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Capnovolumetry in combination with clinical history for the
diagnosis of asthma and COPD
C. Kellerer 1,2✉, K. Klütsch2, K. Husemann3, S. Sorichter4, R. A. Jörres2 and A. Schneider1

Capnovolumetry performed during resting ventilation is an easily applicable diagnostic tool sensitive to airway obstruction. In the
present analysis, we investigated in which way capnovolumetric parameters can be combined with basic anamnestic information to
support the diagnosis of asthma and COPD. Among 1400 patients of a previous diagnostic study, we selected 1057 patients with a
diagnosis of asthma (n= 433), COPD (n= 260), or without respiratory disease (n= 364). Besides performing capnovolumetry,
patients answered questions on symptoms and smoking status. Logistic regression analysis, single decision trees (CHAID), and
ensembles of trees (random forest) were used to identify diagnostic patterns of asthma and COPD. In the random forest approach,
area/volume of phase 3, dyspnea upon strong exertion, s3/s2, and current smoking were identified as relevant parameters for COPD
vs control. For asthma vs control, they were wheezing, volume of phase 2, current smoking, and dyspnea at strong exertion. For
COPD vs asthma, s3/s2 was the primary criterion, followed by current smoking and smoking history. These parameters were also
identified as relevant in single decision trees. Regarding the diagnosis of asthma vs control, COPD vs control, and COPD vs asthma,
the area under the curve was 0.623, 0.875, and 0.880, respectively, in the random forest approach. Our results indicate that for the
diagnosis of asthma and COPD capnovolumetry can be combined with basic anamnestic information in a simple, intuitive, and
efficient manner. As capnovolumetry requires less cooperation from the patient than spirometry, this approach might be helpful for
clinical practice.
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INTRODUCTION
Capnovolumetry has been proposed as a method to obtain
information on the functional state of patients with obstructive
airway diseases1–4. Capnovolumetric measurements are not time
consuming and relatively easy to perform since the patient only
needs to perform quiet tidal breathing over about 10 breathing
cycles. Thus it is a technical method with low demands regarding
cooperation. A further advantage of capnovolumetry is that the
technique is already integrated in some of the commercially
available spirometers without additional costs. The CO2 concen-
tration in the exhaled air can be estimated from ultrasound signals
by software algorithms without the need for an additional CO2

sensor, and ultrasound spirometers do not need to be calibrated.
In contrast to spirometry, there is no need to give detailed
instructions for forced breathing maneuvers by the technical
personnel. Therefore, it is of special interest in conditions where
spirometry is unreliable due to insufficient cooperation by the
patients5 or lack of experience of the personnel in guiding the
maneuvers or even concerns regarding the accuracy of spirom-
eters6. Previous studies have shown a moderate diagnostic
accuracy of this method regarding airway obstruction1 and an
acceptability of spirograms for clinical use in only about 60% of
patients in a primary care setting6. However, the establishment of
a clinical diagnosis also includes clinical history, signs, and
symptoms, which can be covered by a set of standard questions.
Capnovolumetry might be combined with this information in the
diagnostic set-up of obstructive airway diseases to increase
diagnostic discrimination, similar to biomarkers that are effective
in the diagnosis of specific conditions, including asthma7–9. There
are several methods to achieve this integration, one of them being

the construction of decision trees following objective statistical
criteria. Such trees are well suited for clinical purposes10 and have
been used, e.g., for the recognition of malignant lesions in
magnetic resonance mammography11 or the identification of
patients at risk from heart failure12. Decision trees also seem
promising in the diagnosis of asthma and chronic obstructive
pulmonary disease (COPD)13. Single decision trees computed by
established techniques illustrate the structure of the decision
process; however, as such trees are prone to overfitting, system-
atically constructed sets of independent trees (e.g., random forest)
can be used to check the validity of the results.
Based on these arguments, we examined in which way

questions regarding clinical history, signs, and symptoms could
be best combined with capnovolumetric parameters in the
diagnostic work-up of asthma and COPD. For this purpose, we
used a large data set from a diagnostic study1 in which we had
addressed the ability of capnovolumetry for the detection of
airway obstruction without reference to the underlying diagnosis.

RESULTS
Baseline characteristics
A total of 1400 consecutive patients underwent capnovolumetry.
Patients who turned out to have had bronchial provocation
challenges or bronchodilator testing prior to capnovolumetry due
to organizational reasons were excluded (n= 45). Moreover,
patients who did not undergo bodyplethysmographic and
spirometric measurements (n= 61) were excluded. Five patients
were excluded due to low quality of their bodyplethysmographic
measurement data and two patients based on invalid
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capnovolumetric measurements. For the present analysis, patients
were selected who had a diagnosis of COPD or asthma (or
potentially overlap) or did not show any respiratory disease
(control subjects). Two hundred and thirty patients with the
diagnosis of other respiratory diseases (such as restrictive
disorders, pneumonia or other infections, pleural diseases, lung
tumor, bronchiectasis) were excluded (see Supplementary Fig. S1).
Therefore, 1057 patients were analyzed, 567 (53.6%) were female
and mean age was 56 years. Four hundred and thirty-three
(41.0%) patients had a diagnosis of asthma, 260 (24.6%) COPD,
and 364 (34.4%) were control patients (Table 1). Based on the lung
function criteria used in our previous analysis1, 347 patients had
airway obstruction. Of these, 108 (31%) had asthma, 223 (64%)
had COPD, and 16 (5%) belonged to the control group. Thus 37
patients received a COPD diagnosis by pneumologists without
actual airway obstruction.

Logistic regression analyses
The comparison of COPD vs controls revealed dyspnea upon
strong exertion, current smoking, a history of previous smoking,
phlegm, the ratio of slopes of phases 3 and 2 (s3/s2), the slope of
phase 3 (s3), and the ratio of area to volume of phase 3 (area/
volume phase 3) as significant predictors (p < 0.05 each).
Regarding asthma vs controls, wheezing, dyspnea upon strong
exertion, current smoking, and the volume of phase 2 were
predictors (p < 0.05 each). Regarding COPD vs asthma, wheezing,
dyspnea upon both strong or mild exertion, cough, current
smoking, a history of previous smoking, the ratio s3/s2, the s3, and
the area/volume phase 3 were predictors (p < 0.05 each). The
results of stepwise logistic regression analyses in terms of
statistically significant odds ratios (ORs) are summarized in
Supplementary Table S1. Histograms of the ratio s3/s2 for COPD
vs control and of volume of phase 2 for asthma vs control are
shown in Fig. 1, illustrating the significant, though small
differences between the respective groups.

Network analysis
When constructing the network diagram (Fig. 2), we used a
predefined cut-off value of 0.101,4 for s3/s2, and for the volume of
phase 2 a cut-off value identified as optimal by receiver operator
curve (ROC) analysis in the detection of asthma. The ratio s3/s2
was strongly linked to COPD and the volume of phase 2, although
much weaker, to asthma. As expected, breathlessness at strong
exertion was related to COPD and wheezing to asthma. Cough
was related to asthma, phlegm to COPD, and smoking to both, but
with opposite signs. The group of control patients was implicit in
this analysis, as it served as the reference for the computation of
phi-coefficients. The numerical values of the phi-coefficients are
depicted in Supplementary Table S2; the frequencies of positive
answers to anamnestic questions are shown in Supplementary
Table S3.

Random forest decision trees
The area under the curve (AUC) was 0.623 for the comparison of
asthma vs control, corresponding to a sensitivity of 68.1% (95%
confidence interval (CI) 63.5, 72.5%) and specificity of 50.3% (45.0,
55.5%). Wheezing, the volume of phase 2, dyspnea upon strong
exertion, and current smoking were identified as the four most
important variables. For COPD vs control, the AUC was 0.875, with
sensitivity of 75.0 (69.3, 80.1%) and specificity of 83.0% (78.7,
86.7%). Area/volume of phase 3, s3/s2, dyspnea upon strong
exertion, and current smoking were the four most important
variables. For COPD vs asthma, the AUC was 0.880, with sensitivity
and specificity of 71.2% (65.2, 76.6%) and 89.4% (86.1, 92.1%),
respectively. Current smoking, s3/s2, area/volume of phase 3, and
smoking history were the four most important variables.
The initial choices of the numbers of trees and variables within

each tree (approximate square root of the total number of
variables) were based on the default settings of the R procedure.
In the next step, the parameters were tuned to establish the
robustness of results. The prediction accuracy showed a plateau

Table 1. Baseline characteristics.

Parameter Diagnostic groups Comparison between groups

Control Asthma COPD p value

Gender (M/F) 172/192 155/278 163/97 <0.001

Age (years) 55 (41; 67) 53 (38; 63) 66 (57; 75) <0.001

BMI (kg/m2) 26.9 (23.9; 30.9) 26.9 (24.1; 31.1) 26.6 (22.8; 30.5) 0.239

FEV1 Z-score −0.13 (−0.88; 0.53) −0.82 (−1.53; −0.07) −2.56 (−3.35; −1.78) <0.001

FEV1/FVC Z-score 0.10 (−0.51; 0.76) −0.68 (−1.36; 0.10) −2.58 (−3.56; −1.67) <0.001

FVC Z-score −0.21 (−0.92; 0.45) −0.38 (−1.14; 0.35) −1.32 (−2.19; −0.60) <0.001

Log10(s3) −0.72 (−0.96; −0.52) −0.72 (−0.92; −0.52) −0.57 (−0.72; −0.39) <0.001

Log10(s3/s2) −1.00 (−1.10; −0.85) −1.00 (−1.10; −0.89) −0.80 (−0.92; −0.64) <0.001

Area/volume phase 3 (g/mol) 0.05 (0.04; 0.07) 0.06 (0.04; 0.07) 0.08 (0.06; 0.10) <0.001

Volume phase 2 (ml) 110.0 (92.0; 130.0) 102.0 (86.3; 121.8) 111.0 (95.0; 131.0) <0.001

Current smoking 19.3% positive 11.6% positive 36.3% positive <0.001

Ex-smoking 32.0% positive 34.8% positive 57.1% positive <0.001

Wheezing in the past 12 months 40.5% positive 63.2% positive 56.3% positive <0.001

Frequent cough 34.5% positive 43.1% positive 36.7% positive 0.040

Frequent phlegm 25.9% positive 31.5% positive 43.0% positive <0.001

Dyspnea upon strong exertion 50.9% positive 67.9% positive 89.3% positive <0.001

Dyspnea upon weak exertion 18.6% positive 20.6% positive 49.0% positive <0.001

The table shows absolute numbers or percentages in case of frequencies and median values and quartiles in case of continuous parameters. The categorical
variables were compared between the diagnostic groups using the chi-square statistics, while continuous parameters were compared using Kruskal–Wallis
test. For the explanation of parameters, see ref. 1. Log10(s3/s2) is the logarithm of the ratio s3/s2, log10(s3) the logarithm of slope of phase 3. Before taking the
logarithm, the values of 0.05 and 0.03, respectively, were added to account for zero values and achieve a distribution being as close to normal as possible.
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for a number of trees of about ≥300, thus the number of trees
chosen was sufficient. Moreover, the search for the optimal
number of variables used for each tree node showed that the best
accuracy was obtained for three variables. Based on this, the three
ensembles of trees and the sets of variables selected as important
can be considered as optimal.

Single classification and decision trees
Three single decision trees were constructed as an addition to the
three ensembles, with the aim to illustrate the role of variables in
single trees. To avoid small sample sizes and instability, the trees
were limited to at most three generations of branches. All
questions and all capnovolumetric parameters were offered to the
CHAID search algorithm.
In the decision tree for COPD vs control (Fig. 3), the four

variables identified as relevant were the same as those identified
in the random forest as most important. The first criterion was
area/volume phase 3. If this was low, dyspnea upon strong
exertion became relevant. If this was absent, COPD became very
unlikely. If it was present, the ratio s3/s2 became important,
whereby patients with a smaller ratio had less likely COPD. If the
area/volume phase 3 was high, again dyspnea upon strong
exertion was relevant. If this was present, the prevalence of COPD
markedly increased, while on the next level a further increase
occurred if the patient was a current smoker. Under these
conditions, the prevalence of COPD increased from a baseline
value of 41.7% to a final value of 88.7%. Conversely, it was as low
as 6% in patients showing a low area/volume phase 3 value in the
absence of dyspnea upon strong exertion. Overall, the decision
tree allowed a correct classification of 77.9% of patients, with

sensitivity of 76.5% (95% CI 70.9%, 81.6%) and specificity of 78.8%
(74.3, 82.9%).
For asthma vs control, the decision tree is shown in Fig. 4.

Again, the four variables identified as important were those
identified in the random forest as most important. Wheezing in
the past 12 months turned out to be the dominant criterion. If
answered positive, asthma was probable and the volume of phase
2 was selected as second criterion, leading to a further, though
small, increase in the prevalence of asthma from a baseline value
of 54.3% to a final value of 72.9%. If no wheezing was reported,
the next important question was that of smoking status. If the
patient was a smoker, asthma was much less likely. If the patient
was a non-smoker, dyspnea at strong exertion was next
informative, rendering the absence of asthma more likely in the
absence of dyspnea. Overall, 62.6% of patients were correctly
classified, with sensitivity of 82.6% (95% CI 78.8%, 86.1%) and
specificity of 38.7% (33.7, 44.0%).
Regarding the comparison between asthma and COPD, the

decision tree is shown in Fig. 5. The three variables involved in
the decision tree were among the four most important variables of
the random forest. The first important variable was the ratio s3/s2.
If this was low, the prevalence of asthma increased. It further
increased on the next two levels if the patient was a never smoker.
Under these conditions, the prevalence of COPD dropped from
37.5 to 2.6%. Conversely, if the ratio s3/s2 was high, the
prevalence of COPD increased to 82.6%, if the patient was a
current smoker. If the patient did not smoke, being an ex-smoker
was associated with a higher prevalence of COPD and never
smoking with a high likelihood for asthma. The results demon-
strated that beyond s3/s2 the smoking status was important for
further differentiation. Overall, 79.5% of patients were correctly
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classified, with sensitivity of 74.6% (95% CI 68.9%, 79.8%) and
specificity of 82.4% (78.5, 85.9%).
Taken together, in the comparisons of COPD vs control, asthma

vs control, and asthma vs COPD the random forest approach
categorized 79.6, 60.0, and 82.5%, respectively, of subjects
correctly, and the single decision tree 77.9, 62.6, and 79.5%,
respectively.

DISCUSSION
The present analysis aimed at the integration of capnovolumetric
parameters with symptoms and clinical history in the diagnosis of
asthma and COPD. The parameters were those identified
previously as relevant for the recognition of airway obstruction1.
In a network analysis, we found the ratio s3/s2 to be related to
COPD, and the volume of phase 2 to asthma, consistent with the
results of logistic regression analyses and previous findings1.
Dyspnea upon exertion, wheezing, smoking status, and phlegm
were linked to COPD, while in asthma wheezing and the absence
of smoking were more important, matching the expectations from
clinical experience. We therefore felt justified to use our data for
the development of decision trees, using the random forest
approach as one of the machine learning methods, which has
already been used in clinical studies11–13. The random forest
approach was supplemented by the construction of single
decision trees in order to illustrate their structure by specific
examples. The results of both approaches were in very good
agreement. While the single trees were more amenable to
interpretation, the random forest was statistically slightly superior
as judged from positive predictive values (PPVs). All trees were
consistent with the network diagram and the results of our
previous analysis1, underlining the role of the capnovolumetric

parameters area/volume phase 3, ratio of slopes of phases 3 and 2
(s3/s2), and volume of phase 2; the latter is similar to the Fowler
deadspace1,14 and inversely related to the slope of phase 2.
In the comparison of COPD with controls, the most important

variable was area/volume phase 3. Given this, dyspnea upon
strong exertion, the ratio s3/s2, and current smoking were relevant
for the exclusion or inclusion of COPD, which seems plausible. To
account for the fact that a different set of parameters was relevant,
the comparison of asthma vs controls was performed separately.
Noteworthy enough, the volume of phase 2 became important
only when wheezing was confirmed, a low volume favoring the
diagnosis of asthma, whereas in the absence of wheezing current
smoking markedly decreased the likelihood of asthma. Accord-
ingly, in the comparison of COPD with asthma current smoking,
smoking history, the ratio s3/s2, and the area/volume phase 3
were most important. In the single tree, the finding that the ratio
s3/s2 was the primary parameter reflected the fact that asthma
patients had a low degree of airway obstruction and were similar
to controls. All subsequent decisions regarding the comparison
asthma vs COPD involved the current and previous smoking
status, suggesting that the ratio s3/s2 comprised most of the
information regarding the differential diagnosis between asthma
and COPD. The cut-off values of s3/s2 within the trees were those
identified as optimal for the diagnostic decisions regarding COPD,
whereas the previously used1 value of 0.10 was pre-determined4

aiming at the detection of airway obstruction.
The three single trees were also valuable in demonstrating that

some combinations of values were associated with marked
changes in disease probability and others not. Regarding asthma
vs control, for example, the absence of wheezing plus current
smoking, or its presence plus low volume of phase 2, resulted in
large changes. Conversely, the combination of non-smoking with
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dyspnea upon strong exertion, or of wheezing with a high volume
of phase 2, did not markedly change the probability for asthma.
Taken together, we found that all decision trees involved at

least one capnovolumetric parameter, suggesting that capnovo-
lumetry bears relevant information in addition to clinical signs and
symptoms in the clinical diagnosis of asthma and COPD.
Noteworthy enough, the maximal probability to suffer from COPD
as illustrated in the decision tree of Fig. 3 was similar to the PPV of
spirometry to detect COPD in a general practice population5, while
the maximal probability of asthma (Fig. 4) was equal to the PPV of
bronchial provocation15,16. Although capnovolumetry is no sub-
stitute for spirometry, as the latter method allows to describe the
severity of airway obstruction according to established criteria, our
results underline its potential if no valid spirometry is available.
Future studies may also combine capnovolumetry with other
easily available diagnostic information to establish decision
algorithms optimally combining efficiency with simplicity.

According to our observation, that different sets of parameters
were best for different suspected diagnoses, this probably requires
separate decision algorithms, supporting the view that medical
expert knowledge in terms of prior diagnostic suspicions remains
indispensable.
Regarding the limitations of the study, it has to be mentioned

that the present study was a secondary analysis based on previous
results1. It included information not previously used and followed
a different methodological path focusing on decision algorithms.
Decision trees offer high flexibility, as different criteria can apply at
each node, a complexity that in conventional regression analyses
can be realized only via difficult-to-understand higher-order
interaction terms. Trees suffer from overfitting, thus we used the
well-known random forest ensemble approach to achieve robust
and reliable results. This approach has, however, the disadvantage
that the final algorithm cannot be easily depicted. To visualize the
major results in a comprehensible manner, we went back to single

Fig. 3 Decision tree for the comparison of COPD with control. Only patients with COPD and the control group were included. Anamnestic
questions (wheezing in the past 12 months, dyspnea at strong or mild exertion, cough, phlegm, current smoker, ex-smoker) and
capnovolumetric parameters (s3/s2, volume phase 2, area/volume phase 3, slope of phase 3) were offered to the algorithm (CHAID), which
selected the optimal criteria. The figure shows the average result of a tenfold cross-validation.
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decision trees, which were, naturally, inferior to the ensemble
approach. It also should be kept in mind that especially the
patients with asthma who were included in the study had been
previously diagnosed using the full repertoire of diagnostic
methods including bronchodilator and bronchoprovocation test-
ing. Therefore, the diagnosis could be considered as reliable, while
of course a categorization solely based on capnovolumetry cannot
be more than a diagnostic hint that must be evaluated by further
procedures including the response to therapy.
For an implementation of the random forest approach into

clinical practice, further studies in a variety of study populations
would be needed. It also would be helpful to supplement our
findings by inclusion of other biomarkers, such as exhaled nitric

oxide, that can be easily obtained even in primary care conditions.
Unfortunately, only few ultrasound capnovolumetric devices are
currently commercially available. If the method should be used in
clinical practice on a broader scale, technical comparisons will also
be needed. The diagnostic decision-making process might be
another limitation. Thirty-seven patients received the COPD
diagnosis despite showing no signs of airway obstruction. The
diagnoses relied on a comprehensive assessment of the patients’
files and lung function data and had been established by a
pneumologist previous to the study visit in nearly all cases. Some
pneumologists might retain to the old classification COPD 0 (as a
risk factor). Beyond that, in clinical practice it might occur that
patients suffering from a mild form of COPD, with typical signs

Fig. 4 Decision tree for the comparison of asthma with control. Only patients with asthma and the control group were included.
Anamnestic questions (wheezing in the past 12 months, dyspnea at strong or mild exertion, cough, phlegm, current smoker, ex-smoker) and
capnovolumetric parameters (s3/s2, volume phase 2, area/volume phase 3, slope of phase 3) were offered to the algorithm (CHAID), which
selected the optimal criteria. The figure shows the average result of a tenfold cross-validation.
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and symptoms, from time to time show no airway obstruction in
lung function tests, using, for example, the established cut-off
value of 0.7 for forced expiratory volume in 1 s/forced vital
capacity; at one visit, the value may be 0.71, at another visit 0.69.
Therefore, we performed a sensitivity analysis with classification of
all patients without airway obstruction as “healthy controls” and
found that 78.2% of patients were still correctly categorized
(compared to 77.9%).
Taken together, capnovolumetry has low demands on patients’

cooperation and may be applicable in those in whom spirometry
fails. Using a large diagnostic data set, we analyzed in which way
capnovolumetric parameters could be combined with basic
information on clinical history, signs, and symptoms to support
the diagnosis and differential diagnosis of asthma and COPD.
Using the approach of either single decision trees or randomized
ensembles of such trees, three capnovolumetric parameters, as
well as wheezing, dyspnea upon strong exertion, and smoking
history, turned out to be most relevant. Our findings underline the

usefulness of capnovolumetry as an additional tool in the
diagnostic assessment of asthma and COPD.

METHODS
Patients
The analysis used data from a previous study performed in a private clinical
practice in Augsburg, Germany, in which capnovolumetry was performed
as index test, while the presence or absence of airway obstruction was
evaluated via spirometry and bodyplethysmography as a reference
standard1. The physician-based diagnoses relied on a comprehensive
assessment of the patients’ files and lung function data. No other inclusion
or exclusion criteria were used. Patients with COPD and the comorbidity
asthma (n= 34) were assigned to the COPD group, as this disease
dominated the functional alterations. The study had been approved by the
Ethical Committee of the Medical Faculty of the Technical University of
Munich, and all patients gave their written, informed consent. The original
study is registered under DRKS00013935 at German Clinical Trials Register
(DRKS) where the study protocol can be accessed.

Fig. 5 Decision tree for the comparison of asthma with COPD. Only patients with asthma or COPD were included. Anamnestic questions
(wheezing in the past 12 months, dyspnea at strong or mild exertion, cough, phlegm, current smoker, ex-smoker) and capnovolumetric
parameters (s3/s2, volume phase 2, area/volume phase 3, slope of phase 3) were offered to the algorithm (CHAID), which selected the optimal
criteria. The figure shows the average result of a tenfold cross-validation.
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Assessments
Capnovolumetry was performed during tidal breathing over at least ten
breathing cycles, with the only instruction to avoid deep breaths or
panting, and the last five cycles were evaluated as mean values. The time
course of expiratory CO2 was determined via ultrasound via determination
of the molar mass (SpiroScout, software LFX 1.8.0, Ganshorn, Niederlauer,
Germany), whereby the parameters describing the capnovolumetric curves
were computed by the built-in software. The four parameters previously
identified as most relevant for the detection of airway obstruction were the
s3, s3/s2, the volume of phase 2, and area/volume phase 31. The
capnovolumetric parameters describe the form of the expiratory CO2 curve
plotted against expiratory volume. The initial phase 1 comprises the dead
space and is characterized by a CO2 concentration near zero. It is followed
by a steep rise of CO2 concentration (with slope s2) in phase 2, as a result
of the mixing of CO2-free air with alveolar gas within the bronchial volume.
Phase 2 is followed by phase 3 that represents the alveolar compartment
and shows a slope of CO2 concentration (s3) that is less than the slope of
phase 2. In the presence of emphysema, slope 3 increases and slope 2
decreases, both primarily due to inhomogeneity of ventilation, thereby
leading to a marked increase in the ratio s3/s2. In asthma, there is at least a
tendency for a reduction of slope 2 and the volume of phase 2, both of
which are indicative of (residual) bronchial obstruction. Area/volume phase
3 is closely related to alveolar ventilation, especially alveolar dead space,
and therefore valuable particularly for the recognition of COPD.
For the comprehensive assessment of clinical history, signs, and

symptoms, a questionnaire covering seven questions regarding dyspnea
upon mild or strong exertion, cough, phlegm, wheezing, and smoking
status (current, ex-smoker) was used (see Supplementary Methods for the
questions).

Statistical analysis
As we aimed at the evaluation of capnovolumetry, only functional data
from this measurement were used. Median values and quartiles were
computed for patients’ description, and binary logistic regression analyses
were performed for the comparison of the COPD with the control group,
asthma with control, and COPD with asthma. We relied on these binary
distinctions, as the sets of relevant parameters turned out to be different
and ternary comparisons resulted in complicated and non-robust
predictive models.
In a next step, a quantitative network diagram describing the multiple

relationships between parameters was constructed, using an adjacency
matrix based on the strength of associations (phi-coefficients; control
group as reference). This diagram comprised the anamnestic information
as binary variables; moreover, binary categorizations of the ratio of slopes
s3/s2 and the volume of phase 2 could be correlated with the binary
results of the questions. These two parameters were chosen among the
parameters of capnovolumetry in order to limit the complexity of the
diagram. In the diagram, the area of the circles indicates the frequency of
positive answers or capnovolumetric conditions, respectively, and the
thickness of the arrows indicates the strength of association (phi-
coefficient). For construction, the statistical software R was used17.
While illustrating different associations for asthma and COPD, the

network did not provide a decision algorithm. This was achieved by
systematic generation of ensembles of binary classification and decision
trees using the random forest approach and taking the majority vote of
trees as outcome. Separate ensembles were constructed for COPD vs
control, asthma vs control, and COPD vs asthma. Consistent with the fact
that the sets of relevant predictors for these three comparisons were
different (see above), comparisons comprising all three groups resulted in
non-robust, difficult-to-interpret results and were thus not further
evaluated. Following established procedures18, the trees were constructed
from the data by random selection of patients’ subsets (n= 500) and sets
of variables at each node (mtry= 3). All seven questions and all four
continuous capnovolumetric parameters (without pre-defined cut-off
values) were offered to the search algorithm. The patients not included
in a specific tree (out of bag) allowed the evaluation of accuracy in terms of
2 × 2 confusion matrices and ROCs, yielding sensitivity, specificity, and
AUC. The relative importance of parameters was described by the
computed mean decrease in accuracy as well as the GINI criterion18.
While random forests have the advantage of reducing problems arising

from overfitting, they have the disadvantage that the ensembles of trees
can be described only statistically. Therefore, a parallel construction of
single trees by a classical procedure might be helpful for illustration and
interpretation, in particular if the single trees comprise most or all of the

variables identified as important in the ensembles. For this purpose, we
used the CHAID method as implemented in SPSS10, including Bonferroni
correction and tenfold cross-validation. Again, separate trees were
constructed for COPD vs control, asthma vs control, and COPD vs asthma.
A more detailed description of the statistical methods can be found in

Supplementary Methods. All statistical analyses were performed with SPSS
(Version 25, IBM Corp., Armonk, NY, USA) and the module “randomForest”
from the software package R19. The level of significance was assumed at
p < 0.05.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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