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Abstract

Despite the recent successes in the development of autonomous vehicles, there are still major
challenges regarding the motion planning of autonomous vehicles in complex traffic situations.
In complex traffic situations, autonomous vehicles need to select from various maneuver
options, such as overtaking another vehicle to the left or right, but not all maneuvers are
safe or reach the desired set of goal states. Since the exhaustive exploration and validation of
all maneuver options is typically impossible due to hard real-time constraints, the question
arises how to quickly identify feasible maneuver candidates. This challenge becomes even more
evident when considering the maneuver-based cooperation within a group of communicating
vehicles, where the number of joint maneuvers grows exponentially with each participating
vehicle. Moreover there are infinitely many traffic situations and their future evolution is
unknown, therefore, motion planning methods need to generalize to arbitrary traffic situations
so that safety can be ensured at all times.

To address the aforementioned challenges, this thesis proposes a holistic motion planning
approach that can be used for individual, cooperative, and safe motion planning in arbitrary,
complex traffic situations. By combining set-based reachability analysis and continuous opti-
mization, we demonstrate how to (a) efficiently explore the solution space for trajectory plan-
ning of autonomous vehicles and (b) to identify suitable representations of collision avoidance
constraints for arbitrary trajectory planners based on nonlinear programs or (successive) con-
vexification. Since the computation times of our approach typically decrease with increasing
criticality of the traffic situation, our approach is particularly suited for planning fail-safe
trajectories. In this regard, we integrate our approach into a safety layer that guarantees
that the autonomous vehicle complies with legal safety, i.e., the autonomous vehicle never
causes accidents even though other road users are allowed to perform any legal behavior. The
safety layer verifies whether intended trajectories of the autonomous vehicle comply with legal
safety and provides fail-safe trajectories that can be executed in critical situations. To enable
maneuver-based cooperation, we propose a cooperation mechanism in which communicating
vehicles negotiate space-time reservations based on their reachable sets. This cooperation
mechanism is suited for arbitrary, mixed traffic situations and facilitates the transition from
individual to cooperative driving.

To demonstrate the benefits of our approach, we extensively validated it in simulation and
the drivability of the planned trajectories using a BMW 7-series vehicle. Our test cases include
real traffic scenarios publicly available in the CommonRoad benchmark suite that we have
initiated with the aim to increase the reproducibility of scientific results. The CommonRoad
benchmarks for motion planning are uniquely identified by a short ID, making it easy to
describe all necessary details of experiments in publications. CommonRoad is open source and
can be easily extended by other researchers helping to accelerate motion planning research.
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Zusammenfassung

Trotz jüngster Erfolge in der Entwicklung des autonomen Fahrens bestehen weiterhin große
Herausforderungen in der Bewegungsplanung autonomer Fahrzeuge in komplexen Verkehrssi-
tuationen. In komplexen Verkehrssituationen müssen autonome Fahrzeuge ein Fahrmanöver
aus einer Vielzahl an möglichen Manövern auswählen, jedoch sind nicht alle Manöver sicher
oder erreichen die gewünschte Menge an Zielzuständen. Da die vollständige Exploration und
Validierung aller Fahrmanöver auf Grund von harten Echtzeitbedingungen für gewöhnlich
unmöglich ist, stellt sich die Frage wie möglichst schnell geeignete Manöverkandidaten gefun-
den werden können. Diese Herausforderung wird sehr deutlich bei der Betrachtung manöver-
basierter Kooperationen von Gruppen kommunizierender Fahrzeuge, bei der die Anzahl der
kombinierten Fahrmanöver mit jedem teilnehmenden Fahrzeug exponentiell anwächst. Zu-
sätzlich gibt es eine unendliche Anzahl von Verkehrssituationen, deren zukünftige Weiter-
entwicklung unbekannt ist, weshalb Bewegungsplanungsmethoden auf beliebige Verkehrssi-
tuationen generalisierbar sein müssen um den sicheren Betrieb autonomer Fahrzeuge zu
gewährleisten.

Um diese Herausforderungen zu adressieren, führt die vorliegende Arbeit einen ganzheit-
lichen Ansatz für die individuelle, kooperative und sichere Bewegungsplanung autonomer
Fahrzeuge in beliebigen, komplexen Verkehrssituationen ein. Mittels der Kombination aus
mengenbasierter Erreichbarkeitsanalyse und kontinuierlicher Optimierung zeigt diese Arbeit
wie (a) der Lösungsraum für die Trajektorienplanung effizient exploriert und (b) geeignete
Nebenbedingungen für die Kollisionsvermeidung für beliebige Trajektorienplaner basierend
auf nichtlinearen Programmen oder (sukzessiver) Konvexifizierung identifiziert werden können.
Da die Rechenzeiten des vorgestellten Ansatzes in kritischen Verkehrssituationen für gewöhn-
lich abnehmen, eignet sich dieser insbesondere für die Planung ausfallsicherer Trajektorien.
Der vorgestellte Ansatz wird deshalb in eine Sicherheitsebene für Trajektorienplaner inte-
griert, die gewährleistet, dass autonome Fahrzeuge keine Unfälle verursachen, obwohl andere
Verkehrsteilnehmer jede mögliche legale Bewegung ausführen dürfen. Die Sicherheitsebene
verifiziert dabei die geplanten Trajektorien des autonomen Fahrzeuges und berechnet aus-
fallsichere Trajektorien, die in sicherheitskritischen Situationen ausgeführt werden können.
Für die manöverbasierte Kooperation wird ein Mechanismus vorgeschlagen, bei dem kommu-
nizierende Fahrzeuge Raum-Zeit-Reservierungen basierend auf erreichbare Mengen aushan-
deln. Der Kooperationsmechanismus ist für die Anwendung in Verkehrssituationen mit ge-
mischtem Verkehr aus menschlichen Fahrern und autonomen Fahrzeugen geeignet und er-
leichtert den Übergang von individuellem zu kooperativem Fahren.

Die Vorteile des vorgestellten Verfahrens werden ausgiebig in Simulation und die Fahrbarkeit
von geplanten Trajektorien mit Hilfe eines BMW 7er Versuchsfahrzeuges demonstriert. Die
verwendeten Testfälle beinhalten reale Verkehrsdaten, die öffentlich in der CommonRoad
Benchmark Suite zugänglich sind. Die CommonRoad Benchmark Suite wurde im Zuge der
vorliegenden Arbeit initiiert, um die Reproduzierbarkeit wissenschaftlicher Ergebnisse zu
verbessern. Die CommonRoad Benchmarks für die Bewegungsplanung sind über eine kurze
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ID eindeutig identifizierbar, so dass alle notwendigen Details von Experimenten in Publika-
tionen einfach beschrieben werden können. CommonRoad ist frei verfügbar und erweiterbar
durch andere Wissenschaftler, um den wissenschaftlichen Fortschritt in der Bewegungspla-
nung autonomer Fahrzeuge zu beschleunigen.
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Chapter 1

Introduction

Autonomous vehicles are envisioned to revolutionize the transportation sector [11]. The ex-
pected benefits are numerous including the reduction of traffic injuries and fatalities; time
savings since persons are no longer involved in the driving task and can engage in other
activities; transportation for persons with restricted mobility; and decrease in vehicle own-
ership due to a higher utilization of on-demand vehicle sharing [11]. To further enhance the
benefits of autonomous driving, wireless communication technologies can be used to connect
autonomous vehicles, enabling the explicit exchange and coordination of maneuvers [12]. By
orchestrating the motions of a group of connected autonomous vehicles, the capacity of the
road infrastructure can be increased, e.g., by traffic shaping [13] or by reducing the inter-
vehicle distance [14], resulting in improved traffic flow and shorter commuting times. In
addition, connected autonomous vehicles have the potential to further increase traffic safety
by enabling collision avoidance maneuvers that would not be possible through individual plan-
ning, e.g., when an evasive maneuver in dense traffic requires coordination with surrounding
road users, as otherwise a collision would occur.

Given its tremendous potential, the development of autonomous driving has received much
attention in the last years. An important aspect in the technical realization of autonomous
vehicles is the development of motion planning algorithms. Initially, research has mainly
focused on the motion planning for individual vehicles, while cooperative motion planning
has recently gained increasing interest. Although remarkable progress has been made, the
following research questions remain open:

• How can we efficiently plan drivable, i.e., collision-free and dynamically feasible, motions
for autonomous vehicles that reach certain goal states in arbitrary, cluttered environ-
ments with multiple static and dynamic obstacles?

• How can we efficiently plan cooperative maneuvers for autonomous vehicles in mixed
traffic situations, i.e., situations where human-driven and autonomous vehicles share
the road with vulnerable road users such as pedestrians?

• How can we ensure that the planned motions of autonomous vehicles are safe at all
times in any traffic situation?

• How can we unify the motion planning for individual vehicles and a group of cooperative
vehicles?

The goal of this thesis is the development of methods and algorithms for the holistic solution of
the above mentioned research questions. In the following sections, we discuss the challenges
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Chapter 1 Introduction

of individual, cooperative, and safe motion planning for autonomous vehicles and give an
overview of current approaches in the literature that aim to solve these challenges.

1.1 Individual Motion Planning

Automated vehicles need to be able to cope with complex traffic situations, i.e., traffic sit-
uations with several static and dynamic obstacles and non-trivial road layouts such as in-
tersections or multi-lane highways. However, both the obstacles and the structure of the
road layout may result in the autonomous vehicle only being able to operate in a small sub-
set of its state space, making it difficult to find feasible motions. To operate autonomous
vehicles in complex traffic situations, automated driving architectures have been developed
that break down the overall problem into more manageable and easier to solve sub-problems.
The architectures typically consist of a perception module to generate a model of the current
environment; a decision module to plan trajectories given the current environment model and
various task-specific constraints; and a control module responsible for tracking the computed
trajectory [15]. The decision module is often separated into the route planning, behavioral,
and motion planning layer [16]. This work focuses on the motion planning layer which is
concerned with the planning of local trajectories that reach a set of goal states starting from
the initial state of the autonomous vehicle. The goal states are typically provided by the
behavioral layer that is responsible for tactical decision making. Below, we discuss the chal-
lenges arising in the field of motion planning in complex traffic situations and review solution
approaches found in the literature.

1.1.1 Challenges

Fig. 1.1 illustrates the main challenges of motion planning in complex traffic situations. The
autonomous vehicle is approaching a construction site and a pedestrian is predicted to cross
the road (see blue areas in Fig. 1.1). The trajectories of the autonomous vehicle are subject
to constraints that ensure drivability, i.e., collision avoidance with surrounding obstacles
and feasibility in terms of vehicle dynamics, taking into account dynamic and kinematic
limits (e.g., minimum and maximum steering angles, acceleration, and curvature changes).
In general, the vehicle dynamics are non-linear and collision avoidance with surrounding
obstacles is an inherently combinatorial problem. For each obstacle in the environment,
different maneuver choices can be taken, such as yielding, overtaking on the left or right side,
or following (see Fig. 1.1); and with each additional obstacle in the environment, the number
of maneuver options grows exponentially.

Especially in complex traffic situations, it can become increasingly difficult to find drivable
motions in time. The main reasons are: (a) it may not be possible to exhaustively evaluate
all possible maneuvers under strict real-time constraints due to the high number of maneuver
options. (b) Many maneuvers may not be drivable which is often the case in safety-critical
situations, i.e., complex traffic situations with small and convoluted solution spaces for motion
planning. (c) It might be necessary to detect narrow passageways in the solution space for
trajectory planning. As shown in Fig. 1.1, it may be challenging to find a drivable trajectory
that avoids the pedestrian, since the space on the road for such a maneuver is rather limited.
(d) Some maneuvers may not reach the desired set of goal states (see Fig. 1.1) provided by
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1.1 Individual Motion Planning

autonomous vehicle predictiontrajectory

construction site
pedestrian

goal

Figure 1.1: The autonomous vehicle has to reach a set of goal states while approaching a construc-
tion site and a pedestrian who is likely to cross the road. There are several maneuver
options that the autonomous vehicle can select, but not all maneuvers lead to the
desired set of goal states.

the behavioral layer. There may also be the possibility that the set of goal states cannot be
reached at all, which would require some kind of error handling or default behavior.

In general, the planned trajectories should not only be drivable, but also optimal in terms
of a cost function that, for instance, minimizes acceleration or jerk. Since the motion planning
problem is generally PSPACE-hard (at least as difficult to solve as an NP-complete problem)
[16], it is challenging to find solutions in time. To reliably operate autonomous vehicles in any
traffic situation, we require motion planners that generalize well to different and previously
unseen traffic situations.

1.1.2 Literature Review

Many techniques for the motion planning of autonomous vehicles have been developed over
the past years that aim to solve the aforementioned challenges. Recently, approaches based
on machine learning have gained increasing interest, such as reinforcement learning or end-to-
end learning [17–19]. In contrast to approaches based on hierarchal architectures for motion
planning, end-to-end learning approaches do not distinguish between the perception, decision,
and control module, instead they generate the control commands for the autonomous vehicle
directly from the sensor data [20]. Current solutions based on machine learning are promising,
but their scalability to arbitrary traffic scenarios, safety, and interpretability are still open
research questions. Our review on motion planning techniques therefore focuses on graph
search, incremental search, and variational methods according to [16]. Further comprehensive
overviews of different motion planning techniques for autonomous vehicles can be found in
[15,16,21,22].

Graph and Incremental Search Techniques

To plan trajectories for the autonomous vehicle with graph search algorithms like A∗or ARA∗

[23], the state space of the autonomous vehicle is typically discretized by sampling the control
or state space. For instance, by forward simulation of a selected vehicle model using sampled
control inputs [16], motion primitives can be generated. The obtained motion primitives can
be concatenated to create a search graph [24,25] (see Fig. 1.2). To reduce the computational
burden at runtime, motion primitives can also be precomputed offline [26], so that complex
vehicle models can be applied. However, the concatenated motion primitives can form an
irregular pattern. In the worst case, no final state of one concatenated motion primitive
coincides with another, resulting in a huge search tree. To overcome this problem, motion
primitives can be constructed so that the resulting graph creates a regular pattern referred
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Chapter 1 Introduction

prediction goalprimitive

Figure 1.2: Motion primitives are concatenated to find a drivable trajectory for the autonomous
vehicle. Motion primitives that lead to a collision with surrounding obstacles are
colored in red. Due to the fixed discretization of the graph, there may exist no collision-
free combination of motion primitives that evades the pedestrian.

to as state lattice [27–29]. To further reduce the combinatorial complexity, the initial state
of the autonomous vehicle can be directly connected to several goal states via geometric
curves such as quintic polynomials [30] or circular arcs [31]. The resulting search tree has a
single root node to which each goal node is connected by a single edge. A key advantage of
graph search techniques is that they naturally explore combinatorial maneuver choices such
as overtaking an obstacle to the left or right side. However, graph search techniques are only
resolution complete, i.e., a coarse resolution may result in solutions not being found, which is
critical when maneuvering in tight spaces. Therefore, the selection of the number of candidate
trajectories is challenging: a high number of possible trajectories might be necessary to find
a solution, but can lead to a high computational burden.

In contrast to graph search methods, which have a fixed discretization of the search graph,
incremental search methods gradually refine the discretization of the state space [16]. Pop-
ular representatives of incremental search techniques are rapidly exploring random trees
(RRTs) and variants thereof that apply random sampling to efficiently explore complex search
spaces [32–34]. Under certain assumptions, RRTs are probabilistically complete [16], which
means that the probability of finding an existing solution converges to one if the number
of samples approaches infinity. However, computation times are usually unpredictable and
can become increasingly higher in cluttered environments, since narrow passageways in the
solution space may not be detected in time. In addition, the obtained trajectories are often
jagged and therefore uncomfortable for passengers. There exist asymptotically optimal vari-
ants of RRTs, e.g., RRT∗ [34]; however, the convergence rate to optimal solutions is rather
slow [35,36]. Anytime RRT∗ [37] improves on the computational efficiency of RRT∗, but the
resulting trajectories tend to be jagged and suboptimal for limited planning times [35]. For
a comprehensive overview of further variants of RRTs, we refer to the surveys in [35,36].

Optimal Control Techniques

Motion planning can also be formulated as a constrained optimal control problem, where a
cost function is minimized subject to a set of constraints, e.g., physical and safety constraints.
To obtain solutions for the constrained optimal control problem, variational methods, such
as direct and indirect methods, can be applied [16]. In contrast to graph search and incre-
mental search approaches, the trajectories are optimized in the continuous state and control
space, thus, eliminating undesired discretization effects. However, one major difficulty lies
in the handling of collision avoidance constraints that are generally non-convex and non-
differentiable, making it difficult to find a collision-free solution efficiently. Therefore, a grow-
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1.1 Individual Motion Planning

ing body of literature has investigated various formulations of collision avoidance constraints,
which we review below.

Mixed-integer Optimization Current solutions often use mixed-integer programming to
model disjunctive decisions, i.e., inequality constraints related by “OR” operators, that arise
during maneuver planning [38–40]. Using the so-called Big-M method, logical expressions
such as disjunctive constraints can be reformulated as inequalities with binary variables [41].
Thus, binary variables enable the modeling of discrete maneuver decisions in the trajectory
optimization such as overtaking an obstacle on the left or right side. Although mixed-integer
programs can find globally optimal solutions provided that the underlying continuous sub-
problems are convex, their application for systems with strict real-time requirements is limited
due to their high computational complexity.

Nonlinear Optimization If globally optimal solutions are not required, nonlinear program-
ming can be applied to identify locally optimal solutions. Collision avoidance can then be
expressed via the distance or the signed distance function between convex sets such as polyhe-
dra or ellipsoids [42,43] that model the autonomous vehicle and obstacles. While the distance
function is zero for intersecting objects, the signed distance function changes sign as soon as
objects intersect. Thus, in contrast to the distance function, the signed distance function
provides an estimate of the penetration depth of two objects and, therefore, can be used to
plan least intrusive trajectories if collisions cannot be avoided. Generally, the (signed) dis-
tance function is non-differentiable, but there exist exact and smooth reformulations based
on strong duality of convex optimization [42]. However, the resulting collision avoidance con-
straints are non-convex, and thus, the approach strongly relies on a suitable initial guess. In
general, non-convex optimization problems may get stuck in infeasible local minima and no
bounds on the number of iterations exist.

Convex Optimization Convex optimization problems can be solved efficiently to global
optimality [44]. Typically, a single or a sequence of convex optimization problems are used
to approximate the original non-convex optimization problem for trajectory planning see,
e.g., [45,46]. The convexification of collision avoidance constraints is often achieved by direct-
linearization [47], projection and subsequent linearization [46], convex under-approximation
of the feasible set of positions, e.g., using polytopes or ellipsoids [48], or decoupling the
longitudinal and lateral vehicle dynamics [45]. However, these methods either require a
collision-free initial guess; are conservative with respect to the set of feasible positions, which is
problematic in situations that demand precise maneuvering; or simplify the vehicle dynamics.

Driving Corridors Non-linear as well as convex optimization problems can benefit from
guidance through the solution space, e.g., in form of driving corridors that represent spatio-
temporal constraints (see Fig. 1.3). By determining driving corridors, combinatorial aspects
of motion planning are (partially) solved prior to optimization, e.g., the driving corridor in
Fig. 1.3 determines that the construction site must be overtaken to the left and the pedestrian
on the right. In this way, driving corridors can eliminate infeasible local minima due to obsta-
cles as passing sides are determined prior to optimization and convex under-approximations
of the feasible set of positions can be obtained more easily. Often inspired by the concept
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autonomous vehicle predictionconstruction site

pedestrian

goal

Figure 1.3: A illustration of a driving corridor shown in green that represents spatio-temporal
constraints for the motion planning of the autonomous vehicle. For sake of clarity,
the time-dependence of the driving corridor is neglected, i.e., the spatio-temporal con-
straints may change over time, e.g., due to moving road users.

of homotopy or homology [49], there exist topological approaches that identify driving cor-
ridors through the decomposition of the collision-free space into (convex) cells; a sequence
of cells represents a driving corridor [50–53]. Another line of research determines driving
corridors by computing a tunnel around a coarse reference path or trajectory that is obtained
through sampling or graph search [54–57]. Within the tunnel, the final trajectory can be
optimized. By assigning a passing side to each obstacle, support vector machine optimization
can be leveraged to obtain driving corridors [58, 59]. However, current solutions either ne-
glect the vehicle dynamics, suffer from a high combinatorial complexity, inherit drawbacks of
discretization-based motion planning methods, cannot decide on the passing side of obstacles,
or are only applicable to static environments.

1.2 Cooperative Motion Planning

The ability of autonomous vehicles to behave cooperatively is gaining increasing interest;
however, despite this interest, there seems to be no commonly accepted taxonomy of cooper-
ation in the field of autonomous vehicles [12, 60–63]. To categorize this work, we adopt the
definitions and taxonomy presented in [12,62,64] and discuss their main results below.

1.2.1 Types of Cooperation

In [12, 62, 64], vehicles quantify the usefulness of their cooperative behavior through utility
functions and the total utility is defined as a combination of the vehicle’s individual utilities.
Cooperative behavior is then defined as “[...] a behavior that willingly and knowingly increases
the total utility of participating road users in a coupled situation” [64, p. 9]. There are various
ways in which road users can show cooperative behavior, with communication playing a
central role.

Road users can implicitly communicate with each other meaning that behaviors of other
road users are interpreted and utilities are estimated. Cooperation can then be achieved
without explicit communication, which is typically referred to as interactive behavior-aware
motion planning [20]. These approaches typically do not separate the behavioral and motion
planning layers (see Sec. 1.1) to consider the interdependence of the actions of the autonomous
vehicle and the reactions of surrounding road users. Often, game-theoretic [65, 66] or proba-
bilistic approaches [67, 68] are leveraged [20].

Road users can also explicitly exchange information, e.g., via vehicle-to-vehicle, vehicle-to-
infrastructure, or vehicle-to-everything communication, which is referred to as information-

6



1.2 Cooperative Motion Planning

based cooperation [12]. Applications of information-based cooperation are cooperative per-
ception and prediction. Moreover, road users may coordinate their behavior with other road
users such that the total utility increases, which is referred to as maneuver-based coopera-
tion [12]. Maneuver-based cooperation with explicit communication allows the vehicles to
negotiate coordinated maneuvers. Typically, sensor data, state information, intentions, and
possible maneuver options are therefore explicitly communicated [12]. Since explicit com-
munication eliminates the uncertainties about the intentions of communicating road users,
thus, contributing to increased road safety, we focus mainly on cooperation using explicit
communication.

1.2.2 Challenges

Although maneuver-based cooperation with explicit communication has several advantages,
e.g., reduced uncertainties in the prediction of cooperative vehicles or in the perception of
the environment, many challenges of individual motion planning also apply to cooperative
motion planning (see Sec. 1.1.1). Even if we ignore obstacles in the environment, cooperative
motion planning is still an inherently combinatorial problem whose complexity grows expo-
nentially with the number of cooperative vehicles. For instance, if N cooperative vehicles
can each perform M admissible actions, we obtain MN possible maneuvers. Despite this
sheer amount of possible maneuvers, cooperative vehicles must be able to find an agreement
in time on how to coordinate their driving behavior. This agreement must be adapted to
the current traffic situation and take into account the objectives of the involved vehicles.
As it will take a considerable amount of time before autonomous vehicles are fully adopted,
non-communicating and vulnerable road users must be considered as obstacles in the motion
planning. In addition, collision avoidance between cooperative vehicles must be considered.

1.2.3 Literature Review

Several methods for cooperative motion planning have been developed over the years see,
e.g., the comprehensive surveys on cooperative intersection management [69–71] and lane
changing or merging [71]. Below, we review approaches based on formation control, multi-
vehicle trajectory planning, and reservations.

Formation Control

Vehicle platooning has been studied for many years for its potential to improve traffic through-
put and reduce fuel consumption [14,72,73]. In general, a platoon is a group of vehicles moving
in a linear formation with reduced relative distance [72,73]. Besides the linear formation there
are also other ways to arrange a group of vehicles, e.g., wedge shape or diamond shape [74].
The generation of a desired formation and its maintenance while the participating vehicles
move along a trajectory can be realized by means of formation control [74, 75]. Existing
approaches to formation control can be categorized into behavior-based, leader-follower, and
virtual structure approaches [74, 75].

Behavior-based approaches implement different control schemes for each vehicle, such as
avoiding obstacles and maintaining the formation to yield the final behavior of a vehicle
[76–78]. The implemented control schemes may have conflicting goals, but are executed
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simultaneously by computing their weighted combination [75]. This approach is suitable
for use in cluttered environments; however, a major limitation is the difficulty in proving
system stability, since the design of the controller is usually independent of the kinematics or
dynamics of the vehicles [74,75].

In the leader-follower approach, following vehicles aim to maintain a desired distance/
orientation relative to the leading vehicle, which was applied to orchestrate the longitudinal
motion of a platoon at a signalized intersection [79], for instance. While the leader-follower
approach is widely adopted [75], the main disadvantage of the approach is that a malfunction
of the leading vehicle can negatively affect the entire formation [74,75].

The virtual structure approach considers the spatial relationship between vehicles as rigid
structure, e.g., vehicles in wedge shape formation, which was applied for cooperation in
multi-lane traffic situations [80], for instance. Due to the inflexibility of the virtual structure
regarding deformations, collision avoidance capabilities may be limited [75].

Multi-vehicle Trajectory Planning

If cooperative vehicles are not required to maintain a formation, conflict-free maneuvers can
be planned using trajectory planning approaches, e.g., mixed-integer optimization [40,81,82],
elastic bands [83], or graph-based methods [64,84,85], which we briefly discuss below.

Mixed-integer Optimization Generally, the coordination problem of multiple communicat-
ing vehicles can be formulated as a constrained optimal control problem [86]. Similarly to
individual motion planning (see Sec. 1.1), we require constraints that ensure the drivability
of the planned motions for each vehicle. The overall cost function can be formulated as the
weighted sum of the individual cost functions of the cooperative vehicles. Depending on the
weighting chosen, costs may be biased in favor of one or a few cooperating vehicles, or the
costs of all vehicles may be considered equally weighted. Using mixed-integer programming,
collision avoidance among cooperative vehicles and obstacles can be formulated with binary
variables [40, 82]. However, the flexibility to plan arbitrary cooperative maneuvers is gained
at the cost of high computational effort.

It is also possible to restrict the set of admissible cooperative maneuvers in advance by
using a hierarchical maneuver automaton [81]. The top layer is a finite state machine that
qualitatively encodes possible maneuvers, such as lane change to the left or right side, over-
taking, or lane keeping. The lower layer is a hybrid automaton that describes different phases
of such a maneuver, e.g., in [81], three phases are distinguished for the overtaking maneuver
based on the relative distances of the vehicles involved. The transitions of these phases are
modeled with binary variables. In [81], it is shown that the formulation reduces the worst-
time complexity of the optimal control problem, but the approach is currently not applicable
to mixed traffic situations.

Elastic Bands Elastic band methods have also been applied to cooperative motion planning
[83]. An elastic band consist of several nodes that represent the positions of a cooperative
vehicle at discrete time steps. Constraints on the nodes can be formulated using virtual forces,
such as a repulsive force to maintain a desired distance from other cooperative vehicles and
obstacles. The elastic bands are deformed until an equilibrium is achieved, i.e., the forces
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vanish at each node. According to [83], the method scales well with the number of cooperative
vehicles, but the solutions depend strongly on the initialization of the elastic bands.

Graph-based Methods Cooperative motions can also be planned using graph-based ap-
proaches. For example, candidate trajectories for the cooperative vehicles can be obtained
by connecting their initial state with sampled target states using polynomials; all possible
combinations of their trajectories can be computed and evaluated for drivability and cost [64].
Similar to graph search in individual motion planning, it is also possible to build a tree of
motion primitives by simulating the vehicle models of the cooperative vehicles forward with
a discretized set of control inputs [84]. At each level of the tree, the composite state and
control inputs of the cooperative vehicles are considered. By pre-computations and pruning,
computation times can be improved [84]. Since the tree grows rapidly with the number of
cooperative vehicles, only coarse discretizations of the time horizon and control inputs of
motion primitives are computationally tractable. To reduce the combinatorial complexity of
motion planning for multiple vehicles, conflict resolution schemes based on the reservation of
road areas can be considered that are discussed next.

Reservation-based Conflict Resolution

Since the space on the road is a shared but limited resource, it seems intuitive to grant
individual vehicles exclusive access to certain areas on the road for a limited period of time. A
popular mechanism for conflict resolution between several communicating vehicles is therefore
space-time reservations, which ensure that a certain spatial region on the road is not occupied
by more than one vehicle at any time. Reservation requests can be described in many different
ways, e.g., by parts of lanes [87], by discretization of the space on the road into tiles [88], or
by critical points in intersection areas [89].

The allocation of reservations can be performed distributed see, e.g., [87], or centralized
see, e.g., [88]. In fully distributed approaches, the vehicles rely exclusively on their local
knowledge, whereas in fully centralized approaches there is a central unit, e.g., a roadside
unit or vehicle, which orchestrates the motions for all vehicles based on the information
collected. While fully distributed approaches are usually less computationally intensive and
robust against failures [90], the solutions achieved can be suboptimal. In contrast, fully
centralized approaches are often computationally intensive with high communication effort
and suffer from a single point of failure [90], but globally optimal solutions can be achieved.

There also exist different policies for reservation assignments, e.g., simple approaches such
as first-come, first-served [88], but also market-inspired approaches [91–93]. A common mech-
anism for market-based approaches are auctions [90], where participants can bid for a number
of offered items. In the winner determination phase, the allocation of items to bidders is de-
termined. Auctions are especially interesting for conflict resolution in traffic, as individual
goals of vehicles, but also common goals can be considered. Furthermore, auction-based ap-
proaches are often hybrid approaches [90], i.e., parts of the calculation can be distributed over
several vehicles so that the advantages of distributed approaches are preserved, but decisions
are made by a central unit so that the solutions found may be of higher quality than with
distributed approaches.
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1.3 Safe Motion Planning

The full benefits of autonomous driving will only be realized when autonomous vehicles,
whether they are driving individually or within a group of vehicles, are able to make safe
decisions in any traffic situation at any time. What challenges must be overcome to ensure
the safety of autonomous vehicles?

1.3.1 Challenges

In [94], three criteria for motion safety were introduced. These state that the autonomous
vehicle must reason (a) over an infinite time horizon to decide its own future motion, taking
into account (b) its own dynamics and (c) the future behavior of obstacles in its environment
[94]. If any of these criteria is violated, safety cannot be ensured. For instance, if its is ignored
that the autonomous vehicle is not able to stop instantaneously due to its dynamics, a collision
may occur. Similarly, a collision may occur if it is incorrectly assumed that all obstacles in
the environment are static. Furthermore, if only a limited time horizon is considered for
motion planning, a collision may happen just outside this time horizon. Since the motions of
the autonomous vehicle are typically planned over finite time horizons due to computational
reasons, the motion planner has to consider at least the time horizon until the autonomous
vehicle can reach a set of safe goal states [94]. This safe set of goal states needs to ensure
persistent feasibility, i.e., motion planning is recursively feasible.

As the future evolution of a traffic scene is unknown and there are an infinite number of
unique real-world traffic scenarios that an autonomous vehicle could potentially encounter
(see, e.g., scenarios in Fig. 1.4), it is challenging to meet all safety criteria, especially in the
light that the autonomous vehicle has only limited time to make decisions.

(a) Merging on highway (b) Close lane-change of a truck (c) Jaywalking pedestrian

(d) Occluded intersection (e) Green light at busy intersection (f) Dense traffic

Figure 1.4: Traffic scenarios recorded in the cities of Munich and Garching-Hochbrück, Germany,
on October 25, 2018, between 1 p.m. to 6 p.m.
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1.3.2 Literature Review

Until now, vehicle safety has been based primarily on simulation and testing prior to deploy-
ment. Simulation techniques can provide counterexamples, i.e., situations in which unsafe
decisions were taken, but can only cover a finite number of test cases. Moreover, a recent
study [95] has revealed that a fleet of 100 autonomous vehicles would have to be driven tens
of years to demonstrate their reliability. Thus, relying solely on testing is impractical. As
only a finite number of test cases can be covered, both techniques cannot provide sufficient
safety guarantees [20,95].

In contrast to simulation and testing, formal verification can be applied to mathematically
prove the safety of autonomous vehicles. To this end, a formal specification is needed that
defines requirements to be met by the autonomous vehicle. Typically, the formal specification
relies on the concepts of safe and unsafe sets of states for the motion planning of autonomous
vehicles that depend on the future motion of other road users. Before we elaborate on different
techniques of formal verification, we begin with a brief overview of motion predictions of other
road users, followed by the introduction of different concepts of safe and unsafe sets of states.

Motion Prediction

Since the actual future behavior of obstacles is unknown, we can only estimate their future
behavior in terms of motion predictions. A comprehensive survey on motion prediction in
the context of autonomous driving is given in [96]. Many approaches compute most likely
behaviors of other road users, e.g., using probabilistic or machine learning methods [97–100].
By planning motions for the autonomous vehicle based on these predictions, the risk of
collisions can be reduced. However, if road users deviate from their predicted behavior—
which often occurs in real traffic—collisions can no longer be ruled out.

To guarantee strict collision avoidance without residual risks, set-based reachability analysis
can be leveraged to compute all possible future behaviors of other road users [101–103].
Reachability analysis computes the set of states that a system can reach at a given time
considering its initial state and dynamics. However, the reachable sets grow rapidly over
time as more positions become reachable. Therefore, assumptions or specifications must be
made about the possible future behaviors of other road users, otherwise the maneuverability
of the autonomous vehicle will be severely limited.

Safe and Unsafe Sets

Based on the motion prediction of obstacles, unsafe sets of states can be computed using the
concept of inevitable collision states. Inevitable collision states [104,105] are states where the
autonomous vehicle cannot avoid a collision with obstacles regardless of the future trajectory.
Thus, by keeping the autonomous vehicle outside of inevitable collision states at all times,
collision avoidance can be guaranteed because there exist at least one trajectory that is
persistently feasible for an infinite time horizon.

In contrast, it is also possible to compute safe sets of states based on motion predictions
that are invariant sets [106,107]. Invariant sets represent states in which the system is safe for
an infinite time horizon. Since the computation of inevitable collision states and invariant sets
is often costly, the work of [108] proposes to compute invariably safe states. Invariably safe
states are subsets of the collision-free states that guarantee that a collision-free trajectory
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to another set of invariably safe sets exists for an infinite time horizon. It is shown that
an under-approximation of invariably safe states based on formal safe distances for vehicle
following and evasive distances can be efficiently computed. To ensure that the autonomous
vehicle always stays within the computed safe set of states or outside an unsafe set of states,
we can use formal methods which we discuss next.

Formal Methods

Popular techniques of formal verification are model checking, theorem proving, correct-by-
construction controller, and set-based reachability analysis that we review below.

Model checking [109–111] verifies whether a formal specification holds for a finite-state
model of a system by exhaustively exploring the state space of that model. Thus, it is pos-
sible to provide counterexamples, i.e., states in which the formal specification is violated.
However, model checking techniques inherently suffer from the curse of dimensionality and,
therefore, the computational effort increases considerably for high-dimensional state spaces.
Another technique is theorem proving [112, 113] that relies on logic and mathematical rea-
soning to prove that a desired system property holds. Theorem proving is applicable to
high-dimensional systems, but due to its complexity, theorem proving typically requires user
interactions.

It is also possible to automatically synthesize controllers that are provably correct [114,115],
i.e., it is guaranteed that the system fulfills the formal specification under the computed
control law. Thus, it is possible to keep the autonomous vehicle in a safe set of states.
It is common to use a hierarchical approach to controller synthesis [114], which typically
works with a discrete abstraction of the environment. Another line of research uses set-
based reachability analysis to guarantee collision avoidance [101, 116, 117]. By computing
the reachable set of the autonomous vehicle, it can be verified whether unsafe states in the
environment can be reached. The main challenges are the generalization to arbitrary traffic
scenarios and the computational efficiency.

Using formal methods, strict safety guarantees can be given. However, it is still impractical
to aim for absolute safety, i.e., the autonomous vehicle is never involved in any accident
regardless of what happens. The reason for this is that the autonomous vehicle may not
be able to avoid collisions due to intentional malicious behavior of other vehicles, such as
when another vehicle deliberately provokes a rear-end collision. Therefore, many works rely
upon a relaxation of absolute safety and are dedicated to eliminating self-inflicted accidents of
autonomous vehicles. We therefore proceed with the discussion of various safety specifications
for the prevention of self-inflicted accidents.

Safety Specifications

Self-inflicted accidents by autonomous vehicles must be ruled out, as they can lead to serious
personal injury and property damage, causing enormous economic losses. With this in mind,
much work has been devoted to preventing self-inflicted accidents of autonomous vehicles
[101, 118–120]. There are three key concepts that are responsibility-sensitive safety [119],
not-at-fault driving [118], and legal safety [101,120].

Responsibility-sensitive safety [119] formalizes common sense rules for vehicles, such as
that it is illegal to hit someone from behind or take the right of way. Based on safe distances
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in the longitudinal and lateral directions, proper responses by the autonomous vehicle are
defined. If all vehicles behave according to the proper responses, no collisions will occur.

In [118], not-at-fault driving is introduced, in which the autonomous vehicle is required
to avoid collisions with surrounding obstacles while moving. If the autonomous vehicle is
stationary, it is always considered to be not-at-fault. The approach in [118] assumes that a
conservative prediction is given, which always includes the real behavior of obstacles. Based
on the conservative prediction and offline computed reachable sets of the autonomous vehicle,
trajectories are planned that are provably not-at-fault. Therefore, each trajectory is divided
into three phases, namely the moving phase, the braking phase, and the stopping phase.
The braking phase represents a fail-safe maneuver that brings the autonomous vehicle to a
standstill in hazardous situations.

In legal safety [101, 120], the motions of the autonomous vehicle must be collision-free
against all legal behaviors of other road users. The legal behaviors of other road users are
based on traffic rules, e.g., the Vienna Convention on Road Traffic [121] may serve as a
reference [120]. Legal safety also stipulates that the autonomous vehicle must avoid or mit-
igate collisions with road users that violate traffic rules. In safety-critical situations, the
autonomous vehicle should come to a stop in dedicated areas on the road, e.g., emergency
lanes on highways [120].

1.4 Contributions

This thesis proposes a holistic motion planning method for autonomous vehicles that (a)
handles complex traffic scenarios with multiple static and dynamic obstacles, (b) can be
used for individual and cooperative motion planning with only slight modifications, and
(c) is particularly suitable for planning safe motions in critical traffic situations. The key
idea is to efficiently represent the collision-free space of feasible motions to eliminate the
disadvantages of existing optimization-based trajectory planning methods (see Sec. 1.1.2).
By using set-based reachability analysis, our proposed approach computes the collision-free
reachable states of the autonomous vehicle over time. To obtain a computationally efficient
representation of collision avoidance constraints for the trajectory optimization, we identify
dynamics-aware driving corridors within the reachable sets. From these driving corridors,
collision avoidance constraints are extracted.

By combining existing optimization-based trajectory planning algorithms with our ap-
proach, several advantages are offered. The reachable sets of the autonomous vehicle are
computed online, allowing us to explicitly consider each traffic scenario on-the-fly, i.e., during
the operation of the autonomous vehicle. Since the computation of the collision-free reachable
sets is based on simple collision detection methods, different obstacle representations such as
circles or polygons can be chosen, making our approach applicable in arbitrary traffic scenar-
ios, i.e., traffic scenarios with different road geometries and number and type of obstacles.
As we use set-based reachability analysis, the computational effort of our approach typically
decreases with increasing criticality of the traffic scenario, i.e., with shrinking solution space
for trajectory planning. Moreover, even narrow passageways in the solution space can be
detected which can be of utmost importance in safety-critical situations.

We conceptualized driving corridors in such a way that the collision avoidance constraints
extracted from them can be integrated into arbitrary gradient- and Hessian-based solvers.
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The obtained collision avoidance constraints can be either represented by convex keep-out
zones or polyhedral sets of feasible positions. Depending on the choice of representation,
various existing trajectory planners based on nonlinear programming as well as (successive)
convexification can be leveraged. This also entails that various vehicle models can be used for
motion planning, even models that consider the combined longitudinal and lateral dynamics
of the vehicle. The proposed driving corridors facilitate the search for a suitable initial guess
for nonlinear optimization problems and eliminate local minima induced by obstacles. The
driving corridors can be restricted to end in a predefined set of goal states, e.g., standstill on
the shoulder lane, allowing one to reason over infinite time horizons (see Sec. 1.1.1).

We have implemented the proposed motion planning method as a prototype in C++ and
Python for use in a BMW 7-series test vehicle and validated successfully the drivability
of planned motions. In simulation, we have demonstrated that by augmenting existing
optimization-based motion planners with our computation of driving corridors, infeasible lo-
cal minima due to obstacles are eliminated. We have further compared our motion planning
method to state-of-the-art planning algorithms based on sampling and mixed-integer pro-
gramming, showing that our method has reliable runtimes and identifies narrow passageways
without increased computational effort.

The unique characteristics of our approach make it particularly useful in safety-critical
situations. We therefore extended previous work on safe motion planning [45,122] and safety
verification [101] by integrating the computation of driving corridors into the fail-safe tra-
jectory planner proposed in [45], which provides safe fallback trajectories for safety-critical
situations. The integration of driving corridors facilitates the efficient computation of fail-safe
trajectories in arbitrary traffic situations and the consideration of multiple safe sets of states.
The modified fail-safe trajectory planner is embedded into a safety layer for existing motion
planning frameworks to guarantee legal safety (see Sec. 1.3.2), i.e., autonomous vehicles never
cause accidents even though other road users may legitimately perform any kind of behavior
in compliance with traffic rules. The safety layer verifies online intended motions generated
by an existing motion planner of the autonomous vehicle and provides fail-safe trajectories in
dangerous situations using the presented motion planning approach. As a result, the safety
layer prevents the autonomous vehicle from causing accidents at all times independent of the
nominal motion planner, e.g., even motion planning methods based on machine learning can
be applied.

We have successfully validated the proposed safety layer in critical urban traffic situations
that we recorded in real traffic in the area of Munich. The recorded traffic scenarios include
measurement uncertainties and are publicly available for usage by other researchers and
interested parties. We have also successfully demonstrated the general applicability of the
proposed safety layer by testing it with three different intended motion planners. One motion
planner even ignored other road users, but the experiments confirm that our approach ensures
legal safety at all times. Overall, the results indicate that a non-conservative and safe driving
behavior can be achieved with the proposed safety layer.

Our proposed motion planning method can be extended to enable maneuver-based co-
operation among communicating vehicles. We therefore consider loosely coupled groups of
communicating vehicles with planning horizons of a few seconds in mixed traffic situations.
Non-communicating road users are treated as obstacles, while the motions of communicating
vehicles are planned jointly. Our cooperation mechanism is based on space-time reservations
so that vehicles can have exclusive access to areas on the road for a limited time. The space-
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time reservations are negotiated among the cooperative vehicles based on their reachable sets.
To perform the negotiations, we have developed two different schemes: the first scheme aims
at distributing the space on the road fairly, i.e., all vehicles have equally large areas on the
road available for motion planning. The second scheme is based on combinatorial optimization
inspired by auctions, which enables to take into account individual objectives of cooperating
vehicles. The resulting space-time reservations are represented by subsets of the reachable
sets of cooperative vehicles. These subsets can then be used for motion planning as in the
single-vehicle case; thus, making it easy to transition from cooperative to non-cooperative
driving.

The methods developed in this work were tested with scenarios from the CommonRoad
benchmark suite available at commonroad.in.tum.de, which was co-initiated by the author
of this work. CommonRoad provides researchers with a platform to test and compare their
motion planning algorithms, improving the reproducibility of experimental results. Since
the project start in 2017, many people have contributed to CommonRoad. Several open
source software tools for motion planning of autonomous vehicles have been developed, e.g.,
the CommonRoad-IO package, which provides methods for reading, writing and visualizing
CommonRoad scenarios and planning problems, and the CommonRoad Drivability Checker,
which unifies tests for collision avoidance, kinematic feasibility, and road-compliance to ensure
the drivability of planned motions for autonomous vehicles. As CommonRoad is an open
source project, it can be easily used and extended by other researchers.

1.5 Publications and Outline

This thesis is based on six peer-reviewed, first-author publications that have been published
in international journals or conferences [1–6]:

[1] C. Pek∗, S. Manzinger∗, M. Koschi∗, and M. Althoff, “Using online verification to prevent
autonomous vehicles from causing accidents,” Nature Machine Intelligence, vol. 2, no. 9,
pp. 518–528, 2020.

[2] S. Manzinger, C. Pek, and M. Althoff, “Using reachable sets for trajectory planning of
automated vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 6, no. 2, pp. 232–248,
2021.

[3] L. Schäfer∗, S. Manzinger∗, and M. Althoff, “Computation of solution spaces for
optimization-based trajectory planning,” IEEE Transactions on Intelligent Vehicles, 2021,
[early access].

[4] S. Manzinger and M. Althoff, “Tactical decision making for cooperative vehicles using
reachable sets,” in Proc. of the IEEE Intelligent Transportation Systems Conference, 2018,
pp. 444–451.

[5] S. Manzinger and M. Althoff, “Negotiation of drivable areas of cooperative vehicles for
conflict resolution,” in Proc. of the IEEE Intelligent Transportation Systems Conference,
2017, pp. 1–8.
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[6] M. Althoff∗, M. Koschi∗, and S. Manzinger∗, “CommonRoad: Composable benchmarks
for motion planning on roads,” in Proc. of the IEEE Intelligent Vehicles Symposium, 2017,
pp. 719–726.

∗ These authors have contributed equally and share the first authorship.

The publications [1–6] are included in this thesis together with a short summary of the
content and a description of the contributions of all authors. The following peer-reviewed
publications of the author from related research are excluded:

[7] C. Pek, V. Rusinov, S. Manzinger, M. C. Üste, and M. Althoff, “CommonRoad Drivabil-
ity Checker: Simplifying the development and validation of motion planning algorithms,”
in Proc. of the IEEE Intelligent Vehicles Symposium, 2020, pp. 1013–1020.

[8] A. Zhu, S. Manzinger, and M. Althoff, “Evaluating location compliance approaches for
automated road vehicles,” in Proc. of the IEEE Intelligent Vehicles Symposium, 2018, pp.
642–649.

[9] S. Manzinger, M. Leibold, and M. Althoff, “Kooperative Bewegungsplanung autonomer
Fahrzeuge unter Verwendung von Manöver-Templates,” in AAET - Automatisiertes und
vernetztes Fahren, ITS automotive nord e.V., Ed., 2017, pp. 348–367.

[10] ——, “Driving strategy selection for cooperative vehicles using maneuver templates,” in
Proc. of the IEEE Intelligent Vehicles Symposium, 2017, pp. 647–654.

The remainder of this thesis is structured as follows: Chapter 2 introduces the necessary
mathematical preliminaries and gives a brief overview of the novel methods proposed in this
thesis. Chapter 3 finishes with conclusions and outlines possible directions for future work to
further improve the performance of the proposed methods. Appendix A contains the reprint
of each included publication and Appendix B lists the Bachelor and Master theses supervised
by the author of this work.
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Chapter 2

Methods

2.1 Preliminaries

Let us introduce the compact set X ⊂ Rnx of admissible states x ∈ X and the set U ⊂ Rnu

of admissible control inputs u ∈ U of an autonomous vehicle, whose motion is governed by

xk+1 = f(xk, uk), (2.1)

where the system dynamics f(xk, uk) is a continuously differentiable nonlinear function on
X . The discrete time step k ∈ N0 corresponds to the time tk = k∆t, with the time increment
∆t ∈ R+. Although the vehicle dynamics is an inherently continuous-time system, it is
sufficient for us to model it as a discrete-time system. This is because we formulate the
trajectory planning problems as discrete-time optimal control problems, as will be shown
later in Sec. 2.3 and Sec. 2.4. A possible state and input trajectory of the system is denoted
by x(·) and u(·), respectively. Without loss of generality, we assume that t0 = 0 and the
planning horizon th ∈ R+ is finite.

In the literature, the reachable set of a system is usually referred to as the set of states that
can be reached from an initial set of states X0 considering all admissible input trajectories
u(·). In this work, we use an extended definition of the reachable set and consider only those
states that do not enter a set of forbidden states. After introducing the occupancy operator,
we define the set of forbidden states of the autonomous vehicle.

Definition 1 (Occupancy) The operator occ(x) relates the state x ∈ X to the set of points
in the position domain occupied by the autonomous vehicle as occ : X → P(R2), where P(R2)
denotes the power set of R2.

Definition 2 (Set of Forbidden States) Given the set Ok of occupied positions of all ob-
stacles (e.g., other cars and pedestrians) including the space outside of the road, the set of
forbidden states at time k is

Fk = {xk ∈ X | occ(xk) ∩ Ok 6= ∅} .
The reachable set of the autonomous vehicle is then defined as:

Definition 3 (Reachable Set) Let us introduce Re
0 = X0 as the set of collision-free initial

states of the autonomous vehicle including measurement uncertainties. The reachable set
Re
k+1 at time step k + 1 is the set of states that can be reached within one time step from
Re
k ⊆ X without intersecting the set of forbidden states Fk+1:

Re
k+1 =

{
xk+1 ∈ X

∣∣∣∃xk ∈ Re
k, ∃uk ∈ U : xk+1 =f(xk, uk) ∧ xk+1 /∈ Fk+1

}
.
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We further introduce the projection operator that projects a state x onto the position
domain to obtain the drivable area of the autonomous vehicle.

Definition 4 (Projection) The operator proj : X → R2 maps the state x ∈ X to the
position domain. Using the same notation, we project a set of states X : proj(X ) :=
{proj(x) |x ∈ X}.

Definition 5 (Drivable Area) The drivable area De
k at time step k is defined as the pro-

jection of the reachable set onto the position domain, i.e., De
k := proj(Re

k).

2.2 Reachability Analysis

In this work, reachable sets are used to explore the collision-free state space of the autonomous
vehicle in cluttered environments. For this purpose, set-based reachability analysis is particu-
larly suitable since even narrow passages can be detected by its calculation in the continuous
state space. However, the computation of the exact reachable set Re is generally only possible
for certain classes of systems [123, Ch. 3]. Moreover, the non-linear vehicle models used for
motion planning and their rather high-dimensional state space make it difficult to calculate
the reachable set under hard real-time constraints. We therefore aim to compute accurate
approximations R and D of the exact reachable set Re and drivable area De, i.e., R ≈ Re

and D ≈ De, to achieve computational feasibility, which is explained below.
For the reachable set computation, the vehicle dynamics is approximated by two second-

order integrator models in the road-aligned coordinate system F L. The state x=(sζ , vζ , sη, vη)
T

and input u = (aζ , aη)
T of the system are composed of the position s, velocity v, and accelera-

tion a in the longitudinal ζ- and lateral η-directions, where both the velocity and acceleration
are bounded:

xk+1 =




1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


xk +




1
2
∆t2 0
∆t 0
0 1

2
∆t2

0 ∆t


uk, (2.2a)

vζ ≤ vζ,k ≤ vζ , vη ≤ vη,k ≤ vη, (2.2b)

aζ ≤ aζ,k ≤ aζ , aη ≤ aη,k ≤ aη, (2.2c)

where � and � denote the minimum and maximum value of a variable �, respectively.
In the absence of obstacles, a closed-form solution for the reachable set of a second-order

integrator model exists; however, the presence of arbitrarily shaped obstacles requires numer-
ical computations [124]. We therefore approximate the reachable set Re

k with the union of

base sets R(i)
k , i ∈ N0. A base set R(i)

k is the Cartesian product of two convex polytopes P(i)
ζ,k

and P(i)
η,k in the (sζ , vζ) and (sη, vη) plane [124], respectively, so that

Re
k ≈ Rk :=

⋃

i

R(i)
k , with R(i)

k = P(i)
ζ,k × P

(i)
η,k. (2.3)

There are indeed other options to represent the reachable set, such as ellipsoids, zonotopes,
or oriented rectangular hulls, to name a few possible alternatives. Yet, we select polytopes
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as they are a convex and explicit set representation that is closed under the required opera-
tions such as Minkowski sum, linear mapping, and intersection. The projection of a base set
proj(R(i)

k ) onto the position domain yields an axis-aligned rectangle D(i)
k representing reach-

able positions. The union of D(i)
k approximates the drivable area De

k: De
k ≈ Dk :=

⋃
iD

(i)
k .

To simplify notation, we refer to both the union
⋃
iR

(i)
k and the collection {R(0)

k ,R(1)
k , . . .} of

base sets R(i)
k as Rk; this is done analogously for the drivable area Dk.

The initial reachable set is R0 = R(0)
0 , where R(0)

0 encloses the set of initial states of the
autonomous vehicle including measurement uncertainties. In order to determine the reachable
set of consecutive time steps, the following procedure is performed iteratively [2, 124]: first,

the base sets R(i)
k of the previous time step k are propagated according to the system model

(2.2). We denote the propagated reachable set with Rprop
k+1 . Second, the set of forbidden

states Fk+1 is removed from the propagated reachable set Rprop
k+1 . Since Rprop

k+1 \ Fk+1 cannot
be represented by convex polytopes in general, we approximate the result. Due to the removal
of forbidden states, a base set R(j)

k+1 may be reachable from multiple base sets R(i)
k within

one time step. For later use, we store this relationship in a directed graph GR, in which a
node corresponds to a base set R(i)

k and an edge indicates that R(i)
k reaches R(j)

k+1. For a more
detailed description of the algorithm, the reader is referred to [2,124] (see also Appendix A.2).

2.3 Motion Planning Using Reachable Sets

The trajectory planning problem of the autonomous vehicle is defined as:

Problem 1 (Trajectory Planning) Find an optimal control u∗(·) ∈ U and state trajectory
x∗(·) ∈ X that solve the following non-convex optimization problem:

min
u(·)

h∑

k=0

J(xk, uk) (2.4a)

such that

x0 = x̃0, xh ∈ Xgoal, (2.4b)

∀k ∈ {0, . . . , h− 1} : xk+1 = f(xk, uk), (2.4c)

∀k ∈ {0, . . . , h} : g(xk, uk, k) ≤ 0, (2.4d)

proj(xk) ∈ Dk, (2.4e)

where x̃0 denotes the measured initial state and the cost function J : Rnx × Rnu → R is
continuously differentiable. The dynamics (2.4c) is subject to the continuously differentiable,
time-variant constraints g : Rnx × Rnu × N0 → Rng (2.4d), where ng denotes the number
of constraints. Examples of such constraints are acceleration limitations and minimum and
maximum bounds on the steering angle. Collision avoidance is represented by the non-convex,
non-differentiable constraint (2.4e), i.e., the positions of the autonomous vehicle are limited
by the collision-free drivable area at each time step k.

A feasible solution for Problem 1 can be found using non-convex or convex optimization
techniques (see Chapter 1.1.2). As outlined in Chapter 1, it can be advantageous or even
necessary for both convex and non-convex optimization to provide guidance through the
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autonomous vehicle at t0

construction site

pedestrian

(a) The autonomous vehicle approaches a construction site and a pedestrian steps onto the road.

Dk for k ∈ {0, . . . , h− 1} Dh prediction for tk ∈ [t0, th]

(b) We compute the drivable area Dk of the autonomous vehicle for consecutive points in time tk, k ∈
{0, . . . , h}, to determine the collision-free solution space for trajectory planning. The drivable area at the
final time th is colored in gray.

Ck for k ∈ {0, . . . , h− 1} Ch prediction for tk ∈ [t0, th]

(c) Identification of different driving corridors C within the drivable area

(d) Selection of a suitable driving corridor.

(e) Extraction of collision avoidance constraints from the driving corridor and trajectory optimization.

Figure 2.1: General procedure when using reachable sets for the motion planning of autonomous
vehicles in cluttered environments. The autonomous vehicle is heading towards a
construction site while a pedestrian is predicted to cross the road.

collision-free solution space. Since the obtained drivable area Dk is typically non-convex and
often disconnected due to the presence of obstacles, we decompose it into driving corridors.
The resulting driving corridors C are temporal sequences of connected sets Ck that are subsets
of the drivable area, i.e., Ck ⊆ Dk. There may exist several driving corridors; however,
we refrain from introducing an additional identifier to differentiate between various driving
corridors in order to improve readability.
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The general procedure for the motion planning using reachable sets is composed of the
following steps (see Fig. 2.1):

1. Exploration of the non-convex solution space for trajectory planning by computing
reachable sets over consecutive time steps (see Fig. 2.1b);

2. Identification of driving corridors within the reachable sets (see Fig. 2.1c);

3. Selection of a suitable driving corridor for trajectory planning (see Fig. 2.1d);

4. Extraction of collision avoidance constraints from the selected driving corridor;

5. Optimization-based trajectory planning using the collision-avoidance constraints ob-
tained from the driving corridor (see Fig. 2.1e) that substitute (2.4e).

In the course of this work, we have developed two alternative methods to obtain driving
corridors that can be combined with various state-of-the-art motion planning methods (see
Figs. 2.2 and 2.3). We first summarize the main concept of each method and then briefly
compare both methods.

In [2] (see also Appendix A.2), Problem 1 is convexified by describing the motion of the au-
tonomous vehicle with respect to a predefined reference path and linearization. This enables
the decoupling of the longitudinal and lateral vehicle dynamics as shown in [45, 125]. The
longitudinal dynamics are represented by a fourth-order integrator model with bounded veloc-
ity, acceleration, and jerk; the lateral dynamics is given by a linearized kinematic single-track
model with limits on the drivable curvature and change of curvature. Due to the decoupling
of the kinematics, we define a driving corridor for both the longitudinal and lateral trajectory
planning and refer to the driving corridors as longitudinal and lateral driving corridors. The
collision avoidance constraints extracted from the driving corridors are formulated as admis-
sible position intervals for the longitudinal or lateral trajectory optimization (see Figs. 2.2a

admissible lon. positions at tk

(a) The longitudinal driving corridor is a temporal
sequences of connected sets from which we obtain
the admissible longitudinal positions.

optimized lon. position at tk

ref. path

(b) The longitudinal trajectory is optimized subject
to the box constraints of the longitudinal driving
corridor.

admissible lateral positions at tk

(c) A lateral driving corridor is a temporal sequence
of connected sets with unique passing side.

(d) The lateral trajectory is optimized subject to the
box constraints of the lateral driving corridor.

Figure 2.2: Main computation steps of [2] (see appendix A.2) for the example scenario shown
in Fig. 2.1a: the longitudinal and lateral trajectory of the autonomous vehicle are
optimized with respect to a longitudinal and lateral driving corridor which are identified
using reachability analysis.

21



Chapter 2 Methods

(a) Driving corridors are temporal sequences of con-
nected, vertically convex sets. We depict the driv-
ing corridor at a specific time tk.

(b) The complement of the driving corridor is over-
approximated with convex keep-out zones at each
time tk.

convex
subset

(c) Collision avoidance constraints are determined
based on the convex keep-out zones, e.g., a convex
subset of admissible positions is extracted.

(d) The trajectory of the autonomous vehicle is op-
timized subject to the collision avoidance con-
straints of the driving corridor.

Figure 2.3: Main computation steps of [3] (see Appendix A.3) for the example scenario shown in
Fig. 2.1a: using reachable sets, our approach computes driving corridors that can be
combined with existing optimization-based trajectory planning algorithms that rely on
gradient- or Hessian-based solvers to plan trajectories for the autonomous vehicle.

and 2.2c). The overall design of our approach enables the consideration of collision avoidance
for the full-dimensional vehicle.

In [3] (see also Appendix A.3), a driving corridor can simultaneously represent different
maneuvering possibilities with respect to each obstacle in the environment, such as yielding,
evading, or following, but the passing sides for obstacles are uniquely described by a driving
corridor (see Fig. 2.1c). This is achieved by defining driving corridors as temporal sequences of
connected, vertically convex sets (see Fig. 2.3a). By over-approximating the complement of a
driving corridor with a fixed number of polyhedra (see Fig. 2.3b), we are able to exploit smooth
reformulations of the (signed) distance function for collision avoidance in nonlinear programs
[42] or to extract convex subsets of the set of feasible positions for convex optimization
problems (see Fig. 2.3c).

In contrast to [2], our approach introduced in [3] can be combined with many different
trajectory planning methods based on nonlinear programming or (successive) convexifica-
tion. While the driving corridors in [2] are adapted to the decoupled trajectory planner, the
driving corridors in [3] are intended to provide general representations of collision avoidance
constraints. The generic form of collision avoidance constraints allows the usage of various
vehicle models of different fidelity and the combined longitudinal and lateral trajectory plan-
ning. While our approach in [3] considers point mass models, our approach in [2] ensures
collision avoidance for the full-dimensional vehicle.

2.4 Cooperative Motion Planning

Let us consider a set of N cooperative vehicles Vn, n ∈ N = {1, 2, . . . , N}, whose motions are
described by (2.1). We introduce � as the placeholder for a variable and the subscript �n

to denote the corresponding variable of the n-th cooperative vehicle. Our goal is to jointly
orchestrate the motion of the cooperative vehicles so that collisions with each other and
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2.4 Cooperative Motion Planning

with non-communicating road users Ok are avoided. Thus, the cooperative motion planning
problem is defined as:

Problem 2 (Cooperative Motion Planning) Find an optimal control u∗n(·) ∈ Un and
state trajectory x∗n(·) ∈ Xn for each cooperative vehicle Vn that solve the following non-
convex optimization problem:

min
û(·)

N∑

n=1

h∑

k=0

Jn(xk,n, uk,n) (2.5a)

such that

∀n ∈ N : x0,n = x̃0,n, xh,n ∈ Xgoal,n, (2.5b)

∀k ∈ {0, . . . , h− 1}, ∀n ∈ N : xk+1,n = fn(xk,n, uk,n), (2.5c)

∀k ∈ {0, . . . , h}, ∀n, j ∈ N : gn(xk,n, uk,n, k) ≤ 0, (2.5d)

proj(xk,n) ∈ Dk,n, (2.5e)

occ(xk,n) ∩ occ(xk,j) = ∅, n 6= j, (2.5f)

where û(·) = [uT1 (·), uT2 (·), . . . , uTN(·)]T contains the control inputs for each vehicle over the
entire time horizon. As in Problem 1, (2.5c) represents the vehicle dynamics that is subject
to constraints (2.5d). Collision avoidance with other road users is represented by (2.5e) and
between the cooperative vehicles by (2.5f).

We simplify Problem 2 to obtain a solution in a computationally efficient way. Our approach
is inspired by reservation-based conflict resolution schemes, where vehicles reserve areas on the
road for exclusive use. To determine the potential areas on the road that can be reserved by
each vehicle, we leverage reachability analysis. Since we can incorporate non-communicating
road users in the reachable set computation, our approach is applicable to mixed-traffic
scenarios. While collision avoidance with non-communicating road users is considered by
constraint (2.5e), the reachable sets of two cooperative vehicles Vn and Vj, n 6= j, may be
in conflict, i.e., two vehicles can reach the same area on the road at the same time (see
Fig. 2.4b). This means that a collision between two cooperative vehicles Vn and Vj may occur
at a specific time step k:

∃xk,n ∈ Rk,n,∃xk,j ∈ Rk,j : occ(xk,n) ∩ occ(xk,j) 6= ∅. (2.6)

We demand that the cooperative vehicles negotiate their conflicting reachable set, such that
each vehicle receives its own area for trajectory planning (see Fig. 2.4c). The trajectory
planning for each cooperative vehicle can then be performed independently using our mo-
tion planning approaches introduced in Sec. 2.3 (see Fig. 2.4d). The overall procedure for
cooperative motion planning using reachable sets is then:

1. The iterative computation of the reachable sets for each cooperative vehicle Vn and the
negotiation of conflicting reachable sets for every time step until the planning horizon
is reached;

2. Identification of driving corridors within the negotiated reachable sets for each Vn;

3. Selection of a suitable driving corridor for trajectory planning for each Vn;
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(a) Multi-vehicle trajectory planning is a highly com-
binatorial problem.

(b) We compute the reachable sets of each coopera-
tive vehicle.

(c) Conflicting reachable sets are negotiated such
that each vehicle receives its own area on the road.

(d) Vehicles can plan their trajectories independently
within their negotiated drivable areas.

Figure 2.4: Cooperative motion planning using reachable sets: instead of planning the trajectories
for all vehicles directly, we resolve conflicts by negotiating conflicting reachable sets.
As a result, each vehicle receives its own area on the road for motion planning.

4. Extraction of collision avoidance constraints from the selected driving corridors;

5. Optimization-based trajectory planning for each vehicle Vn using the collision avoidance
constraints obtained from their driving corridors.

In our first work on cooperative motion planning using reachable sets [5] (see Appendix A.4),
we designed the negotiation process with the aim that the drivable space on the road is fairly
distributed between the cooperative vehicles. The approach focuses on traffic scenarios with
road networks that have negligible curvatures, e.g., highway scenarios. For the negotiation,
we group vehicles in coalitions that represent all unique subsets of vehicles with conflicting
drivable areas. The method to redistribute conflicting drivable areas within a coalition is
inspired by the centroid-based classification (see, e.g., [126]): each cooperative vehicle Vn
constitutes its own class. For each Vn in a coalition, we determine the geometric centroid of
the conflict-free drivable area. The conflicting reachable set is partitioned into smaller subsets
which are assigned to the vehicle with the nearest centroid.

In our second work on cooperative motion planning [4] (see Appendix A.5), we introduce
a grid on the road as an abstraction layer and cooperative vehicles determine grid cells that
they can reach via reachability analysis. Conflicting grid cells are then negotiated. In contrast
to our previous approach in [5], the reachable sets of cooperative vehicles can be computed in
their own vehicle-specific curvilinear coordinate system, facilitating the handling of different
environments. Furthermore, the abstraction layer allows to formulate the negotiation process
as a combinatorial optimization problem—the so-called winner determination problem [127]—
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which is also known from auctions. The basic principle is as follows: each conflicting cell on
the road is considered as a single assets. These assets can be combined in different packages
that are unions of assets. Each cooperative vehicle can now bid on different packages. We
aim to find a distribution of packages such that the revenue is maximized and no single asset
is assigned more than once. This winner determination problem is generally NP-hard to
solve [128] and requires each vehicle to evaluate 2B − 1 packages, where B is the number of
conflicting cells. Fortunately, computational tractability can be achieved through hierarchical
structuring of packages as a tree [128], where packages are decomposed into disjoint subsets at
each level of the tree. In this way, finding the optimal allocation of packages has polynomial
time complexity in the number of conflicting cells. The complexity of the negotiation process
is thus independent of the number of vehicles. Moreover, the maximum number of possible
packages to be evaluated reduces to 2B − 1.

2.5 Ensuring Legal Safety of Autonomous Vehicles

We have developed an online verification framework [1] (see Appendix A.1) to ensure legal
safety in urban environments:

Problem 3 (Legal Safety) The autonomous vehicle must not collide with any legal behav-
ior of other traffic participants:

∀t ≥ t0 : occ(x(t)) ∩ Olegal(t) = ∅,

where Olegal(t) denotes the occupied positions of other road users for all their legal behaviors
including the area outside of the road.

Our safety layer is located between the motion planning layer and control module of the
autonomous vehicle, and the safety verification is carried out in successive verification cycles.
A new verification cycle is triggered when a new intended trajectory is forwarded from the
nominal motion planner to the safety layer. We assume that the forwarded intended trajecto-
ries are kinematically feasible but may not be safe, i.e., collision-free and recursively feasible.
Given the current environment model and the intended trajectory, our approach performs
the following steps to ensure legal safety (see Fig. 2.5): (1) prediction of all legal behaviors
of other traffic participants, (2) collision checking of the intended trajectory, and (3) fail-safe
trajectory planning. Below, we briefly explain all steps.

Our prediction technique represents a core module for the verification. We use SPOT [103]
to predict all legal future behaviors of other traffic participants (see Fig. 2.5). In contrast to
computing only a countable number of most likely behaviors (see Fig. 2.5), SPOT predicts an
infinite number of behaviors by using set-based computations. Since the exact computation
of the set Olegal(t) is infeasible, SPOT over-approximates Olegal(t), i.e., the computed set is
a superset of Olegal(t). To obtain a tight superset of Olegal(t), SPOT proceeds in two steps:
first, the set of all dynamically feasible behaviors of other road users is over-approximated
using reachability analysis. For the reachable set computation, we consider a second-order
integrator model, but unlike Def. 3, we do not consider a set of forbidden states. Second, illegal
behaviors are removed from the obtained reachable sets. The illegal behaviors are inferred
from our legal specification that is based on the Vienna Convention on Road Traffic [121].
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intended
trajectory

set of all legal
behaviors

most likely
behavior

fail-safe
trajectory

set of
safe states

Figure 2.5: The proposed safety layer ensures legal safety at all times. Instead of predicting only
a countable number of most likely behaviors of other road users, we predict their set
of all legal behaviors. Based on the prediction, we verify whether intended trajectories
of the autonomous vehicle are legally safe and provide fail-safe trajectories for safety-
critical situations. The fail-safe trajectories lead the autonomous vehicle to a safe set
of states in which it can remain legally safe for an infinite time horizon.

The legal specification contains rules, such as speed limits and safe distances. The fewer
traffic rules we define in the legal specification, the more cautiously the autonomous vehicle
will behave. This is because the prediction remains over-approximative even if no traffic rules
are considered in the legal specification, since only illegal behaviors are removed from the set
of all dynamically feasible behaviors.

Based on the predicted occupied positions of other road users, we can verify whether
intended trajectories are safe and can plan fail-safe trajectories. To verify the safety of the
intended trajectory, we check if it is collision-free against the predicted occupancy sets from
SPOT. Usually, the intended trajectory is planned for longer time horizons, which is necessary
for the planning of anticipatory maneuvers, e.g., overtaking a slower driving vehicle. Yet, the
predicted occupancy sets by SPOT become increasingly larger for longer time horizons, as
more space on the road is reachable for other road users. We therefore only consider a short
part of the intended trajectory for the safety verification, otherwise the results would be
overly conservative. If the considered part of the intended trajectory is verified as safe, i.e.,
it is collision-free against the predicted set of legal behaviors, we continue to plan a fail-safe
trajectory.

The fail-safe trajectory must be collision-free against the predicted occupancy sets by SPOT
and transition the autonomous vehicle to a set of safe states (see Fig. 2.5). Within the set of
safe states, the autonomous vehicle is legally safe for an infinite time horizon, e.g., standstill
in dedicated areas on the road. To plan the fail-safe trajectory, we use our motion planning
approach that is based on the decoupling of the longitudinal and lateral dynamics of the
autonomous vehicle (see Sec. 2.3 and Appendix A.2).

The verification is successful, if the considered part of the intended trajectory could be
verified as safe and a feasible fail-safe trajectory could be planned. The considered part of the
intended trajectory and the fail-safe trajectory are then concatenated and can be executed
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by the autonomous vehicle. If the verification was unsuccessful, the autonomous vehicle
continues on its previously verified trajectory. By using the principal of induction, it can be
proven that the presented approach guarantees legal safety at all times (see Appendix A.1).
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Conclusions

This thesis has investigated novel solutions for the motion planning of autonomous vehicles.
Below, we first summarize the work of this thesis and subsequently discuss future research
directions.

3.1 Summary

This work proposes a novel approach for individual, cooperative, and safe motion planning.
The core methods applied are reachability analysis and continuous optimization, which we
have combined to plan trajectories for autonomous vehicles in complex traffic situations. In
our experiments, we have successfully demonstrated that our approach generalizes to arbitrary
traffic situations, e.g., intersections [1], roundabouts [3], and highways [2]. Our experiments
show that our approach is suitable for planning trajectories in cluttered environments as
the runtime of our approach decreases with decreasing solution space for trajectory planning
(see [2]) and scales favorably with the number of obstacles (see [3]). We also compared our
approach with state-of-the-art motion planning methods. The experiments show that (a) in
contrast to sampling-based motion planners, our approach efficiently detects narrow passage-
ways in the solution space for trajectory planning without increased computational effort or
the necessity to tune parameters (see [2]). (b) For a small number of obstacles, our approach
has comparable median computation times with a planner based on mixed-integer quadratic
programming and lower computation times for a higher number of obstacles (see [2]). (c) By
augmenting a motion planner based on sequential quadratic programming with our approach,
feasible solutions can be found in traffic situations that were previously not solvable by the
original motion planner (see [3]). This is due to driving corridors eliminating local minima
induced by obstacles. Moreover, we have successfully demonstrated in experiments that driv-
ing corridors ease the initialization of trajectory planners based on successive convexification
so that the number of convex programming iterations can be reduced by an average of ap-
proximately 20% (see [3]). We have also successfully validated the drivability of planned
trajectories using a BMW 7-series vehicle, where we applied our method online and detected
obstacles in the environment using the on-board LiDAR sensors of the test vehicle (see [2]).

Our approach holistically treats individual and cooperative motion planning. The coordi-
nation of multiple vehicles is based on the negotiation of their conflicting areas on the road,
which are determined using reachability analysis. Since the motions of cooperative vehicles
can be planned within their negotiated areas as in the single vehicle case, the transition from
cooperative to individual driving is seamless. Although different methods can be implemented
for various traffic situations and driving modes, a safe transition between these methods must
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be ensured. However, there exist an infinite number of different traffic situations, therefore,
recognizing the most suitable method and ensuring the existence of an applicable method for
the current traffic situations is an error-prone and complex task. In contrast, our approach
handles arbitrary traffic situations automatically. We demonstrate the efficacy of our method
in multiple traffic scenarios featuring a roundabout, an urban road, a crossing, and a highway
scenario (see [4,5]). Although all these scenarios differ in their road geometry, the number of
cooperative vehicles and non-communicating road users, cooperative maneuvers are planned
successfully.

We have further embedded our novel motion planning method in a safety layer ensuring that
autonomous vehicles adhere to legal safety at all times. Our approach is particularly useful
for planning fail-safe trajectories since it (a) generalizes well to different traffic situations,
(b) typically becomes faster in critical traffic situations, and (c) can restrict trajectories
to end in a set of safe goal states so that recursive feasibility is ensured. The benefits of
the proposed safety layer are evaluated on complex urban traffic situations that we have
recorded in the cities of Munich and Garching-Hochbrück, Germany. The scenarios include
a left-turn maneuver at an intersection, a critical situation with a jaywalking pedestrian,
and a lane-change maneuver in dense traffic (see [1]). The experiments show that fail-safe
trajectories ensure that the autonomous vehicle respects the right of way of other road users
at intersections and keep the autonomous vehicle from stopping within the intersection area.
Our results further demonstrate that the conservativeness of our safety layer can be adjusted
by its users, e.g., mobility providers, since the set-based prediction SPOT allows one to define
legal behaviors differently for specific types of road users. In this way, one can easily consider
that inattentive pedestrians cross the road even though it is unlawful, and, in case all traffic
rules are disregarded, all dynamically feasible behaviors are predicted. Thus, legal safety is
always ensured regardless of the number of considered traffic rules. We have also formally
proved that this property holds, i.e., the safety layer is correct-by-construction according
to our legal specification. To demonstrate that our safety layer safeguards the autonomous
vehicle for arbitrary intended trajectories, we used three different methods to plan intended
trajectories for the autonomous vehicle. Even for intended trajectories that ignored other
road users, the proposed safety layer successfully guaranteed legal safety.

3.2 Future Work

The initial results of this thesis indicate that our approach efficiently plans drivable motions
for individual and cooperative vehicles in arbitrary, complex traffic situations. Moreover,
our experiments indicate that legal safety can be strictly ensured without suffering from
substantial performance drops. At the same time, our findings suggest opportunities for
future research, which we will explain in more detail below.

We use reachability analysis prior to trajectory planning to determine areas to which the
search for feasible trajectories can be limited. However, the reachable sets are currently
recomputed in each planning cycle, which requires a considerable amount of time. In order
to achieve short computation times, we propose to re-use the computed reachable sets of the
previous planning cycles in an anytime fashion, i.e., we start with a rough approximation of
the reachable set using previous results and refine it as long as time permits. The expected
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benefits are the availability of solutions after a short start-up phase and improvements in the
overall computational efficiency of our approach.

We further recommend that future research should be undertaken to estimate the drivability
and suitability of driving corridors. It is desirable to know prior to trajectory planning if a
feasible trajectory in a driving corridor exists. Moreover, if there exist multiple driving
corridors, the question also arises as to which corridor is best suited to the respective driving
task. For this, tactical reasoning and semantic maneuver interpretation are key aspects.
Therefore, a possible future direction would be to enrich driving corridors with semantics
[129]. Inspired by the concept of hybrid systems that exhibit both discrete and continuous
time evolutions, we can extend states in the reachable set computation with discrete state
information such as “in lane A” or “in front of vehicle B”. Given the semantic labels on
the reachable sets, we are able to extract driving corridors that represent desired driving
maneuvers such as first pass vehicle A, then follow vehicle B until reaching the stop sign.
Since many conceivable high-level maneuvers are inappropriate in traffic, e.g., repeatedly
overtaking the same vehicle by accelerating and braking, some tactical maneuvers could
already be excluded during the reachable set computation. The semantic labeling of reachable
sets also facilitates the consideration of traffic rules such as the safe distance [130].

Our results on cooperative motion planning using combinatorial optimization are encour-
aging and should be validated in further experiments. An important matter to resolve for
future studies is the development of a bidding strategy for cooperative vehicles. At present,
we use an utility function to determine the bids for the cooperative vehicles. All vehicles use
the same universal utility function to prevent one vehicle from constantly outbidding others
due to different scales and weights that may occur when using different utility functions.
Future work should focus on improving the bidding strategy which is usually influenced by
a pricing mechanism that determines how much a bidder must pay for a set of items. In fu-
ture studies, pricing mechanisms could be investigated that compensate cooperative vehicles
which hand-over drivable areas.

Our proposed safety layer (see Sec. 2.5) can be extended for fail-safe motion planning
with communicating vehicles. Further studies are needed to analyze the communication
requirements of the proposed approach in order to agree on a protocol for data exchange
between the cooperative vehicles. So far, we have assumed that the communication between
cooperative vehicles is stable, but it is of utmost importance to provide fail-safe solutions in
case of communication failures.

The prospect of being able to eliminate self-inflicted accidents of autonomous vehicles serves
as a continuous incentive to future research. Our results obtained on real data recorded in
urban traffic are promising; therefore, the evaluation should be extended to closed-loop test
drives in the future.

With regard to fail-safe motion planning, experiments can be conducted in situations of
unavoidable accidents caused, for example, by illegal or even hostile behavior of other road
users. Our novel motion planning method already allows one to find least-intrusive trajectories
as described in Sec. 2.3 by combining driving corridors with the smooth reformulations of the
collision avoidance constraints based on the signed distance function [42]. We propose that
further research should be undertaken to mitigate the impact of collisions to reduce the risk
of serious injury in situations of inevitable accidents.
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Appendix A

Reproduction of Publications

A.1 Using Online Verification to Prevent Autonomous
Vehicles from Causing Accidents [1]

Summary This work proposes a novel online verification technique that ensures legal safety
of autonomous vehicles in urban traffic situations (see Problem 3), i.e., autonomous vehicles
never cause self-inflicted accidents, although other road users may perform any behavior
in accordance with traffic rules. We therefore introduce a safety layer for existing motion
planners, e.g., those based on machine learning, which provide intended trajectories that are
kinematically feasible but may not be legally safe. Our safety layer offers three main features:
(1) online situation assessment, i.e., every situation is considered on-the-fly and all possible
future evolutions according to legal safety are taken into account. (2) Fail-safe operation, i.e.,
it is ensured that the autonomous vehicle always has a fallback solution available in hazardous
situations. (3) Correct by construction, i.e., independent of the existing motion planner and
the number of specified traffic rules, legal safety is guaranteed.

Based on reachability analysis and specified traffic rules, our technique first computes the
set of all future behaviors of other road users that comply with legal safety. Then, we compute
the drivable area of the autonomous vehicle, also using reachability analysis, from which we
determine driving corridors for the subsequent fail-safe motion planning.

We demonstrate the benefits of our approach in different urban traffic scenarios that we
recorded in real traffic. The selected traffic situations are among the situations in which most
accidents occur in urban traffic, i.e., a left-turn maneuver at an intersection, a critical situation
with a jaywalking pedestrian, and a lane-change maneuver in dense traffic. Furthermore, we
test our safety layer in combination with different motion planners that provide intended
trajectories. Our results indicate that legal safety can be guaranteed and at the same time
the driving behavior is not conservative.

Author Contributions S. M., C. P., and M. K. developed the verification technique during
replanning. M. K. developed the concept and algorithms for the set-based prediction. S. M.
and C. P. developed the concept and algorithms for the drivable area computation, driving
corridor identification, and fail-safe trajectory planning. M. A. developed the main concept of
online verification by integrating set-based prediction and fail-safe trajectory generation. M.
A. developed the underlying algorithms for reachability analysis and led the research project.
S. M., C. P., and M. K. designed, conducted, and evaluated the experiments and collected
the data. S. M., C. P., and M. K. wrote the article and the supplementary information.

43



Appendix A Reproduction of Publications

Copyright notice c©Christian Pek, Stefanie Manzinger, Markus Koschi, and Matthias Al-
thoff, under exclusive license to Springer Nature Limited 2020. Reprinted, with permission.

Attachments The Supplementary Information, the Supplementary Data File, and Supple-
mentary Videos are available at https://www.nature.com/articles/s42256-020-0225-y#
Sec15.

44

https://www.nature.com/articles/s42256-020-0225-y#Sec15
https://www.nature.com/articles/s42256-020-0225-y#Sec15


Articles
https://doi.org/10.1038/s42256-020-0225-y

1Cyber-Physical Systems Group, Department of Informatics, Technical University of Munich, Garching, Germany. 2These authors contributed equally. 
Christian Pek, Stefanie Manzinger, Markus Koschi. ✉e-mail: christian.pek@tum.de; stefanie.manzinger@tum.de; markus.koschi@tum.de

Safety remains a major challenge in the realization of autono-
mous vehicles. Unsafe decisions by autonomous vehicles can 
endanger human lives and cause tremendous economic loss in 

terms of product liability. Although autonomous driving is becom-
ing a reality, recent accidents involving autonomous driving systems 
have raised major concerns in various institutions1, and policy mak-
ers continue to debate about adequate safety levels for certifying 
autonomous vehicles2. To achieve widespread acceptance, safety 
concerns must be resolved to the full satisfaction of all road users. 
So far, automotive safety relies primarily on simulation and testing. 
However, due to the infinitely many unique real-world scenarios, 
these techniques cannot ensure strict safety levels3,4, especially when 
using machine learning for motion planning5.

We call for a paradigm shift from accepting residual collision 
risks to ensuring safety through formal verification. Formal veri-
fication describes the process of proving that a system always ful-
fils a desired formal specification6. However, in the context of safe 
motion planning, specifying all unsafe scenarios and proper reac-
tions of autonomous vehicles is a tedious task6. Although it cannot 
be excluded that autonomous vehicles are involved in accidents, 
such as when a following car deliberately provokes a rear-end col-
lision, self-inflicted accidents can and should be eliminated. What 
can we expect from human drivers to avoid self-inflicted accidents? 
Based on the Vienna Convention on Road Traffic, which serves as 
a foundation for safe driving in 78 countries, human drivers ‘shall 
avoid any behaviour likely to endanger or obstruct traffic’ (article 7 
of ref. 7). Inspired by this general rule, we demand that motions of 
autonomous vehicles must be collision-free under the premise that 
other traffic participants are allowed to perform all legal behaviours, 
that is, all dynamically feasible behaviours that do not violate traffic 
rules. Following refs. 8,9, we refer to this specification as ‘legal safety’.

In contrast to related work, our holistic approach computes all 
legal behaviours of other traffic participants and collision-free fall-
back plans for the autonomous vehicle. Our solution serves as a 
safety layer for existing motion planning frameworks. These frame-
works generate intended trajectories but cannot guarantee legal 
safety. However, in combination with our verification technique, 

legal safety is ensured. Our technique provides the following three 
key features:

	1.	 Online situation assessment: The safety of each traffic situation 
is assessed online during operation of the autonomous vehicle 
by rigorously predicting all legal future evolutions of the sce-
nario (blue areas, Fig. 1) while accounting for measurement 
uncertainties. In contrast to classical testing approaches, even 
previously unseen traffic environments can be handled, that is, 
scenarios with arbitrary road geometries and number of traffic 
participants.

	2.	 Fail-safe operation: Our approach ensures that the autonomous 
vehicle always has a fail-safe trajectory to a standstill in des-
ignated safe areas, which serves as a fallback plan in the case 
where a safety-critical situation occurs (see the fail-safe trajec-
tory in Fig. 1).

	3.	 Correct by construction: Regardless of the provided motion 
planning framework, which may include machine learning com-
ponents, our verification technique ensures that the autonomous 
vehicle operates in compliance with legal safety at all times. Fur-
thermore, our safety guarantees hold even if certain traffic rules 
are not yet included in our technique, because, from the set of all 
dynamically feasible behaviours, we only remove the behaviours 
that are illegal according to the considered traffic rules.

At present, verification is performed during the design process—
that is, offline, before systems are deployed10. However, offline veri-
fication is not suitable for autonomous vehicles, as these vehicles 
operate in highly uncertain environments in which each scenario 
is unique. For this reason, online verification approaches have been 
introduced that verify safety properties during operation of the 
autonomous vehicles (section II-C of ref. 11), for example, through 
logical reasoning12,13 or avoiding inevitable collision states14,15. In the 
case where a trajectory is classified as unsafe, these approaches usu-
ally do not provide an alternative safe plan for the vehicle. In the 
field of control, popular safety techniques are robust model predic-
tive control approaches16–18 and correct-by-construction controllers, 

Using online verification to prevent autonomous 
vehicles from causing accidents
Christian Pek   1,2 ✉, Stefanie Manzinger   1,2 ✉, Markus Koschi   1,2 ✉ and Matthias Althoff   1

Ensuring that autonomous vehicles do not cause accidents remains a challenge. We present a formal verification technique 
for guaranteeing legal safety in arbitrary urban traffic situations. Legal safety means that autonomous vehicles never cause  
accidents although other traffic participants are allowed to perform any behaviour in accordance with traffic rules. Our tech-
nique serves as a safety layer for existing motion planning frameworks that provide intended trajectories for autonomous 
vehicles. We verify whether intended trajectories comply with legal safety and provide fallback solutions in safety-critical situ-
ations. The benefits of our verification technique are demonstrated in critical urban scenarios, which have been recorded in real 
traffic. The autonomous vehicle executed only safe trajectories, even when using an intended trajectory planner that was not 
aware of other traffic participants. Our results indicate that our online verification technique can drastically reduce the number 
of traffic accidents.
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for example, involving barrier certificates19, Lyapunov functions20 or 
automatic controller synthesis21. These approaches ensure that the 
vehicle avoids unsafe states or is kept within an invariant set of safe 
states22,23 at all times. Closely related recent approaches incorporate 
reachability analysis to compute the set of states that a system is able 
to reach over time. Thus, it can be verified that unsafe states are not 
reached during operation9,24–26. However, these existing approaches 
are often computationally intractable, do not generalize to arbitrary 
traffic scenarios or do not provide the required prediction of unsafe 
sets in dynamic environments.

In the context of autonomous driving, the time-variant unsafe sets 
are commonly defined as the future occupied positions of other traffic 
participants, which can be obtained by motion prediction27. Existing 
prediction approaches usually compute a countable set of most likely 
behaviours by applying probabilistic28–30 or machine learning meth-
ods31–33. The safety of autonomous vehicles is guaranteed only if no 
traffic participant deviates from the few predicted behaviours, but 
such deviations often occur in real traffic. By incorporating reach-
ability analysis, predictions are able to consider an infinite number 
of possible future behaviours of dynamic obstacles9,34–37. Yet, allow-
ing for all dynamically feasible behaviours of other traffic partici-
pants overly limits the manoeuvrability of the autonomous vehicle. 
Therefore, our reachability-based prediction only considers behav-
iours that are dynamically feasible in the road network and that do 
not violate a set of formalized traffic rules (blue areas, Fig. 1).

The motion planner for fail-safe trajectories must cope with 
small and convoluted solution spaces. Commonly used trajec-
tory planning techniques either discretize the input or state space 
of the autonomous vehicle38,39 or apply variational techniques in 
continuous space40–42. The former methods suffer from discretiza-
tion effects, such that narrow passageways in the solution space 
may not be found43 or safe terminal states may not be reached44. 
Although variational-based methods overcome these limitations, 
the non-convexity of the motion planning problem due to nonlinear 
vehicle dynamics and collision avoidance poses a major challenge. 
As a result, variational-based techniques are often computation-
ally complex45–47 or must be guided through the solution space to 
work in dense traffic situations48,49, for example, by specifying driv-
ing corridors that represent temporal tactical decisions, such as  

overtaking an obstacle on the left or right. Approaches for obtain-
ing driving corridors generally do not consider the dynamics of the 
autonomous vehicle50–52 and thus may not be able to reason about 
the drivability of driving corridors. Our approach combines reach-
ability analysis with convex optimization to determine drivable 
fail-safe trajectories within dynamics-aware driving corridors in 
arbitrary traffic scenarios (fail-safe trajectories, Fig. 1).

Results
Our verification technique ensures legal safety over consecutive 
verification cycles. A new verification cycle c 2 Nþ

I
 begins when-

ever an intended trajectory Ic is provided by the intended trajec-
tory planner of the existing motion planning framework, where c 
is incremented by one for each received intended trajectory. The 
autonomous vehicle can only start executing a new intended trajec-
tory Ic that is starting at tc if Ic is successfully verified as legally safe. A 
trajectory is legally safe if it (1) is collision-free against the predicted 
occupancy sets (that is, occupied positions) that result from all legal 
behaviours of other traffic participants and (2) leads the autono-
mous vehicle to a safe terminal state.

Typically, the time horizon TIc
I

 of Ic is several seconds for plan-
ning anticipatory motions. However, the predicted occupancy sets 
of the surrounding traffic participants become increasingly large for 
longer time horizons due to growing uncertainties regarding their 
future behaviours. Thus, Ic is often not safe over its entire time hori-
zon TIc

I
. For the safety verification (Fig. 2a), we therefore do not 

consider the entire intended trajectory Ic, but only a short part of Ic 
lasting from tc until tc þ Δsafe

c
I

, where Δsafe
c 2 Rþ
I

. We regard this part 
of Ic as legally safe and refer to it as Isafec

I
 if it is collision-free against 

the predicted occupancy sets within its entire time duration Δsafe
c
I

. 
Because Isafec

I
 does not ensure that the autonomous vehicle remains 

legally safe for t> tc þ Δsafe
c

I
, we compute a consecutive fail-safe 

trajectory Fc (the index of F indicates the corresponding intended 
trajectory I). The fail-safe trajectory Fc needs to smoothly continue 
Isafec
I

, be collision-free against the predicted occupancy sets for its 
entire time horizon TFc

I
, and transition the autonomous vehicle to 

a standstill in safe areas. We say that Ic is verified successfully if Isafec
I

 
and Fc exist and are computed prior to tc. The concatenation of Isafec

I
 

and Fc represents the verified trajectory and is denoted as Isafec k Fc

I
.

Fail-safe trajectory

Possible legal
behaviour

Set of all legal
behaviours

Intended
trajectory Set of

safe states

Autonomous
vehicle

Fig. 1 | Verification of legal safety. Intended trajectories (black line) are usually planned by only considering the most likely behaviours (grey lines) of 
other traffic participants. Our online verification technique ensures that the autonomous vehicle is safe in accordance with legal safety by maintaining 
fail-safe trajectories (red lines) at all times. These fail-safe trajectories are collision-free against the set of all legal behaviours (blue areas) of other traffic 
participants and safeguard the autonomous vehicle along its intended trajectory to safe states (grey areas).
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Let us explain the verification procedure during replanning 
using Fig. 2. Initially, at t0, we assume that the autonomous vehicle is 
in a safe state (for example, parked). Immediately after the autono-
mous vehicle successfully verifies a given intended trajectory I1 in 
verification cycle c = 1 (that is, Isafe1

I
 and F1 are obtained), the vehi-

cle is allowed to engage in the autonomous driving mode at time 
t1 and starts executing Isafe1

I
 of the verified trajectory Isafe1 k F1

I
 (see 

the result of c = 1 in Fig. 2b). The intended trajectory planner can 
then provide new intended trajectories Ic, c > 1, for verification. If 
a new trajectory Ic is successfully verified, the autonomous vehicle 
can transition from the previously verified trajectory to Isafec

I
 of the 

new verified trajectory Isafec k Fc

I
 at time tc (see Fig. 2a and the result 

of c ∈ {2, 4} in Fig. 2b). If the intended trajectory Ic cannot be veri-
fied, the most recently verified trajectory Isafec�i k Fc�i

I
 of cycle c − i, 

i ∈ {1, …, c − 1}, continues to be executed (see Fig. 2a and the result 
of c = 3 in Fig. 2b). While moving along Isafec�i k Fc�i

I
, the fail-safe tra-

jectory Fc − i is only executed if no new intended trajectory can be 
successfully verified before the final time of Isafec�i

I
. This previously 

verified trajectory Isafec�i k Fc�i

I
 remains collision-free as long as other 

traffic participants do not violate traffic rules, because our set-based 
prediction has already anticipated all their legal future behaviours. 
Thus, legal safety is ensured regardless of the verification result.

Experiments on real data. For all verification cycles c in our 
experiments, the starting time of fail-safe trajectories Fc is equal 
to the starting time of the next intended trajectory Ic + 1, that is, 
tc þ Δsafe

c ¼ tcþ1

I
 (see result for c = 2 in Fig. 2b). This is achieved by 

choosing a constant replanning rate Δt = tc + 1 − tc (meaning that new 
intended trajectories should be executed at rate Δt) that is set to 
the constant duration of Isafec

I
 as Δt ¼ Δsafe

c
I

 for all c. Consequently, 
when executing a verified trajectory Isafec k Fc

I
, the transition to the 

fail-safe trajectory Fc may only occur at tc + 1. Thus, in each time 
interval [tc, tc + 1], the autonomous vehicle either executes Isafec

I
 com-

pletely or a part of Fc − i of a previously verified Isafec�i k Fc�i

I
. In other 

words, only if the current verification result is not successful do the 
autonomous vehicles transition from the safe part of an intended 
trajectory to a fail-safe trajectory.

In urban environments, most accidents occur at intersec-
tions and with pedestrians53. To demonstrate that our proposed 

verification technique allows autonomous vehicles to handle these 
crucial cases, we created two scenarios by recording real traffic with 
a BMW 7 series vehicle. By post-processing the real-world record-
ings, as described in the Supplementary Information, and applying 
our verification technique offline, we obtained the results presented 
below. For each of the two scenarios we illustrate an overview of the 
traffic situation using recorded images from the BMW 7 series vehi-
cle and show the verification results of selected verification cycles c 
(Figs. 3 and 4). In addition, we demonstrate for both scenarios that 
our method guarantees legal safety for arbitrary intended trajectory 
planners (Fig. 5). In the Supplementary Information, we further pro-
vide a scenario illustrating safe lane changes (where the third most 
accidents occur53), further results including videos, detailed compu-
tation times (177 ms on average), all used parameters and software 
to visualize the verification results for all verification cycles.

Scenario I: left-turn at an urban intersection. In countries where 
vehicles drive on the right (we apply this throughout this Article), 
left turns at intersections are among the most hazardous manoeu-
vres, because the autonomous vehicle must consider the right of way 
of oncoming vehicles and yield to potential cyclists in their dedi-
cated lane (Fig. 3a). The behaviour of oncoming vehicles or cyclists 
may change rapidly over time. For example, vehicles may acceler-
ate or decelerate, and cyclists may even stop and dismount, which 
increases the uncertainty about the future evolution of the traffic 
scenario. Under all circumstances, the autonomous vehicle must 
yield to oncoming traffic while not disrupting the traffic flow due to 
overly conservative behaviour.

Our method accomplishes this challenge by safeguarding the 
opportunistic intended trajectory with fail-safe trajectories that (1) 
comply with the right of way and (2) never stop the autonomous 
vehicle in the intersection area. Because our prediction accounts 
for all legal behaviours of other traffic participants, our verification 
technique can decide whether a left turn manoeuvre can be com-
pleted before oncoming traffic can enter the intersection. Thus, the 
autonomous vehicle automatically respects the right of way.

As illustrated in Fig. 3b at t1 = 0 s, the autonomous vehicle first 
approaches the intersection along its intended trajectory, that 
is, Isafec

I
, c ∈ {1, …, 4}, is executed. From t5 = 2.4 s to t10 = 5.4 s, our 

I c

Verified Not verified

safe

safe
Execute Ic || Fc

safeI c -i ||Fc -i

intended trajectory Ic

Fc

b Verification results during replanninga Verification steps in cycle c

c = 1

c = 2

c = 3

c = 4

t1t0 t2 t3 t4 t5

Autonomous vehicle at tc

Intended trajectory Ic Fail-safe trajectory F
Occupancy sets

Successful Unsuccessful

UnsuccessfulSuccessful

Compute

Compute

Continue previously
from tc verified

I 1
safe

Fig. 2 | Verification during replanning. a, In each verification cycle c, the given intended trajectory Ic is verified by computing the safe part Isafec
I

 and the 
fail-safe trajectory Fc. b, If the verification result of cycle c is successful (as in c ∈ {1, 2, 4}), the verified trajectory Isafec k Fc

I
 is executed starting at tc. If the 

verification result is unsuccessful (as in c = 3), the verified trajectory Isafec�i
I

 and Fc−i of a previous successful verification cycle c − i is executed until a new 
intended trajectory is successfully verified again (as in c = 4).
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approach automatically detects that the intended trajectories lead to 
an unsafe situation in which a collision with the oncoming vehicle 
within the intersection area cannot be excluded before the cyclist 
has definitely passed. The fail-safe trajectory thus stops the autono-
mous vehicle at the intersection (see fail-safe trajectory at t6 = 3 s in 
Fig. 3b). Immediately after the cyclist has passed, our verification  
technique successfully verifies an intended trajectory and the 

autonomous vehicle continues its left turn before oncoming traf-
fic, as shown in Fig. 3b at t10 = 5.4 s. Note that, in this figure, the 
fail-safe trajectory overlays the occupancy sets, because the occu-
pancy sets are shown at the final time of the fail-safe trajectory (see 
Supplementary Fig. 8 for the occupancy sets at intermediate times). 
Figure 3b also demonstrates that our prediction incorporates traf-
fic rules. Consider the occupancy set of the oncoming vehicle with 

c 
= 

1,
 t 1

 =
 0

 s
c 

= 
6,

 t 6
 =

 3
 s

c 
= 

10
, t

10
 =

 5
.4

 s

Occupancy set

Intended trajectory Ic

Fail-safe trajectory F

Autonomous vehicle at tc

Autonomous vehicle at final time of F

Lateral driving corridor

a Scenario overview from recordings

b Verification results

Intended trajectory
(measured occupancy set without uncertainties shown at tc)

Fail-safe trajectory
(predicted occupancy set shown at a final time of F )

Front view at t = 0 s Front view at t = 4.7 s Top view at t = 0 s

Pedestrian
Motorcycle

Cyclist

Vehicles

ID = 1718

ID = 1719

Vehicles

Pedestrian

Motorcycle
Bicycle lane

Goal

Fig. 3 | Results of Scenario I (urban intersection). a, Camera images and top view of the scenario. b, Verification results of selected verification cycles c. 
The intended trajectory Ic is only shown if it is successfully verified. Credit: Google, GeoBasis-DE/BKG (satellite images).
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ID 1718 at t10 = 5.4 s. The legal safe distance forbids vehicles to turn 
after the autonomous vehicle in a way that obstructs the autono-
mous vehicle. Therefore, the vehicle with ID 1718 is only allowed to 
continue straight or turn left, but may not yet turn right.

Scenario II: jaywalking pedestrian. Vulnerable road users pose 
a special challenge to autonomous vehicles, because they often 
exhibit unexpected changes in behaviour. In particular, pedestri-
ans can quickly change their walking direction, which makes it 
difficult for autonomous vehicles to react in time. Even though 
it is illegal for pedestrians to jaywalk, that is, to cross the road 
in the presence of traffic, pedestrians are occasionally inattentive 
and cross directly in front of passing vehicles. If the prediction of 
the autonomous vehicle does not include this behaviour, a fatal 
accident could occur.

In the first verification cycle c = 1 presented in Fig. 4, the pedes-
trian with ID 323 (in a blue jacket) is walking on the sidewalk and is 
only looking at his cell phone (Fig. 4a). To anticipate that this inat-
tentive pedestrian may jaywalk, we broaden the set of considered 
legal behaviours for this pedestrian by relaxing the constraints in its 
prediction. As a result, the autonomous vehicle computes the future 
occupancies of this pedestrian for both crossing the road and walk-
ing partially on the road parallel to the sidewalk (see occupancy 

set in Fig. 4b for the fail-safe trajectory at t1 = 0 s; note that occu-
pancy sets of pedestrians are not visualized outside of the road). 
The resulting fail-safe trajectory F1 (starting at t2) ensures that the 
autonomous vehicle remains behind the pedestrian.

In the next verification cycles c ∈ {2, 3, 4}, the autonomous 
vehicle cannot verify the new intended trajectories. In fact, each 
intended trajectory collides with the jaywalking pedestrian. Thus, 
by automatically executing the first computed fail-safe trajectory F1, 
the autonomous vehicle slows down to avoid a collision with the 
pedestrian with ID 323 (see t4 = 1.8 s in Fig. 4b). After the pedestrian 
crosses, the autonomous vehicle accelerates to the desired velocity, 
and the fail-safe trajectory implies that the autonomous vehicle is 
able to pass before the pedestrian may walk back towards the lane of 
the autonomous vehicle (see t14 = 7.8 s in Fig. 4b).

As demonstrated in this scenario, our verification technique 
offers its users, such as mobility providers, the flexibility to define 
the legal behaviours differently for specific types of traffic partici-
pants. For example, when driving past a school, one may wish to 
anticipate that any child or even any pedestrian may cross the road.

Legal safety for arbitrary intended trajectories. We apply our ver-
ification technique to three different intended trajectory planners 
(for details see Supplementary Information):
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Fig. 4 | Results of Scenario II (jaywalking pedestrian). a, Camera images and top view of the scenario. b, Verification results of selected verification cycles 
c. The intended trajectory Ic is only shown if it is successfully verified. Credit: Google, GeoBasis-DE/BKG (satellite images).
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•	 Planner 1 uses continuous optimization to plan trajectories that 
are collision-free with regard to the most likely behaviour of 
other traffic participants. This planner is also used as an intended 
trajectory planner for the previous results of Scenarios I and II.

•	 Planner 2 is based on Planner 1 with the modification that other 
traffic participants are ignored. With this planner, we mimic a 
reinforcement learning approach that has not yet learned colli-
sion avoidance.

•	 Planner 339 samples in a discrete state space to plan trajectories 
that are collision-free with regard to the most likely behaviour of 
other traffic participants.

Figure 5 illustrates the velocity profiles of the autonomous vehi-
cle in Scenarios I and II for each intended trajectory planner. In 
Scenario I, our verification technique intervenes independently of 
the applied intended trajectory planner so that the autonomous 
vehicle stops in front of the intersection (Fig. 5a). Although Planner 
2 is not aware of other traffic participants, our verification technique 
enables the autonomous vehicle to safely turn left. Because Planner 
2 tries to reach the desired velocity (8 m s−1) more aggressively than 
Planners 1 and 3 (see the results of verification cycles c ∈ {1, 2} in 
Fig. 5a), the subsequently executed fail-safe trajectories cause a 
rapid deceleration of the autonomous vehicle (peak, −6 m s−2) (see 
the results of verification cycles c ∈ {3, …, 8} for Intended Planner 
2 in Fig. 5a). However, the execution of fail-safe trajectories for 
Planner 2 causes only a short delay, as the stopping time at the inter-
section is less than 2 s.

In Scenario II, the intended trajectory planners are not aware of 
the pedestrian’s intention to jaywalk. Therefore, fail-safe trajectories 
are executed to slow down the autonomous vehicle (see the results 
of verification cycles c ∈ {2, 3, 4} in Fig. 5b) until Planners 1 and 3 
react to the pedestrian. Planner 2 requires permanent guidance to 
avoid a collision with the pedestrian. Although the type of executed 

trajectory, that is, Isafec
I

 or Fc − i, continuously alternates, the average 
velocity of the autonomous vehicle with Planner 2 is 5% higher than 
that with Planner 1 (6.36 m s−1 and 6.09 m s−1, respectively).

In summary, we are able to guarantee legal safety for differ-
ent intended trajectory planners, even when using a planner that 
ignores other traffic participants. Furthermore, the resulting veloc-
ity profiles are smooth and continuous, as fail-safe trajectories are 
planned with full consideration of the vehicle’s dynamics.

Discussion
Certification is the main obstacle to achieving commercial success 
with the proposed verification technique. Regulatory guidelines have 
already been prepared for various domains, such as railway systems, 
industrial robots and aviation systems, but only limited regulations 
exist for motion planning of autonomous vehicles (for example, ISO 
26262 and ISO 21448). We have prepared the ground for certification 
by formulating legal safety and presenting a verification technique that 
ensures that this specification is met during operation of the autono-
mous vehicle. Moreover, the safety guarantees are maintained when 
adapting our considered set of traffic rules to new requirements. If 
legal safety becomes a recognized standard for autonomous vehicles, 
mobility providers can certify our proposed verification technique 
for usage in their vehicles. As a result, we expect that societal trust 
in autonomous vehicles will increase and that testing efforts can be 
significantly reduced, even if motion planning frameworks for gener-
ating intended trajectories are changed.

Legal safety is a promising novel safety approach inspired by 
traffic regulations that is suitable for certification. Related con-
cepts, such as responsibility-sensitive safety54, not-at-fault driving26 
and compositional and contract-based verification55, share our 
premise to avoid (self-inflicted) accidents, but differ substantially 
to our proposed solution. Responsibility-sensitive safety assumes 
that other traffic participants act according to common-sense rules 

Intended trajectory executed Fail-safe trajectory executed

a Velocity profiles of Scenario I (urban intersection)

b Velocity profiles of Scenario II (jaywalking pedestrian)
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Fig. 5 | Results of the verification technique with different intended planners. a, Executed velocity profiles in Scenario I (results of cycles c ∈ {1, 6, 10} are 
labelled). b, Executed velocity profiles in Scenario II (results of cycles c ∈ {1, 4, 14} are labelled).
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and defines appropriate responses by the autonomous vehicle based 
on safe distances. However, despite the execution of appropri-
ate responses, self-inflicted accidents cannot be excluded, because 
other traffic participants may behave differently than expected. Our 
approach addresses this problem by considering all legal behaviours. 
Not-at-fault driving computes a single trajectory that is split into 
moving, braking and stopped phases and is provably collision-free 
against a given prediction. By contrast, we allow intended trajecto-
ries to be planned independently of fail-safe trajectories, for exam-
ple, using a most likely prediction to optimize comfort. In ref. 55,  
a finite number of offline-verified, local models are fitted online 
to the current traffic situation. However, this approach may result 
in unsafe behaviours if no valid composition of these local models 
can be found for the current situation. Our verification technique 
evaluates the safety of situations online and always provides fail-safe 
trajectories to eliminate self-inflicted accidents. The detailed com-
putation steps of our verification technique are described in the 
Methods and are visualized in Fig. 6.

Methods
Formal verification is often believed to cause performance drops (for example, 
lower average velocities resulting in longer travel times) and conservative 

behaviour in robotic systems56,57. However, we believe that autonomous vehicles can 
offer high performance and ensure legal safety at the same time. This has motivated 
us to improve on our previous work on set-based predictions58–60, fail-safe 
trajectory planning61 and trajectory planning using reachable sets62. Further to our 
previous work, we present the following innovations:

	1.	 Our proposed verification technique ensures legal safety in complex traffic 
scenarios and in a computationally efficient way. In particular, by embedding 
driving corridors62 into fail-safe trajectory planning61, we generalize the com-
putation of possible fail-safe manoeuvre options to different traffic situations 
and can consider multiple safe terminal sets.

	2.	 On various urban scenarios that have been recorded in real traffic in-
cluding measurement uncertainties, the applicability of the proposed 
verification technique is demonstrated. In addition, our results indicate 
that non-conservative driving behaviour can be achieved despite the 
over-approximative, set-based prediction.

	3.	 The temporal interplay over subsequent verification cycles of our verification 
technique with the intended trajectory planner of the autonomous vehicle is 
presented in detail.

	4.	 Further experiments with three different intended trajectory planners validate 
that our verification technique is able to ensure legal safety for arbitrary 
intended trajectory planners.

In the following paragraphs, we present the inputs of our verification 
technique, preliminaries for the reachability analysis, an overview of the 
algorithmic steps and the safety guarantees for our verification technique. 
Additional details are provided in the Supplementary Information.
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Inputs of the verification technique. Our verification technique is integrated 
between the motion planning layer and the control layer of the autonomous vehicle 
(see planning frameworks in refs. 63,64). In each verification cycle c, our verification 
technique receives as inputs the intended trajectory Ic and the environment 
model. The intended trajectories must be kinematically feasible and branch off the 
previously verified trajectory Isafec�i k Fc�i

I
. The environment model must contain the 

lanes of the road, pedestrian crossings and areas in which the autonomous vehicle 
is not allowed to stop, which are used to obtain the designated safe areas. For all 
safety-relevant traffic participants, the environment model must contain their type 
(that is, vehicle, motorcycle, bicycle or pedestrian) and their current states (that is, 
a set containing the exact state and bounded measurement uncertainties). If the 
type of traffic participant is unknown or uncertain, our verification technique can 
predict the set of future behaviours for all possible types in parallel.

Preliminaries of the verification technique. The motion of the pth traffic 
participant is governed by the differential equation _xðpÞðtÞ ¼ f ðpÞ xðpÞðtÞ; uðpÞðtÞ

� �

I
, 

where x(p) is the state and u(p) is the input. The admissible states and inputs are 
bounded by the respective sets XðpÞðtÞ  RnðpÞ

I
 and UðpÞðtÞ  RmðpÞ

I
. A possible 

solution of the differential equation at time t is denoted by χðpÞ t; xðpÞðτ0Þ; uðpÞðÞ
� �

I
, 

when starting at state xðpÞðτ0Þ 2 XðpÞ
0

I
, where XðpÞ

0
I

 is the set of states at an initial 
time τ0 including measurement uncertainties, and using input trajectory u(p)(⋅). The 
reachable set ReðpÞ ðt; τ0Þ  XðpÞðtÞ

I
 describes the set of states that are reachable by 

the pth traffic participant at a certain point in time t ≥ τ0 when starting in XðpÞ
0
I

 and 
applying all admissible inputs UðpÞðtÞ

I
:

ReðpÞ ðt; τ0Þ ¼ χðpÞ t; xðpÞðτ0Þ; uðpÞðÞ
� 

xðpÞðτ0Þ 2 XðpÞ
0 ; 8~τ 2 ½τ0; t :


n

χðpÞ ~τ; xðpÞðτ0Þ; uðpÞðÞ
� 

2 XðpÞð~τÞ; uðpÞð~τÞ 2 UðpÞð~τÞ
 ð1Þ

For brevity, we omit the superscript (p) when referring to the autonomous 
vehicle. In each verification cycle c, we compute the reachable set of other traffic 
participants to predict their future movement and that of the autonomous vehicle 
to obtain its drivable area.

As illustrated in Fig. 6a, we introduce the discrete points in time t0k for each 
verification cycle c, where k 2 f0; ¼ ; kI ; ¼ ; kF ; ¼Kg  N0

I
; for brevity, the 

notation of t0k does not reflect its dependency on c. Time t00 is the initial time 
of the prediction, that is, the point in time at which the most recently available 
environment model has been recorded. Time t0kI

I
 corresponds to the start time of 

the intended trajectory Ic (that is, t0kI ¼ tc
I

), t0kF
I

 corresponds to the start time of the 
fail-safe trajectory Fc (that is, t0kF ¼ tc þ Δsafe

c

I
) and t0K

I
 corresponds to the final time 

of the fail-safe trajectory (that is, t0K ¼ tc þ Δsafe
c þ TFc

I
). Without loss of generality, 

we assume that the times t0k are multiples of the time step size Δt0 2 Rþ
I

, that is, 
t0k ¼ t00 þ kΔt0

I
.

Recall that we set Δsafe
c
I

 to the replanning rate Δt in our experiments. To 
minimize the interventions of our verification technique, that is, how often a 
fail-safe trajectory is executed, the duration Δsafe

c
I

 can be dynamically adjusted 
to optimize the length of Isafec

I
 as described in ref. 65. To avoid that new intended 

trajectories cannot be verified solely due to a timeout, intended trajectories 
Ic should be provided prior to tc − Δverify, where Δverify 2 Rþ

I
 is the required 

computation time of our verification method.

Occupancy prediction. The goal in the first step of our verification technique is 
to over-approximate the area LeðtÞ

I
 that exactly encloses the occupied positions 

of the surrounding traffic participants for all their legal behaviours. Therefore, we 
first compute all dynamically feasible behaviours and subsequently remove illegal 
behaviours.

All dynamically feasible behaviours of other traffic participants are obtained 
using reachability analysis as defined in equation (1). For each pth traffic 
participant, the environmental model provides the initial states XðpÞ

0
I

 at t00, which 
are described by a set due to measurement uncertainties (Fig. 6b, step (1)). The 
dynamics of each traffic participant are abstracted by a second-order integrator 
model with bounded velocities and accelerations. We compute the reachable 
set RðpÞðt; t00Þ

I
 as a tight over-approximation of the exact reachable set, that is, 

RðpÞðt; t00Þ  ReðpÞ ðt; t00Þ
I

, and only for the position domain to allow for an efficient 
computation. For collision checks with planned trajectories of the autonomous 
vehicle, we introduce OðpÞ

dyn ðt; t00Þ
I

 as the dynamics-based occupancy set resulting 
from the over-approximative reachable set RðpÞðt; t00Þ

I
 by considering the 

dimensions of the pth traffic participant (Fig. 6b, step (1)).
Next, we remove behaviours that are not allowed according to traffic rules. 

Therefore, we formalize a set of traffic rules that is most relevant for motion 
planning (and which can be easily extended). Let v(p) and a(p) denote the velocity 
and acceleration of the pth predicted traffic participant, respectively, and ◇veh 
denotes that the parameter  ◇ 2 fv; ag

I
 bounding the velocity or acceleration is 

applicable for vehicles and motorcycles, while ◇cyc is for bicycles and ◇ped is for 
pedestrians (the values of the parameters are stored in a database generated offline, 
can be updated online, and are provided in the Supplementary Information). The 
considered traffic rules for vehicles, motorcycles and bicycles are as follows:
•	 Maximum velocity is bounded (article 13.2 of ref. 7): vðpÞ≤vlimitf

ðpÞ
S

I
, where vlimit 

is the legal speed limit of the road and f ðpÞS ≥1
I

 is a parameterized speeding 
factor to consider slight over-speeding. If no speed limit is available, such as 
for bicycles, vðpÞ≤vveh=cyc

I
.

•	 Driving backward is not allowed (article 14.2 of ref. 7): v(p) ≥ 0.
•	 Absolute acceleration is bounded (due to tyre friction): jaðpÞj≤aveh=cyc

I
.

•	 Leaving the road is forbidden (article 14.1 of ref. 7).
•	 A safe distance to the autonomous vehicle must be maintained when driving 

behind it or merging in front of it (articles 13.5 and 11.2d of ref. 7).
•	 Changing lanes is only allowed if the new lane has the same driving direction 

as the previous one (article 11.2c of ref. 7).
Note that, according to article 11.2c of ref. 7, overtaking in a lane not 

appropriate to the direction of traffic is only allowed if not endangering or 
interfering with oncoming traffic. Because such a legal overtaking manoeuvre does 
not interfere with the motion planning of the autonomous vehicle, we neglect it in 
our prediction without compromising legal safety.

Although pedestrians are generally not allowed to obstruct vehicular traffic, for 
example, to jaywalk (article 7.1 of ref. 7), vehicles are required to take precautions 
to avoid endangering pedestrians (article 21.1 of ref. 7). Thus, the considered traffic 
rules for pedestrians are as follows:
•	 Absolute velocity is bounded (for example, based on ISO 13855): jvðpÞj≤vped

I
.

•	 Absolute acceleration is bounded (due to physical capabilities): jaðpÞj≤aped

I
.

•	 Entering the road is forbidden (articles 7.1 and 20.2 of ref. 7) except

•	 on pedestrian crossings (articles 20.6b and 21.2 of ref. 7)
•	 when walking toward the road; then, crossing the road is allowed perpen-

dicularly with a deviation of angle α based on the current heading of the 
pedestrian (articles 20.6c,d of ref. 7)

•	 when walking parallel to the road; then, occupying the strip of the road 
edge with a width of dslack is allowed, for example, to avoid obstacles on 
the sidewalk (articles 20.2a, 20.3 and 20.4 of ref. 7).

In summary, our set of traffic rules either constrains the dynamics of other 
traffic participants (for example, their maximum velocity), which are considered 
by OðpÞ

dyn ðt; t00Þ
I

, or constrains the allowed regions in the environment (for example, 
certain lanes or pedestrian crossings), which are given by the environment model 
and are denoted by OðpÞ

legal ðt; t00Þ
I

. The resulting over-approximative occupancy set 
of the pth traffic participant is OðpÞðt; t00Þ ¼ OðpÞ

dyn ðt; t00Þ \ OðpÞ
legal ðt; t00Þ

I
 (Fig. 6b, step 

(1)). To verify that Isafec
I

 and Fc are collision-free, we compute the occupancy sets for 
consecutive time intervals ½t0k; t0kþ1

I
 until the final time of Fc

I
, that is, ∀ k ∈ {kI, …, K}.  

Note that the time intervals ½t0k; t0kþ1
I

 can be of different duration for each k, for 
example, in case Isafec

I
 and Fc are discretized differently. The predicted occupancy 

sets of all traffic participants are given by Lð½t0k; t0kþ1Þ ¼
S

p

S
t2½t0k ;t0kþ1 

OðpÞðt; t00Þ
I

.
Note that, regardless of how many traffic rules we consider, our prediction 

always over-approximates the exact set of all legal behaviours, that is, 
LðtÞ  LeðtÞ
I

. The reason is that only behaviours defined as illegal are removed 
from the over-approximation of all dynamically feasible behaviours. The fewer 
traffic rules we consider, the more cautiously the autonomous vehicle behaves, 
because it respects more behaviours than actually allowed according to all traffic 
rules. However, the autonomous vehicle definitely remains collision-free when 
other traffic participants adhere to all traffic rules, as prescribed by legal safety. If a 
collision occurs nonetheless, we can verifiably argue that another traffic participant 
must have violated traffic rules and that the collision is not self-inflicted by the 
autonomous vehicle. Nevertheless, we account for humans’ tendency to violate 
traffic rules, such as the speed limit. Therefore, we continuously monitor whether 
any traffic participant performs a behaviour that is not included in the set of legal 
behaviours. Whenever violations are detected, this behaviour is automatically added 
to the prediction result; for example, if another vehicle illegally changes lanes, we 
no longer exclude this behaviour from our prediction of this vehicle. As a result, 
our verification technique will attempt to find a new fail-safe trajectory in case the 
previous one is no longer collision-free. Furthermore, if a traffic participant appears 
likely to misbehave, such behaviours can be included in our prediction by disabling 
the corresponding constraint, as demonstrated in Scenario II.

Drivable area computation. To obtain possible sequences of high-level fail-safe 
manoeuvres (for example, overtaking other vehicles on their left or right), we 
compute the drivable area of the autonomous vehicle at discrete points in time 
t0k with k ≥ kF by projecting its reachable set Reðt0k; t0kF Þ

I
 defined in equation (1) 

onto the position domain (Fig. 6b, step (2)). As for the prediction of other traffic 
participants, we abstract the dynamics of the autonomous vehicle using two 
second-order integrator models in the longitudinal and lateral directions with 
bounded velocities and accelerations in a road-aligned coordinate system66. For 
computational efficiency, the reachable set is approximated through the union 
of base sets BðiÞ

k
I

, i 2 N0
I

, such that Reðt0k; t0kF Þ 
S

iB
ðiÞ
k

I
 holds. The base sets BðiÞ

k
I

 
are the Cartesian products of convex polytopes describing reachable position–
velocity pairs in the longitudinal and lateral directions. We use convex polytopes, 
because they are closed under required set operations such as Minkowski 
sum, linear mapping and intersection. The projection of base sets BðiÞ

k
I

 onto the 
position domain yields axis-aligned rectangles DðiÞ

k
I

 that represent the drivable 
area Dðt0k; t0kF Þ :¼

S
iD

ðiÞ
k

I
. The projection of the reachable set onto the position 

domain can be computed efficiently, because we only need to determine the 
minimum and maximum position coordinates of the convex polytopes of the 
base sets BðiÞ

k
I

.
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The state xðt0kF Þ
I

 of the fail-safe trajectory Fc at its start time t0kF
I

 is provided by 
the final state of Isafec

I
. We enclose xðt0kF Þ

I
 with a base set such that xðt0kF Þ 2 Bð0Þ

kF
I

 
holds. The reachable set of consecutive points in time t0kþ1

I
, k ≥ kF, is computed as 

illustrated in Fig. 6b (step (2)). First, we propagate each base set BðiÞ
k
I

 of the previous 
time step forward in time considering all admissible inputs. Second, we remove 
states outside the set of admissible states Xðt0kþ1Þ

I
, that is, positions in which the 

autonomous vehicle collides with the predicted occupancy sets Lð½t0k; t0kþ1Þ
I

 or the 
area Q

I
 outside of the road, to obtain Rðt0kþ1; t

0
kF
Þ 

S
jB

ðjÞ
kþ1

I
 at time t0kþ1

I
. Third,  

we store each base set BðjÞ
kþ1
I

 in a directed graph GR
I

. In GR
I

, each set BðjÞ
kþ1
I

 is 
associated with exactly one node and an edge indicates that base set BðjÞ

kþ1
I

 is 
reachable from BðiÞ

k
I

 within one time step. The procedure is repeated until the final 
time step t0K

I
 is reached.

Driving corridor and trajectory optimization. We generate drivable fail-safe 
trajectories through continuous optimization. As convex optimization problems 
can be solved efficiently with global convergence, we convexify the inherently 
non-convex optimization problem by separating the longitudinal and lateral 
motion of the autonomous vehicle. However, longitudinal motion planning 
requires prior knowledge on the lateral motion and vice versa, as both subsystems 
are dynamically coupled. To overcome this issue, we obtain driving corridors 
from the drivable area that provide spatio-temporal position constraints for the 
optimization problems. We refer to the driving corridors for longitudinal and 
lateral optimization as the longitudinal and lateral driving corridors, respectively. 
To ensure legal safety for an infinite time horizon, we constrain the driving 
corridors to end in a safe terminal state based on the designated safe areas, for 
example, a standstill in the rightmost lane sufficiently far from an intersection. As 
illustrated in Fig. 6b (step (3)), our motion planner first optimizes the longitudinal 
trajectory within a longitudinal driving corridor, followed by optimizing the 
lateral trajectory in a suitable lateral driving corridor. Currently, we constrain 
fail-safe trajectories to be kinematically feasible, collision-free with respect to road 
boundaries and the predicted occupancy sets, respect the speed limit and end in a 
safe state. Further constraints can be imposed to consider additional properties, for 
example, rules on overtaking or stopping at the boundaries of the field of view of 
the vehicle.

We represent collision avoidance constraints by a minimum and maximum 
value on the longitudinal or lateral positions at each point in time. To obtain these 
limits, we exploit that a connected set in the position domain projected onto either 
the longitudinal or lateral direction yields an interval. Consequently, we define a 
longitudinal corridor and a lateral driving corridor for fail-safe motion planning 
as a temporal sequence of connected sets that are subsets of the drivable area 
Dðt0k; t0kF Þ
I

 from time t0kF
I

 to the final time t0K
I

.
To determine longitudinal driving corridors, we perform a search on the 

reachability graph GR
I

 backwards in time starting from the set of safe terminal 
states (Fig. 6b, step (3)). There may be multiple longitudinal driving corridors, 
because the drivable area can be disconnected due to surrounding traffic 
participants. We select the longitudinal driving corridor with the greatest 
cumulative drivable area from t0kF

I
 to t0K

I
 for trajectory planning (other heuristics can 

also be applied). For the longitudinal trajectory optimization, we use a fourth-order 
integrator model with jounce as input and bounded longitudinal velocity, 
acceleration and jerk. In addition to the collision avoidance constraints from the 
boundary of the longitudinal driving corridor, the autonomous vehicle must come 
to a standstill at the final time t0K

I
. To improve comfort, we choose a quadratic cost 

function that minimizes acceleration, jerk and jounce as well as deviations from 
the desired velocity.

The computation and selection of lateral driving corridors are performed 
similarly to the computation and selection of longitudinal driving corridors with 
the addition that the connected sets of the lateral driving corridor must provide a 
unique passing side for each obstacle. The lateral trajectories of the autonomous 
vehicle are optimized with respect to a linearized kinematic single-track model 
with limits on the steering actuators. Analogously to planning in the longitudinal 
direction, the position constraints for collision avoidance are obtained from the 
boundaries of the lateral driving corridor. We select a quadratic cost function to 
minimize the lateral distance and orientation deviation from a given reference path 
and to punish high curvature rates for comfort.

In the case that trajectory optimization is infeasible using the selected lateral 
or longitudinal driving corridor, we select a driving corridor with the next highest 
cumulative drivable area for optimization until either a fail-safe trajectory is 
identified or no further driving corridors remain. In the rare event that no feasible 
fail-safe trajectory is found, the previously verified trajectory is further executed.

Guarantees of our verification technique. To comply with legal safety, 
autonomous vehicles must not collide with any legal behaviour of other traffic 
participants:

8t≥ t0 : occ xðtÞð Þ \ LeðtÞ∪Qð Þ ¼ ; ð2Þ

where the operator occðxÞ
I

 relates the state x of the autonomous vehicle to the set of 
occupied points in the position domain as occðxÞ : X ! PowðRnÞ

I
, where PowðRnÞ

I
 

is the power set of Rn

I
.

Using the principle of induction, we sketch the proof that our technique 
ensures legal safety according to equation (2). For the base case (c = 1), for t ≥ t0, the 
autonomous vehicle is initially in a safe state in which it can remain. Only if Ic can 
be successfully verified will the autonomous vehicle start executing Isafec jjFc

I
 from 

tc. This trajectory is collision-free at all discrete time steps t0k 2 ½tc; tc þ Δsafe
c þ TFc 

I
 

against all legal behaviours LðtÞ  LeðtÞ
I

 of other traffic participants and the area 
Q
I
 outside the road. If no new intended trajectory can be successfully verified 

in a subsequent verification cycle before tc þ Δsafe
c þ TFc

I
, the fail-safe trajectory 

Fc transitions the autonomous vehicle to a standstill in a safe terminal state at 
tc þ Δsafe

c þ TFc

I
, which is legally safe for all future times. For the inductive step, 

assuming that the verification result of cycle c = r, for any r 2 Nþ
I

, ensures legal 
safety, we show that legal safety is also ensured regardless of the verification result 
of cycle c + 1. If the verification is unsuccessful, the autonomous vehicle continues 
to execute the trajectory Isafec�i jjFc�i; i 2 f0; ¼ ; c� 1g

I
 of the previous cycle c that 

ensures legal safety by definition. If the verification is successful in cycle c + 1, the 
autonomous vehicle executes Isafecþ1jjFcþ1

I
 from tc + 1. In this case, we can apply the 

same reasoning as in the base case to demonstrate that legal safety is also ensured 
from tc + 1 with the verified trajectory Isafecþ1jjFcþ1

I
.

To ensure that the autonomous vehicle is collision-free along Isafe and F in 
continuous time and despite control disturbances and model uncertainties, we 
refer to the approach in ref. 67.

Data availability
All data gathered and reported in this study are available in the Supplementary 
data file. This includes the environment model, the intended trajectory and the 
verification result of each verification cycle for all scenarios.

Code availability
The code to visualize and analyse the gathered data and obtained results of this 
study are included in the Supplementary data file.
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global optimality.
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times typically decrease with increasing criticality of the traffic scene, i.e., the solution space
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We have successfully evaluated the drivability of the trajectories planned by our novel mo-
tion planning method in real vehicle tests. Moreover, we have compared our method with
popular motion planning methods based on sampling and mixed-integer quadratic program-
ming. The experiments reveal that our method is able to detect narrow passageways in
the solution space for trajectory planning without tedious parameter tuning. Furthermore,
our method has reliable runtimes in our experiments. We further demonstrate the general
applicability of our method in a complex scenario in which the autonomous vehicle has to
maneuver through dense traffic. In our last experiment, we analyze the runtime behavior of
our method as a function of the size of the available solution space for trajectory planning.
Our findings confirm that the runtime of our novel motion planning method has the tendency
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Using Reachable Sets for Trajectory Planning of
Automated Vehicles

Stefanie Manzinger, Christian Pek, and Matthias Althoff

Abstract—The computational effort of trajectory planning for
automated vehicles often increases with the complexity of the
traffic situation. This is particularly problematic in safety-critical
situations, in which the vehicle must react in a timely manner.
We present a novel motion planning approach for automated
vehicles, which combines set-based reachability analysis with
convex optimization to address this issue. This combination
makes it possible to find driving maneuvers even in small and
convoluted solution spaces. In contrast to existing work, the
computation time of our approach typically decreases, the more
complex situations become. We demonstrate the benefits of our
motion planner in scenarios from the CommonRoad benchmark
suite and validate the approach on a real test vehicle.

I. INTRODUCTION

EXISTING motion planning techniques for automated
vehicles may still fail to obtain comfortable and safe

motions in complex traffic scenarios with small and convoluted
solution spaces (i.e., the portion of the state space enclosing
feasible solutions is reduced by a large number of obstacles
[1]). Yet, automated vehicles have to cope with arbitrarily com-
plex scenarios in the real world. Why do planning techniques
still struggle in complex scenarios?

The complexity mainly arises from the non-convexity of
the motion planning problem: the presence of obstacles in the
environment partitions the search space of the motion planning
problem into different homotopy classes [1]–[3] (see Fig. 1).
Homotopy classes describe “sets of trajectories that can be
transformed into each other by gradual bending and stretching
without colliding with obstacles” [4]. Figuratively speaking,
planners have to decide when and how to pass obstacles, e.g.,
on the left or right side. The temporal orders of such tactical
decisions can be represented by driving corridors (spatio-
temporal constraints) and are a crucial element in generating
collision avoidance constraints.

Given strict real-time constraints, many motion planning
techniques encounter difficulties in determining suitable driv-
ing corridors for three reasons: a) scenarios in which α tactical
decisions can be taken to avoid σ obstacles may already have
up to ασ possible driving corridors. This circumstance is
particularly problematic in safety-critical situations, in which
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Fig. 1: Each trajectory Xi, i ∈ {1, 2, 3}, belongs to a different homotopy
class. The automated vehicle needs to decide whether to pass the construction
site (X2 or X3) or not (X1). In the former case, the automated vehicle also
has to decide on a passing side (left: X2, right: X3).

the automated vehicle must react in a timely manner to avoid a
collision. b) Besides the sheer number of corridors, identifying
which ones are drivable in reasonable time may often be
intractable [5]. Deciding whether a driving corridor with a
drivable trajectory exists can be reduced to a mixed-integer
problem [6] and is therefore NP-complete [7]. c) Multiple
driving corridors may exist that may not reach desired goal
regions of the vehicle.

Set-based reachability analysis is particularly well suited
for determining driving corridors in complex scenarios, since
the number of set operations often decreases if the solution
space becomes smaller [8]. The reachable set of an automated
vehicle is the set of states the vehicle is able to reach over time
starting from an initial set of states. Consequently, reachable
sets make it possible to explore search spaces and homotopy
classes efficiently in continuous space and to detect even
narrow passages [9].

In this work, we show that by combining reachability
analysis with an optimization-based trajectory planner, we
are able to compute driving corridors and trajectories online
in arbitrary scenarios. Our experiments demonstrate that our
approach becomes faster with increased complexity of the
motion planning problem. Below, we review existing planning
techniques and present their shortcomings for the motion
planning of automated vehicles in complex scenarios.

A. Literature Overview

1) Motion Planning Techniques: Various motion planning
approaches are discussed in [10], [11]. We briefly review the
most relevant publications for our work. Discretization-based
planners, such as rapidly exploring random trees [12]–[14]
or state lattices [15]–[18], connect partial motions toward a
goal region in a kinematically feasible way. However, because
the search space is discretized, solutions may not be found in
small and convoluted solution spaces.

Continuous optimization techniques are applied to overcome
discretization effects [19]. They minimize a cost function
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with respect to a set of state and input constraints [20]–
[23]. Since many motion planning problems are non-convex,
optimization problems may get stuck in local minima and may
not be solvable in a computationally efficient way [24]. Convex
optimization problems, however, have global convergence, for
which efficient solving techniques exist [24]–[26]. Yet, convex
planning problems can only be formulated for most traffic
scenarios if the motion is separated into longitudinal and
lateral components [27]–[30]. As a result, collision avoidance
constraints can usually only be obtained if the driving corridor
is already known [6].

Machine learning approaches have also been successfully
applied to motion planning, e.g., [31]–[34]; however, these
techniques are not yet suitable in safety-critical situations,
since they are difficult to verify [35].

2) Driving Corridor Techniques: The extraction of driving
corridors has been studied for some time. Naive approaches
address the problem of determining driving corridors through
sampling [36]–[39], combinatorial enumerations [5], [40], or
support vector machines [41], [42]. However, sampling-based
approaches usually struggle to detect narrow passages due to
discretization effects, and enumerating all possible sequences
of tactical decisions is not feasible under hard real-time con-
straints for complex situations. Pre-defining rules for tactical
decision-making, e.g., using ontologies [43]–[45] or state-
machines [46]–[49], may fail in unforeseen traffic situations.
Some approaches reduce the complexity of maneuver planning
by considering only a discrete set of admissible actions [50]–
[53], but this diminishes the expressiveness of the planner.

Reachable sets have already been used to obtain driving
corridors and to determine the non-existence of maneuvers [9],
[54], [55]. The approaches in [56]–[58] combine reachability
analysis with planning approaches to obtain collision-free
motions. Nevertheless, they may not be applicable in arbitrary
traffic situations, cannot constrain corridors to end in certain
terminal states, or cannot extract high-level maneuvers with
certain desired properties, such as comfort.

B. Contribution and Outline
This paper proposes a novel method for motion planning of

automated vehicles by combining reachability analysis with
convex optimization. Unlike previous work, our approach
simultaneously

1) handles small and convoluted solution spaces. Our experi-
ments reveal that the computational effort of our approach
decreases with increased complexity of the scenario;

2) identifies collision-free driving corridors in arbitrary traf-
fic situations using reachable sets;

3) plans optimal trajectories in candidate driving corridors
with low computational effort; and

4) constrains driving corridors to end in certain terminal
states, e.g., standstill in safe areas.

This paper is structured as follows: after presenting prelim-
inaries in Sec. II, we introduce our framework in Sec. III. The
computation of reachable sets is described in Sec. IV, fol-
lowed by the determination of driving corridors and collision
avoidance constraints in Sec. V-VI. We evaluate our concept
in Sec. VII and finish with conclusions in Sec. VIII.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. System Dynamics

We introduce different discrete-time linear systems to model
the dynamics of the automated vehicle, subsequently denoted
as ego vehicle. The linear models are a trade-off between the
required computational time for the planning task and the
accuracy compared to the real behavior. To formally verify
planned trajectories despite control disturbances and model
uncertainties, we refer to the approaches presented in [59],
[60], which is not discussed in this work since we focus on
motion planning. Additionally, in Sec. VII, we demonstrate by
vehicle tests that planned trajectories are drivable despite the
use of different models.

Let us introduce the subscript sys ∈ {lon, lat,R} to
distinguish the discrete-time linear systems for the longitudinal
and lateral trajectory planning, and reachability analysis:

xsys,k+1 = Asys,kxsys,k +Bsys,kusys,k, (1)

where xsys,k ∈ Rnsys,x is the state, usys,k ∈ Rnsys,u is the
input, and k ∈ N0 is the discrete time step corresponding to
the time tk = k∆t, where ∆t ∈ R+ is the time increment.
Without loss of generality, the initial time step is k0 = 0 and
the final time step is kf . Asys,k ∈ Rnsys,x×nsys,x is the system
matrix and Bsys,k ∈ Rnsys,x×nsys,u is the input matrix. Systems
in the form of (1) are subject to the convex sets of admissible
states Xsys,k ⊂ Rnsys,x and admissible control inputs Usys,k ⊂
Rnsys,u , each at time step k. We use Xsys and Usys to denote
a possible state and input trajectory. Subsequently, we assume
that the chosen reference point for describing the systems (1)
coincides for all sys ∈ {lon, lat,R}.

B. Coordinate Systems and Reference Path

Let us introduce the global Cartesian coordinate frame as
F G, the local curvilinear coordinate frame as F L, and the
vehicle-fixed coordinate frame as F V, as shown in Fig. 2. The
frame F L is aligned with a given reference path Γ : R→ R2,
which is the centerline of a lane and can be provided by a
route planning module, for example. In F L, a global position
(sx, sy)T is expressed in terms of the arc length sζ and
the orthogonal deviation sη from Γ(sζ) (see Fig. 2). The
orientation and curvature of Γ(sζ) are denoted by θΓ(sζ) and
κΓ(sζ), respectively. The transformation from F L to F G is
denoted by T G

L (sζ) (see [61]). The transformation from F V to
F G is T G

V (θ), where θ is the heading of the ego vehicle. We
use a left-sided superscript {G, L, V} to indicate the reference
coordinate system of a variable, e.g., Gv means velocity v of
the ego vehicle in F G; for brevity, we omit the superscript if
the coordinate system can be inferred from the context.

C. Reachability Analysis

As motivated in Sec. I, we use reachability analysis for
identifying driving corridors. We therefore describe the dy-
namics of the ego vehicle with the discrete-time linear system
xR,k+1 = ARxR,k + BRuR,k. Before introducing the one-
step reachable set of the ego vehicle dynamics, we define the
set Fk of forbidden states.
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Fig. 2: The shape of the ego vehicle is approximated by three circles with
center c(i)k , i ∈ {1, 2, 3}, to obtain collision avoidance constraints.

Definition 1 (Set of Forbidden States) The occupied space
of the ego vehicle in state xR,k is denoted by GQ(xR,k) ⊂ R2

and the set of occupied positions of all obstacles (e.g., other
cars and pedestrians), as well as the space outside the road
by GOk. The set of forbidden states at time step k is

Fk =
{
xR,k ∈ XR,k | GQ(xR,k) ∩ GOk 6= ∅

}
.

Definition 2 (One-step Reachable Set) The initial reach-
able set is Re

k0
= XR,k0 , where XR,k0 is the set of initial

states of the ego vehicle including measurement uncertainties.
The one-step reachable set Re

k+1 is then defined as the set
of all states that can be reached from an initial set of states
Re
k ⊆ XR,k within one time step without intersecting Fk+1:

Re
k+1 =

{
xR,k+1 ∈ XR,k+1

∣∣∣∃xR,k ∈ Re
k, ∃uR,k ∈ UR,k :

xR,k+1 =ARxR,k+BRuR,k ∧ xR,k+1 /∈ Fk+1

}
.

Before defining the drivable area representing the collision-
free, reachable positions of the ego vehicle, let us introduce
the projection operator proj♦(x).

Definition 3 (Projection) The operator proj♦(x) maps the
state x ∈ X to its elements ♦ , e.g., proj(m1,m3)(x) =

(m1,m3)T for x = (m1,m2,m3)T . Using the same notation,
we project a set of states X : proj♦(X ) =

{
proj♦(x) | x ∈ X

}
.

Definition 4 (Drivable Area) We obtain the drivable area
De
k of the ego vehicle as the projection of its reachable set
Re
k onto the position domain: De

k = proj(sζ ,sη)(Re
k).

The superscript e of Re
k and De

k denotes the exact reachable
set and drivable area, respectively. However, it is generally
computationally intractable to compute the exact reachable set
of a system [62]. For this reason, we aim to compute accurate
approximations Rk ≈ Re

k and Dk ≈ De
k (see Sec. IV).

D. Convex Trajectory Planning

For trajectory planning, we describe the kinematics of the
ego vehicle along Γ(sζ) using the rear axis center as the
reference point, e.g., as shown in [29], [30]. In principle, the
reference point can be chosen differently; however, our choice
has the advantage that the slip angle can be assumed to be
zero at low speeds and generally neglected at high speeds
[29]. To formulate our trajectory planning problems as convex

optimization problems—which can be efficiently solved with
global convergence [24]—we separate the longitudinal and
lateral motion of the ego vehicle.

Following [29], we assume that the orientation θ of the
ego vehicle is close to the reference path’s orientation θΓ(sζ),
consequently, the trigonometric functions can be approximated
as sin(∆) ≈ ∆ and cos(∆) ≈ 1, and sηκΓ(sζ) � 1. In this
way, we linearize the kinematics of the ego vehicle as in [29]:

ṡζ = v
cos (θ − θΓ(sζ))

1− sηκΓ(sζ)
≈ v, (2)

ṡη = v sin (θ − θΓ(sζ)) ≈ v(θ − θΓ(sζ)). (3)

Using (2) and (3), we can derive discrete-time linear systems
of structure (1), which is detailed in [29], [30] and Sec. VII-A.

To model collision avoidance for the full-dimensional ve-
hicle, we over-approximate its shape by three circles with
equal radius r similar to [29], [30], [63]. The centers c(i)k ,
i ∈ {1, 2, 3}, of the circles are selected such that c(1)

k and c(3)
k

coincide with the rear and front axis centers, respectively (see
Fig. 2). The distance between the centers of adjacent circles
is /̀2, where ` is the wheelbase. With this, we formally define
the longitudinal and lateral trajectory planning problems.

Definition 5 (Longitudinal Trajectory Planning Problem)
The longitudinal trajectory planning problem is to
minimize the convex cost function Jlon(xlon, ulon) for
all k ∈ {k0, . . . , kf}:

min
ulon

Jlon(xlon, ulon) (4a)

s.t. xlon,k+1 = Alon,k xlon,k +Blon,k ulon,k, (4b)
ulon,k ∈ Ulon,k, xlon,k ∈ Xlon,k, (4c)

sζ,k+1 ≤ projsζ(xlon,k+1) ≤ sζ,k+1, (4d)

where (4b) describes the longitudinal dynamics of the ego
vehicle subject to the convex constraints (4c)-(4d). The linear
constraint (4d) models collision avoidance, where sζ,k =

projsζ(xlon,k) is the longitudinal position of Lc
(1)
k (see Fig. 2).

The minimum and maximum bounds on sζ,k are denoted by
sζ,k and sζ,k, respectively.

Definition 6 (Lateral Trajectory Planning Problem)
Given that the longitudinal trajectory Xlon is obtained a
priori by solving (4), the lateral trajectory planning problem
is to minimize the convex cost function Jlat(xlat, ulat) for all
k ∈ {k0, . . . , kf}:

min
ulat

Jlat(xlat, ulat) (5a)

s.t. xlat,k+1 = Alat,k xlat,k +Blat,k ulat,k, (5b)
ulat,k ∈ Ulat,k, xlat,k ∈ Xlat,k, (5c)

∀i∈{1, 2, 3} : d
(i)
k+1≤d

(i)
k+1(xlat,k+1, xlon,k+1)≤d(i)

k+1, (5d)

where (5b) describes the lateral dynamics of the ego vehicle
subject to the convex constraints (5c)-(5d), and xlon,k ∈ Xlon.
To model lateral collision avoidance, we introduce the lateral
distance d(i)

k (xlat,k, xlon,k) of the i-th circle’s center to Γ(sζ,k)
at time step k (see Fig. 2) and restrict the minimum and
maximum deviations d(i)

k and d
(i)

k from Γ(sζ,k), respectively.
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E. Problem Statement

The drivable area Dk is used to explore the collision-free
solution space for trajectory planning. However, the drivable
area is generally non-convex and may be disconnected due to
the presence of obstacles (see Fig. 3a), which renders the direct
usage of the drivable area unsuitable to obtain bounds for the
convex collision avoidance constraints (4d) and (5d). To over-
come this issue, we determine driving corridors that are subsets
of the drivable area, particularly, a driving corridor for the
longitudinal and lateral trajectory planning problems referred
to as longitudinal and lateral driving corridor, respectively. To
this end, we exploit that the projection of a connected set
C ⊂ R2 onto either the longitudinal or lateral position domain
yields an interval from which we can obtain the bounds in
(4d) and (5d).

Definition 7 (Connected Set [64]) A set C ⊂ R2 is con-
nected if there do not exist open sets W1,W2 ⊆ R2 such that
W1 ∪ W2 contains C and with C ∩ W1 and C ∩ W2 disjoint
and non-empty.

A longitudinal driving corridor is composed of connected sets
(see Fig. 3b).

Definition 8 (Longitudinal Driving Corridor) A longitudi-
nal driving corridor Clon is a sequence of connected sets
Ck ⊆ Dk over time steps k ∈ {k0, . . . , kf}. We refer to the
longitudinal driving corridor at time step k as Clon,k.

A lateral driving corridor is also composed of connected
sets. However, a connected set may have holes, e.g., C(1)

k

in Fig. 3b; thus, the passing sides for obstacles may be
ambiguous. Therefore, we demand that lateral driving cor-
ridors must provide a single passing side for each obstacle
at the longitudinal positions projsζ(xlon,k) of the longitudinal
trajectory Xlon (see Fig. 3d).

Definition 9 (Lateral Driving Corridor) A lateral driving
corridor Clat is a sequence of connected sets Ck ⊆ Dk over
time steps k ∈ {k0, . . . , kf}. For each Ck, it must hold that
{sη,k | (sζ,k, sη,k)T ∈Ck, sζ,k = projsζ(xlon,k), xlon,k ∈Xlon}
is a non-empty interval (unique passing side at projsζ(xlon,k),
see Fig. 3d). We refer to the lateral driving corridor at time
step k as Clat,k.

The goal of this work is to present an efficient algorithm to
extract longitudinal and lateral driving corridors according to
Def. 8 and 9 from the drivable area. Furthermore, we elaborate
on the extraction of collision avoidance constraints for the full-
dimensional vehicle using the proposed driving corridors.

III. FRAMEWORK

Let us introduce our motion planning approach summarized
in Alg. 1 using the scenario in Fig. 3, in which the ego vehicle
approaches a construction site and a pedestrian. Our motion
planning approach is integrated between the behavioral layer
and the control layer of the ego vehicle, e.g., see planning
framework in [11]. We assume that our method receives as
input the environment model including the admissible lanes
leading to the specified target, a desired reference path through

predictiondrivable area Dk

ego vehicle
C(1)
k C(2)

k

(a) Computation of the drivable area for consecutive time steps k. We depict
the drivable area Dk at time step k.

projsζ(Clon,k)

Clon,k = C(1)
k

(b) Identification of the longitudinal driving corridors Clon as a time series
of connected sets. We depict the longitudinal driving corridor Clon,k = C(1)

k
at time step k.

sζ

sη projsζ(xlon,k)projsζ(xlon,k0
) projsζ(xlon,kf )

projsζ(Clon,k)

(c) Optimization of the longitudinal trajectory Xlon subject to the longitudinal
position constraints obtained from the longitudinal driving corridor Clon.

Clat,k = C(3)
k

projsζ(xlon,k)

projsη(Clat,k)

(d) Identification of the lateral driving corridors Clat as a time series of
connected sets with unique passing side. We depict the lateral driving corridor
Clat,k = C(3)

k at time step k.

projsζ(xlon,k)

Clat,k

(e) Optimization of the lateral trajectory Xlat subject to the lateral position
constraints obtained from the lateral driving corridor Clat.

Fig. 3: Motion planning with reachable sets.

the road network, and all safety-relevant traffic participants
and their predicted future behavior. Our algorithm outputs a
reference trajectory for the ego vehicle that is passed to a
vehicle controller.

As a first step, we compute the one-step reachable sets of
the ego vehicle for consecutive time steps (see Alg. 1, line 2)
and store them in a data structure GR (see Sec. IV). Since our
trajectory planner requires position constraints to determine
drivable trajectories, we project the reachable set onto the
position domain to obtain the drivable area (see Fig. 3a).

We continue with identifying possible longitudinal driving
corridors within the drivable area according to Def. 8 (see
Alg. 1, line 3). The drivable area Dk can be disconnected, e.g.,
C(1)
k is not connected with C(2)

k in Fig. 3a, since its computation
requires the removal of colliding states (see Def. 2 and 4).
Because of this, there may be multiple longitudinal driving
corridors (stored in a data structure GC,lon, see Sec. V). We
select a suitable one for trajectory optimization by ranking
the longitudinal driving corridors according to a user-defined
criterion (see Alg. 1, line 4). The highest-ranked driving
corridor Clon, e.g., Clon,k in Fig. 3b, is selected for planning
the longitudinal trajectory Xlon as proposed in Sec. II-D (see
Alg. 1, line 5). If the optimization problem is infeasible, we
select the next available longitudinal driving corridor. The
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Algorithm 1 CONVEXTRAJECTORYPLANNING

Input: set of initial states XR,k0 , set of obstacles Ok for k0 to kf
Output: longitudinal and lateral trajectories Xlon and Xlat

1: Xlon, Xlat ← ∅
2: GR ← COMPUTEREACHABLESET(XR,k0 ,Ok)
3: GC,lon ← IDENTIFYCORRIDORS(GR)
4: for all Clon in GC,lon.ASSESSCORRIDOR( ) do
5: Xlon ← LONGITUDINALOPTIMIZATION(Clon)
6: if Xlon 6= ∅ then
7: GC,lat ← IDENTIFYCORRIDORS(GR, Xlon, Clon)
8: for all Clat in GC,lat.ASSESSCORRIDOR( ) do
9: Xlat ← LATERALOPTIMIZATION(Clat, Xlon, Clon)

10: if Xlat 6= ∅ then
11: return Xlon, Xlat

12: end if
13: end for
14: end if
15: end for

longitudinal trajectory Xlon (see Fig. 3c) is used to identify
lateral driving corridors (see Alg. 1, line 7).

Analogous to longitudinal planning, multiple lateral driving
corridors may exist (stored in a data structure GC,lat, see
Sec. V). We also rank them according to a user-defined
criterion (see Alg. 1, line 8). The highest-ranked lateral driving
corridor Clat, e.g., Clat,k in Fig. 3d, is used to optimize
the lateral trajectory Xlat as proposed in Sec. II-D (Alg. 1,
line 9). If the optimization problem is infeasible, we use the
next available driving corridor Clat to obtain Xlat. If the
optimization is successful, the final trajectory is returned (see
Fig. 3e and Alg. 1, line 11). Trajectories can be planned for
each available driving corridor as long as time permits. Thus,
it is possible to obtain several maneuver options to choose
from. In the rare event that no drivable trajectories are found,
we always keep a fail-safe trajectory available [30], [65].

IV. REACHABLE SET COMPUTATION

After presenting the vehicle model for reachability analysis
in Sec. IV-A, we introduce the representation of reachable sets
(see Sec. IV-B) and our proposed algorithm (see Sec. IV-C)
inspired by [9].

A. Vehicle Model for Reachability Analysis

We deliberately select a simple but realistic dynamic model
for the reachable set computation to reduce computational
complexity. The dynamics of the ego vehicle are described
by two second-order integrator models in the curvilinear
coordinate frame F L with Lc

(1)
k as the reference point (see

Fig. 2). The state xR = (sζ , vζ , sη, vη)T is composed of the
position s and velocity v in the longitudinal ζ-direction and
the lateral η-direction. The input uR = (aζ , aη)T is given by

the acceleration a in ζ- and η-directions. Adding bounds on
the accelerations and velocities, the dynamics are

xR,k+1 =




1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


xR,k +




1
2∆t2 0
∆t 0
0 1

2∆t2

0 ∆t


uR,k, (6a)

vζ ≤ vζ,k ≤ vζ , vη ≤ vη,k ≤ vη, (6b)

aζ ≤ aζ,k ≤ aζ , aη ≤ aη,k ≤ aη. (6c)

The formulation of the dynamics in F L makes it possible
to consider speed limits and to avoid driving backwards. This
entails that model (6a) deviates increasingly from a real vehicle
for larger curvatures κΓ(sζ), e.g., the ego vehicle would be
able to make a turn with an arbitrarily high velocity. However,
we compensate for this by setting appropriate constraints
(6b)-(6c), e.g., we use a conservative parametrization of the
admissible accelerations and velocities.

B. Reachable Set Representation

To improve computational efficiency, the reachable set (see
Def. 2) of (6) is approximated by the union Rk of base sets
R(i)
k = P(i)

ζ,k×P
(i)
η,k, i ∈ N0, which are the Cartesian products

of two convex polytopes P(i)
ζ,k and P(i)

η,k in the (sζ , vζ) and
(sη, vη) plane (see Fig. 4e), respectively [9]. Hence, each
base set represents pairs of reachable positions and velocities.
We select polytopes for the representation of the reachable
set, because the required set operations can be efficiently
performed on polytopes. The projection of sets R(i)

k onto
the position domain yields axis-aligned rectangles D(i)

k (see
Fig. 4a) whose union represents the drivable area Dk (see
Def. 4).

C. Algorithm

The initial base set R(0)
k0

encloses the set of initial states
XR,k0

of the ego vehicle including measurement uncertainties,
such that XR,k0

⊆ R(0)
k0

. The reachable set Rk of consecutive
time steps is computed as explained below and illustrated in
Fig. 4. To simplify the notation, we also denote the collection
of base setsR(i)

k withRk (not only the union of base sets), i.e.,
Rk = {R(0)

k ,R(1)
k , . . .}. Similarly, we simplify the notation

for the drivable area Dk.
1) Forward Propagation: The base sets R(i)

k ∈ Rk of time
step k (see Fig. 4a) are propagated forward in time according
to the system model (6) considering all admissible inputs.
The forward propagation is computed similarly to [9] and
a detailed description can be found in the Appendix A. We
denote the propagated reachable set with Rprop

k+1 , and refer to
the propagated drivable area as Dprop

k+1 , see Fig. 4b.
2) Re-Partitioning: With the aim to reduce the number of

axis-aligned rectangles, the propagated drivable area Dprop
k+1 is

merged and re-partitioned into a set Drprt
k+1 of new axis-aligned

rectangles with disjoint interiors using sweep line algorithms
[66] (see Fig 4c). To avoid generating a large number of new
axis-aligned rectangles with only slightly displaced edges, we
enlarge each propagated set Dprop(i)

k+1 to a grid prior to merging
and re-partitioning as presented in [9] (see Fig 4c).
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=
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...
(f) Update of reachability graph

Fig. 4: Steps in the reachable set computation.

3) Removal of Forbidden States: The forbidden positions
are removed from Drprt

k+1 to obtain only collision-free con-
figurations of the ego vehicle as shown in Fig. 4d. Since
Drprt
k+1 \ proj(sζ ,sη)(Fk+1) cannot be represented by axis-

aligned rectangles in general, we under-approximate the result
by Dk+1. The under-approximation ensures that the remaining
drivable area Dk+1 is collision-free. A detailed description of
this computation step is provided in Sec. IV-D.

4) Creation of Base Sets: The reachable set Rk+1 is ob-
tained by determining the reachable velocities for the collision-
free drivable area Dk+1 (see Fig. 4e). From the propagated
base sets Rprop(i)

k+1 , we can determine the velocities for which
the ego vehicle reaches a set of positions D(j)

k+1. After intro-
ducing the set overlap(D(j)

k+1) = {i ∈ N0 | ∃Rprop(i)
k+1 ∈ Rprop

k+1 :

D(j)
k+1 ∩proj(sζ ,sη)(Rprop(i)

k+1 ) 6= ∅}, the new polytopes P(j)
ζ,k+1

are

P(j)
ζ,k+1 = convexhull




⋃

i∈overlap(D(j)
k+1)

P̂(i)
ζ,k+1


 ,

with

P̂(i)
ζ,k+1 = Pprop(i)

ζ,k+1 ∩
{(

sζ
vζ

)
∈ R2

∣∣∣sζ ≥ inf
(

projsζ(D
(j)
k+1)

)
,

sζ ≤ sup
(

projsζ(D
(j)
k+1)

)}
.

P(j)
η,k+1 is determined similarly. Note that we compute the

convex hull to ensure that we obtain convex polytopes.
5) Update of Reachability Graph: The base sets R(j)

k+1 are
stored in a directed graph GR to trace back the temporal and
spatial sequence of reachable states (see Fig. 4f). In GR, each
base set R(j)

k+1 is assigned to exactly one node and an edge
indicates that R(j)

k+1 is reachable from R(i)
k for consecutive

time steps (this also holds for D(i)
k and D(j)

k+1, since D(i)
k =

proj(sζ ,sη)(R(i)
k )). Note that a set R(i)

k may reach several sets
R(j)
k+1 in the next point in time.

D. Removal of Forbidden States

To remove the forbidden states (see Fig. 4d), we need to
consider the occupancy GQ(xR,k) of the ego vehicle that is
over-approximated by three circles with radius r (see Sec. II).
Let us therefore introduce the Minkowski sum of two setsW1

and W2 as W1 ⊕ W2 = {w1 + w2 |w1 ∈ W1, w2 ∈ W2}.
By dilating the occupancies GOk with a circle with radius r
using the Minkowski sum, it is sufficient to test only Gc

(i)
k ,

i ∈ {1, 2, 3}, for collisions [63]. To determine the center Gc
(i)
k

of the i-th circle for Lc
(1)
k = (sζ,k, sη,k)T , we assume that the

heading θk of the ego vehicle is aligned with θΓ(sζ,k):

Gc
(i)
k = T G

L (sζ,k)

(
sζ,k
sη,k

)
+ T G

V (θΓ(sζ,k))

(
i−1

2 `
0

)
. (7)

Computing (7) for all (sζ,k, sη,k)T ∈ Drprt
k to determine

the collision-free drivable area is intractable, since the trans-
formation matrix T G

V (θΓ(sζ,k)) continuously varies along the
reference path Γ(sζ) with changing sζ,k (see Fig. 5a). To re-
duce computational complexity, we strictly over-approximate
the reachable positions of centers Lc

(i)
k by enlarging each

Drprt(q)
k ∈ Drprt

k with a rectangular shape Aε (see Fig. 5b):
Drprt(q)
k ⊕Aε. The size of Aε depends on the local curvature

κΓ of the reference path and Drprt(q)
k ; however, we omit the

sζ,k
sζ

sη

G c
(2)

k

G c
(3)

k

G c
(1)

k

GQ

G
Drprt(q)
k

in F G

(a) Occupancy GQ of the ego vehicle
for an arbitrary position Gc

(1)
k within

G
Drprt(q)
k given that θk = θΓ(sζ,k).

sζ

sη

Lc
(2)
k

Lc
(3)
k

Lc
(1)
k

Drprt(q)
k ⊕Aε

Drprt(q)
k

(b) Reachable positions of centers
Lc

(i)
k , i ∈ {1, 2, 3}, are enclosed by

enlarging Drprt(q)
k with Aε in F L.

Fig. 5: Consideration of the shape of the ego vehicle in the reachable set
computation.
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dependency in the notation for brevity. A detailed explanation
on the computation of Aε is given in the Appendix B.
Using Aε, the removal of forbidden states from Drprt

k can
be either performed in the global coordinate frame F G or in
the curvilinear frame F L. As a result, we under-approximate
Drprt
k \ proj(sζ ,sη)(Fk) with a new set of axis-aligned rectan-

gles Dk, such that for all D(j)
k ∈ Dk: D(j)

k ⊕Aε is collision-
free.

V. IDENTIFICATION OF DRIVING CORRIDORS

After introducing necessary preliminaries, we elaborate on
the identification of longitudinal and lateral driving corridors.

A. Preliminaries

As stated in Def. 8-9, a driving corridor is a temporal se-
quence of connected sets in the position domain. We denote the
n-th connected set at time step k by C(n)

k = {D(i)
k ,D(j)

k , . . .},
n ∈ N (see Fig. 3a). To determine longitudinal and lateral
driving corridors, we create corresponding graphs GC , in which
connected sets C(n)

k are stored as a node denoted by n(C(n)
k ).

An edge between nodes n(C(n)
k ) and n(C(m)

k+1) in GC indicates
that at least one set D(i)

k ∈ C
(n)
k reaches a set D(j)

k+1 ∈ C
(m)
k+1

within one time step so that the connected set C(n)
k reaches

C(m)
k+1. A path in GC from k0 to kf is a possible driving corridor.

B. Longitudinal Driving Corridors

Alg. 2 identifies longitudinal driving corridors backwards in
time using the reachability graph GR. Let us first explain the
procedure, afterwards we apply it to the example in Fig. 6:
we obtain the drivable area Dkf of the final time step kf
(see Alg. 2, line 2) through the reachability graph GR. As an
option, we can exclude states of the reachable set beforehand
to constrain driving corridors to end in a predefined set of
terminal states (e.g., a standstill in safe areas). Then, we
identify connected sets C(n)

kf
within the drivable area Dkf using

a sweep line algorithm [67] (see Alg. 2, line 6). For each C(n)
kf

,

we add a new node n(C(n)
kf

) to GC (see Alg. 2, line 7) and
determine the temporally preceding connected sets by calling
the FINDPATHS function (see Alg. 2, line 8).

The FINDPATHS function updates graph GC by determining
connected sets C(s)

k−1, s ∈ N, reaching the provided set C(n)
k

within one time step (see Alg. 2, lines 11-22). To this end, we
obtain the union of parents Dparents

k−1 = {D(q)
k−1,D

(p)
k−1, . . .} for

all provided sets D(i)
k ∈ C

(n)
k through the reachability graph

GR (see Alg. 2, line 12). Next, we also cluster the parent sets
Dparents
k−1 to connected sets C(s)

k−1 (see Alg. 2, line 16). For each
connected parent set C(s)

k−1:

1) a new node n(C(s)
k−1) is added to GC (see Alg. 2, line 17),

2) an edge from n(C(s)
k−1) to n(C(n)

k ) is created to store the
fact that C(s)

k−1 reaches C(n)
k (see Alg. 2, line 18),

3) the FINDPATHS function is called (see Alg. 2, line 19).
The FINDPATHS function terminates as soon as all paths from
the provided set C(n)

kf
to the initial set C(1)

k0
are found. One may

Algorithm 2 IDENTIFYCORRIDORS

Input: reachability graph GR
Optional Input: Xlon and Clon to obtain lateral driving corridors

(otherwise longitudinal driving corridors are obtained).
Output: graph GC containing possible driving corridors

1: GC .INIT( )
2: Dkf ← GR.DRIVABLEAREA(kf )
3: if Xlon 6= ∅ then . only for lateral driving corridors
4: Dkf ← EXCLUDESETS(Dkf , Xlon, Clon)
5: end if
6: for all C(n)

kf
in CONNECTEDSETS(Dkf ) do

7: GC .ADDNODE(n(C(n)
kf

))

8: GC ← FINDPATHS(GR, GC , C(n)
kf

, Xlon, Clon)
9: end for

10: return GC

11: function FINDPATHS(GR, GC , C(n)
k , Xlon, Clon)

12: Dparents
k−1 ← GR.GETPARENTS(C(n)

k )
13: if Xlon 6= ∅ then . only for lateral driving corridors
14: Dparents

k−1 ← EXCLUDESETS(Dparents
k−1 , Xlon, Clon)

15: end if
16: for all C(s)

k−1 in CONNECTEDSETS(Dparents
k−1 ) do

17: GC .ADDNODE(n(C(s)
k−1))

18: GC .ADDEDGE(n(C(s)
k−1), n(C

(n)
k ))

19: GC ← FINDPATHS(GR, GC , C(s)
k−1,Xlon,Clon)

20: end for
21: return GC
22: end function

23: function EXCLUDESETS(D′k, Xlon, Clon)
24: D′k ← D′k ∩ Clon,k

25: D′k ← FILTER(D′k, Xlon.AT(k))
26: return D′k
27: end function

also set a timeout or other criteria for early stopping, e.g., a
maximum number of driving corridors.

Example At time step kf = 2, the connected sets are C(1)
2 ,

C(2)
2 , and C(3)

2 (see Fig. 6b). Let us assume that FINDPATHS is
invoked with C(2)

2 . The obtained parents of C(2)
2 are Dparents

1 =

{D(0)
1 , . . . ,D(4)

1 } (see Fig. 6a-6b) that are partitioned into two
connected sets C(1)

1 and C(2)
1 (see Fig. 6b). Assume that we

continue with C(1)
1 : we first add the node n(C(1)

1 ) to GC (see
Fig. 6c), followed by creating an edge from n(C(1)

1 ) to n(C(2)
2 ).

Then, the FINDPATHS function is first invoked for C(1)
1 . After

the FINDPATHS function terminates for C(1)
1 , it is invoked for

C(2)
1 . Eventually, we obtain the paths (C(1)

0 , C(1)
1 , C(2)

2 ) and
(C(1)

0 , C(2)
1 , C(2)

2 ) for C(2)
2 (see Fig. 6c).

C. Lateral Driving Corridors

Lateral driving corridors are obtained in a similar way to
longitudinal driving corridors using Alg. 2, but with the ad-
dition that sets D(i)

k are removed (see Alg. 2, EXCLUDESETS
function, lines 23-27)
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D(0)
0

D(0)
1
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1

D(3)
1

D(1)
1

D(4)
1

D(0)
2

D(1)
2

(a)

k0 = 0 k = 1 kf = 2

sη

sζ

C(1)
0

C(1)
1

C(2)
1

C(1)
2

C(2)
2

C(3)
2

D(0)
2 D(1)

2

D(0)
1

D(1)
1

D(2)
1

D(3)
1

D(4)
1

D(0)
0

(b)

GC

C(1)
0

C(1)
1

C(2)
1

C(2)
2

(c)

Fig. 6: Identification of longitudinal driving corridors. (a) Example of a
reachability graph GR. We only depict nodes and edges that are relevant
for our example. (b) Corresponding drivable area (gray rectangles) of the ego
vehicle for different time steps k. As an example, we highlight sets D(i)

k in
dark gray that are part of a longitudinal driving corridor reaching C(2)

2 at kf .
(c) Excerpt from the graph GC . We only show paths that end in C(2)

2 .

A1) that are not part of the longitudinal driving corridor
Clon (see Alg. 2, line 24),

A2) for which projsζ(xlon,k) /∈ projsζ(D
(i)
k ), xlon,k ∈ Xlon,

holds (see Alg. 2, line 25).

Addition A1 ensures that each identified lateral driving corri-
dor is a subset of the longitudinal driving corridor. Since we
do not update the reachability graph GR for computational
efficiency, all parents, including those that are not part of
the longitudinal driving corridor, are returned in Alg. 2, line
12. Addition A2 ensures that we obtain connected sets with
a unique passing side at all states xlon,k of the longitudinal
trajectory Xlon.

Example We continue the example in Fig. 6. Let us assume
that the selected longitudinal driving corridor is Clon =

(C(1)
0 , C(1)

1 , C(2)
2 ). In Fig. 7, the longitudinal positions of

Xlon are highlighted. For brevity, we only concentrate on
the modifications in Alg. 2 for determining lateral driving

k0 = 0 k = 1 kf = 2

sη

sζ

projsζ(xlon,0) projsζ(xlon,1) projsζ(xlon,2)

D(0)
2 D(1)

2

D(0)
1

D(1)
1

D(2)
1

D(4)
1

D(0)
0

Fig. 7: Identification of lateral driving corridors. As an example, we highlight
sets D(i)

k in dark gray that are part of the lateral driving corridor reaching
D(0)

2 at the final time step kf .

corridors: at time step kf = 2, the connected sets C(1)
2 and

C(3)
2 are removed as they are not part of Clon (addition A1,

see Fig. 6b). We also exclude D(1)
2 from C(2)

2 due to addition
A2 (see Fig. 7 and Alg. 2, line 4). Then, the FINDPATHS

function is invoked from {D(0)
2 }. The parent sets of D(0)

2 are
Dparents

1 = {D(0)
1 ,D(1)

1 ,D(2)
1 ,D(4)

1 } (see Fig. 6a). We remove
D(4)

1 and {D(0)
1 ,D(2)

1 } due to addition A1 and A2, respectively
(see Fig. 7 and Alg. 2, lines 13-15).

VI. DETERMINING COLLISION AVOIDANCE CONSTRAINTS
FROM DRIVING CORRIDORS

The longitudinal trajectory planner (see Def. 5) optimizes
the longitudinal motion of the ego vehicle along the reference
path Γ(sζ), i.e., ∀k : θk = θΓ(sζ,k) and sη,k = 0. The lateral
trajectory planner (see Def. 6) optimizes the lateral motion
of the ego vehicle, so that the ego vehicle is able to deviate
from the reference path, i.e., for some k, it may hold that
θk 6= θΓ(sζ,k) or sη,k 6= 0. To guarantee collision avoidance,
we constrain all possible trajectories of the ego vehicle to stay
within the longitudinal and lateral driving corridor Clon and
Clat, which is described below.

A. Longitudinal Constraints

Longitudinal collision avoidance is realized by enforcing a
minimum and maximum bound sζ,k and sζ,k on the longitu-
dinal position sζ,k of the reference circle Lc

(1)
k (center of rear

circle, see Fig. 2) at each time step k. As the shape of the ego
vehicle is considered during the reachable set computation,
we conclude that the ego vehicle is collision-free if Lc

(1)
k is

located within the drivable area Dk. Since Clon,k ⊆ Dk, we
obtain sζ,k and sζ,k for the longitudinal position constraint
(4d) from the longitudinal driving corridor Clon,k:

sζ,k = inf
{

projsζ(Clon,k)
}
, sζ,k = sup

{
projsζ(Clon,k)

}
.

B. Lateral Constraints

To model lateral collision avoidance, we introduce the
linearized lateral deviation d

(i)
k of the i-th circle’s center to
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the reference path at time step k (see Fig. 2):

d
(i)
k = sη,k +

i− 1

2
`
(
θk − θΓ(projsζ(xlon,k))

)
, (8)

where xlon,k is the k-th state of the longitudinal trajectory Xlon

and i ∈ {1, 2, 3}. We are able to guarantee collision avoidance
in the lateral direction by limiting the deviation (8) of centers
Gc

(i)
k at each time step k (see (5d)). Below, we assume that

θk = θΓ(projsζ(xlon,k)) to obtain the limits on (8). Note that
the limits obtained are still valid for θk 6= θΓ(projsζ(xlon,k))
due to the small-angle approximation (see Sec. II). Below, we
use these findings to obtain the admissible lateral deviations
for the circles Gc

(i)
k , i ∈ {1, 2, 3}.

1) Admissible Deviations for Reference Circle: Using a
similar reasoning as for the longitudinal position constraints in
Sec. VI-A, we obtain the minimum and maximum admissible
deviations d(1)

k and d
(1)

k of Gc
(1)
k from the reference path Γ(sζ)

directly from Clat. Figuratively speaking, we move the ego
vehicle perpendicular to the reference path at projsζ(xlon,k)
and determine all positions of the lateral driving corridor Clat,k

intersecting with Gc
(1)
k (see Fig. 8a):

d
(1)
k = inf

{
projsη(Clat,k)

}
, d

(1)

k = sup
{

projsη(Clat,k)
}
.

2) Admissible Deviations for Center and Front Circles: The
maximum and minimum admissible deviations d(i)

k and d
(i)

k ,
i ∈ {2, 3}, for the center and front circle cannot be extracted
directly from the lateral driving corridor Clat. The reason is
that Clat,k only contains collision-free, reachable positions of
Lc

(1)
k in the neighborhood of projsζ(xlon,k), xlon,k ∈ Xlon (see

addition A2 in Sec. V-C). Thus, Gc
(2)
k and Gc

(3)
k may be even

located outside of Clat,k (see Fig. 8a). Yet, we can set the
bounds d(i)

k and d
(i)

k , i ∈ {2, 3}, to d(1)
k and d

(1)

k , respectively,
since we have already considered the shape of the ego vehicle
in the reachable set computation (see Sec. IV-D) for θk =
θΓ(projsζ(xlon,k)).

sζ
sη

d
(1)
k

d
(1)
k

Gc
(3)
k

Gc
(2)
k

Gc
(1)
k

Clat,k

projsζ
(xlon,k)

Γ(sζ)

(a) Admissible deviations d(1)
k of cen-

ter Gc
(1)
k from Γ(sζ) are determined

with the lateral driving corridor Clat.

sζ
sη Gĉ

(1)
k

Gĉ
(2)
k

Gĉ
(3)
k

I(
2)

k,1

I(
2)

k,0

I(
2)

k,2

g
(1)
k

g
(2)
k

g
(3)
k

1

2

3

i [d
(i)
k , d

(i)
k ]

Clat,k

Clon,k

(b) Admissible deviations d(i)
k of cen-

ters Gc
(i)
k , i ∈ {2, 3}, from Γ(sζ) are

determined with Clon.

Fig. 8: We obtain the minimum and maximum admissible deviation d(i)
k and

d
(i)
k through driving corridors Clon and Clat.

However, this choice might be overly conservative for large
time steps k, since we restrict the limits d(i)

k and d
(i)

k , i ∈
{2, 3}, to the bounds of d(1)

k . We aim to use the longitudinal
driving corridor Clon to extend the deviation limits of the
center and front circles based on the following observation: the
connected sets of the longitudinal driving corridor Clon usually
increase in size for greater time steps k (since more states are
reachable), so that Lc

(2)
k , Lc

(3)
k ∈ Clon,k for Lc

(1)
k ∈ Clat,k.

We can infer that the center and front circle are collision-
free within Clon,k, since a circle with radius r is guaranteed
to be collision-free in the longitudinal driving corridor (see
Sec. IV-D). We therefore continue with the determination of
the admissible deviations from the reference path for which
the center and front circle are contained in the longitudinal
driving corridor.

Let us introduce the normal vector η(projsζ(xlon,k)) of
the reference path at the longitudinal position projsζ(xlon,k).
We further introduce the straight line g(i)

k that is parallel to
η(projsζ(xlon,k)) passing through Gĉ

(i)
k , where Gĉ

(i)
k is the

Cartesian position of the circle centers if the ego vehicle is
located on Γ(sζ) at projsζ(xlon,k) (see Fig. 8b). The point
Gĉ

(i)
k is obtained with (7) for Lc

(1)
k = (projsζ(xlon,k), 0)T . The

distances from Gĉ
(i)
k to all positions in Clon,k intersecting g(i)

k

are:

Y(i)
k =

{ distance︷ ︸︸ ︷
η(projsζ(xlon,k))T

(
T G
L (sζ,k)

(
sζ,k
sη,k

)
− Gĉ

(i)
k

)
∈ R

∣∣∣
(
sζ,k
sη,k

)
∈ Clon,k, T

G
L (sζ,k)

(
sζ,k
sη,k

)
∈ g(i)

k

︸ ︷︷ ︸
intersection points

}
.

If Y(i)
k 6= ∅, there exist sets D(j)

k ∈ Clon,k intersecting g(i)
k in

F G (see Fig. 8b, g(2)
k ). We unify the intersection distances Y(i)

k

to intervals I(i)
k,q , q ∈ N0, as illustrated in Fig. 8b, and consider

only those intervals I(i)
k,q where [d

(1)
k , d

(1)

k ] ∩ I(i)
k,q 6= ∅. The

collection of the intervals considered is denoted with I(i)
v . As

illustrated in Fig. 8b, interval I(2)
k,2 is omitted and we only

consider intervals I(2)
k,0 and I(2)

k,1, i.e., I(2)
v = {I(2)

k,0, I
(2)
k,1}. The

deviation limits are then determined by

[d
(i)
k , d

(i)

k ] = [d
(1)
k , d

(1)

k ] ∪ I(i)
v , i ∈ {2, 3}.

VII. EXPERIMENTS

After introducing implementation details in Sec. VII-A,
we validate the drivability of our planned motions by real-
world experiments in Sec. VII-B. In Sec. VII-C, we compare
our method to motion planners based on discretization and
continuous optimization. Subsequently, we demonstrate that
our approach works in arbitrarily complex scenarios. A video
of the experiments is attached to this paper.

A. Implementation Details

Our approach is implemented partly in Python and C++ on
a computer with an Intel Core i7-6700HQ CPU and 16 GB of
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memory. We use the CommonRoad benchmark suite to model
our scenarios [68]. The assessment criteria for driving corridor
selection can be chosen arbitrarily. In this work, we select the
paths in GC with the greatest cumulated area of connected
sets, since connected areas of greater size generally yield less
restrictive position constraints for trajectory optimization.

For longitudinal and lateral trajectory planning (see Def. 5
and 6), we apply the approach presented in [30], where system
(4b) is a fourth-order integrator model with jounce as input
and bounded velocity, acceleration, and jerk. System (5b) is
a linearized kinematic single-track model with constraints on
the steering actuators. We select a quadratic cost function for
both the longitudinal and lateral optimization. The longitudinal
cost function Jlon punishes deviations from a desired velocity,
high accelerations, jerk, and inputs. The lateral cost function
Jlat minimizes the lateral distance to Γ(sζ), deviations from
θΓ(sζ) and κΓ(sζ), as well as high curvature rates and inputs
to obtain smooth trajectories.

B. Drivability of Planned Motions

We have integrated our approach in a BMW 7-series test
vehicle and applied it online to determine the driving corridor.
Fig. 9a illustrates the real-world scenario with two lanes,
in which we placed a static obstacles O1 and a simulated
pedestrian O2 in the driveway of the vehicle. The obstacles
are detected by LiDAR sensors and we use the set-based
prediction SPOT [69] to predict the future motion of the
pedestrian over time. Note that the prediction method can be
replaced and is not part of our algorithm.

Fig. 9b shows the drivable area at the final time step, from
which we infer that two maneuvers exist: a) stopping in front
of the pedestrian, and b) swerving. The trajectory that ends in
front of the pedestrian and its driving corridor are visualized
in Fig. 9c. The swerving trajectory is illustrated in Fig. 9d,
in which the vehicle first passes the pedestrian O2 on the left
and then evades the static obstacle O1 by changing to the
original lane. Fig. 9e shows the drivable area of the scenario
at t30 = 6.0 s. Even though the solution space is exceedingly
small, we are able to detect even narrow passageways by
using reachable sets for driving corridor identification. This
is of utmost importance in safety-critical scenarios, in which
evading may be the last possible feasible maneuver. Even
though our approach uses different models for the reachability
analysis and trajectory planning, we obtain drivable trajectories
as illustrated in Fig. 9f and 9g, which show the nominal
and measured velocity and curvature profiles of the executed
double lane change maneuver.

C. Comparison

1) Sampling-based Motion Planner: We compare our
method with a popular sampling-based trajectory planner
presented in [15] on the previous scenario to demonstrate
the efficacy of our method to detect narrow passages in the
solution space. The motion planner in [15] samples a finite set
of trajectories that connect the initial state of the ego vehicle
with different goal states. The longitudinal and lateral motions
are planned separately using quartic and quintic polynomials

ego
vehicle

O2

O1

(a) Initial scenario with a static obstacle O1 and a pedestrian O2 at t = 0 s.

predicted motion of O2

(b) Drivable area D70 at the final time step t70 = 14 s.

(c) Planned trajectory that ends in front of the pedestrian and the correspond-
ing driving corridor Clat.

(d) Planned evasive trajectory and the corresponding driving corridor Clat at
t27 = 5.4 s.

(e) Small solution space within the drivable area D30 at t30 = 6.0 s.
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(f) Nominal and measured velocity profile.
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(g) Nominal and measured curvature profile.

(h) Images of the vehicle tests with a BMW 7-series.

Fig. 9: Validation of our approach on a BMW 7-series test vehicle (scenario
ZAM Urban-8 1 S-1:2018b).

in F L. The Cartesian product of all longitudinal and lateral
motions yields the set of candidate trajectories that are checked
for drivability and collisions. Due to the pre-defined s-shape of
the trajectories of the sampling-based planner, a double lane
change maneuver that is similar to the one of our method
(see Fig. 9d) can only be planned in an anticipatory way. We
therefore remove the static obstacle O1 and aim to sample at
least one feasible trajectory that evades the pedestrian, which
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TABLE I: Parameters for Sampling.

scenario goal state min. value max. value step size

baseline t in [s] 0.40 10.0 0.20

& critical d(2) in [m] −4.00 4.00 1.00

baseline vζ in [m/s] 6.00 18.00 1.5

critical vζ in [m/s] 6.00 18.00 0.2

is particularly challenging due to the small solution space (see
Fig. 9e). This scenario is referred to as baseline scenario. Then,
we add an additional constraint to the motion planning to
increase the difficulty and demand that the ego vehicle must
keep a distance of 0.2 m to the pedestrian. We therefore dilate
the predicted occupancies of the pedestrian with a circle with
radius 0.2 m and refer to this scenario as critical scenario.
Subsequently, we compare the performance of both planners.

Following [15], we compute 3969 trajectories using the
sampling-based planner in the baseline scenario. The sampling
parameters are uniformly distributed and can be found in
Tab. I. From 3969 trajectories, we found two feasible trajecto-
ries evading the pedestrian. However, using the same sampling
parameters, no feasible trajectory has been found in the critical
scenario. We therefore gradually raise the number of goal
states by approximately bisecting the step size for velocity
sampling, i.e., we used step sizes {1.5, 0.8, 0.4, 0.2}m/s, until
one feasible trajectory is found. The final sampling parameters
are listed in Tab. I. Overall, we needed 26901 trajectories to
obtain one feasible trajectory evading the pedestrian in the
critical scenario (see Fig. 10). The computation times of the
baseline and critical scenario are 3.2 s and 20.8 s, respectively;
thus, the runtime increases by factor 6.5. In contrast, our
motion planning approach is able to solve both scenarios
without the need for adapting parameters and the computation
times do not substantially differ (baseline scenario: 0.078 s,
critical scenario: 0.076 s).

This scenario particularly demonstrates that sampling-based
motion planners struggle to detect narrow passage ways in the
solution space for trajectory planning due to the discretization
of the state space. In contrast, our method can automatically
detect narrow passages without increased computational effort.
One might argue that we have used a naiv sampling strategy,
however, manually tuning or learning adaptive sampling strate-
gies for different traffic situations is error-prone and difficult.
In comparison, our method for driving corridor identification
can be applied immediately without parameter tuning.

2) Mixed-Integer Quadratic Programming: We analyze the
influence of an increasing number of obstacles on the runtime
behavior of our method. For comparison, we select the motion
planner proposed in [70] based on mixed-integer quadratic

sampling approach proposed approach

ego vehicle at t0

pedestrian

Fig. 10: Critical scenario at t27 = 5.4 s.
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Fig. 11: Runtime behavior of our approach (label QP) and a MIQP planner
[70] (label MIQP) in randomly generated scenarios with up to ten obstacles.

programming (MIQP). The reason for selecting a MIQP plan-
ner is two-fold: 1) it is a continuous optimization method,
and thus, does not suffer from discretization effects, and
2) mixed-integer programming has gained increasing interest
over the past years, e.g., see [6], [20], [70]–[72], as binary
variables enable to incorporate discrete tactical decisions into
the trajectory optimization.

We consider the same road as in Fig. 10 and gradually
increase the number σ ∈ {1, . . . , 10} of static obstacles in
the environment. The obstacles are represented by rectangles,
i.e., [sx − lobs/2, sx + lobs/2] × [sy − wobs/2, sy + wobs/2],
that are randomly sampled, where sx ∈ [25, 180] m, sy ∈
[−1.75, 5.25] m, lobs ∈ [1.0, 20.0] m, wobs ∈ [0.5, 4.0] m.
Since our motion planner uses a kinematic single-track model
for optimization that is more restrictive compared to the third-
order integrator models of [70], we only consider scenarios
for the analysis that both planners could solve. Overall, we
generated 50 scenarios for each σ. In all scenarios, trajectories
are planned for 50 time steps with ∆t = 0.2 s and the initial
velocity of the ego vehicle was 15 m/s. To compute the solution
for the MIQP, we use the solver Gurobi [73], version 9.0.2.

As illustrated in Fig. 11a, the median computation times for
both planners are comparable. While the MIQP planner has
lower computation times for scenarios with up to 4 obstacles,
our approach is faster for scenarios with more than 4 obstacles.
Our method is already applicable for complex road geometries
and obstacles with arbitrary shapes, whereas the MIQP planner
is tailored to our experimental setup, i.e., lane boundaries
are constant and obstacles have rectangular shapes. Modeling
complex obstacle geometries, e.g., arbitrary polygonal shapes,
increases the computation times of the MIQP planner [70].

The MIQP planner solves many scenarios rather fast, how-
ever, the runtime behavior is highly volatile. As shown in
Fig. 11b, the standard deviation of the computation times are
particularly high for scenarios with multiple obstacles and have
the tendency to increase with a raising number of obstacles.
In contrast, the computation times of our method vary only
slightly over the different scenarios. The experiment indicates
that the runtime behavior of our method is reliable, which is
of high importance for real-time applications.

D. Motion Planning in a Complex Scenario

Let us consider a complex scenario, where the ego vehicle
is in the far left lane and plans to take the highway off-
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ego vehicle Clat obstacle

(a) Scenario at t = 0 s.

(b) Scenario at t = 3.6 s.

(c) Scenario at t = 4.8 s.

(d) Scenario at t = 5.6 s.

Fig. 12: Planned trajectories of the ego vehicle for different planning cycles (scenarios DEU A9-3 {1,...,15} T-1:2018b).

ramp (see Fig. 12a). Even for experienced human drivers, this
maneuver is challenging as multiple lane changes need to be
planned. In order to account for realistic movements by other
traffic participants, this scenario is based on real traffic that
we recorded using a BMW 7-series vehicle. Again, we use
SPOT [69] to predict the future motion of the other traffic
participants and assume that traffic participants will remain in
their current lanes, and accelerate or decelerate only slightly.
Since this maneuver requires longer planning horizons, we
replan the trajectory for consecutive planning cycles. In each
planning cycle, trajectories are planned for 30 time steps using
∆t = 0.2 s; a new planning cycle starts every 0.4 s.

Fig. 12 illustrates the planned trajectories and the corre-
sponding lateral driving corridors at selected times t. Other
traffic participants are shown in their measured state without
uncertainties at time t. As can be seen in Fig. 12b, our method
enables the ego vehicle to merge into small gaps while finally
reaching the highway off-ramp (see Fig. 12d). The median
computation times of the reachability analysis and of trajectory
planning, including the driving corridor identification, are
≈ 131 ms and ≈ 154 ms, respectively. This scenario highlights
that driving corridors allow the ego vehicle to maneuver even
in dense traffic with multiple road users.

E. Scenarios with a Small Solution Space
Next, we analyze the influence of a decreasing solution

space. We therefore group the computation times of our
approach (reachability analysis and trajectory planning includ-
ing driving corridor identification) obtained in Sec. VII-C2
according to the size of the drivable area cumulated over all
time steps. As shown in Fig. 13, the computation times tend
to decrease given that the cumulative drivable area shrinks.
Since the number of driving corridors can be limited (thus,
the number of planned trajectories), the main factor for the
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Fig. 13: The computation times of our approach have the tendency to decrease
when the cumulative drivable area decreases. For better visibility, outliers of
the boxplots are not shown.

decrease in computation time is the reachability analysis that
we further examine below.

We increase the criticality of the CommonRoad scenario
USA US101-6 1 T-1:2018b (see Fig. 14) featuring 29 dy-
namic obstacles. By gradually raising the initial velocity of
the ego vehicle by 1.4 m/s, the traffic situations becomes more
dangerous compared to the baseline scenario, when using, e.g.,
the Time-to-Collision or the Inter-Vehicle-Time, as thread-
measure [74]. We emphasize that criticality measures are not
part of the presented algorithm; an overview can be found in
[74]. For each scenario, the reachable set is computed for 50
time steps with ∆t = 0.1 s and repeated 20 times to account
for fluctuations in the computation time. As shown in Tab. II,
the median computation time of the reachable set decreases
with increasing criticality of the traffic situation, since fewer
set operations have to be performed, i.e., the number of base
sets cumulated over all time steps k decreases. Also, the size
of the cumulated drivable area is reduced by roughly 75%
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ego vehicle

obstacle

Fig. 14: Scenario USA US101-6 1 T-1 of the CommonRoad benchmark
suite. The obstacles and the ego vehicle are depicted at the initial time step.

TABLE II: Decreasing median computation times, number of base sets, and
size of the drivable area cumulated over all time steps k, when increasing the
initial velocity in scenario USA US101-6 1 T-1.

Init. Vel. Comp. Time No. Base Sets Red. Drivable Area

16.79 m/s 74.76 ms 2025 0.00 %
18.19 m/s 69.51 ms 1843 8.65 %
19.59 m/s 65.65 ms 1712 17.55 %
20.99 m/s 58.90 ms 1561 27.25 %
22.39 m/s 52.93 ms 1346 37.95 %
23.79 m/s 45.46 ms 1112 49.00 %
25.19 m/s 37.79 ms 899 59.47 %
26.59 m/s 31.30 ms 678 67.97 %
27.99 m/s 27.19 ms 535 75.40 %

when comparing the baseline scenario with the most-critical
scenario. Thus, our approach is particularly suited for complex
situations with small solution spaces, where fast reaction times
are a necessity to avoid collisions.

VIII. CONCLUSIONS

This paper presents a novel motion planning approach for
automated vehicles by combining reachability analysis with
convex optimization. In contrast to most existing work on
motion planning, our approach can be applied in arbitrarily
complex traffic situations. We showed that set-based tech-
niques have the potential to reduce the computation time
of motion planners when the criticality of the scenario in-
creases, i.e., the solution space becomes smaller and more
convoluted. In real vehicle tests, we validated the extraction
of collision avoidance constraints from the obtained driving
corridors to plan drivable trajectories. Our results indicate that
the presented approach can drastically enhance the safety of
automated vehicles and their ability to determine complex
driving maneuvers. Additionally, we are able to constrain
driving corridors to end in predefined terminal states. Thus,
automated vehicles can choose the most appropriate maneuver
to achieve the desired driving task.

APPENDIX A
FORWARD PROPAGATION

The forward propagation is performed similar to [9]. How-
ever, in [9], the absolute limits of the acceleration are restricted
to be equal (|aζ | = |aζ | and |aη| = |aη|), whereas we allow
the maximum braking deceleration to be different from the
maximum acceleration. According to [9], the lower and upper
bounds of the reachable positions and velocities for system
model (6) at t = ∆t are obtained by applying a bang-bang
input with switching time γ∆t for γ ∈ [0, 1]. Below, we
present the solution only in the longitudinal direction, the
solution in the lateral direction is obtained similarly. The
lower bounds slo

ζ (γ) and vlo
ζ (γ) on the position and velocity

in the longitudinal direction are obtained by applying full
acceleration until time γ∆t followed by full deceleration:

slo
ζ (γ) = sζ(0) + vζ(0)∆t+

1

2
aζ∆t

2(1− 2γ + γ2)

+
1

2
aζ∆t

2(2γ − γ2),
(9a)

vlo
ζ (γ) = vζ(0) + aζ∆t(1− γ) + aζγ∆t. (9b)

The upper bounds shi
ζ (γ) and vhi

ζ (γ) on the position and
velocity in the longitudinal direction are obtained by applying
full deceleration until time γ∆t followed by full acceleration
for (1− γ)∆t:

shi
ζ (γ) = sζ(0) + vζ(0)∆t+

1

2
aζ∆t

2(1− 2γ + γ2)

+
1

2
aζ∆t

2(2γ − γ2),
(10a)

vhi
ζ (γ) = vζ(0) + aζ∆t(1− γ) + aζγ∆t. (10b)

From this, we can infer that a polytope P(i)
ζ,k−1 can be

propagated as shown in [9]:

P(i)
ζ,k =

((
1 ∆t
0 1

)
P(i)
ζ,k−1 ⊕ Pu,ζ(∆t)

)

︸ ︷︷ ︸
solution of (6a) + (6c)

∩
(
R× [vζ , vζ ]

)
︸ ︷︷ ︸

velocity constraints (6b)

,

where ⊕ denotes the Minkowski sum and Pu,ζ(∆t) is the
set of all states that can be reached from the initial state
(sζ , vζ)

T = (0, 0)T when all admissible inputs are ap-
plied (6c). For computational reasons, Pu,ζ(∆t) is over-
approximated with a predefined number of halfspaces. Using
(9), the linear equation for one halfspace at some γ is [9]:



dsloζ
dγ

dvlo
ζ

dγ



T
∣∣∣∣∣∣∣
γ

(
0 1
−1 0

)T(
sζ
vζ

)
≤




dsloζ
dγ

dvlo
ζ

dγ



T
∣∣∣∣∣∣∣
γ

(
0 1
−1 0

)T(
slo
ζ

vlo
ζ

)∣∣∣∣
γ

.

Similarly, we obtain the halfspace for (10).

APPENDIX B
REMOVAL OF FORBIDDEN STATES

This section elaborates on the determination of the rectan-
gular set Aε that over-approximates the reachable positions
of centers Lc

(i)
k for the removal of forbidden states in the

reachable set computation (see Sec. IV-D). Particularly, we
present a solution for the following problem:

Problem 1 Given that θk = θΓ(projsζ(
Lc

(1)
k )), we aim to find

the rectangular set Aε = [0, εζ ]× [−εη, εη] such that ∀Lc(1)
k ∈

Drprt(q)
k ∀i ∈ {1, 2, 3}: Lc

(i)
k ∈ D

rprt(q)
k ⊕Aε.

Once the necessary assumptions have been introduced for
computing Aε in Appendix B-A, the longitudinal enlargement
εζ is derived in Appendix B-B, followed by the lateral en-
largements εη and εη .

A. Notation and Assumptions

We denote the respective minimum and maximum lateral
position of Drprt(q)

k by s
rprt(q)
η,k = inf

{
projsη(D

rprt(q)
k )

}
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Fig. 15: Local approximation of ref-
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and s
rprt(q)
η,k = sup

{
projsη(D

rprt(q)
k )

}
. The minimum and

maximum curvature of Γ(sζ) are denoted by κΓ and κΓ. We
assume that we can locally approximate the reference path
Γ(sζ) with a circle ΓC in proximity of Drprt(q)

k as shown in
Fig. 15. The center, curvature, and radius of ΓC are denoted as
cCΓ, κCΓ, and rCΓ = 1/|κC

Γ|, respectively. For κCΓ ≥ 0, the lateral
coordinates sη are positive on the inner side of the curve (see
Fig. 16) and for κCΓ < 0, the lateral coordinates sη are negative
on the inner side of the curve (see Fig. 16). Based on ΓC

and Drprt(q)
k , we compute εζ , εη and εη to determine Aε. We

further assume that Drprt(q)
k ⊕ Aε lies completely inside the

unique projection domain of Γ(sζ) [75].

B. Longitudinal Enlargement
We wish to enclose all longitudinal positions of centers

Lc
(i)
k , i ∈ {1, 2, 3}, for all Lc

(1)
k ∈ D

rprt(q)
k using Aε. First, we

derive the function εζ(sη,k, κCΓ) for computing the longitudinal
enlargement based on a single position Lc

(1)
k . Second, we

determine the over-approximative longitudinal enlargement εζ
for a set of positions based on εζ(sη,k, κCΓ).

1) Single Position: Given Lc
(1)
k , we aim to determine the

longitudinal position coordinate ŝζ,k of Lc
(3)
k relative to Lc

(1)
k ,

such that ŝζ,k = sζ,k + εζ . Note that we are interested in the
maximum longitudinal enlargement, therefore, it is sufficient
to only consider Lc

(3)
k (Lc(3)

k is farther away from Lc
(1)
k than

Lc
(2)
k ). As illustrated in Fig. 17a, εζ is the arc length of a circle

sector with radius rCΓ = 1/|κC
Γ| and central angle ϕ:

εζ(sη,k, κ
C
Γ) =

ϕ(sη,k, κ
C
Γ)

|κCΓ|
, (11)

where the central angle is computed as follows:

ϕ(sη,k, κ
C
Γ) =





arctan
(

`
1/|κCΓ|−sη,k

)
for κCΓ ≥ 0

arctan
(

`
1/|κCΓ|+sη,k

)
for κCΓ < 0.

(12)

As the lateral coordinates are positive on the inner side of the
curve for κCΓ > 0 (see Fig. 16), we need to subtract sη,k from
1/|κC

Γ| to compute ϕ(sη,k, κ
C
Γ) (see Fig. 17a). For κCΓ < 0, the

lateral coordinates are negative on the inner side of the curve.
Therefore, we add sη,k to 1/|κC

Γ| for computing ϕ(sη,k, κ
C
Γ).

Note that lim
|κC

Γ|→0
εζ(sη,k, κ

C
Γ)→ `.

2) Set of Positions: For computational efficiency, we over-
approximate (11) for a set of positions Drprt(q)

k . Thus, the
question arises, for which sη,k ∈ projsη(D

rprt(q)
k ) and κCΓ ∈

[κΓ, κΓ] does the longitudinal enlargement (11) reach its
maximum.

εζ

ϕ

`

Gc
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k

Gc
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k
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(a) Longitudinal enlargement εζ .
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Fig. 17: Computation of longitudinal and lateral enlargements.

Lemma 1 For κCΓ ≥ 0, εζ(sη,k, κCΓ) (11) is monotonically
increasing in sη,k. Furthermore, for κCΓ < 0, εζ(sη,k, κCΓ) (11)
is monotonically decreasing in sη,k.

Proof 1 Given that s′η,k > s∗η,k and κCΓ ≥ 0, we have:

εζ(s
′
η,k, κ

C
Γ) > εζ(s

∗
η,k, κ

C
Γ)

arctan

(
`

1/|κC
Γ| − s′η,k

)
> arctan

(
`

1/|κC
Γ| − s∗η,k

)

1/|κC
Γ| − s′η,k < 1/|κC

Γ| − s∗η,k
s′η,k > s∗η,k.

Using the same reasoning, we obtain for κCΓ < 0 that
εζ(s

′
η,k, κ

C
Γ) < εζ(s

∗
η,k, κ

C
Γ). �

Lemma 2 For κCΓ ≥ 0 and (sζ,k, sη,k) ∈ Drprt(q)
k , (11)

reaches its maximum for sη,k = s
rprt(q)
η,k . For κCΓ < 0, (11)

reaches its maximum for sη,k = s
rprt(q)
η,k .

Proof 2 From Lemma 1, it follows that (11) is monotonically
increasing in sη,k for κCΓ ≥ 0. Therefore, we select srprt(q)η,k

which is the maximum lateral position in Drprt(q)
k to compute

(11). Similarly, as (11) is monotonically decreasing in sη,k for
κCΓ < 0, we select the minimum lateral coordinate srprt(q)η,k of
Drprt(q)
k to compute (11). �

Lemma 3 For any sη,k ∈ projsη(D
rprt(q)
k ) and κCΓ ∈

[κΓ, κΓ], (11) is bounded by

εζ =sup
{
εζ

(
s
rprt(q)
η,k , [0, κΓ]

)
∪ εζ

(
s
rprt(q)
η,k , [κΓ, 0]

)}
.

(13)

Proof 3 According to Lemma 2, srprt(q)η,k and s
rprt(q)
η,k maxi-

mize (11) for κCΓ ≥ 0 and κCΓ < 0, respectively. In contrast to
sη,k, (11) is not monotonic in κCΓ. Using interval arithmetics
[76], we obtain the upper bound on (11) over the intervals
[0, κΓ] and [κΓ, 0]. �
As (13) becomes increasingly over-approximative for larger
intervals of curvatures, we pre-compute (13) for smaller inter-
vals and store the values in a look-up table generated offline.

C. Lateral Enlargement

Similarly to the longitudinal enlargement, we wish to en-
large Drprt(q)

k in the lateral direction such that all lateral
positions of centers Lc

(i)
k , i ∈ {1, 2, 3}, are enclosed for all
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Lc
(1)
k ∈ Drprt(q)

k . Similarly to the previous section, we first
derive the function εη(sη,k, κ

C
Γ) for determining the lateral

enlargements based on a single position Lc
(1)
k . Second, we

determine the over-approximative lateral enlargements εη and
εη based on εη(sη,k, κ

C
Γ).

1) Single Position: Given Lc
(1)
k , we aim to determine the

lateral position coordinate ŝη,k of Lc
(3)
k relative to Lc

(1)
k , such

that ŝη,k = sη,k− εη (again, it is sufficient to only compute it
for Lc

(3)
k ). As illustrated in Fig. 17b, we use the Pythagorean

theorem to determine εη:

εη(sη,k, κ
C
Γ) =





√
(1/|κC

Γ| − sη,k)2 + `2

−(1/|κC
Γ| − sη,k)

, for κCΓ ≥ 0,

√
(1/|κC

Γ|+ sη,k)2 + `2

−(1/|κC
Γ|+ sη,k)

, for κCΓ < 0.

(14)

As the sign of the lateral coordinate sη changes on the inner
side of the curve depending on the sign of κCΓ (see Fig. 16),
we distinguish two cases for (14) similar to (12). Note that

lim
|κC

Γ|→0+
εη(sη,k, κ

C
Γ)→ 0.

2) Set of Positions: For computational efficiency, we over-
approximate (14) for a set of positions Drprt(q)

k . Thus, the
question arises for which sη,k ∈ projsη(D

rprt(q)
k ) and κCΓ ∈

[κΓ, κΓ] the lateral enlargement (14) reaches its maximum.

Lemma 4 For κCΓ ≥ 0, εη(sη,k, κ
C
Γ) (14) is monotonically

increasing in sη,k. Furthermore, for κCΓ < 0, εη(sη,k, κ
C
Γ) (14)

is monotonically decreasing in sη,k.

Proof 4 The partial derivative of (14) for κCΓ ≥ 0 with respect
to sη,k is

∂εη
∂sη,k

(sη,k, κ
C
Γ)=





+1− 1/|κCΓ|−sη,k√
(1/|κCΓ|−sη,k)2+`2

, for κCΓ ≥ 0,

−1+
1/|κCΓ|+sη,k√

(1/|κCΓ|+sη,k)2+`2
, for κCΓ < 0.

(15)
Since 1/|κC

Γ| ∓ sη,k > 0 must hold such that sη,k is within
the unique projection domain of ΓC and 1/|κC

Γ| ∓ sη,k <√
(1/|κC

Γ| ∓ sη,k)2 + `2, we have:

0 <
1/|κC

Γ|∓ sη,k√
(1/|κC

Γ| ∓ sη,k)2 + `2
< 1.

Thus, it holds that

∀κCΓ ≥ 0 :
∂εη
∂sη,k

(sη,k, κ
C
Γ) > 0,

∀κCΓ < 0 :
∂εη
∂sη,k

(sη,k, κ
C
Γ) < 0.

Therefore, (14) is monotonically increasing in sη,k for κCΓ ≥ 0
and monotonically decreasing in sη,k for κCΓ < 0. �

Lemma 5 For κCΓ ≥ 0 and (sζ,k, sη,k) ∈ Drprt(q)
k , (14)

reaches its maximum for sη,k = s
rprt(q)
η,k . For κCΓ < 0, (14)

reaches its maximum for sη,k = s
rprt(q)
η,k .

Proof 5 From Lemma 4, it follows that (14) is monotonically
increasing in sη,k for κCΓ ≥ 0. Therefore, we select srprt(q)η,k ,

which is the maximum lateral position in Drprt(q)
k , for com-

puting (14). Similarly, as (14) is monotonically decreasing in
sη,k for κCΓ < 0, we select the minimum lateral coordinate
s
rprt(q)
η,k of Drprt(q)

k to compute (14). �
The remaining task is to determine the curvature κCΓ, for

which εη(sη,k, κ
C
Γ) reaches its maximum for a given Drprt(q)

k

and reference path Γ(sζ).

Lemma 6 (14) is monotonically increasing in |κCΓ|.
Proof 6 We substitute 1/|κC

Γ| with rCΓ in (14) and compute the
partial derivative of (14) with respect to rCΓ:

∂εη
∂rCΓ

(sη,k, r
C
Γ)=





−1 +
rCΓ−sη,k√

(rCΓ−sη,k)2+`2
, for κCΓ ≥ 0,

−1 +
rCΓ+sη,k√

(rCΓ+sη,k)2+`2
, for κCΓ < 0.

(16)

Since ∂εη
∂rCΓ

(sη,k, r
C
Γ) < 0, (14) is monotonically decreasing

in rCΓ. As a result, (14) is monotonically increasing in |κCΓ|,
because |κCΓ| is the reciprocal of rCΓ. �

Lemma 7 For any sη,k ∈ projsη(D
rprt(q)
k ) and κCΓ ∈

[κΓ, κΓ], (14) is bounded by

εη =

{
εη

(
s
rprt(q)
η,k , κΓ

)
, for κΓ ≥ 0,

0 for κΓ < 0,
(17)

εη =

{
εη

(
s
rprt(q)
η,k , κΓ

)
, for κΓ < 0,

0 for κΓ ≥ 0.
(18)

Proof 7 Since a straight line in the curvilinear coordinate
system F L is bent toward the inner side of the circle ΓC

when it is transformed to the Cartesian frame F G, we need
to enlarge Drprt(q)

k only to the circle’s outer side. For
κCΓ ≥ 0, we enlarge Drprt(q)

k in the negative η-direction
with εη = εη

(
s
rprt(q)
η,k , κΓ

)
(see Lemma 5 and 6). For

κCΓ < 0, we enlarge Drprt(q)
k in the positive η-direction with

εη = εη

(
s
rprt(q)
η,k , κΓ

)
(see Lemma 5 and 6). �

Theorem 1 By computing Aε according to (13), (17), and
(18), Problem 1 is solved.

Proof 8 The proof follows directly from Lemma 3 and 7. �
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[9] S. Söntges and M. Althoff, “Computing the drivable area of autonomous
road vehicles in dynamic road scenes,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 6, pp. 1855–1866, 2018.
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[70] X. Qian, F. Altché, P. Bender, C. Stiller, and A. de La Fortelle,
“Optimal trajectory planning for autonomous driving integrating logical
constraints: An MIQP perspective,” in Proc. of the IEEE Conference on
Intelligent Transportation Systems, 2016, pp. 205–210.

[71] C. Burger and M. Lauer, “Cooperative multiple vehicle trajectory
planning using MIQP,” in Proc. of the IEEE Conference on Intelligent
Transportation Systems, 2018, pp. 602–607.

[72] J. Eilbrecht and O. Stursberg, “Cooperative driving using a hierarchy of
mixed-integer programming and tracking control,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017, pp. 673–678.

[73] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2020.
[Online]. Available: http://www.gurobi.com

[74] J. Dahl, G. R. de Campos, C. Olsson, and J. Fredriksson, “Collision
avoidance: A literature review on threat-assessment techniques,” IEEE
Transactions on Intelligent Vehicles, vol. 4, no. 1, pp. 101–113, 2019.

[75] J. Pegna and F.-E. Wolter, “Surface curve design by orthogonal projec-
tion of space curves onto free-form surfaces,” Journal of Mechanical
Design, vol. 118, no. 1, pp. 45–52, 1996.

[76] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to interval
analysis. Society for Industrial and Applied Mathematics, 2009.

Stefanie Manzinger is currently a Ph.D. candidate
and joined the Cyber-Physical Systems Group at the
Technical University of Munich under Prof. Dr.-Ing.
Matthias Althoff in 2016. She received her B.Sc. de-
gree in Mechatronics and Information Technology in
2014 and her M.Sc. degree in Robotics, Cognition,
Intelligence in 2016, both from the Technical Uni-
versity of Munich, Germany. Her research interests
include automated vehicles, reachability analysis,
and motion planning.

Christian Pek is a postdoctoral researcher in the Di-
vision of Robotics, Perception and Learning at KTH
Royal Institute of Technology. Before joining KTH,
he was a PhD student in the Cyber-Physical Systems
Group at the Technical University of Munich under
Prof. Dr.-Ing. Matthias Althoff. He was a research
assistant in the motion planning group at BMW
Group from 2015 until 2019. Christian graduated
with the Master of Science degree in computer
science and robotics from the Technical University
of Braunschweig, Germany, and the University of

Auckland, New Zealand, in 2015. His vision is a future of robots which
robustly and safely accomplish tasks with and around humans.

Matthias Althoff is an associate professor in com-
puter science at the Technical University of Munich,
Germany. He received his diploma engineering de-
gree in Mechanical Engineering in 2005, and his
Ph.D. degree in Electrical Engineering in 2010, both
from the Technical University of Munich, Germany.
From 2010 to 2012 he was a postdoctoral researcher
at Carnegie Mellon University, Pittsburgh, USA, and
from 2012 to 2013 an assistant professor at Ilmenau
University of Technology, Germany. His research
interests include formal verification of continuous

and hybrid systems, reachability analysis, planning algorithms, nonlinear
control, automated vehicles, and power systems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIV.2020.3017342

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Appendix A Reproduction of Publications

74



A.3 Computation of Solution Spaces for Optimization-based Trajectory Planning

A.3 Computation of Solution Spaces for
Optimization-based Trajectory Planning [3]

Summary This work represents a further development of our approach in Appendix A.2.
We propose novel methods to determine driving corridors within reachable sets and to derive
collision avoidance constraints from the corresponding driving corridors for optimization-
based trajectory planning. In contrast to our previous approach in Appendix A.2, driving
corridors identified in this work enable to plan the longitudinal and lateral motion of the
autonomous vehicle simultaneously in a single optimization problem. To obtain collision
avoidance constraints, we first over-approximate the complement of the driving corridor with
convex keep-out zones. The number of convex keep-out zones can be defined a-priori, i.e.,
the number of collision avoidance constraints is known in advance, which is necessary, for
example, when generating customized code for optimization-based trajectory planning. Based
on the convex keep-out zones, we leverage state-of-the-art methods for determining non-
convex collision avoidance constraints, but also provide methods to obtain convex collision
avoidance constraints. Due to the generic formulation of collision avoidance constraints, our
approach can be paired with various existing optimization-based trajectory planning methods.
By using driving corridors, the initialization of nonlinear optimization problems is facilitated,
local minima caused by obstacles in the environment are eliminated, and sets of goal states
that the vehicle is supposed to reach can be considered.

We demonstrate the usefulness of our approach using scenarios from the CommonRoad
benchmark suite. We combine our approach with two different state-of-the-art trajectory
planning methods based on successive convexification. Our results show that in combination
with our approach, feasible solutions can be found for traffic scenarios that previously could
not be solved by the selected state-of-the-art trajectory planners. Our evaluations also show
that our approach facilitates the initialization of trajectory planning problems, which leads
to reduced computational effort and increased robustness against parameter variations.
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jectory planning by identifying driving corridors within reachable sets. L. S. developed the
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the manuscript.
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Manzinger, and Matthias Althoff, Computation of Solution Spaces for Optimization-based
Trajectory Planning, IEEE Transactions on Intelligent Vehicles, 2021.

75

http://dx.doi.org/10.1109/TIV.2021.3077702


IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. XX, NO. X, MONTH YEAR 1

Computation of Solution Spaces for
Optimization-Based Trajectory Planning

Lukas Schäfer∗, Stefanie Manzinger∗, and Matthias Althoff

Abstract—The nonlinear vehicle dynamics and the non-
convexity of collision avoidance constraints pose major challenges
for optimization-based trajectory planning of automated vehicles.
Current solutions are either tailored to specific traffic scenarios,
simplify the vehicle dynamics, are computationally demanding,
or may get stuck in local minima. This work presents a novel ap-
proach to address the aforementioned shortcomings by identify-
ing collision-free driving corridors that represent spatio-temporal
constraints for motion planning using set-based reachability
analysis. We derive a suitable formulation of collision avoidance
constraints from driving corridors that can be integrated into ar-
bitrary nonlinear programs as well as (successive) convexification
procedures. When combining our approach with existing motion
planning methods based on continuous optimization, trajectories
can be planned in arbitrary traffic situations in a computationally
efficient way. We demonstrate the efficacy of our approach using
scenarios from the CommonRoad benchmark suite.

I. INTRODUCTION

VARIATIONAL methods for trajectory planning of auto-
mated vehicles have gained increasing interest over the

past years. While discrete motion planning methods [1]–[4]
are specifically suited for exploration, they may struggle to
find solutions in cluttered environments due to discretization
effects. In contrast, optimization-based motion planning ap-
proaches do not suffer from discretization effects as trajecto-
ries are optimized in continuous space. However, the nonlinear
vehicle dynamics and the non-convexity of the set of feasible
positions generally lead to a high computational burden. Some
approaches require additional guidance through the solution
space [5], e.g., in the form of driving corridors that represent
spatio-temporal constraints.

A. Related Work

To address the above-mentioned challenges, a variety of
problem reformulations is proposed in the literature. We
categorize them subsequently by the fidelity of their applied
vehicle model, their techniques to identify driving corridors,
and their formulation of collision avoidance constraints.
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of Munich, D-85748 Garching, Germany (e-mail: lukas.schaefer@tum.de,
stefanie.manzinger@in.tum.de, althoff@in.tum.de)

1) Vehicle Dynamics: The fidelity of vehicle models for
optimization-based trajectory planning ranges from very sim-
ple models [6]–[9], such as double-integrator dynamics, to
rather complicated models [5], [10]–[13], such as dynamic
single-track models. While the more complicated approaches
demand excessive computational effort, less complicated ap-
proaches may fail in critical situations, because they neglect
the non-holonomicity of the vehicle or decouple the longitu-
dinal and lateral movement [6], [14]–[16].

2) Driving Corridors: Topological approaches for driving
corridor identification have been studied for some time [12],
[14], [17]–[25]. These approaches often exploit the concept of
homotopy or homology to infer different maneuver variants
[12], [22]–[25]. Basically, two trajectories are called homo-
topic if they can be continuously deformed into one another
without intersecting any obstacle [26]. Topological approaches
commonly decompose the collision-free regions in space-time
into (convex) sub-regions: for each selected combination of
sub-regions, an optimal trajectory can be planned. However,
these approaches typically neglect the vehicle dynamics, and
thus, cannot exclude non-drivable corridors prior to trajectory
planning. Moreover, the number of distinct maneuver variants
grows exponentially with the number of obstacles and some
approaches are difficult to apply in dynamic environments
[23], [24].

Another line of research finds driving corridors by inflating
solutions from discrete motion planning methods, e.g., graph-
based or sampling-based methods [27]–[33] or multi-agent
partially observable Markov decision processes [34]. However,
some approaches consider only static environments in their
experiments [30]–[32] or only a discrete set of actions for com-
putational tractability [34]. In general, these methods struggle
in detecting narrow passageways in cluttered environments due
to discretization effects.

In [35], a partitioning of the cluttered environment is
obtained by means of convex lifting. The resulting partitioning
of the space is utilized to obtain a reference path by graph
search and to generate a driving corridor. The authors state
that their algorithm can be extended to moving obstacles, but
have not yet evaluated this.

Support vector machines (SVMs) have also been applied
to identify driving corridors for path [36], [37] and trajectory
planning [38], [39]. By assigning a passing side, i.e., either
to the left or right, the SVM solver optimizes a separating
surface to construct a collision-free driving corridor. However,
deciding on the passing side is often the most crucial aspect.

3) Collision Avoidance Constraints: For optimization-
based motion planning, obstacles are usually modeled as con-
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vex shapes, e.g., polytopes [40]–[42] or ellipsoids [43]–[46],
where polytopes allow one to more freely specify shapes. More
general non-convex obstacles can be handled by applying
(semi-) convex decomposition techniques beforehand [47].

Given a proper representation of the obstacles, mixed-
integer programming is often proposed to handle non-convex
collision avoidance constraints [6], [7], [48], [49]. While
mixed-integer programs guarantee global optimality of feasible
solutions, their computational complexity is high [7]. Another
line of research uses nonlinear programming [40], [42], [44];
however, these approaches strongly rely on a suitable initial
guess and are also computationally expensive.

In contrast, convex optimization problems can be efficiently
solved to global optimality [50] and real-time capable solvers
are available, e.g., [51], [52]. To employ convex optimization
techniques, the non-convex optimization problem is typically
approximated by a single [15], [16], [53]–[56] or a sequence
of convex optimization problems [5], [46], [57]–[62]. This
usually requires extracting a convex subset from the non-
convex set of feasible positions, which we discuss next.

In [5], [11], [15], [16], [53], [63], [64], the set of admissible
(lateral) positions is described by an interval of admissible
deviations from a reference path. However, collision avoidance
can only be guaranteed for minor deviations of the longitudinal
position from the initial guess [5], [11], [53] or the vehicle
dynamics is decoupled [15], [16], [63]. This issue can be
circumvented by restricting the feasible positions to lie within
an ellipsoid [33], [35], [65], [66]. However, ellipsoidal con-
straints can result in rather conservative under-approximations
of the feasible set of positions. More flexible polyhedral under-
approximations can be obtained by linearizing signed-distance
functions [58] or potential fields [55].

The works in [42], [67], [68] propose smooth reformulations
of collision avoidance constraints for polyhedral obstacles. If
the collision avoidance constraints are differentiable, a convex
approximation can be obtained by directly linearizing the
collision avoidance constraints [31], [57], [60], [61], [69].
However, an unsuitable initial guess might cause convergence
to an infeasible local minimum [43].

To obtain a larger feasible set as compared to direct-
linearization techniques, the works [46], [70], [71] propose
projecting the current state of the system onto the boundary of
a convex keep-out zone followed by linearizing the constraint
at the projection point. The approaches in [41], [72] compute
polyhedral inner-approximations by growing a collision-free
ellipsoid and computing the tangents to the ellipsoid where
it coincides with the boundary of an obstacle. A related idea
is proposed in [54], where the edges of the polyhedron are
sampled and a limiting obstacle is assigned to each edge.
However, all these procedures have in common that they
require a collision-free initial guess.

B. Contributions

We identify collision-free driving corridors within the reach-
able set of an automated vehicle. This work significantly
differs from our previous work on motion planning with
reachable sets [63] and proposes the following innovations:

• our novel method for obtaining collision-free driving
corridors enables combined longitudinal and lateral tra-
jectory planning;

• our collision avoidance constraints are created so that
arbitrary gradient- and Hessian-based solvers as well as
(successive) convexification procedures can be used for
trajectory planning.

Our proposed approach offers the following benefits:

• generic formulation of collision avoidance, i.e., our ap-
proach can be embedded in a wide range of different
optimization-based motion planning methods, indepen-
dently of the fidelity of the vehicle model;

• simplified initialization, i.e., the driving corridors facili-
tate the search for a suitable initial guess for nonlinear
optimization problems;

• elimination of local minima induced by obstacles, i.e.,
the driving corridors guide the optimization-based motion
planner through the collision-free solution space;

• consideration of a set of goal states, i.e., driving corridors
can be constrained to end in a set of terminal states, e.g.,
a specific goal region or standstill in safe areas;

• applicability in arbitrary traffic scenarios, i.e., our ap-
proach is capable of handling arbitrarily cluttered sce-
narios involving static and dynamic obstacles;

• the computational effort of our approach typically im-
proves with the criticality of the scenario [63], i.e., with
shrinking solution space for trajectory planning.

The remainder of this paper is structured as follows: Sec. II
introduces the problem statement and the solution concept. The
computation of reachable sets is briefly reviewed in Sec. III.
Sec. IV elaborates on the identification of driving corridors,
followed by the derivation of collision avoidance constraints
in Secs. V and VI. Numerical results are provided in Sec. VII
and our conclusions are drawn in Sec. VIII.

II. PROBLEM STATEMENT AND SOLUTION CONCEPT

To precisely formulate our problem statement and for
subsequent derivations, we introduce our notation. For a
set S, let So denotes its interior, ∂S its boundary, S{ its
complement, conv(S) its convex hull, and cl(S) its closure.
For a hyperplane H=

(a,b)
:= {x|aTx = b}, with a ∈ Rn

and b ∈ R, let H≤(a,b) denote the corresponding halfspace
{x|aTx ≤ b}; analogously, H≥(a,b) := {x|aTx ≥ b}. If a
set S is countable, its cardinality is denoted by |S|. The set
{r, r + 1, . . . , q} ⊂ N0, 0 ≤ r ≤ q, is denoted by I[r:q].
A sequence W with components Wi, i ∈ I[r:q], is denoted
by W = (Wi)

q
i=r. We introduce � as the placeholder for a

variable where the minimum and maximum admissible values
are denoted by � and �, respectively. We further introduce a
local curvilinear coordinate frame as FL aligned with a given
reference path Γ : R→ R2. In FL, a global position (sx, sy)T

is expressed in terms of the arc length sζ and the orthogonal
deviation sη from Γ(sζ).
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A. Problem Statement

Let us introduce the compact set of admissible states X ⊂
Rnx and the set of admissible control inputs U ⊂ Rnu of an
automated vehicle, whose motions are governed by

xk+1 = f(xk, uk), (1)

where xk ∈ X is the state, uk ∈ U the input, and k ∈ N0

is the discrete time step corresponding to the time tk = k∆t,
∆t ∈ R+. The dynamics in (1) are formulated in FL and
f(xk, uk) is continuously differentiable on X . Possible state
and input trajectories of the system are denoted by x(·) and
u(·), respectively. Next, we define a few important sets as well
as the occupancy and projection operations:

Definition 1 (Occupancy). The operator occ(x) relates the
state x ∈ X to the set of points in the position domain
occupied by the automated vehicle as occ : X → P(R2),
where P(R2) denotes the power set of R2.

Definition 2 (Set of Forbidden States). Given the set Ok ⊂ R2

of occupied positions of all obstacles (e.g., other cars and
pedestrians) including the space outside of the road, the set
of forbidden states of the automated vehicle at time step k is

Fk := {x | occ(x) ∩ Ok 6= ∅} .

Definition 3 (One-Step Reachable Set). Let Re
0 = X0, where

X0 is the set of collision-free initial states of the automated
vehicle including measurement uncertainties. The one-step
reachable set Re

k+1 is the set of all states that can be reached
from the previous set of states Re

k ⊆ X within one time step
without intersecting Fk+1:

Re
k+1 :=

{
xk+1 ∈ X

∣∣∣∃xk ∈ Re
k, ∃uk ∈ U :

xk+1 =f(xk, uk) ∧ xk+1 /∈ Fk+1

}
.

Definition 4 (Projection). The operator proj : X → R2 maps
the state x ∈ X to the (sζ , sη) plane: proj(x) := (sζ , sη)T .
Using the same notation, we project a set of states X :
proj(X ) := {proj(x) |x ∈ X}. Similarly, we use projζ : X →
R and projη : X → R to map a state x ∈ X to the longitudinal
or lateral position domain, respectively.

Definition 5 (Drivable Area). The drivable area De
k at time

step k is defined as De
k := proj(Re

k).

Our approach provides collision avoidance constraints for
optimization-based trajectory planners. The input of our
method is the current environment model that comprises the
road network, the curvilinear coordinate system FL, and all
safety-relevant traffic participants, including their motion pre-
diction. Our method is not tailored to any particular prediction
method and only requires that Ok can be represented by the
union of closed sets containing the future occupied positions
of obstacles, including uncertainties. We aim to solve the
following non-convex optimal control problem to plan the

prediction for k ∈ I[0:N ]

⋃
k∈I[0:N−1]

De
k De

N

(a) Drivable area De
k of the automated vehicle for consecutive time steps

k ∈ I[0:N ]. The drivable area at the final time step N is colored in gray.

(b) Two possible driving corridors are shown; for simplicity, we show the
union of the driving corridors over time. The driving corridor at the final time
step N is colored in gray.

prediction at kdriving corridor at k polyhedra

(c) Approximation of the driving corridor complement with polyhedra depicted
at a specific time step k.

vehicle at k = 0 vehicle at intermediate time steps

(d) We extract collision avoidance constraints from the approximated driving
corridor for the trajectory optimization.

Fig. 1: Illustration of the computation steps of our approach.

trajectory of the automated vehicle:

min
u(·)

N∑

k=0

J(xk, uk) (2a)

such that

x0 = x̃0, xN ∈ Xgoal, (2b)

∀k ∈ I[0:N−1] : xk+1 = f(xk, uk), (2c)

∀k ∈ I[0:N ] : proj(xk) ∈ De
k, (2d)

g(xk, uk, k) ≤ 0, (2e)

where the cost function J : Rnx × Rnu → R is continuously
differentiable. The (measured) initial state of the automated
vehicle is denoted by x̃0. Collision avoidance is encoded by
the constraint (2d), i.e., the positions of the automated vehicle
are limited to the drivable area. Additional constraints such as
actuator constrains are summarized in the set of continuously
differentiable, time-variant constraints g : Rnx ×Rnu ×N0 →
Rg in (2e).

B. Solution Concept

Our method determines a continuously differentiable ap-
proximation of the collision avoidance constraint (2d) in four
steps (see Fig. 1):

1) We compute the drivable area (see Def. 5) of the auto-
mated vehicle in the current traffic scenario to explore
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the dynamically reachable, collision-free solution space
for trajectory planning (see Fig. 1a and Sec. III).

2) We extract dynamics-aware driving corridors from the
drivable area (see Fig. 1b and Sec. IV).

3) We compute an approximation of the driving corridor
complement using a fixed number of polyhedra (see
Fig. 1c and Sec. V). This intermediate step allows us
to use state-of-the-art methods for continuous trajectory
optimization and to define the number of collision avoid-
ance constraints in advance.

4) We derive collision avoidance constraints for the (non-)
convex trajectory optimization from the approximation
of the driving corridor complement (see Fig. 1d and
Sec. VI).

These four steps are detailed in the subsequent sections.

III. REACHABLE SET COMPUTATION

Vehicle models used for motion planning usually possess
nonlinear dynamics and a rather high-dimensional state space,
which makes it difficult to calculate the reachable set [73].
We therefore aim to compute accurate approximations R of
the exact reachable set Re, i.e., R ≈ Re, for computational
efficiency. Among others, we realize this by approximating
the vehicle dynamics by two second-order integrator models
in the road-aligned coordinate system FL [63]. The state x =
(sζ , vζ , sη, vη)T and input u = (aζ , aη)T of the system are
composed of the position s, velocity v, and acceleration a in
the longitudinal ζ- and lateral η-directions, where both the
velocity and acceleration are bounded:

s̈ζ(t) = aζ(t), s̈η(t) = aη(t), (3a)
vζ ≤ vζ(t) ≤ vζ , vη ≤ vη(t) ≤ vη, (3b)

aζ ≤ aζ(t) ≤ aζ , aη ≤ aη(t) ≤ aη. (3c)

The approximation of the reachable set is represented as the
union of base sets R(i)

k , i ∈ N0, i.e.,

Re
k ≈ Rk := ∪iR(i)

k , (4)

where a base set R(i)
k is the Cartesian product of two con-

vex polytopes in the (sζ , vζ) and (sη, vη) plane [74]. The
projection of a base set proj(R(i)

k ) yields an axis-aligned
rectangle D(i)

k . The union of D(i)
k approximates the drivable

area: De
k ≈ Dk := ∪iD(i)

k .
We use the algorithm presented in our previous works [63],

[74] to compute the reachable set of the automated vehicle,
which is briefly summarized below. To simplify the notation,
we denote both the union and the collection of base sets R(i)

k

withRk; this is done analogously for the drivable area Dk. The
initial base set R(0)

0 results from the initial state x̃0 to which
the set of measurement uncertainties is added. The reachable
set for consecutive time steps k is computed as follows:

1) Propagation: The polytopes of each base set R(i)
k are

propagated according to (3), which yields Rprop
k+1 and Dprop

k+1 .
At this stage, obstacles are not considered.

2) Removal of Forbidden States: We remove all colliding
states from Rprop

k+1 to obtain Rk+1. Since convex polytopes are

not closed under set difference, we under-approximate Rprop
k+1 \

Fk+1 with several base sets R(j)
k+1.

To this end, we transform the set of obstacles Ok to
the curvilinear coordinate frame FL prior to the reachable
set computation, and over-approximate the result with axis-
aligned rectangles yielding the set Õk. Efficient algorithms for
axis-aligned rectangles benefit the remaining required steps:

a) Merging: Both sets Dprop
k+1 and Õk+1 are merged using

a sweep line algorithm [75], yielding rectilinear polygons.
b) Difference: By computing the difference between the

rectilinear polygons of the propagated drivable area and the
approximated obstacles, we obtain the collision-free reachable
positions of the automated vehicle.

c) Partitioning: To cast the resulting collision-free reach-
able positions in the set representation defined in (4), we
partition the set into rectangles D(j)

k+1 along the vertical η-
direction, e.g., using a sweep line algorithm.

After we have obtained the collision-free drivable area
Dk+1, we determine the reachable velocities for Dk+1 to
obtain the reachable set Rk+1 of the next time step. It is also
possible to consider the shape of the automated vehicle for the
removal of the forbidden states assuming that the automated
vehicle is oriented along the reference path [63].

3) Update of Reachability Graph: As a consequence of the
removal of forbidden states, multiple setsR(j)

k+1 can be reached
from the same R(i)

k . For later use, we create a graph GR, in
which each node stores a base set R(i)

k and its projection D(i)
k .

An edge (R(i)
k ,R(j)

k+1) is added if and only if R(i)
k can reach

R(j)
k+1 in one time step.

IV. IDENTIFICATION OF DRIVING CORRIDORS FOR
COUPLED DYNAMICS

The obtained reachable sets are generally non-convex and
often disconnected due to the presence of obstacles. To obtain
better manageable sets, we decompose the reachable set into
driving corridors:

Definition 6 (Driving Corridor). A driving corridor C :=
(Ck)Nk=0 is a sequence of sets Ck over time steps k that satisfy:

C1) Reachability: Ck ⊆ Rk and for each R(i)
k ∈ Ck, there

exists R(j)
k+1 ∈ Ck+1 such that (R(i)

k ,R(j)
k+1) ∈ GR;

C2) Goal states: CN ⊆ Xgoal;
C3) Connectedness: proj(Ck) is connected [76];
C4) Vertical convexity: any non-empty intersection of

proj(Ck) with a vertical line is connected [77].

A driving corridor may represent several maneuver options
for each obstacle like yielding, passing, or following; neverthe-
less, the passing sides for obstacles are unique for all solutions
in a driving corridor (see Fig. 1b). The different concepts
of driving corridors and the related concept of homotopy are
usually applied to obtain unique sequences of maneuvers [14],
[22], [25], [34], [78]. In contrast, we have conceptualized
driving corridors from an optimization point of view. By using
driving corridors according to Def. 6 for trajectory planning,
we are able to eliminate
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1) the need for binary variables that encode collision avoid-
ance constraints for multiple obstacles, since Ck is a
single, connected set and already collision-free;

2) local minima due to obstacle constraints, since we assign
a unique passing side for each obstacle prior to optimiza-
tion (see Fig. 2).

Our approach to determine driving corridors C within the
reachable set R is described next. For simplicity, we drop the
projection operator when referring to C in the position domain.

1) Goal Region: We intersect the reachable set of the final
time step with Xgoal, i.e., R̂N =

⋃
iR

(i)
N ∩ Xgoal. In case

R̂N = ∅, the desired goal states cannot be reached, which can
be reported to a high-level planner. To remove states at earlier
points in time that cannot reach Xgoal, we perform a graph
search over GR backwards in time and remove base sets R(i)

k

that do not reach the set R̂N .
2) Identification and Selection: We iterate over the drivable

area backwards in time and decompose it into connected,
vertically convex sets to extract driving corridors. As shown in
Fig. 3b, the drivable area Dk is already vertically sliced (but
not yet vertically convex nor connected) due to the removal
of forbidden states. The decomposition into vertically convex
sets is performed using the adjacency graph:

Definition 7 (Adjacency Graph—adapted from [23]). The
nodes of an adjacency graph Ak are sets D(i)

k ∈ Dk and an
edge in Ak represents that D(i)

k ,D(q)
k share a border which is

not just a vertex (e.g., D(0)
k and D(1)

k in Fig. 3b). The edges
in Ak are directed in increasing longitudinal direction.

By construction, Ak is a directed acyclic graph. Since there
are no loops in Ak, any path in Ak connecting a source with
a sink node represents a connected, vertically convex set V(q)

k ,
as shown in Fig. 3b. For the identification and selection of
driving corridors, we explore the driving corridor graph GC
(see Fig. 3c):

Definition 8 (Driving Corridor Graph). The nodes of a driving
corridor graph GC are vertically convex sets V(q)

k . An edge in
GC represents that a set D(j)

k+1 ∈ V
(p)
k+1 is reachable from some

D(i)
k ∈ V

(q)
k within one time step, i.e., (D(i)

k ,D(j)
k+1) ∈ GR.

A path in GC represents a driving corridor C. The exploration
of GC can be performed using standard graph search algorithms
like depth-first search or breadth-first search. The vertically
convex sets V(q)

N at the final time step N are sink nodes of
GC and obtained through AN . The predecessors for a node
V(q)
k are obtained from the reachability graph GR: we extract

x0 Xgoal

x1

C1xsolution,1

sζ

sη

Fig. 2: Initialization (dashed line) in a (too) narrow gap close to an infeasible
local minimum. Moving x1 to either side will increase the violation of one of
the constraints representing the obstacles. Using a driving corridor, a feasible
solution (solid line) can be found since we rewrite the constraints as x1 ∈ C1.

GR
D(0)
k D(1)

k D(2)
k D(3)

k D(4)
k

D(0)
k+1 D(1)

k+1 D(2)
k+1 D(3)

k+1 D(4)
k+1

(a) Excerpt of the reachability graph GR.

Ak Ak+1

D(0)
k

D(1)
k

D(2)
k

D(3)
k D(4)

k

D(0)
k+1

D(1)
k+1

D(2)
k+1

D(3)
k+1 D(4)

k+1

V(2)
k

V(1)
k

V(0)
k

V(0)
k+1

V(1)
k+1

(b) A path in the adjacency graph Ak represents a connected, verti-
cally convex set V(q)

k . Ak contains the sets V(0)
k = {D(2)

k }, V
(1)
k =

{D(0)
k ,D(1)

k }, and V(2)
k = {D(3)

k ,D(4)
k }. Ak+1 contains the sets V(0)

k+1 =

{D(0)
k+1,D

(2)
k+1,D

(3)
k+1,D

(4)
k+1} and V(1)

k+1 ={D(0)
k+1,D

(1)
k+1,D

(3)
k+1,D

(4)
k+1}.

GC

V(0)
k V(1)

k V(2)
k

V(0)
k+1 V(1)

k+1

Ck = V(1)
k

Ck+1 = V(1)
k+1

D(0)
k

D(1)
k

D(0)
k+1

D(1)
k+1

D(3)
k+1 D(4)

k+1

(c) Excerpt of the driving corridor graph GC . A path in GC represents a driving
corridor C. In our example, the selected driving corridor is Ck = V(1)

k and
Ck+1 = V(1)

k+1 at time steps k and k + 1, respectively.

Ck Ck+1

D(0)
k

D(1)
k

D(0)
k+1

D(1)
k+1

D(3)
k+1

(d) After selecting a driving corridor, the forward search removes the setD(4)
k+1

from Ck+1, since it is not reachable from Ck according to GR.

Fig. 3: Identification of driving corridors; we only depict nodes and edges
that are relevant for our example. We explore the driving corridor graph GC
backwards in time to determine a driving corridor. After selecting a driving
corridor, a forward search from time step k = 0 to N is performed to remove
sets D(i)

k ∈ Ck that are no longer reachable.
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the union D̂k−1 of parents for all D(i)
k ∈ V(q)

k from the
reachability graph GR and group them to vertically convex
sets V(j)

k−1 by identifying paths in Ak−1. The exploration of
GC can be terminated as soon as a first driving corridor is
found. If more time is available, the exploration of GC can be
continued to determine alternative driving corridors. It is also
possible to assign weights wj,q to the edges (V(j)

k−1,V
(q)
k ) to

guide the selection of a driving corridor when using informed
search techniques.

At each time step, creating Ak takes O(|Rk|2). A path rep-
resenting a set V(q)

k in Ak can be computed within O(|Rk|+
|Ek|) [79], where |Ek| denotes the number of edges in Ak
that are at most 1

2 |Rk|(|Rk| − 1). Let r = maxk∈I[0:N]
|Rk|

and e = maxk∈I[0:N]
|Ek|. As we consider a time horizon of

length N , the complexity of computing a first driving corridor
is O(N(r + e)) when using depth-first search.

3) Forward Search: Since we partition the predecessor sets
D̂k−1 of a set V(q)

k again into vertically convex sets during the
exploration of GC , it may hold that certain sets D(i)

k ∈ V
(q)
k

are not reachable when selecting a specific driving corridor in
GC . We therefore perform a forward search over the selected
driving corridor: we iterate over all time steps starting from
k = 0 and remove unreachable sets, see Fig. 3d. In the
rare event that the driving corridor Ck becomes disconnected
after the forward search due to approximation errors in the
reachable set computation, we omit the corridor.

V. POLYHEDRAL APPROXIMATION OF THE DRIVING
CORRIDOR COMPLEMENT

Formulating collision avoidance as proj(xk) ∈ Ck is in-
herently difficult since the boundary of Ck is non-smooth
and non-convex (see Fig. 4a). For example, proj(xk) ∈ Ck
can be reformulated using disjunctive inequalities, where sets
D(i)
k ∈ Ck are related by OR statements, i.e., proj(xk) ∈
D(0)
k ∨ proj(xk) ∈ D(1)

k ∨ . . . (see Fig. 4a), and thus, binary
variables are required. As an alternative, an appropriate subset
C̃k ⊂ Ck can be extracted, e.g., an ellipsoid within Ck.
However, most solutions for determining an appropriate set
C̃k require convex obstacles or convex decompositions of
obstacles in the environment see, e.g., [41], [54], [70].

To exploit methods for smooth encodings of proj(xk) ∈
Ck, see [42], [68], we approximate the complement C{k of
the driving corridor Ck with polyhedral keep-out zones (see
Fig. 4d). By limiting the number of polyhedral keep-out zones
to nmax,k, our approach facilitates real-time capability of
optimization-based motion planning. The resulting polyhedral
approximation C̃k of Ck follows as:

Definition 9 (Polyhedral Approximation of Ck). We define the
polyhedral approximation C̃k of Ck as the intersection of the
closures of the complement of all polyhedral keep-out zones
PC(l)k ∈ PCk , |PCk | = nmax,k:

C̃k :=

nmax,k⋂

l=1

cl(R2 \ PC(l)k ).

We say proj(xk) ∈ C̃k is a proper encoding of the col-
lision avoidance constraint proj(xk) ∈ Ck if C̃k ⊆ Ck, i.e.,

D(0)
k

D(1)
k

D(2)
k
D(3)
k
D(4)
k

D(5)
k
D(6)
k

Ck

sη

sζ

(a)

N0 N1 N2 N3 N4 N5 N6

Ck

sη

sζ

(b)
sη

sζ

conv(N (1)) conv(N (2))

false-feasible

(c)

PC(1)k PC(2)k

infeasible

sη

sζ

(d)

Fig. 4: (a) Reformulating proj(xk) ∈ Ck using OR statements, i.e.,
proj(xk) ∈ D(0)

k ∨ proj(xk) ∈ D(1)
k ∨ . . ., requires binary variables. (b)

We reformulate proj(xk) ∈ Ck without binary variables by covering the
complement of the driving corridor with polyhedral keep-out zones. An exact
cover of C{k can be obtained with polyhedra Nj . (c) To limit the number of
polyhedral keep-out zones, we partitionN into subsequencesN (1) andN (2).
By computing the convex hull of the subsequences, we obtain polyhedral
keep-out zones. However, this encoding of proj(xk) ∈ Ck is incorrect, since
all positions in the relative interior of the intersection of adjacent polyhedra
are not excluded from the solution space. (d) To prevent false-feasibles, we
modify conv(N (1)) and conv(N (2)) to obtain PC(1)k and PC(2)k .

proj(xk) ∈ C̃k =⇒ proj(xk) ∈ Ck. Below, we give an
overview of the computation of PCk .

A. Overview

Since the drivable area is computed in the road-aligned
coordinate frame FL, we compute the cover of C{k in the
longitudinal and lateral direction separately. The polyhedra
bounding the driving corridor in the longitudinal direction are
immediately obtained as

PC(nmax,k−1)
k := {(sζ,k, sη,k) ∈ R2 | sζ,k ≥ min

(
projζ(Ck)

)
},

PC(nmax,k)
k := {(sζ,k, sη,k) ∈ R2 | sζ,k ≤ max

(
projζ(Ck)

}
.

An exact cover of C{k in the lateral direction can be obtained
using a sequence N := (N1,N2, . . . ,NM ) of interiorly
disjoint, orthogonal polyhedra Nj (see Fig. 4b); for brevity, we
omit the time-dependency in the notation for N. In most cases,
this leads to the number of polyhedra being different from
nmax,k. We therefore partition N into nmax,k−2 subsequences
N (l) ⊆ N, from which we obtain the remaining polyhedral
keep-out zones in the lateral direction.

From N (l), a polyhedron can be computed using the convex
hull see, e.g., conv(N (1)) and conv(N (2)) in Fig. 4c. Since
we consider the generic formulation of inequality constraints
g(xk, uk, k) ≤ 0 and adjacent polyhedra are interiorly disjoint,
the entire boundary of every conv(N (l)) is considered as
collision-free. However, every point in the relative interior [50,
Sec. 2.1.3] of the intersection of adjacent polyhedra is outside
of Ck (see Fig. 4c). To properly encode proj(xk) ∈ Ck, we
modify adjacent conv(N (l)) so that the resulting polyhedra
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conv(N (1)) conv(N (2))

∆C̃k

Ck

N (1) N (2)

sη

sζ

(a)

box(N (1)) box(N (2))

sη

sζ

(b)

Fig. 5: (a) Approximation error ∆C̃k . (b) We estimate the value of ∆C̃k by
replacing the computation of conv(N (l)) with box(N (l)).

PC(l)k overlap without further reducing the solution space
compared to the union of conv(N (l)) (see Fig. 4d). We
have found empirically that the proposed approach facilitates
convergence. Below, we discuss the partitioning of N into
nmax,k−2 subsequences, followed by explaining the algorithm
to obtain the polyhedra PC(l)k , l ∈ I[1:nmax,k−2], for the lateral
boundary.

B. Partitioning

We wish to partition the sequence N into nmax,k−2 disjoint
subsequences N (l) ⊆ N such that the approximation error
∆C̃k, i.e, the loss of solution space of C̃k compared to Ck, is
reduced (see Fig. 5a):

∆C̃k :=

nmax,k−2∑

l=1

area
(

conv(N (l)) \ N (l)
)
. (5)

Minimizing (5) leads to a combinatorial optimization prob-
lem that can become difficult to solve with increasing cardi-
nality of N. For computational efficiency, we propose several
simplifications:

1) We use a greedy algorithm that recursively partitions N
into subsequences N (l).

2) We replace the costly computation of the convex hull in
(5) with the computation of the minimum bounding box
box(N (l)) (see Fig. 5b).

3) At each recursion, we continue partitioning the sequence
N (l) that reduces ∆C̃k the most. If this partition is
inadmissible because too many new subsequences would
have to be created, i.e., the overall number of sequences
exceeds nmax,k−2, we always consider the next best one.

4) For each sequence N (l), we consider only some of its
possible partitions to evaluate the best partition. The
heuristic used is described in Appendix A. This heuristic
can be changed and is not the main focus of this paper.

Our algorithm can be extended to ensure the connectivity of
C̃k after computing the polyhedra from N (l), l ∈ I[1:nmax,k−2]:
a partition is only admissible if box(N (l))

o
is pairwise disjoint

for all N (j), j 6= l, which can be efficiently validated.

C. Computation of the Polyhedra for the Lateral Direction

After determining the subsequences N (l) as described
above, we compute their corresponding polyhedral keep-
out zones PC(l)k . Let us therefore introduce the polyhedron

P̃(l)
k ⊇ conv(N (l)) that is obtained by removing both halfs-

paces defining the vertical edges of conv(N (l)), e.g., compare
conv(N (2)) in Fig. 4c with P̃(2)

k in Fig. 6a. By intersecting
P̃(l)
k with halfspaces H≤,←(a1,b1) and H≤,→(a2,b2) that bound P̃(l)

k

in forward and backward driving direction, respectively, we
obtain PC(l)k :

PC(l)k = P̃(l)
k ∩H

≤,←
(a1,b1) ∩H

≤,→
(a2,b2). (6)

To ensure a proper encoding of proj(xk) ∈ Ck as discussed
in Sec. V-A, the halfspaces are created such that (a) PC(l)k ⊇
conv(N (l)) and (b) the relative interior of the intersection of
adjacent conv(N (l)) is excluded from the solution space (see
Fig. 4c and Fig. 4d). Additionally, we choose the halfspaces
so that (c) the solution space is not further reduced compared
to the union of conv(N (l)) (see Fig. 4c and Fig. 4d).

1) Algorithm: To obtain the halfspace H≤,←(a1,b1) limiting

P̃(l)
k in backward driving direction, we apply the following

approach (the computation of H≤,→(a2,b2) works analogously, see
Fig. 6c and Fig. 6d): we initialize H≤,←(a1,b1) as R2 and determine
the set E← that contains the vertices of all conv(N (j)),
j 6= l, that are encountered when traversing along ∂Ck in
backward driving direction starting from N (l) (see Fig. 6a).
To satisfy the conditions (a) and (c), we search for a halfs-
pace H≤,←(a1,b1), where the corresponding hyperplane H=

(a1,b1)

separates conv(N (l)) and E←. The first support point of
H=

(a1,b1) is chosen as the most backward vertex of conv(N (l)).
The second support point is selected from E←. To this end,
we iterate over the vertices y ∈ E←: if y is contained
in P̃(l)

k ∩ H
≤,←
(a1,b1), indicating an additional reduction of the

solution space (see the left-most vertex in Fig. 6a), we update
H≤,←(a1,b1) with y as the second support point of H=

(a1,b1). As

P̃(2)
k

removed
halfspace
E←

sη

sζ

(a)

PC(2)k

E←

a1

H=
(a1,b1)

sη

sζ

(b)

P̃(1)
k

removed
halfspace E→

sη

sζ

(c)

PC(1)k

E→
a2

H=
(a2,b2)

sη

sζ

(d)

Fig. 6: Computation of the lateral polyhedra PC(1)k and PC(2)k : (a), (c)
removal of the halfspaces defining the vertical edges of conv(N (2)) and
conv(N (1)) to obtain P̃(2)

k and P̃(1)
k , respectively. (b) P̃(2)

k is intersected
with H≤,←

(a1,b1)
yielding PC(2)k , where H=

(a1,b1)
separates PC(2)k from E←

(backward direction). (d) PC(1)k is obtained by intersecting P̃(1)
k with

H≤,→
(a2,b2)

, where H=
(a2,b2)

separates PC(1)k from E→ (forward direction).
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an example, compare P̃(2)
k in Fig. 6a with the polyhedron

PC(2)
k in Fig. 6b. To speed up the computations, it suffices to

consider only the most backward and most forward vertex of
each conv(N (j)) due to convexity.

Let us now consider the adjacent polyhedra PC(1)
k and PC(2)

k

in Fig. 4d. Computing H≤,←(a1,b1) in the case of PC(2)
k , yields a

halfspace with non-vertical hyperplane H=
(a1,b1) (see Fig. 6b).

When computing the halfspace H≤,→(a2,b2) in the case of P̃(1)
k ,

the corresponding hyperplane H=
(a2,b2) is vertical (see Fig. 6c

and Fig. 6d). Thus, all positions in the relative interior of
the intersection of conv(N (1)) and conv(N (2)) are excluded
from the solution space, i.e., condition (c) is satisfied. Since
Ck is connected and vertically convex (see Def. 6), the same
situation occurs for every pair of adjacent conv(N (l)), and
therefore, the polyhedral approximation C̃k of Ck ensures a
proper encoding of proj(xk) ∈ Ck.

2) Complexity: The complexity of the computation of PC(l)k

is dominated by the computation of the convex hull of N (l):
Since any Nj has two vertices, the number of vertices of any
N (l) is bounded by 2|N|. Thus, the complexity of computing
the convex hull with respect to |N| is O(|N| log(|N|)) [80]. If
the vertices of N (l) are stored in a list, removing the vertical
edges takes O(|N|). Computing H≤,←(a1,b1) and H≤,→(a2,b2) has
complexityO(|N|), since at most 2|N| dot and vector products
in R2 have to be evaluated. Computing the polyhedron PC(l)k

in halfspace representation can be done in O(|N|) if the list
of vertices of PC(l)k is ordered. Thus, the overall complexity
of the approach is O((nmax,k − 2)|N| log(|N|)).

VI. INTEGRATION INTO MOTION PLANNING ALGORITHMS

Our approach can be integrated into a wide range of
optimization-based motion planning algorithms, which is dis-
cussed next.

A. Duality-Based Reformulation
A state is collision-free if the signed distance with respect

to every polyhedral keep-out zone is non-negative. However,
non-convexity and non-differentiability of the signed-distance
function prevent these constraints from being directly en-
forced [42]. To tackle this problem, Zhang et al. [42] propose
a non-conservative and smooth reformulation of collision
avoidance constraints for convex keep-out zones based on
strong duality of convex optimization. Their results also enable
one to find least-intrusive solutions in the case that a collision
cannot be avoided. Below, we summarize the main results of
[42], which allow us to integrate the collision avoidance con-
straints from driving corridors into arbitrary motion planning
algorithms that rely on gradient- and Hessian-based solvers.

Consider a polyhedral keep-out zone PC(l)k = {y | y =

proj(x), A
(l)
k y− b

(l)
k ≤ 0} with matrix A(l)

k and vector b(l)k of
appropriate dimension. Using the results from [42], we encode
the collision avoidance constraint proj(xk) /∈

(
PC(l)k

)o

as

(A
(l)
k proj(xk)− b(l)k )Tλ

(l)
k ≥ −ν

(l)
k (7a)

‖(A(l)
k )Tλ

(l)
k ‖2 = 1, (7b)

ν
(l)
k ≥ 0, λ

(l)
k ≥ 0, (7c)

where the slack variable ν(l)
k ∈ R measures the penetration of

PC(l)k , and λ(l)
k is the dual variable associated with the original

constraint. The inequalities in (7c) apply element-wise. Since
we aim to find least-intrusive solutions, the optimization prob-
lem (2) is rewritten as a soft-constrained problem by encoding
the constraint (2d) using (7) and penalizing the penetration of
all polyhedral keep-out zones, i.e.,

min
u(·)

N∑

k=0

J(xk, uk) + κ

N∑

k=1

nmax,k∑

l=1

ν
(l)
k . (8)

If the penalty weight κ ∈ R+ is chosen sufficiently large, a
collision-free solution can be found if one exists [42], [81].

B. Convexification of Collision Avoidance Constraints

Since the collision-avoidance constraint proj(xk) ∈ C̃k is
usually non-convex due to the equality constraint (7b), we
sketch a convexification procedure that is based on geometrical
insight into (7). We project proj(xk) onto each face of PC(l)k

separately and select the closest face. Subsequently, we deter-
mine a corresponding λ(l)

k that solves the constraints (7). Any
such λ(l)

k provides a supporting hyperplane H=

(n
(l)
k ,d

(l)
k )

, where

n
(l)
k = (A

(l)
k )Tλ

(l)
k and d

(l)
k = (λ

(l)
k )T b

(l)
k , at the associated

polyhedron PC(l)k [42] [50, Sec. 8.1]. Thus, we obtain the
convexified set of collision-free positions Pεk as

Pεk :=
⋂

PC(l)k ∈PCk

H≥
(n

(l)
k ,d

(l)
k )
. (9)

To obtain a λ(l)
k solving (7), we distinguish the following three

cases:

C1) proj(xk) /∈ PC(l)k : thus, we set ν(l)
k = 0 and solve the

convex optimization problem y∗ = arg min
y∈PC(l)k

‖y−
proj(xk)‖22, see [50, Sec. 8.1]. The supporting hyper-
plane at PC(l)k in y∗ with normal vector in the direction
of proj(xk)− y∗ implicitly defines a feasible λ(l)

k .
C2) proj(xk) ∈ ∂PC(l)k : thus, we set ν(l)

k = 0. If proj(xk)

is not a vertex of PC(l)k , λ(l)
k follows as the canonical

basis vector that extracts the corresponding hyperplane
from A

(l)
k , b(l)k . If proj(xk) is a vertex of PC(l)k , λ(l)

k

is chosen so that n(l)
k is contained in the normal cone

at PC(l)k in proj(xk). Moreover, the chosen λ(l)
k has to

satisfy (7b) and (7c).
C3) proj(xk) ∈ (PC(l)k )

o
: due to convexity of PC(l)k ,

proj(xk) is not projected onto a vertex of PC(l)k . Thus,
λ

(l)
k is chosen as a canonical basis vector as in the first

case of C2.

Note that the ambiguous cases in C2 and C3 do not admit a
unique choice of λ(l)

k and, therefore, H≥
(n

(l)
k ,d

(l)
k )

. This might

be resolved by comparing n
(l)
k with the gradient of the cost

function as for instance in [47, Sec. 3.3]. Since Pεk is con-
structed from separating hyperplanes, see (9), it follows that
proj(xk) ∈ Pεk ⊆ C̃k if proj(xk) ∈ C̃k. While Pεk 6= ∅ holds
if proj(xk) ∈ C̃k, Pεk might be empty for proj(xk) /∈ C̃k.
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VII. NUMERICAL RESULTS

In Sec. VII-B, we demonstrate that our approach extracts
driving corridors that represent semantically meaningful ma-
neuver variants leading to a given goal region for the au-
tomated vehicle. In Sec. VII-C and VII-D, we embed our
approach into two state-of-the-art motion planning algorithms.
The results in Sec. VII-C show how our approach can enhance
state-of-the-art planning algorithms so that local minima as
in Fig. 2 are avoided. By applying our method to different
scenarios from CommonRoad1 [82] in Sec. VII-D, we demon-
strate its applicability to arbitrary traffic scenarios and how
the driving corridors can facilitate the search for a suitable
initial guess. In Sec. VII-E we analyze the computation
times of our approach, followed by a discussion on motion
safety in Sec. VII-F. Since we have already shown that the
computational effort of our approach typically improves with
the criticality of the situation in our previous work [63], we
focus on the new benefits of our approach in the evaluation.

A. Implementation Details

All computations were conducted on a laptop equipped with
an Intel Core i7-10750H and 16 GB of memory. Our scenarios
are modeled with the CommonRoad library. We consider a
planning horizon of 5 s with ∆t = 0.1 s unless otherwise
stated. Further implementation details are given below.

1) Driving Corridor Identification: Our first strategy for
driving corridor identification referred to as DC1 demonstrates
the real-time capability of our approach. Starting from the
largest goal set V(∗)

N , we explore the corridor graph GC using
a depth-first search and terminate exploration once the node
at time step k = 0 is reached. To obtain a driving corridor
with nonrestrictive collision avoidance constraints, we select
the largest V(∗)

k ∈ Ak at each time step for exploration.
Our second strategy referred to as DC2 demonstrates the

ability of our approach to explore complex scenarios in an
anytime fashion and is employed if not otherwise stated. Strat-
egy DC2 explores GC starting from every V(q)

N and terminates
as soon as at least nC driving corridors for each V(q)

N are
identified. Throughout this section, we set nC = 10. We first
explore the largest V(∗)

k ∈ Ak. All remaining V(q)
k ∈ Ak

are sorted by their dissimilarity with respect to V(∗)
k (i.e., we

compare their sets D(i)
k ) and their size. This sorting strategy

favors exploring different maneuver variants that reach the
same goal region.

In case of DC2, we add weights to the edges of GC where the
weight for an edge (V(j)

k−1,V
(q)
k ) is chosen as wj,q = 1

area(V(q)
k )

.

For each goal set V(q)
N , we determine the driving corridor C∗

with the greatest cumulative area and an alternative driving
corridor that should preferably represent a different tactical
maneuver, e.g., overtaking an obstacle to the right side instead
of overtaking to the left side. Therefore, we sufficiently
increase the weights of the edges from C∗ (thus, it is costly to
select those edges again), and subsequently repeat the search
for the driving corridor with the greatest cumulative area.

1https://commonroad.in.tum.de/

2) Polyhedral Approximation: For the experiments, we use
the following number of polyhedra nmax,k: if k ≤ 10,
nmax,k = 4; if 11 ≤ k ≤ 15, nmax,k = 5; if 16 ≤ k ≤ 20,
nmax,k = 6; if 21 ≤ k ≤ 32, nmax,k = 7; else nmax,k = 8.

3) Trajectory Optimization: The trajectory optimization
problems are modeled with CVXPY-codegen [83], which
is based on the CVXPY modeling language [84], using
ECOS [51] as the backend solver. For the evaluation, we
approximate the occupancy of the automated vehicle as a
disc. The vehicle dynamics are modeled similarly to the
kinematic bicycle model in [85], but we use jerk instead of
the longitudinal acceleration as input. The vehicle parameters
are taken from the CommonRoad library (vehicle ID: 2).

We use a weighted combination of the cost functions
proposed by CommonRoad [82] for trajectory planning:

J = wLCJLC + wV JV + wOJO + wAJA + wu(JJ + JSR),

where the (lateral) position tracking error in JLC refers to
the center of a given target lane. The desired velocity vdes

for the partial cost JV is extracted from the goal states
of the CommonRoad scenarios and set to a constant value.
The desired orientations for the partial cost function JO are
obtained by propagating the initial longitudinal position of the
automated vehicle along the center of the given target lane
using the desired velocity vdes.

For successive convexification procedures, we limit the
maximum number of iterations by 50; if no collision-free
solution can be found in time that satisfies the convergence
criteria, it is considered to be infeasible.

B. Driving Corridor Computation

We consider the scenario in Fig. 7a featuring a two-lane
road with a static and a dynamic obstacle to determine driving
corridors. The dynamic obstacle travels at a constant velocity
of 17 m/s. The goal for the automated vehicle is to return to its
initial lane after 5 s. We therefore intersect the drivable area
of the automated vehicle at the final time step with the goal
region.

Fig. 7 shows the results where the driving corridors are
depicted as white boxes and the occupancies of the obstacles
as gray boxes stacked over time. In this scenario, three
semantically different maneuvers are found that lead to the
desired goal region of the automated vehicle: (a) waiting until
the dynamic obstacle has passed, and then, overtaking the
static obstacle (see Fig. 7a); (b) staying behind the static
obstacle (see Fig. 7b); and (c) passing the static obstacle before
the dynamic obstacle (see Fig. 7c).

C. Augmenting Motion Planning Algorithms

In this section, we augment two state-of-the-art trajectory
optimization algorithms with our proposed method. In the first
experiment, we demonstrate that our method eliminates local
minima occuring in optimization-based trajectory planning as
illustrated in Fig. 2. The second experiment shows that our
method facilitates the generalization of trajectory planners to
on-road traffic situations.
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driving corridor

static obstacle

dynamic obstacle
sηsζ

tk

(a) Waiting until the dynamic obstacle has passed,
and then, overtaking the static obstacle.

(b) Staying behind the static obstacle. (c) Passing the static obstacle before the dynamic
obstacle.

Fig. 7: Driving corridors corresponding to three semantically different maneuvers. The slice of the drivable area at the top is intersected with the goal region.

1) Elimination of Local Minima: We use the customized
SQP algorithm proposed by [5] for our first experiment. At the
beginning of each iteration of the successive convexification
procedure in [5], the vehicle model is simulated using the input
trajectory of the solution of the previous iteration (or the initial
guess). The nonlinear trajectory optimization problem is then
linearized around the forward-simulated trajectory to ensure
dynamic feasibility of the solution.

The approach in [5] requires the passing sides of obstacles
as input so that collision avoidance constraints can be repre-
sented as admissible intervals of lateral deviations eη,k from
a reference path:

eη,k(ŝζ,k) ≤ eη,k ≤ eη,k(ŝζ,k), (10)

where ŝζ,k denotes the longitudinal position of the forward-
simulated trajectory. In simple scenarios one may argue that
passing sides can be easily determined without driving cor-
ridors. However, the collision avoidance constraints in [5]
are typically discontinuous with respect to the longitudinal
position of the vehicle. For comparison, we therefore re-
place the original method for determining collision avoidance
constraints with our proposed method that identifies driving
corridors to obtain collision avoidance constraints, as shown in
Sec. VI-B. We use the simple traffic scenario of the previous
subsection and gradually raise the velocity of the dynamic
obstacle starting from 10 m/s to 20 m/s in steps of 1 m/s. For
the original version of the algorithm in [5], we specify that
the static obstacle must be passed on the left side and the
dynamic obstacle on the right side. As an initial guess, we set
all control inputs of the vehicle model to zero and simulate
the dynamics forward in time.

For velocities of 10 m/s to 15 m/s of the dynamic obstacle,
the customized SQP algorithm in [5] can find a collision-
free trajectory. However, the method fails if the velocity of
the dynamic obstacle is between 16 m/s to 20 m/s because the
algorithm gets stuck in infeasible local minima. Fig. 8 shows
the initial set of position constraints for the customized SQP
algorithm as well as the set at convergence if the velocity
of the dynamic obstacle is set to 17 m/s. The empty set of

time step k

s
η

in
m

constraints sη,k

(a) Constraints and lateral trajectory at the first iteration

time step k

s
η

in
m

(b) Constraints and lateral trajectory at convergence

Fig. 8: Lateral position constraints used in the algorithm in [5]. Even though
the initial guess in Fig. 8a seems to admit a collision-free trajectory, the
algorithm converges to an infeasible local minimum shown in Fig. 8b.

constraints for sη in Fig. 8b indicates infeasibility.
In contrast to the original algorithm, the combination of the

customized SQP algorithm with our computation of solution
spaces provides a feasible trajectory for every identified driv-
ing corridor in each instance of the scenario. Fig. 9 provides
a comparison of the results when the velocity of the dynamic
obstacle is set to 17 m/s. The trajectories that are obtained with
our proposed method are depicted by the solid black lines
in Fig. 9; the corresponding driving corridors are depicted in
Fig. 7. Any of these found trajectories are feasible solutions
of the nonlinear motion planning problem. The solution of the
customized SQP algorithm in [5] is depicted by the dashed
black line in Fig. 9; the infeasibility of the converged solution
which was already indicated in Fig. 8b can be observed in
Fig. 9b. In contrast, augmenting the algorithm from [5] with
our approach yields collision-free trajectories as local minima
induced by obstacles are eliminated.

2) Generalization to Traffic Scenarios: To show that our
method facilitates the generalization of trajectory planners to
on-road traffic situations, we combine the zeroth order hold
discretization scheme [86] with the successive convexifica-
tion algorithm proposed in [62] that was initially developed
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automated vehicle static obstacle

dynamic obstacle
sη

sζ

(a) Scenario at time step k = 0

trajectory [5] [5] + driving corridors Ck overlapping Ck

(b) Trajectories at time step k = 25

(c) Trajectories at time step k = 39

Fig. 9: Comparison of the results using the customized SQP algorithm from [5] and the combination of the algorithm with our dynamics-aware solution
spaces. The circles depict the occupancy of the automated vehicle at the current time step. In Fig. 9b, it can be observed that the algorithm from [5] does
not find a collision-free solution, see the dashed line. In contrast, augmenting the algorithm with our approach yields a feasible solution for the three distinct
maneuvers shown in Fig. 7. The regions where the driving corridors corresponding to Fig. 7a and Fig. 7b overlap are indicated by the striped white boxes.

for powered descent guidance for extraterrestrial spaceflight.
Instead of simulating the vehicle dynamics forward for lin-
earization as in our previous experiment, [62] linearizes the
nonlinear trajectory planning problem directly around the
solution computed in the previous iteration of the successive
convexification procedure. The resulting error in the vehicle
dynamics constraint (2c) can be handled using slack variables
which are referred to as virtual control inputs in [62].

Using a traffic scenario featuring a roundabout (see Fig. 10),
we demonstrate that our method enables the application of the
algorithm in [62] to traffic scenarios. The automated vehicle
aims to enter the roundabout and take the second exit. There is
an oncoming vehicle in the roundabout that must be taken into
account. Since this maneuver requires longer time horizons
so that the automated vehicle is able to reach the second
exit, we use a planning horizon of 7 s. Our approach finds
a trajectory for the automated vehicle both for the entry into
the roundabout before and after the oncoming vehicle (see
Fig. 10). In Sec. VII-D, we increase the difficulty of the
planning problems and apply the planner to complex traffic
scenarios with multiple obstacles and lanes.

D. Applicability in Arbitrary Traffic Scenarios

Planning schemes for autonomous driving that iteratively
linearize the vehicle model, such as [5], [12], usually rely on
the previously computed solution as an initial guess, similar
to model predictive control. In general, this initial guess is
only close to the solution if the same maneuver is followed.
However, if new maneuvers are initiated, implying a change
to another driving corridor, the previously computed solution
may be insufficient as an initial guess.

In this section, we demonstrate that driving corridors facil-
itate the initialization of trajectory planning methods and that
our approach can be applied in arbitrary traffic scenarios with
multiple obstacles. We therefore introduce different strategies
for generating an initial guess for the optimization problems
and compare their performance on 30 highway scenarios based
on the NGSIM dataset from the CommonRoad library [82] that

Ck

dynamic obstacle

automated vehicle

(a) Driving corridors and trajectories at time step k = 21

(b) Driving corridors and trajectories at time step k = 47

(c) Driving corridors and trajectories at time step k = N = 70

Fig. 10: Roundabout scenario: (a), (b) our approach identifies a driving
corridor for the entry before and after the obstacle in the roundabout. (c)
the automated vehicle reaches the second exit using either driving corridor.

have five or six lanes and up to 57 obstacles (see Appendix B
for the identifiers of the scenarios). After introducing different
initialization strategies and the problem setup, we present the
results of our experiments in Sec. VII-D3.
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1) Initialization Strategies: We introduce the solution-
space-guided initialization that works as follows: first, the
goal state is projected onto the driving corridor CN at the
terminal time step. Afterwards, we linearly interpolate between
the projected goal state and the initial state of the automated
vehicle. The collision avoidance constraints are convexified at
each time step k ∈ I[1:N ] using the procedure in Sec. VI-B
and we solve N convex optimization problems of the form
y∗k = arg minyk ‖yk−proj(xk)‖22, s.t. yk ∈ Pεk. The solutions
y∗k serve as our initial guess.

For comparison, we consider the following initialization
strategies:
• Simulate: the vehicle dynamics are simulated forward in

time assuming that all control inputs are zero.
• Initial Lane: we translate the initial state along the cen-

terline of the initial lane according to the desired velocity
vdes provided by the planning problem.

• Interpolate: we linearly interpolate between the initial
state and the goal state, e.g., as in [60], [62].

2) Problem Setup: Since the considered initialization
schemes except simulate generally do not provide a dynami-
cally feasible initial guess, the motion planning algorithm of
[5] introduced in Sec. VII-C1 cannot be applied. We therefore
use the combination of [62], [86] with our approach as in
Sec. VII-C2 and exploit the virtual control inputs that handle
infeasible initializations. The goal state for the initialization
schemes solution-space-guided initialization and interpolate
are obtained by propagating the initial longitudinal position
of the automated vehicle along the center of the target lane
using the desired velocity vdes. To assess the robustness of the
initialization schemes with respect to parameter variations, we
choose the mean, lower, and upper bound from the uncertain
goal states of the CommonRoad scenarios as desired velocities.

3) Evaluation: Using our method, we obtain 138 driving
corridors for all traffic scenarios, in which we plan trajectories
for each desired velocity vdes, i.e., we obtain 414 combinations
of driving corridors and desired velocities. Tab. I summarizes
the results, which we discuss below.

In total, we are able to find a feasible trajectory in each
scenario for every initialization strategy. We further analyze
the success rates of the initialization strategies with regard to
all combinations of driving corridors and desired velocities
(see the third column in Tab. I), i.e., the success rate is
100% if for each combination of driving corridors and desired
velocities a solution is found. It can be seen that the solution-
space-guided initialization solves more instances of the motion
planning problem than any other scheme, as shown in Tab. I,
and the success rate is increased by 6% compared to the
simulate initialization strategy. Furthermore, in cases where the
initial guess leads to a feasible solution, the number of convex
programming iterations until convergence can be reduced by
an average of almost 20% with the solution-space-guided
initialization compared to simulate. Some combinations of
driving corridors and desired velocities were infeasible due
to (a) non-connectivity of the approximated driving corridor,
which might yield an initial guess that switches between
connected components, and (b) non-drivability of the driving
corridor with regard to the high-fidelity vehicle model used

for motion planning. Therefore, a possible direction for future
research is the assessment of the drivability of the driving
corridors prior to trajectory planning.

The desired velocity vdes affects the cost function J for the
trajectory optimization and the initialization schemes solution-
space-guided initialization, interpolate, and initial lane. We
therefore analyze for each driving corridor the standard devia-
tion in the required number of convex programming iterations
resulting from variations in the desired velocity. Tab. I shows
the standard deviations averaged over all scenarios for each
initialization scheme. The average standard deviation using
the solution-space-guided initialization is close to the case of
simulate where the reference velocity only affects the cost
function. In contrast, interpolate and initial lane exhibit much
larger variations in the number of iterations when changing
the desired velocity. Moreover, if interpolate or initial lane is
used for initialization, it is more likely that a variation of the
desired velocity will render the optimization task infeasible, as
shown in the last column of Tab. I, which lists the number of
driving corridors where a feasible solution could not be found
for all desired velocities.

E. Computation Times

We analyze the runtime behavior of our approach in depen-
dence of the number of obstacles in the scenarios. Fig. 11
shows boxplots of the resulting computation times for the
reachable set computation, the driving corridor identification,
and the computation of the polyhedral approximation, which
we repeated 100 times to obtain a statistically profound exam-
ple. The results shown in Fig. 11 indicate that our approach
scales favorably with the number of obstacles as the median
computation times vary only slightly; therefore, our method is
suited to be employed in cluttered environments.

One iteration of the trajectory planning problem, i.e., con-
vexifying the non-convex trajectory optimization problem (2)
and solving the convexified optimization problem, requires
56 ms on average. Considering the average number of iter-
ations given in Tab. I, the solution-space-guided initialization
reduces the average computation time for motion planning to
347 ms compared to 426 ms for simulate. In conclusion, the
solution-space-guided initialization provides an improvement
in terms of the overall computational effort and increases
robustness with respect to parameter variations only at a
slightly increased effort to provide the initial guess.

F. Discussion on Motion Safety

To ensure motion safety, the automated vehicle must reason
over an infinite time horizon (or at least until a set of safe goal
states is reached) while considering its own dynamics and the
future motion of other traffic participants according to [87].
Driving corridors can be restricted to end in a set of safe goal
states to ensure persistent feasibility. The missing ingredients
to ensure safety are (a) that the full-dimensional vehicle shape
is considered for trajectory planning, (b) that the provided
predictions must be conservative (i.e., guaranteed to include
the real future behavior of other road users), and (c) robustness
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(d) Polyhedral approximation for a single corridor

Fig. 11: Boxplots showing the runtime of our approach with respect to the
number of obstacles in the scenarios listed in Appendix B. We clustered the
scenarios with respect to the number of obstacles and repeated the computation
of reachable sets, the identification of driving corridors, and the polyhedral
approximation 100 times in each scenario.

with respect to disturbances and model uncertainties. Below,
we will further discuss points (a) to (c).

In our earlier work in [63], a mathematically rigorous model
for collision avoidance of the full-size vehicle in the special
setup of decoupled longitudinal and lateral motion planning is
given. Difficulties in generalizing the consideration of full-size
vehicles arise from the fact that our approach is formulated in
a road-aligned coordinate system and the assumption that the
vehicle is oriented along the reference path when computing
the reachable set (see Sec. III). The extension of our approach

N0 N1 N2 N3 N4 N5

box((N1,N2,N3))

Ck
sη

sζ

(a) Largest sequence (N1,N2,N3)
for N1.

N0 N1 N2 N3 N4 N5

box((N1, . . . ,N4))

Ck
sη

sζ

(b) Largest sequence (N1, . . . ,N4)
for N4.

Fig. 12: Visualization of the largest sequence N (i) for a node Nj such that
Nj limits the lateral extent of box(N (i)) towards the interior of the driving
corridor Ck .

to formally correct collision-avoidance constraints for full-size
vehicles in the road-aligned coordinate system is subject of
future research.

Regarding (b) and (c), we suggest to integrate our approach
in the online verification framework proposed in our previ-
ous works [88]–[90] to guarantee legal safety of automated
vehicles and drivability of motions despite disturbances and
model uncertainties. Moreover, as shown in [91], [92], our
method can be extended to cooperative driving with explicit
communication between groups of automated vehicles, which
offers the possibility of further enhancing road safety due to
reduced uncertainties regarding the intentions of others.

VIII. CONCLUSIONS

This paper provides a generalization of our previous results
on combining set-based reachability analysis with optimal con-
trol by enabling the usage of vehicle models that jointly con-
sider the longitudinal and lateral dynamics. Moreover, our ap-
proach can be combined with arbitrary existing optimization-
based algorithms that rely on gradient- or Hessian-based
solvers. Our results demonstrate that the proposed approach
can identify different driving maneuvers in arbitrary traffic
scenarios. Thereby, feasible solutions can be found in traffic
scenarios that are not solvable using state-of-the-art planning
algorithms. Apart from avoiding infeasible local minima, our
method facilitates the generation of initial guesses for the
trajectory planning problem such that the computational effort
is reduced while increasing the robustness of the algorithms.

APPENDIX A
HEURISTIC FOR PARTITIONING

Considering all possible partitions of a sequence N (l) ⊆ N
into subsequences can lead to a large computational over-
head. Even if we only consider partitions of N (l) into two

TABLE I: Comparison of Initialization Schemes

Initialization strategy Solutions Success
rate

Average
# iterations

Avg. STD # iterations
due to change of vdes

# Corridors that are not
feasible for all vdes

solution-space-guided 345 83% 6.2 0.55 2
interpolate 335 81% 8.6 1.44 11
simulate 317 77% 7.6 0.34 1
initial lane 326 79% 8.7 1.39 14
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Fig. 13: (a) Any partition of N into two subsequences N (0) and N (1)

cannot reduce ∆C̃k when using box(N (l)) instead of conv(N (l)) in (5).
(b) Partitioning N into three subsequences, e.g., (N0), (N1, . . . ,N4), and
(N5), resolves this issue.

or three subsequences, we must already evaluate (|N (l)| −
1) + (|N (l)|−2)(|N (l)|−1)

2 possible partitions. Under this re-
striction, computing the partitions in the scenarios listed in
Appendix B and using the number of polyhedra nmax,k given
in Sec. VII-A2 required 63 ms on average and at most 248 ms.

We subsequently propose a heuristic that selects only |N (l)|
possible partitions of N (l) for evaluation. These can be pre-
computed in O(|N (l)|2), whereas storing and updating after
each partitioning takes O(|N (l)|). The mean and maximum
computation times decrease to less than 10 ms and 15 ms,
respectively, in the scenarios listed in Appendix B. Compared
to considering all possible combinations for partitions into two
or three subsequences, our proposed heuristic yielded the same
or even better results in terms of ∆C̃k in 84 % of the cases.

Let us introduce the approximation error of a set N ′ of
sequences N (j) as

∆(N ′) :=
∑

N (j)∈N ′
area

(
box(N (j)) \ N (j)

)
. (11)

Without loss of generality, we assume that N (l) =
(N0, . . . ,Nn). For each Nj ∈ N (l), we determine the
largest subsequence N (i) = (Ns, . . . ,Nj , . . . ,Ne), 0 ≤
s ≤ j ≤ e ≤ n, such that Nj limits the lateral extent
of box(N (i)) towards the interior of the driving corridor
Ck, as shown in Fig. 12. The resulting partition is N ′ =
{(N0, . . . ,Ns−1), (Ns, . . . ,Ne), (Ne+1, . . . ,Nn)}. Following
the reasoning in [93], we consider N ′ if the relative improve-
ment of the approximation error is above a threshold ε:

∆({N (l)})−∆(N ′)
area(box(clip(N (l))))

≥ ε, (12)

where clip(·) clips all Nj ∈ N (l) so that
area(clip(box(N (l)))) ∈ R+ has a finite value. Using
this heuristic, we can consider partitions of N (l) into two
or three subsequences. Note that we consider partitions into
three subsequences, since it is possible that no partition into
two subsequences can reduce the approximation error due to
the replacement of the convex hull in (5) with the minimum
bounding box (see Fig. 13).

APPENDIX B
SELECTED SCENARIOS FOR EVALUATION IN SEC. VII-D

The scenarios are USA US101-1 1 T-1, USA US101-
* 3 T-1 for ∗ ∈ {5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26},
USA US101-* 4 T-1 for ∗ ∈ {4, 6, 15, 17, 26, 28},
USA US101-* 5 T-1 for ∗ ∈ {7, 9, 10, 11, 12, 27}, and
USA US101-* 6 T-1 for ∗ ∈ {2, 3, 8, 13, 14}.
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[15] B. Gutjahr, L. Gröll, and M. Werling, “Lateral vehicle trajectory opti-
mization using constrained linear time-varying MPC,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1586–
1595, 2017.

[16] C. Pek and M. Althoff, “Computationally efficient fail-safe trajectory
planning for self-driving vehicles using convex optimization,” in Proc.
of the IEEE Intelligent Transportation Systems Conference, 2018, pp.
1447–1454.
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[74] S. Söntges and M. Althoff, “Computing the drivable area of autonomous
road vehicles in dynamic road scenes,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 6, pp. 1855–1866, 2018.

[75] W. Lipski and F. P. Preparata, “Finding the contour of a union of iso-
oriented rectangles,” Journal of Algorithms, vol. 1, no. 3, pp. 235–246,
1980.

[76] H. T. Croft, K. Falconer, and R. K. Guy, Unsolved Problems in
Geometry: Unsolved Problems in Intuitive Mathematics, 1st ed., ser.
Unsolved Problems in Intuitive Mathematics. Springer-Verlag New
York, 1991, vol. 2.

[77] E. Fink and D. Wood, “Generalized halfspaces in restricted-orientation
convexity,” Journal of Geometry, vol. 62, pp. 99–120, 1998.
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Abstract—We address the problem of cooperative conflict
resolution for multi-vehicle motion planning in mixed-traffic
scenarios, where automated and manually-driven vehicles co-
exist. We propose a novel solution based on reachability analysis,
which provides the drivable area of each collaborative traffic
participant. Overlapping drivable areas are redistributed so that
each traffic participant receives an individual area for motion
planning. We do not stipulate a specific method for predicting
the future motion of non-communicating traffic participants.
Furthermore, uncertainties in the initial states of the cooperative
vehicles, e.g. due to sensor noise, can be easily integrated. A
byproduct of our approach is that collaborative groups can be
automatically found by identifying conflicting drivable areas; if
no conflict exists, collaboration becomes unnecessary. We demon-
strate the redistribution of drivable areas with two numerical
examples.

I. INTRODUCTION

Collaborative motion planning of various automated road
vehicles is clearly superior in terms of achievable safety and
comfort compared to computing individual motion plans. This
is because individual motion planning is a special case of
collaborative planning when vehicles are not communicating.
Many promising approaches for multi-vehicle motion planning
have been developed; however, dealing with mixed-traffic
situations and uncertainty is still an open research topic. We
propose a unified approach for cooperative conflict resolution
based on the computation of drivable areas where automated
and manually-driven vehicles share the road. We first review
literature concerning specific applications like intersection
management and merging; after, we discuss priority-based,
market-based, and reservation-based approaches.

Much work on cooperative motion planning has been de-
voted to road intersections, since these are hotspots for traffic
accidents. Collision avoidance at intersections using V2V-
communication for cooperation is investigated in [1] under the
consideration of model uncertainty and communication delays.
Colombo et al. [2] solve scheduling problems to ensure safety
during intersection passages.

Another line of research is the design of cooperative lane-
changing and merging strategies. In [3], it is discussed how
V2V-communication can be utilized for cooperative decision
making: a distributed receding horizon control framework is
set up to solve tasks of platooning and cooperative merging.
Further lane-changing and merging control algorithms for
platoons of vehicles are developed in [4], [5].

Frese et al. [6] exploit priority-based motion planning to
decouple the multi-vehicle motion planning problem, such that
trajectory planning can only be conducted for single vehi-
cles. This decreases the computational complexity; however,
the solution space is reduced. Bekris et al. [7] combine a
sampling-based motion planner with a priority-based coordi-
nation scheme, which is compared with a message-passing
protocol for distributed constraint optimization. Moreover,
priority-based algorithms for intersection management and
traffic flow control are elaborated in [8]–[10].

Recently, market-based approaches have received major
interest for multi-vehicle coordination, since they allow the
incorporation of individual as well as global objectives, mak-
ing it useful to balance self-interested and collective goals.
In [11], maneuver plans are negotiated and refined via model
predictive control. Auction-based coordination strategies for
intersections can be found in [12]–[14].

Finally, we review literature concerning reservation-based
algorithms [15]–[18], where communicating vehicles reserve
some sort of space-time slots by requesting them via a
supervisor. It must be guaranteed that the space-time slots are
not occupied by more than one vehicle in order to ensure
safety. In [15]–[17], reservation-based algorithms are applied
to intersections; [15] in particular divides the intersection
into tiles which can be allocated to communicating vehicles.
Marinescu et al. [18] implement a slot-based approach for
the merging of on-ramp traffic. They propose combining the
hierarchical approach of exploiting vehicle-to-infrastructure
communication with the decentralized approach of utilizing
inter-vehicle communication for vehicle coordination.

We propose an algorithm related to the idea of reservation-
based algorithms. In contrast to previous work, we distribute
drivable areas of cooperative vehicles such that overlapping
drivable areas are unambiguously reallocated to single co-
operative vehicles. The computation of the drivable areas is
based on reachability analysis, which allows us to not only
compute a set of drivable positions but also to determine the
maximum velocity range to reach a distinct set of positions.
Thus, we are not restricted to distributing complete road seg-
ments among the collaborative vehicles, but we can precisely
resolve conflicts. Our approach reduces the search space when
planning coordinated maneuvers for multiple vehicles, since
the trajectory of a single vehicle is restricted to its associated
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drivable area. Thus, the computational complexity of multi-
vehicle motion planning can be decreased. Our method is
suitable for identifying collaborative groups of vehicles for
which motion planning can be conducted jointly. Moreover,
it is possible to detect if collaboration with a cooperative
vehicle becomes unnecessary. Since our method is set-based,
the consideration of uncertainty in the initial position or
velocity of the cooperative vehicles, e.g. due to sensor noise, is
automatically supported. Our approach is applicable to mixed-
traffic scenarios, where automated vehicles and human drivers
co-exist.

The remainder of this paper is organized as follows: Sec. II
introduces the problem statement and Sec. III presents the
basic idea. A comprehensive description of our applied meth-
ods and our proposed algorithm is provided in Sec. IV.
Sec. V demonstrates our approach on two numerical examples,
followed by the conclusion in Sec. VI.

II. PROBLEM STATEMENT

Let us introduce � as the placeholder for a variable and �n
to denote the value of the corresponding variable of the n-th
cooperative vehicle, n ∈ N := {1, 2, . . . , N}. The system
dynamics of the n-th vehicle is described by the differential
equation

ẋn(t) = fn(xn(t),un(t)),

where xn is the state, un is the input, and t is the time. All
possible initial states and the admissible inputs are bounded by
sets: xn(0) ∈ Xn,0, ∀t : un(t) ∈ Un. We further introduce the
solution of the differential equation ẋn(t) = fn(xn(t),un(t))
as χn(t;xn(0),un(·)), where un(·) refers to the input trajec-
tory.

The reachable set of the system ẋn(t) = fn(xn(t),un(t))
is usually defined as the set of all states which can be reached
from an initial set Xn,0 at time t. However, the vehicles
generally move in a structured environment cluttered with
(time-dependent) obstacles represented by the set O(t) ⊆ R2.
Since we require the absence of collisions, each vehicle must
not enter the set of forbidden states

Fn(t) := {xn(t) ∈ Xn |Qn(xn(t)) ∩ O(t) 6= ∅} ,

where Qn(xn(t)) ⊆ R2 denotes the occupancy of the n-th
cooperative vehicle. Therefore, we restrict the reachable set
Rn(Xn,0, t) of the n-th vehicle to the set of states that can be
reached without any collision with the obstacle set O(t):

Rn(Xn,0, t) :=
{
χn(t;xn(0), un(·))

∣∣∣xn(0) ∈ Xn,0,

∀τ ∈ [0, t] : un(τ) ∈ Un, χn(τ ;xn(0), un(·)) /∈ Fn(τ)
}
.

The drivable area Dn(Xn,0, t) of the n-th vehicle is given by
the reachable positions at time t. We introduce the projection
operator proj() to project a set of states to the position domain.

Definition 1 (Projection): Given that x(t) ∈ X ′ contains the
position sx(t) and sy(t) in x- and y-direction, we define the

mapping from a set of states X ′ ⊆ X to the set of positions
as

proj(X ′) :=
{
[sx(t), sy(t)]

T ∈ R2|x(t) ∈ X ′} .

Definition 2 (Drivable Area): The drivable area Dn(Xn,0, t)
of the n-th vehicle is defined as the projection of its reachable
set Rn(Xn,0, t): Dn(Xn,0, t) := proj(Rn(Xn,0, t)).

2

1

3D2(X2,0, t)

D3(X3,0, t)DF
1(X1,0, t)

DC
1(X1,0, t)

Fig. 1: Conflicting and conflict-free drivable area DC
1(X1,0, t)

and DF
1(X1,0, t) of vehicle 1.

The collaborative vehicles do not only have to avoid the set
of forbidden states Fn(t), but they also have to prevent acci-
dents among each other. Given the drivable areas Dn(Xn,0, t)
of N collaborative vehicles at time t, the occupancies of the
vehicles may overlap (see Fig. 1). The overlapping region
defines the area where conflicts potentially arise and a col-
lision may occur. Thus, the drivable area Dn(Xn,0, t) can be
partitioned into a conflicting and a non-conflicting region.

Definition 3 (Conflicting Drivable Area): We introduce the
conflicting reachable set RC

n(Xn,0, t) ⊆ Rn(Xn,0, t) as the
set of states xn(t) ∈ Rn(Xn,0, t), where the occupancy
Qn(xn(t)) of the n-th vehicle potentially intersects with the
occupancy Qk(xk(t)) of another cooperative vehicle k ∈
N \ {n}:

RC
n(Xn,0,t) :=

{
xn(t) ∈ Rn(Xn,0, t)

∣∣∣xk(t) ∈ Rk(Xk,0, t),

∃k ∈ N \ {n} : Qn(xn(t)) ∩ Qk(xk(t)) 6= ∅
}
.

The conflicting drivable area DC
n(Xn,0, t) of the n-th vehicle is

then the projection of its conflicting reachable set RC
n(Xn,0, t):

DC
n(Xn,0, t) := proj(RC

n(Xn,0, t)).
Definition 4 (Conflict-Free Drivable Area): The conflict-free

drivable area of the n-th vehicle is

DF
n(Xn,0, t) := Dn(Xn,0, t) \ DC

n(Xn,0, t).

The goal of our approach is the reallocation of DC
n(Xn,0, t) so

that each cooperative traffic participant receives an individual
area for motion planning. Henceforth, we will refer to the
redistributed drivable area of the n-th vehicle as DR

n(Xn,0, t).
Definition 5 (Redistributed Drivable Area): We define the

redistributed drivable area as

DR
n(Xn,0, t) := DF

n(Xn,0, t) ∪ En(Xn,0, t),

where En(Xn,0, t) ⊆ DC
n(Xn,0, t). It holds that the interior of

the redistributed drivable areas of all cooperative vehicles is
pairwise disjoint.
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III. BASIC IDEA

The starting point of our approach is the computation of
the drivable areas Dn(Xn,0, t) of each cooperative vehicle
(see Fig. 2a). Since a conflict requires at least two different
vehicles, the set of all conflicting subsets of vehicles is
P≥2(N ), where P≥2(N ) denotes all subsets of the power set
P(N ) with cardinality greater than two. We demand that the
vehicles staying in a conflict form a coalition ψr to solve it.

Definition 6 (Coalition): Let us introduce the relation
g : {W1,W2, . . . ,We} → (W1,W2, . . . ,We) to convert the
powerset P≥2(N ) := {W1,W2, . . . ,We} into a tuple. The
tuple Ψ := g(P≥2(N )) is the ordered list of all unique
subsets of vehicles which may have conflicting drivable areas.
Henceforth, we refer to the r-th element ψr ∈ Ψ as a coalition.

For instance, if we have N = {1, 2, 3}, the tuple Ψ is:

Ψ = g(P≥2(N ))

= (ψ1, ψ2, ψ3, ψ4)

= ({1, 2}, {1, 3}, {2, 3}, {1, 2, 3}) .
(1)

We assign a negotiable drivable area DN(ψr, t) to each
coalition ψr. To this end, we simplify the determination of
DN(ψr , t) and neglect the shape of the vehicles such that
Qn(xn(t)) = xn(t). This reduces the problem to the detection
of overlapping regions (see Fig. 2b).

Definition 7 (Negotiable Drivable Area): We define the
negotiable drivable area for each coalition ψr ∈ Ψ as

DN(ψr, t) :=
⋂

n∈ψr

DC
n(Xn,0, t).

The members of the coalition ψr can distribute the ne-
gotiable drivable areas DN(ψr, t) among each other. The
redistribution of the sets DN(ψr, t) can thereby be subject to
a specific redistribution strategy, which e.g. minimizes a cost
function J (see Fig. 2c).

The search for a feasible trajectory for each coopera-
tive vehicle can be limited to its redistributed drivable area
DR
n(Xn,0, t). This can reduce the computational complexity of

multi-vehicle motion planning, since the n-th vehicle may only
cause a collision with obstacles O(t) and other cooperative
vehicles N \ {n} close to the border of DR

n(Xn,0, t). Espe-
cially, when one considers that a huge variety of combined
trajectories of the collaborative vehicles can be excluded, since
these combinations would lead to a collision. Our method
reduces the set of trajectories which can be excluded, before
motion planning. This can speed up the search for cooperative
maneuvers.

Moreover, cooperative groups can be identified through
DN(ψr , τ): if there exists a τ ∈ [0, t] such that DN(ψr, τ) 6= ∅
holds, the vehicles belonging to the coalition ψr should plan
their motion jointly.

IV. METHODOLOGY AND ALGORITHM

We apply an iterative approach which redistributes the
drivable areas of the cooperative vehicles at discrete points
in time ti. During each iteration i, three steps have to be
executed:

2

1

3

proj(X2,0)

proj(X1,0)

proj(X3,0)

D2(X2,0, t)

D3(X3,0, t)

D1(X1,0, t)

(a) Drivable areas Dn(Xn,0, t).
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1

3DF
2 DF

3

DF
1DN(ψ1, t)

DN(ψ2, t)

DN(ψ3, t)

DN(ψ4, t)

(b) Non-conflicting drivable areas DF
n(Xn,0, t) and negotiable driv-

able areas DN(ψr, t).

2

1

3

DR
2(X2,0, t)

DR
3(X3,0, t)

DR
1(X1,0, t)

(c) Negotiation of DN(ψr, t) to determine the redistributed drivable
areas DR

n(Xn,0, t).
Fig. 2: Overview of the negotiation of drivable areas.

1) the computation of drivable areas Dn(Xn,i−1, ti),
2) the determination of negotiable areas DN(ψr, ti),
3) the redistribution of all negotiable areas DN(ψr, ti) to

obtain DR
n(Xn,i−1, ti). The new set of states Xn,i is

computed based on DR
n(Xn,i−1, ti).

There are three main challenges to be addressed: the efficient
computation of the reachable set Rn(Xn,i−1, ti), the efficient
assignment of the conflicting drivable areas DC

n(Xn,i−1, ti) to
a coalition ψr, and the choice of the redistribution strategy.

The reachable set Rn(Xn,i−1, ti), more specifically
Dn(Xn,i−1, ti), cannot be computed efficiently for general
system models fn(xn(t),un(t)) in the presence of arbitrary
obstacles O(t). The overapproximation of the reachable set
Rn(Xn,i−1, ti) constitutes a compromise between computa-
tional efficiency and accuracy; we use the approach presented
in [19] (see Sec. IV-B).

Since we neglect the shape of the cooperative vehicles and
model them as moving point masses, we are able to apply fast
algorithms from the field of computational geometry to assign
the conflicting drivable areas DC

n(Xn,i−1, ti) to the coalitions
ψr (see Sec. IV-C).

The choice of redistribution strategy highly influences the
overall performance of the approach. In this paper, we select
a strategy which should ensure that (see Sec. IV-D):

• the negotiable drivable areas DN(ψr , ti) are fairly allo-
cated, such that all vehicles have equally sized drivable
areas

• the redistributed drivable areas DR
n(Xn,i−1, ti) are con-
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nected.
The calculation of the drivable areas is based on models
that are subsequently introduced and can be performed in a
centralized or decentralized fashion. However, we assume that
all computations are executed in a common coordinate system.

A. Vehicle and Obstacle Models
We model the dynamics of the cooperative vehicles as two

double integrators with bounded velocity v and acceleration
a. Let us introduce �x and �y to denote the value of the
corresponding variable in x- and y-direction, respectively.
After further introducing the notation � and � to specify the
minimum and the maximum possible value of a variable, the
dynamics is

d

dt




sn,x
vn,x
sn,y
vn,y




︸ ︷︷ ︸
xn(t)

=




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0







sn,x
vn,x
sn,y
vn,y


+




0 0
1 0
0 0
0 1



[
an,x
an,y

]

︸ ︷︷ ︸
un(t)

,

(2a)
vn,x ≤ vn,x ≤ vn,x, vn,y ≤ vn,y ≤ vn,y, (2b)

|an,x| ≤ an,x, |an,y| ≤ an,y. (2c)

The system dynamics of the obstacles is not restricted to
any specific model. Moreover, we do not stipulate a particular
method for the prediction of the occupancies of other traffic
participants. Thus, any prediction supporting collision checks
can be used, e.g. [20].

B. Computation of Drivable Areas
We compute the reachable set Rn(Xn,i−1, ti) of each co-

operative vehicle at time ti based on the set of states Xn,i−1

of the previous time step ti−1 as presented in [19] and recall
the main results of [19] in this subsection.

Pontryagin’s principle is applied to calculate the boundaries
of the reachable set of the n-th vehicle, ignoring the forbidden
region Fn(ti). Since the states of system model (2) are decou-
pled in longitudinal and lateral direction, their evolution over
time can be computed separately. Two optimization problems
are formulated in the x- and y-direction: given a specific
terminal position, the objective is to maximize/minimize the
speed at this position at time t. The Pontryagin principle yields
a bang-bang input candidate solution with a single switching
time. The velocity constraints (2b) are only considered at
terminal time t. This results in an overapproximation of the
reachable set, since the velocity constraints may be violated
during ]ti−1, ti[.

The lateral and longitudinal dynamics have to be considered
jointly for the computation of Rn(Xn,i−1, ti), since it must be
determined which states xn(ti) are within the set of forbidden
states Fn(ti). Söntges et. al [19] use the union of base sets
B(q)
n,i , which are the Cartesian product of two convex poly-

topes in the (sx, vx)- and (sy, vy)-plane, to overapproximate
Rn(Xn,i−1, ti) in a computationally efficient way:

Rn(Xn,i−1, ti) ⊆
⋃

q

B(q)
n,i.

The projection of the base sets B(q)
n,i yields axis-aligned

rectangles A(q)
n,i := proj(B(q)

n,i) in the position domain. It
holds that the interior of the axis-aligned rectangles A(q)

n,i is
pairwise disjoint [19] and the union of rectangles A(q)

n,i is an
overapproximation of the drivable area Dn(Xn,i−1, ti):

Dn(Xn,i−1, ti) ⊆
⋃

q

A(q)
n,i.

C. Assignment of Drivable Areas to Coalitions

Next, the negotiable drivable areas are determined. We
exploit the fact that the drivable areasAn,i := {A(1)

n,i,A
(2)
n,i . . .}

are represented by axis-aligned rectangles (see Fig. 3a) and
use a sweep line algorithm [21], [22], known from the field
of computational geometry, to conduct the following tasks:

1) the detection of overlapping axis-aligned rectangles (see
Fig. 3b),

2) the division of the drivable areas ∪n∈N ∪q A(q)
n,i into

the conflict-free and the negotiable drivable areas AF
i :=

{AF
1,i, . . . ,AF

N,i} and AN
i := {AN

ψ1,i
, . . . ,AN

ψ|Ψ|,i
} of a

single vehicle n ∈ N and a coalition ψr ∈ Ψ, respec-
tively. All subsetsAF

n,i andAN
ψr ,i

are a collection of novel
axis-aligned rectangles AF(l)

n,i ∈ AF
n,i and AN(p)

ψr ,i
∈ AN

ψr ,i
,

whose interior is disjunct (see Fig. 3c).

A3,i

A1,i

A2,i

(a) (b)

AF
2,i AF

1,i

AF
3,i

AN
ψ3,i

AN
ψ4,i

AN
ψ1,i

(c)

Fig. 3: Assignment of drivable areas at time step i: AF
n,i

and AN
ψr,i

represent the conflict-free drivable area of the n-th
vehicle and the negotiable area of the coalition ψr ∈ Ψ (1),
respectively.

D. Negotiation of Drivable Areas

Finally, the negotiable drivable areas AN
i are redistributed.

Our applied method is related to the Nearest Centroid Classi-
fier [23]: given a set of distinct clusters with associated class
labels, a new observation is classified according to the class
label of the nearest cluster centroid.

Here, each cooperative vehicle is considered a single class;
therefore, the set of class labels is N . Furthermore, each
connected component of the conflict-free drivable area AF

n,i

represents a cluster of the n-th vehicle. Thus, a single vehi-
cle may have several clusters identified through the cluster
centroid c

(k)
n,i := [x

(k)
n,i , y

(k)
n,i ]

T with longitudinal and lateral
position coordinate x(k)n,i and y(k)n,i , respectively (see Fig. 4).

The connected components of the drivable area of a single
vehicle are determined through a sweep line algorithm, which
detects pairs of rectangles AF(l)

n,i ,A
F(o)
n,i ∈ AF

n,i, for l 6= o,
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c
(1)
2,i

AF(l)
1,i

c
(1)
1,i

AF(l)
2,i

AN(p)
ψ1,i

c
(2)
2,i

Fig. 4: The negotiable drivable areas are assigned to the vehicle
with the nearest cluster centroid c

(k)
n,i .

whose boundaries intersect [22], [24]. The cluster centroids
are computed by geometric decomposition:

x
(k)
n,i =

∑
l centerX

(
AF(l)
n,i

)
area

(
AF(l)
n,i

)

∑
l area

(
AF(l)
n,i

) ,

y
(k)
n,i =

∑
l centerY

(
AF(l)
n,i

)
area

(
AF(l)
n,i

)

∑
l area

(
AF(l)
n,i

) ,

(3)

where AF(l)
n,i belongs to the k-th cluster of the n-th vehicle.

The operators centerX(�), centerY(�), and area(�) return
the x- and y-coordinates of the center and the area of an axis-
aligned rectangle �, respectively.

After agreeing that the set Cn,i := {c(1)n,i, c
(2)
n,i, . . .} contains

all cluster centers c(k)n,i of the n-th vehicle at time step i, we de-
note the collection of all subsets Cn,i as Ci := {C1,i, . . . , CN,i}.
Subsequently, each negotiable rectangle AN(p)

ψr ,i
∈ AN

ψr ,i
is

assigned to the vehicle n ∈ ψr with the nearest centroid c
(k)
n,i

(see Fig. 4):

argmin
n∈ψr

(
min

c
(k)
n,i∈Cn,i

d(AN(p)
ψr ,i

, c
(k)
n,i)

)
, (4)

where d(AN(p)
ψr ,i

, c
(k)
n,i) denotes the Euclidean distance between

the center of a rectangle AN(p)
ψr ,i

and a cluster center c(k)n,i .

E. Algorithm

Alg. 1 shows the overall approach. First, the overapproxi-
mated drivable area An,i := {A(1)

n,i,A
(2)
n,i, . . .} of each coop-

erative vehicle is computed for each time step i = 1, . . . , T

by propagating the base sets Bn,i−1 := {B(1)
n,i−1,B

(2)
n,i−1, . . .}

of the previous time step i− 1 under consideration of Fn(ti)
using the approach of [19] (Alg. 1, line 3).

Then, the coalitions ψr ∈ Ψ and their corresponding
negotiable areas AN

i , as well as the conflict-free areas AF
i ,

are determined in the function COALITIONS as explained in
Sec. IV-C (Alg. 1, line 4).

The final step of our approach is the negotiation of the
areas AN

i in the function NEGOTIATE (Alg. 1, line 8). The
redistributed drivable areas AR

i := {AR
1,i, . . . ,AR

N,i} are ini-
tialized with the conflict-free drivable areas (see Alg. 1, line 9).
Afterwards, we obtain the connected components as elaborated
in Sec. IV-D and compute their corresponding cluster centroids
with (3) (Alg. 1, line 10). Then, each coalition ψr negotiates

Algorithm 1
Input: Initial sets {B1,0, . . . ,BN,0}, collision detection for

axis-aligned rectangles with {F1(t), . . . ,FN(t)}.
Output: {B1,i, . . . ,BN,i} for i = 1, . . . , T time steps.

1: function DRIVINGAREAS({B1,0, . . . ,BN,0})
2: for i = 1 to T do
3: {A1,i, . . . ,AN,i} ← NEXTDRIVABLEAREAS(

{B1,i−1, . . . ,BN,i−1}
{F1(ti), . . . ,FN (ti)})

4: AF
i ,AN

i ← COALITIONS({A1,i, . . . ,AN,i})
5: {B1,i, . . . ,BN,i} ← NEGOTIATE(AF

i ,AN
i )

6: end for
7: end function

8: function NEGOTIATE(AF
i ,AN

i )
9: AR

i .initialize(AF
i )

10: Ci ← COMPUTECLUSTERCENTROIDS(AF
i )

11: for AN
ψr ,i
∈ AN

i do
12: if AN

ψr,i
:= ∅ then

13: continue
14: end if
15: for AN(p)

ψr ,i
∈ AN

ψr,i
do

16: n←ASSIGNMENT(AN(p)
ψr ,i

, Ci)
17: AR

n,i := AR
n,i ∪ A

N(p)
ψr ,i

18: end for
19: end for
20: {B1,i, . . . ,BN,i} ← NEXTBASESETS(AR

i )
21: return {B1,i, . . . ,BN,i}
22: end function

its associated area AN
ψr ,i

, provided that the set AN
ψr ,i

is non-
empty (Alg. 1, lines 12-14). Each rectangle AN(p)

ψr ,i
∈ AN

ψr ,i

is thereby assigned to the n-th vehicle through (4) in the
function ASSIGNMENT (Alg. 1, line 16), where the Euclidean
distance between the center of AN(p)

ψr ,i
and all cluster centroids

c
(k)
n,i of the vehicles n ∈ ψr is computed. The n-th vehicle

with the nearest cluster centroid receives the area, and its
redistributed drivable area AR

n,i is updated accordingly (Alg. 1,
line 17). After the negotiation of the areas AN

i , the new base
sets Bn,i are computed by adding the velocity information
to the redistributed drivable areas AR

n,i, as presented in [19]
(Alg. 1, line 20).

V. NUMERICAL EXAMPLES

We show the application of our algorithm on two highway
scenarios: in the first example, we only consider collaborative
vehicles, whereas in the second example, we take mixed traffic
based on recorded traffic data into account.

A. Scenario I: Traffic with Self-Driving Vehicles

In our first example, we consider four collaborative vehicles
as depicted in Fig. 5, which have to pass a narrow passage
caused by two static obstacles. The parameters for the drivable
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(a) Conflict-free drivable areas AF
n,i and negotiable drivable

areas AN
ψr,i using (1).

time: 1.0 s

time: 1.5 s

time: 2.0 s

time: 2.5 s

time: 3.0 s

AR(j)
1,i AR(j)

2,i AR(j)
3,i AR(j)

4,i

(b) Redistributed drivable areas AR
n,i after negotiation.

Fig. 5: Application of our proposed algorithm on a highway scenario with four collaborative vehicles.

area computation of vehicles 1 to 3 are selected equally,
whereas vehicle 4 has less acceleration potential and the
extreme values of the velocity are chosen to be different (see
Tab. I).

Fig. 5a shows the conflict-free drivable areas AF
n,i and

the negotiable drivable areas AN
ψr ,i

at different time steps i.
Along the same lines, Fig. 5b depicts the redistributed drivable
areas AR

n,i of each collaborative vehicle at the same time
steps i. It can be determined that the movement of vehicle
4 is temporally conflict-free, since its drivable area does not
intersect with any drivable area of the other vehicles. Thus,
cooperation is unnecessary, and the trajectory planning for
vehicle 4 can be conducted exclusively.

Furthermore, it can be identified that the drivable areas of
vehicles 2 and 3 are in conflict first (see Fig. 5a at time instance
1.5 s). The conflict is resolved by giving vehicle 2 precedence
over vehicle 3 to pass the obstacle in its current lane, which is
automatically initiated by our approach. At a later stage, the
drivable areas of vehicle 1 and 2 overlap; however, there is no
change in the driving strategy, meaning that vehicle 1 stays in
front of vehicle 2.

B. Scenario II: Mixed Traffic
We further demonstrate the applicability of our algorithm on

the mixed-traffic scenario C-NGSIM US101 1 based on the
NGSIM US 101 Highway Dataset1 (7:50 a.m. to 8:05 a.m.)

1http://www.fhwa.dot.gov/publications/research/operations/07030/

TABLE I

Scenario I: Parameters for drivable area computation.

Parameter Value

time discretization 0.1 s
time steps T 30
maximum speed v1/2/3,x 22.0 m/s
minimum speed v1/2/3,x 0.0 m/s
absolute maximum speed (v1/2/3,y = −v1/2/3,y) 15.0 m/s
absolute maximum acceleration a1/2/3,x 8.0 m/s2

absolute maximum acceleration a1/2/3,y 4.0 m/s2

maximum speed v4,x 18.0 m/s
minimum speed v4,x 0.0 m/s
absolute maximum speed (v4,y = −v4,y) 7.0 m/s
absolute maximum acceleration a4,x 4.0 m/s2

absolute maximum acceleration a4,y 2.0 m/s2

from the CommonRoad2 benchmark collection [25]. As shown
in Fig. 7, there are four collaborative vehicles for which we
compute the drivable areas based on the parameters given in
Tab. II. The drivable areas of the vehicles are thereby restricted
to five lanes, since we do not consider the highway on-ramp.
We use the recorded trajectory data for the prediction of
the obstacle movement and enlarge their rectangular shape to
simulate uncertainty. However, any prediction which supports
collision checks with axis-aligned rectangles can be applied.

2http://commonroad.in.tum.de
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TABLE II

Scenario II: Parameters for the drivable area computation.

Parameter Value

time discretization 0.1 s
time steps T 30
maximum speed vn,x 36.0 m/s
minimum speed vn,x 0.0 m/s
absolute maximum speed (vn,y = −vn,y) 7.0 m/s
absolute maximum acceleration an,x 5.5 m/s2

absolute maximum acceleration an,y 2.5 m/s2

time: 2.0 s

AF(l)
1,i AF(l)

2,i AF(l)
3,i AF(l)

4,i ObstacleAC(ν)
n,i

Fig. 6: Huge parts of the drivable areas of the collaborative
vehicles overlap if the conflicting areas AC(ν)

n,i are not negoti-
ated.

We first analyze if there is the need for cooperation and
compute the drivable areas of each collaborative vehicle using
the approach of [19]. As shown in Fig. 6, the overapproxi-
mated drivable areas of vehicles 1, 2, and 3 overlap almost
entirely at time instance 2.0 s (see AC(ν)

n,i in Fig. 6). This
indicates that a vast majority of combined trajectories of the
collaborative vehicles lead to a collision among each other.

In contrast, when applying our proposed method, the propa-
gated drivable areas are negotiated at each time step i such that
they do not overlap. Moreover, high-level driving strategies
are determined before motion planning (see Fig. 7): Vehicle
1 merges in front of vehicle 3. Vehicle 4 follows vehicle 3,
whereas vehicle 2 may stay behind vehicle 3 or may drive
behind vehicle 4 (see Fig. 7 at time instance 3.0 s). As can
be seen, our approach works for complex traffic scenarios and
efficiently distributes the drivable areas.

VI. CONCLUSIONS

We present a new approach for cooperative conflict res-
olution based on the negotiation of drivable areas, wherein
the computation of drivable areas is based on reachability
analysis. Our method is suitable for reducing the search space
for motion planning given the assumption that the admissible
trajectories of a cooperative vehicle must be contained in its
redistributed drivable area. An important aspect of our method
is the independence of specific obstacle representations. In the
future, we plan to investigate different negotiation strategies to
extend our approach to arbitrary road networks. Furthermore,
we want to integrate individual objectives during the negotia-
tion phase, e.g. by using auction-based approaches [11], [26].

time: 0.0 s
1

2
3

4

time: 1.0 s

time: 1.5 s

time: 2.0 s

time: 2.5 s

time: 3.0 s

AR(j)
1,i AR(j)

2,i AR(j)
3,i AR(j)

4,i Obstacle

Fig. 7: Redistributed drivable areas AR
n,i at different points in

time ti.
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The benefits of our method are multi-fold: (1) the runtime complexity of the negotiation
process is polynomial in the number of conflicting road areas that are represented by grid
cells, but independent of the number of cooperative vehicles. (2) Individual goals of par-
ticipating vehicles can be considered during the negotiation via utility functions. (3) Our
approach is applicable to arbitrary traffic scenes and is not tailored to specific situations such
as intersection management.

We demonstrate the efficacy of our method in multiple traffic scenarios from the Common-
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Tactical Decision Making for Cooperative Vehicles
Using Reachable Sets

Stefanie Manzinger and Matthias Althoff

Abstract— Tactical maneuver planning of multiple, commu-
nicating vehicles provides the opportunity to increase passenger
safety and comfort. We propose a unifying method to orches-
trate the motion of cooperative vehicles based on the negotiation
of conflicting road areas, which are determined by reachable
set computation. As a result, each vehicle receives an individual
driving corridor for trajectory planning. The presented conflict
resolution scheme has polynomial runtime complexity and is
guaranteed to find the optimal allocation of road areas for
each negotiation round. Our method is not tailored to specific
traffic situations but is applicable to general traffic scenes with
manually driven and automated vehicles. We demonstrate the
universal usability of our approach in numerical experiments.

I. INTRODUCTION

There are many traffic situations in which individual nav-
igation goals of traffic participants lead to conflicts. Human
drivers often resolve these issues through implicit communi-
cation relying on the reasonable behavior of others. However,
communicating automated vehicles offer more sophisticated
solutions for collaborative maneuver planning. These vehi-
cles can form a cooperative group, which jointly agrees on a
common driving strategy to achieve conflict avoidance while
maximizing individual utilities. One of the major challenges
towards multi-vehicle motion planning is the development
of coordination schemes which are computationally efficient
without compromising optimality. We introduce a method
for tactical decision making, which unambiguously assigns
road areas to cooperating vehicles. Subsequently, we review
literature focusing on similar conflict resolution principles.

Dresner et al. [1] pioneered the work on reservation-based
algorithms with a focus on intersection management: the
intersection space is discretized into tiles, which approach-
ing vehicles can request via an intersection manager. This
manager simulates trajectories of vehicles to determine the
necessary tiles for passing the intersection and ensures that
no tile is occupied by more than one vehicle. The original
work has been extended in successive publications [2]–
[4]. Sharon et al. [5] improve on the work of Dresner et
al. [4] to be more efficient, particularly if the majority of
vehicles present are driven by humans. In [6]–[8], the first-
come, first-served policy for reservation assignment in [1]
is replaced by auction-based methods. In [9], [10], conflict
points instead of tiles are used as a resource for intersection
management; Levin et al. [11] combine conflict points at

*This work was supported by the Deutsche Forschungsgemeinschaft
(German Research Foundation) within the Priority Programme SPP 1835
Cooperative Interacting Automobiles (grant number: AL 1185/4-1).

All authors are with the Department of Computer Science, Tech-
nical University of Munich, 85748 Garching bei München, Germany
{stefanie.manzinger, althoff}@in.tum.de

intersections into conflict regions. In [12], a legacy algorithm
based on reservations is proposed, which can handle a low
percentage of non-communicating vehicles or vehicles with
malfunctioning communication systems. A comprehensive
overview of further techniques for cooperative intersection
management can be found in [13].

While the former methods are applied to intersections,
Marinescu et al. [14], [15] present virtual slots for traffic
shaping. A virtual slot is a moving space-time corridor with
a predefined behavior, e.g., lane following with constant
speed or lane changing; vehicles assigned to slots must adopt
their behavior. Their method is evaluated on a highway
merging scenario. Alternative solutions to cooperative on-
ramp merging onto highways can be found in [16]. Zhang et
al. [17] propose a reservation-based scheduling technique to
coordinate communicating vehicles through an intersection,
which is divided into a set of static critical sections. Their
goal is to establish a service-orientated traffic management,
where high-priority vehicles are able to pass through the
intersection first. In [18], dynamic critical sections are in-
troduced among static critical sections to consider behaviors
like lane-changing and overtaking. Cooperative maneuvers
are defined as a sequence of states modeled within an event-
triggered state automaton [18].

We intend to solve temporarily bounded conflicts, where
vehicles collaborate for a limited amount of time based on
reservations: road areas requested by several communicating
traffic participants are distributed such that each vehicle
receives its own driving corridor for trajectory planning. In
contrast to previous work, we determine reservation conflicts
by computing the drivable areas of all collaborative vehicles
using reachability analysis. While many works assume that
vehicles are highly automated, we intentionally deal with
mixed traffic, where human-driven and automated vehicles
share the road. Since scenarios with only automated vehicles
are a special case, our algorithm can treat these situations
as well. Moreover, our unifying method is not restricted to
specific maneuvers or traffic situations.

Our approach can be categorized as a hybrid framework
[13], where we optimally use the capabilities of each vehicle
through decentralized computation of reachable sets, while
the negotiation is performed by a leading vehicle. The
presented paper is based on our previous work in [19]. The
novelty of this work includes:
• Designing a general framework to incorporate individ-

ual goals of cooperative vehicles, whereas in [19], the
value assessment of different road areas is exclusively
based on geometric reasoning.
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• Formulating a combinatorial optimization problem to
optimally allocate conflicting road areas to the vehicles
according to their preferences and reducing its com-
putational complexity through hierarchical structuring
of conflicting road areas. This makes it possible to
resolve conflicts in polynomial runtime complexity in
the number of road areas to be negotiated [20], but
independently in the number of vehicles.

• Computing the reachable sets of cooperative traffic
participants in a vehicle-specific, curvilinear coordinate
system, whereas in [19], it is required that all compu-
tations are performed in a common coordinate system.
This facilitates coping with different driving contexts as
presented in Sec. VI.

Sec. II introduces the problem statement and Sec. III presents
the necessary preliminaries. In Sec. IV-V, our applied meth-
ods and proposed algorithm are described. Sec. VI demon-
strates our approach on numerical examples, followed by the
conclusion in Sec.VII.

II. PROBLEM STATEMENT

Let G = {g0, g1, . . . , gi, . . .} denote a grid with cells
gi of an arbitrary shape obtained through tessellation of
the position domain in a Cartesian reference frame F0 (see
Fig. 1). The cells gi are the individual assets of road areas
which can be combined into unions of assets Cj ⊆ G,
which we refer to as packages. We introduce the set V :=
{V1, V2, . . . , VN} of cooperative vehicles acting as bidders,
which can submit a bid for different sets Cj . We restrict the
set of permitted combinations P(t) ⊆ P(GC(t)), where P()
returns the powerset, to those Cj containing only conflicting
cells gi ∈ GC(t), GC(t) ⊆ G, requested from at least two
vehicles Vn at time instance t (see Fig. 1). It is assumed
that each vehicle Vn only bids its true value bn(t, Cj) of a
combination of assets Cj . The maximum bid for a package
Cj is b(t, Cj), and any tie-breaking rule [20] is accepted to
determine b(t, Cj).

We aim to find a distribution of sets Cj ∈ P(t) such that
the revenue is maximized (1a) and no single asset is assigned
more than once (1b) [20]:

max
δ(t,Cj)

∑
Cj∈P(t)

δ(t, Cj)b(t, Cj) (1a)

such that

∀gi ∈ GC(t) :
∑

Cj : gi∈Cj

δ(t, Cj) ≤ 1, (1b)

∀Cj ∈ P(t) : δ(t, Cj) ∈ {0, 1}, (1c)

where δ(t, Cj) denotes the allocation of package Cj to the
highest bidder Vn; δ(t, Cj) = 1 holds iff bidder Vn receives
package Cj at time instance t.

The optimization problem (1) is known as the winner
determination problem, which is NP-hard to solve [20], [21].
Moreover, allowing every possible combination of assets
gi ∈ GC(t) means that each bidder Vn has to evaluate
2|G

C(t)|−1 packages. However, we are able to attain computa-

V1

V2

g17
g24
g31

g18
g25
g32

g19
g26
g33

gi ∈ G
GC(t) = {g17, g18, g19, g24, g25,

g26, g31, g32, g33}
C0 = {g24, g25, g31, g32}
C1 = {g17, g18, g19, g26, g33}
P(t) = {C0, C1}

C0

C1

Fig. 1. Visualization of the grid G, the set of conflicting cells GC(t), the
packages Cj , and the set of permitted combinations P(t).

tional tractability by selecting a special structure of permitted
combinations P(t): we require P(t) to form a tree structure;
thus, an optimal allocation of packages can be found in
O(|GC(t)|2) time [20].

III. PRELIMINARIES

We describe the system dynamics of the n-th cooperative
vehicle in a local curvilinear coordinate system Fn by the
differential equation

ẋn(t) = fn(xn(t), un(t)), (2)

where xn ∈ Xn ⊆ Rp is the state, un ∈ Un ⊂ Rq is
the input, and t is the time. We denote the solution of (2)
for the input trajectory un(·) and initial state xn(0) with
χn(t;xn(0), un(·)). Please note that each vehicle may have
its own coordinate system Fn.

The reachable set is defined as the set of all states which
can be reached from an initial set of states Xn,0 at a given
time instance t. We extend this standard definition and
restrict the reachable set Rn(Xn,0, t) of vehicle Vn to all
collision-free reachable states. We therefore introduce the set
of forbidden states Fn(t) = {xn(t)|Qn(xn(t)) ∩ On(t) 6=
∅}, where Qn(xn(t)) ⊂ R2 and On(t) ⊂ R2 denote the
occupied space of the ego vehicle and the (time-varying)
obstacles, respectively. Thus,

Rn(Xn,0, t) =
{
χn(t;xn(0), un(·))

∣∣∣xn(0) ∈ Xn,0, (3)

∀τ ∈ [0, t] : un(τ) ∈ Un, χn(τ ;xn(0), un(·)) /∈ Fn(τ)
}
.

Moreover, we specify the relation hn : P(Xn) → P(G),
which returns the cells gi ∈ G occupied by vehicle Vn due
to its set of states Xn considering its shape, to determine the
set GC(t) of conflicting cells claimed by multiple vehicles:

GC(t) =
⋃

I∈P≥2(N )

⋂
n∈I

hn(Rn(Xn,0, t)), (4)

where P≥2(N ) denotes all subsets of the power set P(N )
with cardinality greater than one and N := {1, 2, . . . , N}.
We thereby assume the forward and backward transformation
from Fn to F0 to be given, see e.g. [22]. We further introduce
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the negotiated reachable set of vehicle Vn at time t:

RN
n(Xn,0, t) =

{
xn(t) ∈Rn(Xn,0, t)

∣∣∣
hn({xn(t)}) ∩ GLn(t) = ∅

}
,

(5)

where GLn(t) ⊆ GC(t) denotes the set of unassigned grid cells
gi of vehicle Vn after the negotiation (1).

IV. CONFLICT RESOLUTION

Conflict resolution is performed at discrete time steps
k, which correspond to points in time tk = k∆t, where
∆t ∈ R+ is a constant time step. We identify the individual
driving areas of vehicles Vn iteratively for each time step k
by applying Alg. 1, which comprises the following steps:

1) computation of the reachable sets (3) (Alg. 1, line 3),
2) identification of conflicting cells GC(k) using (4)

(Alg. 1, line 4),
3) negotiation of conflicting cells GC(k) to determine the

optimal allocationWopt of gi ∈ GC(k) (Alg. 1, line 5),
4) determination of the negotiated reachable sets (5)

(Alg. 1, line 6).
Below, we elaborate steps 1) and 3) comprehensively and use
the notation [�n]Nn=1 = [�1, . . . ,�n, . . . ,�N ] to denote a
list of elements �n of vehicles Vn.

Algorithm 1
1: function CONFLICTRESOLUTION([BN

n(0)]
N
n=1, G)

2: for k = 1 to T do
3: [Bn(k)]Nn=1 ←REACHABLESETS([BN

n(k − 1)]Nn=1)
4: GC(k)←CONFLICTINGCELLS([Bn(k)]Nn=1, G)
5: Wopt ←NEGOTIATE([Bn(k)]Nn=1, GC(k))
6: [BN

n(k)]
N
n=1 ← NEGOTIATEDREACHABLESETS(

[Bn(k)]Nn=1,Wopt)
7: end for
8: return [∪kBN

n(k)]
N
n=1

9: end function

A. Reachable Set Computation

1) Vehicle Dynamics: We model the dynamics of vehicle
Vn in the local coordinate system Fn as two double integra-
tors in longitudinal ζn- and lateral ηn-direction with bounded
speed vn and acceleration un. After introducing the notation
� and � to specify the minimum and the maximum possible
value of a variable �, the dynamics is

s̈n,ζn(t) = un,ζn(t), s̈n,ηn(t) = un,ηn(t), (6a)
vn,ζn ≤ vn,ζn(t) ≤ vn,ζn , vn,ηn ≤ vn,ηn(t) ≤ vn,ηn ,

(6b)
|un,ζn(t)| ≤ an,ζn , |un,ηn(t)| ≤ an,ηn , (6c)

where sn,ζn(t) and sn,ηn(t) denote the position in longitu-
dinal and lateral direction, respectively.

Model (6) is an approximation of the real vehicle dynam-
ics, which deviates increasingly from a real vehicle the larger
the curvature of the road; the modeled vehicle would be able
to make a turn with an arbitrarily high velocity. However, we

compensate for this by setting appropriate constraints (6b)-
(6c). The use of a curvilinear coordinate frame facilitates
the formulation of certain properties and maneuvers, which
are highly relevant to our approach, e.g., lane-following,
stopping at an intersection, and avoiding driving backwards.

2) Reachable Set: Reachable sets are computed according
to [23]: we approximate the reachable set at time step k

by the union of base sets B(i)n (k), which are composed
of the Cartesian product of two convex polytopes in the
(sn,ζn , vn,ζn)- and (sn,ηn , vn,ηn)-plane:

Rn(BNn(k − 1), tk) ≈
⋃
i

B(i)n (k) =: Bn(k),

where BNn(k−1) denotes the negotiated reachable sets of the
previous time step k−1. The projection of base sets B(i)n (k)
in the position domain—in this paper referred to as drivable
area—yields axis-aligned rectangles.

The reachable sets are computed with reference to the
center of gravity of the vehicle; however, we need to consider
the shapes of vehicles for collision detection. Söntges et
al. [23] use the inner circle of the vehicle shape for collision
detection, whereas we approximate the shape of vehicles Vn
with three rotationally invariant disks with radius rn and
assume that the heading of the vehicles is aligned with ζn
in Fn. Please note that the reachable set computation is not
overapproximative due to the modified collision checks.

B. Negotiation of Conflicting Cells

Our negotiation scheme for resolving conflicts between
collaborative vehicles is inspired by the idea of auctions.
An auction requires a set of buyers competing for limited
resources; bids are used to express preferences over the
auctioned resources. In this work, cooperative vehicles act
as bidders, and the limited resource is the drivable space on
the road. In contrast to general auction design, we do not
introduce a pricing mechanism [21]. Furthermore, we apply
a common utility function to determine the bids for each
vehicle. The negotiation of conflicting road cells comprises
the following steps (see Alg. 2):

1) determination of permitted packages Cj ∈ P(k) on the
basis of GC(k) and their structuring in a tree T (see
Fig. 2b, Alg. 2, line 4),

2) evaluation of bids b(k, Cj) for Cj ∈ P(k) (Alg. 2,
line 5),

3) computation of the optimal allocation Wopt of permit-
ted packages Cj ∈ P(k) (Alg. 2, line 6).

In the remainder of this section, all necessary steps are
discussed in detail.

1) Tree Structure: The entire combination GC(k) includ-
ing all negotiable assets is the root node of the tree (see
Fig. 2b). At each level of the tree, we decompose the sets
Cj into disjoint parts, of which each part represents a set
Cl ∈ P(k). Thus, for all Cj , Ci ∈ P(k), we have Cj ∩ Ci ∈
{∅, Cj , Ci} [20] (see Fig. 2b).

As mentioned in Sec. II, using a tree structure to express
the set of permitted combinations P(k) of cells simplifies
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Algorithm 2
1: function NEGOTIATE([Bn(k)]Nn=1, GC(k))
2: Wopt ← ∅
3: if GC(k) 6= ∅ then
4: T ←TREEOFPERMITTEDPACKAGES(GC(k))
5: ∪Cj∈P(k)b(k, Cj)←BIDS([Bn(k)]Nn=1, T )
6: Wopt ←OPTIMALALLOCATION(T , ∪Cj∈P(k)b(k, Cj))
7: end if
8: return Wopt

9: end function

V1

V2

V3
g0
g1
g2
g3

g4
g5
g6
g7
g8

g9
g10

(a) Vehicle V1 is overtaking vehicle V2. Vehicle V1 requests cells
{g0, . . . , g10}, vehicle V3 requests cells {g0, . . . , g8}, and vehicle V2

requests cells {g9, g10}.

{g0, . . . , g10}

{g0, . . . , g8}

{g0, . . . , g7}

{g0, . . . , g3}

{g0, g1}

g0 g1

{g2, g3}

g2 g3

{g4, . . . , g7}

{g4, g5}

g4 g5

{g6, g7}

g6 g7

g8

{g9, g10}

g9 g10

1) Root 2) Connected Components
3) Road Network 4) Longitudinal Coverage
5) Lateral Coverage 6) Singletons

(b) Possible tree structure using the decomposition strategy as explained in
Sec. IV-B.1.

Fig. 2. Exemplary grouping of conflicting cells according to Sec. IV-B.1.

problem (1) substantially. We further motivate the hierarchi-
cal structure of admissible packages through the following
observations: we are interested in negotiating connected re-
gions on the road surface to keep the driving area of vehicles
from becoming disjointed, which complicates trajectory plan-
ning. Moreover, vehicles have to obey traffic regulations and
restrictions imposed by the road network; thus, it is plausible
to cluster conflicting cells according to lanes. Since using a
tree structure facilitates the optimal allocation of the offered
packages in O(|GC(k)|2) time complexity, it is possible to
partition the road surface fine-granularly and split packages
such that they solely contain single assets. The restriction
that each level of the tree contains only disjoint packages
Cj can lead to a mismatch in offered packages and desired
packages, but overall, the aforementioned advantages of the

hierarchical structuring of admissible packages outweigh a
potential mismatch in offered and desired packages. We
therefore recommend applying the strategy below to group
conflicting cells (see Fig. 2; the numbering below coincides
with the legend in Fig. 2b):

1) Root: The root node consists of all conflicting cells
GC(k).

2) Connected Components: The connected components
are aggregated into packages Cj .

3) Road Network: Packages of cells Cj are grouped
according to the lanes of the road network. If a cell
cannot be uniquely assigned to a lane, we categorize
the cell randomly (see Fig. 2a, cell g8).

4) Longitudinal Spatial Coverage: The packages are de-
composed in longitudinal direction so that each new
package does not exceed a maximum longitudinal
spatial coverage.

5) Lateral Spatial Coverage: The packages are decom-
posed in lateral direction so that each new package
does not exceed a maximum lateral spatial coverage.

6) Singletons: The packages comprise only singletons.
It should be noted that not all steps 1)–6) have to be executed,
e.g., it is possible to apply 1) and 3) only such that the root
node is split according to the road network.

2) Bids: We do not pose any specific constraint on the
utility function to determine the bids bn(k, Cj) for each
package Cj ∈ P(k) and vehicle Vn at time step k. Moreover,
complementaries (b(k, {gi, gl}) > b(k, {gi}) + b(k, {gl}) for
i 6= l) and substitutes [21] (b(k, {gi, gl}) < b(k, {gi}) +
b(k, {gl}) for i 6= l) can be modeled. We use a common
utility function to all vehicles in this paper to avoid that
one vehicle could continuously outbid others due to different
scales and weights used to calculate bn(k, Cj). A conceivable
countermeasure is the introduction of a pricing mechanism,
which is the subject of future research. Furthermore, a
vehicle Vn can only bid on a package Cj iff it contains at
least one reachable cell of Vn: ∃gi ∈ Cj : gi ∈ hn(Bn(k)).

3) Optimal Allocation: The algorithm for finding the
optimal allocation of goods Cj ∈ P(k) proposed by Rothkopf
et al. [20] is recapitulated in Alg. 3: starting from the
deepest leaf Cmax in the tree (Alg. 3, line 6), we determine
its parent node Cparent (Alg. 3, line 7) and the children S
of Cparent (Alg. 3, line 8). Next, we compare the revenue
rev(S) =

∑
Cs∈S b(k, Cs) of all children of Cparent with bid

b(k, Cparent) (Alg. 3, lines 10-15):
• if b(k, Cparent) > rev(S) holds, sets Cs ∈ S cannot be

part of the optimal allocation (Alg. 3, lines 10 - 12).
• if b(k, Cparent) ≤ rev(S) holds, Cparent is excluded

from the optimal assignment (Alg. 3, lines 13 - 15).
The children S are removed from the tree T (Alg. 3, line 5),
and the process is repeated until Cparent becomes the root
node (Alg. 3, line 16): Cparent = GC(k).

C. Multiple Runs for Refinement

The negotiated driving corridors can be improved through
multiple runs of Alg. 1. The reachable set computation is
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Algorithm 3 Optimal Allocation of Packages [20].
1: function OPTIMALALLOCATION(T , ∪Cj∈P(k)b(k, Cj))
2: T .INITIALIZE( ) . Set Wopt(Cl) = {Cl} for every leaf Cl.
3: S ← ∅
4: do
5: T .REMOVENODES(S)
6: Cmax ← T .GETDEEPESTLEAF( )
7: Cparent ← Cmax.GETPARENT( )
8: S ← Cparent.GETCHILDREN( )
9: rev(S)←

∑
Cs∈S b(k, Cs)

10: if b(k, Cparent) > rev(S) then
11: Wopt(Cparent)← {Cparent}
12: else
13: b(k, Cparent)← rev(S)
14: Wopt(Cparent)← ∪Cs∈SWopt(Cs)
15: end if
16: while Cparent 6= GC(k)
17: return Wopt(GC(k))
18: end function

based on the results of the previous time step only. Thus,
there might exist states in BNn(k) from which a trajectory
cannot be continued without leaving the negotiated driving
corridor BNn(i) in later time steps i ∈ {k+1, . . . , T} [23]. We
are able to remove a subset of those states by running Alg. 1
multiple times, since information about future time steps
from a previous run can be incorporated into the reachable
set computation. The interested reader is referred to [23] for
further information.

V. UTILITY FUNCTION AND TIE-BREAKING RULE

This section introduces the applied utility function (see
Sec. IV-B.2) and tie-breaking rule (see Sec. II) used in this
paper. Please note that both the utility function and tie-
breaking rule can be exchanged by other rules.

A. Utility Function

Let us introduce:
• the conflict-free reachable set: RCF

n (k) = {xn(k) ∈
Bn(k)|hn({xn(k)}) ∩ GC(k) = ∅};

• the conflicting reachable set depending on package Cj
that would be lost if package Cj is not assigned to
vehicle Vn: RC

n(k, Cj) = {xn(k) ∈ Bn(k)|hn({xn(k)}) ∩
Cj 6= ∅};

• the assigned reachable set which Vn can keep besides
RCF
n (k) given that package Cj is assigned to vehicle

Vn: RA
n(k, Cj) = {xn(k) ∈ Bn(k) \ RCF

n (k)|hn({xn(k)}) ∩
(GC(k) \ Cj) = ∅}.

The above sets are the basis for computing the utility of Cj
for each vehicle Vn to determine bn(k, Cj). For computa-
tional reasons, we approximate sets RCF

n (k), RC
n(k, Cj), and

RA
n(k, Cj) with the union of base sets (see Sec. IV-A.2); the

approximated sets are denoted with BCFn (k) := ∪iBCF(i)n (k),
BCn(k, Cj) := ∪iBC(i)n (k), and BAn(k, Cj) := ∪iBA(i)n (k),
respectively. On the one hand, we take the objectives of
cooperative vehicles Vn into account by applying utility
function UR

n(k, Cj) in the regular mode; on the other hand, we
introduce utility function US

n(k, Cj) to prevent the complete

loss of the reachable set Bn(k) of vehicles Vn in the survival
mode, since this would correspond to an empty driving
corridor for trajectory planning:

bn(k, Cj) =

{
UR
n(k, Cj), area(BCFn (k)) > A,

US
n(k, Cj), area(BCFn (k)) ≤ A,

(7)

where A is an adjustable threshold and area(�) returns
the size of the drivable area of sets �. As a reminder, the
reachable set projected onto the position domain is referred
to as the drivable area (see Sec. IV-A.2). Below, we elaborate
UR
n(k, Cj) and US

n(k, Cj) applied in the regular and survival
mode, respectively.

1) Regular Mode: If the conflict-free drivable area of
vehicle Vn is greater than A, we apply UR

n(k, Cj), which
computes the ratio of the utility of the reachable set BAn(k, Cj)
obtained through package Cj and the utility of the conflict-
free reachable set BCFn (k):

UR
n =

∑
i

(
uvel(BA(i)

n (k))+urange(BA(i)
n (k))

)
·area

(
BA(i)

n (k)

)
∑
i

(
uvel(BCF(i)

n (k))+urange(BCF(i)
n (k))

)
·area

(
BCF(i)

n (k)

) ,
with partial utility functions uvel and urange presented next.

In order to increase traffic flow, we reward an increase in
longitudinal speed from the previous time step k − 1 to the
current time step k:

uvel(B(i)) = y

(
vmaxζ(B(i))− vmaxζ(BNn(k − 1))

an,ζn ·∆t

)
,

where vmaxζ(�) returns the maximum velocity in ζn-
direction of sets �. We use the generalized logistic function
y to scale the utility between (0, 1].

Furthermore, we evaluate the covered distance in longitu-
dinal direction from time step k−1 to k, since the cooperative
vehicles should move forward along their reference path:

urange(B(i)) = y

(
pmaxζ(B(i))− pmaxζ(BNn(k − 1))

vn,ζn ·∆t+ 1
2 · an,ζn ·∆t2

)
,

where pmaxζ(�) returns the maximum longitudinal position
of sets �. Again, we use the generalized logistic function y
to scale the utility between (0, 1].

2) Survival Mode: We introduce two countermeasures
to avoid that the reachable sets of vehicles vanish at a
certain time instance: 1) if vehicle Vn has a reachable cell
gi ∈ Cj and area(BCFn (k)) ≤ A, no other vehicle Vm with
area(BCFm(k)) > A is allowed to bid on package Cj ; 2) we
switch the utility function as shown in (7) to:

US
n(k, Cj) =

area(BCn(k, Cj))
area(Bn(k))

.

B. Tie-Breaking

Tie-breaking must be performed when multiple vehicles
Vn bid bn(k, Cj) = b(k, Cj), since this means that several
optimal allocations of package Cj exist. In this paper, we
accept the bid of the vehicle with the largest conflicting
drivable area area(Bn(k) \ BCFn (k)); if there is a tie again,
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V1

V2

(a) Vehicles V1 and V2 at time step k = 0 and their planned trajectories
within the negotiated road areas of the second run.

negotiated drivable
area of V2

negotiated drivable
area of V1

(b) Negotiated drivable areas of vehicles V1 and V2 at time step k = 55
(first run).

Fig. 3. Scenario I: Roundabout. The driving direction is indicated by the white arrows.

TABLE I
PARAMETERS FOR NUMERICAL EXPERIMENTS.

parameter scenario identifier

symbol unit I II III IV

∆t [s] 0.1 0.1 0.1 0.1
T / 55 50 45 34
vn,ζn [m/s] 15.0 28.0 13.0 18.0
vn,ζn [m/s] 4.0 0.0 0.0 0.0
vn,ηn [m/s] 4.0 6.0 6.0 4.0
vn,ηn [m/s] −4.0 −6.0 −6.0 −4.0

an,ζn [m/s2] 2.5 4.0 4.5 2.0
an,ηn [m/s2] 3.0 6.0 4.5 6.5
A [m2] 0.0 0.0 0.0 0.0
rn [m] 1.3 1.2 1.2 1.3

we select the bid randomly.

VI. EVALUATION

We demonstrate the universal applicability of our algo-
rithm on four different scenarios. The selected parameters
for each scenario can be found in Tab. I and are similar for
all cooperative vehicles involved in a traffic scene. Please
note that we only depict the drivable area with reference
to the vehicle’s center of gravity in the following figures to
illustrate the available solution space for trajectory planning.
To demonstrate that the negotiated road areas can be used for
multi-vehicle trajectory planning, we show our first results
for each scenario. However, trajectory planning in reachable
sets is an ongoing research project and out of scope for this
paper.

A. Scenario I: Roundabout

We start with the deliberately simple scenario C-
DEU B471-2 1:2018a from the CommonRoad1 benchmark
collection [24], where two communicating vehicles V1 and
V2 cooperate such that vehicle V2 can safely enter the
roundabout (see Fig. 3a). Vehicle V1 plans to take the first
exit, while vehicle V2 aims to take the second exit. A regular
grid with tile size 0.5m×0.5m in the Cartesian reference
frame F0 is employed.

Fig. 4 shows the projected reachable sets Bn(18) of both
vehicles and the corresponding conflicting grid cells GC(18)

1http://commonroad.in.tum.de

projected B2(18)

projected B1(18)

GC(18) projected BN2(18)

projected BN1(18)

Fig. 4. (Left) Projected reachable sets Bn(18) of V1 and V2 and conflicting
cells GC(18) at time step k = 18; (Right) Projected negotiated reachable
sets BNn(18).

at time step k = 18 (left) and illustrates the projected
negotiated reachable sets BNn(18) (right). Vehicle V1 accel-
erates and passes vehicle V2 which enters the roundabout
afterwards. The negotiated drivable areas of the final time
step are depicted in Fig. 3b.

B. Scenario II: Urban Road

In this scenario (CommonRoad-ID: C-DEU B471-1 1 T-
1:2018a), vehicle V1 cooperates with the oncoming vehicle
V2 to evade the static obstacle in its lane (see Fig. 5). In
Fig. 5, we illustrate the result of the first and second run
of the algorithm: vehicle V1 swerves as soon as vehicle V2
passes. At time step k = 12, we are able to improve the
negotiated drivable area by running Alg. 1 a second time,
since states of the driving corridor of vehicle V1 leading to
a collision with the static obstacle or with vehicle V2 in a
future time step are removed. Additionally, Fig. 5 visualizes
the planned trajectories of vehicles V1 and V2 using the
negotiated drivable areas of the second run.

C. Scenario III: Crossing

Following the idea of Dresner et al. [4], we allow au-
tonomous vehicles to enter an intersection whenever it is
possible. As can be seen in Fig. 6, there are two cooperating
vehicles V1 and V2; vehicle V1 intends to turn left, while
vehicle V2 plans to move straight ahead. We show the results
after the first run of Alg. 1 in Fig. 6 in the left column. Two
driving strategies occur for vehicle V2: V2 can either pass
through the intersection before vehicle V1 (see Fig. 6, left
column, k = 30) or it can stop and wait until V1 has the
left the intersection (see Fig. 6, left column, k = 45). In this
scenario, it becomes apparent that our set-based method does
not only detect different cooperative maneuver options, but
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k = 0

V1

V2

static obstacle
First run:

k = 12
negotiated drivable area of V2

negotiated drivable area of V1

dynamic obstacle

k = 30

k = 50

Second run:

k = 12

k = 30

k = 50

Planned trajectories:

k = 0

Fig. 5. Scenario II: Urban Road.

also facilitates selecting high-level plans. Driving corridors
without bottlenecks are preferred, since they are more robust
in terms of unpredicted changes in the environment. In this
scenario, crossing the intersection can irritate human drivers
and may lead to a collision, since the negotiated driving
corridor for this maneuver becomes temporally tight. As
illustrated in Fig. 6, the second maneuver variant—stopping
at the intersection—is preferred. We therefore restrict the
reachable set of V2 to stopping at the intersection for the
second run of Alg. 1 (see Sec. IV-C). However, we do not
incorporate information from the first run of Alg. 1 for the
reachable set computation of vehicle V1 during the second
run in order to fully utilize the released space of vehicle V2
(see Fig. 6, right column).

D. Scenario IV: Highway

We apply our algorithm on the mixed-traffic scenario C-
NGSIM US101 1:2017a from the CommonRoad benchmark
collection. We coordinate the motion of four cooperating
vehicles and restrict their movement to five lanes excluding
the highway on-ramp. As can be seen, our method is able
to allocate road areas for cooperative vehicles in challeng-
ing traffic situations with many non-communicating traffic
participants.

VII. CONCLUSION

We present an approach for negotiating road areas re-
quested by multiple vehicles to determine individual driving

k = 0

V1

V2

dynamic obstacle

First run:
k = 20

negotiated drivable
area of V1

negotiated
drivable

area of V2

k = 30

k = 45

Planned trajectories:

Second run:
k = 20

k = 30

k = 45

Fig. 6. Scenario III: Crossing. The driving direction is indicated by the
white arrows.

corridors for these vehicles. The optimal allocation of offered
packages can be performed with polynomial runtime com-
plexity. Since available combinations of assets are matched to
the vehicles valuing them the most, the conflict resolution is
transparent. This is particularly important when considering
legal issues that may arise if sub-optimality is introduced. Fu-
ture research will focus on the evaluation of different utility
functions to determine the bids of the cooperative vehicles.
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k = 0

V1

V2

V3

V4

dynamic obstacle

k = 14

negotiated drivable area of V2
negotiated drivable area of V1

negotiated drivable area of V3

negotiated drivable area of V4k = 18

k = 34

Planned trajectories:
k = 0

Fig. 7. Scenario IV: Highway. The driving direction is indicated by the
white arrows.

Furthermore, we plan to develop a pricing mechanism for
compensating vehicles handing over driving areas.

REFERENCES

[1] K. Dresner and P. Stone, “Multiagent traffic management: a
reservation-based intersection control mechanism,” in Proceedings of
the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, 2004, pp. 530–537.

[2] ——, “Turning the corner: improved intersection control for au-
tonomous vehicles,” in IEEE Intelligent Vehicles Symposium, 2005,
pp. 423–428.

[3] ——, “Multiagent traffic management: an improved intersection con-
trol mechanism,” in Proceedings of the 4th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, 2005, pp. 471–
477.

[4] ——, “Human-usable and emergency vehicle-aware control policies
for autonomous intersection management,” in The 4th Workshop on
Agents in Traffic and Transportation, 2006, pp. 17–25.

[5] G. Sharon and P. Stone, “A protocol for mixed autonomous and
human-operated vehicles at intersections,” in Autonomous Agents and
Multiagent Systems, 2017, pp. 151–167.

[6] M. Vasirani and S. Ossowski, “A market-inspired approach for in-
tersection management in urban road traffic networks,” Journal of
Artificial Intelligence Research, vol. 43, pp. 621–659, 2012.

[7] D. Carlino, S. D. Boyles, and P. Stone, “Auction-based autonomous
intersection management,” in 16th International IEEE Conference on
Intelligent Transportation Systems, 2013, pp. 529–534.
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file format for the precise description of traffic scenarios using XML, thus ensuring platform-
independence.
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CommonRoad: Composable Benchmarks for Motion Planning on Roads

Matthias Althoff, Markus Koschi, and Stefanie Manzinger

Abstract— Numerical experiments for motion planning of
road vehicles require numerous components: vehicle dynamics,
a road network, static obstacles, dynamic obstacles and their
movement over time, goal regions, a cost function, etc. Providing
a description of the numerical experiment precise enough
to reproduce it might require several pages of information.
Thus, only key aspects are typically described in scientific
publications, making it impossible to reproduce results—yet, re-
producibility is an important asset of good science. Composable
benchmarks for motion planning on roads (CommonRoad)
are proposed so that numerical experiments are fully defined
by a unique ID; all information required to reconstruct the
experiment can be found on the CommonRoad website. Each
benchmark is composed by a vehicle model, a cost function,
and a scenario (including goals and constraints). The scenarios
are partly recorded from real traffic and partly hand-crafted to
create dangerous situations. We hope that CommonRoad saves
researchers time since one does not have to search for realistic
parameters of vehicle dynamics or realistic traffic situations,
yet provides the freedom to compose a benchmark that fits
one’s needs.

I. INTRODUCTION

Reproducibility of results is a cornerstone of science [1],

[2]. One obstacle towards reproducibility in motion planning

of road vehicles is that details of the experimental results are

often not fully provided—some reasons are page limitations

of publications, an overwhelming number of required details,

or simply because some details are taken for granted. Pro-

viding detailed benchmarks would help in this regard and

also simplify comparing different planning methods.

First attempts to improve reproducibility and compara-

bility of motion planning algorithms have been made in

the robotics community, but mostly for (mobile) robotic

manipulators and not for motion planning in the automotive

sector. This work provides the first benchmark collection

for motion planning on roads, which specifies in depth the

motion planning problem consisting of initial state, goal

region, road network, static and dynamic obstacles, and the

model of the ego vehicle (vehicle for which motion planning

is conducted). Before highlighting the main features of Com-

monRoad, we present a literature review that is categorized

into benchmark problems, datasets, and motion planning

libraries. Most previous work in robotic motion planning

focused on providing libraries that facilitate benchmarking,

*This work was supported by the Deutsche Forschungsgemeinschaft
(German Research Foundation) within the Priority Programme SPP 1835
Cooperative Interacting Automobiles (grant number: AL 1185/4-1) and by
the BMW Group within the Car@TUM project.

All authors have equally contributed to this work and are
with Faculty of Informatics, Technische Universität München,
85748 Garching, Germany {althoff, markus.koschi,
stefanie.manzinger}@tum.de

without providing a set of benchmark problems in a standard-

ized form. We address this problem by providing composable

benchmarks that can be referenced to with a unique ID. Our

proposed collection also facilitates benchmarking, but this

paper does not provide performance metrics—this should be

better determined by workshops to reach consensus.

a) Benchmarks: We would first like to note that we

only reference benchmarks that are still publicly available.

The need of benchmarks in robotics is formulated in [3],

but this early work does not provide a specific benchmark.

Several European projects for benchmarking in robotics have

been conducted in the 2000s (e.g. [4]–[6]), but none has

considered motion planning on roads. Detailed benchmarks

have been developed in particular for robotic grasping [7], [8]

and for robotic manipulators with a focus on indoor human

environments [9]. More abstract benchmark problems for

motion planning are provided by the Texas A&M University1

and by Rice University2.

b) Datasets: While no benchmarks for motion planning

on roads exist, recordings of vehicle movements are avail-

able; however, none of them is a benchmark problem since

initial state, goal regions, and a dynamic vehicle model are

missing. Furthermore, there exists no data format commonly

used by different research groups. One of the most popular

datasets of recorded traffic participants is from the Next

Generation Simulation (NGSIM) program [10], [11]. Other

datasets exist, but they have not recorded all relevant vehicles

in a common reference frame, see e.g. [12]. Another class

of works provides results on recorded data, but the data has

never been or is no longer publicly available, e.g. [13]–[15].

c) Motion planning libraries: One of the most suc-

cessful motion planning libraries in robotics is the Open

Motion Planning Library (OMPL) [16], which implements

many of the most important sampling-based approaches.

The OMPL has also been integrated into MoveIt! [17],

but remains to be a stand-alone software. MoveIt! itself is

integrated into the Robot Operating System (ROS) [18]. Cur-

rently, further infrastructure to facilitate benchmarking with

OMPL is developed [19]. Earlier libraries for sampling-based

motion planning are the Online, Open-source, Programming

System for Motion Planning (OOPSMP ) [20] and the Open

Robotics and Animation Virtual Environment (OpenRAVE)

[21] with similar goals as OMPL. Both libraries contain some

benchmark problems (none for automated driving), but their

focus is on the implementation of planning algorithms. A

library implementing graph-based search is the Search-Based

1parasol.tamu.edu/groups/amatogroup/benchmarks
2plannerarena.org
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Planning Library (SBPL)3, which is useful if one e.g. uses

motion primitives that span a search tree [22]. Besides graph-

based techniques, there also exists the Covariant Hamilto-

nian Optimization for Motion Planning (CHOMP) library

for gradient-based optimization techniques [23].

d) Automotive benchmarks beyond motion planning:

One of the most successful automotive benchmarks is the

KITTI benchmark targeting computer vision [24]. Another

important aspect is simultaneous localization and mapping;

the OpenSLAM4 project and the Radish project5 host a

collection of benchmarks and libraries for SLAM.

e) Novelty and key features: CommonRoad is a bench-

mark collection for motion planning of road vehicles (avail-

able at commonroad.in.tum.de) with the following features:

• Reproducibility/unambiguity: All information re-

quired to reproduce the results of a motion planner

is provided in an unambiguous way and explained by

manuals on our website.

• Composability: Our benchmarks are composed of ve-

hicle models, cost functions, and scenarios (including

goals and constraints). All components are carefully

chosen to easily combine and interchange them.

• Representativeness: Our benchmark problems contain

recorded traffic to faithfully represent real traffic and

hand-crafted problems since most recorded traffic situ-

ations are not critical/dangerous.

• Portability: We use XML to describe our scenarios,

which is platform-independent. We also provide exe-

cutable vehicle models implemented in MATLAB and

Python, which are also platform-independent.

• Scalability: Our benchmark examples range from sim-

ple static scenarios with a few obstacles and a large

driving corridor (i.e. region where collisions cannot

take place) to complex scenarios with many dynamic

obstacles and a small driving corridor.

• Openness: All benchmarks are freely available from

our website with the possibility to suggest new ones.

• Independence: Our benchmarks are independent from

planning libraries and our scenario representation could

serve as an interchange format between other tools.

II. BENCHMARK COMPOSITION AND PLANNING

PROBLEM

As previously mentioned, we compose benchmarks using

vehicle models, cost functions, and scenarios (including

goals and constraints). This modularity makes it easy to

generate many benchmarks from a smaller set of components

and also simplifies comparing the effects of vehicle models

or cost functions by only changing those components.

A. Benchmark Composition

Let us introduce with M, C, S, and B the respective

IDs of the model, the cost function, the scenario, and the

3wiki.ros.org/sbpl
4www.openslam.org
5radish.sourceforge.net

benchmark. The benchmark ID is constructed by separating

partial IDs by colons in the following order:

B = M:C:S.

For instance, for M=PM2, C=JB1, S=OV001, the bench-

mark ID is B = PM2:JB1:OV001. If using one’s own com-

ponent is preferred, one can use the ID IND (for individual).

For instance, if one uses an individual cost function for

the previous example, the ID becomes PM2:IND:OV001.

If one prefers to build upon an existing component, which

is modified, the new ID should have M- as a prefix. After

modifying the model of the first example, the new ID is

M-PM2:JB1:OV001 (of course, the modification should be

described in detail). In case a collaborative planning bench-

mark is composed, we list the models and cost functions for

n controllable traffic participants by n-dimensional lists:

B = [M1,. . . ,Mn]:[C1,. . . ,Cn]:C-S,

where the index refers to the vehicle and a collabora-

tive scenario is indicated by using the prefix C-, where

M- should be used first if both are required. The i-th

model and cost function corresponds to the i-th ego vehicle

specified in the scenario XML file as introduced later in

Sec. V-C. If only one model and/or cost function is used,

it is assumed that all controlled vehicles use the same one.

For instance, the benchmark ID for M1=PM1, C1=JB1,

M2=PM3, C2=JB1, M3=ST2, C3=SA1, and S=C-OV011, is

B = [PM1,PM3,ST2]:[JB1,JB1,SA1]:C-OV011.

B. Motion Planning Problem

The proposed benchmarks codify an optimization prob-

lem whose solution is the motion plan. Let us denote by

fM (x(t), u(t)) the right hand side of the state space model

of vehicle model M so that

ẋ(t) = fM (x(t), u(t)), (1)

where x ∈ R
n is the state vector and u ∈ R

m is the

input vector. We further require the initial state x0,S ∈ R
n

(x(t0) = x0,S) provided by scenario S, the initial time t0,

and the final time tf . More details on the models can be

found in Sec. III. The cost function JC of ID C consisting

of terminal costs ΦC and running costs LC is

JC(x(t), u(t), t0, tf )

= ΦC(x(t0), t0, x(tf ), tf ) +

∫ tf

t0

LC(x(t), u(t), t) dt,

which is detailed in Sec. IV. We denote the time-varying, free

drivable space on the road surface as WS,free(t) ⊂ R
2 and

introduce O(x(t)) : Rn → P (R2) (P () returns the power

set) as the function that returns the occupancy of a vehicle

given its state. A possible solution has to ensure that the

occupancy of the vehicle is in the free space (∀t ∈ [t0, tf ] :
O(x(t)) ∈ WS,free(t)) and respects additional constraints

gS(x(t), u(t), t) ≤ 0 provided by scenario S, such as speed

limits or other traffic rules [25]. Equality constraints can be
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constructed from inequality constraints (e.g. x ≤ 0 ∧ −x ≤
0 ≡ x = 0). Let us further denote the goal region GS ⊂ R

n

of scenario S, which can be disjoint sets (see Sec. V-C). As

soon as x(t) ∈ GS at time t = tf , a feasible solution is found.

After introducing an input trajectory as u(·) (in contrast to

a value u(t) at time t), we can finally formulate the motion

planning problem as finding

u∗(·) = argmin
u(·)

JC(x(t), u(t), t0, tf ) (2)

subject to

ẋ(t) = fM (x(t), u(t)), O(x(t)) ∈ WS,free(t),

gS(x(t), u(t), t) ≤ 0, x(t0) = x0,S , x(tf ) ∈ GS .

Associated with the optimal input trajectory u∗(·) in (2)

is an optimal state trajectory x∗(·) that can be obtained by a

forward simulation of (1). Directly solving (2) is referred to

as trajectory planning (see [26, Sec. 4.]). An alternative is to

first find a path that the vehicle should follow for which an

optimal velocity profile is computed, which we refer to as

path planning with subsequent velocity optimization (see [26,

Sec. 4.]). Both techniques can be used to solve our proposed

benchmarks.

III. VEHICLE MODELS

This section presents models for vehicle dynamics ranging

from simple to complex. For each model it is assumed that

underlying controllers exist that can realize a commanded

acceleration (positive and negative within given limits). For

adaptive cruise control in particular, numerous works already

exist that realize a commanded acceleration, see e.g. [27],

[28]. The effects of engine characteristics in terms of fuel

consumption can be considered in the cost function (see

Sec. IV).

The lateral dynamics, however, cannot be abstracted away

to the same extent using controllers, especially when con-

straints such as the danger of roll-over must be considered

in extreme maneuvers [29], [30]. For this reason, our models

consider increasingly complex lateral vehicle dynamics and

tire models: point-mass model, kinematic single-track model,

single-track model, and a multi-body model. Some details

of the first two models are presented subsequently, whereas

due to space restrictions, the full detailed description of

the single-track model and the multi-body model can be

found in our vehicle model documentation on our website.

Executable MATLAB and Python implementations of all

presented models are also available. We have not included

Dubin or Reeds-Shepp cars since they require changing the

steering angle infinitely fast (see e.g. [31]).

The model IDs are constructed by first choosing the

model type (e.g. ST for single-track) followed by a number,

which refers to the parameterization in the vehicle model

documentation of our repository.

A. Point-Mass Model (M=PM)

The point-mass model is the simplest model that is

commonly used for motion planning, see e.g. [32], [33].

This model abstracts the vehicle as a point mass whose

absolute acceleration is bounded (Kamm’s circle). Let us

introduce � as the placeholder for a variable and �x and

�y to denote the value of the corresponding variable in

x and y direction (world coordinates), respectively. After

further introducing position s, acceleration a, and maximum

absolute acceleration amax, the dynamics is

s̈x = ax, s̈y = ay,
√

a2x + a2y ≤ amax.

The point-mass model ignores the minimum turning circle,

which is considered next in the kinematic single-track model.

B. Kinematic Single-Track Model (M=KS)

The kinematic single-track model (also known as the

kinematic bicycle model) considers only two wheels, where

the front and rear wheel pairs are each lumped into one

wheel, because the roll dynamics is neglected (see Fig. 1

and [34, Sec. 2.2]). This also explains the term single-track

model. Tire slip is not considered, but the kinematic single-

track model can be used when the vehicle does not operate

close to its physical capabilities [26], [35]. For instance,

when planning a parking maneuver, tire slip is not important,

but the point-mass model would not be sufficient since the

non-holonomic behavior and, in particular, the minimum

turning radius would not be considered.

In addition to the variables already introduced, we also

require the velocity of the steering angle vδ, the steering

angle δ, the heading Ψ, and the parameter l describing the

wheelbase as well as the parameter vS describing the velocity

above which the engine power is limiting maximum positive

acceleration rather than maximum tire forces (see Fig. 1).

We further denote by � the minimum possible value, by �

the maximum possible value, by �lat the value of a variable

in lateral direction, and by �long the value in longitudinal

direction (vehicle-fixed coordinates). The differential equa-

tions of the kinematic single-track model as defined in this

work are

δ̇ = vδ, Ψ̇ =
v

l
tan(δ), v̇ = along,

ṡx = v cos(Ψ), ṡy = v sin(Ψ),

under consideration of the constraints

vδ ∈ [vδ, vδ], δ ∈ [δ, δ], v ∈ [v, v], (3)

along ∈ [−amax, a], a =

{

amax
vS
v

for v > vS ,

amax otherwise,
(4)

√

a2long + (v Ψ̇)2 ≤ amax (alat = v Ψ̇). (5)

Constraint (3) considers that the steering velocity, the steer-

ing angle, and the vehicle velocity are bounded. Limited en-

gine power and braking power as detailed in [36, Sec. III.B]

are considered by (4). Finally, as in the point-mass model,

constraint (5) models Kamm’s circle.

Note that kinematic single-track models differ slightly in

publications, depending on whether one considers that 1)

the steering angle or the steering velocity is an input, 2) the
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vehicle velocity or the vehicle acceleration is an input, or

3) the front or rear wheel is the reference point (here: rear

wheel, see Fig. 1). For instance, in [26, eq. (8)], the vehicle

velocity and the steering velocity are inputs. Additionally,

other works do not provide all the constraints of our model

(which can be easily removed, but a removal should be stated

since this simplifies motion planning).

C. Single-Track Model (M=ST)

The natural extension of the kinematic single-track model

is the single-track model (also known as the bicycle model),

which considers tire slip [34, Sec. 2.3] influencing the slip

angle β, which is illustrated in Fig. 1 as the angle between the

velocity vector v and the vehicle orientation Ψ. Works that

perform planning of evasive maneuvers closer to physical

limits require the single-track model, see e.g. [37], [38].

We additionally consider the load transfer of the vehicle

due to longitudinal acceleration along (neglecting suspension

dynamics). Due to space limitations, we refer the reader to

our vehicle model documentation for a detailed description

and derivation of the single-track model.

Since the single-track model uses a linear relationship

between slip angle and tire force (thus ignoring saturation

effects), constraint (5) is important for limiting possible tire

forces. Please note that in contrast to this work, other works

often only consider constant velocity when referring to a

single-track model (see e.g. [34, Sec. 2.3]). Also, the weight

transfer between the front and rear axle is often neglected in

single-track models (see e.g. [37]).

reference point [sx, sy]T for

single-track model (center of mass)

Ψ

β

lreference point [sx, sy]T for kinematic

single-track model (rear wheel)

δ

x

y

v

Fig. 1. Combined illustration of kinematic/standard single-track model.

D. Multi-Body Model (M=MB)

Although the previously introduced single-track model al-

ready considers many important effects of vehicle dynamics,

it does not consider the vertical load of all 4 wheels due

to roll, pitch, and yaw, their individual spin and slip, and

nonlinear tire dynamics. An example of a multi-body model

used for motion planning of a road vehicle can be found

in [39]. Although many commercial multi-body models for

vehicle dynamics exist6, those models are proprietary and

thus not appropriate for a benchmark that requires public

accessibility. Our multi-body model is taken out of [40,

Appendix A], which is one of few detailed and accessible

multi-body dynamics descriptions. Due to the complexity

of the multi-body model, we refer to the vehicle model

documentation of our repository and only mention the main

features.

6www.carsim.com, www.tesis-dynaware.com, www.mscsoftware.com

The multi-body dynamics is described by 3 masses: The

unsprung mass and the sprung masses of the front and rear

axles. The forces between these masses are described by the

dynamics of the suspension and the tire model. We consider

all suspension forces in [40, Appendix A] originating from

springs, dampers, and anti-roll bars. For the tire dynamics

we use the PAC2002 Magic-Formula tire model, which is

widely used in industry [41]. Rewriting all equations as a

state space model yields 29 state variables.

E. Numerical Experiments and Interchangeability of Models

In order to facilitate switching between different models

and to compare results as done in this subsection, we describe

in our vehicle model documentation how parameter sets

and initial states can be converted in the best possible

way between models. There, we further provide state-space

formats of all models so that it is easier to build one’s own

executable models in addition to the ones in MATLAB and

Python.

To illustrate better differences between models, we briefly

present numerical experiments for a BMW 320i (parameter

set 2 in vehicle model documentation). The duration of each

experiment is 1 s, and the initial velocity is 15 m/s; further

details of the experiments can be found in the vehicle model

documentation. First, we compare the kinematic single-track

model, the single-track model, and the multi-body model

when driving a left curve. It can be easily seen in Fig. 2(a)

that the kinematic single-track model realizes the tightest

bend since it does not consider tire slip; the single-track

model is a little wider due to considering tire slip. This effect

is even stronger for the multi-body model since it already

considers saturation of tire forces before constraint (5) is

active. This can be seen even better when comparing the slip

angles of the single-track model and the multi-body model

in Fig. 2(b).

Second, we demonstrate understeering and oversteering

(see [34, Sec. 3.3]) for the multi-body model during corner-

ing by braking into the corner (along = −0.7 g, g represents

the gravity constant), coasting (along = 0 g), and heavily

accelerating (along = 0.63 g) the rear-wheel-driven vehicle

(power oversteer) as shown by the slip angle in Fig. 3(a). It

can also be easily observed, by plotting the pitch in Fig. 3(b),

that the vehicle is “diving” during braking while the front

lifts during acceleration.

IV. COST FUNCTIONS

This section proposes standardized cost functions for the

motion planning problem in (2). Analogously to the com-

posability of the benchmarks, we compose different types of

partial cost functions to a single cost function. The partial

cost functions have a unique ID p and the set P contains all

IDs of the proposed partial cost functions. The overall cost

function is obtained by the weighted sum

JC(x(t), u(t), t0, tf ) =
∑

i∈I

wi Ji(x(t), u(t), t0, tf ),

where I ⊂ P contains the IDs of the applied partial cost

functions and wi ∈ R
+ are weights. We first present popular
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Fig. 2. Comparing the kinematic single-track (KS) model, the single-track
(ST) model, and the multi-body (MB) model during cornering.
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Fig. 3. Investigating oversteering and understeering as well as pitch for
the multi-body model.

partial cost functions using the variables already introduced

in Sec. III:

• Time: JT = tf (see [42, eq. 2]).

• Acceleration: JA =
∫ tf

t0
a(t)2 dt (see [43, Sec. III.B]).

• Jerk: JJ =
∫ tf

t0
ȧ(t)2 dt (see [44, Sec. III]).

• Steering angle: JSA =
∫ tf

t0
δ(t)2 dt (see [45]).

• Steering rate: JSR =
∫ tf

t0
vδ(t)

2
dt (see [45]).

• Energy: JE =
∫ tf

t0
P (x(t), u(t)) dt, where

P (x(t), u(t)) is the required power of the engine

for the state x and the input u, which can be obtained

from engine mappings (see [28, Sec. III.B]).

• Yaw rate: JY =
∫ tf
t0

Ψ̇(t)2 dt (see [43, Sec. III.B]).

• Lane center offset: JLC =
∫ tf

t0
d(t)2 dt, where d is the

distance to the lane center or a driving corridor (see [43,

Sec. III.B]).

• Velocity offset: JV =
∫ tf

t0
(vdes(x(t))−v(t))2 dt, where

vdes(x(t)) is the desired velocity for the vehicle state x

(see [43, Sec. III.B]).

• Orientation offset: JO =
∫ tf

t0
(θdes(x(t)) − θ(t))2 dt,

where θdes(x(t)) is the desired orientation for the vehi-

cle state x (see [45]).

• Distance to obstacles: JD =
∫ tf

t0
max(ξ1(t), . . .,

ξo(t)) dt, where o is the number of obstacles, ξi(t) =
e−wdistdi(t), di(t) is the distance of the ego vehicle to

an obstacle, and wdist is an additional required weight

(see [46, eq. 7-8]).

• Path length: JL =
∫ tf

t0
v(t) dt (see [46, Tab. 1]).

• Terminal offset: JTO = d(tf )
2 (see [44, eq. 2]).

• Terminal distance to goal: JTG = dgoal(tf )
2, where

dgoal is the distance to the goal (see [47, Sec. IV.D]).

Let us now introduce a notation for writing the used weights

compactly. We write wT = 0.1, wSA = 0.4, and wY = 0.7 in

short as [(T |0.1), (SA|0.4), (Y |0.7)]. After agreeing that we

use SI units for all variables, this notation uniquely defines

a cost function. Most works, however, do not provide such

weights, so we cannot include their values in the current

version of the benchmark. We therefore hope that once the

structure is fixed, other researchers will contribute their used

weights. Works that published their used weights are listed

below, where the cost function ID is chosen as the initials

of the first authors plus a running number:

• JJB1 from [42, eq. 2]: [(T |1)].
• JSA1 inspired by [48, eq. 2]: [(SA|0.1), (SR|0.1),

(D|105)] (we use fewer parameters).

• JWX1 inspired by [46, Tab. IV]: [(T |10), (V |1),
(A|0.1), (J |0.1), (D|0.1), (LC|10)] (we use fewer

parameters and velocity difference instead of absolute

velocity).

V. SCENARIOS

As a last component, we introduce scenarios specified by

an XML file, which is composed of 1) a formal representa-

tion of the road network, 2) static and dynamic obstacles, and

3) the planning problem of the ego vehicle(s) as shown in

Fig. 4, where details of child elements are omitted for clarity.

In the following subsections we briefly describe each data

format in more detail. A detailed description can be found

in the XML documentation on our website. We also provide

a scenario documentation listing all available scenarios.

A. Road Network

For our benchmarks we use lanelets [49] as atomic,

interconnected, and drivable road segments to represent the

road network. A lanelet is defined by its left and right

bound, where each bound is represented by an array of

points (a polyline), as shown in Fig. 5. We have chosen

lanelets since they are as expressive as other formats, such

as e.g. OpenDRIVE7, yet have a lightweight and extensible

representation. Using lanelets allows the road network to

be modeled as a directed graph, where each node has

four types of outgoing edges: successor, predecessor, adja-

centLeft, and adjacentRight (see Fig. 4; predecessor is not

required but added for implementation reasons). Lanelets

additionally contain traffic regulations, e.g. the speed limit.

All road networks are stored using XML. The XML data

structure of OpenStreetMap8 can represent lanelets in the

WGS84 coordinate frame using references between lanelets

and primitive elements as described in [49]. Since we require

Cartesian coordinates and a compact element structure to also

represent obstacles and the planning problem, we propose

our CommonRoad XML data format as specified on our

website.

7opendrive.org
8openstreetmap.org
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leftBound
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lineMarking
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lineMarking

predecessor (ref to lanelet)

successor (ref to lanelet)

adjacentLeft (ref to lanelet)

adjacentRight (ref to lanelet)

trafficRegulations

obstacle

role: static

type: parkedVehicle/.../unknown

shape

obstacle

role: dynamic

type: car/truck/.../unknown

shape

trajectory

state

obstacle

role: dynamic

type: car/truck/.../unknown

occupancySet

occupancy

obstacle

role: dynamic

type: car/truck/.../unknown

shape

probabilityDistribution

planningProblem

initialState

goalRegion

state

Fig. 4. Structure of the XML files encoding each scenario. For clarity we
do not show all elements of the XML structure.

lanelet (road)

lanelet (rail)

road vehicle
tram

driving
direction

ego vehicle

right bound

left bound

lanelets

Fig. 5. Lanelets of a complex intersection in the city center of Munich
(scenario ID S=GER Muc 1a). Besides roads, tram rails are also modeled
by lanelets.

B. Obstacles

Obstacles are characterized by their role (static/dy-

namic), type (car/truck/bus/bicycle/pedestrian/construction-

Zone/parkedVehicle/priorityVehicle/unknown), shape (rect-

angle/circle/polygon), and movement over time (if the ob-

stacle is dynamic). We have restricted ourself to the shapes

rectangle, circle, and polygon since rectangles are a good

description for cars and trucks, circles are a good description

of pedestrians, and any other two-dimensional shape can be

modeled by a polygon if the number of points approaches

infinity. If motion planners depend on other representations,

one has to enclose the provided shape, see e.g. [50].

occupancy at final time of prediction horizon

trajectory

known behavior unknown behavior stochastic behavior

Fig. 6. Supported occupancy representation of predicted obstacle move-
ments.

When the obstacle is dynamic, we provide three possi-

bilities to describe the movement over time as illustrated in

Fig. 6: known behavior, unknown behavior bounded by sets,

and unknown behavior described by probability distributions.

a) Known behavior: We describe known behavior with

a trajectory, which is modeled as state sequence containing

position and orientation. After defining the reference points

of shapes of obstacles, the occupancy of an obstacle along

a trajectory is uniquely defined: the reference point of a

rectangle and a circle is their geometric center and the

reference point of a polygon is its first point (polygons are

stored as an ordered list of points).

b) Unknown behavior: Occupancy sets that evolve over

time are used to represent unknown behavior [36]. For

occupancy sets we only allow polygons as a representation

that can be obtained from our tool SPOT [51]. Please note

that one can also represent known behavior by evolving

occupancy sets, which do not change their size over time.

c) Unknown stochastic behavior: One can describe

unknown stochastic behavior with probability distributions

of states. Since many different probability distributions are

used (e.g. Gaussian [52], piecewise constant [53], etc.), we

provide a placeholder for probability distributions in our

XML structure. Please note that for stochastic behavior, the

distribution of the state and the dimension of the vehicle

have to be stored separately to correctly compute crash

probabilities [53, Sec. VI]. For this reason, we also store

the shape of obstacles as we do for known behavior.
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Ego vehicle

Obstacle A

Obstacle B

Goal lane

t = 0s t = 0s t = 2.5s t = 2.5s t = 2.5s t = 5.5s t = 5.5s t = 5.5st = 0s

Fig. 7. Solution of our applied trajectory planner for scenario ”NGSIM US101 0”.

C. Planning Problem

Each ego vehicle has an initial state as well as one or

several goal regions. If several goal regions are provided,

we implicitly assume that only one of them has to be

reached, modeling options like overtaking or staying behind a

vehicle. The position of the goal region is defined by a point,

shape (rectangle/circle/polygon), or lanelet. For orientation,

velocity, and time, intervals or exact values can be provided.

Since different vehicle models can be used (see Sec. III), the

shape of the ego vehicle is part of the parameterization of

the model. Despite the fact that the different models have

different state variables, we can initialize all models by the

initial state of a single-track model as described in the vehicle

model documentation.

VI. EXAMPLE

We demonstrate our proposed benchmark collection with

a deliberately simple scenario, which is based on recorded

traffic data from the NGSIM U.S. 101 dataset (07:50 a.m. to

08:05 a.m.). Fig. 7 shows the trajectories of two vehicles and

the initial position of the ego vehicle. We consider all lanes

of the U.S. 101 highway provided by the NGSIM dataset;

however, we only depict three out of six lanes in Fig. 7 for

the sake of clarity. The goal of this scenario is to plan a

lane-change maneuver for the ego vehicle to the left-most

lane within a time horizon of tf ∈ [5.5, 6.0] s (see Fig. 7).

The applied trajectory planner is based on numerical

optimization; for a detailed explanation of the algorithm,

the interested reader is referred to [45, Sec. III.1]. In this

paper, we use a kinematic single-track model as described in

Sec. III based on the parameters KS1 described in the vehicle

model documentation. However, in order to demonstrate how

parameters can be modified, the parameter vS is changed to

vS → ∞. The cost function is chosen as

JSM1(x(t), u(t), t0, tf ) = wAJA + wSAJSA

+ wSRJSR + wLCJLC + wV JV + wOJO,

which minimizes the acceleration (JA), steering effort (JSA

and JSR), the distance and orientation offset to a reference

path (JLC and JO), and the velocity offset (JV ). The chosen

weights are

[(A|50), (SA|50), (SR|50), (LC|1), (V |20), (O|50)].

Since the ego vehicle should perform a lane-change to the

left lane, the reference path is set to the center of the goal

lane for computing the costs JLC and JO. Furthermore, the

optimization horizon is 5.5 s and the desired velocity is

vdes = 25 m/s.

The unique ID of the benchmark is B =
M-KS1:SM1:NGSIM US101 0, with vS → ∞. Our obtained

trajectory has a total cost of JSM1(x(t), u(t), t0, tf ) =
5.69 ·104. In contrast to other work, all details on the vehicle

model, the cost function, and the scenario are precisely

given by our unique ID. Please note that without the ID we

also would not have had the space to present all the details

of the scenario in this work, although it is quite simple.

VII. CONCLUSIONS

To the best of our knowledge, we provide the first set

of composable benchmark problems for motion planning on

roads accessible from commonroad.in.tum.de. While this

paper only provides a rough overview, all details can be

found in the provided documentation on our website. Each

composed benchmark has a unique ID that can be used in

publications or for one’s own organization of benchmarks.

This is demonstrated by an example for which we also

provide a solution. Our benchmark collection contains a mix

of recorded and constructed scenarios as well as scenarios

on highways, on rural roads, and in urban settings. Our

platform-independent repository can be extended by other

researchers and will also be extended by ourselves.
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