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Identification of the ecological preferences of Cyclotella comensis in mountain 
lakes of the northern European Alps
Stefan Ossyssek a, Jürgen Geist a, Petra Wernerb, and Uta Raeder a

aAquatic Systems Biology Unit, Limnological Research Station Iffeldorf, Technical University of Munich, Iffeldorf, Germany; bDiatoms as 
Bioindicators, Berlin, Germany

ABSTRACT
Planktic diatom ecology in the mountain lakes of the northern European Alps has only been studied 
sparsely so far. To fill this knowledge gap, the driving parameters of planktic diatom assemblage 
composition in the euphotic zones of twenty lakes located between 955 and 2,060 m a.s.l. were 
assessed. The mean August water temperature, concentration of major ions, total phosphorous, and 
lake physical parameters explained significant amounts of variation within the diatom assemblages, as 
identified by redundancy analysis and consecutive backward selection. Cyclotella comensis was the most 
abundant taxon in these oligotrophic (<17 total phosphorus µg/L), phosphorous (P) limited, stratified 
study lakes, particularly when the calcium concentration was high (>35 mg/L). The results of generalized 
linear models and generalized additive models further revealed that August surface temperature, 
thermocline depth, and nitrate-N positively and significantly influenced C. comensis growth. These 
results shed light on the interplay between physical and chemical parameters as important drivers of 
C. comensis abundance in temperate mountain lakes. They may aid in the interpretation of past and the 
prediction of future climate-driven changes in planktic diatom composition in these lakes.
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Introduction

Mountain lakes are often remote, and their catch-
ments are therefore less affected by anthropogenic 
factors than the catchments of other lakes. This 
makes mountain lakes good sentinels for the study of 
environmental change (Catalan et al. 2013). Because 
long-term monitoring data on water properties are 
often lacking, temporal changes are usually inferred 
through abiotic and biotic remains in lake sediments 
(Smol, Birks, and Last 2002). In palaeolimnological 
studies, diatoms are well-established indicator organ-
isms (Dixit et al. 1992; Scherer 2002) because their 
silica cell walls are preserved well in lake sediments 
and their characteristic cell structure allows for species 
identification by light microscopy (Scherer 2002). 
Diatoms have previously been used as indicators of 
pH, salinity, nutrient levels, mixing regimes, and light 
conditions (Flower and Battarbee 1983; Lotter et al. 
1997, 1998; Curtis et al. 2009; Winder, Reuter, and 
Schladow 2009; Saros et al. 2016). However, interpre-
tation of palaeolimnological results requires in-depth 

knowledge of the relationships between environmental 
factors and diatom distribution (Smol, Birks, and Last 
2002).

A common approach to lake core analysis is the 
collection of training sets containing surface sediment 
samples with diatom assemblages representing the 
current state of lakes (e.g., Hall and Smol 1992). 
Though this approach has yielded valuable insights, 
it presents some limitations in terms of interpretation, 
because surface sediment samples commonly represent 
several years and many life cycles of diatoms, whereas 
chemical measurements are usually only taken once. 
Hence, the need for better integration of ecological 
information in paleoecology is increasingly acknowl-
edged (Davidson et al. 2018).

Little is known about what controls the abundant 
planktic diatom Cyclotella comensis across ecological 
gradients (Saros and Anderson 2015). This species is 
an important component of many temperate lakes and 
shows pronounced reactions to climate change 
(Rühland, Paterson, and Smol 2008, 2015; Winder, 
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Reuter, and Schladow 2009; Reavie et al. 2017). In 
terms of the distribution of this taxon, the interplay 
between environmental drivers such as lake tempera-
ture (Livingstone and Dokulil 2001), mixing patterns 
(Kraemer et al. 2015), nutrient composition, and tur-
bidity (Whitehead et al. 2009) as well as competition 
with other planktic taxa (Jäger, Diehl, and Schmidt 
2008; Stomp et al. 2011) are important.

Within the northern European Alps, only one compre-
hensive study investigating the ecology of planktic dia-
toms including C. comensis exists (Wunsam, Schmidt, 
and Klee 1995). The lakes sampled in that study were 
mostly located at elevations below 1,500 m a.s.l., although 
many lakes in the region are found at higher elevations. 
Therefore, the present study examined the ecological pre-
ferences of planktic diatom assemblages in twenty moun-
tain lakes, with special emphasis on the ecology of 
C. comensis. This study was designed to survey lakes 
along an elevational gradient from 955 to 2,060 m a.s.l. 
Because the pH and total phosphorous (TP) gradients 
were short, it was hypothesized that changes in water 
temperature would influence planktic diatom assemblage 
composition along with concomitant changes in water 
chemistry (Reavie et al. 2017); that is, nitrate concentra-
tion and turbidity.

Study sites

The twenty study lakes are located in Bavaria (Germany) 
and Tyrol (Austria) along a longitudinal gradient of 
220 km and a latitudinal gradient of 50 km (Figure 1).

Most of the lakes were formed by cirque glaciers. 
Typically, they are small (<7 ha) and shallow (<20 m; 
Table 1), consisting of one main basin. Two of the lakes 
are karstic; they are nearly round and have a smaller 
surface area–to-volume ratio than lakes of glacial origin. 

The elevation of the twenty lakes ranges from 955 to 
2,060 m.a.s.l. (Table 1). Eight of the lakes are located in 
montane forest (750–1,400 m a.s.l.), five are located in 
subalpine forest (1,400–1,700 m a.s.l.), and seven are 
located in alpine meadows and rock basins 
(1,700–2,500 m a.s.l.). In the study region, the montane 
forest is dominated by beech (Fagus sylvatica), spruce 
(Picea abies), and maple (Acer pseudoplatanus), whereas 
the subalpine forest mainly consists of spruce and—at 
the ecotone between forest and bare meadows—pine 
(Pinus mugo ssp. mugo). In alpine meadows, shrubs 
(e.g., Rhododendron hirsutum), sedge meadows (e.g., 
Carex sempervirens), and fellfields predominate.

Methods

Sampling and laboratory procedures

The twenty lakes were sampled twice during the ice-free 
period, once between June and the middle of August and 
once between August and November 2016. On the first 
sampling date, bathymetric measurements were taken 
with an echo sounder (Lawrence HDS8, Oslo, Norway), 
and a buoy fixed with a rope on a stone was subsequently 
installed at the deepest point of each lake. Temperature 

Figure 1. Geographical and zonal locations of the sampled lakes 
in the northern Alps in Austria and Germany. Background map 
based on Natural Earth data (2020).

Table 1. Descriptive metrics of the measured and calculated environmental variables of the twenty-lake set.
Parameter Abbreviation Minimum Maximum Mean Median Standard deviation

Elevation (m a.s.l.) alt 955 2,060 1,491 1,537 373
Lake area (ha) area 0.1 6.4 2.2 1.9 1.9
Maximum depth (m) depth 1.5 20.7 9.3 7.4 6.4
Secchi depth (m) secchi 1.5 11.3 5.3 4.6 2.91
Nitrate-N (mg/L) NO3_N 0.03 0.93 0.39 0.41 0.27
Total phosphorous (µg/L) TP 1.0 17.0 6.1 4.8 3.6
Silicate (mg/L) Si 0.12 0.77 0.25 0.18 0.20
Ammonia-N (µg/L) NH4_N 3.8 126.9 36.8 25.0 40.0
Calcium (mg/L) Ca 14.97 49.24 31.62 30.53 9.29
Magnesium (mg/L) Mg 1.42 18.40 6.90 5.20 4.60
pH value pH 7.9 9.0 8.4 8.5 0.3
Conductivity (µS/cm) cond 150.6 536.7 251.5 222.2 93.0
Ø August bottom temperature (°C) T_B 4.5 18.4 9.4 8.8 4.0
Ø August surface temperature (°C) T_S 8.8 22.6 15.1 14.5 3.8
Thermocline depth (m) TCL 0.17 6.5 2.2 1.3 2.0
Ø Buoyancy frequency in epilimnion (s−1) BFe_mean 0.0001 0.0067 0.0013 0.0008 0.00
Buoyancy frequency at thermocline (s−1) BF_TCL 0.0001 0.0067 0.0017 0.0014 0.00
Atomic silica–to-nitrogen ratio Si_N 0.07 4.30 0.58 0.27 0.93
Atomic nitrogen–to-phosphorous ratio N_P 44.38 4,442.25 890.85 537.49 1,173.92
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loggers (Onset Pendant UA-001-64 HOBO, Bourne, 
MA) were mounted on the rope 0.5 m above the sedi-
ment surface and 0.5 m below the water surface. 
Temperature data were recorded at 30-minute intervals 
between the first and second sampling dates. On both 
sampling dates, physical parameters (temperature, oxy-
gen saturation, pH, and conductivity [at 25°C]) were 
measured with a multiprobe (WTW 350, Weilheim, 
Germany) at 1-m intervals from the deepest point of 
each lake.

After measuring the Secchi depth of each lake, 0.5 L of 
a mixed water sample was collected with a hose sampler 
from the euphotic zone (ZEuph), which was defined as 
ZEuph = 5 × ZSecchi

0.5 (DIN Technical Committee Water 
Analysis 2015). One half of the water sample was filtered 
(0.45 μm) on-site to analyze dissolved ions and the 
remaining sample was left unfiltered to analyze the con-
centration of TP. Both samples were stored at 4°C for 
further processing in the laboratory. Another liter of 
water was taken from the euphotic zone with the hose 
sampler and preserved with Lugol’s solution to analyze 
planktic diatom communities (Throndsen 1978). At the 
end of the second sampling day, the temperature loggers, 
together with the stones, were retrieved from the lakes.

All chemical analyses were carried out in the labora-
tory of the Limnological Research Station in Iffeldorf. 
Standard colorimetric methods were applied using 
a Hitachi 150-200 photometer (Chiyoda, Japan) to 
determine the concentrations of TP (Murphy and Riley 
1962), nitrate-N (Navone 1964), ammonia-N 
(Deutsches Institut für Normung e.V. 1983), and silica 
(Deutsches Institut für Normung e.V. 1983). The con-
centrations of major ions (calcium, magnesium, and 
sodium) were measured using a cation chromatograph 
(ICS-1100, Thermo Scientific, Waltham, MA).

Planktic diatom samples were concentrated with 
0.45 µm syringe filters before further processing 
(Nixdorf et al. 2014). Diatoms were prepared according 
to van der Werff and Macan (1955). To analyze the 
composition of the diatom samples, 500 valves (includ-
ing broken valves representing more than half of 
a complete valve) were identified in each case using 
a Leica DNM microscope at 1,000× magnification. 
Taxa were counted at the species level. Standard litera-
ture was used for identification (Krammer and Lange- 
Bertalot 1991a, 1991b, 1997a, 1997b; Krammer 2000, 
2002; Lange-Bertalot 2001; Lange-Bertalot et al. 2017).

Data analysis

The atomic N/P ratios in lake water were calculated to 
determine pelagic nutrient limitation status by using the 
dissolved inorganic nitrogen–TP ratio (Bergström 2010; 

Kolzau et al. 2014). Our data set included only concen-
trations of nitrate-N and ammonia-N; nitrite-N was not 
measured. Therefore, the real dissolved inorganic nitro-
gen–TP ratio is probably higher than the results suggest. 
However, because nitrite occurs only at very low 
amounts under aerobic conditions and the conditions 
in the euphotic zones of the sampled lakes were mostly 
aerobic, this bias is probably negligible. Moreover, all 
lakes were found to be phosphorous (P) limited and 
integration of nitrite-N would have shifted the N/P 
ratio further in this direction. The lake mixing regime 
was assessed by calculating thermocline depth and buoy-
ancy frequency at the thermocline and within the epi-
limnion based on temperature profiles using the 
R package rLakeAnalyzer (Winslow et al. 2019). 
Sodium was excluded from further analysis because it 
could only be detected in a few samples.

With the obtained set of nineteen abiotic parameters, 
a Pearson correlation matrix with Bonferroni-adjusted 
probabilities was computed (Haynes 2013) using the 
R package corrplot (Wei and Simko 2017). For signifi-
cantly correlated parameters, coefficients of linear regres-
sion models were included. To identify relationships 
among environmental variables, principal component 
analysis (PCA) was carried out with the data sets of nine-
teen variables (Terbraak and Prentice 1988). Before ana-
lysis, all environmental variables except pH and elevation 
were log transformed to correct for nonnormal distribu-
tion (pH is a log scale and elevation showed a normal 
distribution). Further, the parameters were normalized by 
subtraction of the mean and dividing the result by the 
standard deviation for each variable (Oksanen et al. 2018).

The share of species with planktic life cycles was higher 
than 10 percent in all assemblages. For all calculations, 
benthic or tychoplanktic species were excluded and relative 
abundances were calculated based on the sum of obligate 
planktic species (Table S2). Before numerical analysis, the 
data set was Hellinger transformed (Prentice 1980) and the 
obtained Hellinger distance matrices were used for PCA 
(Legendre and Gallagher 2001). Prior to constrained ana-
lysis, variance inflation factors were calculated for the 
environmental data with the R package usdm (Naimi 
et al. 2014). To evaluate collinearity problems, the function 
“vifcor” of the usdm package was applied. According to the 
obtained results, no variable had collinearity problems. To 
evaluate whether diatom distribution followed a linear or 
unimodal trend, detrended correspondence analysis 
(DCA) was applied (Hill and Gauch 1980). For gradient 
lengths less than 3, linear constrained methods are consid-
ered appropriate; for gradient lengths between 3 and 4, 
linear or unimodal methods can fit; for higher gradient 
lengths, unimodal methods should be used (Terbraak and 
Prentice 1988). The DCA gradient length was 3.51 for the 
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first axis and 2.91 for the second axis. Based on the results 
of DCA and variance inflation factors, an initial redun-
dancy analysis (RDA) with the fourteen initially measured 
variables was computed. The significance for the whole 
model and for the first and second RDA axes was assessed 
by means of a Monte Carlo permutation test with 999 per-
mutations; all tests were significant (p < .01). For further 
evaluation of the importance of each single explanatory 
variable, backward selection was applied (Blanchet et al. 
2008). With the selected variables, another RDA was per-
formed. Because p values decrease and R2 values increase 
with the number of explanatory variables, adjusted model 
values (R2

adj) were obtained through Bonferroni–Holm 
correction (Haynes 2013). All models and each of the first 
two axes were significant as inferred by Monte Carlo per-
mutation tests (p < .01). The explanatory potential and 
significance value of each single variable were obtained by 
setting the variable as the sole explanatory variable with all 
other variables as covariables in another round of Monte 
Carlo permutation tests. All multivariate analyses were 
carried out with the R package vegan (Oksanen et al. 2018).

To evaluate the correlation between environmental 
variables and C. comensis, generalized linear models 
(GLMs) were applied. For parameters with a significant 
influence on C. comensis based on GLM results and for 
further assumed important ecological drivers, general-
ized additive models (GAMs) were applied using the 
R package gam (Hastie 2019). GAMs were used instead 
of GLMs when the responses of C. comensis to interact-
ing parameters were assumed to be nonlinear. All data 
analysis was carried out using the free statistics software 
R v3.6.3 (R Core Team 2013).

Results

Physical and chemical features

The lakes were shallow (maximum depth 20.7 m, median 
depth 7.4 m) and small (<6.4 ha). Though most of the lakes 
can be assumed to stratify during summer (the sampling 
period), at least four of the lakes probably mix irregularly 
because they are very shallow (<4 m). All lakes are P limited 
and well buffered, as reflected by pH values between 8 and 
9 and high concentrations of major ions (Table 1). The 
Secchi depths of the lakes ranged from 1.5 m to 11.3 m 
(median = 4.6 m). At seven sites, the Secchi depth was 
equal to the maximum lake depth; that is, light reached the 
bottom of the lake. Concentrations of alkaline earth ions 
reached 49.2 mg/L for Ca2+ and 18.4 mg/L for Mg2+. 
Accordingly, electrical conductivity averaged 251.5 µS/cm 
(reference temperature = 25°C). The maximum conductiv-
ity level, which was more than 500 µS/cm, was recorded in 

one of the karstic lakes (Sieglsee groß; see Table S1), which 
was strongly influenced by groundwater. Nitrate-N and TP 
concentrations were generally low, with a mean of 0.39 mg/ 
L and 6 µg/L, respectively, classifying most lakes as oligo-
trophic according to Vollenweider (1968). Based on N/P 
ratios, all lakes were P limited (N/P > 43; sensu Klausmeier 
et al. 2004) and all but two lakes (Engeratsgundsee and 
Rappensee; see Table S1) were co-limited by silica (Si/ 
N < 1.12; sensu Brzezinski 1985). The ammonia-N con-
centration was low in most lakes (median 26.7 µg/L), but 
showed a wide range (3.8–126.9 µg/L), possibly due to 
oxygen depletion in the hypolimnion of a few lakes. The 
means of the average August surface and bottom water 
temperatures were 15.1°C and 9.4°C, respectively.

The chemical parameters of the twenty study lakes 
mainly varied along the elevation gradient, which was 
correlated with PCA axis 1 (λ = 4.59, 24.17 percent; 
Figure 2). Elevation was negatively correlated with con-
ductivity, ammonia-N, nitrate-N, N/P ratio, August sur-
face temperature, and Ca and Mg concentrations. It was 
positively correlated with pH and the Si/N ratio (Figure 
S1, Figure S2). The second PCA axis (λ = 3.97, 20.91 per-
cent) was positively correlated with lake depth and 
Secchi depth but negatively correlated with August sur-
face and bottom temperatures, thermocline depth, and 
buoyancy frequency. The positive correlation between 
lake depth and Secchi depth was highly significant and 
can be explained by seven lakes that had equal Secchi 
depths and maximum depths (Table S1).

Bottom water temperature decreased significantly 
with maximum lake depth and Secchi depth and was 
positively correlated with surface water temperature. 
Buoyancy frequency at the thermocline and within the 
epilimnion were negatively correlated with Secchi depth, 
whereas thermocline depth was not correlated with any 
of the measured variables. Correlations among nutrients 
were significant for nitrate-N and ammonia-N (posi-
tive), nitrate-N and TP (negative), ammonia-N and Ca 
(positive), and nitrate-N and Ca (positive; Figure S1).

Diatom assemblages

Obligate planktic taxa occurred with relative abun-
dances of 10.4 to 100 percent (median = 79.8 percent, 
n = 20; Table S2). Of the fourteen identified planktic 
taxa, Cyclotella comensis was the most abundant (33 per-
cent of all planktic taxa, present in ten lakes, abundance 
range = 0.4–100 percent, median = 19 percent). Also 
abundant were Fragilaria nanana (21 percent), 
Fragilaria delicatissima (12 percent), Discostella wolter-
eckii (10 percent), Fragilaria gracilis (8 percent), and 
Discostella stelligeroides (7 percent; Table S2).
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Diatom–environment relationships

Variation in planktic taxa distribution was significantly 
influenced by the August surface temperature, lake area, 
Ca concentration, Secchi depth, Mg concentration, 
August bottom temperature, and TP, which explained 
11.6, 7.6, 6.6, 5.3, 5.2, 5.1, and 4.6 percent of variation, 
respectively. The adjusted R2 value of the full RDA 
model was 37.8 percent (Table 2).

For the planktic diatom data set, the first constrained 
RDA axis (λ = 0.172, variance = 29.99 percent, p = .001) 
was negatively correlated with August surface and bottom 
temperatures and TP. The second axis (λ = 0.079, var-
iance = 11.26 percent, p = .001) was negatively correlated 
with Mg concentration and positively correlated with 
Secchi depth and lake area (Figure 3). The RDA biplot 
revealed a preference of C. comensis for warm, calcium- 
rich lakes, whereas Fragilaria nanana showed the opposite 
preference. Discostella woltereckii was abundant in lakes 
with high Secchi depths, whereas Fragilaria delicatissima 
showed a preference for magnesium-rich waters (Figure 3).

The results of the GLMs confirmed the tight coupling of 
C. comensis abundance and August surface temperature 
(p = .025, R2 = 0.66) and further revealed a significant 
positive correlation of thermocline depth on C. comensis 

abundance (p = .047, R2 = 0.41; Figure 4). None of the 
models including the other parameters significantly pre-
dicted C. comensis abundance; however, high relative abun-
dances of C. comensis were found in samples with Ca 
values above 35 mg/L, Secchi depths of 4 to 5 m, and 
nitrogen-N levels of 0.5 to 1 mg/L. GLMs were also applied 
to all other taxa in the data set; however, no model identi-
fied a significant correlation between these taxa and any of 
the measured variables.

According to the GLM analysis, the relative abundance 
of C. comensis was significantly correlated with August 
surface temperature and thermocline depth. The GAMs 
also included nitrate-N because it was deemed to have an 
effect on C. comensis based on literature. For all three 
parameters, a significant GAM was found, with thermo-
cline depth having the lowest Akaike information criterion 
(AIC) score and highest R2

adj (Table 3). All combinations 
of parameters produced higher AIC scores, with August 
surface temperature and nitrate-N scoring lowest among 
all model combinations. The models suggested 
a pronounced increase in C. comensis abundance at lake 
surface temperatures above 18°C and nitrate-N values 
above 0.8 mg/L (Figure 5). Cyclotella comensis was also 
particularly dominant in the planktic diatom assemblages 

Figure 2. Principal component analysis correlation biplot for nineteen environmental variables measured in twenty mountain lakes in 
the northern European Alps. Principal components 1 and 2 (PC1, PC2) are plotted. λ indicates eigenvalues, var indicates percentage of 
explained variance. For variable and lake abbreviations, see Table S1.
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when August surface water temperatures and nitrate-N 
concentrations were high (Figure 6).

Discussion

Cyclotella comensis occurred at high abundance in the 
plankton communities of alkaline montane lakes with 
high August surface temperatures (>18°C) and thermo-
cline depths of 4 to 5 m. The lakes were P limited but 

rich in nitrogen (>0.8 mg/L), giving high N/P ratios. 
Further, most of the lakes had intermediate Secchi 

Figure 3. RDA correlation biplot of species scores and environmental parameters that significantly and independently influenced 
diatom taxon composition as determined by backward selection applied to RDA models for planktic diatom assemblages of twenty 
lakes. For variable, species, and lake abbreviations, see Table S1 and Table S2.

Table 2. Adjusted R² values for a planktic diatom RDA model 
with backward selected variables. Explained variance and p 
values were inferred from Monte Carlo permutation test.

Dataset Variable var. (%) p

Plankton T_S 11.6 0.001
n=20 area 7.6 0.007
R²= 60.7 % Ca 6.6 0.009
R²adj = 37.8 % secchi 5.3 0.025

Mg 5.2 0.026
T_B 5.1 0.027
TP 4.6 0.052

Figure 4. Relative abundances of Cyclotella comensis plotted 
against nineteen environmental variables. August surface tem-
perature and thermocline depth. R2 values and p values are 
given for generalized linear models; model prediction curves 
are plotted for significant models (p < .05). For abbreviations 
and units, see Table 1.
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depths (4–5 m, range = 1.5–11.3 m). The ecology of 
C. comensis has been the subject of numerous studies 
involving the combination of palaeolimnological lake 
data and recent observations (Lotter and Bigler 2000), 
the compilation of training sets (Hall and Smol 1992; 
Wunsam, Schmidt, and Klee 1995; Werner and Smol 
2006; Catalan et al. 2009; Curtis et al. 2009), investiga-
tions of in situ growth (Williamson et al. 2010a), and 
mesocosm experiments (Jäger, Diehl, and Schmidt 
2008).

Apart from one study that found C. comensis under 
slightly acidic conditions (Battarbee 1984), this taxon 
prefers alkaline conditions with an optimum pH 
between 8 and 9 (Scheffler, Nicklisch, and Schonfelder 
2005; Werner and Smol 2006; Saros and Anderson 
2015). In line with this, all study lakes were alkaline in 
the present study (pH range = 7.9–9.0, median = 8.5), 
and C. comensis was especially abundant at the higher 
end of the Ca2+ gradient (35–49 mg/L; 
range = 15–49 mg/L, median = 27 mg/L).

Cyclotella comensis is generally rare at TP concentra-
tions above ca. 10 µg/L (Hall and Smol 1992; Wunsam, 
Schmidt, and Klee 1995; Ramstack et al. 2003; Werner 
and Smol 2006; Saros et al. 2012; Saros and Anderson 
2015). In the present study, the taxon occurred only in 
one lake with a TP concentration above 10 µg/L 
(range = 1–17 µg/L, median = 5 µg/L). The results are 
in line with those of the only other comprehensive study 
on lake diatom ecology within the study region, which 
identified a TP optimum of <15 µg/L for C. comensis 
(range = 2–266 µg TP/L; Wunsam, Schmidt, and Klee 
1995).

Despite the insights into C. comensis ecology that the 
present results provide, the responses of this taxon to 
environmental changes remain unclear in some respects. 
In particular, the interaction of epilimnetic water tempera-
ture with C. comensis (and the Cyclotella sensu lato com-
plex in general) remains controversial, because there are 
various examples of increasing abundances of these taxa 

Figure 5. Generalized additive model results for the relative 
abundance of Cyclotella comensis and its interaction with 
August surface temperature and nitrogen-N. For model scores, 
see Table 3.

Figure 6. Scatterplot depicting relative abundances of the most 
frequent taxa in the data along the nitrate-N gradient and the 
August surface temperature gradient. The plotted taxa represent 
93 percent of all counts. For species abbreviations, see Table S2.

Table 3. Model coefficients for generalized additive models for 
abundance of cyclotella comensis in response to environmental 
variabels that proved to be important for Cyclotella comensis 
abundance based on GLM results and are known to be ecologi-
cally important factors influencing the taxon. For abbreviations 
see Table 1.

Model F value p R²adj AIC

T_S 34.27 < 0.001 0.941 215.3
TCL 55.15 < 0.001 0.963 206.3
NO3_N 4.854 0.013 0.421 257.9
log(NO3_N) 3.946 0.017 0.507 256.0
Secchi 1.655 0.201 0.210 264.7
T_S + TCL 0.864 230.0
T_S 6.082 0.020
TCL 6.570 0.002
T_S + NO3_N 0.930 218.6
T_S 17.619 < 0.001
NO3_N 4.793 0.018
TCL + NO3_N 0.88 228.7
TCL 20.221 < 0.001
NO3_N 6.774 0.021
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with higher temperatures (e.g., the present study; Pienitz, 
Smol, and Birks 1995; Catalan, Pla, et al. 2002; Koinig et al. 
2002), though there is also evidence for the opposite pat-
tern (Weckstrom, Korhola, and Blom 1997). Various stu-
dies have noted that increases in C. comensis abundance 
with increasing water temperature may reflect indirect 
limnological factors, such as interactive effects between 
water temperature and thermocline depth (Catalan and 
Fee 1994; Huisman and Weissing 1995; Huisman, Van 
Oostveen, and Weissing 1999; Catalan, Pla et al. 2002). 
The results of the present study demonstrate that thermo-
cline depth has a significant effect on the abundance of 
C. comensis (Figure 4; GLM: p = .047, R2 = 0.41; GAM: 
p < .001, R2

adj = 0.963, lowest AIC among all significant 
parameters). The thermocline depth in small lakes in turn 
depends on several factors, including water temperature 
(Catalan, Ventura, et al. 2002), turbidity (Sadro and Melack 
2012; Strock et al. 2017), and fetch (France 1997). In our 
data set, none of the assessed variables, including mean 
August water temperature, were significantly correlated 
with thermocline depth (Figure S1). This finding indicates 
that multiple drivers may be relevant and that a single 
dominating driver of C. comensis abundance seems unli-
kely. However, turbidity and fetch were not assessed in the 
present study. Therefore, further research in these lakes 
should consider the importance of factors that control 
thermocline depth separately.

Interestingly, the results of the GAMs indicate inter-
active effects between thermocline depth, nutrients and 
C. comensis abundance (FTCL = 20.221, FNO3 = 6.774, 
pTCL < .001, pNO3 = .021, R2

adj = 0.88, AIC = 228.7). The 
positive interactive effect of thermocline depth and 
nitrogen on C. comensis growth may be attributed to 
weaker phosphorous upcycling from the hypolimnion 
(Jager, Diehl, and Emans 2010); phosphorus is mostly 
released through internal hypolimnetic processes. 
Nitrogen input, in contrast, mainly comes from external 
sources (Rogora et al. 2018; Schwefel et al. 2019). It was 
found that an increase in the N/P ratio can select for 
small centrics that have competitive advantages due to 
more effective nutrient uptake mechanisms (Tolotti 
et al. 2007, 2012; Malik, Northington, and Saros 2017). 
In experiments in which light and nutrient concentra-
tions were varied, Cyclotella bodanica and C. radiosa 
showed especially high growth rates under P limitation 
and moderate to low light conditions but required suffi-
cient nitrogen; that is, their growth declined under co- 
limitation of nitrogen (Malik, Northington, and Saros 
2017). This can be explained by the fact that nitrogen is 
an important component of the light-harvesting appa-
ratus of these taxa, which supports sustained growth 
even under P limitation. An increase in phosphorous 
can even be detrimental because it increases 

susceptibility to photoinhibition (Litchman 2003). 
Hence, it is likely that increased thermocline depths 
offer superior nutrient conditions for C. comensis, lead-
ing to competitive advantages within the phytoplankton 
assemblage (Catalan, Pla et al. 2002a; Huisman et al. 
2004; Jäger, Diehl, and Schmidt 2008; Jager, Diehl, and 
Emans 2010; Williamson et al. 2010b; Cantin et al. 
2011). Under climate change, extreme precipitation 
events will become more frequent (Gobiet et al. 2014) 
and thus external input of nitrogen compounds into the 
study lakes will likely increase. Furthermore, the input of 
atmospheric nitrogen into high-altitude lakes is increas-
ing and it is likely that this trend will continue (Catalan 
et al. 2013). As a result, C. comensis may become more 
abundant in lakes at higher elevations within the study 
region.

This study further demonstrated a significant positive 
correlation between August surface water temperature 
and the relative abundance of C. comensis (Figure 4; 
GLM: p = .025, R2 = 0.66; GAM: FT_S = 34.27, p < .001, 
R2

adj = 0.941, AIC = 215.3). Epilimnetic water tempera-
ture was found to be correlated with various parameters 
that may in turn be relevant to C. comensis growth. 
These include the duration of ice cover (Catalan, Pla, 
et al. 2002; Koinig et al. 2002; Sorvari et al. 2002), the 
strength of summer stratification (Catalan et al. 2013; 
Korhola et al. 2002; Reavie et al. 2017; Rühland, 
Paterson, and Smol 2008, 2015; Saros et al. 2016; 
Thompson, Kamenik, and Schmidt 2005), elevation 
and consequently catchment characteristics (e.g., 
Kamenik et al. 2001; Livingstone, Lotter, and Walker 
1999), as well as light availability (Winder, Reuter, and 
Schladow 2009; Tolotti et al. 2012; Saros and Anderson 
2015; Malik, Northington, and Saros 2017). All of these 
parameters in turn influence lake biogeochemical 
cycling (Catalan, Pla et al. 2002; Catalan, Ventura et al. 
2002). Based on the data of the present study, buoyancy 
frequency within the epilimnion (which corresponds to 
the strength of summer stratification) did not signifi-
cantly influence C. comensis growth. However, August 
surface water temperature was negatively correlated 
with elevation, implicating possible interactions with 
variables that were not assessed, such as the duration 
of ice cover, which in turn depends on catchment char-
acteristics and can influence light availability. Further 
research should integrate these possible secondary 
effects to further specify the influence of epilimnetic 
temperature on C. comensis.

Conclusions

The present study underscores the potential of the dia-
tom C. comensis to be used as an indicator of rising lake 
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temperatures under elevated nitrate concentrations. C. 
comensis abundance is indicative of relatively deep ther-
moclines, whereas the strength of summer stratification 
was not an important driver of C. comensis abundance 
within the sampled lakes. At present, the conditions in 
montane lakes of the northern European Alps are espe-
cially favorable for C. comensis. As temperatures rise, the 
tree line will shift upwards, catchment vegetation and 
soil formation will be enhanced, and extreme precipita-
tion events will become more frequent. All of these 
consequences of climate change will lead to higher 
input of organic compounds, including nitrate, into 
mountain lakes. Therefore, it is possible that 
C. comensis will also increase in abundance and possibly 
dominate lake plankton in subalpine or even alpine lakes 
in the future, if thermoclines are sufficiently deep and 
epilimnetic water temperatures continue to rise.
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