blue) that were
generated from the same or similar tissues or cell types.

tivity as a function of quantitative protein expression pro-
files. This functionality can be used in the ‘Drug Sensitivity
Prediction’ view (Figure 6). Here, users can select from a
variety of tissues and cell lines whose proteomic profiles are
stored in ProteomicsDB. Next, a drug or compound can be
selected to check for its effect on the selected cell line (Fig-
ure 6A). Figure 6B shows the result of the prediction as bar
plots - one for each predicted feature (area under the curve,
pEC50, relative effect). Error bars show the range of the pre-
dictions of all bootstraps of the corresponding model. Each
drug in ProteomicsDB might be accompanied by multiple
models (multiple bars in each bar plot), because the drug
may have been used in more than one drug sensitivity screen
which was imported into ProteomicsDB (max. 4). It is im-
portant to point out that each model includes a certain set
of predictor-proteins. If the sample on which a user wants
to predict drug sensitivity does not contain some of the re-
quired proteins, prediction from some models is not pos-
sible. Selecting a bar of any bar plot generates a volcano
plot (Figure 6C), which shows information for the interpre-
tation of the trained model. The x-axis shows how strong
the expression of a particular protein is associated with drug
sensitivity or resistance, analogous to a correlation. The y-
axis shows the number of bootstrap models contained the
particular protein as a predictor, when training the elastic
net model. Proteins that appear in the top left and right ar-
eas of the volcano plot (Figure 6C) are frequently selected
from the models as predictors, as they have a high positive
or negative correlation with drug sensitivity or resistance
and can, therefore, represent potential biomarkers. Instead
of predicting drug sensitivity on tissues or cell lines from
ProteomicsDB, users also have the option to use this func-
tionality on their own datasets, uploaded using the ‘Cus-
tom User Data Upload’ tab. Predictions can be applied to
all user datasets, although it is highly recommended to use
normalization upon uploading, as the models were trained

on data stored in ProteomicsDB and expect values from the
same or similar expression distributions.

Real-time analytics and visualization for any organism

ProteomicsDB was initially developed for the exploration of
the human proteome. As a result, every database view and
endpoint was designed without explicit support for multiple
organisms. In order to support the storage, handling and
visualization of data from multiple organisms, all layers of
ProteomicsDB (Figure 1) required modifications and exten-
sive testing. In the new version presented here, we modified
all backend procedures to support querying of data for a
specific taxonomy. The API endpoints were modified to re-
quire a taxcode in order to respond with the desired data.
With this functionality in place, we prepared the database
and the data models to support and handle the protein se-
quence space of any organism. Similarly, the user interface
was modified to support the visualization of data from a se-
lected organism. Users can change the selected organisms
by using the respective icons on the left hand side of each
view, or directly on the front page of ProteomicsDB (Figure
2A). For the protein expression visualization, new interac-
tive body maps for Arabidopsis thaliana and Mus musculus
were generated (Figure 7A, Supplementary Figure S2) and
function in the same way as the human body map.

To bring Arabidopsis thaliana into ProteomicsDB, we
downloaded, processed and imported the protein sequence
space from UniProt, following the same mechanism as
for human proteins. Upon import, appropriate decoy se-
quences were created for every protease, to allow false dis-
covery (FDR) estimation by the picked FDR approach
already implemented in ProteomicsDB (31). We further-
more imported the Plant Ontology (PO) (32) to be able
to make use of ontologies for the different plant tissues.
This step was not necessary for Mus musculus, since the
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Figure 6. Drug sensitivity prediction. (A) Prediction is enabled for both, data stored in ProteomicsDB or user uploaded datasets. (B) This view visualizes the
predicted sensitivity of a chosen cell line to a chosen drug expressed by area under the curve (AUC, left bar), the negative log of the effective concentration
of the drug (EC50, middle bars) and the relative (cell killing) effect (right bars). If more than one bar is shown, more than one training data set was available
for the particular drug and either one or several predictions are shown. (C). Each dot in the volcano plot, represents a protein that is associated to drug
sensitivity or resistance on the basis of the elastic net model generated during training.

Brenda Tissue Ontology (BTO) (33) that was previously im-
ported into ProteomicsDB to support the analysis of hu-
man proteins covers any mammalian tissue. To complete the
protein information and meta-data panel, we downloaded
and imported protein domain information from SMART
(34) using their RESTful API and GO annotations us-
ing the QuickGo-API of the European Bioinformatics In-
stitute (EBI). Protein-protein interactions and functional
pathway information were downloaded from STRING (35)
and KEGG (36), respectively. The latter data were pro-
cessed and transformed for import into our triple-store
data model, which allows the automatic mapping of the
respective STRING and KEGG identifiers to the corre-
sponding UniProt accessions and our internal protein iden-
tifiers. With the meta-data imported, the proteomics and
transcriptomics expression profiles for Arabidopsis thaliana
were imported. The project covers 30 different tissues, in-
cluding a tissue-derived cell line that was derived from cal-
lus tissue. Because of the generic design of ProteomicsDB,
any analytical view (e.g. heat map) will work without fur-
ther modifications for any other organism. However, due to
the limited datasets available for phenotypic drug responses
(and the respective drug targets), other views do not show
any A. thaliana or M. musculus data yet.

As mentioned before, we have imported >5 million refer-
ence spectra acquired from synthetic human peptides in the
ProteomeTools project. As a next step, we imported more
than 10 million Prosit-predicted peptide spectra, in three
different charge states and 3 different collision energies. By
chance, these spectra also represent 70 000 peptides from
Arabidopsis thaliana because their sequences are identical
in either organism. In addition, we added predicted spectra
for all peptides present in the experimental data set. Thus,
akin to the human case, these reference spectra can be used
to validate peptide identifications in experimental data us-
ing the mirror spectrum viewer integrated in ProteomicsDB.
First, these are directly accessible in the ‘Peptides/MSMS’
tab of the ‘Protein Details’ view, where users can validate or
invalidate i.e. one hit wonders (proteins which are only iden-
tified by a single peptide/spectrum), and more generally val-
idate proteins/peptides in case the user wants confirmation
that the protein is actually present in the sample of a project
and consequently in a cell line or tissue in ProteomicsDB.
Since ProteomicsDB contains up to 14 different types of ref-
erence spectra (11 fragmentation settings from Proteome-
Tools and 3 normalized collision energies from Prosit) as in-
dicated in the list of available reference spectra, users can se-
lect the optimal match (37). Second, in the ‘Reference Pep-
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Figure 7. ProteomicsDB as a multi-organism and multi-omics platform. (A) Proteome or transcriptome expression data are visualized in the tissues of
a chosen organism (left) and numerical expression data (medians in case multiple samples of the same tissue are available) are shown on the right for
each tissue the protein was found in. Tissue bars selected by users turn orange and the respective tissue is highlighted on the body map on the left view
projects the tissue aggregated omics expression values to the corresponding organism’s body map. (B) Venn diagram is showing the overlap of gene-level
data available for proteomics and transcriptomics for Arabidopsis thaliana. (C) Venn diagram showing the overlap of tissues for which proteomics and
transcriptomics expression values are available in ProteomicsDB.

tides’ tab, where users can browse ProteomeTools and Prosit
spectra for e.g. designing targeted mass spectrometric as-
says. The two separate views exist because for some proteins,
no experimental spectra of endogenous proteins might be
available, while many reference spectra might be available
because the ProteomeTools synthesized all meaningful pep-
tides for a hitherto unobserved protein. For proteins where
experimental data from endogenous proteins is available,
users can take experimental proteotypicity of peptides into
account and thus rationalize which peptide to choose for an
assay. Additionally, this view can be used to compare spec-
tra created by different fragmentation methods and, more
importantly, different collision energies to optimize their
targeted assays for collision energies which generate desired
fragment ions (e.g. highly intense and high m/z ions). Fur-
thermore, spectra can now be downloaded in the mirrored
spectrum viewer as msp-files. Finally, as mentioned above,
ProteomicsDB is also ready to support Mus musculus data.
However, the selection of mouse in ProteomicsDB will only
be enabled once the data has been published.

FUTURE DIRECTIONS

The continuous updates introduced over the last years have
transformed ProteomicsDB into a multi-omics resource for

life science research covering proteomic and transcriptomic
expression, pathway, protein-protein and protein-drug in-
teractions, and cell viability data (Supplementary Figure
S3). Many aspects of ProteomicsDB are already respect-
ing the FAIR principles (38). For example, e.g. findability
(F) is supported by unique identifiers, accessibility (A) via
API endpoints including meta-data and reusability (R) by
way of multiple online services taking advantage of Pro-
teomicsDB’s API endpoints. However, more efforts are cur-
rently made to transform ProteomicsDB into a fully FAIR
resource, e.g. by extending the API to allow access to all
data stored in ProteomicsDB. One particular strength of
ProteomicsDB is its versatile mapping service allowing the
seamless connection between different data types. This en-
ables subsequent modelling and data mining to further
evolve ProteomicsDB from an information database to a
knowledge platform. Along these lines, we plan to extend
our analytical toolbox such that scientists in life science re-
search can directly benefit from the wealth of data stored
in ProteomicsDB. Here, we show the first steps into this di-
rection by extending the toolbox as well as enabling users
to upload their own expression data. Combined with Pro-
teomicsDB’s flexible infrastructure, this will provide ease of
use for data analysis, interpretation and machine learning
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capabilities not accessible to every laboratory or scientist.
For this purpose, we are also planning to further extend
the data content of ProteomicsDB to include, e.g. protein
structures integrated with drug–target affinity data (20) or
develop tools which allow the prediction of the target spaces
of kinase inhibitors (39).

Two more extensions are planned that will allow the fur-
ther integration and exploitation of reference spectra. The
first one is to use synthetic or predicted reference spectra
to systematically validate and assess the confidence of ex-
perimental data by evaluating their spectral similarity. As
shown earlier, the integration of intensity information can
lead to drastic improvements in either the number of iden-
tified peptides or the ability to differentiate correct from in-
correct matches (5). Especially the latter will help to increase
the confidence of each peptide identification and thus also
increase the quality of identification and quantification re-
sults stored in ProteomicsDB. The second extension is the
implementation of a smart tool which will allow users to
build targeted assays based on data stored in ProteomicsDB
as described.

Ultimately, the collected data and generated knowledge
should culminate in actionable hypotheses. These may drive
the design of laboratory experiments or eventually aid de-
cision making in patient care. One way how ProteomicsDB
could be used for the latter is by providing tools that as-
sist molecular tumor boards. We plan to provide pipelines
where researchers and clinicians will be able to upload the
protein profiles of patient samples in a fully anonymized
fashion and have in-depth bioinformatic analysis reports
returned, spiked with a wide range of information includ-
ing, e.g. protein and RNA abundance levels, biomarkers
that predict sensitivity or resistance, potential off-label uses
based on approved kinase inhibitors as well as general sam-
ple characterization, classification or origin identification
based on similarities of molecular fingerprints.
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