
Fakultät für Informatik
Technische Universität München

Learning, Evaluating and Optimizing Behavior Policies for
Autonomous Vehicles

Patrick Christopher Hart

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Helmut Seidl

Prüfende der Dissertation:
1. Prof. Dr.-Ing. habil. Alois Knoll
2. Prof. Mykel Kochenderfer, Ph.D.

Die Dissertation wurde am 29.03.2021 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 11.08.2021 angenommen.

Abstract

With autonomous vehicles operating in mixed traffic, they need to learn and adapt
their driving behavior over time to integrate themselves seamlessly. Therefore,
data-driven approaches are required that can provide safe and comfortable driving
behaviors. This thesis’ structure is three-fold: First, it focuses on how to learn
behavior policies and discusses related topics. The second part focuses on evaluating
and gaining insights into learned behavior policies at runtime. Finally, the third part
introduces a post-optimization that generates smooth behaviors.

The first chapter discusses and introduces the Markov decision process (MDP)
problem formulation, discusses input representations, reward signals, and solution
methods for learning behavior policies. As the order and number of vehicles in
traffic can change quickly, the methodologies should be able to handle a varying
number and order of vehicles. This work proposes a novel graph neural network
(GNN) architecture for actor-critic reinforcement learning that is invariant to the
number and order of vehicles. Further, due to the GNN having structured edges, the
information flow between vehicles in the behavior policy can be evaluated – providing
additional insights into the learned behavior policies. Various input representations
and reward signals are proposed and benchmarked in terms of their performance.
Finally, variational studies are performed where the behavior of the other vehicles is
changed to evaluate the generalization of the used methodologies. The novel GNN
actor-critic architecture is shown to outperform conventional approaches in their
performance and generalization capabilities.

Behavior policies using deep neural networks (DNNs) cannot guarantee safe be-
haviors, e.g., due to the lack of full exploration or due to the highly nonlinear nature
of DNNs. Therefore, a runtime counterfactual behavior policy evaluation (CBPE)
is proposed that uses non-factual worlds to ask and answer counterfactuals, such
as “Would the learned behavior policy have been collision-free if the other vehicle
had changed lanes?”. By deriving counterfactual worlds at every time step and
forward-simulating these, evidence on the policies’ performance can be obtained
for the current scenario. The CBPE has been shown to provide additional insights
into the performance and relations of the learned behavior policies. Restricting the
learned behavior policies’ usage based on their performance over the counterfactual
worlds has significantly increased the success rate.

Finally, a post-optimization is introduced to obtain smooth behavior trajectories
that utilizes learned behavior policies to generate initial estimates. Using the initial
estimate also avoids optimizing multiple combinatorial options, such as merging
behind or in front of another vehicle, as the combinatorial option is implicitly chosen
by the learned behavior policy. Further, by enforcing proximity of the optimized

iii

Abstract

to the initial trajectory, interactions of the learned behavior policy with other
traffic participants remain valid – e.g., nudging slightly in front of the other vehicle
to slow it down. The post-optimization has been shown to produce significantly
smoother trajectories whilst upholding the same safety constraints. All experiments
and evaluations have been performed using the simulation framework Behavior
benchmARK (BARK).

iv

Zusammenfassung

Autonome Fahrzeuge im gemischten Verkehr müssen ihr Fahrverhalten im Laufe der
Zeit lernen und anpassen, um sich nahtlos zu integrieren. Daher sind datengesteuerte
Ansätze erforderlich, die ein sicheres und komfortables Fahrverhalten ermöglichen.
Der Aufbau dieser Arbeit ist dreigeteilt: Erstens konzentriert sie sich auf das Er-
lernen von Verhaltensstrategien und diskutiert verwandte Themen. Der zweite Teil
konzentriert sich auf die Bewertung und Gewinnung von Einblicken in gelernte Ver-
haltensstrategien zur Laufzeit. Im dritten Teil wird eine Nachoptimierung eingeführt,
welche ein glattes Verhalten erzeugt.

Das erste Kapitel diskutiert und führt die MDP-Problemformulierung ein, diskutiert
Eingabedarstellungen, Belohnungssignale und Lösungsmethoden für gelernte Verhal-
tensstrategien. Da sich die Reihenfolge und die Anzahl der Fahrzeuge im Verkehr
schnell ändern können, sollten Methoden in der Lage sein, eine unterschiedliche
Anzahl und Reihenfolge von Fahrzeugen zu handhaben. Diese Arbeit schlägt eine
neuartige GNN actor-critic Architektur vor, die invariant gegenüber der Anzahl
und Reihenfolge der Fahrzeuge ist. Da GNNs strukturierte Kanten aufweisen, kann
außerdem der Informationsfluss zwischen Fahrzeugen in der Verhaltensstrategie bew-
ertet werden – was zusätzliche Einblicke in die gelernten Verhaltensstrategien liefert.
Es werden verschiedene Eingabedarstellungen und Belohnungssignale vorgeschla-
gen und hinsichtlich ihrer Leistung bewertet. Schließlich werden Variationsstudien
durchgeführt, bei denen das Verhalten der anderen Fahrzeuge geändert wird, um
die Generalisierung der verwendeten Methoden zu bewerten. Es wird gezeigt, dass
die neuartige GNN actor-critic Architektur konventionelle Ansätze in ihrer Leis-
tungsfähigkeit und Generalisierung übertrifft.

Verhaltensstrategien, die DNNs als Approximationsfunktion verwenden, können
kein sicheres Verhalten gewährleisten, z.B. aufgrund unvollständiger Exploration
oder aufgrund der stark nichtlinearen Natur von DNNs. Daher wird eine Laufzeit
CBPE vorgeschlagen, die nicht-faktische Welten verwendet, um kontrafaktische
Dinge zu fragen und zu beantworten, wie zum Beispiel “Wäre die gelernte Verhal-
tensstrategie kollisionsfrei gewesen, wenn das andere Fahrzeug die Spur gewechselt
hätte?”. Durch die Ableitung kontrafaktischer Welten zu jedem Zeitschritt und deren
Vorwärtssimulation können Nachweise für die Leistung der Verhaltensstrategie für
das aktuelle Szenario gewonnen werden. Es hat sich gezeigt, dass CBPE zusätzliche
Einblicke in die Leistung und Beziehungen der gelernten Verhaltensstrategien liefert.
Das Einschränken der Verwendung der gelernten Verhaltensstrategien basierend auf
ihrer Leistung in den kontrafaktischen Welten erhöht die Erfolgsquote erheblich.

Schließlich wird eine Nachoptimierung eingeführt, um glatte Verhaltenstrajektorien
zu erhalten, welche gelernte Verhaltensstrategien verwendet, um initiale Schätzungen

v

Zusammenfassung

zu generieren. Die Verwendung der initialen Schätzung vermeidet die Optimierung
mehrerer kombinatorischer Optionen, wie beispielsweise hinter oder vor einem an-
deren Fahrzeug die Spur zu wechseln, da die kombinatorische Option implizit von
der gelernten Verhaltensstrategie gewählt wird. Durch Erzwingen von Nähe der opti-
mierten zur initialen Trajektorie bleiben außerdem Interaktionen der gelernten Ver-
haltensstrategie mit anderen Verkehrsteilnehmern gültig – z.B. leichtes Reindrängeln
vor einem anderen Fahrzeug, um es zu verlangsamen. Es hat sich gezeigt, dass
die Nachoptimierung deutlich glattere Trajektorien generiert, während die gleichen
Sicherheitsbeschränkungen eingehalten werden. Alle Experimente und Auswertungen
wurden mit dem Simulationsframework BARK durchgeführt.

vi

Contents

Abstract iii

Zusammenfassung v

Contents vii

List of Figures xi

List of Tables xv

Acronyms xvii

1 Introduction 1
1.1 Motivation . 1

1.2 Behavior Generation Methods in Autonomous Driving 3

1.2.1 Search-based . 4

1.2.2 Optimization-based . 6

1.2.3 Learning-based . 8

1.3 Research Questions and Contributions 10

1.4 Outline . 11

2 Learning Behavior Policies in Semantic Environments 13
2.1 Underlying Theory: Markov Decision Process 13

2.1.1 Solution Method: Dynamic Programming 15

2.1.2 Solution Method: Sample-based Methods 17

2.1.3 Solution Method: Reinforcement Learning 18

2.1.4 Solution Method: Actor-Critic Reinforcement Learning . . . 22

2.2 Input Representation for Learning Behavior Policies 28

2.2.1 Feature Vector Representation 29

2.2.2 Graph Representation . 30

2.3 Reward Signals for Learning Behavior Policies 31

2.3.1 Design of the Reward Signal 32

2.3.2 Potential-based Reward Shaping for Autonomous Vehicles . . 33

2.4 Graph Neural Networks and Actor-Critic Reinforcement Learning . . 36

2.4.1 Overview of Graph Neural Networks 37

2.4.2 Unified Framework: Graph Blocks and Interaction Networks 39

2.4.3 Graph Neural Network Actor-Critic Architecture 41

vii

CONTENTS

2.5 Summary and Remarks . 42

3 Evaluating Learned Behavior Policies for Autonomous Vehicles 45
3.1 Introduction and Overview . 45

3.2 State of the Art of Learning-Based Behavior Policies in Safety-Critical
Applications . 47

3.2.1 Safe Reinforcement Learning 47

3.2.2 Runtime Safety Assurance . 49

3.2.3 Combining Conventional and Learning-Based Methodologies 51

3.3 Counterfactual Behavior Policy Evaluation 52

3.3.1 Definition of a Counterfactual World 53

3.3.2 Counterfactual Behavior Policy Evaluation at Runtime 54

3.3.3 Insights into Learned Behavior Policies 56

4 Optimization Theory and Post-Optimizing Behavior Policies 59
4.1 Introduction to Optimization . 59

4.2 Constrained Optimization . 60

4.2.1 Constrained Newton’s Method 61

4.2.2 Interior-Point Methods . 62

4.3 Trajectory Optimization for Autonomous Vehicles 64

4.3.1 Dynamic Vehicle Model . 65

4.3.2 Numerical Integration and Differentiation Methods 66

4.3.3 Direct Shooting and Nonlinear Trajectory Optimization . . . 68

4.4 Post-Optimization of Behavior Policies 69

4.4.1 Initial Estimates and Constraints 71

4.4.2 Post-Optimization Problem Formulation 73

4.4.3 Nonlinear Trajectory Optimization Solution Methods 75

5 Experiments and Results 77
5.1 Simulation and Benchmarking . 77

5.1.1 BARK: A Semantic Simulation Framework 78

5.1.2 BARK-ML: Machine Learning Framework for BARK 79

5.1.3 Training and Evaluation Scenarios 80

5.2 Learning Behavior Policies for Autonomous Vehicles 81

5.2.1 Hyperparameter and Architecture Search 81

5.2.2 Reward Signal and Shaping 84

5.2.3 Visualizing Information Propagation in Graph Neural Networks 85

5.2.4 Variational Studies and Generalization of Learned Behavior
Policies . 88

5.3 Counterfactual Behavior Policy Evaluation 89

5.3.1 Independent Behavior Policies 90

5.3.2 Dependent Behavior Policies 90

5.3.3 Summary and Remarks . 91

5.4 Post-Optimization of Learned Behavior Policies 91

viii

CONTENTS

6 Conclusion 95
6.1 Summary . 95
6.2 Discussion . 96
6.3 Future Work . 97

6.3.1 Multi-Agent Graph Neural Network Reinforcement Learning 97
6.3.2 Extending the Graph Structure Using Environmental Information 98
6.3.3 Interactive Post-Optimization of Learned Behavior Policies . 98

Bibliography 99

A Appendix 113
A.1 Architectures and Hyperparameters 113
A.2 Successful and Colliding Scenarios 115
A.3 Graph Neural Network Visualizations 116
A.4 Extracted Post-Optimization Constraints 117
A.5 Qualitative Results of the Post-Optimization 118

ix

List of Figures

1.1 Severely injured traffic participants in Germany from 1991 until 2019
[107]. 1

1.2 Search-based behavior generation methods. 5

1.3 Graph spanned by the probabilistic road-maps (PRM) algorithm. . . 7

1.4 Trajectory optimization problem formulation showing the contours of
the obstacle and having inequality constraints depicted by f1, f2, f3 . 8

1.5 Multiple policies that reach the goal configuration space. The likeli-
hood of “good” policies is iteratively increased using reinforcement
learning (RL). 10

2.1 Learning cycle in actor-critic reinforcement learning. 22

2.2 The left figure depicts a target policy πtarget and the current policy
π. The Kullback-Leiber (KL) divergence for these two distributions is
plotted on the right. 23

2.3 Surrogate objective function LCLIP in the proximal policy optimization
(PPO) as shown in [96]. 25

2.4 Feature vector representation with the ego vehicle’s state in the first
position and the other states sorted based on their distance to the ego
vehicle. 30

2.5 Graph representation with the ego vehicle’s state depicted in blue. . 31

2.6 On the left side, the distance potential function to the goal Φ(d) is
shown for various exponents a and on the right side the corresponding
reward shaping function. 34

2.7 On the left side, the velocity potential function Φ(v) is shown for
various exponents b and on the right side the corresponding reward
shaping function. 35

2.8 The combined distance potential function Φ(d, di) is shown on the
left and the resulting reward shaping functions on the right. Both
potential functions use an exponent of a = c = 0.4. 36

2.9 On the left, the potential function Φ(d, v) is shown and on the right the
potential function Φ(d, di). Both potential functions use an exponent
of a = b = c = 0.4. 37

2.10 GNN having three layers with the ego vehicle’s node depicted in
blue. GNNs are graph-to-graph modules that output the same graph
structure as the input. 38

xi

LIST OF FIGURES

2.11 Unified graph block as proposed in [9]. Inputs are the global values u,
the node values V , and the edge values E and their respective output
values are u′, V ′, E′. 40

2.12 GNN architecture for actor-critic reinforcement learning (modified
graphic from [45], ©2020 IEEE). In case of being used in the actor-
network, the final dense layer outputs parameters for,e.g., a normal
distribution. For the state-value-action function, the last layer outputs
a deterministic value. 42

3.1 Distributional shift and noise that can differ during training and
application of learned behavior policies. 46

3.2 The actual (assumed) world Wt is depicted on the left. In the coun-
terfactual world W v1∼π0

t , vehicle v1 (depicted in green) is controlled
by the behavior policy π0 and performs a lane change to let the ego
vehicle vego merge. In the counterfactual world W v1∼πM

t , vehicle v1

decelerates possibly letting the ego vehicle merge as well (modified
graphic from [44], ©2020 IEEE). 54

3.3 Forward simulation of the counterfactual world W v1∼πm
t where vehicle

v1 is controlled by the behavior policy πm. The traces for each vehicle
of the forward simulation are shown with, e.g., the ego vehicle’s trace
being denoted as T v1∼πmvego . 55

3.4 Influence heatmap how the behavior policies influence each other. The
counterfactual worlds are plotted on the y-axis and the vehicle’s state
influence is plotted over the x-axis. 57

4.1 Constrained optimization problem with f0 being the objective and f1

the constraint function. 61

4.2 Depiction of the solution process of an interior-point method. The
constraints are illustrated as dashed ellipses and the objective function
is shown using contours. The blue line visualizes the solution trajectory. 62

4.3 Illustration of the single-track vehicle model. The steering rate of
the vehicle is given by δ, the curvature by κ, the wheelbase by l, the
vehicle’s velocity by v, and the vehicle’s angle by θ. 66

4.4 Forward simulation of the world for three time-steps in a game-
theoretic fashion with all vehicles choosing actions simultaneously.
The ego vehicle is depicted in blue and its trajectory is denoted by
T initego . The trajectories of the other vehicles are denoted as T initi . . . 71

4.5 Visualization of the constraints for a single time-step k. A line-
search along the Cartesian coordinates defines the maximum free
configuration space for the ego vehicle (depicted in blue) defined by

hfk , h
r
k, h

a
k, h

b
k. 72

4.6 Cartesian deviations ∆x and ∆y of initial state xinitk and the optimized
state xoptk . In the depicted case, the constraints are fulfilled as ∆x+

δx ≤ hfk and ∆y + δy ≤ hak. 73

xii

LIST OF FIGURES

4.7 Proximity of the optimized trajectory τ optego to the learning based initial
trajectory τ initego . 74

5.1 ObservedWorld concept of BARK. Each agent receives an Observed-
World in which it executes its behavior and execution model (modified
graphic from [13], ©2020 IEEE). 78

5.2 The merging scenario used for the training and evaluation of behavior
policies. The ego vehicle is depicted as the blue vehicle and its goal
is shown as the light blue polygonal area. The figure shows multiple
sampled initial scenario states. 80

5.3 The first row shows the results for the DNN architectures and the
second row shows the results for the GNN architectures during training
evaluated every 2000 episodes using 25 evaluation scenarios. The GNN
architectures outperform the conventional ones. 82

5.4 (a) Potential-based reward shaping functions using the distance to the
goal and (b) the distance to the goal and to others. 84

5.5 Success and the average reward achieved during training using a
sparse reward signal and reward shaping functions evaluated every
2000 episodes using 25 evaluation episodes. 85

5.6 Graph edges visualized over the course of a scenario (each row is
∆t = 0.4 seconds spaced). 86

5.7 Histograms for the edge value magnitudes M plotted over the relative
edge values. The histogram has been generated using 1000 episodes. 87

5.8 Variational studies for the conventional DNN and GNN architectures
plotted over the percentage of variation in the desired time-headway
parameter of the minimizing overall braking induced by lane changes
(MOBIL) model. 88

5.9 (a) Counterfactual worlds W v1 in which the behavior policy of vehicle
v1 is exchanged multiple times with independent behavior policies
at time-step t = 1.2s. (b) Corresponding influence heatmaps Ht=1.2s

showing the influence of the counterfactual worlds on the behavior
policies. 89

5.10 (a) Counterfactual worlds W v1 in which the behavior policy of vehicle
v1 is exchanged multiple times with dependent behavior policies at
time-step t = 2.4s. (b) Corresponding influence heatmaps Ht=2.4s

showing the influence of the counterfactual worlds on the behavior
policies. 91

5.11 Constraint extraction for the world Wt during an episode at times
t = 0.4s ∗ i with i being the respective row. The ego vehicle is depicted
in blue and the extracted polygonal areas are obtained using a line-
search in the x- and y-directions. 92

xiii

LIST OF FIGURES

5.12 At the top, the trajectory generated by the learned behavior policy is
shown. In the middle row, the optimized trajectory that is smoother
and that adheres guaranteed to the defined constraints. At the bottom,
the input signals of the optimization are shown. 93

A.1 Successful and colliding scenarios using the GNN large architecture. 115
A.2 Graph edges visualized for two episodes using the GNN large architecture.116
A.3 Extracted constraint bounding boxes for the post-optimization. . . . 117
A.4 Trajectories produced by the GNN large architecture and the respective

post-optimized trajectories. 118

xiv

List of Tables

1.1 Overview of search-based methods for behavior generation in au-
tonomous driving. †: Solutions are asymptotically optimal. ‡: Optimal
in respect to the Markov decision process. n: number of expansions
during the search. m: number of children. k: simulation steps 6

1.2 Overview of optimization-based methods for behavior generation in
autonomous driving. 9

1.3 Taxonomy dividing machine learning methodologies into four categories. 10

2.1 Overview of input representations used in deep learning. †: invariant
depending on the choice of state. 28

5.1 Different architectural configurations and their performance evaluated
over 2000 dense merging scenarios. Values in bold represent the best
value for a column. 83

xv

Acronyms

AC actor-critic.

BARK Behavior benchmARK.
BARK-ML Behavior benchmARK - Machine Learning.
BFGS Broyden-Fletcher-Goldfarb-Shanno.

CBPE counterfactual behavior policy evaluation.
CNN convolutional neural network.
ConvGNN convolutional graph neural network.

DDPG deep deterministic policy gradient.
DDQN double deep Q-learning.
DNN deep neural network.
DP dynamic programming.
DPG deep policy gradient.
DQN deep Q-network.

GAE graph autoencoder.
GAN generative adversarial network.
GN graph network.
GN block graph network block.
GNN graph neural network.
GPU graphics processing unit.

IDM intelligent driver model.
IL imitation learning.
IN interaction network.
InfoGAIL info generative adversarial imitation learning.
IP interior point.
IVP initial value problem.

KKT Karush-Kuhn-Tucker.
KL Kullback-Leiber.

LUT lookup table.

xvii

Acronyms

MCM Monte Carlo method.
MCTS Monte-Carlo tree search.
MDP Markov decision process.
MILP mixed integer linear programming.
MIQP mixed integer quadratic programming.
MOBIL minimizing overall braking induced by lane changes.
MPC model predictive control.

ODD operational design domain.

PPO proximal policy optimization.
PRM probabilistic road-maps.
PRM* probabilistic road-maps*.

QP quadratic program.

RecGNN recurrent graph neural network.
RL reinforcement learning.
RQ1 research question 1.
RQ2 research question 2.
RQ3 research question 3.
RRT rapidly-exploring random tree.
RRT* rapidly-exploring random tree*.
RSS responsibility-sensitive safety.
RTSA runtime safety assurance.

SAC soft actor critic.
SARSA state action reward state action.
SL supervised learning.
SOTIF safety of the intended functionality.
SQP sequential quadratic program.
SRL safe reinforcement learning.
STGNN spatial-temporal graph neural network.

TD temporal difference.
TD3 twin-delayed DDPG.
TRPO trust region policy optimization.

USL unsupervised learning.

V&V verification and validation.

xviii

1 Introduction

1.1 Motivation

Autonomous driving is one of the key technologies to stem the increased need for
mobility in the future. Not only does it have the potential to lower the total number
of vehicles on roads and to decrease the downtime of vehicles, but it also has the
potential to make traffic safer overall.

Developing autonomous vehicles poses a challenging task as these need to adhere
to societal norms and – to be accepted by the broader public – need to operate safer
than humans do. Using the German traffic statistics of severely injured people as
shown in Figure 1.1 and taking into account that all vehicles drove a total of 738
billion kilometers in Germany in 2019, autonomous vehicles are required to operate
having a collision probability lower than 8.83× 10−8 per driven kilometer [107, 62].

1995 2000 2005 2010 2015

Year

0

20000

40000

60000

80000

100000

120000

S
ev
er
el
y
In
ju
re
d

Figure 1.1: Severely injured traffic participants in Germany from 1991 until 2019 [107].

Not only do autonomous vehicles need to cater to the above-stated collision
probabilities, but they also have to blend seamlessly into mixed traffic — be it
with other autonomous vehicles or human drivers. At first glance, this might not
seem as important as the other stated attributes but blending into mixed traffic

1

1 Introduction

plays a vital role in the overall acceptance of autonomous vehicles. For example,
an autonomous vehicle standing on a lane for a few minutes trying to merge would
lower their acceptance. “Blending in seamlessly into traffic” requires the behavior
generation of autonomous vehicles to interact with other traffic participants and,
further, stipulates the need to learn from these interactions (experiences).

Conventional methods for behavior generation, such as optimization-based ap-
proaches, can guarantee collision-free and comfortable behaviors and incorporate
traffic rules [30]. However, e.g., optimization-based methods often fall short when it
comes to “seamlessly blending into mixed traffic” as these often require exhaustive
parameter-tuning for specific scenarios.

The lack of scalability of these approaches motivates the need for learning-based
methods that excel at learning from experience and adapting their driving behavior
over time. These methods can learn from experiences and actively explore the
configuration space by interacting with the environment. For example, in a merging
scenario, the other vehicle might give way if the ego vehicle slightly nudges in front.
However, as many learning-based approaches use deep neural networks as function
approximators, these cannot give the same safety and comfort guarantees as, e.g.,
optimization-based approaches.

This work generates synergies by combining learning- and optimization-based
methodologies. Learning-based approaches are used to generate interactive behaviors,
and optimization-based ones are used to smoothen the learned trajectory whilst
adhering to extracted safety constraints.

This work formulates learning behavior policies as an MDP and solves it using
actor-critic reinforcement learning. Input representations are proposed and discussed
in terms of their efficiency, invariance, and other criteria. Further, the choice of
reward signals is discussed and novel potential-based reward shaping functions for
learning behavior policies are proposed. As the number and order of vehicles in
traffic can change rapidly, a novel GNN actor-critic architecture is proposed that is
invariant to the number and order of vehicles. Graphs as an input representation
are highlighted, and several other advantages are discussed in Section 2.2. Further,
using GNNs, structured elements are introduced where the information flow between
nodes (vehicles) can be evaluated – providing additional insights into the learned
behavior policy. It is shown that the novel GNN actor-critic architecture outperforms
conventional DNNs in performance and also generalizes better. An additional benefit
is the reduced number of parameters of the novel GNN actor-critic architecture
lowering the memory requirement.

As DNNs might not always generalize well or the state- and action-space have not
been fully explored during training, a CBPE is introduced to gain insights on the
performance of the learned behavior policy at runtime. The performance of learned
behavior policies is evaluated using counterfactual worlds to gain introspection on, e.g.,
the behavior policies’ generalization or whether and how it handles distributional
shifts. Further, relations of how behavior policies influence each other can be
extracted. Finally, the policies’ usage is restricted based on its performance over all
counterfactual worlds – increasing the success rate significantly.

2

1.2 Behavior Generation Methods in Autonomous Driving

To obtain smooth behavior trajectories from learned behavior policies, a post-
optimization is introduced that utilizes an initial estimate generated by the learned
behavior policy and smoothens the behavior trajectory. This is achieved by min-
imizing the jerk whilst adhering to extracted constraints from the learning-based
initial estimate. The optimized solution is constrained to be close to the initial
estimate for the interactions with other vehicles to remain valid. Further, using
learning-based initial estimates mitigates optimizing all combinatorial options to ob-
tain well-performing behavior trajectories. The optimization is further warm-started
using the input control sequence obtained by the learning-based behavior policy,
which speeds up the time-to-convergence. By combining learning- and optimization-
based methods, the resulting behavior generation is interactive, safe, and produces
comfortable trajectories. The proposed method can adapt its behavior over time to
blend into mixed traffic without requiring extensive parameter-tuning.

In summary, this work provides a thorough investigation and benchmarking of input
representations and reward signals for learning behavior policies for autonomous
vehicles. State-of-the-art actor-critic reinforcement learning is applied to learn
interactive behavior policies and a novel GNN actor-critic architecture is proposed
that is invariant to the number and order of vehicles. A CBPE is introduced to
gain introspection into learned behavior policies at runtime and the encoded driving
behavior within these. Finally, a post-optimization is introduced that uses learned
behavior policies to generate initial estimates and constraints, includes interactions
with other traffic participants, and provides safe and smooth trajectories.

In the subsequent sections of this chapter, an overview of behavior generation
methods used in autonomous driving is given to understand the implications, ad-
vantages, and disadvantages of each behavior generation class. The works’ research
questions and contributions are presented, and, finally, a more detailed outline of the
structure and the content of this thesis is laid out.

1.2 Behavior Generation Methods in Autonomous Driving

The choice of the behavior generation algorithm is essential concerning safety, comfort,
and blending into mixed traffic. This section discusses the most popular solution
methods for behavior generation using a taxonomy dividing these into search-,
optimization-, and learning-based approaches. Before discussing these in detail, a
brief problem formulation for a behavior generation problem for autonomous vehicles
is given.

Each vehicle vi in a scene is controlled by a behavior policy πi that returns an
action at for a given world state st at time t. The behavior policy can either be
deterministic or probabilistic and is expressed as πi(at|st). By iteratively calling
the behavior policies of all vehicles simultaneously a state-space trajectory τi(t) :
[tstart, tstart + T] → Xoccupied for each vehicle is obtained with T being the time-
horizon of the trajectory. As the behavior policies πi influence each other, the
behavior generation is, henceforth, called interactive behavior generation. The

3

1 Introduction

configuration space X is comprised of the initial configuration space Xinit and of the
occupied configuration space Xoccupied. The free configuration space is then given by
Xfree ← X /∈ Xoccupied. Additionally, there exists a goal configuration space Xgoal
the vehicle tries to reach within the specified time horizon T . For the resulting ego
vehicle’s trajectory τego to be executable, the trajectory needs to adhere to the ego
vehicle’s dynamic constraints. The vehicle’s dynamics can either be included using a
constraint function D(τ, τ̇ , τ̈) that constrains the differential values of the trajectory
or by directly forward integrating a dynamic vehicle model, e.g., using time-marching
integration methods. Using the above-introduced terminologies the optimal behavior
generation problem for the ego vehicle can then be formulated as

arg min
π∈Π(X ,T)

f0(τego(π)) (1.1)

subj. to τ(0) = xinit and τ(T) ∈ Xgoal

τ(t) ∈ Xfree ∀t ∈ [0,T]

D(τ, τ̇ , τ̈) ∀t ∈ [0,T]

that tries to find a policy π from a set of policies Π(X , T) that minimizes the objective
function f0(τego(π)) and adheres to the constraints.

The problem formulation in Equation 1.1 is denoted as an optimization-based
formulation having equality and inequality constraints. However, it is by no means
restricted to optimization-based approaches and also applies to search- and learning-
based methodologies. The problem in Equation 1.1 is an NP-hard problem that tends
to scale poorly with an increasing number of vehicles and combinatorial options in
general [83].

Low collision probabilities, the problems’ complexity, the computational require-
ments, and other criteria restrict the usage of behavior generation methods in
safety-critical applications, such as autonomous driving, significantly. In the fol-
lowing, each behavior generation class will be discussed in respect to the problem
formulation in Equation 1.1.

1.2.1 Search-based

Search-based methods discretize the configuration space X and represent their solution
in either graph or tree structures. These can be subdivided into probabilistic and
deterministic methods. In safety-critical applications, such as autonomous driving,
probabilistically exploring methods cannot guarantee low collision probabilities as
stated in Section 1.1. However, in praxis, these have empirically shown to work well
and have been applied for behavior generation of autonomous vehicles but might
fall short in an assurance case. Table 1.1 provides an overview of the most popular
search-based methodologies applied to autonomous driving.

Visibility graphs connect all points that are visible to each other. However, this
results in a quadratic runtime complexity which makes these not applicable to
complex problems. For simple problems, where the shortest path between two points

4

1.2 Behavior Generation Methods in Autonomous Driving

sstart

Xgoal

Xoccupied

(a) rapidly-exploring random tree (RRT)

Xoccupied

sstart

Xgoal

(b) rapidly-exploring random tree* (RRT*)

Figure 1.2: Search-based behavior generation methods.

is required, these might pose a feasible choice. Visibility graphs cannot provide an
optimal solution to the problem formulation in Equation 1.1 as no vehicle dynamics
are considered and no objective function can be defined.

Lattices explore the configuration space X deterministically and uniformly and
avoid dense cluttering around the root vertices [83]. Pivtoraiko et al. [88] use the
term “state lattice” to describe a sampled configuration space X . As the lattice
states have to be connected, these need to be connectable, e.g., by formulating a
two-point boundary problem. The discretization of the configuration and action
space might prohibit finding a truly optimal solution for Equation 1.1, but avoids
relying on stochastic sampling, which might make these methods more feasible in an
assurance case for autonomous driving.

The RRT algorithm has initially been applied to solve motion planning problems
in robotics [110]. Compared to many other search-based methodologies, it explores
the configuration space more efficiently due to its Voronoi bias. However, a drawback
in using the RRT algorithm is that it does not provide an optimal solution for the
behavior generation problem in Equation 1.1.

The RRT* was then introduced that is capable of providing asymptotically optimal
solutions for Equation 1.1 [55]. Two main mechanisms achieve the asymptotically
optimal solutions: Finding better parent nodes and rewiring the search tree. However,
when using a vehicle model, the rewiring is non-trivial as this poses a two-point
boundary value problem optimization problem. Depending on the used solution
method and not having an analytical steering function, the complexity might be far
worse than O(n log n).

Similar to the above-stated algorithms, PRMs stochastically explore the configu-
ration space X . After the graph has been built, it is queried to find a solution to
the motion planning problem. An extension, the probabilistic road-maps* (PRM*)
exists capable of providing asymptotically optimal solutions. However, it has the

5

1 Introduction

Model Assumptions Anytime Complexity Optimality

Deterministic
Visibility
Graph [23]

2D polygonal config.
space

No O(n2) No

Lattice and
Dijkstra Piv-
toraiko et al.
[88]

Any with steering
method

No O(n log n) No

Probabilistic
RRT [110] Any Yes O(n log n) No

RRT* [55]
Any with steering
method

Yes O(n log n) Yes†

PRM [55]
Any with steering
method

No O(n2) No

PRM* [55]
Any with steering
method

No O(n log n) Yes†

MCTS [68] Any Yes O(mk) Yes‡

Table 1.1: Overview of search-based methods for behavior generation in autonomous driving.
†: Solutions are asymptotically optimal. ‡: Optimal in respect to the Markov
decision process. n: number of expansions during the search. m: number of
children. k: simulation steps

same disadvantages as the RRT* as it needs to solve two-point boundary problems.
A search tree spanned by the PRM algorithm is shown in Figure 1.3.

The Monte-Carlo tree search (MCTS) has recently gained popularity following
the publications of AlphaGo and AlphaGo Zero [99, 102]. In contrast to the before
stated methodologies, the underlying problem formulation of an MCTS is an MDP, of
which the MCTS tries to maximize the future expected cumulative reward. However,
the MCTS also relies on random sampling, which makes it challenging to guarantee
low collision probabilities.

In summary, search-based methods are a powerful tool for generating behaviors
for autonomous vehicles. They can include the ego vehicle’s dynamics, solve multi-
agent problem formulations, and provide asymptotically optimal solutions. However,
due to the sample and problem complexity, they often cannot produce solutions in
real-time or, in the stochastic case, guarantee to find a solution in bounded runtime.
These characteristics might hinder their usage as behavior generation methods for
autonomous vehicles as these require real-time operation and have to undergo a
system assurance case that proves these to be safe.

1.2.2 Optimization-based

Optimization-based methods can deliver truly optimal solutions for the problem
formulation in Equation 1.1. Depending on the solution method and problem
formulation, the solution can either be globally or locally optimal using either global
or local optimization, respectively. Table 1.2 provides an overview of optimization-

6

1.2 Behavior Generation Methods in Autonomous Driving

Xoccupied

sstart

Xgoal

Figure 1.3: Graph spanned by the PRM algorithm.

based approaches applied to autonomous driving and in Figure 1.4 an exemplary
constrained optimization problem is shown.

Global optimization methods are computationally more demanding as they find
the global optimum instead of a local one and often cannot be applied in real-time.

Esterle et al. [31] propose a mixed integer quadratic programming (MIQP) approach
that finds globally optimal solutions using a linearized dynamic model of the ego
vehicle. However, as with many MIQP approaches, the runtime complexity increases
exponentially with the number of objects, making these approaches in general not
applicable to complex scenarios in real-time.

Frese et al. [32] propose a mixed integer linear programming (MILP) formulation
using a double integrator as vehicle model. They assure the non-holonomy by
bounding the lateral acceleration using an approximation that is valid for small yaw
angles. Their approach can produce globally optimal solutions but is not valid for
real-world scenarios having high curvatures, such as roundabouts.

On the contrary, local optimization-methods trade in finding the global optimum
for performance. Thus, these tend to be relatively performant and can be applied in
real-time applications. Under certain circumstances (the objective function being
convex and the constraints being affine), the global optimum collapses to a local one,
in which case local optimization methods also provide the global optimum.

Ziegler et al. [132] propose a local and continuous optimization method for planning
trajectories. They use differential values of the trajectory to calculate the jerk and
account for non-holonomy by bounding the trajectories’ curvature. The resulting
optimization problem is non-linear and is then solved using a sequential quadratic
program (SQP) to find a locally optimal solution. A good initialization is required
where a well-performing maneuver variant is chosen as the initial estimate for
the optimization to avoid poor performance [11]. However, geometric partitioning
and optimization do not scale well with an increasing number of vehicles. The
approach has been shown in the real-world driving the original Bertha-Benz route
fully autonomously [133].

7

1 Introduction

Xoccupied

sstart

Xgoal
f1

f2

f3

Figure 1.4: Trajectory optimization problem formulation showing the contours of the
obstacle and having inequality constraints depicted by f1, f2, f3 .

Gutjahr et al. [42] formulate two quadratic programs (QPs) that are solved
sequentially – one for the longitudinal and one for the lateral Frenet coordinates.
They additionally use a Frenet coordinate bicycle vehicle model to account for the
non-holonomy of the vehicle. All obstacles have to be transformed into the Frenet-
Coordinate space, which is a costly operation. Their approach has similar drawbacks
as [132] as the initial estimate has a significant impact on the resulting solution.

Nilsson et al. [82] utilize two QPs for the longitudinal and lateral optimization
using a linear double integrator model. They constrain the optimization using a
coupling between lateral and longitudinal velocity to account for the non-holonomy
of the vehicle that is valid for small yaw angles. These constraints, however, are not
valid in scenarios having high curvatures, such as roundabouts.

In summary, optimization-based approaches are the only class of solution methods
that can provide truly optimal solutions for Equation 1.1. At convergence, well-
formulated optimization problems provide safe and comfortable behaviors. However,
global optimization can be computationally expensive, and local optimization requires
a “good” initialization. This work introduces a post-optimization that smoothens
learned behavior trajectories whilst adhering to extracted constraints, which is
built upon [46]. Combining learning- and optimization-based approaches generates
synergies, as the learned behavior policy provides an initial solution and, thus,
implicitly chooses a maneuver variant. In Section 4.3, a more theoretical perspective
on trajectory optimization is provided.

1.2.3 Learning-based

Fueled by recent breakthroughs, such as AlphaGo [99] and AlphaGo Zero [102], as
well as due to open-sourcing machine learning frameworks, such as TensorFlow1 and

1https://github.com/tensorflow/tensorflow

8

https://github.com/tensorflow/tensorflow

1.2 Behavior Generation Methods in Autonomous Driving

Model Assumptions Problem Formulation Optimality

Global Optimization

Esterle et al. [31]
linearized bicycle
model

MIQP Yes

Frese et al. [32] double integrator MILP Yes
Local Optimization

Ziegler et al. [132] triple integrator SQP Yes

Gutjahr et al. [42]
Frenet bicycle
model

QP Yes

Nilsson et al. [82] double integrator QP Yes

Table 1.2: Overview of optimization-based methods for behavior generation in autonomous
driving.

PyTorch2, machine learning is gaining popularity and usage in behavior generation
for autonomous vehicles. As stated in Section 1.1, these methods are capable of
learning from data and experiences and can adapt their driving behavior to blend
into traffic. Furthermore, many machine learning approaches do not require explicit
formulations of the environment’s dynamics. Additionally, these methods often
outperform conventional algorithms in online performance as these can harness offline
computational power. A taxonomy dividing machine learning methodologies into
four classes is shown in Table 1.3. These are discussed in terms of their benefits and
usage in behavior generation for autonomous vehicles.

Unsupervised learning (USL) learns only by using the input space and does not
require any form of supervision. USL methods are not directly utilized for behavior
generation but are very common in pre-processing steps, such as autoencoders to
generate more efficient input representations [50].

Supervised learning (SL) maps an input to an output space that is directly
defined by labeled data. A loss function is minimized, such as the cross-entropy or
squared loss between the network’s predicted output and target labels. Ross et al.
[92] introduced a supervised learning approach called the DAgger framework that
uses an expert’s policy to gather data and train a policy that mimics the expert.

Imitation learning (IL) mimics expert behavior without access to an explicit
reward signal [70]. In its simplest form, IL collapses to a SL problem, but usually more
sophisticated approaches are used, such as generative adversarial networks (GANs). Li
et al. [70] introduce an imitation learning approach called info generative adversarial
imitation learnings (InfoGAILs) where a generator creates driving behaviors and the
discriminator tries to distinguish between actual- and generated-driving behaviors. A
significant drawback of GAN approaches is that these can suffer from mode collapse,
in which case the performance deteriorates as the generator and the discriminator
become stuck in a local minimum [106].

RL maximizes the future cumulative reward of an MDP merely using a reward
signal. RL methodologies can be divided into model-based and model-free reinforce-

2https://github.com/pytorch/pytorch

9

https://github.com/pytorch/pytorch

1 Introduction

Xoccupied

π2
π1

π0

sstart

Xgoal

Figure 1.5: Multiple policies that reach the goal configuration space. The likelihood of
“good” policies is iteratively increased using RL.

ment learning. Model-free reinforcement learning is ideal for problems in which the
environment’s dynamics are not known, making these approaches compelling for
applications, such as autonomous driving. They learn their behavior merely requiring
a reward signal and an input representation of the environment. These characteristics
make them ideal in applications where the ego vehicle, e.g., has to nudge slightly onto
the other vehicle’s lane to slow it down so that it can merge. A detailed discussion
of RL algorithms, their benefits, and drawbacks is given in Chapter 2.

In summary, learning-based approaches pose a powerful methodology that enable
harnessing offline computational power, is data-driven, and that can learn game-
theoretic and interactive behavior policies.

Methodology Description

Unsupervised learning
Does not require labeling or external reward signals.
Thus, does not require any form of supervision.

Supervised learning
Requires a target or label to map the input space to
these.

Imitation learning
Learns from data to imitate certain styles or driving
behaviors.

Reinforcement learning
Maximizes the future cumulative reward merely by
using an external reward signal.

Table 1.3: Taxonomy dividing machine learning methodologies into four categories.

1.3 Research Questions and Contributions

The research questions tackled in this thesis are discussed and the individual contri-
butions of this thesis are highlighted.

10

1.4 Outline

Research question 1 (RQ1): How to learn continuous and invariant behavior
policies in semantic environments?

This thesis proposes, investigates, and benchmarks several input representations
and reward signals for learning behavior policies in semantic environments for MDP
settings. Solution methods for learning behavior policies using the MDP formulation
are outlined and discussed. As the number and order of vehicles in traffic can change
rapidly, used methodologies should be invariant to these. A novel GNN architecture
for actor-critic reinforcement learning is introduced that is invariant towards the
number and order of vehicles, that outperforms conventional networks, generalizes
better, and has a smaller number of total network parameters as shown in [45].
Further, using GNNs the information flow in the behavior policies can be evaluated
to gain insights into the learned behavior policy.

Research question 2 (RQ2): How can the performance of learned behavior
policies be evaluated at runtime?

Neural networks often do not generalize or handle distributional shifts well. Even
small changes in the input space can lead to profound changes in the output space
that could potentially cause malicious behavior. For these to be deployed in safety-
critical applications, runtime safety assurance (RTSA) can be used to estimate the
behavior policies’ performance. This thesis proposes a CBPE that is based on [44].
It uses counterfactual worlds that are derived from the actual world to evaluate the
behavior policy at runtime. In these counterfactual worlds, non-factual behaviors
are assigned to the other vehicles, and counterfactuals can be asked and answered,
such as “Would the behavior policy be collision-free if the other vehicle had changed
lanes?”. It is shown that restricting the behavior policies’ usage based on their
performances over the counterfactual worlds significantly increases the success rate.

Research question 3 (RQ3): How to obtain smooth behavior trajectories for
learned behavior policies that utilize neural networks?

DNNs can potentially produce non-smooth behaviors due to generalization issues
or nonlinearities within these. Further, due to not fully exploring the configuration
space the network might not be capable of handling all scenarios. This thesis proposes
a post-optimization that smoothens the learned behavior trajectory whilst adhering
to extracted constraints that is based on the work presented in [46]. By enforcing
the optimized trajectory to be close to the initial, learning-based trajectory, the in-
teractions with other vehicles remain valid. The post-optimized behavior trajectories
offer the same safety guarantees and increased comfort while the interactions remain
valid.

1.4 Outline

This section provides an outline and structure of the thesis.

In Chapter 2, learning interactive behavior policies in semantic environments is
outlined, ranging from the MDP problem formulation, over the underlying theory,
to the solution classes. The input representation for deep learning in semantic

11

1 Introduction

environments is discussed in terms of its efficiency, transferability, and other criteria.
Next, the reward signal and shaping for MDPs is discussed, and a novel potential-
based reward shaping formulation for dynamic environments is presented. A particular
focus is set on actor-critic (AC) RL methodologies and learning behavior policies for
autonomous driving. Further, a novel GNN architecture is proposed that has been
shown to outperform and generalize better than conventional DNNs. The end of the
chapter provides a summary and addresses open challenges.

In Chapter 3, evaluating learned behavior policies at runtime is outlined. An
overview of verification and validation methods is given, and the state of the art is
outlined. Next, the usage of learned behavior policies in safety-critical applications,
such as autonomous driving, is discussed, and several methodologies are being
outlined – ranging from safe reinforcement learning (SRL), over RTSA, to methods
combing conventional with learning-based methods. Finally, the CBPE is introduced
that uses counterfactual worlds in which other vehicles behave non-factual. The
CBPE enables evaluating the generalization capabilities of learned behavior policies
at runtime and how these can, e.g., cope with distributional shifts.

In Chapter 4, an overview of optimization theory and its solution methods is
given. Constrained and trajectory optimization theory is outlined. A theoretical view
on trajectory optimization is given – the used vehicle models, numerical methods,
problem formulation, and solution methods. A post-optimization built upon the
presented theory is introduced that utilizes learned behavior policies to generate initial
estimates and derive state constraints. The post-optimization allows for utilizing
local optimization as the learned behavior policy provides a maneuver variant and
warm-starts the optimization.

In Chapter 5, the simulation and benchmarking frameworks BARK and Behavior
benchmARK - Machine Learning (BARK-ML) are introduced and the scenarios
used for learning and evaluation are described. An architecture and hyperparameter
search is performed for the conventional DNN and novel GNN architectures to find
well-performing policies. The proposed potential-based reward shaping functions are
evaluated in terms of their effectiveness. The information flow in the GNN architecture
is visualized using the magnitude of the edge values of the GNN. Variational studies are
performed for the learned behavior policies to conduct studies on their generalization
capabilities. The CBPE is evaluated in terms of the insights it provides and how it
could be used as a runtime monitor in, e.g., Simplex architectures. Influences are
extracted, and how the behavior policy copes with model deviations at runtime is
evaluated. Results of the post-optimization are presented that offer the same safety
guarantee but additionally increase comfort.

Finally, in Chapter 6, a conclusion, discussion, and future work are given with
the advantages and shortcomings of the proposed methodologies.

12

2 Learning Behavior Policies in Semantic
Environments

This chapter focuses on learning behavior policies for autonomous vehicles in semantic
and uncertain environments. A semantic environment is defined as one in which all
traffic participants are represented in an object list, and information, such as maps, is
represented as vectorial information. In uncertain environments, the formulation of,
e.g., an objective function is non-trivial due to the unknown dynamics and transition
probabilities of objects in the environment. Thus, conventional methods usually
require extensive parameter-tuning to blend into these. Learning-based methods
can explore the configuration space and learn behavior policies from experience or
using a data-set. This chapter formulates the trajectory planning problem provided
in Equation 1.1 as an Markov decision process (MDP) to find a sequential decision
sequence that maximizes the cumulative future reward.

Section 2.1 outlines the underlying theory of MDPs and solution methods ranging
from dynamic programming, over Monte Carlo methods, up to actor-critic reinforce-
ment learning for learning behavior policies.

Section 2.2 discusses input representations for MDPs in semantic environments
and how these can be represented for the usage with deep neural networks (DNNs).
The efficiency of these input representations, their transferability, and other criteria
are discussed and elaborated.

The reward signal defined in the MDP plays a crucial role in the solution methods’
performance during learning and in the resulting behavior policy. Section 2.3
discusses reward signals for learning behavior policies for autonomous vehicles.
Several potential-based reward shaping functions for learning behavior policies are
proposed to avoid the credit assignment problem.

Finally, to overcome the shortcomings of, e.g., being dependent on the number
and order of vehicles, a novel graph neural network (GNN) actor-critic architecture
is proposed. An overview of GNNs is given and the unified framework proposed by
Battaglia et al. [9] is outlined. The novel GNN actor-critic architecture based on the
unified framework for learning behavior policies is then introduced in detail.

2.1 Underlying Theory: Markov Decision Process

Markov decision processes (MDPs) are a formalization of sequential decision-making
problems, where actions influence future reward [111]. They provide a mathematical
framework to study methods, such as dynamic programming (DP) and reinforcement

13

2 Learning Behavior Policies in Semantic Environments

learning (RL). All solution methods have in common that they try to maximize the
cumulative future expected reward.

The Markov assumption states that the history of all states can be neglected as it
is represented in the current state st. A state st is Markovian if and only if

P(st+1|st) = P(st+1|s1, . . . , st) (2.1)

with P being the state-transition probability transitioning from a Markov state st
to a successor state st+1. Thus, it is assumed that the past information s1, . . . , st−1

is encoded in the present state st and does not depend on the history of states
st−1, . . . , s0. For convenience of notation a short form of the transition probability is
used:

Pstst+1 = P(st|st+1) (2.2)

MDPs are a straightforward framing of the problem of learning from interaction
to achieve a specific goal [111]. In terms of decision-making, an MDP can be viewed
as a state machine with transition probabilities and rewards. By optimizing actions
and influencing the states’ transitions, the future expected cumulative reward v(st)
can be maximized. An MDP is defined by a tuple 〈S,A,P,R, γ〉 where

• S is a (finite) set of states,

• A is a (finite) set of actions,

• P is a state transition probability matrix, Pastst+1
= P[st+1|st, at],

• R is a reward function, Ras = E[Rt+1|st, at], and

• γ ∈ [0, 1] is a discount factor.

A policy π that outputs an action in an MDP is defined as a distribution over
actions conditioned on the state and is denoted as

π(at|st) = P[at|st]. (2.3)

Due to the Markov property, the policy π(at|st) only depends on the current state st
and, thus, is a stationary policy (time-independent) [60]. Having an MDP problem
formulation and a policy π, the policies’ actions can be learned to increase the future
expected cumulative reward.

The state-value function vπ is defined as the expected return starting from state
st and then following the policy π – in episodic environments until termination. The
state-value function is given by

vπ(st) = Eπ[Gt|st]. (2.4)

Another option is to define state-action-value function qπ(st, at). It represents the
expected return starting from state st, choosing an action a, and then following the
policy π. Thus, the action-value function qπ(st, at) is given by

qπ(at|st) = Eπ[Gt|st, at]. (2.5)

14

2.1 Underlying Theory: Markov Decision Process

Equation 2.4 and 2.5 can be decomposed into an immediate reward and the discounted
value of the successor state. This then yields the Bellman expectation equations:

vπ(st) = E[Rt+1 + γvπ(st+1)|st, at ∼ π] (2.6)

qπ(st, at) = E[Rt+1 + γqπ(st+1, at+1)|st, at ∼ π]. (2.7)

In the following, the primary solution methodologies for MDPs are discussed:
dynamic programming, sampled-based methods, and reinforcement learning.

2.1.1 Solution Method: Dynamic Programming

DP refers to a collection of algorithms that compute optimal policies given a perfect
model of the environment as a MDP [111]. Methods in dynamic programming mainly
use one or both of the following steps: policy evaluation and policy improvement.

Policy Evaluation: In the policy evaluation, a state-value function vπ for an
arbitrary policy π is computed that evaluates the policy π and the expected cumulative
discounted reward. The Bellman equations defined in the previous section are used
to compute the state-value function vπ. The state-value function vπ for an arbitrary
policy π is given by

vπ(st) =
∑
a

π(at|st)
∑

st+1∈St+1

Pastst+1
[Rst + γvπ(st+1)]. (2.8)

As there is no closed-form solution, iterative solutions have to be utilized [111]. In
the iterative policy evaluation, Equation 2.8 is iteratively used as an update rule as
follows:

vπ(s)←
∑
a

π(at|st)
∑
s′

Pass′ [Rs + γvπ(s′)]. (2.9)

There are two main ways that these updates can be achieved: there can be two value
functions – one for the old values and one for the new values or a single one can
be used that is updated in a sweeping manner. As discussed in [111], both of these
variants will eventually converge to the optimal solution. This step is often referred
to as the E-step as it evaluates the current policy.

If the state-action-value qπ(st, at) of Equation 2.7 is greater than the (baseline)
state-value function vπ(st), choosing the action at is more benefitial than following
the policy π.

Policy improvement theorem: Given two determinisic policies π and π′ such
that, for all s ∈ S,

qπ(s, π′(st)) ≥ vπ(st). (2.10)

15

2 Learning Behavior Policies in Semantic Environments

Algorithm 1 Policy Iteration [111]

1. Initialization
V (s) ∈ R and π(s) ∈ A(s) for all s ∈ S

2. Policy Evaluation
repeat

∆← 0
for all s ∈ S do

v ← V (s)

V (s)←
∑

s′∈St+1
Pa∼π(s)
ss′ [Rs + γV (s′)]

∆← max(∆, |v − V (s)|)
end for

until ∆ < ε

3. Policy Improvement
policy-stable← true
for all s ∈ S do

old-action← π(s)

π(s)← argmaxa
∑

s′∈St+1
Pa∼π(s)
ss′ [Rs + γV (s′)]

if old-action 6= π(s) then
policy-stable← false

end if
end for
if policy-stable then

return V (s), π
else

go to 2. Policy Evaluation
end if

then the policy π′ must be as good as, or better than π. The detailed proof of
Equation 2.10 is provided in [111]. To find the greedy policy π′ in all states all
actions have to be evaluated, such that

π′(st)← argmax
at

qπ(st, at) (2.11)

← argmax
at

E[Rt+1 + γvπ(st+1)|st, at] (2.12)

← argmax
at

∑
st+1∈St+1

Patstst+1
(Rst + γvπ(st+1)). (2.13)

The greedy policy in Equation 2.13 meets the conditions of the policy improvement
theorem defined in Equation 2.10. The process of improving the original policy by
making it greedy to the original value function is called policy improvement [111].

16

2.1 Underlying Theory: Markov Decision Process

This step is also referred to as the M-step as it maximizes the expected cumulative
future reward.

Policy Iteration: The policy iteration alternates between the two above-introduced
E- and M-steps to find an optimal policy π∗ for an MDP. The policy iteration is
guaranteed to provide monotonically improving policies and value functions [111].
The schemata of the policy iteration can be depicted as follows:

vπ(s)→ π(s)→ vπ(s)→ . . . (2.14)

The policy iteration method is outlined in Algorithm 1. One of the drawbacks of

Algorithm 1 is that the transition probability Pa∼π(s)
ss′ has to be known. Additionally,

when using a continuous action space, it is non-trivial to compute the argmax as there
are infinite many actions. Many state-of-the-art reinforcement learning algorithms
are based on these two steps (E & M).

In summary, DP are a powerful solution method when the transition probabilities
are fully known in the environment. In traffic, however, the transition probabilities
of the environment are often not known. Thus, sample-based methods are a more
promising candidate for learning behavior policies for autonomous vehicles. These
are discussed in the following section.

2.1.2 Solution Method: Sample-based Methods

Sample-based methods solve MDPs only by using samples (experiences). Contrary
to DP, sample-based methods do not require full knowledge about the environment’s
dynamics and its transition probabilities P. This section outlines two sample-based
MDP solution methods: Monte Carlo methods (MCMs) and temporal differences
(TDs).

Monte Carlo Methods: The here discussed MCMs are purely episodic – the
state-value function v(st), action-state-value function q(st, at), and the behavior
policy are only updated after one or multiple episodes. As in dynamic programming,
there are two main steps in MCMs – a policy evaluation and policy improvement
step.

In the policy evaluation step, two main methods are utilized – the first-visit and
the every-visit Monte Carlo prediction methods [111]. The policy evaluation differs
mainly from the one introduced in the DP methods as there are no max operator
and transition probabilities used. Instead, Monte Carlo simulation is utilized by
simulating many episodes and computing the state-value function v(st) based on
these.

The policy improvement step is similar to the one presented in the DP methods.
The actions are still greedily choosen in respect to the esimated state-value function
v(st). As in dynamic programming, the policy improvement theorem given in
Equation 2.10 applies.

One method to implement Monte Carlo policy iteration is the Monte Carlo exploring
starts approach [111]. MCMs are an often recurring concept in reinforcement learning,
especially in model-free actor-critic reinforcement learning.

17

2 Learning Behavior Policies in Semantic Environments

Temporal Differences: One of the underlying key ideas central and novel to
reinforcement learning is TD learning [111]. TD learning combines the ideas of MCM
and DP. As TD learning is also sample-based, TD methods do not require knowledge
about the environment’s dynamics. The relationship between TD, DP and MCM
methods is a recurring theme in the theory of reinforcement learning. Contrary to
MCM, TD is an online method and does not have to be episodic. Using TD, the
update of the state-value function V (st) is given by

V (st)← V (st) + α[Rt+1 + γV (st+1)− V (st)] (2.15)

and, thus, does not require the environment to be episodic as the update just depends
on the current state st and the next state st+1. TD methods are not restricted to
only using a single time-step estimate but can utilize multiple. This is denoted as
TD(N) with N being the states in the future that are being used for the update.
The TD(0) equation can be formulated as

vt+1(st) = vt+1(st) + αt[

TDtarget︷ ︸︸ ︷
Rt+1 + γvt(st+1|s, π)−vt+1(st)︸ ︷︷ ︸

TDerror

]. (2.16)

Contrary to MCM, TD explicitly exploits the Markov property and is, therefore,
more sample efficient in Markovian environments. The idea of TD methods forms an
important basis of many state-of-the-art reinforcement learning algorithms.

In summary, sample-based methods do not require the transition probabilities of
the environment, which makes them applicable to learn behaviors in traffic where the
other vehicle’s behaviors are unknown (e.g., mixed traffic). The next section discusses
RL and in particular policy-based RL that learns the policy directly without the
need of a state-value function.

2.1.3 Solution Method: Reinforcement Learning

RL is simultaneously a problem formulation, a class of solution method, and the
field that studies this problem and its solution methods [111]. It is strongly based
on the ideas presented in the previous sections – in particular on sample-based
methods. Unlike dynamic programming, model-free RL does not require a model of
the environment’s dynamics and learns how to act in an environment only using a
reward signal.

Value-based RL methods use state-value or state-action-value functions to find
a solution for an MDP. Value-based RL is strongly interlinked with TD learning.
One of the earliest and simpler on-policy value-based RL methods is the state action
reward state action (SARSA) (State s, Action a, Reward r, next State s′, and next
Action a) algorithm [93]. It collects experiences in the form of tuples 〈s, a, r, s′, a〉.
These tuples are then used to directly update the state-action value function:

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)). (2.17)

18

2.1 Underlying Theory: Markov Decision Process

For smaller, discrete state-space problems, the SARSA algorithm can be tabular-based
and for larger ones deep neural networks (DNNs) can be used as function approx-
imators. The exploration in SARSA can be guided using an ε-greedy exploration
strategy.

Q-learning is an off-policy value-based method similar to SARSA [123]. In Q-
learning a similar formulation as in Equation 2.17 is used that is defined by

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)). (2.18)

The only difference to Equation 2.17 is the additional max operator. The learned
state-action-value function Q(s, a) directly approximates Q∗(s, a) independent of the
policy being followed [111]. Q-learning is also an off-policy algorithm as it does not
require the policy to explore the configuration space. As in SARSA, Q-learning can
explore the environment using the policy and ε-greedy exploration. When using a
tabular-based implementation, Q-learning converges to an optimal policy Q∗(s, a)
[111].

Mnih et al. [78] presented a deep Q-network (DQN) algorithm that is capable of
learning directly using high-dimensional inputs. They applied DQN reinforcement
learning for solving Atari games and were able to outperform human players. In
the presented work, they combined convolutional neural networks and Q-learning to
learn on high-dimensional inputs.

Schaul et al. [94] additionally introduced a prioritized replay buffer to Q-learning.
It samples transitions from the replay buffer proportional to the last encountered
absolute TD error. This makes learning rare events more feasible, such as when using
a binary reward signal for reaching the goal.

Another problem with conventional deep DQN methods is that these tend to
overestimate the state-value function due to the max operator. Double deep Q-
learning (DDQN) addresses this overestimation by decoupling the policy evaluation
and improvement step [115]. DDQN was first introduced in a tabular fashion but
also works with any kind of function approximator, such as DNNs. Not only did the
DDQN algorithm reduce the overestimation, but it also led to an overall improvement
in performance.

Bellemare et al. [10] proposed a method called distributional RL where they learn
distributions of the expected return instead of the expected return. This led to a
further improvement in performance over conventional DDQN approaches.

A method combining all of the above-stated methodologies and further extensions
has been presented by Hessel et al. [48]. Their proposed method achieves state-of-
the-art performance and is superior to any of the above-stated methods individually.

Policy-based RL methods do not rely on first approximating a state-value or state-
action-value function but instead directly optimize a (stochastic) policy. Therefore,
the state-value and state-action-value function are not strictly required for these
methods. The policy formulation given in Equation 2.3 is extended to

π(at|st, θ) = P(at|st, θt) (2.19)

19

2 Learning Behavior Policies in Semantic Environments

and is now additionally dependent on θ ∈ Rd that are the DNN parameters. In
policy-based methods, the utility function U(θ) defined as

U(θ) = E[

H∑
t=0

R(st, at);πθ] =
∑
τ

P (τ ; θ)R(τ) (2.20)

is directly optimized. When using a neural network parameterized by θ, the gradient
of the utility function U(θ) can directly be taken with respect to the network
parameters θ. Thus, the likelihood ratio policy gradient can be derived as follows

∇θU(θ) = ∇θ
∑
τ

P (τ ; θ)R(τ) (2.21)

=
∑
τ

∇θP (τ ; θ)R(τ) (2.22)

=
∑
τ

P (τ ; θ)

P (τ ; θ)
∇θP (τ ; θ)R(τ) (2.23)

=
∑
τ

P (τ ; θ)
∇θP (τ ; θ)

P (τ ; θ)
R(τ) (2.24)

=
∑
τ

P (τ ; θ)∇θ logP (τ ; θ)R(τ) (2.25)

with P (τ ; θ) being the probability and R(τ) the reward of a trajectory τ . As there is
no closed-form or analytical solution, Equation 2.25 has to be approximated by

U(θ) ≈ ĝ =
1

m

m∑
i=1

∇θ logP (τ i; θ)R(τ i) (2.26)

with m being the number of samples. This entails that the likelihood ratio changes
the probabilities of experienced paths and not the paths themselves. The term
∇θ logP (τ i; θ) can further be extended using a dynamics model P (sit+1|sit, ait) and a
policy πθ(a

i
t|sit):

∇θ logP (τ i; θ) = ∇θ log[
H∏
t=0

P (sit+1|sit, ait)πθ(ait|sit)] (2.27)

= ∇θ[
H∑
t=0

logP (sit+1|sit, ait) +
H∑
t=0

log πθ(a
i
t|sit)] (2.28)

=
H∑
t=0

∇θ log πθ(a
i
t|sit). (2.29)

As the first term in Equation 2.28 does not depend on the neural network parameters
θ taking the derivative yields zero. Combining Equation 2.26 and 2.29 yields the
final likelihood ratio policy gradient equation:

ĝ =
1

m

m∑
i=1

∇θ log πθ(a
i
t|sit)R(τ i). (2.30)

20

2.1 Underlying Theory: Markov Decision Process

As the dynamics model P (sit+1|sit, ait) is not required in Equation 2.30, policy-based
methodologies derived this way are called model-free reinforcement learning. Model-
free methods are referred to as being problem-agnostic as they do not require any
knowledge about the environment’s dynamics and can be applied to a wide range of
problems without further modification.

In theory, Equation 2.30 can be applied to solve challenging tasks. However, using
this equation, all actions would become more likely — also bad ones. To mitigate
this issue, a bias in the form of a baseline can be introduced to Equation 2.30.
This is valid, as introducing a baseline does not change the core properties of the
optimization as long as it does not depend on the network’s parameters θ directly.
The modified equation using a baseline is given by

ĝ =
1

m

m∑
i=1

∇θ log πθ(a
i
t|sit) (R(τ i)− b)︸ ︷︷ ︸

Advantage Â

. (2.31)

The difference between the reward R(τ i) and the baseline b(st) is called the
advantage Â. Generally speaking, actions that have a higher reward than the
baseline are reinforced and other ones are made less likely. Although introducing a
bias might introduce unwanted effects, this is overweight by the fact that introducing
a bias also significantly reduces the variance. In general, lowering the variance is
one of the core challenges in developing efficient and well-performing RL methods
[43]. Another commonly used methodology to reduce variance in RL methods is to
make use of the temporal structure of rewards. As the problem is assumed to be
Markovian, future actions do not depend on the past states but only on the current
state. Thus, Equation 2.31 can be split into two parts and modified so that it only
takes future rewards into account:

ĝ =
1

m

m∑
i=1

(
H−1∑
t=0

∇θ log πθ(a
i
t|sit)

)(
H−1∑
t=0

R(τ i)− b(sik)

)
. (2.32)

A basic policy gradient reinforcement learning method – the REINFORCE algo-
rithm – is outlined in Algorithm 2. To design efficient likelihood-ratio policy gradients

Algorithm 2 REINFORCE [124]

Policy π(at|st, θ) and α > 0
while Training do

Generate an episode S0, A0, R1, . . . , St−1, At−1, RT ∼ π(·|·, θ)
for t = 0, . . . , T − 1 do

G←
∑T

k=t+1 γ
k−t−1Rk

θ ← θ + αG ln∇π(At|St, θ)
end for

end while

methods, the following desiderata have to be taken into account: A stable monotonic
improvement and a good sample efficiency are required.

21

2 Learning Behavior Policies in Semantic Environments

Environment

st, rt

at

Agent

Actor Critic

TD-Error

Figure 2.1: Learning cycle in actor-critic reinforcement learning.

The policy-based methods that have been discussed so far use the learned policy
πθ(at|st) to explore the configuration space. If a bad step is taken in the optimization,
the algorithm then would explore the configuration space using the novel – possibly
bad – policy. This can lead to a collapse in performance and the algorithm might
not recover from such a bad step. Thus, the step size and a stable monotonic
improvement are especially important. The other consideration when designing
policy-based methods is their sample efficiency. This is often a major limitation
for RL methods, as many of these require thousands or even millions of collected
experiences.

Policy-based methodologies learn stochastic and continuous policies but often suffer
from poor sample efficiency due to exploring on-policy possibly leading to degrading
performance and high variances. Actor-critic reinforcement learning addresses some of
these shortcomings and achieves state-of-the-art performance, which will be discussed
in the next section in detail.

2.1.4 Solution Method: Actor-Critic Reinforcement Learning

Actor-critic (AC) RL is at the intersection of policy- and value-based reinforcement
learning. AC RL methods directly optimize the policy, such as policy-based RL and a
critic rates the actor’s actions. This tends to reduce the variance and introduces a bias
into the learning process. Reducing the variance and using a baseline enhances the
performance significantly towards pure policy-based RL approaches. Often stochastic
behavior policies are learned in AC RL that efficiently explore the configuration
space using sampling. AC RL can learn stochastic and continuous behavior policies,
which have shown state-of-the-art performance in various tasks [95, 96, 43, 2]. This
section discusses AC RL characteristics and methodologies.

22

2.1 Underlying Theory: Markov Decision Process

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

a

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

πtarget(a|s) π(a|s)

p(x)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

a

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

DKKL(πtarget(a|s)||π(a|s))

Figure 2.2: The left figure depicts a target policy πtarget and the current policy π. The
Kullback-Leiber (KL) divergence for these two distributions is plotted on the
right.

Off-policy algorithms enable using a replay buffer and experiences and avoid poor
policies leading to insufficient exploration. Therefore, off-policy algorithms tend
to be more sample efficient as these can utilize experiences far from the past that
on-policy methods cannot.

AC RL methods can use stochastic or deterministic policies. Stochastic policies
offer a couple of advantages for game-theoretic environments having opponents. For
example, only a stochastic policy can offer an optimal solution to the rock-paper-
scissors game [65].

One of the fist AC RL methods that achieved state-of-the-art performance in
continuous control tasks was the trust region policy optimization (TRPO) algorithm
that then was followed by the proximal policy optimization (PPO) RL algorithm
[95, 96]. Both of these methodologies make use of continuous and stochastic policies
and learn on-policy. At the same time, the deep deterministic policy gradient (DDPG)
and twin-delayed DDPG (TD3) algorithms were introduced that use deterministic
policies inspiried by the DQN algorithm [71, 33]. These methods utilize external
exploration processes as the policy cannot be sampled to explore the configuration
space.

Ideally, one would combine the best characteristics of on- and off-policy AC
RL algorithms. The soft actor critic (SAC) algorithm does just that by utilizing
stochastic policies and still being able to learn off-policy and utilizing a replay buffer.
Additionally, it replaces the exploration process by maximizing the future cumulative
expected entropy in its objective function. Maximizing the entropy leads to finding
the most random behavior policies that also maximize the future cumulative expected
reward. In the following, state-of-the-art AC methods are outlined and discussed in
greater detail.

23

2 Learning Behavior Policies in Semantic Environments

The TRPO is an AC RL method that uses stochastic policies and explores the
configuration space on-policy. The TRPO has the same monotonic improvement
guarantees as the algorithm proposed by Kakade et al. [54]. Monotonic improvement
is achieved by utilizing a commonly used concept in the optimization domain —
a (safe) trust-region for limiting the policies’ change [60]. As a measure for this
trust-region, the KL divergence is used. The KL divergence is depicted in Figure 2.2
on the right and the policies using a Gaussian distribution on the left. The overall
objective function of the TRPO can be formulated as a constrained optimization
problem as

maximize Lθold(θ) (2.33)

subject to Dmax
KL (θold, θ) ≤ δ. (2.34)

with Lθold(θ) being a surrogate objective function and δ the trust-region radius. The
surrogate objective function is defined as

Lθold(θ) = E[
πθ(at|st)
πθold(at|st)

Ât] (2.35)

that uses an importance ratio between the current policy πθ and the old policy πθold .
An implementation of the TRPO method is provided in Algorithm 3.

Algorithm 3 Trust-Region Policy Optimization [95]

for all iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate the advantages Â
Compute the policy gradient g
Compute the search direction xsd = F−1g using the conjugate gradients
Line-search along xsd while satisfying the KL constraint

end for

To compute the search-direction xsd, the inverse of the Fisher-information matrix
F−1 multiplied by the gradient g is used. After obtaining the search direction, a
line-searched in the search-direction xsd is performed subject to the defined KL
divergence trust region.

The PPO algorithm is based on the TRPO approach and restricts the policy
update [96]. It has the same characteristics as the TRPO — using a stochastic
policy, exploring on-policy, and having a continuous action space. Enforcing the KL
constraint in the TRPO algorithm is computationally expensive. The PPO avoids
this by introducing a surrogate objective function that restricts the policy update
step using clipping. The main objective that is proposed in the PPO algorithm is
defined as

LCLIP (θ) = E[min(rt(θ)Â, clip(rt(θ), 1− ε, 1 + ε)Ât)] (2.36)

with ε being a tunable hyperparameter. To better understand the idea behind
Equation 2.36, Figure 2.3 visualizes the clipping mechanism. The clipping function

24

2.1 Underlying Theory: Markov Decision Process

restricts too large positive updates by LCLIP . For the negative ones, these are only
bound up to a reward value of 1− ε and then can decrease linearly. The full PPO
algorithm is outlined in Algorithm 4.

1

1 + ε

LCLIP

r0

1

1− ε

LCLIP

r0

Figure 2.3: Surrogate objective function LCLIP in the PPO as shown in [96].

Algorithm 4 Proximal Policy Optimization [96]

for all iteration=1, 2, . . . do
for all actor=1, 2, . . . , N do

Run policy πθold for T timesteps
Estimate the advantages Â1, . . . , ÂT

end for
Optimize surrogate L w.r.t. θ, with K epochs and minibatch size M ≤ NT
θold ← θ

end for

The PPO shows empirically better performance and requires less computational
power than the TRPO [96].

The DDPG algorithm can be seen as an extension of the DQN algorithm to the
continuous action domain [71]. It is an AC RL method that is model-free, uses a
deterministic policy, and utilizes a continuous action-space. Contrary to the above-
introduced algorithms – the TRPO and PPO algorithms – the DDPG algorithm
can utilize a replay buffer and, thus, can make use of past experiences. Using a
replay-buffer makes the DDPG algorithm more sample efficient and enables it to be
trained offline using collected experiences. The DDPG algorithm is based on the
deep policy gradient (DPG) algorithm introduced by Silver et al. [101]. The critic
network Q(s, a) is updated using the Bellman Equations 2.7 and the actor is updated
using the chain rule as follows

∇θJ ≈ Est∼ρ[∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s, θµ)|s=st] (2.37)

with ρ being a random exploration process. One of the fundamental differences of
the DDPG to the DPG algorithm is that it utilizes soft updates and target networks

25

2 Learning Behavior Policies in Semantic Environments

for the critic network Q(s, a) [71]. A soft update is achieved by changing the critic
network slowly, by, e.g., using a linear interpolation

θ′ ← τθ + (1− τ)θ′. (2.38)

that restricts the change of update of the policies and critic networks. The authors
state that this was essential in achieving stable targets to avoid divergence of the
critic [71]. The full DDPG algorithm is shown in Algorithm 5.

Algorithm 5 Deep Deterministic Policy Gradient [71]

Initialize θQ, θµ

θ
Q ← θQ, θ

µ ← θµ

D ← ∅
for each iteration=1, 2, . . . do

at ∼ πφ(at|st)
st+1 ∼ p(st+1|st, at)
D ← D

⋃
{(st, at, r(st, at), st+1)}

end for
for each iteration=1, 2, . . . do

θQ ← θQ −∇θµ 1
N

∑
i(ri + γθ

Q
(st+1, µ(st+1|θ

µ
))−Q(si, ai))

2

∇θµJ ≈ 1
N

∑
i∇aQ(s, a|θQ)|s=si,a=µ(si)∇θmuµ(s|θµ)|si

θ
Q ← τθQ + (1− τ)θ

Q

θ
µ ← τθµ + (1− τ)θ

µ

end for
return θ1, θ2, φ

The SAC uses a stochastic policy and can either use discrete or continuous
actions [43]. Like the TRPO and PPO, it utilizes stochastic policies but, contrary
to these methods, can use off-policy experiences. Additionally, to maximizing the
future cumulative expected reward, the future cumulative expected entropy is being
maximized. Maximizing the entropy mitigates designing an external exploration
process, as maximizing the future expected entropy provides a natural way for
exploration. The entropy maximization can be seen as an incentive for the algorithm
to learn policies that achieve high rewards while being as random as possible. Due
to being off-policy and being able to utilize a replay-buffer, the SAC algorithm
has a higher sample efficiency than the TRPO and PPO algorithms. It has been
shown to outperform other off-policy methods that utilize replay buffers, such as
the DDPG or TD3 methods [43]. Contrary to these methods, the SAC can utilize a
stochastic policy that can be used in the exploration process by sampling — making
the configuration space exploration more efficient. Since its proposal, a few versions
of the SAC algorithm have been published. The soft-value function has been dropped
in the latest version using the relation between state-value and state-action-value
function. The SAC has three main update equations:

26

2.1 Underlying Theory: Markov Decision Process

Algorithm 6 Soft Actor-Critic [43]

Initialize θ1, θ2, φ
θ1 ← θ1, θ2 ← θ2

D ← ∅
for each iteration=1, 2, . . . do

at ∼ πφ(at|st)
st+1 ∼ p(st+1|st, at)
D ← D

⋃
{(st, at, r(st, at), st+1)}

end for
for each iteration=1, 2, . . . do

θi ← θi − λQ∇θiJQ(θi) for i ∈ {1, 2}
φ← φ− λπ∇φJπ(φ)
α← α− λ∇αJ(α)
θi ← τθi − (1− τ)θi for i ∈ {1, 2}

end for
return θ1, θ2, φ

• ∇θJQ(θ) for the Q(s, a) state-action-value function,

• ∇φJπ(φ) for the policy, and

• ∇αJ(α) for the temperature parameter.

The full SAC algorithm is outlined in Algorithm 6. Additionally, the SAC borrows
the idea of using two Q-networks to avoid overestimation from double Q-learning
[114]. The state-action-value function parameters can be optimized by minimizing
the Bellman residual

JQ(θ) = E(st,at)∼D[
1

2

(
Qθ(st, at)− r(st, at) + γ E(st+1)∼p[Vθ(st+1)])

)2
] (2.39)

with Vθ(st+1) given as

V (st) = Eat∼π[Q(st, at, θ)− α log(πφ(at|st))]. (2.40)

Equation 2.39 can be optimized using a stochastic gradient descent method. The
objective function for the policy is given by

Jπ(φ) = Est∼D[Eat∼πφ [α log(πφ(at|st))−Qθ(st, at)]]. (2.41)

Using the reparameterization trick, actions at ∼ πφ(at|st) can be backpropagated
through the Q-networks. This makes it possible to directly optimize the policy
using Equation 2.41. The temperature parameter α needs to be updated during the
learning to avoid manual fine-tuning. The temperature parameter α is updated using

J(α) = Eat∼πt [−α log(πφ(at|st))− αH] (2.42)

27

2 Learning Behavior Policies in Semantic Environments

Invariant Memory Efficiency Relational Information

Images Yes Low No
Feature vectors Yes† High Yes
Sets Yes High No
Graphs Yes High Yes
Grids Yes Medium No

Table 2.1: Overview of input representations used in deep learning. †: invariant depending
on the choice of state.

This work uses the SAC algorithm to learn autonomous vehicles’ behavior policies.
Using experiences from the past (in the replay buffer) improves the sample-efficiency
and reduces the need for simulation episodes. This is crucial for efficiently learning
behavior policies in simulation. Further, maximizing the cumulative expected entropy
guides the exploration without any hyperparameter tuning. This is especially impor-
tant when learning behavior policies for autonomous vehicles as many combinatorial
options are present in traffic — e.g., merging behind or in front of the other vehicle.
The SAC algorithm and its performance using several hyperparameters, architectures,
and reward signals are benchmarked and evaluated in Section 5.2.

2.2 Input Representation for Learning Behavior Policies

The input representation in MDPs has large effects on the learning efficiency, required
memory, and transferability. It mainly determines the performance during learning
and of the resulting behavior policy — whether the behavior policy is invariant
towards the number and order of vehicles or if it generalizes to novel scenarios. Some
input representations hold unused information, such as the backdrop in images which
makes these less computationally efficient. Some input representations, such as
graphs, are more efficient and allow a clear separation between intrinsic and relative
values. This section discusses several characteristics of input representations for
learning behavior policies.

Ideally, the input representation should have the following characteristics:

• Invariant : It should be invariant to the number and order of objects in the
environment as these tend to change in dynamic environments, such as real-
world traffic.

• Transferable: It should be transferable to novel scenarios and learn the under-
lying dynamics and relations instead of memorizing certain situations.

• Efficient : It should be efficient in computation and memory usage.

A comprehensive overview of the most common input representations is listed in
Table 2.1 and additional context is provided here.

Images are a widely used input representation for learning behavior policies
[78, 12, 117]. These can be directly fed from, e.g., cameras into learning algorithms.

28

2.2 Input Representation for Learning Behavior Policies

However, these are not efficient in memory usage and computation as they often
contain unused information that needs to be processed, such as the sky over the
horizon. These are, however, invariant towards the number and order of vehicles as
the input representation itself does not change its size depending on these factors.
Generalization using images and neural networks can be improved using common
machine learning techniques, such as drop out and convolutional layers.

Feature vectors are a commonly used input representation and have been widely
used in RL [14, 46, 127, 4]. These tend to be more efficient than images as they only
contain information that is required for learning behavior policies. However, using a
row-vector that concatenates the vehicles’ states sorted by distance is not invariant
towards the number and order of vehicles. This can be mitigated by an intelligent
design of the feature vector, such as using relative distances or distance-sensing
antennas.

Sets have been utilized as input representation to learn behavior policies [128].
These are invariant to the number and order of traffic participants. However, these
cannot include relative values between the states and connections cannot define how
the set’s entities can interact. Sets can be seen as a sub-form of graphs — nodes
without any edges between these.

Graphs have gained popularity in machine learning recently and have been utilized
as input representation in RL [121, 26, 67]. Graphs are invariant towards the number
and order of vehicles in a scene when used together with graph neural networks
(GNNs) as is elaborated in Section 2.4.1. They are efficient as the only required
information is stored and graphs allow the specification of relational information in
the edges. As the network does not have to learn the relations from other vehicles’
states, it is efficient in computation and avoids learning incorrect relations.

Grid worlds also have been utilized in combination with RL [90]. These can be
seen as a sub-form of images that have a very coarse discretization. Thus, these
methods offer the same advantages and suffer from the same drawbacks as images but
are slightly better in computational and memory efficiency due to the discretization.

2.2.1 Feature Vector Representation

Feature vectors have been utilized in MDP settings, such as in [14, 46, 127, 4, 74].
The feature vector representation serves as baseline for developing and benchmarking
the novel GNN actor-critic architecture presented in Section 2.4. In this work, a
feature vector is defined as a one-dimensional row-vector that holds the information
of objects in the semantic environment, such as the vehicles’ states. Particularly,
the states of the vehicles are sorted by distance and then concatenated into a single
row-vector. In combination with DNNs this makes the input representation not
invariant towards the number and order of vehicles as the input size has to be fixed.
For the output of the DNNs to be well-behaved, the input representation should be
normalized (e.g., in a range of [−1, 1]). However, as the input size of DNNs is fixed,
this means that the rest of the feature vector has to be filled with default values if
there are fewer vehicles — possibly introducing unwanted effects.

29

2 Learning Behavior Policies in Semantic Environments

Relational information can be encoded into feature vector representations, e.g.,
by using an intelligent choice of reference frame. However, these usually allow only
one point of reference as otherwise the input size would become dynamic. This also
poses the challenge of how absolute information can then be included in the feature
vector, such as absolute coordinates.

. . .sego s1 s2 s3 sN

Figure 2.4: Feature vector representation with the ego vehicle’s state in the first position
and the other states sorted based on their distance to the ego vehicle.

Figure 2.4 depicts the feature vector representation with the ego vehicle’s state
depicted in blue. Algorithm 7 outlines a ‘ClosestAgentsObserver’ that outputs a
feature vector comprised of objects in its close proximity (threshold radius rmax).
A maximum number of vehicles Nmax is defined that determines together with the
‘GetTransformedState’ the length of the observation.

Algorithm 7 ClosestAgentsObserver

function Observe(agents, ego agent)
s′ego = GetTransformedState(ego agent), states = ∅
states← s′ego

sorted agents = GetAgentsByDistance(agents, ego agent)
for all agent ∈ sorted agents do

s′agent ← GetTransformedState(agent)
if dEuclidean(s′ego, s

′
agent) < rmax and agent 6= ego agent then

states← s′agent

end if
end for
return Concatenate(states)

end function

The ‘GetTransformedState’ function in Algorithm 7 returns a subset of the agent’s
state s′ and transforms this subset further (e.g., by using relative instead of absolute
values). The ‘Concatenate’ function concatenates all states and returns a fixed-size
vector in which the empty spaces are filled with default values.

2.2.2 Graph Representation

Graphs have been utilized as input representation for learning behavior policies
and predicting traffic in various works [121, 26, 67]. This work proposes a graph
representation that can be used for learning behavior policies within an AC RL
setting.

Graphs can have various characteristics, such as being cyclic and directed. This
work utilizes directed graphs having nodes n ∈ N and edges e ∈ E. Additionally,

30

2.3 Reward Signals for Learning Behavior Policies

both – the nodes and edges – have values, the node values hi for the i-th node and
edge values eij connecting the i-th with the j-th one. A full graph definition is then
given by G = (N,E).

The graph representation in combination with GNNs is invariant to the number
and order of objects in the environment. The invariance stems from the fact that
these graphs are being processed by GNNs that apply an approximation function to
update the node and edge values element-wise.

Due to the graph representation having node and edge values, a clear separation
of intrinsic and extrinsic values can be achieved — e.g., the node values storing the
intrinsic state values and the edge values the relational ones to other objects. It also
brings the advantage of the neural network not having to infer these relations as
these are explicitly given.

Graphs are efficient as they only store the required information and include
relational information for each node. As GNNs use a single neural network to update
the node and edge values element-wise, these have a lower number of parameters
compared to conventional DNNs.

sego
s1

s2

s3

sN

Figure 2.5: Graph representation with the ego vehicle’s state depicted in blue.

For a semantic environment to be converted to a graph, a GraphObserver is used
outlined in Algorithm 8. As in Algorithm 7, a ‘GetTransformedState’ function is used
that selects a subset of the agent’s state and transforms this subset into, e.g., relative
edge features ∆. The graph observer loops through all agents nearby and adds these
as nodes to the graph. Further, for the added node, it checks to which surrounding
nodes it should be connected based on a defined maximum distance rmax,G to the
ego vehicle and rmax,L if both nodes are near to each other. If a surrounding node
is within this distance, the nodes are connected by adding it to the edge index and
adding an edge value eij .

2.3 Reward Signals for Learning Behavior Policies

This section discusses the reward signal choice within MDP settings for learning
behavior policies for autonomous vehicles. First, a general discussion on the design
of reward signals is provided and, subsequently, potential-based reward shaping
functions for learning behavior policies are discussed.

31

2 Learning Behavior Policies in Semantic Environments

Algorithm 8 GraphObserver

function Observe(agents, ego agent)
s′ego = GetTransformState(ego agent)
sorted agents = GetAgentsByDistance(agents, ego agent)
node values = ∅, edge index = ∅, edge values = ∅
for i, agent ∈ sorted agents do

s′agent ← GetTransformedState(agent)
node values← s′agent

for j, other agent ∈ sorted agents do
s′i ← GetTransformedState(agent)
s′j ← GetTransformedState(other agent)
if dEuclidean(s′ego, s

′
i) < rmax,G and dEuclidean(s′i, s

′
j) < rmax,L then

edge index← (i, j)
∆← ||s′i − s′j||1
edge values← ∆

end if
end for

end for
return node values, edge index, edge values

end function

2.3.1 Design of the Reward Signal

The reward signal design is essential in setting up an MDP problem formulation and
selecting a corresponding solution method. Some solution methods can, e.g., cope
better with sparse reward signals than others. Reinforcement learning solely uses
the reward signal rt for learning how to behave.

One way is to define a sparse reward signal in which the agent only receives a
positive reward for, e.g., reaching the goal or a negative reward for, e.g., having a
collision. This, however, causes a credit assignment problem in which the algorithm
has to figure out which actions lead to the desired or undesired outcome [64]. Further,
using a sparse formulation can require the agent to explore an infeasible number of
states in the configuration space, such as with the mountain car problem [41]. Thus,
hindering the usage of RL in complex, real-world tasks.

Reward shaping transforms sparse rewards into continuous ones and increases the
learning process and overall performance. Reward shaping alters the underlying MDP
formulation from M = 〈S,A, P, γ,R〉 to M ′ = 〈S,A, P, γ,R′〉 where R′ = R + F is
the reward function of the transformed MDP [81]. The reward shaping function
F : S×A×S is a bounded real-valued function. Ng et al. [81] introduce necessary and
sufficient conditions for reward shaping functions to leave optimal policies invariant.
This is an important characteristic as the reward shaping otherwise might introduce

32

2.3 Reward Signals for Learning Behavior Policies

unwanted behaviors into the resulting policy. A potential-based reward shaping
function is given by

F (st, at, st+1) = γΦ(st+1)− Φ(st) (2.43)

with Φ(s) being the potential function, st the state at time t, and st+1 the state in
the next time step [81]. Additionally, as in the MDP formulation, a discout factor γ is
utilized. Reward shaping has been shown to improve the overall learning performance
and make complex problems feasible [72]. A potential-based reward shaping function
also avoids negative cycles due to poorly defined guiding rewards [81].

As most state-of-the-art reinforcement learning algorithms use DNNs as function
approximators, the reward signal is favored to be in a “well-behaved” range as neural
networks have shown to perform better in these — e.g., by limiting the mean of the
reward signal to a range of [−1, 1] and the standard deviation in a range of [0, 1]. To
achieve such a reward signal, the rewards can be transformed using a normalization
as

rt =

∑T
t=0 rt − µ√∑T
t=0(rt−µ)2

T + ε

(2.44)

with µ being the mean of the rewards rt in the replay buffer and ε a small value
avoiding a division by zero.

Another way to improve the efficiency of RL algorithms is to use differentiable
rewards as proposed in [122]. However, this is only possible if the models of other
agents and the environment are also differentiable. In uncertain environments, such as
real-world traffic, the models are mainly unknown, making formulating differentiable
rewards challenging in praxis.

2.3.2 Potential-based Reward Shaping for Autonomous Vehicles

This section introduces a potential-based reward shaping for learning behavior policies
for autonomous vehicles based on [81] and extends the work presented in [63]. The
aim is to transform a sparse reward signal into a continuous one to foster efficiency
during learning and mitigate the credit assignment problem. There are two primary
considerations in formulating the reward signal for autonomous vehicles: safety and
goal-oriented behaviors. Safety should be weighted more than the goal orientation as
not causing collisions is essential to the operation of autonomous vehicles. Further, a
goal-driven behavior is required to properly function as an autonomous system that
is to be accepted by society. For example, it would not be desirable for autonomous
vehicles to stand on a lane for minutes waiting to merge (the so-called “frozen robot
problem”).

A reward shaping function F (st, at, st+1) is used that transforms the original reward
signal rt = R(st, at, st+1) to a shaped reward signal rst = R(st, at, st+1)+F (st, at, st+1)
with t being the time. As proposed by Ng et al. [81], a potential-based formulation
is used for the reward shaping function that is shown in Equation 2.43. This section
proposes several potential-based reward shaping functions that aim to increase the
sample efficiency of the used RL algorithm.

33

2 Learning Behavior Policies in Semantic Environments

0 2 4 6 8 10

d

0.0

0.2

0.4

0.6

0.8

1.0
Φ

(d
)

(a) Distance potential function Φ(d).

0 2 4 6 8 10

d

10−3

10−2

10−1

γ
Φ

(d
′)
−

Φ
(d

)

0.0

0.2

0.4

0.6

0.8

1.0

a

(b) Distance reward shaping function F with d′ < d.

Figure 2.6: On the left side, the distance potential function to the goal Φ(d) is shown for
various exponents a and on the right side the corresponding reward shaping
function.

The distance to the goal can be modeled as a potential function to incentivize a
goal-driven behavior. The distance potential function is defined as

Φ(d) = 1− (
d

dmax
)a (2.45)

with d being the distance to the target, dmax being the maximum distance, and a
being the exponent determining the slope’s steepness. Figure 2.6 shows the distance
potential function on the left and the reward shaping function on the right. As
the distance d becomes smaller, the potential function increases until it ulimatively
reaches 1 at d = 0. The figure plots several distance potential functions having
different exponentials a resulting in different slopes.

Similar to the distance potential function, the velocity potential function Φ(v) is
defined as

Φ(v) = 1− (
||v − vdes||

∆vmax
)b (2.46)

with v being the velocity, ∆vmax being the maximum deviation of the desired velocity
vdes, and b being an exponent determining the slope’s steepness. Figure 2.7 shows
the velocity potential function on the left and the resulting reward shaping function
on the right. Combing the distance and velocity potential function yields a resulting
potential function of

Φ(d, v) =
Φ(d) + Φ(v)

2
(2.47)

that is normalized to limit the reward signal to a well-behaved range of [0, 1]. If
the RL algorithm normalizes the reward the normalization can be omitted. The
resulting potential function Φ(d, v) is shown in Figure 2.9 (a) with a desired velocity
of vdes = 5m/s.

34

2.3 Reward Signals for Learning Behavior Policies

0 2 4 6 8 10
v

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Φ
(v

)

(a) Velocity potential function Φ(v)

0 2 4 6 8 10
v

-0.10

-0.05

0.00

0.05

0.10

γ
Φ

(v
′)
−

Φ
(v

)

0.0

0.2

0.4

0.6

0.8

1.0

b

(b) Velocity reward shaping function F with v′ < v.

Figure 2.7: On the left side, the velocity potential function Φ(v) is shown for various
exponents b and on the right side the corresponding reward shaping function.

The thus far introduced reward potentials do not include any static or dynamic
objects of the environment. A potential function Φother(di) is introduced for other
objects that returns a negative value the closer the ego vehicle is to the i-th object

— returning negative one at a distance of zero. The distance potential function to
other objects is defined as

Φother(di) = (
||di||
dmax

)c − 1. (2.48)

with di being the Euclidean distance to the i-th object, dmax being the maximum
assumed distance, and c being the exponent determining the slope’s steepness. Thus,
the potential functions’ overall range is extended from [0, 1] to [−1, 1].

The potential function Φ can be split into potentials returning positive and negative
values into Φ+ and Φ−, respectively. Both groups are normalized using their average
to avoid too large positive or negative values. The resulting total potential Φt is then
given by

Φt =
1

P

P∑
i=0

Φ+
i +

1

L

L∑
i=0

Φ−other,i. (2.49)

with P being the number of terms in the positive potential and L the number of
terms in the negative potential. In Figure 2.8, the combined distance potential
function Φ(d, di) is depicted on the left. The dotted line depicts the goal distance
potential function Φ(d) and the dashed lines show the distance potential functions
Φ(di) for various distances to other objects – the object being placed at the distances
d = 0, 1, 2, 3m. On the right side in Figure 2.8, the resulting reward shaping functions
for varying object distances are shown. As can be seen, the reward shaping returns
a negative value with a decreasing distance d to the object. A negative value is
returned because the object is closer than the desired goal on the x-axis, and the
agent cannot reach the goal in one dimension without causing a collision before

35

2 Learning Behavior Policies in Semantic Environments

0 2 4 6 8 10

d

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00
Φ

(d
,d

i)
Φ(d)

Φ0.0m(di)

Φ0.0m(d, di)

Φ1.0m(di)

Φ1.0m(d, di)

Φ2.0m(di)

Φ2.0m(d, di)

Φ3.0m(di)

Φ3.0m(d, di)

(a) Distance potential function Φ(d, di).

0 2 4 6 8 10

d

-0.10

-0.05

0.00

0.05

0.10

γ
Φ

(d
′ ,
d
′ i)
−

Φ
(d
,d

i)

(b) Reward shaping function F with d′ < d.

Figure 2.8: The combined distance potential function Φ(d, di) is shown on the left and the
resulting reward shaping functions on the right. Both potential functions use
an exponent of a = c = 0.4.

reaching the goal. If both objects have the same distance, the resulting reward
shaping function always returns zero. To avoid objects influencing the learning policy
from too far, the distance potential function to other objects Φ(di) can be set to
be active only if di ≤ dthreshold. In Figure 2.9 (b), the combined potential function
Φ(d, di) plotted over the Cartesian distances dx and dy is shown. There are two
objects present in the plot, which can be seen as negative dents in the potential
function’s surface. On the left, where dy is zero, the distance to the goal is zero, and
the distance potential function Φd(d) increases its value to one.

A potential function can be defined that includes the distance to the goal, other
objects, and the desired velocity using all of the above-introduced potential functions.
The total potential function Φt(d, di, v) can then be defined as

Φt =
Φ(d) + Φ(v)

2
+

1

N

N∑
i=0

Φ(di). (2.50)

with N vehicles in the scenario. It is also possible to use, e.g., multiple goal potentials
if there are multiple goals the agent could reach. The proposed reward shaping
functions are plotted for real-world scenarios and evaluated in Section 5.2.2.

2.4 Graph Neural Networks and Actor-Critic Reinforcement
Learning

This section provides an overview of GNNs and how these can be utilized for learning
behavior policies for autonomous vehicles. The unified graph network framework by
Battaglia et al. [9] is outlined that can model a wide variety of GNN architectures.
A novel GNN actor-critic architecture for learning behavior policies for autonomous

36

2.4 Graph Neural Networks and Actor-Critic Reinforcement Learning

(a) Φ(d, v) (b) Φ(d, di)

Figure 2.9: On the left, the potential function Φ(d, v) is shown and on the right the potential
function Φ(d, di). Both potential functions use an exponent of a = b = c = 0.4.

vehicles is introduced. The novel architecture is invariant towards the number and
order of vehicles and is able to learn directly on graphs.

2.4.1 Overview of Graph Neural Networks

Learning directly on graphs or manifolds is grouped under the umbrella term geometric
learning [17]. Recently, vast progress has been made in the conventional, Euclidean
domain using deep neural networks, such as convolutional neural networks (CNNs)
[18]. However, these advances and methods cannot be straightforwardly applied to
the non-Euclidean domain. A solution method trying to transfer and apply these
concepts to the non-Euclidean domain and develop new ones are GNNs. GNNs are
at the intersection of conventional deep learning and structured approaches. They
were first applied by Sperduti et al. [105] to directed acyclic graphs in 1997. However,
the notion of GNNs was first used by Gori et al. [40] in 2005 and further elaborated
by Gallicchio et al. [35] in 2010. GNNs apply the same edge and node approximation
functions to each edge and node per layer, respectively. Thus, these inherently
support a form of combinatorial generalization [9]. For applications, such as learning
behavior policies for autonomous vehicles, this is especially important due to the
high number of combinatorial options (maneuver variants).

A comprehensive survey of GNNs is provided by Wu et al. [125]. In their work,
they propose a taxonomy to divide GNNs into four categories:

• recurrent graph neural networks (RecGNNs),

• convolutional graph neural networks (ConvGNNs),

• graph autoencoders (GAEs), and

• spatial-temporal graph neural networks (STGNNs).

37

2 Learning Behavior Policies in Semantic Environments

vego

v1

v2

Figure 2.10: GNN having three layers with the ego vehicle’s node depicted in blue. GNNs
are graph-to-graph modules that output the same graph structure as the
input.

RecGNNs can be viewed as the pioneers of GNNs [125]. These approaches utilize
recurrent neural networks to learn node representations. Due to computational
constraints during the early times, early research mainly focused on acyclic graphs
[105, 76]. Gori et al. [40] extended these approaches to handle all types of graphs.
The underlying idea is to update the nodes’ states by exchanging the neighborhood
information until a stable equilibrium is reached [125].

ConvGNNs utilize similar to Euclidean grid-based methods convolutional opera-
tions. The underlying idea is to aggregate the neighbors’ features and update the
node’s representation using these. Contrary to RecGNNs, ConvGNNs stack multiple
layers on top of each other to pass messages through the graph. ConvGNNs are more
often utilized due to their higher efficiency than RecGNNs [125]. The ConvGNNs
approaches can be further divided into two categories: spectral- and spatial-based
methods.

Spectral-based methods have a strong mathematical background and emerged
from the signal processing domain [59]. The first spectral ConvGNNs was proposed
by Micheli [75] in 2009. Spectral methods either need to perform eigenvector
computations or handle the whole graph at once [125]. As the eigenvector computation
has a complexity of O(n3) these are only applicable for relatively small problems.
Also, it has shown that spectral methods based on a Fourier basis generalize poorly
and are limited to operating on undirected graphs [125]. Thus, in this work, the
focus is put on spatial methods that are discussed in the following.

Spatial methods are often preferred over spectral ones due to their efficiency and
flexibility [125]. Spatial-based models are more flexible and can operate on a wide
range of graphs, such as graphs having edge inputs [40, 39], directed graphs [5], and
others [24]. Figure 2.10 shows three layers of a ConvGNN with the ego vehicle’s node
depicted in blue.

38

2.4 Graph Neural Networks and Actor-Critic Reinforcement Learning

GAEs just like their Euclidean counterpart encode the input graph into a latent
space and reconstruct the input graph from this latent space. These methods are
additionally used to generate novel graph structures from the latent space [21]. As
autoencoders try to recreate the input graph from the latent space, these methods
can be classified as unsupervised learning.

A relatively new class of GNNs are STGNNs. They aim to learn spatial information
that is underlying in the graph and include an additional dimension — the time.
Applications that require temporal information require such methodologies, such as
traffic speed forecasting [69] and driver maneuver anticipation [53]. However, as RL
assumes the state to be Markovian and the information to be included in the current
state, STGNNs are not required. The usage of these within RL could be investigated
in future work.

The next section utilizes the unified GNN framework representing ConvGNNs for
learning behavior policies for autonomous vehicles.

2.4.2 Unified Framework: Graph Blocks and Interaction Networks

Battaglia et al. [9] present a unified graph network (GN) that consists of graph
network blocks (GN blocks). The GN aims at generalizing and extending various
GNNs concepts and to support constructing complex architectures from simple
building blocks [9]. The term “neural” in “graph networks” is avoided as other
function approximators can be used as well, such as table-based ones.

The central entity in the proposed GN is a GN block, which is a “graph-to-graph”
module that takes an input graph, performs computations, and returns a graph
having the same structure as the input graph but having updated node, edge, and
global values. Graphs are used that have the following characteristics: directed,
attributed, and multi-graph. Within the unified GN framework, a graph is defined
as a 3-tuple G = (u, V, E). The u represents a global attribute, e.g., a gravitational
field, V = {vi}i=1:Nv is the set of nodes (of cardinality Nv) where each vi is a node
attribute, and E = {(ek, rk, sk)}i=1:Ne is the set of edges (of cardinality N e) where
each ek is an edge attribute with rk being the sender’s and sk the receiver’s index.

A GN block contains three update functions, φ�, and three aggregation function,
ρ�

e′k = φe(ek,vrk ,vsk ,u)

v′i = φv(ē′i,vi,u)

u′ = φu(ē′, v̄′,u)

ē′i = ρe→v(E′i)

ē′ = ρe→u(E′)

v̄′ = ρv→u(V ′)

(2.51)

with E′i = {(e′k, rk, sk)}Rk=i,k=1:Ne and V ′ = {v′i}i=1:Nv . The edge update function
φe is shared across all edges to compute per-edge updates, and the node update
function φv is shared across all nodes to compute per-node updates. The aggregation
function ρ� takes a set as an input and reduces this set to a single element which
represents the aggregated information [9]. The aggregation function has to be
invariant to permutations and has to be able to take a variable number of arguments

39

2 Learning Behavior Policies in Semantic Environments

u

V

E

u′

V ′

E ′φe

φv

φu

ρe→v

ρv→u

ρe→u

node blockedge block global block

Figure 2.11: Unified graph block as proposed in [9]. Inputs are the global values u, the
node values V , and the edge values E and their respective output values are
u′, V ′, E′.

(e.g., elementwise summation or the mean). By using the GN block outlined in
Figure 2.11, a variety of GNs can be modeled. The full outline of a GN block is
provided in Algorithm 9.

Algorithm 9 Graph Network Block [9]

function GraphNetwork(E, V,u)
for k ∈ {1 . . . N e} do

e′k ← φe(ek,vrk ,vsk ,u)
end for
for i ∈ {1 . . . Nv} do

let E′i = {(e′k, rk, sk)}rk=i,k=1:Ne

ē′i ← ρe→v(E′i)
v′i ← φv(ē′i,vi,u)

end for
let V ′ = {v′i}i=1:Nv

let E′ = {(e′k, rk, sk)}k=1:Ne

ē′ ← ρe→u(E′)
v̄′ ← ρv→u(V ′)
u′ ← φu(ē′, v̄′,u)
return (E′, V ′,u′)

end function

The interaction networks (INs) proposed by Battaglia et al. [8] can be modeled
using GN blocks. Their work has shown that complex interactions, such as planetary

40

2.4 Graph Neural Networks and Actor-Critic Reinforcement Learning

systems and their movements, can be learned using INs. The next section introduces
the novel GNN AC RL architecture for learning behavior policies that utililzes GN
blocks.

2.4.3 Graph Neural Network Actor-Critic Architecture

This section introduces a novel GNN actor-critic architecture that is invariant towards
the order and number of vehicles as discussed in Section 2.2. This invariance makes
it ideal for learning behavior policies in traffic where the number and order of
vehicles can change rapidly. The novel architecture is based on the unified graph
block framework presented in the previous section and is used in the actor- and
critic-networks.

The unified graph block framework is a ConvGNN that stacks graph layers on top
of each other enabling information to be passed throughout the graph. Information
can flow between all connected nodes, which enables to model relations between
objects by connecting these with edges. Thus, the graph structure determines which
objects in the scenario can influence each other. Graphs as input representations
and their creation have been discussed in Section 2.2. The idea of the novel GNN
actor-critic architecture is to use several GN blocks layers to pass information between
the nodes (vehicles) followed by using dense DNNs that then either learn an action
distribution or a state-value function.

By chaining multiple GN blocks, information is propagated throughout the graph
l times, with l being the number of ConvGNN layers. For example, if there are
three ConvGNN layers, the ego vehicle could receive information from as far as
three vehicles away. The chaining of GN blocks can be mathematically denoted as
GL = GN1 ◦GN2 ◦ . . . GNl with GL being the final outputted graph. Alternatively,
this can be expressed as GL = GNl(GNl−1(. . . , GN1(G0))) with G0 being the input
graph. As GN blocks are “graph-to-graph” modules, the GN block GNl takes the
graph Gl as input and outputs the graph Gl+1. The GN blocks update all node and
edge values at each processing step.

The idea of the novel architecture is for information to aggregate in a single node
(e.g., the ego vehicle node) in an embedding that contains all required information
for the ego vehicle to make informed decisions. Each node contains an embedding
vector vLi for the i-th vehicle at the output layer L. The embedding vector size
always remains of fixed size regardless of how many other vehicles there are in the
scene, which makes the novel architecture invariant towards the number of vehicles.
The node value vLego is passed through a dense DNN to either learn a distribution of
actions or a scalar value for the actor and critic network, respectively.

Applying this novel GNN architecture to, e.g., the SAC algorithm yields in total
three GNN networks — two for the state-action-value networks Qθ1(s, a), Qθ2(s, a)
and one for the actor-network πφ(a|s). The complete GNN actor-critic network
architecture is outlined in Figure 2.12 having GN blocks and dense DNN layers.

Section 5.2 benchmarks the performance of the novel GNN actor-critic architecture
against conventional DNNs, evaluates the generalization of the architectures, and

41

2 Learning Behavior Policies in Semantic Environments

vego

v1

v2

graph network layers

dense layers

Figure 2.12: GNN architecture for actor-critic reinforcement learning (modified graphic
from [45], ©2020 IEEE). In case of being used in the actor-network, the
final dense layer outputs parameters for,e.g., a normal distribution. For the
state-value-action function, the last layer outputs a deterministic value.

visualizes the edge values of the GNNs. It is shown that the novel architecture
outperforms conventional DNN architectures and also generalizes better than these.

2.5 Summary and Remarks

Data-driven methods for learning behaviors can provide a range of benefits, such
as reduced parameter tuning and no required prior knowledge about the environ-
ment’s dynamics. These methodologies can learn how to behave by, e.g., collecting
experiences and adapting their driving behavior over time.

This section provided a holistic view on learning behavior policies for autonomous
vehicles using AC RL starting from the input representation, over the reward signal
and shaping, to the selection of state-of-the-art AC RL solution methods. A novel
GNN actor-critic architecture has been introduced that is invariant towards the
number and order of vehicles and that has been shown to outperform conventional
DNN architectures.

The MDP formulation is discussed in detail and its entities, the input representation,
the reward signal and transition probabilites are discussed in Section 2.1.

An overview of common input representation for semantic environments for learning
behavior policies is given, ranging from feature vectors to graphs. Observers that
transform semantic environments to a machine learning suitable representation are
discussed in detail in Section 2.2.

Further, sparse reward signals and reward shaping have been introduced and
discussed. Sparse reward signals generally introduce the credit assignment problem

42

2.5 Summary and Remarks

where the agent has to figure out which action led to a desired or undesired outcome.
Several potential-based reward shaping functions are introduced in this thesis for
learning behavior policies for autonomous vehicles to avoid this.

The solution methods for MDPs have been discussed in Section 2.1.4. The chosen
solution methods have a large impact on the resulting behavior policy due to, e.g., the
exploration mechanism, being on- or off-policy and its underlying theory in general.
Reinforcement learning algorithms – in particular, actor-critic reinforcement learning
– have been discussed in detail in Section 2.1.4.

A novel GNN actor-critic architecture for learning behavior policies in semantic
environments has been introduced Section 2.4. The invariance towards permutations
(e.g., the number and order of traffic participants in the scene) makes the novel
architecture an ideal candidate for learning behavior policies for autonomous vehicles.
Using GNNs allows a clear separation of agent-intrinsic states and relative values to
other agents using node and edge values, respectively. Further, using GNNs makes
visualizing the information flow between nodes possible to gain additional insights
into the learned behavior policies.

Learning-based methods for behavior generation will become more prominent as
data-driven methods are required to integrate well into mixed traffic and learn from
experiences. This chapter provided a thorough investigation and overview of learning
behavior policies for autonomous vehicles in MDP settings.

43

3 Evaluating Learned Behavior Policies
for Autonomous Vehicles

Approaches are outlined that enable utilizing learned behavior policies in safety-
critical applications ranging from safe reinforcement learning (SRL), over runtime
safety assurance (RTSA), to conventional methods utilizing learned behavior policies.
SRL is an umbrella term for methodologies that aim to make reinforcement learning
(RL) directly applicable to real-world, safety-critical applications. An overview
of state-of-the-art RTSA frameworks is provided to handle all kinds of black-box
approaches, such as deep neural networks (DNNs). Finally, approaches are discussed
that utilize learned behavior policies, such as, e.g., search-based methods using
learned behavior policies as heuristics.

This chapter introduces a counterfactual behavior policy evaluation (CBPE) that
evaluates the performance of learned behavior policies at runtime using counterfactual
worlds — worlds in which others’ behaviors can be non-factual. Using counterfactual
worlds, the learned behavior policies’ generalization capabilities and how it copes with
distributional shifts can be evaluated. The learned behavior policies’ performance
can then be used, e.g., in the Simplex decision logic as switching criterion. Using a
performance-based measure avoids overapproximated safe operational regions and
restricts the policies’ usage merely based on its performance.

3.1 Introduction and Overview

Applying learned behavior policies for autonomous driving is challenging for various
reasons ranging from the current standards to the challenges associated with machine
learning approaches. Neither the ISO 26262 [52] nor the safety of the intended
functionality (SOTIF) [51] standards have been designed with autonomous driving
in mind [19]. The SOTIF merely states that “functional insufficiencies within the
machine learning functions have to be minimized” [51]. Further, the SOTIF defines
requirements for the general verification and validation (V&V) process as follows:

Evaluate the safety of the intended function concerning known triggering
events to provide an argument that the residual risk associated with
hazards caused by known insufficiencies in the system is sufficiently low
[51].

Providing an argumentation that the residual risk associated with hazards
caused by unknown insufficiencies in the system is sufficiently low for the
intended function [51].

45

3 Evaluating Learned Behavior Policies for Autonomous Vehicles

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
0.00

0.05

0.10

0.15

0.20

0.25

Ptraining(s) Papplication(s)

(a) Distributional shift in training versus application.

-15 -10 -5 0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

Ptraining(s)

Papplication(s)

Nµ=2.5,σ=4

(b) Noise changing the distribution.

Figure 3.1: Distributional shift and noise that can differ during training and application of
learned behavior policies.

However, the standard does not provide a clear, holistic view of how this can
be achieved for machine learning components and learned behavior policies for
autonomous vehicles. When dealing with DNNs, shifts in the input distributions
[118], generalization capabilities [3], noise, and transferability [126] can lead to unsafe
behaviors without the need of, e.g., a triggering event being present. Figure 3.1
visualizes different distributions during training and application — on the left caused
by a distributional shift and on the right by noise. As is shown in the evaluation in
Section 5.2.4, deviations of the other vehicle’s behavioral parameters from training to
application cause unsafe behaviors using learned behavior policies — if the deviations
exceed a certain threshold.

Simulation can be used to a certain extent to generate an argumentation for
the residual risk and the functional correctness of the driving properties of learned
behavior policies using simulation frameworks, such as BARK [13]. With such
frameworks, the generalization capabilities and how well DNNs can cope with
distributional shifts can be evaluated. However, when using simulation having the
goal in mind of deploying behavior policies in the real-world, the gap between the
behavior of the simulated agents and real-world traffic has to be small. Simulating real-
world traffic most likely requires a data-driven, possibly machine learning approach
that faces the same issues as learning behavior policies using RL for the ego vehicle.
Further, due to the vast scenario parameter space of traffic (including the behavioral
parameters of traffic participants, the map, and the initial states of all objects), it is
not possible to achieve full coverage of the whole space in simulation — leaving a
residual risk for the learned behavior policy to malfunction and to produce unsafe
driving behavior. Complete coverage would be essential in simulation when using
function approximators, such as DNNs as already small shifts in the distribution
can lead to unsafe behavior. There are various ongoing efforts in making learning-

46

3.2 State of the Art of Learning-Based Behavior Policies in Safety-Critical Applications

based approaches applicable to real-world, safety-critical applications, which will be
discussed in the next section.

3.2 State of the Art of Learning-Based Behavior Policies in
Safety-Critical Applications

This section outlines methodologies that aim at making executing learned behavior
policies safer – with some enabling the utilization of learned behavior policies in
safety-critical applications. The discussion starts with SRL that makes RL safe for
learning and execution in the real world by modifying the optimality criterion or
restricting the exploration and exploitation process.

RTSA frameworks are discussed for ensuring safety for learned behavior policies or
black-box approaches. These often build upon the Simplex architectures’ principles
having a high-performance controller, a high-assurance controller, and a decision logic
that switches between these. Several RTSA approaches are outlined and discussed in
Section 3.2.2.

Conventional approaches, such as search- and optimization-based approaches,
can provide some safety guarantees. By employing a learned behavior policy, their
performance can be increased as the offline computational power of learning-based
approaches can be harnessed. These are discussed and outlined in Section 3.2.3.

3.2.1 Safe Reinforcement Learning

Safe reinforcement learning can be defined as the process of learning behavior policies
that maximize the cumulative expected future reward but adhere to reasonable
system performance, and safety constraints during learning and deployment [36]. In a
more general perspective, SRL groups methodologies that aim to make RL utilizable
in safety-critical and real-world applications. Garćıa et al. [36] propose a taxonomy
for dividing SRL approaches into two classes:

• SRL that modifies the optimality criterion using a safety factor, and

• SRL that modifies the exploration and exploitation process using external
knowledge or using risk metrics.

SRL that modifies the optimalilty criterion can further be subdivided into:

• Worst case criterion: A penalty for the variability induced by a given policy
is included in the optimization criterion. The variability present can either
be due to: (1) inherent uncertainties related to the stochastic nature of the
system or (2) the parameter uncertainty that is not known in the MDP exactly.
To avoid such, the agent maximizes the return associated with the worst-case
scenario [47].

47

3 Evaluating Learned Behavior Policies for Autonomous Vehicles

• Risk sensitive criterion: A balance between large rewards and avoiding catas-
trophic situations is tried to be achieved. Exponential utility functions can,
e.g., be used to induce risk-averse or inducing behaviors [77].

• Constrained criterion: E.g., assuming an underlying constrained Markov deci-
sion process (MDP) that has a set of constraints [79].

• Other optimization criteria: E.g., including risk metrics [112] or estimating the
density of the returns [80].

The second class of SRL algorithms control the exploration and exploitation process
and can further be subdivided into:

• External knowledge: Using initial knowledge [28], deriving a policy from a finite
set of examples [1], or guiding the exploration process [91].

• Risk-directed exploration: E.g., employing risk metrics [37].

SRL that modifies the optimality criterion alone is often not sufficient in safety-critical
applications as this will lead to – at least initially – collisions during the exploration.
In simulation frameworks, this is acceptable but not in real-world, safety-critical
applications, such as autonomous driving. The second-class of SRL algorithms modify
the exploration and exploitation process using external knowledge and risk metrics.
These – also in combination with the later discussed RTSA frameworks – are more
promising candidates for making learned behavior policies utilizable in safety-critical
applications, such as autonomous driving. In the following, related work of SRL is
outlined that has been applied to safety-criterial applications, such as autonomous
driving.

Pek et al. [85] restrict the exploration and exploitation process using external
knowledge and, thus, fall into the second category of SRL methods. By doing so,
they have been shown to achieve collision-free behavior policies that perform better
than rule-based agents. However, they do not modify the underlying MDP problem
formulation, which means that the agent does not learn to avoid choosing unsafe
actions. Their approach is built upon an architecture similar to Simplex architectures
as a safety behavior is used to restrict the action space of the RL agent.

Cheng et al. [23] propose a combination of a model-free RL-based controller with
a model-based controller utilizing control barrier functions and online learning of
the unknown system dynamics to ensure safety during learning. They propose two
different architectures for exploration and exploitation and have shown that their
approach can generate collision-free behaviors in either operational mode. They do
not incorporate the controller’s corrections in the learning process, which means that
the model-free RL-based controller cannot adapt its behavior. Their algorithm also
falls into the second category of SRL approaches.

Zhou et al. [130] introduce an architecture where a learned behavior policy is
paired with a model-based safety controller. The safety controller predicts whether
the trained behavior policy will lead the system to an unsafe state and take over

48

3.2 State of the Art of Learning-Based Behavior Policies in Safety-Critical Applications

control when necessary. They also propose to repair the trained policy using data
produced by the safety controller at runtime to deviate minimally from the original
policy. Their approach changes the optimality criterion by including external data to
the SRL algorithm and restricts the exploration and exploitation process. However,
repairing the policy using data generated by the safety controller might deteriorate
the behavior policies’ performance as safety controllers usually do not focus on
producing performant behaviors.

3.2.2 Runtime Safety Assurance

This section outlines the state-of-the-art of RTSA frameworks applied to autonomous
systems. With learning-based methodologies being applied for the behavior generation
of autonomous systems, RTSA frameworks are a popular choice for assuring black-box
systems’ safety.

The Simplex architecture is a widely used RTSA architecture that has the underly-
ing fundamental idea of “using simplicity to control complexity” [97]. The Simplex
architecture consists of two subsystems: the high-performance and high-assurance
controller. The high-performance controller can be any controller, e.g., black-box
approaches that use DNNs. In the nominal case, the system is controlled by the
high-performance controller. The high-assurance controller is developed using stan-
dard norms and conventional methodologies. A decision logic switches between these
two operation modes based on some predefined logic. For example, the decision
logic could switch from the high-performance to the high-assurance controller if
the high-performance controller’s control errors are larger than those of the high-
assurance controller. Typically, a recovery region is defined in which it is still possible
for the high-assurance controller to take over control safely. In complex, dense,
real-world traffic scenarios, such region definitions become non-trivial, often requiring
overapproximations. These overapproximations will limit the system’s performance,
as the high-assurance controller will take over control too early and often. Further,
if operating in highly complex and dynamic environments, it is non-trivial to design
safety controllers that perform better and safer than the high-performance ones.
Some approaches utilizing Simplex architecture are discussed in the following.

SOTER provides a programming language for implementing and testing high-
level reactive robotics software and an integrated RTSA framework that enables
complex software stacks to be constructed as compositions of RTSA modules [25].
In SOTER, each component in the system is an RTSA module that makes sure that
the sub-system operates within predefined bounds. They argue that reachability
analysis is not feasible as this requires exact models of the environment. However,
as they demonstrate their approach only in static environments, they would also
require a methodology that defines the used “safe” and “safer” regions for dynamic
environments.

Mehmood et al. [73] introduce a modified Simplex architecture in which the
high-performance controller’s output is not directly fed into the system but instead
into a lookahead baseline controller. The high-performance controller controls the

49

3 Evaluating Learned Behavior Policies for Autonomous Vehicles

system as long as the baseline controller can recover the system. If the system is in
an operational state where the baseline controller fails to compute a solution, the
decision module can still recover the system using the safe command sequence from
the previous step. In their work, they provide an example of an aircraft and the
feasibility of the proposed approach. However, in more dynamic environments where
objects are very close to each other, such as autonomous driving, the previously
computed safety trajectory might not be valid in the next time step.

Lazarus et al. [66] also build upon the Simplex architecture but frame the RTSA
as an MDP problem formulation and propose to learn a meta-controller for switching
between the high-performance and high-assurance controller. To avoid not being able
to certify the learned controller by using DNNs, they resort to using a linear value
function approximation for the used Q-learning algorithm. The overall approach has
been shown to outperform conventional, hand-crafted methodologies.

The approaches above do not specify how safe-regions for dynamic systems can
be defined but provide overall RTSA frameworks. In the following, an overview of
methods is given that aim at providing safe regions for dynamic environments, such
as autonomous driving.

Pek et al. [86] present a formal verification technique for guaranteeing legal safety
in arbitrary urban traffic situations at runtime. They define legal safety as never
causing an accident under the premise of other traffic participants being allowed
to perform any behavior following the traffic rules. Their proposed methodology is
built on three pillars. First, they perform an online situation assessment in which
the situation is assessed, and all legal future evolutions are predicted while also
accounting for measurement uncertainty. Second, fail-safe operation computes a
safety trajectory that can transfer the system from the current operational-state
to a safe-state. Third, correct by construction ensures that the autonomous vehicle
operates in compliance with legal safety at all times regardless of the used motion
planning framework. A downside of this approach might be a too restrictive behavior
due to predicting all legal future evolutions of the scenario and that the other vehicles
do often not adhere to the traffic rules as shown in [30].

Shalev-Shwartz et al. [98] introduced the responsibility-sensitive safety (RSS) as
a mathematical model for RTSA. It formalizes the interpretation of “duty of care”
from tort law that states how an individual should exercise “reasonable care” while
performing acts that could harm others. The RSS formalizes the following five
“common sense” rules. The first one, “Do not hit someone from behind.”, stipulates
the need for not hitting another traffic participant from behind as this would the fault
of the autonomous vehicle. The second one, “Do not cut-in recklessly.”, tries to avoid
dangerous lane-changing situations and the third one, “Right-of-way is given, not
taken.”, mitigates the issue of vehicles aggressively trying to enforce the right-of-way
rule. Another common-sense rule is “Be careful in areas with limited visibility.”,
which makes sense in areas, such as intersections or occluded areas with parking
vehicles. However, it is open for discussion what the authors understand by the
phrase “be careful” and it is not straightforward to implement such a quantity. The
last one of the five rules “If you can avoid an accident without causing another one,

50

3.2 State of the Art of Learning-Based Behavior Policies in Safety-Critical Applications

you must do it.” states that the duty shall be to avoid an accident even if you are not
at fault. The authors formally prove and empirically have shown that when applying
the RSS model, the required 10−8 probability of severely injured traffic participants
per hour of driving is achieved. The authors show that if all vehicles would adhere
to the RSS, an “utopia” could be achieved having absolutely no collisions. The RSS
faces similar issues as [86] by possibly restricting the configuration space too strictly
as it assumes worst-case behaviors of others.

In summary, RTSA frameworks play a crucial role in making learned behavior
policies utilizable in safety-critical applications, such as autonomous driving — at
least up to a point, where DNNs can be verified and guaranteed to be safe on their
own.

Section 3.3 introduces the CBPE that evaluates learned behavior policies using
counterfactual worlds – worlds in which others behave non-factual. The CBPE can be
employed in the decision logic of a Simplex architecture to switch between the high-
performance and high-assurance behavior policy. Using the policies’ performance to
restrict its usage is potentially less restrictive than the above-outlined reachability-
based approaches.

3.2.3 Combining Conventional and Learning-Based Methodologies

Utilizing learning-based behavior policies in conventional methods, such as optimization-
or search-based approaches that have been outlined in Section 1.2 can also make
learning-based behavior policies applicable in safety-critical applications. In the
following, methodologies combining these classes are outlined, and the synergies that
this creates are discussed.

AlphaGo was one of the first approaches that combined state-of-the-art RL with
a Monte-Carlo tree search (MCTS) that achieved better than human performance
playing the game Go — even beating the current world champion Lee Sedoul [103]. In
follow-up work, they introduced AlphaZero that did not require any prior knowledge
as AlphaGo did [100]. Similar concepts combining search-based approaches with
machine learning have been developed and applied for autonomous vehicles’ behavior
generation.

Hoel et al. [49] combine MCTS with RL for tactical decision making that is based
on the AlphaGo and AlphaZero algorithms and extend these to the continuous
domain. They use trained DNNs to guide the MCTS to relevant regions of the search
tree and the MCTS is used to improve the training process of the DNN behavior
policy.

Wang et al. [120] propose a neural rapidly-exploring random tree* (RRT*) that
uses a non-uniform sampling by using a learned behavior policy. They train a
convolutional neural network and use samples generated from an A* algorithm to
learn optimal solutions. The learned distribution is then used in the expansion
(sampling) process of the RRT*. They show that challenging scenarios can be solved
online.

51

3 Evaluating Learned Behavior Policies for Autonomous Vehicles

Bernhard et al. [14] propose an experience-based heuristic-search algorithm that
integrates learned Q-functions into a hybrid A* planner. The learned policy is used
as a guiding heuristic for the A* planner to boost the online capability and aims at
overcoming the statistical failure rate of deep RL.

Optimization-based methodologies can provide optimal solutions for the problem
formulation in Equation 1.1. With global optimization being computationally expen-
sive and local optimization methods requiring “well-performing” initial estimates,
such can be obtained using learned behavior policies.

Pan et al. [84] investigate convergence properties of trajectory optimization and
learn whether a collision-free solution can be obtained with a given initialization.
However, for autonomous driving, there are many other factors required, such as
if the learned behavior policy reaches its defined goals, interacts with other traffic
participants, and more.

Koller et al. [61] present SAFEMPC, a safe model predictive control (MPC) scheme
that guarantees the existence of feasible return trajectories to a safe region of the
state space at every time step with high probability. In their work, they combine
ideas from policy-based RL with ideas from the control domain.

In Section 4.4, a post-optimization for learned behavior policies is introduced. By
iteratively calling the learned behavior policy, an initial trajectory is obtained, which
is used as an initial estimate and to derive state constraints. The comfort is then
maximized while adhering to the extracted constraints and additionally enforcing
the optimized solution to be close to the initial estimate for the interactions with
other vehicles to remain valid.

3.3 Counterfactual Behavior Policy Evaluation

This section introduces a CBPE that uses counterfactual (non-factual) worlds to
analyze the performance of learned behavior policies at runtime based on the work
presented in [44]. Distributional shifts and generalization capabilities can cause unsafe
driving behavior when using learned behavior policies that utilize DNNs as shown in
the evaluation in Section 5.2.4. Full coverage in offline V&V cannot be achieved due
to the vast parameter space real-world traffic scenarios span — motivating the need
of RTSA frameworks. These “only” have to evaluate the current scenario and to
estimate whether the learned behavior policy is safe in the current scenario. State-of-
the-art RTSA frameworks have been discussed in detail in Section 3.2.2. Further, as
most of these RTSA frameworks are built upon the concept of Simplex architectures,
they require evaluation methods for deciding whether the learned behavior policy
produces safe operational states for the current situation. Many approaches employ
reachability analysis [86, 98, 49]. However, these might restrict the free configuration
space too strictly, assuming all possible reachable sets or worst-case scenarios.

The CBPE evaluates the performance of learned behavior policies using counter-
factual assumptions of the current scenario and by predicting these into the future.
As the other vehicles behave not nominal (non-factual) in these, generalization capa-

52

3.3 Counterfactual Behavior Policy Evaluation

bilities of the learned behavior policy and how well it can handle distributional shifts
can be evaluated at runtime.

Definition 1 (Non-factual Behavior) Behavior policy π′ that differs from the
actual assumed behavior policy π by parameter- or distributional-shifts that lead to a
future outcome of the scene that differs from the assumed one.

The CBPE allows raising and answering counterfactuals, such as “What would have
happened, if vehicle vi had behaved differently?”. The proposed CBPE methodology
can be used in the decision logic of a Simplex architecture. Restricting the policies’
usage based on its performance is potentially less restrictive than deploying reacha-
bility analysis as the policies’ performance is only restricting the free configuration
space.

First, a definition of counterfactual worlds is given, and it is outlined how these
are generated. Next, the forward simulation and evaluation of the counterfactual
worlds at runtime are discussed. Finally, it is outlined how the CBPE can be used to
extract correlations between the vehicles’ behavior policies.

3.3.1 Definition of a Counterfactual World

A counterfactual world is derived from the actual (assumed) world. In a counterfactual
world, one or multiple behavior policies of other traffic participants are exchanged.
In the following, it is assumed that the intentions of others (e.g., whether they want
to change lanes) are embedded in the vehicle’s behavior policy π.

A world W is defined to be parameterized by a set of vehicles V = (v0, vj , . . . , vN)
with N being the number of vehicles and by a set of behavior policies B =
(π0, πm, . . . , πM) with M being the number of behavior policies. There can be infinite
many behavior policies in set B if the behavior policies are, e.g., sampled stochastically.
A complete world parametrization W = ((v0, π0), . . . , (vego, πego), . . . , (vN , πM)) is
given by a set of tuples pairing the vehicles with a respective behavior policy with
one of the N vehicles being the ego vehicle vego that is controlled by the behavior
policy πego. As described in Section 2.1.4, a behavior policy π(at|st) outputs an
action at given a world state st = ρ(Wt) with ρ transforming the semantic world
Wt at time t into a machine learning usable input representation as discussed in
Section 2.2. A counterfactual world W

vi∼πj
t denotes a world where the i-th vehicle is

controlled by the behavior policy πj at time t — either by its original behavior policy
or a non-factual one. The notation for multiple behavior models being exchanged is
denoted, e.g., by W v0∼π1,v1∼π2

t where vehicle v0 is controlled by the behavior policy
π1 and vehicle v1 by the behavior policy π2.

As is shown in the variational studies in Section 5.2.4, learned behavior policies
using DNNs can only cope with deviations in the other vehicle’ behaviors up to a
certain degree between training and execution. Such deviations can be induced in the
set of behavior policies B by either defining these deterministically or sampling these
stochastically. These deviations allow for evaluating the learned behavior policy at

53

3 Evaluating Learned Behavior Policies for Autonomous Vehicles

Wt

W v1∼π0
t

W v1∼πM
tπego

π0 π1

πego

π0 π1

πego

πM π1

Figure 3.2: The actual (assumed) world Wt is depicted on the left. In the counterfactual
world W v1∼π0

t , vehicle v1 (depicted in green) is controlled by the behavior
policy π0 and performs a lane change to let the ego vehicle vego merge. In the
counterfactual world W v1∼πM

t , vehicle v1 decelerates possibly letting the ego
vehicle merge as well (modified graphic from [44], ©2020 IEEE).

runtime using counterfactuals, such as “If the other vehicle had behaved slightly
differently, would a collision have occurred?”.

Both – a deterministically and stochastically defined set of behavior policies B –
have advantages when applied for evaluating the performance of learned behavior
policies. As argued in Section 1.2, stochastic methods require a large number of
samples to provide statistically significant results. The required large number of
samples makes these unable to generate statistically significant results at runtime.
However, stochastic sampling avoids hand-crafted features that might not consider
certain aspects, such as unknown-unknowns. In this work, a deterministically defined
set of behavior policies B is used to model pre-defined deviations. Knowing the
behavioral parameters of other traffic participants during training, deviations can be
precisely modeled.

3.3.2 Counterfactual Behavior Policy Evaluation at Runtime

The counterfactual worlds defined in the previous section alone are not sufficient
to evaluate learned behavior policies. A forward simulation of these counterfactual
worlds is required to obtain traces of actions and states for each vehicle vi that are

54

3.3 Counterfactual Behavior Policy Evaluation

T v1∼πmvego

T v1∼πmv1 T v1∼πmv2

Figure 3.3: Forward simulation of the counterfactual world W v1∼πm
t where vehicle v1 is

controlled by the behavior policy πm. The traces for each vehicle of the forward
simulation are shown with, e.g., the ego vehicle’s trace being denoted as T v1∼πm

vego .

used to evaluate the behavior policies. The learned behavior policy can be evaluated
in terms of its safety, performance, and other criteria using the evolution and the
traces of all vehicles.

Counterfactual worlds are derived from world Wt using the set of behavior policies
B to evaluate learned behavior policies. The behavior policies of vehicles in the
proximity d(vi, vego) ≤ rmax of the ego vehicle vego are exchanged using the set of
behavior policies B. For example, if there are three vehicles N = 3 nearby and
four behavior policies M = 4 in B, the resulting number of counterfactual worlds is
NxM = 12. These counterfactual worlds are then forward-simulated with the ego
vehicle vego being controlled by the learned behavior policy πego and traces of the
ego vehicle in each counterfactual world are collected. The trace of, e.g., the ego
vehicle in the counterfactual world W v0∼πm

t is denoted by

T v0∼πmvego = W v0∼πm
t,vego · · · →W v0∼πm

t+T−2,vego
→W v0∼πm

t+T−1,vego
→W v0∼πm

t+T,vego
(3.1)

with T being the time horizon of the forward simulation. Figure 3.3 shows the trace
of three vehicles in a counterfactual world.

Using the trace of the ego vehicle T v0∼πmvego and the traces of nearby vehicles T v0∼πmvi
of, e.g., the counterfactual world W v0∼πm , the performance of the behavior policy
πego can be evaluated for this specific counterfactual world. Evaluating traces T �

vego
of the ego vehicle vego generated using all counterfactual worlds, an estimate can be
obtained whether the learned behavior policy π(at|st) generalizes to all of these and
how it performs in these.

Several metrics can be used to evaluate these obtained traces, such as, e.g., the
minimum distance of the ego vehicle vego to other objects. Using the traces of the ego
vehicle vego of all counterfactual worlds T �

vego , the minimum distance of the ego vehicle

55

3 Evaluating Learned Behavior Policies for Autonomous Vehicles

Algorithm 10 Counterfactual Behavior Policy Evaluation

function CPE(Wt, B, ego vehicle,∆t)
V = NearbyVehicles(Wt, ego vehicle)
T = ∅
for i in 0 . . . N do

for j in 0 . . .M do
W

vi∼πj
t = GetCounterfactualWorld(Wt, Vi, Bj)
T vi∼πj = ForwardSimulate(W

vi∼πj
t , ∆t)

T ← T vi∼πj
end for

end for
return Evaluate(T)

end function

to any object is obtained. Determining the minimum distance in all counterfactual
worlds can be mathematically be denoted as

danyvego = min(dvego(T �
vego)) ∀ W�

t (3.2)

with W�
t indicating all counterfactual worlds and dvego(·) returning the minimum

distance. danyvego = 0 indicates a collision of the ego vehicle vego with an object in one
of the counterfactual worlds.

The performance of the ego vehicle’s learned behavior policy over all counterfactual
worlds can then, e.g., be utilized in the decision logic of a Simplex architecture. If,
e.g., the safety distance is maintained in all counterfactual worlds, the learned
behavior policy is safe to be executed. As others’ behavior policies are unknown,
a counterfactual world could well be the actual world, reinforcing the need for the
learned behavior policy to handle all counterfactual worlds to be considered safe.
The full CBPE algorithm is outlined in Algorithm 10. In the ‘Evaluate’ function,
e.g., Equation 3.2 can be utilized.

3.3.3 Insights into Learned Behavior Policies

Apart from evaluating the traces T as described in the previous section, the CBPE
can also be used as a diagnostic tool to gain insights into learned behavior policies.
Correlations between the vehicles’ behavior policies in a scenario can be extracted
using the CBPE. Understanding the correlations can foster the understanding of
encoded driving behaviors in learned behavior policies. In perception, methods that
provide additional insights into learned DNNs are available, such as saliency maps
[104]. Similar frameworks are required for learned behavior policies to make these
applicable in safety-critical applications and better understand the encoded driving
behavior.

The influence of assigning a different behavior policy to a single vehicle onto all
other vehicles in the scene can be measured using the CBPE. For example, it can

56

3.3 Counterfactual Behavior Policy Evaluation

Figure 3.4: Influence heatmap how the behavior policies influence each other. The coun-
terfactual worlds are plotted on the y-axis and the vehicle’s state influence is
plotted over the x-axis.

be evaluated what happens if a vehicle in the scene brakes instead of driving with a
constant velocity and which surrounding vehicles it influences. The traces that have
been introduced in the previous section can be used for the evaluation of these effects.
Therefore, a function ψstates is introduced that returns a vector xt that consists of
the concatenated states of all vehicles of a world Wt at time t ordered by the vehicle’s
IDs. For a trace T , the function ψstates returns a matrix with each row belonging to a
world time t in ascending order in form of x = [xt, . . . , xt+T−1, xt+T]. A ground-truth
is obtained by forward-simulating the actual world Wt with the assumed behaviors.
The ground-truth trace of vehicle vi is denoted as Tvi and the same notation for the
counterfactual world traces from the previous section provided in Equation 3.1 is
used. The deviation between, e.g., the ego vehicle’s states in the counterfactual and
ground-truth world is defined as

δvi∼πmvego = ||ψstates(T vi∼πmvego)− ψstates(Tvego)||2. (3.3)

The mean influence of replacing the behavior policy of vehicle vi onto the ego vehicle
vego can be denoted by

∆vi
vego =

1

M

M∑
j=0

δ
vi∼πj
vego . (3.4)

By evaluating every possible combination between all vehicles, an influence (corre-
lation) heatmap can be obtained showing how the behavior policies influence each
other as shown in Figure 3.4.

57

3 Evaluating Learned Behavior Policies for Autonomous Vehicles

Independent behavior policies do not react to changes in their environment, such
as to the preceding vehicle. Using independent behavior policies allows for a clean
extraction of how exchanging a specific behavior policy influences the other vehicles.
The downside is that independent behavior policies tend to cause collisions if larger
simulation horizons are being used.

Obtaining information on how the vehicle’s behavior policies influence each other
can be an essential criterion for RTSA. If, e.g., a learned behavior policy is not
being influenced by a nearby vehicle – or by changes in the nearby vehicle’s behavior
policy – this could potentially indicate dangerous and unsafe behavior. The proposed
runtime CBPE is evaluated in Section 5.3 in terms of the insights it provides in the
learned behavior policy.

58

4 Optimization Theory and
Post-Optimizing Behavior Policies

This chapter outlines the theory of gradient-based optimization, discusses trajectory
optimization, and introduces a post-optimization for learned behavior policies to
obtain smooth trajectories.

An introduction and overview of gradient-based optimization methodologies are
provided, and a division into local and global approaches is discussed. Constrained
optimization problem formulations and their corresponding solution classes are
introduced. After the theory has been laid out, a theoretical view on trajectory
optimization is provided — ranging from the used vehicle models, over numerical
methods, over the problem formulation, to optimization solution classes.

A novel post-optimization is introduced that utilizes learned behavior policies to
obtain initial estimates and derive constraints from these. As learning-based method-
ologies use imperfect function approximators, such as deep neural networks (DNNs)
the resulting behaviors often do not provide smooth behaviors. The trajectories’
smoothness is vital as an underlying trajectory-following controller might otherwise
not be able to minimize the control error — possibly leading to unsafe behaviors.
The post-optimization minimizes the jerk of the trajectories generated by the learned
behavior policy while adhering to the extracted constraints — increasing the comfort
while being able to guarantee the same safety level. Moreover, by enforcing the
optimized trajectory to be close to the learned trajectory, the learning-based behavior
policies’ interactions remain valid. Further, using the learned behavior policy, an
optimum of the nonconvex problem is chosen, mitigating optimizing multiple to
obtain good performance.

4.1 Introduction to Optimization

Optimization is a widely used tool that allows the formulation and solution of a large
number of problems. This chapter provides an overview of optimization methods.
An optimization problem with equality and inequality constraints can be formulated
as

minimize f0(x) (4.1)

subject to fi(x) ≤ ai, i = 1, . . . ,m (4.2)

hi(x) = bi, i = 1, . . . , r (4.3)

with x = (x1, . . . , xn) being the optimization vector, f0 : Rn → R being the objective
function, fi : Rn → R being the inequality constraints, hi : Rn → R being the equality

59

4 Optimization Theory and Post-Optimizing Behavior Policies

constraints, and a1, . . . , ai and b1, . . . , bi being the bounds for the constraints. A
problem where the objective function f0(x) and the constraint functions fi(x) satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y) (4.4)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0 is called a convex
optimization problem. A fundamental property of convex optimization problems is
that any locally optimal point is also globally optimal [16]. Thus, given a convex
problem, local optimization methods can be used rather than global ones — making it
possible to use local optimization to obtain the global optimum. Local optimization
yields the advantage of being much less computationally expensive and offering
faster convergence. However, many real-world problems are nonconvex, and the
initial estimate is of high importance when employing local optimization. If the
objective function f0(x) and the constraints fi(x) are nonlinear and convex, the
optimization problem is called nonlinear optimization. In autonomous driving,
nonlinear vehicle models and nonconvex constraints are often used, resulting in
nonconvex optimization problems having multiple local minima. Solving nonlinear
optimization problems is nontrivial, and there are no effective methods for solving
the general nonlinear programming problem [16]. There are two main solution classes
for nonlinear optimization problems: local and global optimization.

In local optimization methods, a compromise is taken by not seeking the global
optimal optimization vector x∗, which minimizes the objective function f0(x) over all
feasible points. Instead, x∗ only will be locally optimal. Local optimization makes
it possible to solve time-consuming problems, such as large-scale problems, rather
quickly. A good initial starting point or estimate is crucial in local optimization as it
can significantly affect the obtained solutions [16].

In global optimization methods, the globally optimal optimization vector x∗ is
obtained over all feasible points. However, in the worst-case, the complexity of global
optimization methods grows exponentially with the problem size [16]. Due to this
complexity and the requirement of trajectory planning for autonomous driving to be
real-time capable, global optimization is not always feasible to be used in real-time.

All optimization solution methods minimize an objective function f0(x) that repre-
sents some cost. Local solution methods can further be divided into constrained and
unconstrained optimization. The theory of trajectory optimization for autonomous
vehicles is outlined in Section 4.3.

4.2 Constrained Optimization

Many optimization problems require the optimization vector x to be constrained —
e.g., to restrict the steering rate or a particular state of an autonomous vehicle.

Newton’s method is outlined that can solve problems having equality constraints.
Finally, interior-point methods are discussed that are capable of handling equality as
well as inequality constraints. Figure 4.1 depicts a constrained optimization problem
having an objective function f0 and an inequality constraint function f1.

60

4.2 Constrained Optimization

f0(x)

f0(x
∗)

∇f0(x0)

x0

f1(x)

Figure 4.1: Constrained optimization problem with f0 being the objective and f1 the
constraint function.

4.2.1 Constrained Newton’s Method

A widely used method for equality constrained optimization problems is the con-
strained Newton’s method. An optimization problem that is only constrained by
equality constraints is given by

minimize f0(x) (4.5)

subject to Ax− b = 0. (4.6)

The constrained Newton’s method can be derived starting from the Taylor ap-
proximation. The infeasible start Newton’s method can be derived starting from the
optimality conditions Ax∗ = b and ∇f(x∗) +ATw = 0. The aim is to find a step ∆x
so that x + ∆x satisfies or least approximately satisfies the optimality conditions.
Therefore, x∗ is substituted with x+ ∆x in the optimality condition, and a first-order
approximation is used. The resulting equations are then given by

∇f0(x) +∇2f0(x)∆x+ATw = 0 (4.7)

A(x+ ∆x)− b = 0. (4.8)

This can also be expressed in matrix form as[
∇2f(x) AT

A 0

] [
∆x
w

]
= −

[
∇f(x)
Ax− b

]
(4.9)

with the matrix on the very left being called the Karush-Kuhn-Tucker (KKT) matrix.
The Newton step is only defined when the KKT matrix is not nonsingular as the

61

4 Optimization Theory and Post-Optimizing Behavior Policies

matrix is not invertible otherwise. By choosing an initial optimization vector x and
a dual variable w ≥ 0 and by solving for ∆x and w, the constrained optimization
problem can be solved. The Newton step is given by[

∆x
w

]
= −

[
∇2f(x) AT

A 0

]−1 [∇f(x)
Ax− b

]
. (4.10)

As with the unconstrained Newton’s method, there can either be a pure or a damped
constrained Newton’s method using, e.g., backtracking line-search.

4.2.2 Interior-Point Methods

Interior-point methods are another solution class for constrained optimization prob-
lems. The barrier method is an interior-point solution method with a relatively
straightforward concept using a barrier term to contain the optimization vector
within a defined feasible region. A barrier optimization problem can be denoted in

-3 -2 -1 0 1 2
-3

-2

-1

0

1

2

Figure 4.2: Depiction of the solution process of an interior-point method. The constraints
are illustrated as dashed ellipses and the objective function is shown using
contours. The blue line visualizes the solution trajectory.

the following form

minimize f0(x) +
m∑
i=1

I (fi(x)) (4.11)

subject to Ax = b. (4.12)

62

4.2 Constrained Optimization

with, e.g., an indicator function, such as

I (u) =

{
0, if u ≤ 0

inf, 0
. (4.13)

A choice is to use a logarithmic indicator function I (u) = −(1/t) log(u) with t > 0.
These methods are then commonly referred to as log-barrier methods. It is empirically
shown that optimizing a sequence of optimization problems of Equations 4.12 with
an increasing t works well [16]. Figure 4.2 depicts a barrier constrained optimization
problem having two inequality constraints in the form of ellipses. The resulting
barrier optimization problem is then given by

minimize tf0(x) + φ(x) (4.14)

subject to Ax = b. (4.15)

with φ(x) = −
∑m

i=1 log(−fi(x)).
As discussed in Section 4.2.1, the optimization problem in Equations 4.14-4.15 is

an equality constrained problem and can, e.g., be solved using the Newton’s method.
Barrier optimization problems are often referred to as central path methods as they
start in the center of convex polytopes. More insights on central path methods are
provided in [16].

Primal-dual interior-point methods are often more efficient than barrier methods,
especially when high accuracy is required [16]. They can be derived starting from
the modified KKT conditions that are given by

rt(x, λ, ν) =

∇f0(x) +Df(x)Tλ+AT ν
−diag(λ)f(x)− (1/t)1

Ax− b

 (4.16)

with t > 0 and

f(x) =

 f1(x)
...

fm(x)

 , Df(x) =

∇f1(x)T

...
∇fm(x)T

 . (4.17)

The modified KKT conditions in Equation 4.16 consist of a stationary term, relaxed
inequality and equality terms for primal feasibility. Expanding Equation 4.16 using
a Taylor expansion yields the following system∇2f0(x) +

∑m
i=1 λi∇2fi(x) Df(x)T AT

−diag(λ)Df(x) −diag(f(x)) 0
A 0 0

 ∆x
∆λ
∆ν

 = − rresiduals (4.18)

having the residual vector rresiduals that is given by

rresiduals =

 rdual
rcent
rprimal

 =

∇f0(x) +Df(x)Tλ+AT ν
−diag(λ)f(x)− (1/t)1

Ax− b

 . (4.19)

63

4 Optimization Theory and Post-Optimizing Behavior Policies

Solving Equation 4.18 yields the search direction ∆x for the constrained optimization
problem. As the method does not require the iterates to produce feasible points,
these cannot be used to evaluate the duality gap at any step besides at convergence.
Thus, for the primal-dual interior-point method a surrogate duality gap is used that
is defined by

η̂(x, λ) = −f(x)Tλ. (4.20)

This surrogate duality is then used as one of the convergence criteria for the interior-
point method as outlined in Algorithm 11.

Algorithm 11 Primal-Dual Interior-Point Method [16]

given x that satisfies f1(x) < 0, . . . , fm(x) < 0, λ � 0, µ > 1, εfeas > 0, ε > 0.
repeat

1. Set t := µm/η̂.
2. Compute primal-dual search direction.
3. Line-search and update: x := x+ s∆x with step size s.

until ‖rprimal‖ < εfeas, ‖rdual‖ < εfeas, and η̂ ≤ ε

Since the primal-dual interior-point method has a faster convergence than linear
convergence, it is common to choose a small εfeas and ε in Algorithm 11 [16].

4.3 Trajectory Optimization for Autonomous Vehicles

Trajectory optimization methodologies provide optimal solutions to the planning
problem formulation stated in Equation 1.1. An overview of the state-of-the-art tra-
jectory optimization methods in autonomous driving has been given in Section 1.2.2.
This section provides a theoretical view on trajectory optimization and its solution
classes.

Due to the complexity of trajectory optimization problem formulations, most of
these can only be solved by employing numerical methods. Numerical methods in
trajectory optimization can be divided into two main categories: indirect and direct
methods. Indirect methods are based on the calculus of variation used to determine
first-order optimality conditions of the original trajectory optimization problem [131].
Direct methods discretize the states and controls of the trajectory optimization
problem and employ nonlinear optimization to find optimal solutions [56].

Nonlinear optimization solution methods can be divided into gradient- (also referred
to as local) and heuristic-based (also referred to as global) optimization methods
[131]. The theory of constrained gradient-based optimization methodologies has been
outlined in the previous sections. Gradient-based methods for trajectory optimization
utilize an initial optimization vector u that provides the initial solution and then is
optimized. Heuristic optimization methods perform a search in a stochastic manner
instead of a deterministic one [131]. These can find globally optimal solutions, such as
genetic algorithms [34], simulated annealing [109], and particle swarm optimization

64

4.3 Trajectory Optimization for Autonomous Vehicles

[58]. However, these are often unable to provide a (globally) optimal solution in
real-time for complex environments, such as real-world traffic.

Direct, gradient-based methods are often used due to their effectiveness, robustness,
and simplicity [132, 42, 82]. In Section 4.3.3, direct shooting methods are discussed
for solving the optimal trajectory optimization problem formulation. In direct
shooting methods, the trajectory is approximated using a simulation and the cost of
the objective function is minimized while adhering to defined constraints [56].

The single-track vehicle model utilized in this work and described in Section 4.3.1
and numerical integration and differentiation methods are discussed in Section 4.3.2.
The presented trajectory optimization theory lays the foundation for the post-
optimization of learned behavior policies in Section 4.4.

4.3.1 Dynamic Vehicle Model

In trajectory optimization for autonomous vehicles, a forward simulation is required
when using direct methods, such as single- or multiple-shooting. As the resulting
trajectory should be executable by the vehicle, its dynamics must be integrated into
the trajectory optimization. Being executable by the vehicle can be achieved in two
ways: constraining the trajectories’ differential values or by using vehicle models.
Vehicle models provide more accurate trajectories that can be executed by the vehicle
while introducing little to no computational overhead. The computational overhead
depends on the used vehicle model. Simplistic vehicle models, such as a single-track
model [87] are computationally cheap, whereas more sophisticated ones taking slip
and oversteer [89] into account are more expensive. In most nominal operational
design domains (ODDs) in which the vehicle operates far away from its physical
limits, the single-track model poses a sufficiently good approximation of the vehicle’s
dynamics.

Figure 4.3 depicts a vehicle with θ being the vehicle angle, l the wheelbase of the
vehicle, κ the curvature, v the longitudinal velocity, and δ the steering rate. A no-slip
condition is assumed (both wheels have the same longitudinal velocity), leading to
the same rotation-rate of the wheels. Using the geometric relation of tan(δ) = lκ
and the dynamic relation of θ̇ = ω = v

l , a differential equation for the change of the

vehicle angle θ can be obtained that is given by θ̇ = v tan(δ)
l . The resulting single-track

vehicle model consists of four first-order differential equations that can be expressed
in state-space form as

xk+1 = ḟ(xk, uk) =


vk cos(θk)
vk sin(θk)

vk
tan(δ)
l
a

 (4.21)

with the state xk = [xk, yk, θk, vk] and the control commands uk = [δk, ak]. For
small angles and constant velocities, a linearized form of the single-track model
can be derived using the trigonometric apprxoimations sin(θ) ≈ θ, cos(0) ≈ 1, and

65

4 Optimization Theory and Post-Optimizing Behavior Policies

δ

θ
1
κ

v

δ

l

Figure 4.3: Illustration of the single-track vehicle model. The steering rate of the vehicle is
given by δ, the curvature by κ, the wheelbase by l, the vehicle’s velocity by v,
and the vehicle’s angle by θ.

tan(δ) ≈ δ. Assuming the velocity of the vehicle vk to be constant, the linearized
model can be written in matrix-form using the Euler forward integration method as

xk+1 =


1 0 0 ∆tvk
0 1 ∆tvk 0
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

A

xk +


0
0

∆tvkl
0


︸ ︷︷ ︸

B

uk (4.22)

with xk = [x, y, θ, 1] and uk = [δ]. More elaborate linearized models have been
proposed using operational regions and lookup tables (LUTs) as in [31].

4.3.2 Numerical Integration and Differentiation Methods

For trajectory optimization in autonomous driving, the resulting trajectory should
include the dynamics and non-holonomy of vehicles. Forward-integrating a dynamic
vehicle model, as outlined in the previous section, makes sure that the resulting
trajectory can be executed by the vehicle.

Time-marching (also referred to as time-stepping) methods calculate the solution
of differential equations in each time-step tk using current and previous information
about the solution [131]. These can be divided into two main categories: multiple-step
and multiple-stage methods.

In multiple-step methods, the solution for time tk+1 is obtained from a set of
previous values tk−j , . . . , tk with j being the number of steps. If j = 1, these methods

66

4.3 Trajectory Optimization for Autonomous Vehicles

are referred to as single-step methods, such as the Euler method. The general form
of discrete Euler methods can be denoted as

xk+1 = xk + ∆t(θḟ(xk) + (1− θ)ḟ(xk+1)) (4.23)

with ḟ(·) being a dynamic model (e.g., the single-track vehicle model) and the values
θ = (1, 0.5, 0) correspond to the Euler forward, Crank-Nicolson, and Euler backward
methods, respectively [131]. The Crank-Nicolson and Euler backward methods are
referred to as implicit methods as the value xk+1 also appears on the right-hand
side of Equation 4.23. More complex and commonly used multiple-step integration
methods are the Adams-Bashforth and Adams-Moulton multiple-step methods [131].

Multiple-stage methods divide the time interval [ti, ti+1] into K subintervals
[τj , τj+1] where

τj = ti + ∆tαj , j = 1, . . . ,K (4.24)

with 0 ≤ α ≤ 1. Each τj is referred to as a stage. One of the most-popular
multiple-stage integration methods is the classical Runge-Kutta method [20].

Implicit, multiple-step, and multiple-stage integration methods are computationally
more expensive than, e.g., the single-step Euler forward method. For small integration
time-steps and “well-behaved” vehicle models, methods, such as the Euler forward
method, suffice to obtain accurate and stable results with direct shooting methods
and modern solvers as discussed in Section 4.3.3.

Using the linearized single-track vehicle model as outlined in Equation 4.22, a
forward trajectory τ can be obtained as follows:

x1 = Ax0 + Bu0 (4.25)

x2 = A[Ax0 + Bu0]x1 + Bu1 (4.26)

x3 = A[A[Ax0 + Bu0]x1 + Bu1]x2 + Bu2 (4.27)

(4.28)

... (4.29)

xK = A[AxK−2 + BuK−2]xK−1 + BuK−1 (4.30)

with A being the system matrix and B the input matrix of the dynamic model.
The equation above can also be written in a batch-matrix form allowing for fast
computation by, e.g., using graphics processing units (GPUs). In the nonlinear
dynamic model case, the Euler forward integration process can be denoted by

x1 = x0 + ∆tḟ(x0, u0) (4.31)

x2 = x1 + ∆tḟ(x1, u1) (4.32)

... (4.33)

xK = xK−1 + ∆tḟ(xK−1, uK−1) (4.34)

resulting in a state-space trajectory τ = [x0, . . . , xK].

67

4 Optimization Theory and Post-Optimizing Behavior Policies

Besides integration methods, differentiation methods are required in trajectory
optimization to, e.g., calculate the jerk of a trajectory. These can either be analytical,
rely on complex calculus, or utilize numerical methods. One way to calculate
approximate derivatives of a trajectory is finite difference approximation, such as
the forward and central differencing methods. The forward difference approximation
is given by

df

dx
≈ f(x+ ∆t)− f(x)

∆t
(4.35)

and the central difference approximation is given by

df

dx
≈ f(x+ ∆t)− f(x−∆t)

2∆t
(4.36)

with ∆t being the step-time. It should be noted that small ∆t introduce round-off
errors in the computation [131]. The central approximation method is more accurate
than the forward one but is also computationally more expensive.

A linearization could be performed at every time step to enable such methodologies
to be used. Apart from this, numerical integration methods in multi-step and multi-
stage are often employed for the forward integration. For simplistic nonlinear vehicle
models and sufficiently small integration deltas, even single-step methods, such as
the explicit Euler’s method, suffice.

4.3.3 Direct Shooting and Nonlinear Trajectory Optimization

Direct methods, such as single shooting, discretize the trajectory optimization
problem’s controls and states, transforming an infinite optimization problem into a
finite one. Direct shooting methods used for trajectory optimization of autonomous
vehicles often constitute nonlinear and nonconvex optimization problems as often,
either the dynamic model or the constraints, such as e.g., the collision constraints,
are nonconvex. Direct methods transform infinite-dimensional optimization problems
into finite-dimensional, nonlinear ones making these possible to be solved using
nonlinear solvers.

Single shooting methods use a sequence of discrete control commands u =
[u0, . . . , uN] and numerical integration methods, such as time-marching as outlined
in Section 4.3.2 to obtain a state-space trajectory τ = [x0, . . . , xN+1] having N + 1
states and starting from an initial state x0. These can only offer approximately
optimal solutions as they approximate the actual infinite-dimensional optimization
problem. However, direct methods are widely used due to their robustness and easy
applicability [27]. As the first state in the trajectory x0 is fixed in single shooting
methods, these kinds of optimization problems are referred to as initial value prob-
lem (IVP). The trajectory is then optimized starting from the initial state x0 over
a time-horizon of [tstart, tend]. It is necessary to integrate the trajectory for each
perturbation to calculate gradient information using single shooting methods [15].
In single shooting methods, the optimization vector u is used to obtain a trajectory
τ . The cost of the trajectory τ is then calculated using an objective function f0(τ, u)

68

4.4 Post-Optimization of Behavior Policies

that evaluates the trajectory and the input commands. In the unconstrained case
and when using gradient-based methods, the objective’s cost is then minimized and
the process is iteratively repeated until convergence. In the constrained case, the con-
straints are additionally evaluated in every iteration. Constrained and gradient-based
optimization solution methods as outlined in Section 4.2 can be used.

A drawback of single shooting methods is that small changes introduced early in
the trajectory can propagate into very nonlinear changes at the end of the trajectory
[15]. These nonlinear changes can be mitigated using multiple shooting that has
the fundamental idea of breaking the trajectory into shorter pieces or segments.
However, this creates the need for additional constraints being introduced that join
the segments at the boundaries. As single and multiple shooting solve equivalent
nonlinear optimization problems, these have the same discretization error and can
utilize the same optimization solution methods, such as sequential quadratic program
(SQP) and interior point (IP) methods [27]. Extensive research has led to extremely
versatile and robust software programs for numerically solving nonlinear optimization
problems [131], such as SQP solvers (OSQP [108], SNOPT [38]) and IP solvers
(LOQO [116], IPOPT [119]).

In autonomous driving, the objective f0(τ, u) and the constraints fi(τ, u), i ≥ 1
should provide a safe and comfortable trajectory. All safety-relevant terms should
be handled by constraints to guarantee collision-free trajectories at convergence.
Otherwise, not having collisions would boil down to a parameter-tuning problem
in which collisions are weighted more heavily than other terms in the objective.
Therefore, in the later introduced post-optimization in Section 4.4, the objective
function f0(τ, u) is merely responsible for the comfort while the constraint functions
fi(τ, u), i ≥ 1 are responsible for adhering to safety-constraints and for the resulting
trajectory to be executable by the ego vehicle. When using direct shooting for
nonlinear and nonconvex trajectory optimization, the initial optimization vector u
(initial estimate) is essential as it influences to which local optimum the optimization
converges. Choosing poor local optima can either lead to poor performance or even
to unsafe behaviors. In this work’s proposed post-optimization, the initial estimate is
obtained from a learned behavior policy mitigating the problem of optimizing multiple
starting points or just a single one, possibly leading to deteriorating performance.

4.4 Post-Optimization of Behavior Policies

Local, gradient-based optimization methodologies’ performance greatly depends on
the initial estimates — poor initializations lead to poor performing local minima. This
section introduces a local post-optimization that utilizes learned behavior policies to
obtain interactive initial estimates and derive constraints from this initial estimate.
The proposed methodology is based on the work presented in [46], the trajectory
optimization theory discussed in Section 4.3, and on the learning-based behavior
policies introduced in Chapter 2.

69

4 Optimization Theory and Post-Optimizing Behavior Policies

As described by Bender et al. [11], when using local optimization approaches,
the combinatorial aspects of behavior generation have to be considered. In their
work, they propose a partition of the trajectory space into discrete solution classes,
with each of these having a local optimum — so-called maneuver variants. To
find the global optimum amongst the maneuver variants, each of these has to be
optimized. Optimizing all maneuver variants is not always tractable in real-time due
to computational constraints. Optimizing a sub-set of the maneuver variants might
lead to poor local minima and, thus, to poor performance.

To mitigate this problem and to choose “well-performing” maneuver variants,
conventional, e.g., search-based methods can be utilized for generating an initial
solution that is then optimized [22]. However, search-based methodologies cannot
always provide solutions in real-time due to computational limitations. Several works
propose leveraging learning-based methodologies that harness off-line computational
power to learn initial estimates [6] and rate their effectiveness [84]. However, these
works are of supervised nature and do not take dynamic environments and interactions
with other traffic participants into account. This work uses a learned behavior policy
πego for generating initial estimates in a game-theoretic fashion – meaning that all
agents choose actions simultaneously and influence each other [46]. Apart from
choosing a maneuver variant, a corresponding optimization vector uinitego is obtained
for warm-starting the optimization reducing the overall computational effort.

Further, learning-based behavior policies do not always provide feasible solutions
(e.g., not reaching the goal or causing collisions), which necessitates the need for
fail-safe trajectories that can be executed instead. The proposed post-optimization
framework can be embedded into runtime safety assurance (RTSA) frameworks as
discussed in Section 3.3.2, such as into Simplex architectures [97].

Most conventional trajectory optimization approaches are not game-theoretic and
predict all traffic participant’s trajectories before the actual optimization. The gap
between prediction and optimization can lead to too passive and unsafe behaviors as
changes in the optimized trajectory τ optego do not influence the other traffic participants
τ opti . An initial estimate is generated using a game-theoretic learning-based behavior
policy that includes interactions with others. The interactions with other traffic
participants are assumed to remain valid by enforcing the optimized trajectory to be
“sufficiently” close to the learning-based trajectory.

In summary, the proposed post-optimization reduces computational costs by
leveraging learned behavior policies and using initial estimates generated by these.
It ensures collision-freeness by extracting constraints from the learned solution and
enforcing these during optimization. By constraining the optimized trajectory to
be close to the initial one, interactions that the learning-based approach had with
other traffic participants remain valid. Finally, by minimizing the jerk, the comfort
of the optimized trajectories is equal or, in most cases, better than the one of the
learning-based solutions as is shown in the evaluation in Section 5.4.

70

4.4 Post-Optimization of Behavior Policies

τ initego

τ init0 τ init1

xt xt+1

xt+2

Xgoal

Figure 4.4: Forward simulation of the world for three time-steps in a game-theoretic fashion
with all vehicles choosing actions simultaneously. The ego vehicle is depicted
in blue and its trajectory is denoted by T initego . The trajectories of the other

vehicles are denoted as T initi .

4.4.1 Initial Estimates and Constraints

The initial estimate is generated by forward-simulating a semantic world (all objects
being represented in an object list) in a game-theoretic fashion — where each vehicle
chooses an action at and influences other vehicles or is being influenced at time t. A
semantic world Wt is parameterized by a set of vehicles V = [v0, . . . , vN] controlled
by a respective behavior policy πn with N being the number of vehicles in the
scene. Generating initial estimates is similar to the forward world simulation of the
counterfactual behavior policy evaluation (CBPE) as outlined in Section 3.3. In
each simulation step, all vehicle’s behavior policies are called and return an action
at, which is then executed. The forward simulation starts at the current world time
tworld and ends once an evaluator has determined it to be terminal — e.g., if the
goal has been reached or a collision has occurred. Figure 4.4 depicts a forward
simulation of the semantic world Wt for three time-steps and shows the trajectories
of the vehicles.

As the terminal state is determined by an evaluator and the behavior policy π,
the time-horizon of the initial trajectory τ initego can vary significantly and, thus, the
optimization’s computational complexity. The trajectories’ length can especially
become an issue when using higher-order methods, such as second-order methods
that require the computation of the Hessian matrix and its inverse. Solving for
x in an equation Ax = b having a matrix A ∈ Zn×n and b ∈ Zn×1 results in a
computational complexity of O(n3||A||+ ||b||) [29]. Thus, for second-order methods
to be used for large time-horizons and in real-time, methods such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm have to be utilized to approximate the
Hessian matrix.

71

4 Optimization Theory and Post-Optimizing Behavior Policies

hfk

hrk

xinitk

hak

hbk

Figure 4.5: Visualization of the constraints for a single time-step k. A line-search along
the Cartesian coordinates defines the maximum free configuration space for the
ego vehicle (depicted in blue) defined by hfk , h

r
k, h

a
k, h

b
k.

The initial optimization vector uinitego and the resulting trajectory τ initego of the ego
vehicle generated by the learned behavior policy πego can be sub-divided into feasible
and infeasible initial estimates. In the feasible case, the initial estimate brings merit to
the optimization as it successfully and in a game-theoretic fashion solves the scenario.
Besides choosing a maneuver variant, it also provides an initial optimization vector
uinitego that corresponds to the maneuver variant and provides a trajectory reaching
the goal. In the infeasible case, an RTSA framework can be utilized to plan and
execute a fail-safe trajectory as, e.g., proposed in [86].

In the feasible case, state constraints can be derived from the initial trajectory
of the ego vehicle τ initego and by using the other vehicles trajectories τ initi . As each
vehicle’s state is obtained during the forward simulation, the maximum free-space of
the ego vehicle can be extracted at each time-step k. The extraction of the maximum
free-space for the time-step k is shown in Figure 4.5. The state xinitk is provided by
the learning-based behavior policy being forward-simulated as shown in Figure 4.4.
A line-search along the x- and y-coordinates is performed for each state in the initial
trajectory xinitk to extract bounding boxes relative to the initial states. These are

defined by hfk representing the distance to the front of the vehicle, hrk representing
the distance to the rear, hak representing the distance to the top, and hbk the distance

to the bottom. These four values (hfk , hrk, hak, hbk) then span a bounding box for each
discrete time-step k relative to the initial state xinitk .

In Figure 4.6, the initial state of the ego vehicle is denoted by xinitk and the
optimized state is denoted as xoptk for a discrete time-step k. The initial state xinitk is
the reference system for defining the constraits via the maximum deviations h�k at
time-step k. Using the deviations ∆x = xoptk −x

init
k and ∆y = yoptk −y

init
k between the

initial state xinitk and the optimized state xoptk and geometric approximation functions
that project the vehicle shape based on its orientation onto Cartesian coordinates,

72

4.4 Post-Optimization of Behavior Policies

θ

hfk

hak

xinitk

xoptk
δy

∆y

∆x δx

Figure 4.6: Cartesian deviations ∆x and ∆y of initial state xinitk and the optimized state

xoptk . In the depicted case, the constraints are fulfilled as ∆x + δx ≤ hfk and
∆y + δy ≤ hak.

relative constraints can be defined. δfx(θoptk) and δrx(θoptk) return the distance to the
front and rear of the vehicle shape projected onto the x-coordinate, respectively.
δay(θoptk) and δby(θ

opt
k) return the distance to the top and bottom point of the vehicle

shape projected onto the y-coordinate, respectively.

This results in four constraint functions that can be denoted as

ffk (xinitk , xoptk) = ∆xk + δfx(θoptk) (4.37)

f rk (xinitk , xoptk) = ∆xk + δrx(θoptk) (4.38)

fak (xinitk , xoptk) = ∆yk + δay(θoptk) (4.39)

f bk(xinitk , xoptk) = ∆yk + δby(θ
opt
k). (4.40)

Equations 4.37-4.40 define the maximum allowed deviation or free configuration
space at time-step k. However, if the deviations are too large from the learning-based
initial solution, the interactions with other traffic participants might not remain valid.
Thus, in the post-optimization problem formulation presented in the next section,
an additional trust-region constraint is introduced to enforce proximity between
the initial and optimized trajectories. The state-wise trust-region is illustrated in
Figure 4.7.

4.4.2 Post-Optimization Problem Formulation

As described in Section 4.3, two characteristics are essential for behavior generation
in autonomous driving: safety and comfort. The comfort shall be maximized while
adhering to the safety constraints to obtain an optimal solution for the optimal
trajectory planning problem given in Equation 1.1. The previous section discussed

73

4 Optimization Theory and Post-Optimizing Behavior Policies

rk

rk+2

rt+1 xk+1

τ initego
xk+2

xk

x∗k

x∗k+1

x∗k+2

τ optego

Figure 4.7: Proximity of the optimized trajectory τoptego to the learning based initial trajectory

τ initego .

how the initial optimization vector uinit and the initial learning-based trajectory of
the ego vehicle τ initego are obtained and how relative state-constraints to the initial
trajectory can be defined. This section introduces and discusses the post-optimization
problem formulation for learned behavior policies.

The proposed post-optimization is a direct method that utilizes single shooting.
Therefore, the trajectory τ optego is obtained by sequentially integrating the single-track
vehicle model introduced in Section 4.3.1 using, e.g., a time-marching integration
method as outlined in Section 4.3.2. As the trajectory is generated using a vehicle
model, the dynamic constraints do not have to be included explicitly in the problem
formulation but are implicitly included due to forward-integrating the vehicle model as
described in Section 4.3.2. The time-horizon of optimized trajectory τ optego is determined
by the length of the initial trajectory τ initego provided by the learned behavior policy
πego. The constrained, single-shooting, nonlinear optimization problem formulation
can then be denoted as

minimize f0(τ optego) (4.41)

subject to ffk (xinitk , xoptk) ≤ hfk , k = 1, . . . , N (4.42)

f rk (xinitk , xoptk) ≤ hrk, k = 1, . . . , N (4.43)

fak (xinitk , xoptk) ≤ hak, k = 1, . . . , N (4.44)

f bk(xinitk , xoptk) ≤ hbk, k = 1, . . . , N (4.45)

||xinitk − xoptk ||2 ≤ rk, k = 1, . . . , N (4.46)

fk(u
opt
k) ≤ umaxk k = 1, . . . , N − 1. (4.47)

The objective function f0(τ optego) in the proposed methodology is solely responsible for
maximizing the comfort by minimizing the jerk of the trajectory. For the calculation
of the jerk, a forward numerical differentiation method as outlined in Section 4.3.2 is
utilized and, thus, requires at least three past states of the ego vehicle for computing

74

4.4 Post-Optimization of Behavior Policies

the jerk for each point of the optimized trajectory. The objective function f0(τ optego) is
defined as the sum of the squared jerk terms (jxk , j

y
k) and can be denoted as

f0(τ optego) =

N∑
k=0

(jxk)2 + (jyk)2. (4.48)

The velocity and other guiding values are not included in the objective function as
these are handled by constraints. The proximity of the optimized trajectory to the
learning-based trajectory is enforced using constraints. By bounding the last state
of the optimized trajectory tight to the initial, learning-based solution, the goal is
guaranteed to be reached by the optimized trajectory.

Equations 4.42-4.45 make sure that the optimized solution is within the extracted
free-configuration space as outlined in Section 4.4.1. These constraints constitute
the maximum deviation of the initial trajectory τ initego to the optimized trajectory

τ optego. If the optimized solution deviates too much from the initial, learning-based
trajectory τ initego , the interactions with other vehicles cannot be assumed to remain valid.
Therefore, trust-region constraints are introduced in Equation 4.46 to ensure that
the optimized trajectory is close to the initial, learning-based solution. Additionally,
Equation 4.47 ensures that the control commands are bounded and are executable
by the ego vehicle.

In summary, the post-optimization problem formulation provided in Equations
4.41-4.47 offers smooth, interactive, and comfortable trajectories for autonomous
vehicles. Due to the safety being handled using constraints, the solution is guaranteed
to be safe at convergence — if the other vehicles behave as expected. Additionally, by
enforcing the trajectories to be close to each other, the game-theoric learning-based
policies’ interactiveness is maintained. Further, the optimized trajectories’ jerk is
at most as high as the learning-based initial trajectory as the sole objective is to
minimize the jerk. The proposed post-optimization is evaluated in terms of its
performance in detail in Section 5.4.

4.4.3 Nonlinear Trajectory Optimization Solution Methods

The post-optimization trajectory optmization problem formulation stated in Equa-
tions 4.41-4.47 constitutes a finite-dimensional, nonlinear optimization problem that
can be solved using optimization solution methods, such as SQP and IP. The problem
is an inequality constrained one having a nonlinear objective function f0(τ optego). As
the other traffic participants in the scenario are included using constraints and
the objective function is merely dependent on the ego vehicle’s trajectory τego, the
optimization problem can be solved straightforwardly without the need of constantly
re-computing the distance to other objects during the optimization process. The
constraints for each time-step k can be seen as bounding boxes (hfk , h

r
k, h

a
k, h

b
k) defined

relative to an initial, learning-based state xinitk of the ego vehicle. Further, as the
same dynamic model is used in the simulation as in the time-marching integration of
the optimized trajectory, the initial optimization vector uinitego produces a trajectory

75

4 Optimization Theory and Post-Optimizing Behavior Policies

that lies within the defined bounding boxes, dynamic limits, and that adheres to the
vehicle model and, therefore, is a feasible solution for the current scenario. Feasible
solutions eliminate the need for optimization solution classes to handle infeasible
starting points, such as solving a boundary problem before the actual optimization
process [119].

The above-stated post-optimization problem formulation poses a standard nonlinear
program that can be solved using various approaches capable of handling inequality
constraints. The most popular ones in this category are SQP and IP methods due to
their simplicity and robustness [131].

SQP solves the nonlinear optimization problem iteratively by modeling nonlinear
optimization subproblems using quadratic approximation and solving these for a
time-step k. This process is then iteratively repeated until convergence or an abortion
criterion has been reached [7].

The solution process of IP methods can be thought of as a central path approach
where the solution starts in the center of the constraints and then moves towards a
direction that minimizes the objective function. IP methods have been discussed in
detail in Section 4.2.

For both of the solution classes, powerful solvers and libraries are available, such
as for SQP (OSQP [108], SNOPT [38]) and IP (LOQO [116], IPOPT [119]). Both
methods work well in solving the post-optimization problem formulation. This thesis
utilizes IP methods to solve the constraint optimization problem. Results of applying
the post-optimization to learned behavior policies are shown in Section 5.4.

76

5 Experiments and Results

This chapter provides a systematic evaluation of the proposed and discussed method-
ologies ranging from learning behavior policies, evaluating these at runtime, and
post-optimizing these to obtain smooth driving behaviors.

First, the simulation frameworks Behavior benchmARK (BARK) and its machine
learning extension Behavior benchmARK - Machine Learning (BARK-ML) are
introduced, in which all of the results presented in this chapter have been obtained.
The need and basic concepts of these frameworks are briefly elaborated, and the
scenario used for training and evaluation is introduced — a dense merging scenario
that requires interactive behavior policies to merge onto the other lane successfully.

Results and evaluations for learning behavior policies using actor-critic (AC)
reinforcement learning (RL) are shown and discussed. The learned behavior policies’
evaluation starts with an architecture and hyperparameter search for conventional
deep neural network (DNN) and graph neural network (GNN) architectures. These
two architectures are initially compared during training and then benchmarked.
The potential-based reward shaping is evaluated and benchmarked against using a
sparse reward signal. The edge features of the GNN architecture are visualized, and
quantitative results for the magnitudes of these are obtained. As GNNs are at the
intersection of structured and DNN approaches, the information flow in these can
be visualized and is shown in the evaluation. An essential characteristic of learned
behavior policies is how well these generalize. Therefore, variational studies are
performed in which the behaviors of others is modified.

The next section shows results of applying the counterfactual behavior policy
evaluation (CBPE) to learned behavior policies and provides additional insights.
A set of independent and dependent behavior policies is used to replace the other
vehicles’ behaviors to ask and answer counterfactuals, such as “Would the behavior
policy be collision-free if the other vehicle had, e.g., decelerated?”. The CBPE allows
for evaluating the learned behavior policies’ generalization capabilities and how well
it copes with distributional shifts at runtime.

Finally, the proposed behavior policy post-optimization is evaluated that uti-
lizes the learned behavior policies. The boundary extraction process in the dense
merging scenario and qualitative results for the constraint extraction are presented.
Qualitative, as well as quantitative results, are shown and discussed.

5.1 Simulation and Benchmarking

Many behavior generation approaches have been tailored towards specific use-cases
and are often fine-tuned for specific scenarios — making them non-comparable to

77

5 Experiments and Results

Bi
k+1 ←Behave(ObservedWorldik)

eik+1 ←Execute(Bi
k+1)

ObservedWorldik

World::Step(∆t)

Agenti

worldk

worldk+1

Benchmark Runner
eik+1

Figure 5.1: ObservedWorld concept of BARK. Each agent receives an ObservedWorld in
which it executes its behavior and execution model (modified graphic from [13],
©2020 IEEE).

other state-of-the-art approaches. A behavior benchmarking framework BARK1

has been developed to mitigate this issue and make behavior generation approaches
comparable [13]. BARK has been developed together with Julian Bernhard, Klemens
Esterle, and Tobias Kessler throughout this work’s scope. All of the results presented
in the evaluation section have been obtained using BARK and its machine learning
extension BARK-ML2. Further, the used scenarios for training and evaluating the
behavior policies and approaches presented in this work are described in this section.

5.1.1 BARK: A Semantic Simulation Framework

BARK is a semantic simulation framework for developing and benchmarking behavior
generation algorithms. Its deterministic nature and semantic representation offer
a computationally lightweight simulation that allows for benchmarking behavior
generation algorithms over many scenarios.

BARK offers a variety of functionalities that makes developing and integrating novel
behavior models easy. It offers extensive geometry functionalities that implement
collision checks, distance functions, and other features. BARK utilizes the OpenDrive
map format in which a wide variety of scenarios are represented in research and
industry. By converting these maps into a graph that contains road- and lane-
corridors, routing and free-space queries are handled with ease. The functionalities
of BARK enable the fast development of elaborate behavior generation approaches.

BARK is a multi-agent simulation in which each agent is controlled by its behavior,
dynamic, and execution model. In each simulation time-step t, an agent (vehicle)
receives an ObservedWorld derived from the actual world as shown in Figure 5.1. An
ObservedWorld clones the current world state and, additionally, can alter the world
state to, e.g., model perturbations, such as occlusions. The behavior model plans
and returns a trajectory based on the received ObservedWorld. This trajectory is
then executed by the execution model that, e.g., can be a controller.

1https://github.com/bark-simulator/bark
2https://github.com/bark-simulator/bark-ml

78

https://github.com/bark-simulator/bark
https://github.com/bark-simulator/bark-ml

5.1 Simulation and Benchmarking

A wide variety of behavior models are available in BARK ranging from rule-based
models, such as the intelligent driver model (IDM) [113] and minimizing overall
braking induced by lane changes (MOBIL) [57], to search-based models, such as an
Monte-Carlo tree search (MCTS). In general, there are two simulation modii available
in BARK: open- and closed-loop simulation. In the closed-loop simulation, the other
vehicles are controlled by behavior models, such as the IDM and MOBIL. Using
more sophisticated or learned behaviors is also possible, but one needs to consider
the trade-off between elaborate and computationally inexpensive behaviors. In the
other modus, the open-loop simulation, the other agents can be controlled, e.g., by
using a dataset of recorded trajectories. One dataset that is natively supported in
BARK is the INTERACTION dataset [129]. In the latter operational modus, the
open-loop case, the other agents do not react to the ego vehicle’s actions. Therefore,
BARK provides a third modus that mixes the open- and closed-loop simulation in
which some of the agents can be controlled by using a dataset and others by using
behavior models.

With BARK offering a fast runtime, reproducible scenarios, and integrating
various state-of-the-art behavior generation algorithms, it offers an ideal platform for
developing and benchmarking behavior generation algorithms. More details about
BARK can be found in [13].

5.1.2 BARK-ML: Machine Learning Framework for BARK

BARK-ML3 is framework based on BARK that implements various machine learning
capabilities. Its primary focus is on learning (deep) behavior policies by, e.g., utilizing
RL. BARK-ML was developed as part of this work and implements a runtime that
extends the one of BARK with an observer and evaluator.

The observer transforms the semantic world state into a suitable, machine learning
usable representation for deep neural networks as discussed in Section 2.2. The
evaluator evaluates the world’s state, returns a reward signal, and determines whether
an episode is terminal as described in Section 2.3.1.

BARK-ML provides an OpenAI-Gym4 interface that allows it to be used by most
open-source machine learning frameworks. Several standard scenarios and their
configuration (blueprints) are provided – intersections, merging, and highways – that
make training and evaluating novel scenarios easy. All BARK-ML behaviors can be
plugged directly into BARK and, e.g., be used to control other traffic participants.

BARK-ML offers state-of-the-art RL algorithms to train behavior policies for
BARK, such as the proximal policy optimization (PPO) and soft actor critic (SAC)
that are based on the TF-Agents libaray5. All of the work presented in the learning
section is available in BARK-ML.

3https://github.com/bark-simulator/bark-ml
4https://gym.openai.com/
5https://github.com/tensorflow/agents

79

https://github.com/bark-simulator/bark-ml
https://gym.openai.com/
https://github.com/tensorflow/agents

5 Experiments and Results

Figure 5.2: The merging scenario used for the training and evaluation of behavior policies.
The ego vehicle is depicted as the blue vehicle and its goal is shown as the light
blue polygonal area. The figure shows multiple sampled initial scenario states.

5.1.3 Training and Evaluation Scenarios

A merging scenario having a high traffic density is chosen to evaluate the proposed
methodologies in challenging and interactive scenarios. Dense traffic scenarios require
the ego vehicle’s behavior policy to be proactive and interact with other traffic
participants to merge onto the other lane. The merging scenario is modeled after the
‘DR DEU Merging MT’ from the INTERACTION dataset [129]. The right lane is
ending, and vehicles are required to merge to the left. The ego vehicle is placed on
the right lane as depicted in blue in Figure 5.2. The ego vehicle’s goal is placed on
the left lane and is depicted by the light blue polygonal area. Thus, requiring the ego
vehicle to change to the other lane. Additionally to the spatial goal definition, the ego
vehicle’s state needs to be within a speed of [5m/s, 15m/s] and have a vehicle angle
deviation smaller than 0.15rad to the goal’s centerline. The vehicles drive initially
with a speed of 9 − 11m/s which resembles higher traffic density speeds – which
eventually could build up to a traffic jam. All vehicles – including the ego vehicle –
are sampled uniformly along the lane’s centerlines with an initial minimum distance
of 7m and a maximum distance of 12m. The other vehicles are being controlled by
the MOBIL model with the desired velocity set to 10m/s. The simulation-time of

80

5.2 Learning Behavior Policies for Autonomous Vehicles

an episode is 12s using a time-delta to step the simulation of 0.2s. The merging
scenario shown in Figure 5.2 has a high traffic density. Not all starting positions pose
scenarios where collisions can be avoided – even if emergency patterns are used, such
as a stated-braking pattern [98]. Close distances make collisions merely by braking
inevitable for the ego vehicle if the preceding vehicle decelerates with maximum
deceleration. The other traffic participants’ full behavioral parameters are stated in
Appendix A.1.

5.2 Learning Behavior Policies for Autonomous Vehicles

This section provides results and insights on learning behavior policies for autonomous
vehicles. First, several hyperparameters and architectures are evaluated to find well-
performing architectures. Next, the proposed potential-based reward signal shaping
functions are evaluated and compared against a sparse reward signal. Conventional
DNN and GNN architectures are compared in terms of their performance during
learning and are then benchmarked. Further, the edge values of the final GNN
layer are visualized to provide additional insights into the learned behavior policies’
information flow. Finally, variational studies are performed to evaluate the learned
behavior policies’ generalization capabilities and proposed architectures.

5.2.1 Hyperparameter and Architecture Search

Both the network architecture and the hyperparameters impact the resulting per-
formance of learned behavior policies significantly. Therefore, this section compares
and evaluates various architectures to obtain well-performing behavior policies. Two
types of neural network architectures are evaluated: conventional DNN and GNN
architectures.

For the evaluations performed in this section, the reward shaping function Φ(d, v)
as introduced in Section 2.3.1 is used as sparse reward signals require an infeasible
amount of training having limited computational resources. Other reward signals
and shaping functions are evaluated in detail in the next section.

For learning behavior policies, the SAC algorithm is used that allows for off-policy
updates, is capable of producing continuous actions, and that additionally maximizes
the future cumulative expected entropy besides the reward that has been outlined in
Section 2.1.4. The algorithm’s hyperparameters are stated for the DNN and GNN
architecture in Appendix A.1.

In the DNN architecture search, the number of layers is fixed, and the number
of neurons is varied. A feature vector input representation is used as described in
Section 2.2 which takes the four closest vehicles in the ego vehicle’s surrounding
into account. Additionally, the feature vector is sorted by the distance to the ego
vehicle. The architectures for the DNNs are divided into DNN small and DNN
large. The DNN small configuration has three layers with [512, 256, 256] neurons
and ReLU activation functions. The DNN large configuration has three layers with

81

5 Experiments and Results

0 50000 100000 150000 200000 250000

N

0.0

0.1

0.2

0.3

0.4

0.5

0.6
S
u
cc
es
s
[%

]
DNN small

DNN large

0 50000 100000 150000 200000 250000

N

10

15

20

25

30

S
te
p
s

DNN small

DNN large

0 50000 100000 150000 200000 250000

N

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
[%

]

GNN small

GNN large

0 50000 100000 150000 200000 250000

N

10

20

30

40

50

60

S
te
p
s

GNN small

GNN large

Figure 5.3: The first row shows the results for the DNN architectures and the second row
shows the results for the GNN architectures during training evaluated every
2000 episodes using 25 evaluation scenarios. The GNN architectures outperform
the conventional ones.

[512, 512, 512] neurons and ReLU activation functions. The DNN small has 210.948
and the DNN large 540.164 trainable parameters.

In the GNN architecture, the number of neurons and the embedding size of the
GNN, is varied. A graph input representation is used as described in Section 2.2.
Similar to the feature vector representation, the four closest vehicles are included
in the graph. Each vehicle is connected with its three nearest vehicles. The two
architectures for the GNNs are divided into GNN small and GNN large. The GNN
small configuration has two GNN layers followed by a dense DNN having two layers
which each layer having 256 neurons with ReLU activation functions. Each graph
layer has two networks having 100 and 20 neurons to update the node and edge
features, respectively. Therefore, The node values of the graph have a fixed size of 20.
The GNN large configuration has two GNN layers followed by a dense DNN having
two layers with 512 neurons each and ReLU activation functions. Additionally, there
are two more dense networks per graph layer having 100 and 80 neurons to update
the node and edge features. Therefore, The node values of the graph have a fixed size
of 80. The GNN small has 104.032 and the GNN large 427.472 trainable parameters.

82

5.2 Learning Behavior Policies for Autonomous Vehicles

As the initial seed can significantly influence the learning performance, the training
and simulation are started with different initial seeds (0, 1000) to gain more reliable
performance estimates. In Figure 5.3, all curves represent the average value of
the training runs. Figure 5.3 shows the success and average steps during training
evaluated every 2000 episodes using 25 episodes. As can be seen, both the DNN
and GNN architectures learn to reach the goal eventually. In terms of the average
steps, they initially behave similarly, with the number of steps being large and then
becoming smaller over time. The GNN large architecture outperforms all other
architectures by far while the smaller networks are stuck in local optima. The
training for the merging scenario is performed for 250, 000 episodes using 10, 000
sampled scenarios. Table 5.1 shows the architectures’ resulting performance in
terms of success, collisions, and the average steps using 2000 episodes. As can be
seen in Table 5.1, even the GNN small architecture outperforms both of the DNN
architectures. The GNN large architecture handles the dense merging scenario well
with a success of 98.1%. Another important criterion is the number of parameters
the networks have. The GNNs have fewer parameters due to updating the node
and edge values element-wise as described in Section 2.4.2. As shown in the next
section, the GNN small architecture can achieve similar results as the GNN large
when using better-performing reward shaping functions. Compared with the DNN
large architecture, the GNN small architecture has approximately five times less
parameters.

Success [%] Collisions [%] Steps [N] Parameters [N]
DNN small 39.7% 60.3% 10.49 210.948
DNN large 39.9% 60.1% 9.79 540.164
GNN small 44.1% 55.9% 9.042 104.032
GNN large 98.1 % 1.9 % 19.65 427.472

Table 5.1: Different architectural configurations and their performance evaluated over 2000
dense merging scenarios. Values in bold represent the best value for a column.

With longer training times and in less dense scenarios, the conventional DNN
architecture can eventually also achieve good performances as shown in [13]. There,
the AC RL has been shown to outperform a state-of-the-art MCTS planner. However,
as shown in the published work, the MCTS outperforms learned behavior policies if
the other vehicle’s behaviors have not been seen during training — motivating the
need for approaches with better generalization capabilities. As shown in Section 5.2.4,
the GNN actor-critic architecture can cope with deviating behavior of others and
generalizes better. In the next section, the GNN small is used to conduct studies on
the reward signal and shaping and whether the learning performance can be improved
further when using a better reward shaping. Succesful and colliding scenarios are
visualized in Appendix A.2.

83

5 Experiments and Results

(a) Φ(d) (b) Φ(d, di)

Figure 5.4: (a) Potential-based reward shaping functions using the distance to the goal and
(b) the distance to the goal and to others.

5.2.2 Reward Signal and Shaping

As discussed in Section 2.3.1, the reward signal impacts the performance during
training and the resulting behavior policy significantly. For complex problems, sparse
reward signals might render the problem infeasible to be learned in a finite time
due to issues, such as the credit assignment and exploration problem as discussed in
Section 2.3.1. This section compares sparse reward signals to potential-based reward
signals as introduced in Section 2.3.1 in terms of their performance and efficiency.
Figure 5.4 shows contour plots of reward potential-functions for the dense merging
scenario — Φ(d) that takes the distance to the goal (the other lane’s centerline) into
account and Φ(d, di) that takes the distance to the goal and the distance to the other
vehicles into account. The gradient from red to dark blue indicates a slope of the
potential function. In Figure 5.4 (a), the lines are parallel to the centerline, with the
potential function increasing linearly with a decreasing distance to the centerline. In
Figure 5.4 (b), the same characteristics can be observed with the differences of sinks
being present at the other vehicle’s rear axle points.

In the sparse reward signal case, the agent is rewarded with a reward of +1 for
reaching the goal, a reward of −1 for having a collision or leaving the drivable area,
and a reward of 0 for having no collision and not leaving the drivable area. Figure 5.5
shows the performance during training for the sparse reward signal as well as for
several reward shaping functions evaluated every 2000 episodes using 25 evaluation
episodes applied to the dense merging scenario. As can be seen, when using a sparse
reward signal (denoted as None), the ego vehicle does not reach the goal too often
and reaches it for the first time at around 100, 000 episodes of training. It shows in
the received reward that instead of learning to reach the goal, the agent learns to
avoid collisions with other traffic participants.

The other curves shown in Figure 5.5 apply reward shaping to the sparse reward
signal to obtain continuous reward signals. As in the previous section, all simulations

84

5.2 Learning Behavior Policies for Autonomous Vehicles

0 50000 100000 150000 200000 250000

N

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
[%

]

Φ(v)

Φ(d)

Φ(d, v)

Φ(d, v, di)

0 50000 100000 150000 200000 250000

N

-1.5

-1.0

-0.5

0.0

0.5

1.0

R
ew

ar
d

None

Figure 5.5: Success and the average reward achieved during training using a sparse reward
signal and reward shaping functions evaluated every 2000 episodes using 25
evaluation episodes.

and training runs have been obtained using two random seeds, and the average values
are being plotted. As can be seen, all reward shaping functions outperform the sparse
reward signal concerning reaching the ego vehicle’s goal. Even the worst-performing
reward shaping function – only using the velocity potential Φ(v) – leads to higher
success than using a sparse reward signal. The combined distance and velocity
potential Φ(d, v) increases the behavior policies’ performance in reaching the goal

— to about 40%. The reward shaping functions increasing the success the most are
the distance reward shaping Φ(d) and all potentials combined Φ(d, v, di) (distance,
velocity, and the distance to other vehicles) as described in detail in Section 2.3.1.
The GNN small architecture reaches the goal more than 90% of the time using the
latter two reward shaping functions. The fact that the distance potential function
performs better than all combined potentials Φ(d, v, di) might be due to using a
point-wise distance between the rear-axles and not taking the actual vehicle shapes
into account.

All results in this section have been obtained using the GNN small configuration
that achieved a success of 44.1% in the previous section using the potential function
Φ(d, v). By, e.g., using the distance reward shaping function Φ(d) the GNN small
configuration can achieve similar success as the GNN large architecture. The increased
performance shows the importance of how the Markov decision process (MDP) is set
up and the impact reward signals can have on learning behavior policies and their
resulting performance. Even the GNN small network can achieve success of over
90% in the dense merging scenario using the “right” reward shaping function.

5.2.3 Visualizing Information Propagation in Graph Neural Networks

As described in Section 2.4.1, GNNs are at the intersection of structured approaches
and deep learning. The structured part of GNNs can be visualized to better under-
stand the encoded driving behavior in the learned behavior policies by visualizing
the flow of information in the network. In the GNN architecture, the information is

85

5 Experiments and Results

Figure 5.6: Graph edges visualized over the course of a scenario (each row is ∆t = 0.4
seconds spaced).

first passed through the GNN layers forcing these layers to pass and extract relevant
information from the input graph. As ReLU activation functions are used, all edge
values are comprised of positive numbers. The normalized sum of the incoming edge
values can be used to visualize the information propagation or flow — from here on
referred to as the magnitude M . For example, the information flow through the edge
eij from the i-th to the j-th vehicle can be measured by summing its values and by
normalizing these with the sum of all incoming edges to vehicle vj . In Figure 5.6 on
the left, the input graph is displayed with the thickness of the lines corresponding
to the magnitude M of the final layer of the GNN. It can be seen that besides
information flowing to the ego vehicle (edges depicted in blue) from all surrounding
vehicles, information is propagated between all vehicles throughout the graph. The
strongest flow of information in Figure 5.6 is from the two vehicles that are behind
the ego vehicle. Visualizing graph edges can provide insights into which vehicle the
learned behavior policy takes into account and on which factors its decisions are
based on.

In Figure 5.7, a histogram of the edge value magnitudes over the relative values is
shown that has been generated using 1000 scenarios. The magnitude M of the edge
values over the relative Cartesian x-distance ∆x is plotted. It shows that information
mainly flows through the GNN if the other vehicle is behind the ego vehicle or far in

86

5.2 Learning Behavior Policies for Autonomous Vehicles

-40 -30 -20 -10 0 10 20 30 40

∆x

0

2M

-4 -2 0 2 4

∆y

0

5

M

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

∆v

0

5

M

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

∆Θ

0

2M

Figure 5.7: Histograms for the edge value magnitudes M plotted over the relative edge
values. The histogram has been generated using 1000 episodes.

front. Paying attention to vehicles behind certainly makes sense in case of merging
onto the other lane. Looking far ahead can be used to decide whether to merge in
front or behind the other vehicle. In the second row, the magnitude M is plotted
over the relative Cartesian y-distance ∆y. The information flow is the strongest
when the ego vehicle is still on the right lane and vehicles are to its left. Taking
vehicles to the left more into account is expected as this mainly should influence
its decision to change lanes. In the third row, the magnitude M is plotted over the
relative velocity ∆v. The edge values’ largest magnitudes can be seen when the ego
vehicle is slow and the other vehicles have higher velocities. Putting emphasis on
vehicles having higher velocities is expected, considering that the ego vehicle tries to
merge onto a faster lane and needs to keep track of faster moving vehicles to avoid
collisions. For the relative vehicle angle ∆θ, it can be observed that the information
flow is the largest around zero or with small positive angles indicating the process of
changing lanes to the left.

This section showed that GNN architectures do not only outperform conventional
DNN architectures but also allow for additional insights into learned behavior policies
and how the information flows through these. More scenarios visualizing graphs and
the information flow can be seen in Appendix A.3.

87

5 Experiments and Results

-40

-20

0

∆
S
u
cc
es
s
[%

]

DNN small

DNN large

GNN small GNN large

0

20

∆
C
ol
lis
io
n
s
[%

]

20% 40% 60%

0

2

∆
S
te
p
s
[N
]

Figure 5.8: Variational studies for the conventional DNN and GNN architectures plotted
over the percentage of variation in the desired time-headway parameter of the
MOBIL model.

5.2.4 Variational Studies and Generalization of Learned Behavior
Policies

This section conducts variational studies in which the behavior of other traffic
participants differs from the ones seen during training to conduct studies on the
generalization and transferability of learned behavior policies. Generalization in the
context of behavior generation is defined as the ability of a (learned) behavior policy
to perform well in scenarios with behavioral parameters that have not been seen
during training. Specifically, the behavior policies of other vehicles are modified from
the training to the validation phase. Similar to [13], the time-headway parameter
Thead of the MOBIL model is varied to generate more passive and aggressive driving
styles of the other vehicles. Initially, during training, the time-headway Thead is
set to 1.5s. For the evaluation, the parameter is reduced by 20%, 40% and 60%,
resulting in time-headways of [1.2s, 0.9s, 0.6s], respectively. All networks presented
in Section 5.2.1 are evaluated in the variational studies to see whether DNN or
GNN architectures generalize better in the used merging scenario. Figure 5.8 shows
the results of the variational study and how much the performance of each policy
changes with a decreasing time-headway parameter Thead. It can be seen that minor
deviations of around 20% in the other vehicles’ time-headway parameter do not have
a vast impact on any network’s success and collisions. However, by changing the
time-headway parameter by 40%, especially the conventional DNN architectures
perform worse, indicating that these do not generalize well to the changed behavioral

88

5.3 Counterfactual Behavior Policy Evaluation

0
1

234

67

0
1

234

67

0
1234

67

0
1234

67

0
1234

67

0
1234

67

(a) W v1
t=1.2s (b) Ht=1.2s

Figure 5.9: (a) Counterfactual worlds W v1 in which the behavior policy of vehicle v1 is
exchanged multiple times with independent behavior policies at time-step
t = 1.2s. (b) Corresponding influence heatmaps Ht=1.2s showing the influence
of the counterfactual worlds on the behavior policies.

parameters. The DNN small configuration performs much worse with a decrease of
the success of almost 40%. The GNN architectures perform only slightly worse in
the 40% variational case than in the nominal scenario with a decrease in reaching
the goal of a few percent. When the time-headway is changed by 60%, the GNN
architectures still outperform any of the conventional DNN architectures, although
the performance also deteriorates significantly. However, a time-headway Thead of
0.6s models very aggressive driving styles of the other vehicles in which the collisions
in the real world with human drivers most probably also would increase.

5.3 Counterfactual Behavior Policy Evaluation

This section applies the proposed CBPE presented in Section 3.3 to learned behavior
policies at runtime. The GNN large configuration from Section 5.2.1 is used for the
evaluation of the CBPE. The previous section’s variational studies show that learned
behavior policies can only cope to a certain extent with deviating behavior policies
from training. By applying the CBPE at runtime, estimates can be obtained on
whether the learned behavior policy can cope with non-factual changes in others’
behavior policies in the current scenario by asking and answering counterfactuals.
Two different studies are conducted: replacing the others’ behavior policies with
independent and dependent ones. Behavior policies independent of their surroundings
allow for precise extraction of the influence but might cause collisions as discussed
in Section 3.3. Dependent behavior policies might be influenced more by their
surroundings than the actual parameter change. Both of these approaches have
advantages that are evaluated and elaborated on in this section.

89

5 Experiments and Results

5.3.1 Independent Behavior Policies

Figure 5.9 shows results of replacing the other vehicles’ behavior policies with
independent ones at time t = 1.2s. A constant acceleration behavior model Bconst

is used. Sampling many accelerations to achieve statistically significant results
at runtime is not feasible due to computational limitations and bounded runtime.
Therefore, a discrete behavior pool B = [π0, π1, π2] is used with the respective
accelerations [−2m/s2, 0m/s2, 2m/s2]. Each row in Figure 5.9 (a) corresponds to a
constant acceleration. The counterfactual worlds are shown at the forward simulation
time t = 1.2s. The top row shows the counterfactual world W v1∼π0

t=1.2s , the middle row
W v1∼π1
t=1.2s , and the bottom row W v1∼π2

t=1.2s . The ego vehicle v7 is depicted in blue and
controlled by the GNN large architecture from Section 5.2.1. Using such non-factual
behaviors allows evaluating the learned behavior policy using counterfactuals in
the form of “Would the behavior policy be collision-free if the other vehicle had
decelerated/driven with constant acceleration/or accelerated?”. The behavior policy
πego can handle all counterfactual worlds without in the shown case.

In Figure 5.9 (b), the influence heatmapHt=1.2s for all counterfactual worldsW�
t=1.2s

is shown. The y-axis represents counterfactual worlds, with each row corresponding
to a vehicle vi. The x-axis shows the influence of the counterfactual worlds onto a
single vehicles vi using Equation 3.4. The darker the colors are in the heatmap, the
stronger the influence from the counterfactual worlds onto a vehicle. It can be seen
that the preceding vehicles have a considerable influence on their tailing vehicles.
For example, vehicle v3 has a large influence onto vehicle v2. The ego vehicle v7 is
influenced by counterfactual worlds W v1 and W v2 where the behaviors of vehicle v1

and v2 have been exchanged, respectively.

5.3.2 Dependent Behavior Policies

Figure 5.10 shows results of replacing the other vehicles’ behavior policies with
dependent ones at time t = 2.4s. The IDM is used and its time-headway parameter
Thead is varied as in the variational studies in Section 5.2.4. A discrete behavior
policy pool B = [π0, π1, π2] is used with the respective time-headway parameters
[1.2s, 0.9s, 0.6s]. The smaller the time-headway parameter is, the more aggressive
the behavior of the vehicle is. The counterfactual worlds are shown at the forward
simulation time t = 2.4s. The top row shows the counterfactual world W v1∼π0

t=2.4s ,
the middle row W v1∼π1

t=2.4s , and the bottom row W v1∼π2
t=2.4s . Each row in Figure 5.10 (a)

corresponds to a varied time-headway parameter. The same scenario is evaluated
as with the independent behavior policies. The behavior policy πego can handle all
counterfactual worlds without causing dangerous situations.

In Figure 5.10 (b), the influence heatmap Ht=2.4s for all counterfactual worlds
W�
t=2.4s is shown. For example, vehicle v3 has a large influence onto vehicle v2. The

ego vehicle v7 is influenced mainly in the counterfactual worlds W v1 , W v2 , and W v3

where the behaviors of vehicle v1, v2, v3 have been exchanged, respectively.

90

5.4 Post-Optimization of Learned Behavior Policies

0
1234

67

0
1234

67

0
1234

67

0
1234

67

0
1234

67

0
1234

67

(a) W v1
t=2.4s (b) Ht=2.4s

Figure 5.10: (a) Counterfactual worlds W v1 in which the behavior policy of vehicle v1
is exchanged multiple times with dependent behavior policies at time-step
t = 2.4s. (b) Corresponding influence heatmaps Ht=2.4s showing the influence
of the counterfactual worlds on the behavior policies.

5.3.3 Summary and Remarks

This evaluation shows that the CBPE provides a framework for analyzing the perfor-
mance, generalization capabilities, and how vehicles influence each other at runtime.
Further, the CBPE brings insights into the encoded driving behavior of learned
behavior policies, how they react to changes in the environment, and how they would
behave in hypothetical, counterfactual, possibly edge-case worlds. The variational
studies presented in Section 5.2.4 are performed at runtime to evaluate the policies’
generalization capabilities and whether they can handle distributional shifts. The
independent behavior policies are not influenced by others and correlations between
the behavior policies can precisely be extracted. However, these tend to cause
collisions when larger time horizons are used. Collisions can be avoided using depen-
dent behavior policies at the cost of not precisely extracting the relations between
the vehicles’ behavior policies. The proposed CBPE can be used in the decision
logic of, e.g., Simplex architectures for switching between the high-performance
and high-assurance controller. Restricting the usage of learned behavior policies on
highway scenarios has been shown to reduce the overall collisions significantly in [44].
The CBPE merely restricts the usage of the learned behavior policy based on its
performance and potentially is less conservative than, e.g., reachability analysis.

5.4 Post-Optimization of Learned Behavior Policies

This section applies and evaluates the post-optimization that has been introduced in
Section 4.4. Extracted constraints using the line-search on the x- and y-direction as
described in Section 4.4.1 are shown. The results of applying the post-optimization

91

5 Experiments and Results

Figure 5.11: Constraint extraction for the world Wt during an episode at times t = 0.4s ∗ i
with i being the respective row. The ego vehicle is depicted in blue and
the extracted polygonal areas are obtained using a line-search in the x- and
y-directions.

in an exemplary scenario are shown and compared and quantitative results for the
post-optimization are provided.

Figure 5.11 shows the extracted free configuration space using line-search over
the course of an episode. The ego vehicle is depicted in blue and is controlled by a
learned behavior policy πego and the others using the MOBIL model. The maximum
free-space is extracted using a line-search along the x- and y-axis starting from the
rear-axle of the ego vehicle as described in Section 4.4.1. The line-search terminates
either when intersecting the road boundaries (drivable area) or other objects in the
environment — the other vehicles are depicted in gray. Further extracted constraints
can be seen in Appendix A.4.

Additionally to the visualized constraints in Figure 5.11, the input commands are
limited for the resulting trajectory to be executable by the ego vehicle — the steering
rate δ is limited to a range of [−0.2rad/s, 0.2rad/s] and the acceleration is limited
in a range of [−5m/s2, 4m/s2]. To enforce closeness to the initial, learning-based
trajectory and for the interactions of the learned behavior policy to remain valid,
the maximum threshold radius is limited as stated in Equation 4.46 by the radius
rk. In this work, the trust-region radius is constant with rk = 2m besides the

92

5.4 Post-Optimization of Learned Behavior Policies

Behavior Policy πego

Optimized

0 2 4 6 8 10

-0.10

-0.05

0.00

0.05

0.10

0.15

δ
[d
eg

]

Optimized Control Inputs

-4

-2

0

2

a
[m
/s

2
]

Figure 5.12: At the top, the trajectory generated by the learned behavior policy is shown.
In the middle row, the optimized trajectory that is smoother and that adheres
guaranteed to the defined constraints. At the bottom, the input signals of the
optimization are shown.

last state, which is restricted tightly to ensure that the goal-conditions are met
in the optimized trajectory. In the scenario shown in Figure 5.11, the final sate
is constrained to be within 0.1m in the Cartesian coordinates, to have a velocity
deviation in a range of [−0.1m/s, 0.1m/s], and for the vehicle angle θ to be within a
range of [−0.05rad, 0.05rad].

Figure 5.12 shows the trajectory τ initego of the learned behavior policy πego in the
top row. The colors indicate the time dependency of the trajectory, with darker blue
colors indicating states that are further ahead in time. The learned behavior policy
can reach the defined goal without causing any collisions.

In the middle row in Figure 5.12, the optimized trajectory τ optego in which the jerk
of the initial trajectory τ initego is reduced is shown. As can be seen, the optimized

trajectory τ optego is smoother overall — leading to more comfortable driving behavior.
The first three states (depicted in gray) are not optimized as the numerical forward
differentiation requires three past states to calculate the jerk. The same final state is
reached and the goal condition is met.

The bottom row of Figure 5.12 shows the corresponding control commands pro-
duced by the post-optimization. As the objective is to decrease the squared jerk

93

5 Experiments and Results

term, the resulting control commands of the post-optimization are smoother than
those produced by the learned behavior policy πego. Further, as the optimized
trajectory has been generated using direct shooting, a dynamic vehicle model, and
time-marching integration, the resulting trajectory can directly be executed by the
ego vehicle.

The post-optimization reduces the squared jerk as states in Equation 4.48 by
85.78% for the dense merging scenario evaluated over 100 episodes. Having well-
performing initial estimates allows for local optimization in nonconvex environments,
such as traffic, without optimizing multiple local optima. More optimized scenarios
are shown in Appendix A.5.

94

6 Conclusion

This section summarizes the thesis’ work, discusses its specific contributions, and
provides an outlook on future work.

6.1 Summary

The thesis motivated and discussed behavior generation methods – their advantages
and shortcomings and motivated the need for learning-based methods. Learning-based
methods are data-driven methods that can adapt and learn how to behave in traffic.
Markov decision processes (MDPs) and its solution methods have been discussed in
detail and a MDP formulation for learning behavior policies for autonomous driving
has been provided. Several input representations have been discussed in terms of
their characteristics. The invariance towards the number and order of vehicles as well
as their generalization capabilities have been pointed out. Further, the reward signal
for learning behavior policies in an MDP has been discussed and is benchmarked.
It is shown that the reward signal and reward shaping have profound effects on the
learning process and the resulting performance of the behavior policy. To avoid the
credit assignment problem – where an agent only receives sparse rewards – several
potential-based reward shaping functions have been proposed and benchmarked. A
novel graph neural network (GNN) actor-critic architecture has been proposed that
is invariant towards the number and order of vehicles. It also makes insights into the
information flow between the vehicles (nodes) possible by evaluating the edge values.
Further, an extensive benchmark and variational studies have been conducted that
show that the novel architecture provides a higher performance and also generalizes
better than conventional deep neural networks (DNNs).

Further, runtime safety assurance (RTSA) methods have been discussed as a
method to apply behavior policies using DNNs as function approximator in safety-
critical environments. As it is infeasible to evaluate all combinatorial options in
simulation offline, an online evaluation of the learned behavior policies is required. A
counterfactual behavior policy evaluation (CBPE) has been introduced that evaluates
the learned behavior policies using counterfactual worlds in which other vehicles non-
factual. Using these counterfactual worlds, questions, such as “Would the behavior
policy have caused a collision if the other vehicle had accelerated?” can be answered
at runtime. The performance of the learned behavior policy over all counterfactual
worlds can then be evaluated to see how the other vehicles influence each other and
if the learned behavior policy performs well in these using various metrics, such as,
e.g., the collision rate.

95

6 Conclusion

Behavior policies that utilize machine learning and DNNs as approximation func-
tions cannot guarantee smooth behavior trajectories. This is, e.g., due to the highly
nonlinear nature of DNNs or can be due to not exploring the full configuration space
during training. This thesis introduces a post-optimization that utilizes the learned
behavior policy to generate initial estimates and to derive constraints for each time
step. The initial estimate is generated by calling each vehicle’s behavior policy
iteratively and the constraints are extracted using all vehicle’s states. A constrained
optimization problem formulation is then introduced that uses the initial estimates
and constraints to provide smooth trajectories whilst adhering to the constraints.
For the interactions of the ego vehicle with its surrounding vehicles to remain valid,
a threshold radius is introduced that defines the maximum deviation to the initial,
learning-based states. As a dynamic model is used and the input control commands
are constrained to a defined range, the resulting trajectory is executable by the ego
vehicle. Thus, the post-optimization smoothens the initial estimate provided by the
learning-based behavior policy whilst guaranteeing the same safety constraints.

6.2 Discussion

This thesis provided a thorough discussion of learning behavior policies within an
MDPs setting, proposing and discussing input representations, reward signals and
shaping functions, as well as proposing a novel GNN actor-critic architecture. The
input representations are discussed in detail – their advantages and shortcomings –
and are benchmarked in terms of their performance and generalization. Although
various input representations have been discussed, a more thorough investigation, e.g.,
in the form of an architecture search could be performed to generate a holistic view.
Furthermore, other input representations could be considered, such as transforming
the vehicle’s states into the Frenet coordinate system. Several reward signals are
proposed and potential-based reward shaping functions for learning behavior policies
for autonomous vehicles are proposed and benchmarked. It is shown that the reward
signal has significant effects on the learning performance and the resulting behaviors.
To further validate these results, various learning approaches should be benchmarked
as some algorithms might be able to cope better with sparse reward signals than
others. Finally, to overcome the invariance towards the number and order of vehicles
as well as to obtain insights into the learned behavior policy, a GNN actor-critic
architecture has been proposed. The novel architecture has been shown to outperform
conventional DNNs in terms of their performance. Variational studies have been
conducted where the behavior of others has been varied from the nominal training
scenario. The novel GNN architecture generalizes better than conventional DNNs
ones. Further investigations are required to find the cause of the novel architecture
generalizing better – e.g., be it due to the relative values or the graph structure in
itself.

A RTSA method, the CBPE has been proposed to evaluate learned behavior
policies at runtime. It is able to provide insights on how the behavior policies

96

6.3 Future Work

of vehicles influence each other and to ask and answer counterfactual questions.
Counterfactual worlds are used in which the behavior of other vehicles has been
altered. Using these insights, the behavior policies’ usage can be restricted using the
performance over all counterfactual worlds. However, even if the learned behavior
policy is considered unsafe for a given scenario, a fallback behavior policy is required
that transfers the system-state into a safe state – which is non-trivial in complex
traffic scenarios.

A post-optimization has been introduced that smoothens the learned behavior
policies’ trajectory whilst adhering to extracted constraints. It is formulated as a
constrained optimization problem and solved using interior-point solution methods.
Other methods capable of solving constrained optimization problems, such as sequen-
tial quadratic programs (SQPs) could be evaluated to, e.g., speed up the time to
convergence. The proximity constraint in the problem formulation might still cause
non-smooth behaviors if chosen too small, as the jerk cannot be reduced significantly
then. If the proximity constraint is chosen too large, interactions with other vehicles
that the learning-based behavior policy had might not remain valid. Thus, the choice
of the proximity constraint is crucial to the performance and comfort and should be
evaluated further.

6.3 Future Work

This section discusses how the proposed methodologies for learning, evaluating, and
optimizing behavior policies can be extended in future work — ranging from extending
the GNN actor-critic architecture to a multi-agent formulation, over extending the
graph structure with more verbose information, to using interactive prediction models
in the post-optimization.

6.3.1 Multi-Agent Graph Neural Network Reinforcement Learning

This work proposes a GNN actor-critic architecture to learn behavior policies for the
ego vehicle. However, at the last GNN layer, only the ego vehicle’s node embedding
is utilized and the other node embeddings are disregarded (not used). In future work,
the single-agent learning problem could be extended to a multi-agent architecture
by utilizing all node values in the output layer of the GNN. Actions could then be
learned for all agents simultaneously using a single neural network. Also, the node
embeddings of the other vehicles might already contain all the information to output
meaningful actions for each vehicle due to the combinatorial generalization GNNs
provide. These characteristics could make such an architecture ideal for learning
cooperative driving maneuvers to optimize the traffic flow, such as in dense merging
scenarios.

97

6 Conclusion

6.3.2 Extending the Graph Structure Using Environmental Information

The graphs used in this thesis only include information on the vehicles in the node
and edge features. However, verbose information in the graph is required to generate
a universal behavior generation approach, such as environmental information. The
node values could then be transformed regarding this environmental information,
such as waypoints, to break the dependency on global coordinates. This would enable
to include information, such as waypoints and routing in general and also would
enable to include additional traffic information, such as traffic signs and lights. An
extension of the graph structure would be essential in transferring the proposed
approach into the real world.

6.3.3 Interactive Post-Optimization of Learned Behavior Policies

The proposed post-optimization initially calls the behavior model of each vehicle
in the scene to obtain trajectories. Using these trajectories, constraints for the ego
vehicle at each time-step can be derived as well as the initial trajectory for the ego
vehicle. The post-optimization itself is not interactive with other vehicles – meaning
that the other vehicles do not react to changes the optimizer does. To mitigate this
problem, a trust-region radius has been introduced in this work that enforces the
optimized trajectory to be close to the initial, learning-based one. In future work,
the post-optimization could be extended using interactive prediction models that
react to changes the optimizer makes. This would yield more realistic trajectories as
the other vehicles’ interactions are also included in the optimization-based solution.

98

Bibliography

[1] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. “Autonomous helicopter
aerobatics through apprenticeship learning”. In: International Journal of
Robotics Research 29.13 (2010), pp. 1608–1639. issn: 02783649. doi: 10.1177/
0278364910371999.

[2] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos,
Nicolas Heess, and Martin Riedmiller. “Maximum a posteriori policy optimi-
sation”. In: arXiv (2018). issn: 23318422. arXiv: 1806.06920.

[3] Subutai Ahmad and Gerald Tesauro. “Scaling and Generalization in Neural
Networks: A Case Study”. In: Advances in Neural Information Processing
Systems 1 (1989), pp. 160–168.

[4] Smruti Amarjyoti. “Deep reinforcement learning for robotic manipulation-the
state of the art”. In: arXiv 10.2 (2017). issn: 23318422. arXiv: 1701.08878.

[5] James Atwood and Don Towsley. “Diffusion-convolutional neural networks”.
In: Advances in Neural Information Processing Systems Nips (2016), pp. 2001–
2009. issn: 10495258. arXiv: 1511.02136.

[6] Somrita Banerjee, Thomas Lew, Riccardo Bonalli, Abdulaziz Alfaadhel,
Ibrahim Abdulaziz Alomar, Hesham M. Shageer, and Marco Pavone. “Learning-
based Warm-Starting for Fast Sequential Convex Programming and Trajec-
tory Optimization”. In: IEEE Aerospace Conference Proceedings (2020). issn:
1095323X. doi: 10.1109/AERO47225.2020.9172293.

[7] The Basic, S Q P Method, Introductory Definitions, Assumptions Sequential,
Quadratic Programming, The Nlp, and Quadratic Programming. “Sequential
Quadratic Programming”. In: Optimization Theory and Methods (2006),
pp. 523–560. doi: 10.1007/0-387-24976-1_12.

[8] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray
Kavukcuoglu. “Interaction networks for learning about objects, relations and
physics”. In: Advances in Neural Information Processing Systems (2016),
pp. 4509–4517. issn: 10495258. arXiv: 1612.00222.

[9] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David
Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, An-
drew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen,
Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra,
Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.

99

https://doi.org/10.1177/0278364910371999
https://doi.org/10.1177/0278364910371999
https://arxiv.org/abs/1806.06920
https://arxiv.org/abs/1701.08878
https://arxiv.org/abs/1511.02136
https://doi.org/10.1109/AERO47225.2020.9172293
https://doi.org/10.1007/0-387-24976-1_12
https://arxiv.org/abs/1612.00222

Bibliography

“Relational inductive biases, deep learning, and graph networks”. In: arXiv
(2018), pp. 1–40. arXiv: 1806.01261.

[10] Marc G. Bellemare, Will Dabney, and Rémi Munos. “A distributional per-
spective on reinforcement learning”. In: 34th International Conference on
Machine Learning, ICML 2017 1 (2017), pp. 693–711. arXiv: 1707.06887.

[11] Philipp Bender, Omer Sahin Tas, Julius Ziegler, and Christoph Stiller. “The
combinatorial aspect of motion planning: Maneuver variants in structured
environments”. In: IEEE Intelligent Vehicles Symposium, Proceedings 2015-
Augus.Iv (2015), pp. 1386–1392. doi: 10.1109/IVS.2015.7225909.

[12] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys law
Psyho Dȩbiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,
Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki,
Michael Petrov, Henrique Pondé De Oliveira Pinto, Jonathan Raiman, Tim
Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. “Dota 2 with large scale deep
reinforcement learning”. In: arXiv (2019). issn: 23318422. arXiv: 1912.06680.

[13] Julian Bernhard, Klemens Esterle, Patrick Hart, and Tobias Kessler. “Bark:
Open behavior benchmarking in multi-agent environments”. In: arXiv (2020).
issn: 23318422. doi: 10.1109/IROS45743.2020.9341222. arXiv: 2003.

02604.

[14] Julian Bernhard, Robert Gieselmann, Klemens Esterle, and Alois Knol.
“Experience-Based Heuristic Search: Robust Motion Planning with Deep Q-
Learning”. In: IEEE Conference on Intelligent Transportation Systems, Pro-
ceedings, ITSC. Vol. 2018-Novem. 2018, pp. 3175–3182. isbn: 9781728103235.
doi: 10.1109/ITSC.2018.8569436.

[15] John T. Betts. “A Survey of Numerical Methods for Trajectory Optimization”.
In: Journal of guidance, control, and dynamics (1998), pp. 193–207. issn:
00263788.

[16] Stephen Boyd and Lieven Vandenberghem. Convex Optimization. Cambridge
university press, 20048. doi: 10.1201/9781420049503-c34.

[17] Michael M. Bronstein, Joan Bruna, Yann Lecun, Arthur Szlam, and Pierre
Vandergheynst. “Geometric Deep Learning: Going beyond Euclidean data”.
In: IEEE Signal Processing Magazine 34.4 (2017), pp. 18–42. issn: 10535888.
doi: 10.1109/MSP.2017.2693418. arXiv: 1611.08097.

[18] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. “Spectral
networks and deep locally connected networks on graphs”. In: 2nd Inter-
national Conference on Learning Representations, ICLR 2014 - Conference
Track Proceedings (2014), pp. 1–14. arXiv: 1312.6203.

[19] Simon Burton and Richard Hawkins. Assuring the safety of highly automated
driving : state-of-the-art and research perspectives. 2020.

100

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1707.06887
https://doi.org/10.1109/IVS.2015.7225909
https://arxiv.org/abs/1912.06680
https://doi.org/10.1109/IROS45743.2020.9341222
https://arxiv.org/abs/2003.02604
https://arxiv.org/abs/2003.02604
https://doi.org/10.1109/ITSC.2018.8569436
https://doi.org/10.1201/9781420049503-c34
https://doi.org/10.1109/MSP.2017.2693418
https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/1312.6203

Bibliography

[20] Butcher. “A history of Runge-Kutta methods”. In: Applied numerical mathe-
matics 20.3 (1996), pp. 247–260.

[21] Shaosheng Cao, Wei Lu, and Qiongkai Xu. “Deep neural networks for learning
graph representations”. In: 30th AAAI Conference on Artificial Intelligence,
AAAI 2016 (2016), pp. 1145–1152.

[22] Runqi Chai, Antonios Tsourdos, Al Savvaris, Senchun Chai, and Yuanqing
Xia. “Two-Stage Trajectory Optimization for Autonomous Ground Vehicles
Parking Maneuver”. In: IEEE Transactions on Industrial Informatics 15.7
(2019), pp. 3899–3909. issn: 15513203. doi: 10.1109/TII.2018.2883545.

[23] Richard Cheng, Gábor Orosz, Richard M. Murray, and Joel W. Burdick.
“End-to-end safe reinforcement learning through barrier functions for safety-
critical continuous control tasks”. In: 33rd AAAI Conference on Artificial
Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence
Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019 (2019), pp. 3387–3395. issn: 2159-5399.
doi: 10.1609/aaai.v33i01.33013387. arXiv: 1903.08792.

[24] Tyler Derr, Yao Ma, and Jiliang Tang. “Signed Graph Convolutional Net-
works”. In: Proceedings - IEEE International Conference on Data Mining,
ICDM 2018-Novem (2018), pp. 929–934. issn: 15504786. doi: 10.1109/ICDM.
2018.00113. arXiv: 1808.06354.

[25] Ankush Desai, Shromona Ghosh, Sanjit A. Seshia, Natarajan Shankar, and
Ashish Tiwari. “SOTER: A Runtime Assurance Framework for Programming
Safe Robotics Systems”. In: Proceedings - 49th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN 2019 (2019),
pp. 138–150. doi: 10.1109/DSN.2019.00027. arXiv: 1808.07921.

[26] Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll. “Graph
neural networks for modelling traffic participant interaction”. In: IEEE Intel-
ligent Vehicles Symposium, Proceedings. Vol. 2019-June. 2019, pp. 695–701.
isbn: 9781728105604. doi: 10.1109/IVS.2019.8814066. arXiv: 1903.01254.

[27] Moritz Diehl. Direct single and multiple shooting - Lecture notes. 2013.

[28] Kurt Driessens and Sašo Džeroski. “Integrating guidance into relational
reinforcement learning”. In: Machine Learning 57.3 (2004), pp. 271–304. issn:
08856125. doi: 10.1023/B:MACH.0000039779.47329.3a.

[29] Wayne Eberly, Mark Giesbrecht, Pascal Giorgi, Arne Storjohann, and Gilles
Villard. “Solving Sparse Integer Linear Systems”. In: arXiv (2006). arXiv:
0603082 [cs].

[30] Klemens Esterle, Luis Gressenbuch, and Alois Knoll. “Formalizing Traffic
Rules for Machine Interpretability”. In: arXiv (2020). issn: 23318422. doi:
10.1109/cavs51000.2020.9334599. arXiv: 2007.00330.

101

https://doi.org/10.1109/TII.2018.2883545
https://doi.org/10.1609/aaai.v33i01.33013387
https://arxiv.org/abs/1903.08792
https://doi.org/10.1109/ICDM.2018.00113
https://doi.org/10.1109/ICDM.2018.00113
https://arxiv.org/abs/1808.06354
https://doi.org/10.1109/DSN.2019.00027
https://arxiv.org/abs/1808.07921
https://doi.org/10.1109/IVS.2019.8814066
https://arxiv.org/abs/1903.01254
https://doi.org/10.1023/B:MACH.0000039779.47329.3a
https://arxiv.org/abs/0603082
https://doi.org/10.1109/cavs51000.2020.9334599
https://arxiv.org/abs/2007.00330

Bibliography

[31] Klemens Esterle, Tobias Kessler, and Alois Knoll. “Optimal Behavior Planning
for Autonomous Driving: A Generic Mixed-Integer Formulation”. In: arXiv
(2020). arXiv: 2003.13312.

[32] Christian Frese and Jürgen Beyerer. “A comparison of motion planning algo-
rithms for cooperative collision avoidance of multiple cognitive automobiles”.
In: IEEE Intelligent Vehicles Symposium (IV). 2011, pp. 1156–1162. isbn:
9781457708909. doi: 10.1109/IVS.2011.5940489.

[33] Scott Fujimoto, Herke Van Hoof, and David Meger. “Addressing Function
Approximation Error in Actor-Critic Methods”. In: 35th International Con-
ference on Machine Learning, ICML 2018 4 (2018), pp. 2587–2601. issn:
1938-7228. arXiv: 1802.09477.

[34] P. J. Gage, R. D. Braun, and I. M. Kroo. “Interplanetary trajectory optimiza-
tion using a genetic algorithm”. In: Astrodynamics Conference, 1994 (1994),
pp. 538–547. doi: 10.2514/6.1994-3773.

[35] Claudio Gallicchio and Alessio Micheli. “Graph echo state networks”. In:
Proceedings of the International Joint Conference on Neural Networks (2010).
doi: 10.1109/IJCNN.2010.5596796.

[36] Javier Garćıa and Fernando Fernández. “A comprehensive survey on safe
reinforcement learning”. In: Journal of Machine Learning Research 16 (2015),
pp. 1437–1480. issn: 15337928.

[37] Clement Gehring and Doina Precup. “Smart exploration in reinforcement
learning using absolute temporal difference errors”. In: 12th International
Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS
2013 2 (2013), pp. 1037–1043.

[38] Philip E. Gill, Walter Murray, and Michael A. Saunders. “SNOPT: An SQP
algorithm for large-scale constrained optimization”. In: SIAM Review 47.1
(2005), pp. 99–131. issn: 00361445. doi: 10.1137/S0036144504446096.

[39] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. “Neural message passing for quantum chemistry”. In: 34th
International Conference on Machine Learning, ICML 2017 3 (2017), pp. 2053–
2070. arXiv: 1704.01212.

[40] Marco Gori, Gabriele Monfardini, and Franco Scarselli. “A new model for
earning in raph domains”. In: Proceedings of the International Joint Conference
on Neural Networks 2 (2005), pp. 729–734. doi: 10.1109/IJCNN.2005.

1555942.

[41] Stephen Gou and Yuyang Liu. “DQN with model-based exploration: Efficient
learning on environments with sparse rewards”. In: arXiv (2019), pp. 1–10.
issn: 23318422. arXiv: 1903.09295.

102

https://arxiv.org/abs/2003.13312
https://doi.org/10.1109/IVS.2011.5940489
https://arxiv.org/abs/1802.09477
https://doi.org/10.2514/6.1994-3773
https://doi.org/10.1109/IJCNN.2010.5596796
https://doi.org/10.1137/S0036144504446096
https://arxiv.org/abs/1704.01212
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://arxiv.org/abs/1903.09295

Bibliography

[42] Benjamin Gutjahr, Lutz Gröll, and Moritz Werling. “Lateral Vehicle Trajec-
tory Optimization Using Constrained Linear Time-Varying MPC”. In: IEEE
Transactions on Intelligent Transportation Systems 18.6 (2017), pp. 1586–1595.
issn: 15249050. doi: 10.1109/TITS.2016.2614705.

[43] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor”. In: 35th International Conference on Machine Learning,
ICML 2018. Ed. by Jennifer G Dy and Andreas Krause. Vol. 5. Proceedings of
Machine Learning Research. PMLR, 2018, pp. 2976–2989. isbn: 9781510867963.
doi: arXiv:1801.01290v2. arXiv: 1801.01290.

[44] Patrick Hart and Alois Knoll. “Counterfactual Policy Evaluation for Decision-
Making in Autonomous Driving”. In: arXiv (2020). arXiv: 2003.11919.

[45] Patrick Hart and Alois Knoll. “Graph Neural Networks and Reinforcement
Learning for Behavior Generation in Semantic Environments”. In: IEEE
Intelligent Vehicles Symposium, Proceedings. 2020, pp. 1589–1594. doi: 10.
1109/IV47402.2020.9304738. arXiv: 2006.12576.

[46] Patrick Hart, Leonard Rychly, and Alois Knoll. “Lane-Merging Using Policy-
based Reinforcement Learning and Post-Optimization”. In: 2019 IEEE Intel-
ligent Transportation Systems Conference, ITSC 2019 (2019), pp. 3176–3181.
doi: 10.1109/ITSC.2019.8917002. arXiv: 2003.03168.

[47] Matthias Heger. “Consideration of Risk in Reinforcement Learning”. In:
Machine Learning Proceedings 1994 (1994), pp. 105–111. doi: 10.1016/b978-
1-55860-335-6.50021-0.

[48] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Os-
trovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David
Silver. “Rainbow: Combining improvements in deep reinforcement learning”.
In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (2018),
pp. 3215–3222. arXiv: 1710.02298.

[49] Carl Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine, and
Mykel J. Kochenderfer. “Combining Planning and Deep Reinforcement Learn-
ing in Tactical Decision Making for Autonomous Driving”. In: IEEE Trans-
actions on Intelligent Vehicles 5.2 (2020), pp. 294–305. issn: 23798858. doi:
10.1109/TIV.2019.2955905. arXiv: 1905.02680.

[50] Brian Ichter, James Harrison, and Marco Pavone. “Learning Sampling Distri-
butions for Robot Motion Planning”. In: Proceedings - IEEE International
Conference on Robotics and Automation (2018), pp. 7087–7094. issn: 10504729.
doi: 10.1109/ICRA.2018.8460730. arXiv: 1709.05448.

[51] International Organization for Standardization. Road vehicles - Safety of the
intended functionality. Norm. 2019.

[52] Iso 26262. Road vehicles - Functional Safety Standard. Norm. 2009.

103

https://doi.org/10.1109/TITS.2016.2614705
https://doi.org/arXiv:1801.01290v2
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2003.11919
https://doi.org/10.1109/IV47402.2020.9304738
https://doi.org/10.1109/IV47402.2020.9304738
https://arxiv.org/abs/2006.12576
https://doi.org/10.1109/ITSC.2019.8917002
https://arxiv.org/abs/2003.03168
https://doi.org/10.1016/b978-1-55860-335-6.50021-0
https://doi.org/10.1016/b978-1-55860-335-6.50021-0
https://arxiv.org/abs/1710.02298
https://doi.org/10.1109/TIV.2019.2955905
https://arxiv.org/abs/1905.02680
https://doi.org/10.1109/ICRA.2018.8460730
https://arxiv.org/abs/1709.05448

Bibliography

[53] Ashesh Jain, Amir R. Zamir, Silvio Savarese, and Ashutosh Saxena. “Structural-
RNN: Deep learning on spatio-temporal graphs”. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
2016-Decem (2016), pp. 5308–5317. issn: 10636919. doi: 10.1109/CVPR.2016.
573. arXiv: 1511.05298.

[54] Sham Kakade and John Langford. “Approximately Optimal Approximate
Reinforcement Learning”. In: Proceedings of the 19th International Conference
on Machine Learning (2002), pp. 267–274.

[55] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal
motion planning”. In: International Journal of Robotics Research 30.7 (2011),
pp. 846–894. issn: 02783649. doi: 10.1177/0278364911406761. arXiv: 1105.
1186.

[56] Matthew Kelly. “An introduction to trajectory optimization: How to do your
own direct collocation*”. In: SIAM Review 59.4 (2017), pp. 849–904. issn:
00361445. doi: 10.1137/16M1062569.

[57] A Kesting, M Treiber, and D Helbing. “General lane-changing model MOBIL
for car-following models”. In: Transportation Research Record 1999.1 (2007).

[58] Jeong Jung Kim and Ju Jang Lee. “Trajectory optimization with particle
swarm optimization for manipulator motion planning”. In: IEEE Transactions
on Industrial Informatics 11.3 (2015), pp. 620–631. issn: 15513203. doi:
10.1109/TII.2015.2416435.

[59] Thomas N. Kipf and Max Welling. “Semi-supervised classification with graph
convolutional networks”. In: 5th International Conference on Learning Rep-
resentations, ICLR 2017 - Conference Track Proceedings (2017), pp. 1–14.
arXiv: 1609.02907.

[60] Mykel J Kochenderfer. Decision Making Under Uncertainty: Theory and
Application. 2015.

[61] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause.
“Learning-based model predictive control for safe exploration”. In: arXiv (2018).
issn: 23318422.

[62] Kraftfahrt Bundesamt (KBA). Entwicklung der Fahrleistungen nach Fahrzeu-
garten seit 2015. Tech. rep. 2019, pp. 1–9.

[63] Karl Kurzer, Chenyang Zhou, and J Marius Zöllner. “Decentralized Cooper-
ative Planning for Automated Vehicles with Hierarchical Monte Carlo Tree
Search”. In: IEEE Intelligent Vehicles Symposium (IV). 2018, pp. 529–536.
isbn: 9781538644522. doi: 10.1109/IVS.2018.8500712. arXiv: 1809.03200.

[64] Benjamin James Lansdell, Konrad Paul Kording, and Prashanth Ravi Prakash.
“Learning to solve the credit assignment problem”. In: arXiv (2019), pp. 1–19.
issn: 23318422. arXiv: 1906.00889.

[65] Martin Lauer. Learning in Multi Agent Environments Dr. 2019.

104

https://doi.org/10.1109/CVPR.2016.573
https://doi.org/10.1109/CVPR.2016.573
https://arxiv.org/abs/1511.05298
https://doi.org/10.1177/0278364911406761
https://arxiv.org/abs/1105.1186
https://arxiv.org/abs/1105.1186
https://doi.org/10.1137/16M1062569
https://doi.org/10.1109/TII.2015.2416435
https://arxiv.org/abs/1609.02907
https://doi.org/10.1109/IVS.2018.8500712
https://arxiv.org/abs/1809.03200
https://arxiv.org/abs/1906.00889

Bibliography

[66] Christopher Lazarus, James G. Lopez, and Mykel J. Kochenderfer. “Runtime
safety assurance using reinforcement learning”. In: AIAA/IEEE Digital Avion-
ics Systems Conference - Proceedings 2020-Octob (2020). issn: 21557209. doi:
10.1109/DASC50938.2020.9256446. arXiv: 2010.10618.

[67] Donsuk Lee, Yiming Gu, Jerrick Hoang, and Micol Marchetti-Bowick. “Joint
interaction and trajectory prediction for autonomous driving using graph
neural networks”. In: arXiv NeurIPS (2019). issn: 23318422. arXiv: 1912.
07882.

[68] David Lenz, Tobias Kessler, and Alois Knoll. “Tactical Cooperative Planning
for Autonomous Vehicles using MCTS”. In: IEEE Intelligent Vehicles Sympo-
sium (IV). 2016, pp. 447–453. isbn: 9781509018208. doi: 10.1109/IVS.2016.
7535424.

[69] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. “Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting”. In: arXiv (2017),
pp. 1–16. arXiv: 1707.01926.

[70] Yunzhu Li, Jiaming Song, and Stefano Ermon. “InfoGAIL: Interpretable imita-
tion learning from visual demonstrations”. In: Advances in Neural Information
Processing Systems 2017-Decem.Nips (2017), pp. 3813–3823. issn: 10495258.
arXiv: 1703.08840.

[71] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with
deep reinforcement learning”. In: 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings (2016). arXiv:
1509.02971.

[72] Maja J Mataric. “Reward functions for Acclerated Learning”. In: In Proceed-
ings of the Eleventh International Conference on Machine Learning (1194).

[73] Usama Mehmood, Stanley Bak, Scott A. Smolka, and Scott D. Stoller. “Safe
CPS from Unsafe Controllers”. In: arXiv (2021). arXiv: 2102.12981.

[74] Kunal Menda, Yi Chun Chen, Justin Grana, James W. Bono, Brendan D.
Tracey, Mykel J. Kochenderfer, and David Wolpert. “Deep reinforcement
learning for event-driven multi-agent decision processes”. In: arXiv 20.4
(2017), pp. 1259–1268. issn: 23318422.

[75] Alessio Micheli. “Neural network for graphs: A contextual constructive ap-
proach”. In: IEEE Transactions on Neural Networks 20.3 (2009), pp. 498–511.
issn: 10459227. doi: 10.1109/TNN.2008.2010350.

[76] Alessio Micheli, Diego Sona, and Alessandro Sperduti. “Contextual processing
of structured data by recursive cascade correlation”. In: IEEE Transactions on
Neural Networks 15.6 (2004), pp. 1396–1410. issn: 10459227. doi: 10.1109/
TNN.2004.837783.

105

https://doi.org/10.1109/DASC50938.2020.9256446
https://arxiv.org/abs/2010.10618
https://arxiv.org/abs/1912.07882
https://arxiv.org/abs/1912.07882
https://doi.org/10.1109/IVS.2016.7535424
https://doi.org/10.1109/IVS.2016.7535424
https://arxiv.org/abs/1707.01926
https://arxiv.org/abs/1703.08840
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2102.12981
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1109/TNN.2004.837783
https://doi.org/10.1109/TNN.2004.837783

Bibliography

[77] Oliver Mihatsch and Ralph Neuneier. “Risk-sensitive reinforcement learning”.
In: Machine Learning 49.2-3 (2002), pp. 267–290. issn: 08856125. doi: 10.
1023/A:1017940631555.

[78] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. “Playing Atari with Deep
Reinforcement Learning”. In: arXiv (2013), pp. 1–9. arXiv: 1312.5602.

[79] Teodor Mihai Moldovan and Pieter Abbeel. “Safe exploration in Markov
decision processes”. In: Proceedings of the 29th International Conference on
Machine Learning, ICML 2012 2 (2012), pp. 1711–1718. arXiv: 1205.4810.

[80] Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya,
and Toshiyuki Tanaka. “Parametric return density estimation for Reinforce-
ment Learning”. In: Proceedings of the 26th Conference on Uncertainty in
Artificial Intelligence, UAI 2010 (2010), pp. 368–375. arXiv: 1203.3497.

[81] Andrew Y. Ng, Daishi Harada, and Stuart Russell. “Policy invariance under
reward transformations : Theory and application to reward shaping”. In:
Sixteenth International Conference on Machine Learning 3 (1999), pp. 278–
287. issn: 1098-6596. arXiv: arXiv:1011.1669v3.

[82] Julia Nilsson, Mattias Brännström, Jonas Fredriksson, and Erik Coelingh.
“Longitudinal and Lateral Control for Automated Yielding Maneuvers”. In:
IEEE Transactions on Intelligent Transportation Systems 17.5 (2016), pp. 1404–
1414. issn: 15249050. doi: 10.1109/TITS.2015.2504718.

[83] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio
Frazzoli. “A survey of motion planning and control techniques for self-driving
urban vehicles”. In: IEEE Transactions on Intelligent Vehicles 1.1 (2016),
pp. 33–55. issn: 23798858. doi: 10.1109/TIV.2016.2578706. arXiv: 1604.
07446.

[84] Jia Pan, Zhuo Chen, and Pieter Abbeel. “Predicting initialization effectiveness
for trajectory optimization”. In: Proceedings - IEEE International Conference
on Robotics and Automation (2014), pp. 5183–5190. issn: 10504729. doi:
10.1109/ICRA.2014.6907620.

[85] Christian Pek and Matthias Althoff. “High-level Decision Making for Safe
and Reasonable Autonomous Lane Changing using Reinforcement Learning”.
In: International Conference on Intelligent Transportation Systems (2018).

[86] Christian Pek, Stefanie Manzinger, Markus Koschi, and Matthias Althoff. “Us-
ing online verification to prevent autonomous vehicles from causing accidents”.
In: Nature Machine Intelligence 2.9 (2020), pp. 518–528. issn: 25225839. doi:
10.1038/s42256-020-0225-y.

[87] Romain Pepy, Alain Lambert, and Hugues Mounier. “Path planning using a
dynamic vehicle model”. In: 2006 2nd International Conference on Information
& Communication Technologies. Vol. 1. IEEE. 2006, pp. 781–786.

106

https://doi.org/10.1023/A:1017940631555
https://doi.org/10.1023/A:1017940631555
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1205.4810
https://arxiv.org/abs/1203.3497
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1109/TITS.2015.2504718
https://doi.org/10.1109/TIV.2016.2578706
https://arxiv.org/abs/1604.07446
https://arxiv.org/abs/1604.07446
https://doi.org/10.1109/ICRA.2014.6907620
https://doi.org/10.1038/s42256-020-0225-y

Bibliography

[88] Mihail Pivtoraiko, Ross A. Knepper, and Alonzo Kelly. “Differentially con-
strained mobile robot motion planning in state lattices”. In: Journal of Field
Robotics 26.3 (2009), pp. 308–333. issn: 15564959. doi: 10.1002/rob.20285.
arXiv: 10.1.1.91.5767.

[89] Philip Polack, Florent Altche, Brigitte DAndrea-Novel, and Arnaud De La
Fortelle. “The kinematic bicycle model: A consistent model for planning
feasible trajectories for autonomous vehicles?” In: IEEE Intelligent Vehicles
Symposium, Proceedings Iv (2017), pp. 812–818. doi: 10.1109/IVS.2017.
7995816.

[90] B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al
Sallab, Senthil Yogamani, and Patrick Pérez. “Deep reinforcement learning for
autonomous driving: A survey”. In: arXiv (2020), pp. 1–18. issn: 23318422.
doi: 10.1109/tits.2021.3054625. arXiv: 2002.00444.

[91] Michael T. Rosenstein and Andrew G. Barto. “Supervised actor-critic rein-
forcement learning”. In: Handbook of Learning and Approximate Dynamic
Programming (2004), pp. 359–380. doi: 10.1109/9780470544785.ch14.

[92] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. “A reduction of
imitation learning and structured prediction to no-regret online learning”. In:
Journal of Machine Learning Research 15 (2011), pp. 627–635. issn: 15324435.
arXiv: 1011.0686.

[93] G A Rummery and M Niranjan. “On-line Q-learning using connectionist
systems”. In: On-line Q-learning using connectionist systems 37.September
(1994), p. 20.

[94] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. “Prioritized
experience replay”. In: 4th International Conference on Learning Represen-
tations, ICLR 2016 - Conference Track Proceedings (2016), pp. 1–21. arXiv:
1511.05952.

[95] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter
Abbeel. “Trust region policy optimization”. In: 32nd International Conference
on Machine Learning, ICML 2015 3 (2015), pp. 1889–1897. arXiv: 1502.
05477.

[96] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter
Abbeel. “High-dimensional continuous control using generalized advantage
estimation”. In: 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings (2016), pp. 1–14. arXiv: 1506.
02438.

[97] Lui Sha. “Using simplicity to control complexity”. In: IEEE Software 18.4
(2001), pp. 20–28. issn: 07407459. doi: 10.1109/MS.2001.936213.

[98] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “On a Formal
Model of Safe and Scalable Self-driving Cars”. In: arXiv (2017), pp. 1–37.
issn: 23318422. arXiv: 1708.06374.

107

https://doi.org/10.1002/rob.20285
https://arxiv.org/abs/10.1.1.91.5767
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/IVS.2017.7995816
https://doi.org/10.1109/tits.2021.3054625
https://arxiv.org/abs/2002.00444
https://doi.org/10.1109/9780470544785.ch14
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://doi.org/10.1109/MS.2001.936213
https://arxiv.org/abs/1708.06374

Bibliography

[99] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. “Mastering the
game of Go with deep neural networks and tree search”. In: Nature 529.7587
(2016), pp. 484–489. issn: 14764687. doi: 10.1038/nature16961.

[100] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis.
“Mastering chess and shogi by self-play with a general reinforcement learning
algorithm”. In: arXiv (2017), pp. 1–19. arXiv: 1712.01815.

[101] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,
and Martin Riedmiller. “Deterministic policy gradient algorithms”. In: 31st
International Conference on Machine Learning, ICML 2014 1 (2014), pp. 605–
619.

[102] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George Van
Den Driessche, Thore Graepel, and Demis Hassabis. “Mastering the game
of Go without human knowledge”. In: Nature 550.7676 (2017), pp. 354–359.
issn: 14764687. doi: 10.1038/nature24270.

[103] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George Van
Den Driessche, Thore Graepel, and Demis Hassabis. “Mastering the game
of Go without human knowledge”. In: Nature 550.7676 (2017), pp. 354–359.
issn: 14764687. doi: 10.1038/nature24270.

[104] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside
convolutional networks: Visualising image classification models and saliency
maps”. In: 2nd International Conference on Learning Representations, ICLR
2014 - Workshop Track Proceedings (2014), pp. 1–8. arXiv: 1312.6034.

[105] Alessandro Sperduti and Antonina Starita. “Supervised neural networks for
the classification of structures”. In: IEEE Transactions on Neural Networks
8.3 (1997), pp. 714–735. issn: 10459227. doi: 10.1109/72.572108.

[106] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, and
Charles Sutton. “VEEGAN: Reducing mode collapse in GANs using implicit
variational learning”. In: Advances in Neural Information Processing Systems
2017-Decem.Nips 2017 (2017), pp. 3309–3319. issn: 10495258. arXiv: 1705.
07761.

108

https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1712.01815
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://arxiv.org/abs/1312.6034
https://doi.org/10.1109/72.572108
https://arxiv.org/abs/1705.07761
https://arxiv.org/abs/1705.07761

Bibliography

[107] Statistisches Bundesamt (Destatis). “Fehlverhalten der Fahrzeugfuehrer bzw.
Pkw-Fahrer bei Unfaellen mit Personenschaden 1991 – 2019”. In: Statistisches
Bundesamt (Destatis) 49.0 (2020).

[108] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and
Stephen Boyd. “OSQP: an operator splitting solver for quadratic programs”.
In: Mathematical Programming Computation 12.4 (2020), pp. 637–672. issn:
18672957. doi: 10.1007/s12532-020-00179-2. arXiv: 1711.08013.

[109] Petr Stodola, Jan Drozd, Jan Nohel, Jan Hodický, and Dalibor Procházka.
“Trajectory optimization in a cooperative aerial reconnaissance model”. In:
Sensors (Switzerland) 19.12 (2019), pp. 1–18. issn: 14248220. doi: 10.3390/
s19122823.

[110] Etsuko Sugawara and Hiroshi Nikaido. Properties of AdeABC and AdeIJK
efflux systems of Acinetobacter baumannii compared with those of the AcrAB-
TolC system of Escherichia coli. Tech. rep. 12. 2014, pp. 7250–7257. doi:
10.1128/AAC.03728-14.

[111] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Intro-
duction, Second Edition. Vol. 258. 2018. isbn: 0262193981.

[112] Aviv Tamar, Dotan Di Castro, and Shie Mannor. “Policy gradients with vari-
ance related risk criteria”. In: Proceedings of the 29th International Conference
on Machine Learning, ICML 2012 1 (2012), pp. 935–942.

[113] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. “Congested Traffic States
in Empirical Observations and Microscopic Simulations”. In: (2008). arXiv:
0002177v2 [arXiv:cond-mat].

[114] Hado Van Hasselt. “Double Q-learning”. In: Advances in Neural Informa-
tion Processing Systems 23: 24th Annual Conference on Neural Information
Processing Systems 2010, NIPS 2010 (2010), pp. 1–9.

[115] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement
learning with double Q-Learning”. In: 30th AAAI Conference on Artificial
Intelligence, AAAI 2016 (2016), pp. 2094–2100. arXiv: 1509.06461.

[116] Robert J. Vanderbei. “LOQO: An interior point code for quadratic program-
ming”. In: Optimization Methods and Software 11.1 (1999), pp. 451–484. issn:
10556788. doi: 10.1080/10556789908805759.

[117] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander
Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John
Agapiou, Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen,
Karen Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Timothy
Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence,
Anders Ekermo, Jacob Repp, and Rodney Tsing. “StarCraft II: A new chal-
lenge for reinforcement learning”. In: arXiv (2017). issn: 23318422. arXiv:
1708.04782.

109

https://doi.org/10.1007/s12532-020-00179-2
https://arxiv.org/abs/1711.08013
https://doi.org/10.3390/s19122823
https://doi.org/10.3390/s19122823
https://doi.org/10.1128/AAC.03728-14
https://arxiv.org/abs/0002177v2
https://arxiv.org/abs/1509.06461
https://doi.org/10.1080/10556789908805759
https://arxiv.org/abs/1708.04782

Bibliography

[118] Riccardo Volpi and Vittorio Murino. “Addressing model vulnerability to
distributional shifts over image transformation sets”. In: arXiv (2019). issn:
23318422.

[119] Andreas Wächter. “Short Tutorial: Getting Started With Ipopt in 90 Minutes”.
In: Dagstuhl Seminar Proceedings (2009), pp. 1–17. issn: 1862-4405.

[120] Jiankun Wang, Wenzheng Chi, Chenming Li, Chaoqun Wang, and Max Q.H.
Meng. “Neural RRT*: Learning-Based Optimal Path Planning”. In: IEEE
Transactions on Automation Science and Engineering 17.4 (2020), pp. 1748–
1758. issn: 15583783. doi: 10.1109/TASE.2020.2976560.

[121] Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. “Nervenet: Learning
structured policy with graph neural networks”. In: 6th International Confer-
ence on Learning Representations, ICLR 2018 - Conference Track Proceedings
(2018).

[122] Xinyi Wang, Hieu Pham, Paul Michel, Antonios Anastasopoulos, Graham
Neubig, and Jaime Carbonell. “Optimizing data usage via differentiable
rewards”. In: arXiv (2019), pp. 1–15. arXiv: 1911.10088.

[123] Christopher J C H Watkins. Learning from delayed rewards. 1989.

[124] Ronald J. Williams. “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. In: Machine Learning 8.3-4 (1992),
pp. 229–256. issn: 0885-6125. doi: 10.1007/bf00992696.

[125] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and Philip S. Yu. “A comprehensive survey on graph neural networks”. In:
arXiv XX.Xx (2019), pp. 1–22. issn: 2162-237X. doi: 10.1109/tnnls.2020.
2978386. arXiv: 1901.00596.

[126] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. “How transferable
are features in deep neural networks?” In: Advances in Neural Information
Processing Systems 4.January (2014), pp. 3320–3328. issn: 10495258. arXiv:
1411.1792.

[127] Changxi You, Jianbo Lu, Dimitar Filev, and Panagiotis Tsiotras. “Advanced
planning for autonomous vehicles using reinforcement learning and deep
inverse reinforcement learning”. In: Robotics and Autonomous Systems 114
(2019), pp. 1–18. issn: 09218890. doi: 10.1016/j.robot.2019.01.003.

[128] Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabás Póczos,
Ruslan Salakhutdinov, and Alexander J. Smola. “Deep sets”. In: Advances in
Neural Information Processing Systems 2017-Decem.ii (2017), pp. 3392–3402.
issn: 10495258. arXiv: 1703.06114.

[129] Wei Zhan, Liting Sun, Di Wang, Haojie Shi, Aubrey Clausse, Maximilian
Naumann, Julius Kümmerle, Hendrik Königshof, Christoph Stiller, Arnaud de
la Fortelle, and Masayoshi Tomizuka. “Interaction dataset: An international,
adversarial and cooperative motion dataset in interactive driving scenarios
with semantic maps”. In: arXiv (2019). issn: 23318422. arXiv: 1910.03088.

110

https://doi.org/10.1109/TASE.2020.2976560
https://arxiv.org/abs/1911.10088
https://doi.org/10.1007/bf00992696
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1109/tnnls.2020.2978386
https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1411.1792
https://doi.org/10.1016/j.robot.2019.01.003
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1910.03088

Bibliography

[130] Weichao Zhou, Ruihan Gao, Baek Gyu Kim, Eunsuk Kang, and Wenchao Li.
“Runtime-Safety-Guided Policy Repair”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 12399 LNCS (2020), pp. 131–150. issn: 16113349. doi:
10.1007/978-3-030-60508-7_7. arXiv: 2008.07667.

[131] Z. J. Zhou and N. N. Yan. “A survey of numerical methods for convection-
diffusion optimal control problems”. In: Journal of Numerical Mathematics
22.1 (2014), pp. 61–85. issn: 15702820. doi: 10.1515/jnum-2014-0003.

[132] Julius Ziegler, Philipp Bender, Thao Dang, and Christoph Stiller. “Trajectory
planning for Bertha - A local, continuous method”. In: IEEE Intelligent
Vehicles Symposium, Proceedings Iv (2014), pp. 450–457. doi: 10.1109/IVS.
2014.6856581.

[133] Julius Ziegler, Philipp Bender, Markus Schreiber, Henning Lategahn, Tobias
Strauss, Christoph Stiller, Thao Dang, Uwe Franke, Nils Appenrodt, Christoph
G. Keller, Eberhard Kaus, Ralf G. Herrtwich, Clemens Rabe, David Pfeiffer,
Frank Lindner, Fridtjof Stein, Friedrich Erbs, Markus Enzweiler, Carsten
Knoppel, Jochen Hipp, Martin Haueis, Maximilian Trepte, Carsten Brenk,
Andreas Tamke, Mohammad Ghanaat, Markus Braun, Armin Joos, Hans
Fritz, Horst Mock, Martin Hein, and Eberhard Zeeb. “Making bertha drive-an
autonomous journey on a historic route”. In: IEEE Intelligent Transportation
Systems Magazine 6.2 (2014), pp. 8–20. issn: 19391390. doi: 10.1109/MITS.
2014.2306552.

111

https://doi.org/10.1007/978-3-030-60508-7_7
https://arxiv.org/abs/2008.07667
https://doi.org/10.1515/jnum-2014-0003
https://doi.org/10.1109/IVS.2014.6856581
https://doi.org/10.1109/IVS.2014.6856581
https://doi.org/10.1109/MITS.2014.2306552
https://doi.org/10.1109/MITS.2014.2306552

A Appendix

A.1 Architectures and Hyperparameters

Used hyperparameters for the conventional DNN large large agent:

1 {

2 "BehaviorSACAgent": {

3 "ActorFcLayerParams": [512 , 512 , 512],

4 "CriticJointFcLayerParams": [512 , 512 , 512],

5 "ActorLearningRate": 0.0003 ,

6 "CriticLearningRate": 0.0003 ,

7 "AlphaLearningRate": 0.0003 ,

8 "TargetUpdateTau": 0.05 ,

9 "TargetUpdatePeriod": 3,

10 "Gamma": 0.995 ,

11 "RewardScaleFactor": 1.0 ,

12 "AgentName": "sac_agent",

13 "DebugSummaries": false ,

14 "ReplayBufferCapacity": 10000 ,

15 "ParallelBufferCalls": 1,

16 "BatchSize": 512 ,

17 "BufferNumSteps": 2,

18 "BufferPrefetch": 3

19 }

20 }

Used hyperparameters for the GNN large soft actor critic (SAC) agent:

1 {

2 "BehaviorGraphSACAgent": {

3 "ActorFcLayerParams": [512 , 512],

4 "CriticObservationFcLayerParams": null ,

5 "CriticActionFcLayerParams": null ,

6 "CriticJointFcLayerParams": [512 , 512],

7 "ActorLearningRate": 0.0003 ,

8 "CriticLearningRate": 0.0003 ,

9 "AlphaLearningRate": 0.0003 ,

10 "TargetUpdateTau": 0.05 ,

113

A Appendix

11 "TargetUpdatePeriod": 3,

12 "Gamma": 0.995 ,

13 "RewardScaleFactor": 1.0 ,

14 "AgentName": "gnn_sac_agent",

15 "DebugSummaries": false ,

16 "ReplayBufferCapacity": 10000 ,

17 "ParallelBufferCalls": 1,

18 "BatchSize": 512 ,

19 "BufferNumSteps": 2,

20 "BufferPrefetch": 3

21 },

22 }

Default intelligent driver model (IDM) and minimizing overall braking induced by
lane changes (MOBIL) parameters:

1 {

2 "IDM": {

3 "BrakeForLaneEnd": true ,

4 "BrakeForLaneEndEnabledDistance": 100.0 ,

5 "BrakeForLaneEndDistanceOffset": 30.0 ,

6 "DesiredVelocity": 10.0 ,

7 "MinimumSpacing": 2.0 ,

8 "DesiredTimeHeadway": 1.5 ,

9 "MaxAcceleration": 1.7 ,

10 "ComfortableBrakingAcceleration": 1.66 ,

11 "MinVelocity": 0.0 ,

12 "MaxVelocity": 50.0 ,

13 "Exponent": 4,

14 "NumTrajectoryTimePoints": 11,

15 "CoolnessFactor": 0.0 ,

16 "AccelerationUpperBound": 8.0 ,

17 "AccelerationLowerBound": -5.0

18 },

19 "Mobil": {

20 "AThr": 0.2 ,

21 "Politeness": 0.2 ,

22 "SafeDeceleration": 4.0

23 }

24 }

114

A.2 Successful and Colliding Scenarios

A.2 Successful and Colliding Scenarios

(a) Successful episodes with the GNN large architecture.

(b) Colliding episodes with the GNN large architecture.

Figure A.1: Successful and colliding scenarios using the GNN large architecture.

115

A Appendix

A.3 Graph Neural Network Visualizations

(a)

(b)

Figure A.2: Graph edges visualized for two episodes using the GNN large architecture.

116

A.4 Extracted Post-Optimization Constraints

A.4 Extracted Post-Optimization Constraints

(a)

(b)

Figure A.3: Extracted constraint bounding boxes for the post-optimization.

117

A Appendix

A.5 Qualitative Results of the Post-Optimization

Behavior Policy πego

Optimized

(a)

Behavior Policy πego

Optimized

(b)

Figure A.4: Trajectories produced by the GNN large architecture and the respective post-
optimized trajectories.

118

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Behavior Generation Methods in Autonomous Driving
	1.2.1 Search-based
	1.2.2 Optimization-based
	1.2.3 Learning-based

	1.3 Research Questions and Contributions
	1.4 Outline

	2 Learning Behavior Policies in Semantic Environments
	2.1 Underlying Theory: Markov Decision Process
	2.1.1 Solution Method: Dynamic Programming
	2.1.2 Solution Method: Sample-based Methods
	2.1.3 Solution Method: Reinforcement Learning
	2.1.4 Solution Method: Actor-Critic Reinforcement Learning

	2.2 Input Representation for Learning Behavior Policies
	2.2.1 Feature Vector Representation
	2.2.2 Graph Representation

	2.3 Reward Signals for Learning Behavior Policies
	2.3.1 Design of the Reward Signal
	2.3.2 Potential-based Reward Shaping for Autonomous Vehicles

	2.4 Graph Neural Networks and Actor-Critic Reinforcement Learning
	2.4.1 Overview of Graph Neural Networks
	2.4.2 Unified Framework: Graph Blocks and Interaction Networks
	2.4.3 Graph Neural Network Actor-Critic Architecture

	2.5 Summary and Remarks

	3 Evaluating Learned Behavior Policies for Autonomous Vehicles
	3.1 Introduction and Overview
	3.2 State of the Art of Learning-Based Behavior Policies in Safety-Critical Applications
	3.2.1 Safe Reinforcement Learning
	3.2.2 Runtime Safety Assurance
	3.2.3 Combining Conventional and Learning-Based Methodologies

	3.3 Counterfactual Behavior Policy Evaluation
	3.3.1 Definition of a Counterfactual World
	3.3.2 Counterfactual Behavior Policy Evaluation at Runtime
	3.3.3 Insights into Learned Behavior Policies

	4 Optimization Theory and Post-Optimizing Behavior Policies
	4.1 Introduction to Optimization
	4.2 Constrained Optimization
	4.2.1 Constrained Newton's Method
	4.2.2 Interior-Point Methods

	4.3 Trajectory Optimization for Autonomous Vehicles
	4.3.1 Dynamic Vehicle Model
	4.3.2 Numerical Integration and Differentiation Methods
	4.3.3 Direct Shooting and Nonlinear Trajectory Optimization

	4.4 Post-Optimization of Behavior Policies
	4.4.1 Initial Estimates and Constraints
	4.4.2 Post-Optimization Problem Formulation
	4.4.3 Nonlinear Trajectory Optimization Solution Methods

	5 Experiments and Results
	5.1 Simulation and Benchmarking
	5.1.1 BARK: A Semantic Simulation Framework
	5.1.2 BARK-ML: Machine Learning Framework for BARK
	5.1.3 Training and Evaluation Scenarios

	5.2 Learning Behavior Policies for Autonomous Vehicles
	5.2.1 Hyperparameter and Architecture Search
	5.2.2 Reward Signal and Shaping
	5.2.3 Visualizing Information Propagation in Graph Neural Networks
	5.2.4 Variational Studies and Generalization of Learned Behavior Policies

	5.3 Counterfactual Behavior Policy Evaluation
	5.3.1 Independent Behavior Policies
	5.3.2 Dependent Behavior Policies
	5.3.3 Summary and Remarks

	5.4 Post-Optimization of Learned Behavior Policies

	6 Conclusion
	6.1 Summary
	6.2 Discussion
	6.3 Future Work
	6.3.1 Multi-Agent Graph Neural Network Reinforcement Learning
	6.3.2 Extending the Graph Structure Using Environmental Information
	6.3.3 Interactive Post-Optimization of Learned Behavior Policies

	Bibliography
	A Appendix
	A.1 Architectures and Hyperparameters
	A.2 Successful and Colliding Scenarios
	A.3 Graph Neural Network Visualizations
	A.4 Extracted Post-Optimization Constraints
	A.5 Qualitative Results of the Post-Optimization

