
Technische Universität München

Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Statik

GRADIENT DESCENT AKIN METHOD

Long Chen

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt der
Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender:

Prof. Dr.-Ing. Fabian Duddeck

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Kai-Uwe Bletzinger
2. Prof. Dr. rer. nat. Ernst Rank
3. Prof. Dr. Michael Stingl

Die Dissertation wurde am 01.04.2021 bei der Technischen Universität
München eingereicht und durch die Ingenieurfakultät Bau Geo Umwelt
am 21.07.2021 angenommen.

Schriftenreihe des Lehrstuhls für Statik TU München

Band 48

Long Chen

GRADIENT DESCENT AKIN METHOD

München 2021

Abstract

This thesis is a story about the formula

sζ =−
∇ f (x)
|∇ f (x)|

−ζ
∇g (x)
|∇g (x)|

.

iii

Zusammenfassung

sζ =−
∇ f (x)
|∇ f (x)|

−ζ
∇g (x)
|∇g (x)|

.

iv

Acknowledgments

First of all, I would like to express my sincere thanks to Prof. Kai-
Uwe Bletzinger for introducing me to the fascinating field of shape
optimization, which he himself has been passionate about for already
decades. His constant support and the academic freedom he has
provided over the last six years have been invaluable for me.

I sincerely thank Prof. Ernst Rank and Prof. Michael Stingl for their
interest in my work and their time and effort in reviewing my the-
sis. I am grateful to Prof. Fabian Duddeck for chairing the board of
examiners.

I thank all colleagues at the Chair of Structural Analysis, particularly,
my office colleagues Armin Geiser and Anna Bauer, for the friendly
working atmosphere and the wonderful collaboration. I thank Dr.
Wüchner for the many fruitful discussions in Digital Twins and I thank
Ann-Kathrin Goldbach for her support in proofreading this thesis.

I thank all colleagues at the Bavarian Graduate School of Computa-
tional Engineering (BGCE), especially Nina Korshunova, Tino Bog,
Tobias Neckel, and Alexander Ditter, with whom I shared many great
moments in the BGCE activities. The wholehearted commitment of
BGCE professors to our students is enlightening for me. I appreciate
the working experiences as one of the coordinators.

Many thanks to Prof. Nicolas Gauger and Dr. Florian Feppon for the
fruitful discussions in shape and topology optimization, and to Dr.
Jian Cui for the many exchanges beyond optimization.

My work is partially funded by a subproject of SPP 1886 by the German
Research Foundation (DFG), the funding is gratefully appreciated.

Finally, I want to express my deepest gratitude to my family: my wife,
my son, and my parents, for their love and support. This work is ded-
icated to them.

Long Chen
Munich, August 2021

v

CONTENTS

Contents vii

1 Introduction 1
1.1 Shape and force 1
1.2 Computational methods for modeling, simulation, and

optimization 3
1.3 Shape optimization by the gradient descent method 4
1.4 Main results 8

2 Basics of Continuum Mechanics 11
2.1 Introduction 11
2.2 Tensor 12

2.2.1 Covariant and contravariant transformation . . . 12
2.2.2 Tensor of order (r, s) . 13

2.3 Kinematics 14
2.3.1 Two observation basis frames: Cartesian and

curvilinear coordinate system 15
2.3.2 Deformation gradient . 16
2.3.3 A finite strain tensor: Green-Lagrangian strain . . 17

2.4 Stress 18
2.5 Conservation laws 19

2.5.1 Conservation of mass . 19
2.5.2 Conservation of linear momentum 19
2.5.3 Conservation of angular momentum 19

2.6 Constitutive laws 20
2.7 Basics of calculus of variation 20

vii

Contents

3 Basics of finite element method 23
3.1 Introduction 23
3.2 Variational principles 23
3.3 Weighted residual (Galerkin) method 25
3.4 Discretization 27

3.4.1 Elements and nodes . 28
3.4.2 Shape functions and the isoparametric concept . 28
3.4.3 Element-wise integration and global assembly

of the system of equations 30

4 Finite element based shape sensitivity analysis 33
4.1 Introduction 33
4.2 PDE-constrained optimization: a perspective from the

implicit function theorem 34
4.3 Continuous and discrete shape gradient 35
4.4 Discrete adjoint sensitivity analysis 36
4.5 Finite element based shape gradient 38

4.5.1 Computation of discrete adjoint variables 38
4.5.2 Element-wise computation 39

4.6 Sensitivity weighting 40
4.7 Shape regularization and the vertex morphing method 41

5 Basics of gradient-based optimization 45
5.1 Optimality conditions for unconstrained optimization 46
5.2 Convexity 46

5.2.1 Convex set . 46
5.2.2 Convex function . 47
5.2.3 Strongly convex . 48

5.3 Gradient descent method 48
5.3.1 Steepest descent direction in Euclidean norm . . 48
5.3.2 Rate of convergence . 50
5.3.3 Co- and contravariant view of the gradient de-

scent method . 53
5.4 Optimality conditions for inequality constrained opti-

mization 53
5.4.1 First-order optimality . 55
5.4.2 Second-order optimality 56

viii

Contents

6 A Dynamical systems perspective on optimization 57
6.1 Introduction 57
6.2 First-order optimization methods: a continuous-time

dynamical systems perspective 58
6.3 Initial value problem 59

6.3.1 Uniqueness and existence of the solution of an
initial value problem . 61

6.3.2 Maximal interval of existence 62
6.4 Linear dynamical system 64

7 Modified search direction 69
7.1 Introduction 69
7.2 Basics of singular value decomposition 70
7.3 The design of the modified search direction 70

7.3.1 Central path and centrality conditions 70
7.3.2 The steepest descent direction for the objective

and constraint function in `2-norm 72
7.3.3 Singular value decomposition of the sensitivity

matrix m . 74
7.3.4 Modifying the steepest descent direction 76

7.4 Basic characteristics 77
7.5 Modified search direction method for multiple inequal-

ity constraints 84

8 Derivation of the formula 87

9 Global behavior and convergence 91
9.1 Assumptions 91
9.2 Preliminaries 92

9.2.1 Normalized central path condition 93
9.2.2 Lipschitz continuity for sζ 94
9.2.3 Deformation of the constraint function along

the solution trajectory . 95
9.3 Globally finding KKT solutions 96

9.3.1 Reaching the boundary of the feasible set 96
9.3.2 Finding KKT solutions at the boundary 98

9.4 Global convergence to critical points of f (x) 100

ix

Contents

10 Local behavior and convergence 107
10.1 Preliminary studies in 2D 108
10.2 Relative curvature condition in higher dimensions 109

10.2.1 The second fundamental form for surfaces in R3 110
10.2.2 Relative convex condition in higher dimensions . 110

10.3 Jacobian matrix of sζ 114
10.4 The linearized system 116
10.5 Asymptotic local convergence behavior 118
10.6 Local convergence to local minimizers 119

11 The method for multiple constraints 123
11.1 Derivation of the formula 124
11.2 Theoretical results 125

12 Computational examples 127
12.1 Numerical implementation 127

12.1.1 A time-reparameterized system 128
12.1.2 Numerical implementation 129

12.2 Experiments with common benchmarks 130
12.2.1 Results with constant ζ and step size 130
12.2.2 Convergence to second-order optimal solutions 133

12.3 Academic examples in shape optimization 139
12.3.1 Hook with strain energy constraint 139
12.3.2 Sphere with geometric constraints 144

12.4 Real-world application to shape optimization 145

13 Conclusions 149

A Appendix A 151
A.1 Einstein summation convention 151
A.2 Differential operators in tensor calculus 152
A.3 Differentiable function and smoothness 153
A.4 Lipschitz continuity 153
A.5 Implicit function theorem 153
A.6 Element of ordinary differential equations 154
A.7 Matrix exponential 155

Bibliography 157

x

C
H

A
P

T
E

R

1
INTRODUCTION

Whenever there is a material, there may exist a shape, and there are cer-
tainly forces. This is, however, not an obvious thing at all—it took humanity
hundreds of thousands of years to realize this, until Isaac Newton. However,
the beauty somehow hidden in the deep relationship of shape and force
has been receptive to us already long ago. Just think about the richness of
ancient constructions in the history of our civilization.

1.1 Shape and force

Many things we see, be it a star in the universe, a rock on the seashore, or
a flag in the wind, their shape is not only a simple representation of the
underlying material, but also of the forces acting on it.

It is well-known that people en masse favor the same shapes. But what
makes a shape elegant? Unfortunately, this question is yet too difficult to
be answered. However, the story here may begin with a particular shape,
and most people do find it beautiful.

1

1 Introduction

Catenary and hyperbolic cosine function

A catenary, in geometry, is the curve of a hanging chain under self-weight
loading and is only fixed-supported at its ends.

Figure 1.1: Shape and forces of a catenary

In the language of mathematics, a catenary enjoys its own elegance by
being expressed by the hyperbolic cosine function,

y =
a

2

�

e
x
a + e −

x
a

�

= a cosh(
x

a
), (1.1)

where a = H
ρg appears twice with the horizontal force H , the density ρ,

and the acceleration of gravity g . The formula (1.1) is obtained by solving
a differential equation that is formulated by the equilibrium of forces.

In civil engineering, it was used long ago in the construction of suspension
bridges because of its efficient material usage. In the late 19th century, it
was Antoni Gaudí who gave real splendor to the catenary by integrating it
into many of his works, including the most famous Sagrada Família and
Casa Milà. Certainly, it was long known that an optimal arch has the shape
of an inverted catenary curve. It may still be speculated that the formula
of the catenary had impressed Gaudí when he was thoroughly studying
geometry at his young age.

Catenoids, minimal surfaces, and soap films

When rotating a catenary about its directrix, one gets a catenoid. The
catenoid is the first known non-trivial minimal surface and has attracted
many mathematical studies since its discovery. In engineering design, not
surprisingly, it has inspired new constructions both because of its optimal

2

1.2 Computational methods for modeling, simulation, and optimization

material usage and its shape elegance. Using soap films, Frei Otto was able
to create different minimal surfaces and use them to design lightweight
structures, particularly, tensile and membrane structures.

Figure 1.2: Modeling a catenoid with soap skin by Frei Otto
(Otto Film [69]).

Munich Olympic roof (1972)

With the ingenious modeling technique with soap films, Otto designed
many remarkable structures. This technique, however, reached its limit
when it came to the design and construction of the Munich Olympic roof
(1972). The roof was simply too large and the handicraft modeling tech-
nique lacked a proper dimensional accuracy. The difficulty was solved
just in time by Linkwitz and Schek with their newly invented numerical
method based on least squares, and the finite element simulation provided
by Argyris (Tomlow [86]). The Munich Olympic roof is thus one of the first
built structures to use computational methods for modeling, simulation,
and optimization in engineering design.

1.2 Computational methods for modeling, simulation,
and optimization

Today, computational methods are indispensable in engineering design.
They are used to model and simulate buildings, bridges, and tunnels in

3

1 Introduction

the event of a disaster. An airfoil is designed and optimized with compu-
tational methods before a wing-prototype is built and sent to the wind
tunnel experiment. Extensive computational crash simulations are per-
formed in car industries before actual crash tests are conducted. The core
of computational methods are mathematical models that describe the
underlying physics and computer methods that solve the posed problem
reliably and efficiently. Therefore, mathematicians, computer scientists,
and engineers are able to work closer than ever before.

Furthermore, computational methods opened up the possibility for new
engineering designs that could not have been imagined before. There are
(at least) three contributing factors:

1. Advances in numerical methods that are able to model and simulate
increasingly complex engineering problems.

2. Advances in the hardware development that provide the computing
power needed for the solution of large and difficult problems.

3. Advances in computational optimization methods that can be com-
bined seamlessly with the computational modeling and simulation
techniques.

Taking shape optimization as an example: with computational methods,
we are not only able to find an optimal shape that has a minimal surface;
but we can consider a variety of different design criteria, such as mass,
strain energy, deformation, natural frequency, and many others. Finding
an optimal shape for a complex system that has, for example, minimal
strain energy would have been impossible with experience-driven trial
and error designs, and no soap-films-like modeling technique exists for
such a task.

1.3 Shape optimization by the gradient descent method

In this thesis, we consider high-fidelity shape optimization that exploits
the largest shape space possible. An introduction and review of shape
optimization are given in this section.

4

1.3 Shape optimization by the gradient descent method

Abstraction of unconstrained shape optimizations

First, an abstraction of unconstrained shape optimization problems is
introduced that closely follows Haslinger et al. [33], and we refer to the
same literature for more rigorous discussions. A formulation of any shape
optimization problem shall start with a family O of admissible domains,
which contains all possible candidates among which an optimal shape is
sought. Let Ω ∈O, and in any Ω we solve a well-posed state problem that
describes the behavior of a physical system represented by Ω. Further, we
define a mapping u that with any Ω associates an element u (Ω) ∈ V (Ω)
that is the solution of the state problem, i.e.,

u :Ω 7→ u (Ω) ∈V (Ω). (1.2)

Finally, let J : (Ω, y) 7→ J (Ω, y) ∈R,Ω ∈O, y ∈ V (Ω), be an objective func-
tional. Then, an abstract unconstrained shape optimization problem reads

¨

Find Ω? ∈O,

such that J (Ω?, u (Ω?))≤ J (Ω, u (Ω)) ∀Ω ∈O.
(1.3)

Note, problem (1.3) indicates a global optimal solution for a shape opti-
mization problem. In practice, shape optimizations are often nonconvex.
In such cases, finding a local optimal solution can be satisfactory.

Literature review

Shape optimization has a long history that may date back to the brachis-
tochrone curve and roots in the calculus of variations. Another profound
work is Hadamard’s boundary variation method that constitutes one of
the foundations of modern gradient-based shape optimizations. Classical
introductions to shape optimization can be found in Haslinger et al. [33]
and Sokolowski et al. [83]. In computational mechanics, shape optimiza-
tion is considered a subset of structural optimization (Haftka et al. [31]). It
is characterized by a very large or even infinite number of design variables
that describe the varying boundary geometry in an optimization process,
whereby one or more structural performances are optimized.

Shape optimization is distinct from another well-known structural opti-
mization problem: topology optimization (Bendsoe et al. [13]). Compared

5

1 Introduction

to shape optimization, topology optimization removes smoothness and
topological constraints (Allaire [3]), resulting in different optimization
formulations. Many topology optimization problems can be formulated
in an (equivalent) convex optimization problem, while shape optimiza-
tions are typically nonlinear, and often nonconvex (Hoppe et al. [38]). This
difference partially contributes to the fact that there are successful im-
plementations of interior-point method (IPM) for large-scale1 topology
optimization problems (Jarre et al. [41], Kennedy [43], Kocvara et al. [48],
Maar et al. [57]), but only a few works have presented a shape optimization
that uses an IPM as the optimizer (Antil et al. [6], Herskovits et al. [35]).
In the latter works, the size of the shape optimization problem is only
moderate so that the power of IPM is not fully exploited. One of the most
successful methods for nonlinear topology optimization is the method
of moving asymptotes (MMA) that was introduced by Svanberg in 1987
(Svanberg [85]). In each iteration, MMA generates and solves an approxi-
mated convex problem related to the original one. For shape optimization,
however, there is as yet no literature that discusses a large-scale problem
using MMA.

A notable difficulty for shape optimization is the computation of shape Hes-
sians, which are complex objects even for moderate problems. Analysis of
aerodynamic optimization in Arian et al. [7] shows that shape Hessians are
ill-conditioned for three-dimensional problems. Recently, several works
compute approximated shape Hessians and use a Newton-based method
for the design optimization (Schillings et al. [76], Schmidt et al. [78]). For
some disciplines, such as computational fluid dynamics, even the compu-
tation of shape gradient can be a challenge. See for example Albring et al.
[1] and Reuther et al. [73], which are actively undergoing investigation.

Shape optimization is a subject frequently considered in multidisciplinary
design optimization (MDO) (Haftka et al. [32]). To design complex engi-
neering systems, MDO considers multiple disciplines and their interac-
tions. For shape optimization, ongoing efforts are devoted to the com-
putation of the shape gradient for coupled disciplines, for example, for
steady-state coupled problems (Kenway et al. [44], Najian Asl et al. [65])
and for transient coupled problems (Korelc [49]). While the development
for the coupled-gradient is challenging, the reward is accurate derivatives

1 In this work, we refer large-scale optimizations to problems that have a high dimen-
sional variable space.

6

1.3 Shape optimization by the gradient descent method

and massive reductions in computational cost, which are essential for
large-scale optimizations (Martins et al. [58]).

In many practical circumstances, the shape geometry is reparameterized
with finitely many parameters. A shape reparameterization is typically
needed if there are producibility restrictions (Liedmann et al. [53]) or
if the initial geometric variable is not differentiable (Hwang [40]). Well-
parameterized shape geometry often allows the application of standard
optimization approaches (Fröhlich et al. [27], Hicken et al. [36], Perez et
al. [70]) or Newton-Krylov type methods (Dener et al. [23]). On the other
hand, the achievable shape is limited and dependent on the chosen param-
eterization. High-fidelity shape optimizations, which are directly based
on finite element meshes (Linkwitz et al. [54], Zienkiewicz et al. [90]) or
level-set methods (Allaire et al. [4], Sethian [80]), exploit the largest shape
space possible for real-life problems but lead to challenging optimization
problems (Feppon et al. [26], Luft et al. [56]).

Motivation

In general, large-scale shape optimization is mainly performed using gra-
dient descent type methods so far (Schulz et al. [79]). The gradient descent
method, originally proposed by Cauchy, is a first order method for un-
constrained optimization that uses the negative gradient of the objective
function for the variable update. In a computational framework, it writes

xk+1 = xk −α∇ f (xk), (1.4)

where x ∈Rn is the variable vector, f :Rn →R is the objective function,
α> 0 is the step size parameter, and k is the iteration counter.

In the engineering practice of shape optimization, a variety of constraints
may be considered. In addition to the unconstrained problem (1.3), we
want to further consider

Ci (Ω
?, u (Ω?))≤ 0, i = 1, ..., m , (1.5)

where Ci : (Ω, y) 7→Ci (Ω, y) ∈R,Ω ∈O, y ∈V (Ω) is a constraint functional.

However, there is a lack of literature on the general treatment of large-
scale constrained shape optimizations, which is the main motivation of
this work.

7

1 Introduction

1.4 Main results

We present a gradient descent akin method for inequality constrained opti-
mizations: at each iteration, we compute a search direction using a linear
combination of the negative and normalized objective and constraint gra-
dient,

sζ =−
∇ f (x)
|∇ f (x)|

−ζ
∇g (x)
|∇g (x)|

, (1.6)

where f : Rn → R is the objective function, g : Rn → R is the constraint
function, ζ ∈ [0,1) is a parameter, and | · | denotes the Euclidean norm. A
generalization to multiple constraints is proposed by replacing g (x) in
(1.6) with the logarithmic barrier function

Φ(x) =−
m
∑

i=1

log(−g i (x)), (1.7)

where g1, ..., gm :Rn →R are constraint functions, and log(·) denotes the
natural logarithm.

The design of the method is inspired by the singular value decomposition.
Using a dynamical systems perspective, we show the method is globally
convergent to KKT solutions and locally convergent to local minimizers.
The method is demonstrated using both common test cases and applica-
tions to large-scale shape optimizations.

Outline

Chapter 2 - 4 introduce some of the fundamentals of continuum mechanics,
finite element method, and shape sensitivity analysis, which are the basis
of shape optimization.

Chapter 5, 6 introduce some of the fundamentals of gradient-based op-
timization and dynamical systems and some of their connections. The
former is the basis of the method design; the latter provides the basis for
the theoretical studies.

Chapter 7, 8 present the design and derivation of the proposed method.

Chapter 9-11 present the theoretical results.

Finally, Chapter 12 shows computational examples and Chapter 13 gives a
conclusion.

8

1.4 Main results

Notations: Since different subjects have been considered in this work, it
is difficult to use consistent notations throughout the thesis. For example,
while x is conventionally defined as the position vector in continuum
mechanics, it is the optimizing variable vector in an optimization problem,
and it is also the state vector in the phase space in a dynamical system.
While f is commonly used to denote the force vector in finite element
analysis, it is the objective function in optimization. With the goal of better
readability of each chapter, the common nomenclature of each topic are
retained. Symbols are carefully defined wherever I think it is appropriate,
attempting to avoid ambiguity as much as possible. I apologize for the
abusing of notations.

Note: Part of this thesis is based on two manuscripts of the author, Chen
et al. [19] published in the Journal Structural and Multidisciplinary Opti-
mization with the permission of the copyright holder, and the submitted
work of Chen et al. [20].

9

C
H

A
P

T
E

R

2
BASICS OF CONTINUUM MECHANICS

‘‘I admire the elegance of your method of computation; It must be
nice to ride through these fields upon the horse of true mathematics
while the like of us have to make our way laboriously on foot.’’

—Einstein to Levi-Civita

2.1 Introduction

Continuum mechanics is a major area where physics and mathematics
meet and forms the foundation of civil and mechanical engineering.

Just as the classical Newton mechanics, continuum mechanics deals with
the interaction between force and motion, however, it is mainly concerned
with deformable bodies and considers the material on the macroscopic
scale.

11

2 Basics of Continuum Mechanics

2.2 Tensor

A tensor is an algebraic object related to a vector space that describes a
(multilinear) relationship between some scalars, vectors, and other tensors.
A tensor does not depend on a chosen coordinate frame, which on the
one hand confirms the independence of the physical law from chosen
coordinate frames, and on the other hand provides a concise mathematical
framework for the formulation and solution of physical problems. Tensors
provide an important framework for mechanics, general relativity, and
many others.

2.2.1 Covariant and contravariant transformation

Geometric or physical entities, such as position, velocity, or gradient, are
described using a basis (coordinate system basis vectors) with compo-
nents that correspond to the chosen basis. In tensor analysis, covariant
and contravariant describe how these components change with a change
of basis. In this subsection, we recapitulate covariant and contravariant
transformation for vectors. The same idea, however, can be extended for
higher-order tensors.

Let V be a vector space of dimension n and let G and Ĝ be two bases of
V . Let the change of basis from G to Ĝ be defined by

G 7→ Ĝ = G A, (2.1)

for some invertible n ×n matrix A with entries Ai j , or Ai
j , A j

i . Whether an
index is displayed as a superscript or subscript depends on the transfor-
mation properties that are described below. Each base (column) vector y j

of the transformed basis Ĝ is a linear combination of all the base (column)
vectors xi of the G basis, i.e.,

y j = xi Ai
j , (2.2)

by the Einstein summation convention (see Appendix A.1).

A vector v is expressed in the basis G uniquely using the components
(coordinates) as

v= xi v i . (2.3)

12

2.2 Tensor

In the transformed basis G , the vector is expressed as

v̂= y j v̂ j . (2.4)

The vector v itself is invariant by choice of basis, so we get

xi v i = y j v̂ j = xi Ai
j v̂ j . (2.5)

Thus we get the transformation between the components under the two
bases,

v i = Ai
j v̂ j , (2.6)

or equivalently,

v̂ j = (A−1) ji v i . (2.7)

Comparing (2.2) and (2.7), it appears that the components describing the
vector v transform contravariantly with the change of the basis. The vector
v is called contravariant vector. Contravariant components are denoted
with superscripts as shown above. It is common to denote contravariant
vectors as column vectors.

In contrast to the contravariant vector, the covariant vector (covector) has
components that co-vary with a change of basis. Assume a change of basis
as defined in (2.2), the components of a covector w transform as

ŵ j =wi Ai
j . (2.8)

Covectors are often denoted as row vectors and have components that are
denoted with subscripts. Gradient of the form ∂ s

∂ x i , where s is a scalar field
and x i are the coordinates of a given basis, is one of the most prominent
covariant vectors.

2.2.2 Tensor of order (r, s)

In order to represent a geometric or physic entity that is independent of a
chosen basis frame, a tensor uses the contra- and covariant transformation
for its components. Contravariant and covariant vectors are 1s t order

13

2 Basics of Continuum Mechanics

tensors and can be represented as a one-dimensional array. Tensors can
be of any order. For example, the Cauchy stress tensor that describes a
material stress state is a 2nd order tensor and writes as a two-dimensional
array. In general, an n-th order tensor can be written in an n-dimensional
array.

Definition 1. A tensor of type (r, s) is an assignment of a (r+s)-dimensional
array

T i1...ir

j1... js

to each of its covariant bases

G ip
= (e1p , . . . , enp), p = 1, ..., r,

and its contravariant bases

G jq = (e1q , . . . , enq), q = 1, ..., s

of n-dimensional vector space such that, if individual changes of the basis
are applied

G ip
7→ G̃ ip

= G ip
A ip

, p = 1, ..., r,

G jq 7→ G̃ jq = G jq A jq , q = 1, ..., s ,

then, by the Einstein summation convention, the multidimensional array
representing the components of the tensor obeys the transformation law

T
i ′1...i ′r

j ′1... j ′s
= (A−1

i1
)
i ′1
i1

. . . (A−1
ir
)
i ′r
ir

T i1...ir

j1... js
(A j1) j1

j ′1
. . . (A js) js

j ′s
. (2.9)

2.3 Kinematics

The study of motion and deformation of a continuum is called kinematics.
The basics for kinematics of shell elements (Kiendl et al. [47], Bischoff
et al. [15]) that were used in this work are reviewed in this section. In
particular, the deformation, displacement, strain, and their relationships
are described.

14

2.3 Kinematics

2.3.1 Two observation basis frames: Cartesian and curvilinear
coordinate system

In order to compute the motion and deformation of a material point in
continuum, two configurations are used: the undeformed (reference) con-
figuration and the deformed (actual) configuration (see figure 2.1).

For shell structures in the 3-dimensional Euclidean vector space, we use
two coordinate systems: a fixed Cartesian coordinate system with base
vectors ei = ei ; and a convective curvilinear coordinate system with base
vectors G i and gi , which are "fixed" on the material point in a continuum.

The position vector for a material point P0 is described in the reference and
actual configuration in the fixed Cartesian basis as contravariant vectors

X = X 1e1+X 2e2+X 3e3, x= x 1e1+ x 2e2+ x 3e3. (2.10)

The information for motion of this point is solely contained in the con-
travariant components X i and x i . In the curvilinear basis, the position
vectors for a material point write

X =Θ1 G1+Θ
2 G2+Θ

3 G3, x= θ 1g1+θ
2g2+θ

3g3, (2.11)

The curvilinear coordinate frame is further assumed to be convective, which
means that the coordinates of any point of the continuum keep the same
values in the reference and actual state, i.e., Θi = θ i . Therefore, the infor-
mation for the motion of any point and the deformation of the continuum
in general are contained solely in the covariant basis vectors G i and gi .
This curvilinear description is advantageous due to two reasons. First, we
can use the powerful tensor calculus to formulate various geometrical and
physical entities of interest, such as curvature, Cauchy stress, and Green-
Lagrangian strain, using the curvilinear basis vectors. Second, these basis
vectors and their variations can be efficiently computed with the Finite
Element Method by means of the isoparametric concept, which we will
discuss in the next Chapter.

The contravariant components of Cartesian bases can be represented by
the curvilinear coordinates

X i = X i (Θ1,Θ2,Θ3), x i = x i (Θ1,Θ2,Θ3) (2.12)

15

2 Basics of Continuum Mechanics

The curvilinear basis vectors related to P0 can then be computed by the
partial derivatives of the contravariant components in the Cartesian basis,
i.e.,

G i =
∂ X

∂ Θi
=
∂ X k

∂ Θi
ek , gi =

∂ x

∂ Θi
=
∂ x k

∂ Θi
ek . (2.13)

The related contravariant basis G i and gi are given by

G i =
∂ Θi

∂ X k
ek , gi =

∂ Θi

∂ x k
ek . (2.14)

2.3.2 Deformation gradient

As is shown in figure 2.1, the displacement of a material point P is

u= x− X . (2.15)

A differential line element in both configurations can be computed using
the curvilinear bases,

d X = G i dΘi , d x= gi dΘi . (2.16)

e i = ei

P0

B0

P

B

reference configuration

actual configuration

X

x

u

Figure 2.1: Reference and actual configuration

16

2.3 Kinematics

Due to the convective coordinates, the equations (2.16) correspond to the
same differential line element in the reference and actual configuration.
The main characteristic of the deformation of this differential line element
is therefore encoded solely in the two curvilinear bases G i and gi .

To describe the deformation of the differential line element, the defor-
mation gradient F is defined through the tensor product of gi and G i ,

F = gi ⊗ G i , F T = G i ⊗gi . (2.17)

Note that F is a 2nd -order tensor and is itself a vector space. By the tensor
calculus,

F G i = (g j ⊗ G j)G i =δ
j
i g j = gi . (2.18)

By (2.16) and (2.18), we have essentially that the deformation gradient
maps the differential line element from the reference to the actual config-
uration,

Fd X = d x. (2.19)

Therefore, the deformation gradient F can be calculated using the Jacobian
matrix

F = Jx =











∂ x 1

∂ X 1
∂ x 1

∂ X 2
∂ x 1

∂ X 3

∂ x 2

∂ X 1
∂ x 2

∂ X 2
∂ x 2

∂ X 3

∂ x 3

∂ X 1
∂ x 3

∂ X 2
∂ x 3

∂ X 3











. (2.20)

2.3.3 A finite strain tensor: Green-Lagrangian strain

From (2.19) it follows from a polar decomposition that the deformation
gradient gives information about stretches and the rigid body rotation —it
can also be regarded as an affine transformation but without translation.
The strain, on the other hand, is used to evaluate how much a deformation
differs locally from any rigid body displacement (translation and rotation).
To this end, various strain tensors were proposed. For large deformations,
finite strain tensors must be used instead of infinitesimal strain tensors.

17

2 Basics of Continuum Mechanics

One of such tensors is the Green-Lagrangian strain tensor, which can be
described using the deformation gradient F as

E =
1

2
(F T F − I) = Ei j G i ⊗ G j . (2.21)

2.4 Stress

Stress is a physical quantity of 2nd order tensor that expresses the internal
forces inside a body. Various stresses were proposed, and in this section,
we review the Cauchy stress tensor and the Piola-Kirchhoff tensor.

At the deformed configuration, the Cauchy stress vector t acting on an
infinitesimal surface area∆a is defined as

t= lim
∆a→0

∆p

∆a
, (2.22)

where∆p denotes the force acting on the surface∆a . Let n be the surface
normal of∆a . The Cauchy stress tensor σ, which is the real stress in the
deformed configuration of a body, is defined as

t=σn. (2.23)

The first Piola-Kirchhoff (PK1) stress tensor P can be obtained by

P = det F ·σ · F−1. (2.24)

The second Piola-Kirchhoff (PK2) stress tensor S can be obtained by

S = det F · F−1 ·σ · F−T . (2.25)

To formulate the internal energy of a continuum, the stress and strain
must be energetically conjugated. The PK2 stress tensor and the Green-
Lagrangian strain tensor (2.21) are energy conjugate, i.e.,

S =
∂W int

∂ E
, (2.26)

where W int is the strain energy.

18

2.5 Conservation laws

2.5 Conservation laws

Being the most important general principles of continuum mechanics, the
conservation laws are reviewed in this section.

2.5.1 Conservation of mass

The law of conservation of mass states that the mass of a body remains
constant during a deformation process. Let ρ0 be the mass density of the
reference configuration, ρ be the mass density of the actual configuration,
then

ρ0 =ρdet F . (2.27)

2.5.2 Conservation of linear momentum

The Cauchy equation of motion states that at each point x of the actual
configuration,

ρẍ= divσ+ρb, (2.28)

where b is the volume forces measured per unit mass. In the static case,
where the acceleration ẍ vanishes, we have

divσ+ρb= 0, (2.29)

which is the equilibrium equation.

The equilibrium equation can be formulated in the reference configuration
by the PK2 stress tensor,

div(Fσ) +ρ0b0 = 0, (2.30a)

F Sn0 = t0, (2.30b)

where n0 and t0 are the surface normal and surface traction in the reference
configuration, respectively.

2.5.3 Conservation of angular momentum

The conservation law of angular momentum leads to the well-known sym-
metry of the Cauchy stress tensor,

σi j =σ j i . (2.31)

19

2 Basics of Continuum Mechanics

2.6 Constitutive laws

The constitutive laws for elastic materials describe the relations between
energy conjugate stress and strain tensors.

A material is said to be elastic, if the Cauchy stress tensor σ can be solely
determined by the deformation gradient F ,

σ =σ(F). (2.32)

The material tensor is of fourth order and is denoted by C ,

C =C i j k l G i ⊗ G j ⊗ Gk ⊗ G l (2.33)

If a potential exist, then

C i j k l :=
∂ 2W int

∂ Ei j ∂ Ek l
. (2.34)

The St. Venant-Kirchhoff material model, which assumes a linear relation
between strains and stresses, indicates

S = C : E , (2.35)

or,

S i j =Ci j k l Ek l . (2.36)

2.7 Basics of calculus of variation

The variational principle is one of the foundations of the finite element
method. Here, the basics of variational calculus are reviewed. Consider
the functional

J =
� x2

x1

L (x , y (x), y ′(x))d x , (2.37)

where x1, x2 are constants, y and L are twice continuously differentiable
with respect to their arguments. Suppose the function y ? leads to the
extrema (stationary) of the functional I . Further, assume there is a slightly

20

2.7 Basics of calculus of variation

‘‘varied’’ function ỹ (x) to y ?, and vanishes at x1 and x2. By introducing a
number α close to 0, we obtain a set of functions y (x ,α) (Müller [62]),

y (x ,α) = y ?(x) +α(ỹ (x)− y ?(x)). (2.38)

Now, we want to study the function y (x ,α) in relation to the variable α. It
is conventionally to denote

δ=
∂

∂ α

�

�

�

�

α=0

. (2.39)

Thus, the partial derivative ∂
∂ α

�

�

�

α=0
y (x ,α) reads

δy (x ,α) = ỹ (x)− y ?(x). (2.40)

Denote δy (x ,α) as δy , which is called the variation of the function y (x).
Since x and α are independent, we abbreviate y (x ,α) = y (α) and y (x)? =
y ?, then

y (α) = y ?+αδy . (2.41)

Similarly, let δy ′ be the variation of the function y ′, then there is a set of
functions y ′(α),

y (α)′ = (y ?)′+αδy ′. (2.42)

Substitute (2.41) and (2.42) into the original functional (2.37), we obtain
its variational formulation J (α),

J (α) =
� x2

x1

L (x , y (α), y ′(α))d x , (2.43)

which is a function of α and we can now use the infinitesimal calculus to
find its stationary solutions. According to the definition of δy in (2.41), the
function J has extrema at α= 0 since y = y ?, thus

d J (α)
dα

�

�

�

�

α=0

=
� x2

x1

d L (x , y (α), y ′(α))
dα

�

�

�

�

α=0

d x = 0. (2.44)

21

2 Basics of Continuum Mechanics

We call d J (α)
dα

�

�

�

α=0
the first variation δ J of the functional J . Notice that

y (α) = y ? as α= 0, we have

δ J =
� x2

x1

d L (x , y (α), y ′(α))
dα

�

�

�

�

α=0

d x

=
� x2

x1

�

∂ L

∂ x

∂ x

∂ α
+
∂ L

∂ y ?
∂ y (α)
∂ α

+
∂ L

∂ (y ?)′
∂ y ′(α)
∂ α

�

d x

=
� x2

x1

�

∂ L

∂ y ?
δy +

∂ L

∂ (y ?)′
δy ′

�

d x

=
� x2

x1

�

∂ L

∂ y ?
δy

�

d x +

�

∂ L

∂ (y ?)′
δy

�x2

x1

−
� x2

x1

d

d x

�

∂ L

∂ (y ?)′

�

δy d x

=
� x2

x1

�

∂ L

∂ y ?
−

d

d x

�

∂ L

∂ (y ?)′

�

�

δy d x .

(2.45)

By the fundamental lemma of calculus of variations, the integrand in the
bracket must be zero. We obtain

∂ L

∂ y ?
−

d

d x

�

∂ L

∂ (y ?)′

�

= 0, (2.46)

which is the Euler-Lagrange equation. To use the Euler-Lagrange equation
to find the extremal function y ? of the functional J , we let

L = L (x , y ?(x), (y ?)′(x)), (2.47)

and substitute (2.47) into (2.46). Solving the Euler-Lagrange partial differ-
ential equation gives us the result.

22

C
H

A
P

T
E

R

3
BASICS OF FINITE ELEMENT METHOD

3.1 Introduction

In this work, we consider shape optimization in the context of computa-
tional mechanics, and the finite element method is used for the model-
ing and simulation of the considered engineering problem. This chapter
presents some of the fundamentals of the finite element method.

3.2 Variational principles

Principle of virtual work

The principle of virtual work is the variational basis for the displacement-
based finite element formulation. It states that if a mechanical system is at
the equilibrium state, an arbitrary geometrically compatible variation of
the displacement δu does not cause any work. If there exists a potentialΠ,
the principle of virtual work can be derived from the principle of minimum
potential energy.

23

3 Basics of finite element method

Consider a boundary value problem in continuum mechanics with a body
volume V and a boundary surface A. We consider the Dirichlet and the
Neumann boundary condition in the reference frame consisting of two
parts Au and At , on which the displacements u and forces t0 are prescribed,
respectively,

u= ū on Au , (3.1a)

t0 = t̄ on At . (3.1b)

The total potential energy reads

Π(u) =Πi n t +Πe x t =
�

V
W b

i n t d V −
�

V
W t

e x t d V −
�

At

We x t d A, (3.2)

which is a functional of the displacement u. The minimum of the potential
can be found by setting its first variation to zero. In the reference configu-
ration and use the Green-Lagrangian strain tensor, it writes

δΠ(u) =
�

V

∂Wi n t

∂ E
:δEd V −

�
V
ρ0b0 ·δud V −

�
At

t̄ ·δud A = 0. (3.3)

With the variation of the Green-Lagrangian strain δE ,

δE =δF T · F = F T ·δF = F T ·grad δu, (3.4)

we obtain the principle of virtual work

δΠ(u) =
�

V
(F S) : gradδud V −

�
V
ρ0b0 ·δud V −

�
At

t̄·δud A = 0. (3.5)

Nonlinear formulation

If a variational principle exists, then means are immediately available to
obtain approximate solutions in the standard integral form suitable for
finite element analysis (Zienkiewicz et al. [90]).

In the following, the nonlinear finite element formulation that is based on
the variational principle and uses the Newton-Raphson method is shown.
At the equilibrium, the principle of virtual work states that,

δW =δWi n t −δWe x t = 0 (3.6)

24

3.3 Weighted residual (Galerkin) method

Its variational formulation is
�

V
σ :δεd V −

�
V
ρb ·δud V −

�
At

t̄ ·δud A = 0. (3.7)

Assume a variation of the displacement at r -th dof, δur . Then, by the
definition of variation δ and the chain rule,

δW =
∂W

∂ ur
δur

=
�

V
σ :

∂ ε

∂ ur
δur d V −

�
V
ρbr ·δur d V −

�
At

t̄r ·δur d A

=0.

(3.8)

Thus,

∂W

∂ ur
=
�

V
σ :

∂ ε

∂ ur
d V −

�
V
ρbr ·d V −

�
At

t̄r ·d A = 0. (3.9)

To find the stationary solution, we use the Newton-Raphson method,

∂W

∂ ur
+
∂ 2W

∂ ur ∂ us
∆us = 0. (3.10)

Assume that the external load is displacement independent, we have

∂ 2W

∂ ur ∂ us
=
�

V

�

∂ σ

∂ us
:
∂ ε

∂ ur
+σ :

∂ 2ε

∂ ur ∂ us

�

d V . (3.11)

The Newton method can then be applied to compute the displacement
unknowns∆us iteratively.

3.3 Weighted residual (Galerkin) method

Another fundamental approach for the formulation of the finite element
method is the Galerkin method of weighted residual. Starting from the

25

3 Basics of finite element method

equation of motions in the reference frame (2.29), we compute its inner
product with a displacement variation δu

�
V
(div(F S) +ρ0b0) ·δud V = 0. (3.12)

While the term (div(F S) +ρ0b0) represents the ‘‘residual’’, the term δu
can be considered a ‘‘weighting’’ function. If the weighting function is
arbitrary, then the differential equation in the brackets must be zero at
all points in V . If the weighting function is the displacement variation δu,
then it is the Galerkin method.

In the following, we show the connection between the Galerkin method
and the previously discussed variational formulation. Using the product
rule for divergence (see Appendix A.7), we get

div(δuF S) =δu ·div(F S) + (F S) : grad δu. (3.13)

Integrate (3.13) and by (3.4), we get
�

V
δu ·div(F S)d V =

�
V

div(δuF S)d V −
�

V
(F S) : grad δud V . (3.14)

By the Gauss-Green theorem, the equilibrium of motions in reference
frame (2.30b), and the boundary conditions (3.1b), we have

�
V

div(δuF S)d V =
�

At

(δuF S) ·nd A =
�

At

δu · t̄d A. (3.15)

And thus
�

V
δu ·div(F S)d V =−

�
V
(F S) : grad δud V +

�
At

δu · t̄d A. (3.16)

Inserting (3.16) into (3.12), we obtain the equation for the principle of
virtual work (3.5). The major difference between the method of weighted
residual and the principle of virtual work is that the former does not require
the existence of a potential. Thus, it can be applied to a wider range of
problems, such as inelasticity.

26

3.4 Discretization

From the strong form to the weak form

The physics problems in continuum mechanics are mathematically mod-
eled using partial differential equations derived from conservation laws.
Recall the boundary value problem described by the equilibrium of mo-
tions

div(Fσ) +ρ0b0 = 0 in V , (3.17)

that satisfies the boundary conditions (3.1a) and (3.1b).

This formulation is called the strong form. A difficulty of the strong form is
that the high requirement of the smoothness of the analytic solutions of the
PDEs might be too strict for the real physical solutions. This motivates the
so-called weak formulation of the problem, which starts with the weighted
residual formulation (3.12) and results in the variational formulation (3.5).
The displacement variation δu is called test function in the context of
weak form. While second-order derivatives are involved in the strong form
(3.17), only first-order derivatives are involved in the weak formulation
(3.5), which is achieved by the procedure (3.13) through (3.15).

Although the analytical solution of the weak form is still difficult, it provides
the basis for the numerical analysis, which uses numerical approximations
to compute the solutions. One of the most powerful methods for solving
differential equations in numerical analysis is the finite element method.

3.4 Discretization

In previous sections, the mathematical models for solving the unknown
displacement field u are presented. One remaining difficulty is to com-
pute each integral term. The finite element method tackles this difficulty
by discretization, i.e., it decomposes the domain of interest into a finite
number of subdomains, which are the so-called elements. The integration
is then performed by 1) element-wise integration and 2) a global assembly
procedure of all elements. Analytical integration for discretized elements,
however, can still be difficult. In most cases, numerical quadrature needs to
be used. For some cases, modifications to the standard numerical quadra-
ture rules can even be used to overcome the difficulties of FEM. A notable
example is the use of reduced integration to tackle the shear-locking phe-
nomena of Reissner-Mindlin type elements that model thin-walled struc-

27

3 Basics of finite element method

tures (see, e.g., Hughes et al. [39]). In the book by Zienkiewicz et al. [90], the
authors describe the finite element method as ‘‘a general discretization
procedure of continuum mechanics problems posed by mathematically
defined statements’’, attaching great importance to discretization for FEM.

In the following, an introductory presentation of the very basics of finite
element discretization is given. Note that the richness of the theories and
techniques developed by mathematicians and engineers made it impossi-
ble to give an overview in this chapter.

3.4.1 Elements and nodes

Figure 3.1: A quadrilateral finite element with local coordinates
ξ and η.

In this work, we only consider the discretization in space. For thin-walled
structures, triangle and quadrilateral elements are widely used. The fi-
nite element nodes possess the discretized values, that together with the
shape functions, represent the continuous physical field of interest or the
geometry of the studied object. In figure 3.1, we illustrate a four-noded
quadrilateral element with the local coordinates ξ and η. The geometric
and physical entities inside an element are interpolated by the nodal val-
ues and the corresponding shape functions, which we discuss in the next
subsection.

3.4.2 Shape functions and the isoparametric concept

The basic ideas of shape functions are presented with an example of a
four-noded quadrilateral element as illustrated in figure 3.1. For each node

28

3.4 Discretization

i , an associated shape function Ni is defined,

N1(ξ,η) =
1

4
(1−ξ)(1−η),

N2(ξ,η) =
1

4
(1−ξ)(1+η),

N3(ξ,η) =
1

4
(1+ξ)(1+η),

N4(ξ,η) =
1

4
(1+ξ)(1−η),

(3.18)

where −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1. Then, after the meshing, the global
coordinates describing the geometry for any local position (ξ,η) in an
element is given by

xe (ξ,η) =
4
∑

i

Ni (ξ,η)xi , (3.19)

where xi are the nodal coordinates of the element. If, in addition, the
displacement of the element is interpolated using the same shape function,
i.e.,

ue (ξ,η) =
4
∑

i

Ni (ξ,η)ui , (3.20)

where ui are the nodal displacement of the element. Then, the element is
called isoparametric. The isoparametric concept allows a unified way to
treat elements and grants more flexible shapes. The cost is more expensive
computations of derivatives and numerical integrations.

For example, the derivative computations with respect to the local coordi-
nates involve an additional coordinate transformation step. To see this,
we write down the following expression based on the chain rule,





∂
∂ ξ

∂
∂ η



=





∂ x
∂ ξ

∂ y
∂ ξ

∂ x
∂ η

∂ y
∂ η









∂
∂ x

∂
∂ y



 . (3.21)

The matrix





∂ x
∂ ξ

∂ y
∂ ξ

∂ x
∂ η

∂ y
∂ η



 is often denoted as the Jacobian matrix J in FEM

literature. We note that by the strict definition, it is the transposed Jacobian

29

3 Basics of finite element method

matrix. Nevertheless, it does not affect the actual computation since the
partial derivatives (e.g., ∂ x

∂ ξ) are directly obtainable by (3.19), and their
determinants have the same value.

The determinant of this ‘‘Jacobian’’, det J , is important so that it is often
computed and stored in the implementation of an element. For example,
it is needed for the transformed numerical integration,
x

d x d y =
x
|det J |dξdη. (3.22)

Therefore, |det J | can be interpreted as a ‘‘scaling’’ factor, which is the ratio
of the area of the element expressed in global coordinates to its area in the
local coordinates. When an isoparametric concept is implemented, which
means that the area expressed in the local coordinates is the same for all
elements, we can use |det J | to evaluate the mesh quality. In the absence
of a local refinement, a smaller ratio of det Jma x

det Jmi n
usually shows a superior

quality.

3.4.3 Element-wise integration and global assembly of the
system of equations

With the tools introduced above, the integral in the weak formulation can
now be computed in a two-step procedure. First, numerical integration is
performed element-wise. For static problems, the outcome of the integra-
tion is a linear equation system of unknown field values discretized at each
element node. Then, a global assembly is performed and a global linear
equation system is obtained. Here, the isoparametric concept shows its su-
periority in flexibility, as it allows elements of different shapes to be treated
uniformly when combined with a numerical integration. The integrands,
which usually involve some differential operators in the global coordinates,
are first derived in terms of local coordinates by the chain rules. Whereby
the involved Jacobian matrix J or its inverse is readily available by (3.19).
By (3.20), it is clear that the differential operations are performed on the
shape functions, which allows a standard implementation for each ele-
ment. The difference between different elements is the nodal values that
are usually substituted in the computation of the element stiffness matrix
by some linear algebra operations. The element-wise integration is often
done by numerical integrations. Numerical schemes such as Gaussian
quadrature are very efficient for integrating polynomials.

30

3.4 Discretization

For linear static problems, the element integration typically has the form

ke ue = fe , (3.23)

where ke is the element stiffness matrix, and ue is the unknown displace-
ment vector, fe is the element nodal force vector. To illustrate the global
assembly procedure, we introduce a global vector q of nodal values, which
is the global contribution of the element nodal values expressed in the
local vector qe . The system global vector q and the element local vector qe

are related by the mapping

qe = P e q, (3.24)

where P e is an element-dependent matrix whose entries are only zeros
and ones. The global stiffness matrix K and the global force vector f can
then be assembled by adding the contributions of all the elements at the
respective global degrees of freedom1,

K =
∑

e

(P e)T ke P e , f=
∑

e

(P e)T fe . (3.25)

Finally, the global system of equations is established,

Ku= f. (3.26)

The unknown continuous field that is discretized as the vector u can then
be solved with solvers for system of equations.

1 The mapping matrix P e is introduced only for the purpose of presentation but should
not be used in practical implementations (Haslinger et al. [33]).

31

C
H

A
P

T
E

R

4
FINITE ELEMENT BASED SHAPE

SENSITIVITY ANALYSIS

4.1 Introduction

Formally, structural shape optimization belongs to PDE-constrained op-
timizations, where the optimization problem is constrained by at least
one partial differential equation (PDE). Large-scale shape optimization
faces challenges in PDE-constrained optimization in general and its own
difficulties in particular. The former difficulties include the large variable
space and high computational cost for each response function. The latter
include the computation and regularization of the shape gradient.

The computation of shape gradients is called the shape sensitivity analysis.
This chapter introduces the basics for shape sensitivity analysis based on
the finite element method.

33

4 Finite element based shape sensitivity analysis

4.2 PDE-constrained optimization: a perspective from
the implicit function theorem

Let x , u define the control and the state variables, respectively. Then, a
PDE-constrained optimization may be defined as

min
x ,u

f (x , u), f : X ×U →R,

subject to h (x , u) = 0, h : X ×U → Z ,
(4.1)

where X ,U , Z are vector spaces and f , h are sufficiently smooth functions.
If the Jacobian matrix about u at a point c (a , b) = 0, and (a , b) ∈ X ×U ,
i.e.,

Jh ,u (a , b) =

�

∂ hi

∂ u j
(a , b)

�

(4.2)

is invertible, then there exists a unique continuously differentiable vector-
valued functionφ such that in a neighborhood of (a , b) that satisfies

φ(a) = b , (4.3)

and

h (x ,φ(x)) = 0. (4.4)

Suppose thatφ exists everywhere in the domain of the function h , then
we can reformulate the PDE-constrained optimization (4.1) as an uncon-
strained optimization of solely the control variables x ,

min
x

f (x ,φ(x)), f : X ×U →R. (4.5)

By (4.5), in this work, we refer to a PDE-constrained optimization in the
form (4.1) as an unconstrained problem. We call it a constrained optimiza-
tion problem when additional constraints are considered. It should be
noted that the unconstrained formulation (4.5) is fundamentally based on
the existence of a unique mapping from x to u by the implicit function
theorem. The shape optimization problems considered in this work belong
to this class of problems.

34

4.3 Continuous and discrete shape gradient

4.3 Continuous and discrete shape gradient

Two main lines of approaches exist for the computation of shape gradi-
ent, distinguishing themselves in the order of the gradient derivation and
system discretization. The continuous approach applies the profound
Hadamard theorem to compute the analytic expression for surface shape
gradient for given functionals directly. The discrete approach first dis-
cretizes the system (e.g., finite element discretization), and then computes
the shape gradient for the discretized variables by the established linear
equation systems.

Both approaches have their own advantages and can therefore be chosen
depending on individual application. We neglect a general discussion of
the comparison between both approaches and refer interested readers to
Nadarajah et al. [64], Reuther et al. [73], and Schmidt [77].

We draw attention to the challenges in optimizations that both approaches
face due to the complexity of shape Hessians. In the continuous approach,
although the shape Hessian analysis is much more accessible compared
to the discrete approach (Schmidt [77]), the shape Hessian still lacks sym-
metry and is a complex object even for moderate problems. For discrete
approaches, the foremost problems are the discretization-dependency
and the lack of regularity of the discrete shape gradient. There are different
approaches to tackle both problems in the literature. However, a unified
view of the different approaches is missing and may require further in-
vestigations. When going from discrete shape gradients to discrete shape
Hessians, the problem of mesh-dependency and the lack of regularity may
be even more severe. Even if one computes a discrete shape Hessian, one
may immediately ask the question of whether the obtained discrete shape
Hessian is consistent (in the case of fine discretizations) with the con-
tinuous shape Hessians after all the ‘‘remedies’’ for the mentioned two
problems were implemented.

In this work, the discrete approach is used, which we discuss in the follow-
ing. Note that the developed optimization method is applicable to both
approaches, continuous and discrete.

35

4 Finite element based shape sensitivity analysis

4.4 Discrete adjoint sensitivity analysis

For problem (4.1), one of the most intuitive methods to compute the gra-
dient may be the finite difference method. Suppose a finite difference for
the i -th entry of the control variables x is∆xi . Then the partial derivative
∂ f (x ,u)
∂ xi

may be approximated as

∂ f (x , u)
∂ xi

≈
f (x̂i , ûi)− f (x , u)

∆xi
, (4.6)

where x̂i = x +∆xi is the perturbed control variable vector, and x̂i , ûi

satisfies the governing PDE,

h (x̂i , ûi) = 0. (4.7)

The finite difference method becomes impractical quickly as the dimen-
sion of control variables grows, because the state solution (4.7) must be
carried out for each disturbance. To overcome this difficulty, the adjoint
method was introduced, which dates back to the work of Bryson [18] in
the 1960s in optimal control.

In the following, one way to derive the discrete adjoint method is shown.
The basis of the discrete ajoint method is the discretized PDE. The deriva-
tive of the objective function f (x , u)with respect to the i -th control xi in
the discretized system writes

d f (x , u)
d xi

=
∂ f

∂ xi
+

�

∂ f

∂ u

�T
∂ u

∂ xi
. (4.8)

Notice that ∂ f
∂ u and ∂ u

∂ xi
are both denoted as column vectors, therefore we

transpose ∂ f
∂ u to complete the chain rule.

By the implicit function theorem, the state derivatives ∂ u
∂ xi

can be calculated.
At a neighborhood where h (x , u) = 0, we have

d h (x , u (x))
d xi

=
∂ h

∂ xi
+
∂ h

∂ u

∂ u

∂ xi
= 0. (4.9)

Notice that ∂ h
∂ u is a Jacobian matrix. From (4.9), it follows

∂ u

∂ xi
=

�

∂ h

∂ u

�−1 �

−
∂ h

∂ xi

�

. (4.10)

36

4.4 Discrete adjoint sensitivity analysis

Substituting (4.10) in (4.8), we obtain

d f (x , u)
d xi

=
∂ f

∂ xi
+

�

∂ f

∂ u

�T �
∂ h

∂ u

�−1 �

−
∂ h

∂ xi

�

. (4.11)

(4.11) is called the direct approach for the sensitivity computation. It re-
quires the solution of the linear equation system (4.10) for each state deriva-
tive and is therefore still computationally expensive when the dimension of
control variables is large. To overcome this difficulty, the adjoint approach
makes use of the vector-matrix-vector-product,

wT Av= vT AT w. (4.12)

To see this, we can write down the first product of the above equation in
the summation form

wT Av=
∑

i , j

wi Ai j v j . (4.13)

Switching the index i and j , we get

wT Av=
∑

j ,i

w j A j i vi =
∑

j ,i

vi A j i w j = vT AT w. (4.14)

The derivative of the objective function f with respect to the control vari-
able can then be calculated as

d f (x , u)
d xi

=
∂ f

∂ xi
+

�

−
∂ h

∂ xi

�T �
∂ h

∂ u

�−T �
∂ f

∂ u

�

. (4.15)

If ∂ h
∂ u is an adjoint matrix, i.e., ∂ h

∂ u =
�

∂ h
∂ u

�T
, then the above equation writes

d f (x , u)
d xi

=
∂ f

∂ xi
+

�

−
∂ h

∂ xi

�T �
∂ h

∂ u

�−1 �
∂ f

∂ u

�

. (4.16)

As a result, only one linear system has to be solved,

Λ=

�

∂ h

∂ u

�−1 �
∂ f

∂ u

�

. (4.17)

37

4 Finite element based shape sensitivity analysis

The vector Λ is called the adjoint variables. Note that the linear system
(4.17) has a similar form as the solution to the forward problem

h (u) = 0, (4.18)

where the control variables x are fixed. Using the Newton method,

un+1 = un −
�

∂ h (un)
∂ u

�−1

h (un), (4.19)

we obtain the state variables iteratively.

4.5 Finite element based shape gradient

In this section, the discrete adjoint analysis with finite element discretiza-
tion is presented. Emphasize is on the special treatment to calculate the
term ∂ h

∂ xi
, which takes advantage of the finite element approach.

4.5.1 Computation of discrete adjoint variables

The discrete adjoint approach is demonstrated using a linear structural
mechanics problem using FEM. Recall the global system of equation (3.26),

h (u) = Ku− f= 0. (4.20)

Notice that the bold f is the load vector that is to be distinguished with the
objective function f .

Recall the adjoint state equation
�

∂ h

∂ u

�

Λ=
∂ f

∂ u
. (4.21)

From (4.20), straightforwardly, we get

∂ h

∂ u
= K . (4.22)

Next, the right-hand side ∂ f
∂ u of the adjoint equation (4.21) is computed

after the discretization.

38

4.5 Finite element based shape gradient

Take the example of the linear strain-energy objective function J , which
can be computed based on the discretized nodal displacement and external
forces,

J =
1

2
uT f. (4.23)

Then, the partial derivative of J with respect to the discrete displacement
u reads

∂ J
∂ u
=

1

2
f. (4.24)

The discrete adjoint variables Λ can then be computed by solving the
adjoint state equation (4.21). The equation has only to be solved once and
the resulting adjoint variables are stored for further computations.

4.5.2 Element-wise computation

For problem (4.20), the partial derivative ∂ h
∂ xi

writes

∂ h

∂ xi
=
∂ K

∂ xi
u−

∂ f

∂ xi
. (4.25)

Both the tangent terms ∂ K
∂ xi

, ∂ f
∂ xi

can be decomposed in the same routine as
the finite element method, where the element stiffness and nodal forces
are assembled into the global linear equation system (Logg et al. [55, chap-
ter 6]). For certain types of control variable xi , we can compute the term
∂ K e

∂ xi
and ∂ fe

∂ xi
on the element level. And then substitute them in

∂ h e

∂ xi
=
∂ K e

∂ xi
ue −

∂ fe

∂ xi
. (4.26)

Then, the element contribution of the sensitivity is computed as

d f e

d xi
=
∂ f e

∂ xi
−
�

∂ h e

∂ xi

�T

Λe , (4.27)

where Λe retrieves the already stored adjoint variables on the respective
element. The reason for carrying out (4.26) and (4.27) is by the observa-
tion of the local nature of certain control variables. For example, a nodal
geometric variable is only affecting the adjacent element stiffness.

39

4 Finite element based shape sensitivity analysis

Finally, the global sensitivity ∂ f
∂ xi

is assembled from all contributing ele-
ments,

d f

d xi
=
∑

e

d f e

d xi
. (4.28)

4.6 Sensitivity weighting

One difficulty of discrete shape gradient is that it is mesh-dependent. It is
inconsistent with continuous shape gradient when the mesh quality is poor.
Several works have studied this problem, and the sensitivity weighting (SW)
method is implemented in this work. SW was first introduced in Kiendl et
al. [45] for shell structures and is further studied in Wang [88]. This section
first briefly reviews some of the theoretical studies and then shows the
method following the above-mentioned two works.

We start with the continuous shape gradient. Suppose that the objective
functional Ψ to be minimized depends on the state solution field u , its
gradient∇u , and the control field x , all defined in some domain Ω ∈R3,

Ψ =
�
Ω

H (u ,∇u , x)dΩ, (4.29)

where H is the objective density function. In continuous formulation, the
variation of Ψ reads

δΨ =
�
Ω

g ·δx dΩ = 〈g ,δx 〉Ω , (4.30)

where δx is the variation of x , g denotes the continuous shape gradient,
and 〈· , ·〉Ω denotes an inner product over the integration domain Ω. The
above equation suggests that we can use the gradient descent method
to find a minimizer of Ψ , i.e., to use the negative gradient as the search
direction

dc =−g . (4.31)

The discrete shape gradient can be obtained via standard discrete sensi-
tivity analysis. Equivalently, it can be obtained from the above continu-
ous approach by an additional step that discretizes the control variable x

40

4.7 Shape regularization and the vertex morphing method

(Wang [88]). Assume the discretization (3.19) is used, then the continuous
control field is discretized as

x =
∑

i

Ni xi , (4.32)

where Ni is the i -th shape function corresponding to the discretized con-
trol variable xi . Insert (4.32) into (4.30), we obtain

δΨ =
�
Ω

g
∑

i

Niδxi dΩ =
∑

i

g̃ iδxi , (4.33)

whereδxi is the variation of xi , and g̃ i is the i -th entry of the discrete shape
gradient,

g̃ i =
�
Ω

g Ni dΩ = 〈g , Ni 〉Ω . (4.34)

Comparing (4.33)-(4.34) to (4.30), it is then clear that each entry of the
discrete shape gradient has a dependency on the integral of its supporting
shape function. In the sensitivity weighting method, the factor for this
discretization influence is determined by

ai =
�
Ω

Ni dΩ. (4.35)

The weighted gradient is then computed entry-wise,

g̃ w
i = g̃ i /ai . (4.36)

4.7 Shape regularization and the vertex morphing
method

Large-scale shape optimization may be considered an inverse problem,
which can be generally stated as the following:

Find system parameter p , such that

q = F (p), (4.37)

where F is the forward map and q is a certain measure of the system. Many
inverse problems can be cast into the solution of an optimization problem.

41

4 Finite element based shape sensitivity analysis

For shape optimization, we can interpret it as to find the shape of a struc-
ture such that certain optimality (see next chapter 5) of an optimization
problem is satisfied.

Unlike the forward problem, inverse problems are typically ill-posed in the
sense of Hadamard, i.e., there is a violation in one or more of the following
properties:

1. a solution exist;

2. the solution is unique;

3. and the solution’s behavior changes continuously with the change
of initial conditions.

For ill-posed problems, additional assumptions on the solution may be
made. Such a process is called the regularization.

The shape optimization problems considered in this work are almost al-
ways ill-posed due to the very large discrete design space based on the
finite element mesh. To tackle the problem, the Vertex Morphing method
(VM) introduced in Hojjat et al. [37] is used.

The idea of the Vertex Morphing is to control the discrete surface coor-
dinates x= [x1, x2, ..., xn]T with design controls s= [s1, s2, ..., sn]T , filtered
by a filter function. The explicit filtering used in VM is the convolution
of the coordinate field x with a kernel. In the discretized system, it is a
matrix-vector multiplication that is the summation of nodal contributions
that are weighted with the kernel function. VM distinguishes itself with a
standard explicit filtering, in which it applies the filtering process twice.

First, the so-called forward mapping step that uses the linear filtering
matrix R is defined as follows:

xi =Ri j s j . (4.38)

Similarly, the change of the control δs is mapped onto the change of the
design configuration δx

δxi =Ri jδs j . (4.39)

42

4.7 Shape regularization and the vertex morphing method

The design controls are the control variables of the gradient-based opti-
mization. The number of variables is equivalent to the number of surface
coordinates. Following the chain rule of differentiation, the sensitivities
of a response function Ψ with respect to the discretized geometry x are
backward mapped to the design control using the adjoint or backward
mapping matrix R∗, with R∗ =RT for regular grids,

dΨ

d si
=

dΨ

d x j

d x j

d si
=R j i

dΨ

d x j
. (4.40)

Equations (4.39) and (4.40) can be used in a gradient descent framework,
ensuring smooth shape updates in each iteration.

43

C
H

A
P

T
E

R

5
BASICS OF GRADIENT-BASED

OPTIMIZATION

This chapter reviews some of the fundamentals of gradient-based optimiza-
tion, including optimality conditions, convexity, and rate of convergence.
Special attention is paid to the gradient descent method.

Gradient-based optimization finds its root in Taylor’s Theorem (Nocedal
et al. [67]), which is stated at first.

Theorem 1 (Taylor’s Theorem). Suppose that f :Rn →R is continuously
differentiable. Then, we have

f (x + s) = f (x) +∇ f (x +αs)T s , (5.1)

for some α ∈ (0, 1). Further, if f is twice continuously differentiable, then

f (x + s) = f (x) +∇ f (x)T s +
1

2
s T∇2 f (x +αs)s , (5.2)

for some α ∈ (0, 1).

45

5 Basics of gradient-based optimization

5.1 Optimality conditions for unconstrained
optimization

We first consider unconstrained optimization

min
x

f (x), (5.3)

where f :Rn →R is a twice continuously differentiable function.

The first-order necessary condition for x ? to be optimal is

∇ f (x ?) = 0. (5.4)

The second-order necessary condition for x ? to be optimal is

∇2 f (x ?)� 0. (5.5)

The second-order sufficient condition for x ? to be an optimal solution is

∇2 f (x ?)� 0. (5.6)

5.2 Convexity

Convexity has a deep connection with optimization and has played an
important role in the design and analysis of unconstrained optimization
algorithms for decades and will probably continue to do so. In this section,
we review some basics of convexity.

5.2.1 Convex set

A set K ⊂ Rn is said to be convex if the line segment between any two
points in K also lies in K , i.e., for any x1, x2 ∈ K , we have the line segment
lx ⊂ K , where

lx =
�

xα : xα = (1−α)x1+αx2, α ∈ [0, 1]
	

. (5.7)

An extreme point x ? of a convex set K is a point that does not lie on the
interior of any nonzero-length line segment in K . That is,

x ? /∈
�

xα : xα = (1−α)x1+αx2, x1, x2 ∈ K ,α ∈ (0, 1)
	

. (5.8)

46

5.2 Convexity

5.2.2 Convex function

A single-valued function f :Rn →R is said to be convex if its epigraph is
a convex set. The epigraph of a function f (x) is the set of points that lie
above or on the graph of f . The graph of f is defined as the set

G (f) =
�

(x , f (x)) : x ∈Rn
	

, (5.9)

which is a subset of Rn ×R. Similarly, the epigraph of f is also a subset of
Rn ×R. By the definition of the convex set, we have the condition for the
convex function

f (xα)≤ f (x0) +α(f (x1)− f (x0)), (5.10)

where xα is a point in the set lx defined in (5.7) with endpoints x1, x2, and
(x1, f (x1)), (x2, f (x2)) are points on the graph of f (x). In the following, we
show important conditions for a convex function.

Take the first-order Taylor series of f (xα) at point x0, we get

f (xα) = f (x0) +∇ f (x0)
Tα(x1− x0) +o (α). (5.11)

Insert (5.11) into (5.10), we get the first-order condition for a convex func-
tion

f (x1)≥ f (x0) +∇ f (x0)
T (x1− x0). (5.12)

Taking the first-order Taylor series of f (xα) at point x1, we instead get the
condition

f (x1)≤ f (x0) +∇ f (x1)
T (x1− x0). (5.13)

(5.12) and (5.13) yields

∇ f (x0)
T (x1− x0)≤∇ f (x1)

T (x1− x0). (5.14)

By x1 = x0+ (x1− x0), we take again the first-order Taylor series for∇ f (x1)
at point x0, then,

∇ f (x0) =∇ f (x0) +∇2 f (x0)
T (x1− x0) +o (1). (5.15)

Inserting (5.15) in (5.14), we get

∇ f (x0)
T (x1− x0)≤

�

∇ f (x0) +∇2 f (x0)
T (x1− x0)

�T
(x1− x0). (5.16)

47

5 Basics of gradient-based optimization

Thus,

0≤ (x1− x0)
T∇2 f (x0)(x1− x0). (5.17)

The above inequality holds for arbitrary x0, x1 ∈ dom(f). Hence we get the
second-order condition for a convex function,

∇2 f (x)� 0. (5.18)

That is, the Hessian matrix of the function is positive semi-definite every-
where. Furthermore, a function f is strictly convex, if

∇2 f (x)� 0, ∀x ∈ dom(f). (5.19)

5.2.3 Strongly convex

Suppose that f is twice continuously differentiable, then it is strongly
convex with parameter m if and only

∇2 f (x)�m I ,∀x ∈ dom(f), (5.20)

where I is the identity matrix. The inequality (5.20) indicates that the
minimum eigenvalue for∇2 f (x) is at least m for all x .

5.3 Gradient descent method

The gradient descent method, first introduced by Cauchy, is one of the ear-
liest first-order iterative methods for unconstrained minimization. At each
iteration, the gradient descent method uses a proportion of the negative
gradient to update the variable x , i.e.,

xk+1 = xk −α∇ f (xk), (5.21)

where k is the iteration number and α is the step size.

5.3.1 Steepest descent direction in Euclidean norm

The search direction of the gradient descent method is the steepest descent
direction in the Euclidean norm. At each iteration, the first-order Taylor
series of f at xk is

f (xk +dk)≈ f (xk) +∇ f (xk)
T dk , (5.22)

48

5.3 Gradient descent method

where dk ∈Rn can be seen as a small variable update vector. Our goal is
to find a vector dk , so that the objective function f decreases the most.
However, the term∇ f (xk)T dk in (5.22) itself is insufficient to give a mean-
ingful result, since dk can be chosen arbitrarily large, which results in
the decrease of f can be unbounded. To provide a meaningful result, we
fix the length of the search vector dk . Any norm can be used to measure
the length. If we use the Euclidean norm, the resulting search vector dk

is the direction1 of the gradient descent method. Such a direction dk is
also called the steepest descent direction. However, we note that different
norms result in different search directions, and they may also be called
the steepest descent direction in that particular norm.

The steepest descent direction dk in the Euclidean norm can be found by
the optimization problem

min
x

∇ f (xk)
T dk ,

subject to |dk |= 1,
(5.23)

where | · | denotes the Euclidean norm. By Cauchy-Schwarz inequality, we
have

|∇ f (xk)
T dk | ≤ |∇ f (xk)

T ||dk |, (5.24)

and the equality is achieved if and only if ∇ f (xk)T and dk are parallel.
Therefore,

dk =−
∇ f (xk)T

|∇ f (xk)T |
, (5.25)

which is the negative and normalized gradient of f . To see that the gradient
descent method uses this steepest descent direction, we can rewrite (5.21)
as

xk+1 = xk −
�

α|∇ f (xk)
T |
� ∇ f (xk)T

|∇ f (xk)T |
. (5.26)

Example with a quadratic norm

We show an example with a quadratic norm that is defined by the Hessian
matrix of the objective function f . Figure 5.1 illustrates the steepest de-
scent direction dk in this particular norm. The search direction dk can be

1 In this work, a direction is referred to as a vector with unit length.

49

5 Basics of gradient-based optimization

Figure 5.1: Search direction dk with a quadratic norm defined
by the Hessian matrix of a quadratic objective function.

found by the optimization problem

min
x

∇ f (xk)
T dk ,

subject to |dk |H = 1,
(5.27)

where f is a quadratic function with two variables, and |d |H =
p

d T H d is
a quadratic norm that is defined by the Hessian matrix H of the objective
function. The green ellipse illustrates the ‘‘unit circle’’ with the center
point xk measured by this quadratic norm. The red curves are the objec-
tive function contours. The optimization problem (5.27) can be solved
graphically: find a vector dk that starts with xk and points to a point x on
the green ellipse, such that the dot product∇ f (xk)T dk is minimized. As a
result, the resulting direction dk is parallel to the blue line that connects
xk and the center of the red ellipse, which is the newton direction − ∇ f (x)

∇2 f (x) .

5.3.2 Rate of convergence

The convergence rate for the gradient descent method is well-established.
For convex functions we have,

50

5.3 Gradient descent method

Theorem 2. Suppose that f :Rn →R is convex and continuously differen-
tiable, and that its gradient is Lipschitz continuous with constant L > 0, i.e.,

|∇ f (x)−∇ f (y)| ≤ L |x − y |, (5.28)

for any x , y . Then, the gradient descent method (5.21) with a fixed step size
0<α≤ 1/L achieves a solution xk at k -th iteration that satisfies

f (xk)− f (x ?)≤
|x0− x ?|2

2αk
, (5.29)

where x0 is the initialization and x ? is the optimal solution.

For strongly convex functions we have,

Theorem 3. Suppose that f : Rn → R is m-strongly convex and contin-
uously differentiable, and that its gradient is Lipschitz continuous with
constant L > 0. Then, the gradient descent method (5.21) with a fixed step
size 0<α≤ 1/L achieves a solution xk at k -th iteration that satisfies

|xk − x ?|2 ≤ (1−αm)k |x0− x ?|2. (5.30)

If f is twice-continuously differentiable, then by the mean value theorem
and the Lipschitz continuity condition for the gradient (5.28), we have

∇2 f (x)� L I , ∀x ∈ dom(f). (5.31)

That is, the maximum eigenvalue for∇2 f (x) is at most L for all x . Recall
that m-strongly convex condition (5.20) indicates

∇2 f (x)�m I , ∀x ∈ dom(f),

which is the lower bound of the eigenvalues for∇2 f . We can observe from
the term (1−αm)k that the convergence rate of the gradient descent is
highly dependent on the conditioning of∇2 f (x). Notice that

0< (1−αm)< 1.

Then, a larger condition number resulting in (1−αm) closer to 1 and thus
leads to slower convergence.

51

5 Basics of gradient-based optimization

Comparing (5.29) and (5.30), we observe that the iteration number k char-
acterizes both error measures for the solution but in different forms. To
illustrate these two convergence rates, we first denote ε as the general error
measure for the solution. Then, (5.29) implies that for convex functions,
the gradient descent method finds an ε-solution in k ∼ o (1/ε) iterations,
where o (1/ε) is the ergodic sublinear rate for first-order optimization meth-
ods. Sometimes, o (1/ε) is called exponential time, which is illustrated in
figure 5.2. For strongly convex functions, (5.30) implies a convergence rate
of o (log(1/ε)), which is also called liner time (figure 5.3).

Figure 5.2: Convergence rate o (1/ε).

Figure 5.3: Convergence rate o (log(1/ε)).

52

5.4 Optimality conditions for inequality constrained optimization

5.3.3 Co- and contravariant view of the gradient descent
method

Recall the gradient descent update formula (5.21),

xk+1 = xk −α∇ f (xk).

Referred to the discussion in section 2.2.1, if the variable vector xk is a con-
travariant vector, then the gradient vector∇ f (xk) is a covariant vector. In
tensor notations, contravariant vectors are denoted as column vectors and
covariant vectors are denoted as row vectors. From this perspective, the
gradient descent method seems nontrivial as it tries to sum up a column
vector with a row vector. Indeed, there is a consequence when we apply
a change of basis for the optimization variable x : the variable vector xk

changes contravariantly and the gradient vector∇ f (xk) changes covari-
antly, and the updated variable vector xk+1 is generally different from the
one formulated in the original basis.

5.4 Optimality conditions for inequality constrained
optimization

We consider inequality constrained optimization in the form:

min
x

f (x),

subject to g i (x)≤ 0, i ∈ I,
(5.32)

where f , g i :Rn →R are twice continuously differentiable functions, and
I is the finite set of indices,

I = {1, ..., m}. (5.33)

The foundation of the optimality conditions for constrained optimization
is the Lagrangian function. Classically, the Lagrangian function is defined
for equality constrained problems, i.e.,

min
x

f (x),

subject to hi (x) = 0, i ∈ E .
(5.34)

53

5 Basics of gradient-based optimization

where f , hi :Rn →R are twice continuously differentiable functions, and
E is a finite set of indices. The associate Lagrangian function writes

L(x) = f (x) +
∑

i∈E
λi hi (x), (5.35)

where λi is called the Lagrange multiplier.

The first-order optimality for problem (5.34) is that its associate Lagrangian
function being stationary,

∇x ,λL= 0. (5.36)

That is

∇x f (x) +
∑

i∈E
λi∇x hi (x) = 0, ∀i ∈ E ,

hi (x) = 0, ∀i ∈ E ,
(5.37)

which are the first-order optimality conditions for an equality constrained
optimization problem. This is akin to the first-order optimality condition
for an unconstrained optimization, which is the stationary of the objective
function, i.e,

∇ f (x) = 0. (5.38)

However, constrained problems are more sophisticated as, additionally,
certain regularity conditions need to be specified to account for the de-
generacy at an optimal solution. A degenerate solution results in the non-
uniqueness of the Lagrangian multipliers λi . Such a regularity condition is
also called the constraint qualification. For an introductory presentation,
we consider the linear independence constraint qualification (LICQ), which
requires that the gradients of the active constraints are linearly indepen-
dent at the solution. The active setA for a general constrained optimization
is defined as follows.

Definition 2 (Active set). For any feasible x , the active set A(x) contains
all the active constraints,

A(x) = E ∪{i ∈ I : g i (x) = 0}. (5.39)

In the following, we discuss the optimality conditions for inequality con-
strained optimization starting from the Lagrangian function (5.35).

54

5.4 Optimality conditions for inequality constrained optimization

5.4.1 First-order optimality

For inequality constrained optimization (5.32), the first-order optimality
is more complex than the Lagrangian function being stationary,

∇x ,λL(x) = 0.

The reason is that at an optimal solution x ?, the inequalities must not
always be active. Let Ã(x ?) denote the active set for x ?, then for inequality
constrained optimizations, Ã(x ?) is a subset of I, i.e.,

Ã(x ?)⊆ I. (5.40)

The question is, how can we give optimality conditions if it is not known
a priori, which inequalities are active at the solution? The well-known
Karush-Kuhn-Tucker (KKT) conditions treat this difficulty by separating
the active and inactive inequalities.

Theorem 4 (KKT conditions for inequality constrained optimization). Sup-
pose that x ? is a local solution for the problem (5.32) and that the LICQ
holds for inequalities in the active set A(x ?), then, there is a unique vector
of Lagrangian multipliers λ?i such that the following conditions hold at x ?

∇xL(x ?) = 0, (5.41)

λ?i g i (x
?) = 0, ∀i ∈ I, (5.42)

λ?i ≥ 0, ∀i ∈ I, (5.43)

g i (x
?)≤ 0, ∀i ∈ I. (5.44)

The separation of active and inactive inequalities is realized elegantly in
(5.42)-(5.44):

1) Active: if i ∈ Ã(x ?), then, g i (x ?) = 0, and thus λ?i ≥ 0.

2) Inactive: if i ∈ I \ Ã(x ?), then, g i (x ?)< 0, and thus λ?i = 0.

(5.42) is called the complementarity condition. Furthermore, a strict com-
plementarity says that if g i (x ?) = 0, then λ?i > 0,∀i ∈A(x).
The KKT conditions are first-order necessary conditions for a local optimal
solution.

55

5 Basics of gradient-based optimization

5.4.2 Second-order optimality

To check whether a solution is a local minimizer, we need to use the second-
order sufficient conditions. This can be done by checking the positive
definiteness of the projected Hessian matrix of the Lagrangian function
onto the null space of the constraint Jacobian matrix. Formerly, set matrix
Z , whose columns z j span the null space of the constraint Jacobian,

�

z j

	

= span
�

Null
�

∇g i (x
?)T

�

i∈A(x ?)

�

. (5.45)

We denote he Hessian of the Lagrangian function about the variable x as

∇x xL(x ?).

The projected Hessian of the Lagrangian function is then given as

HZ (x
?) = Z T∇x xL(x ?)Z . (5.46)

Theorem 5 (Second-order necessary conditions). Suppose a KKT solution
x ? that satisfies the strict complementarity. Suppose also that x ? is a local
minimizer of the problem (5.32). Then,

HZ (x
?)� 0. (5.47)

Theorem 6 (Second-order sufficient conditions). Suppose a KKT solution
x ? that satisfies the strict complementarity. Suppose also that

HZ (x
?)� 0. (5.48)

Then, x ? is a local minimizer of the problem (5.32).

56

C
H

A
P

T
E

R

6
A DYNAMICAL SYSTEMS PERSPECTIVE ON

OPTIMIZATION

6.1 Introduction

A dynamical system consists of a phase space, whose coordinates describe
the state at any instant, and a dynamical rule that specifies the immediate
future of all state variables, given only the present values of those same
state variables (Meiss [60]).

In continuous-time, a dynamical system can be represented by systems of
differential equations of the form

d x (t)
d t

= r (x (t), t), (6.1)

where x ∈ S is the state vector with S ⊂Rn being an open set, t ∈ T is the
time, and r : S ×T → S is the dynamical rule.

57

6 A Dynamical systems perspective on optimization

In this work, we mainly consider time-invariant systems, i.e.,

d x (t)
d t

= s (x (t)), (6.2)

where the dynamical rule s : S → S is time-independent.

Dynamical systems approaches have been used to study optimization
methods in many works of literature. Extensive studies on the connec-
tions between interior-point flows with linear programming methods can
be found in Helmke et al. [34, Chapter 4] and the references therein. In
Alvarez et al. [5], the authors presents a second-order gradient-like dynam-
ical system for optimization and mechanics. For quadratic programming
problems, Dörr et al. [25] proposes a dynamical system, which results in
trajectories that converge to the saddle point of the associated Lagrangian
function. Su et al. [84] studies the celebrated Nesterov’s accelerated gradi-
ent method using a dynamical system as the analysis tool. In Lessard et al.
[51], a framework based on dynamical systems is proposed to analyze and
design first-order unconstrained optimization methods. Recently, dynam-
ical systems are used to study optimization algorithms in the context of
machine learning theory (see, e.g., Arora et al. [8], Chizat et al. [21], and
Jordan [42]).

In some literature, optimization methods that use dynamical systems are
called trajectory methods. These methods construct optimization paths in
a way so that one or all solutions to the optimization problem are a priori
known to lie on these paths (Diener [24]). Typically, these optimization
paths are solution trajectories to ODE of first or second-order. Trajectory
methods are mainly studied for unconstrained optimizations for finding lo-
cal solutions (Behrman [12], Botsaris [16]), and global solutions (Griewank
[30], Snyman et al. [82]). Studies for constrained optimization are, however,
very limited, see Ali et al. [2] and Wang et al. [87], and the references therein.

6.2 First-order optimization methods: a
continuous-time dynamical systems perspective

To study the behavior of the method, we use a dynamical systems per-
spective, i.e., we use an ODE to model the iterative update process of the
optimization. Without loss of generality, assume that the iterative variable

58

6.3 Initial value problem

update formula of a first-order optimization method writes

xk+1 = xk +αω(xk), (6.3)

where k is the iteration number, α> 0 is the step size, andω :Rn →Rn is
a smooth function. The optimization path is the discrete trajectory that is
the set of xk , k = 1, 2, ...p , with xp being the last iterate.

Rewrite (6.3), we get

xk+1− xk

α
=ω(xk). (6.4)

We study the limiting behavior as the step size decreases, i.e., α ↓ 0,

lim
α→0

xk+1− xk

α
=ω(xk). (6.5)

Assume the above limit exists, then, as the step size approaches zero, the
solution trajectory becomes continuous. In continuous-time, the equation
that models the trajectory writes

d x

d t
=ω(x (t)), (6.6)

which is a dynamical system that is a system of ordinary differential equa-
tions. The link between a dynamical system and a first-order method that
has the form (6.3) is then clear: The optimization algorithm represented
in system (6.3) can be seen as applying the Euler method for solving the
continuous-time system (6.6).

We are especially interested in integral curves of the corresponding dy-
namical system and their behavior over long time spans. The former is
the asymptotic optimization path; and the latter reveals the convergence
behavior of the optimization method.

6.3 Initial value problem

In iterative optimizations, there is almost always an initial guess of the vari-
ables to start with. Expressed in the language of ODEs, it is an initial value
problem (IVP), which is also called the Cauchy problem. In the following,
some of the basics of the initial value problem are explained.

59

6 A Dynamical systems perspective on optimization

An initial value problem is a system that contains a differential equation
and an initial condition. For the time-invariant dynamical system (6.2), an
IVP writes







d x (t)
d t

= s (x (t)),

x (t0) = x0,
(6.7)

where s : S ⊂Rn →Rn with S being an open set, and x0 ∈ S . A solution to
an IVP is a function x that is the solution to the differential equation and
satisfies the initial condition

x (t0) = x0. (6.8)

Example

Consider the initial value problem







d x (t)
d t

= x ,

x (0) = 4.
(6.9)

Analytical solution

Solving the differential equation we get

x =C e t ,

where C is some constant. By the initial condition, we have

C e 0 = 4,

therefore, C = 4 and

x = 4e t .

Numerical solution

The simplest numerical method to solve the initial value problem may be
the Euler forward method. We solve the IVP (6.9) for 0 ≤ t ≤ 3 using the
numerical scheme shown in Algorithm 6.1.

60

6.3 Initial value problem

Algorithm 6.1: Euler method for the initial value problem (6.9)

Input: Time step∆t = 0.05, initial condition t0 = 0, x0 = 4
x ← x0

repeat
x ← x +∆t x ; t = t +∆t .

until t = 3.0;

Figure 6.1: Analytic solution (green line) and numerical solution
(blue line) for the initial value problem (6.9).

Discussion

Both analytical and numerical solution are plotted in figure 6.1. We note
that the result is plotted as the function x of the time t . It is to be distin-
guished with the trajectory of x in the phase space of a dynamical system.
The latter trajectory is the asymptotic optimization path in the variable
space.

6.3.1 Uniqueness and existence of the solution of an initial
value problem

The Picard’s existence theorem gives the conditions under which an ini-
tial value problem has a unique solution. Translated to an optimization

61

6 A Dynamical systems perspective on optimization

method, a unique solution means a unique optimization path that leads to
the same optimal solution whenever the same initial condition is given. In
this sense, the required conditions of uniqueness and existence constrain
the problems that an optimization algorithm can be applied for.

Consider the initial value problem (6.7). Formerly, if s is uniformly Lips-
chitz continuous in x and continuous in t , then for some value ε> 0, there
exists a unique solution x (t) to the initial value problem on the interval
�

t0−ε, t0+ε
�

. These conditions are deeply related to convergence analysis
of first-order optimization methods. For example, Theorem 2 gives the
convergence rate for the gradient descent method under the Lipschitz
continuity condition for the function gradients.

6.3.2 Maximal interval of existence

If the conditions of the Picard’s existence theorem are satisfied, then, the
initial value problem (6.7) has a unique solution x (t) defined on a maxi-
mal interval of existence Tx0

. Following Grant [29] and Sakka [75], some
properties of the maximal interval of existence are summarized below.

Lemma 1 (Maximal interval of existence). Consider the initial value prob-
lem (6.7). Let D be an open subset of Rn and assume that s is continuously
differentiable on D , i.e., s ∈ C 1(D). Then, for each point x0 ∈ D , there is
a maximal interval Tx0

= (α,β) on which the IVP has a unique solution
x (t ; x0). Furthermore,

1. If β <∞ (α>−∞) and if

lim
t→β−

x (t ; x0) = L (lim
t→α+

x (t ; x0) = L),

then L ∈ ∂ D .

2. If the above limit exists and L ∈D , then β =∞, s (L) = 0.

To unpack the lemma, the first point says that if the maximal interval of
existence is finite and the solution of the IVP converges to a point x ? = L ,
then the point x ? must lie on the boundary of the open set D . Intuitively,
it suggest that if the maximal interval of existence is finite and there exists

62

6.3 Initial value problem

a unique solution within this time interval, then the solution trajectory
will go out of the open set D .

The second point says that if the IVP converges to a point x ? inside the
open set D , then the maximal interval of existence is infinite and s (x ?) = 0.

Example

To illustrate these properties, we consider a gradient flow in 2D







d x(t)
d t

=−∇ f (x(t)),

x(0) = (−12,−10),
(6.10)

where f (x1, x2) =
(x1−3)2

25 + (x2−5)2
4 is a multivariate function.

In figure 6.2, we show trajectory ÖAB C that is the solution to the initial value
problem (6.10).

Figure 6.2: Maximal interval of existence on set Ω1 and Ω2.

We consider two open sets, the first is defined by the level set f (x(0)),

Ω1 =
�

(x1, x2) : f (x1, x2)< f (−12,−10)
	

. (6.11)

63

6 A Dynamical systems perspective on optimization

The second open set is defined as

Ω2 =
�

(x1, x2) : x1 < 0, x2 < 0
	

. (6.12)

The boundary ∂ Ω2 is illustrated as green lines in the figure.

By Lemma 1, we can make the following statements:

1) The time for the trajectory to travel from point A to C is infinite, since
the gradient flow converges to C and C is a point inside of the open
set Ω1.

2) The time for the trajectory to travel from point A to B is finite, since
B is a point on the boundary of the open set Ω2.

To understand the results, we can interpret the gradient flow (6.10) as an
equation of motion, i.e.,

d x

d t
= v (x), (6.13)

where the velocity is equal to the negative gradient v (x) = −∇ f (x). Ob-
viously, along the path dAB from A to B, the velocity v is strictly nonzero,
and its direction is positively correlated to the path direction. Further,
dAB has a finite length. Therefore, the travel time (existence time) of the
solution trajectory from A to B is finite. On the other hand, at point C the
velocity v (x) vanishes. By the definition of function f , the velocity field
is continuous. Thus, the closer the solution x (t) is getting to point C , the
smaller the velocity becomes, which results in an infinite determination
of the travel time.

6.4 Linear dynamical system

A special class of the dynamical system is the linear dynamical system. In
continuous-time, it may be written as

d x (t)
d t

= A(t)x (t) +B (t)u (t), (6.14)

where x (t) ∈Rn is the state vector, u (t) ∈Rm is the control vector, A ∈Rn×n

is the dynamics matrix, and B ∈Rn×m is the input matrix.

64

6.4 Linear dynamical system

If the system is time-invariant and autonomous, then A is constant and B
vanishes, therefore it writes

d x (t)
d t

= Ax (t). (6.15)

The solution of a nonlinear dynamical system (6.2) near a fixed point can
be well-approximated by a linear system (6.15). For system (6.2), a fixed
point is a point x ? such that s (x ?) = 0. Assume that the Jacobian matrix for
s (x) at x ? is A?, then, by Taylor approximation, we have

d x (t)
d t

≈ s (x ?) +A?(x (t)− x ?). (6.16)

Therefore,

d x (t)
d t

≈ A?x (t)−A?x ?, (6.17)

which is a linear dynamical system.

The linear dynamical system thus provides insight to the more difficult
nonlinear systems locally at fixed points. In the following, we show some
properties of the gradient descent method by looking at it through the lens
of linear dynamical systems.

Asymptotic local behavior of the gradient descent method

We consider unconstrained optimization problem (5.3) and use the gra-
dient flow to show asymptotic behavior of the gradient descent method
near critical points. Recall the gradient flow for f (x),

d x (t)
d t

=−∇ f (x (t)). (6.18)

Assume a critical point x ? of f (x), and choose a local Cartesian frame such
that x ? is the origin, then the gradient flow above can be well-approximated
by the linear system at x ?,

d x (t)
d t

=−H x (t), (6.19)

65

6 A Dynamical systems perspective on optimization

where H is the Hessian matrix of f and is symmetric by the assumed
smoothness of f (x). We further assume H is full rank.

Assume an initial condition near the critical point x ?,

x (0) = x0, (6.20)

then, the initial value problem has the approximate solution

x (t) = e −H t x0, (6.21)

where e −H t is a matrix exponential (see Appendix A.7). Since H is a real
symmetric matrix, it can be diagonalized by orthogonal matrices,

H =U DU T , (6.22)

where U column-wise contains the eigenvectors of H , and D is the diago-
nal matrix that contains the eigenvalues

D = diag(λ1,λ2, ...,λn). (6.23)

By the property of the matrix exponential, we have

e −H t =U e −D t U T . (6.24)

Therefore, the approximate solution of the gradient flow near the critical
point x ? is

x (t) =U e −D t U T x0 =U diag(e −λ1 t , e −λ2 t , ..., e −λn t)U T x0. (6.25)

If H is positive-definite, then, as t →+∞,

x (t)→ 0, (6.26)

for any initialization x0 close enough to the critical point x ?. Therefore,
the solution of the gradient flow converges to this critical point.

If H has a strict negative eigenvalue λi for some i ∈ [1, 2, ..., n], then, as
t →+∞,

|x (t)| ≥ |e −λi t u T
i x0|, (6.27)

66

6.4 Linear dynamical system

where ui is the i -th column of the matrix U , which is the i -th eigenvector
of H .

Therefore, if u T
i x0 6= 0, i.e., if x0 does not lie in the right null space of the

eigenvector ui , then

x (t)→∞, (6.28)

in exponential time.

Example

Consider function

f (x1, x2) = x 2
1 +3x1 x2−

1

2
x 2

2 , (6.29)

which has the gradient

∇ f (x1, x2) =
�

2x1+3x2, 3x1− x2

�T
, (6.30)

and the Hessian matrix

H =





2 3

3 −1



 . (6.31)

Apply eigendecomposition to H , we obtain

H =U DU T , (6.32)

where

U =





0.5257 −0.8507

−0.8507 −0.5257



 , (6.33)

and

D =





−2.8541 0

0 3.8541



 . (6.34)

67

6 A Dynamical systems perspective on optimization

The eigenvector that correspond to the negative eigenvalueλ1 =−2.8541 is
u1 = [0.5257,−0.8507]T . In figure 6.3, the negative gradient vectors around
the critical point x ? = (0,0) are shown. The red line corresponds to the
eigenvector u1. The green line corresponds to the eigenvector u2, which
is the right null space of u1 at x ?. As can be observed in the figure below,
only initializations that lie on the green line will converge to the critical
point x ?.

Figure 6.3: Negative gradient vectors near the critical point of
the function (6.29).

68

C
H

A
P

T
E

R

7
MODIFIED SEARCH DIRECTION

7.1 Introduction

This chapter presents the design of the present method: a modified search
direction method (MSDM) for inequality constrained optimization (Chen
et al. [19]). We consider the problem

min
x

f (x)

subject to g i (x)≤ 0, i = 1, ..., m
(7.1)

where f , g1, ..., gm :Rn →R are twice continuously differentiable.

The design of the method is inspired by the singular value decomposition
(SVD). First, the basics of the SVD are introduced. Then, the design of
the method for single inequality constrained optimization is presented.
Finally, we discuss the generalization of the method to multiple constraints
that uses the logarithmic barrier function.

69

7 Modified search direction

7.2 Basics of singular value decomposition

SVD is a generalization of the eigendecomposition of a symmetric matrix
to any m×n matrix. In this work, we only consider real matrices. Formally,
the singular-value decomposition of a matrix M is a factorization of the
form,

M=UΣVT =
min(m ,n)
∑

i=1

σi ui vT
i (7.2)

where M is an m×n matrix, U is an m×m orthogonal matrix,Σ is an m×n
rectangular diagonal matrix with non-negative numbers on the diagonal,
V is an n ×n orthogonal matrix and VT is the transpose of V.

The diagonal entriesσi of Σ are singular values of M. The vectors ui and
vi , which are the columns of U and V, are the left-singular vectors and
right-singular vectors of M, respectively. Since U and VT are orthogonal,
the columns of each of them form a set of orthonormal vectors, which can
be regarded as base vectors (Golub et al. [28]).

By the orthogonality, by (7.2), we have

Mvk =σk uk (7.3)

7.3 The design of the modified search direction

The idea behind the design of the modified search direction is to find a de-
scent direction of the objective function, such that the centrality conditions
are approached. In this section, we first introduce the central path and the
centrality condition. Then, the design of the modified search direction for
single inequality constrained problem is introduced.

7.3.1 Central path and centrality conditions

Central path is a ‘‘fundamental mathematical object’’ in studying inequal-
ity constrained optimization (Bayer et al. [11]). One way to motivate the
definition of the central path is to use the logarithmic barrier method,
which belongs to the class of the interior-point method.

70

7.3 The design of the modified search direction

The idea of the logarithmic barrier function is to approximately formulate
the inequality constrained problem as an equality constrained problem
to which Newton’s method can be applied (Boyd et al. [17]). Consider
problem (7.1) and assume it is convex. The logarithmic barrier is defined
as

Φ(x) =−
m
∑

i=1

log(−g i (x)), i = 1, ..., m , (7.4)

and the approximated optimization problem is given as

minimize f (x) +
1

t
Φ(x)

= f (x) +
1

t

m
∑

i=1

− log(−g i (x)),
(7.5)

where t is a positive parameter. The logarithmic barrier (7.4) grows without
bound as g i (x)→ 0−. As t ↑+∞, the solution of the approximated uncon-
strained problem (7.5) converges to the solution of the original constrained
problem (7.1) asymptotically.

From the approximated problem (7.5), the central path can be defined.

Definition 3 (Central path). The central path associated with problem
(7.1) is defined as the set of central points x ?(t), t > 0. The necessary and
sufficient conditions, which characterize the central point, are

0=∇ f (x ?(t))+
1

t
∇Φ(x ?(t))

=∇ f (x ?(t))+
1

t

m
∑

i=1

1

−g i (x ?(t))
∇g i (x

?(t)).
(7.6)

Although the approximated problem (7.5) has the form of unconstrained
optimization, and the condition (7.6) looks identical to the corresponding
first-order optimality condition, it shall not be considered as a regular
unconstrained problem. In fact, two things are hidden in the reformulated
problem (7.5): 1) the parameter t must be strictly positive, and 2) the
logarithmic barrier function Φ(x) is defined only if g i (x)< 0, i = 1, 2, ..., m .

71

7 Modified search direction

In the following, we elaborate the central point condition (7.6). First, we
define

λ?i (t) =
1

−t g i (x ?(t))
, i = 1, ..., m . (7.7)

λ?i (t) is called dual feasible if the condition (7.6) holds (Boyd et al. [17]).

We then have the following centrality conditions at a central point x ?,

g i (x
?)≤ 0, i = 1, ..., m

λ?(t)� 0,

∇ f (x ?) +
m
∑

i=1

λ?i (t)∇g i (x
?) = 0,

−λ?i (t)g i (x
?) = 1/t , i = 1, ..., m

(7.8)

The only difference between the KKT conditions (5.41)- (5.44) and the
centrality conditions (7.8) is that the complementarity condition (5.42) is
replaced by −λ?i g i (x ?) = 1/t . Obviously, the centrality conditions recover
the KKT conditions with the limiting behavior as t →+∞.

Figure 7.1 shows the central path for a linear programming problem with
7 inequality constraints. At the central point x ?(t = tk), the centrality con-
ditions (7.8) are fulfilled, i.e., the objective gradient∇ f is parallel with the
gradient of the logarithmic barrier∇Φ.

7.3.2 The steepest descent direction for the objective and
constraint function in `2-norm

We consider single inequality constrained optimization. In section 5.3,
we have shown that the direction of the gradient descent is the steepest
descent direction in Euclidean norm,

d f (x) =−
∇ f (x)
|∇ f (x)|

. (7.9)

Similarly, the ‘‘steepest descent direction’’ for the constraint function can
be written as

dg =−
∇g (x)
|∇g (x)|

. (7.10)

72

7.3 The design of the modified search direction

x�(t=tk)

x�(t�+�)

c

Figure 7.1: Central path for a linear programming problem with
7 linear constraints. The dashed curves show the three contour
lines of the logarithmic barrier function. The level curve of the

objective function is tangent to the barrier function’s contour line
at x ?(tk). The central path converges to the optimal point

x ?(t →∞) (Boyd et al. [17]).

The directional derivative along any vector s for function f (x) and g (x)
reads

∇s f (x) =∇ f (x)T s,

∇sg (x) =∇g (x)T s.
(7.11)

Note that∇s f (x) and∇sg (x) are now scalars. By (7.11), we have

∇s f (x)
|∇ f (x)|

=
∇ f (x)T

|∇ f (x)|
s,

∇sg (x)
|∇g (x)|

=
∇g (x)T

|∇g (x)|
s,

(7.12)

73

7 Modified search direction

which can be written in the matrix form




∇s f (x)
|∇ f (x)
∇sg (x)
|∇g (x)



=





∇ f (x)T

|∇ f (x)|
∇g (x)T

|∇g (x)|



s. (7.13)

Set

m=





∇ f (x)T

|∇ f (x)|
∇g (x)T

|∇g (x)|



 , (7.14)

which is a sensitivity matrix that contains the `2-normalized gradient of the
objective and constraint function. This sensitivity matrix maps any search
direction s to the directional derivatives of the objective function f (x) and
constraint function g (x), both scaled by the inverse of the `2-norm of the
respective function gradient. The input-output system represented by the
sensitivity matrix m is studied by SVD in the following.

7.3.3 Singular value decomposition of the sensitivity matrix m

We apply SVD to the sensitivity matrix m:

m=UΣVT =
min(2,n)
∑

i=1

σi ui vT
i , (7.15)

where n is the number of control (design) variables. For large-scale prob-
lems, we have n � 2. Therefore, two left-singular vectors ui and two right-
singular vectors vi (i =1 or 2) are obtained by SVD.

Compare (7.3) with (7.13) and by the definition of SVD, we can make the
following statements:

1. the left-singular vector ui has two entries and the right-singular
vector vi has n entries.

2. The first entry ui 1 corresponds to the directional change in the ob-
jective function ∇s f (x)

|∇ f (x)| and the second entry ui 2 corresponds to the

directional change in the constraint function ∇sg (x)
|∇g (x)| .

3. The right-singular vector vi corresponds to the direction s.

74

7.3 The design of the modified search direction

A variational view

Recall the definition for the variation (2.38):

y (x ,α) = y ?(x) +α(ỹ (x)− y ?(x)),

and (2.39):

δ=
∂

∂ α

�

�

�

�

α=0

.

And compare the functional variation (2.44) with the definition of the
directional derivative of a function f (x) along direction s,

∇s f (x) =∇ f (x)T s=
∂

∂ α

�

�

�

�

α=0

f (x+αs),

we may interpret the results of applying SVD to the sensitivity matrix m
via a variational perspective,

mδvi =σiδui , i = 1, 2. (7.16)

Standardization paradigm for the singular vectors

In an optimization process, the search direction should be a proper de-
scent direction of the objective function if the optimization problem is
formulated as a minimization problem. According to previous discussions,
each δvi can be used as a base search direction for the variable update.
We propose a standardization paradigm based on the orthogonality of the
singular vectors.

- v1: by taking δv1 as the variable update, we obtain a change in the
objective as well as in constraint function [∇s f (x)

|∇ f (x) ,
∇sg (x)
|∇g (x)]

T =σ1δu1,
which is a decrease in the objective function and an increase in the
constraint function.

- v2: by takingδv2 as the variable update, we obtain a change in the ob-
jective as well as in the constraint function [∇s f (x)

|∇ f (x) ,
∇sg (x)
|∇g (x)]

T =σ2δu2,
which is a decrease in the objective function and a decrease in the
constraint function.

75

7 Modified search direction

The signs of the singular vectors can be changed to meet the paradigm by
simultaneously multiplying−1 to the left-singular vector and the respective
right-singular vector.

Based on the standardization paradigm, a proper descent direction of the
objective function can have the form

sβ =β1v1+β2v2, (7.17)

where β1,β2 ∈R are non-negative parameters.

Characteristics of v1 and v2 at central path

At the central path, by (7.6), the gradients of the objective and constraint
function are parallel. Thus, the sensitivity matrix m has rank 1, and

σ2 = 0,

m=σ1u1vT
1 .

(7.18)

Resulting in the variable update δv1 being parallel with the steepest de-
scent direction d f =−

∇ f (x)
|∇ f (x)| ,

d T
f v1 = 1. (7.19)

7.3.4 Modifying the steepest descent direction

We denote the angle between v1 and d f as α1 and the angle between v2

and d f as α2, then,

cosα1 =
d T

f v1

|d f ||v1|
,

cosα2 =
d T

f v2

|d f ||v2|
.

(7.20)

Thus, we can rewrite the steepest descent direction d f as

d f = cosα1v1+ cosα2v2. (7.21)

Modifying the formula (7.21) by introducing a parameter c ≥ 1 to increase
the contribution of v2, we get the modified search direction

sc = cosα1v1+ c · cosα2v2. (7.22)

76

7.4 Basic characteristics

The modified search direction sc fulfills (7.17) and is thus a decent direction
of the objective function.

By (7.19) and recall that d f and v1 are unit vectors, then, at the central path,
it holds

cosα1 = 1. (7.23)

We call cosα1 the correlation factor for the centrality conditions and use
it to monitor the optimization process. The closer the correlation factor
cosα1 is to 1, the better the centrality conditions are fulfilled.

The basic characteristics of the modified search direction is demonstrated
with a computational example in the next section.

7.4 Basic characteristics

Consider the following 2D optimization problem:

min
x1,x2

f = (x1−2)2+ (x2−2)2

subject to g =−
1

10
(x1−3)2− x2+3≤ 0.

(7.24)

Singular value decomposition of the sensitivity matrix m

We choose an initial point in the feasible domain x = (−12,−4) and its
sensitivity matrix m can be calculated as follows:

m=





1
|∇ f |

∂ f
∂ x1

1
|∇ f |

∂ f
∂ x2

1
|∇g |

∂ g
∂ x1

1
|∇g |

∂ g
∂ x2



=





−0.9191 −0.3939

0.9487 −0.3162



 . (7.25)

Applying SVD to the sensitivity matrix m, we obtain the left-singular vectors
that arranged in the standardization paradigm proposed in section 7.3.3

u1 =





−0.7071

0.7071



 , u2 =





−0.7071

−0.7071



 , (7.26)

77

7 Modified search direction

Figure 7.2: Vectors v1, v2 at x= (−12,−4) for problem (7.24).

and the respective right-singular vector v1 and v2,

v1 =





0.9991

0.0416



 , v2 =





−0.0416

0.9991



 , (7.27)

as well as the singular values,

σ1 = 1.3219, σ2 = 0.5026. (7.28)

The right-singular vectors v1, v2 and their related angles α1,α2 (defined in
(7.20)) are illustrated in figure 7.2.

Variable update using v1 and v2

We show computational experiments that update the variables using v1

and v2. The iterative update formula reads

xk+1 = xk +αvi , i = 1, 2, (7.29)

where α is some tuned step size.

Figure 7.3 shows the consecutive variable updates using v1: at each itera-
tion, we obtain a new variable that decreases the objective function and

78

7.4 Basic characteristics

increases the constraint function. The resulting optimization trajectory
reaches the boundary of the constraint faster than the gradient descent
trajectory.

Figure 7.3: An iterative update of the variable using v1 for the 2D
optimization problem (7.24).

Figure 7.4: An iterative update of the variable using v2 for the 2D
optimization problem (7.24).

79

7 Modified search direction

Figure 7.4 shows the consecutive variable updates using v2: at each itera-
tion, we obtain a new variable that decreases both the objective function
and the constraint function. The optimization converges to a point x?

near (−23.9, 6.7), where the constraint gradient is parallel to the objective
function gradient. At x?, the centrality conditions are fulfilled.

Figure 7.5 shows the plot for the correlation factor that monitors the opti-
mization progress. We observe that the correlation factor increases steadily
and converges to 1. Therefore, the centrality conditions are approached
iteratively when using v2 for the variable update. In the following, we show
various results obtained by applying the modified search direction to the
2D optimization problem (7.24).

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 5 10 15 20 25 30

C
o
rr

e
la

ti
o
n
 f
a
c
to

r

Number of iterations

Figure 7.5: The correlation factors during the variable update
process in figure 7.4 are shown.

Variable update using the modified search direction

We show computational results that use the modified search direction
(7.22) for the variable update. In each iteration, we update the variable
with

xk+1 = xk +αsc , (7.30)

where α> 0 is some step size.

In figure 7.6, the modified search direction method with c = 10.0 is shown.
The blue squares indicate the optimization variable at each optimization

80

7.4 Basic characteristics

iteration, the black lines show the negative objective gradient directions;
and the pink lines show the negative constraint gradient directions.

Figure 7.6: Optimization with the modified search direction
with parameter c = 10.0.

The initial variable is x0 = (−20,−26). As one can observe, while the opti-
mization proceeds, the angle between the black and pink lines increases
until both lines become close to parallel. It approaches the optimal solu-
tion by traversing the interior of the feasible domain.

81

7 Modified search direction

0 .84

0 .86

0 .88

0 .9

0 .92

0 .94

0 .96

0 .98

1

1 .02

0 5 10 15 20 25 30 35 40 45 50

C
o
rr

e
la

ti
o
n
 f
a
c
to

r

Number of iterations

Figure 7.7: Correlation factors that monitor the optimization
process shown in figure 7.6.

In figure 7.7, we plot the correlation factor of the optimization process that
is illustrated in figure 7.6. The correlation factor increases iteratively during
the optimization process. The variable updates follow the optimization
path where the correlation factor is close to 1 until the constraint becomes
active. In other words, the centrality conditions are approached iteratively,
and a solution is found by following the central path.

In figure 7.8, we show the different optimization paths for different param-
eters c . One can observe: the bigger the chosen parameter c , the further
the optimization trajectory is getting pushed away from the boundary of
the constraint.

Figure 7.9 shows the optimization processes with different initializations,
and the parameter c = 5.0 is chosen. Starting from six different points,
the modified search direction method can successfully achieve the local
minimum by traversing inside the feasible domain.

82

7.4 Basic characteristics

Figure 7.8: Optimization paths with different parameters c .

Figure 7.9: Optimization paths with parameter c = 5.0 and
different initializations.

83

7 Modified search direction

7.5 Modified search direction method for multiple
inequality constraints

With the logarithmic barrier defined in (7.4), the present modified search
direction method is generalized to solve multiple inequality constrained
problems. The basic idea is to assemble the gradient information of all
inequality constraint gradients into a single gradient vector. The gradient
of the logarithmic barrier function reads

∇Φ(x) =
m
∑

i=1

−
1

g i (x)
∇g i (x). (7.31)

∇Φ(x) is the sum of all constraint gradients scaled with the respective
− 1

g i (x)
, which is a positive factor. The factor − 1

g i (x)
grows quickly as the

constraint function approaches zero. Intuitively, the closer the variable x
gets to the boundary of a constraint, the larger its contribution to∇Φ(x).
Substitute∇Φ(x) in the sensitivity matrix (7.14), we get the sensitivity ma-
trix for multiple constraints

m=





∇ f (x)T

|∇ f (x)|
∇Φ(x)T
|∇Φ(x)|



 . (7.32)

The modified search direction is then computed in the same way as de-
scribed in section 7.3.

Example

Consider the following problem:

min
x1,x2

f = (x1−2)2+ (x2−2)2, (7.33)

84

7.5 Modified search direction method for multiple inequality constraints

which is subjected to the inequality constraints g i , with i = 1, ..., 5:

g1 =−2x1− x2+8≤ 0

g2 =−
1

10
(x1−3)2− x2+3≤ 0

g3 = x2−7≤ 0

g4 = x1−15≤ 0

g5 =−x1− x2+5.4888≤ 0

(7.34)

As shown in figure 7.10, starting from three different initial points, the
present method successfully finds the optimal solution with the parameter
c = 5.0.

Figure 7.10: Optimization paths with three different
initializations.

The dashed lines represent the different optimization paths, the solid lines
visualize the five constraints, and the circles illustrate the contours of the
objective function. It is also noteworthy that there is a degeneracy of the
constraints at the optimum solution, and the proposed method is able to
tackle this difficulty.

85

C
H

A
P

T
E

R

8
DERIVATION OF THE FORMULA

We show the derivation of the present formula

sζ =−
∇ f (x)
|∇ f (x)|

−ζ
∇g (x)
|∇g (x)|

, 0≤ ζ< 1 (8.1)

from the modified search direction (7.22),

sc = cosα1v1+ c · cosα2v2, c > 0.

Recall the sensitivity matrix m at x ,

m(x) =





∇ f (x)T

|∇ f (x)|
∇g (x)T

|∇g (x)|



 . (8.2)

In the following, we use ∇ f ,∇g instead of ∇ f (x),∇g (x) to lighten the
notation.

Recall the SVD for the sensitivity matrix m

m= UΣV T =
2
∑

i=1

σi ui vT
i .

87

8 Derivation of the formula

The columns ui and vi are orthonormal. Thus, we have

mmT = UΣV T (UΣV T)T = UΣV T (VΣT U T) = UΣΣT U T , (8.3)

which is the diagonalization of the symmetric matrix mmT . Therefore, it
suggests computing U and ΣΣT by applying the eigendecomposition to
mmT . Since Σ is a diagonal matrix, the singular values of m are square
roots of eigenvalues of mmT .

First, mmT writes

mmT =





∇ f T

|∇ f |
∇g T

|∇g |





�

∇ f
|∇ f |

∇g
|∇g |

�

=





1 cosθ

cosθ 1



 , (8.4)

where θ is the angle between∇ f and∇g ,

cosθ =
∇ f T∇g

|∇ f ||∇g |
. (8.5)

By the standardization paradigm presented in section 7.3.3, we can factor-
ize the matrix mmT and obtain the eigenvalues

λ1 = 1− cosθ ,

λ2 = 1+ cosθ ,
(8.6)

and the eigenvectors, respectively,

u1 =
�

−
p

2
2

p
2

2

�T
,

u2 =
�

−
p

2
2 −

p
2

2

�T
.

(8.7)

The singular values are the square roots of λ1,λ2,

σ1 =
p

1− cosθ ,

σ2 =
p

1+ cosθ .
(8.8)

By the property of SVD, we have




∇ f T

|∇ f |
∇g T

|∇g |



=





−
p

2
2 −

p
2

2
p

2
2 −

p
2

2









p
1− cosθ 0

0
p

1+ cosθ









vT
1

vT
2



 . (8.9)

88

8 Derivation of the formula

Thus,

v1 =
1

p
2−2 cosθ

�

−
∇ f

|∇ f |
+
∇g

|∇g |

�

,

v2 =
1

p
2+2 cosθ

�

−
∇ f

|∇ f |
−
∇g

|∇g |

�

,

(8.10)

Furthermore,

cosα1 =−
�

∇ f

|∇ f |
, v1

�

=

p
1− cosθ
p

2
,

cosα2 =−
�

∇ f

|∇ f |
, v2

�

=

p
1+ cosθ
p

2
.

(8.11)

Recall the definition of the modified search direction

sc = cosα1v1+ c · cosα2v2.

Inserting (8.10) and (8.11) into the modified search direction (7.22), we get

sc =−
∇ f

|∇ f |
−
(c −1)

2

�

∇ f

|∇ f |
+
∇g

|∇g |

�

. (8.12)

As we are mainly interested in the direction of the vector field sc , we can
rewrite it as

sζ =−
∇ f

|∇ f |
−ζ
∇g

|∇g |
,

where ζ= c−1
c+1 . With c ∈ [1,+∞), we have ζ ∈ [0, 1).

89

C
H

A
P

T
E

R

9
GLOBAL BEHAVIOR AND CONVERGENCE

In this chapter, the asymptotic global behavior of the method is shown.
The main focus is to show that the method globally finds KKT solutions.
We also show that the method finds critical points of the objective function
in the feasible set.

To study the theory of the method, we start with the single constrained
optimization problem

min
x

f (x),

subject to g (x)≤ 0.
(9.1)

A generalization of the results to multiple constraints is presented in chap-
ter 11. Note, the first two sections, 9.1 and 9.2, provide basic assumptions
and results for the investigations in chapters 9 - 11.

9.1 Assumptions

For problem (9.1), we make mild assumptions:

91

9 Global behavior and convergence

(A1) Coercive condition for the objective function f (x), i.e.,

lim
x→∞

f (x) = +∞;

(A2) ∇ f (x) 6= 0 in the feasible set Ω = {x : g i (x)≤ 0, i = 1, ..., m};

(A3) ∇g i (x) 6= 0, i = 1, ..., m in the feasible set Ω;

(A4) f , g1, ..., gm :Rn →R are twice continuously differentiable functions.

If function f (x) is coercive and continuous, then it has a global minimizer.
We do not assume the functions to be convex. Therefore there may exists
more than one local minimizer for the optimization problem. Further, if
the function f (x) is twice continuously differentiable, then the minimizers
are among the critical points of f (x). The assumptions (A2) and (A3) make
sure that the present search direction vector field (8.1) is well-defined
in the feasible set Ω. Note that to show different results of the method,
assumptions (A1)-(A4) must not be simultaneously satisfied.

9.2 Preliminaries

Recall the search direction vector field (8.1),

sζ(x) =−
∇ f (x)
|∇ f (x)|

−ζ
∇g (x)
|∇g (x)|

, 0≤ ζ< 1.

We study the present method via a dynamical systems perspective, i.e.,







d x

d t
= sζ(x),

x |t=0 = x0,
(9.2)

which is an initial value problem. Let the solution trajectory of (9.2) be
x (t ;ζ, x0), which is the trajectory in the phase space that travels with time t
and is dependent on the parameter ζ and the initial condition x0. Further,
we denote the maximal interval of existence of x (t ;ζ, x0) in Rn as Tζ,x0

.
Again, Tζ,x0

is dependent on the parameter ζ and the initial condition x0.

We denote the set where the system (9.2) is well-defined as E .

92

9.2 Preliminaries

Definition 4 (Set E).

E := {x : |∇ f (x)| 6= 0, |∇g (x)| 6= 0, x ∈Rn}. (9.3)

9.2.1 Normalized central path condition

Recall the gradient condition for the central point (7.8), for single inequality
constrained optimization problem (9.1), it writes

∇ f (x (τ))+λ(τ)∇g (x (τ)) = 0, (9.4)

where the previous path parameter t is rewritten as τ to avoid ambiguity
with the time t in a dynamical system.

Normalizing the gradient∇ f (x) and∇g (x) in (9.4), we obtain

∇ f (x)
|∇ f (x)|

+
∇g (x)
|∇g (x)|

= 0, (9.5)

which we call the normalized central path condition. Comparing (9.5) with
(9.4), the central path parameter τ has vanished. The equation (9.5) char-
acterizes the central path, which differs from (9.4), which instead charac-
terizes a point on the central path.

Furthermore, we propose a geometric condition that characterizes the
central path,

cosθ (x) =
∇ f (x)T∇g (x)
|∇ f (x)||∇g (x)|

=−1, (9.6)

where θ is the angle between∇ f (x) and∇g (x).

Observe that cosθ (x)

1) is a continuously differentiable function of x , and

2) it reaches its own minimum −1 when x is at the central path,

we can conveniently define a neighborhood of the central path with the
level set of cosθ (x).

93

9 Global behavior and convergence

Definition 5 (µ-neighborhood of the central path). A µ-neighborhood of
a central path is defined by the function level set of cosθ (x),

Θµ := {x : g (x)≤ 0, cosθ <−µ},µ ∈ [0, 1]. (9.7)

Intuitively, Θµ is a cone-like neighborhood around the central path. Obvi-
ously, Θµ shrinks to the central path as µ→ 1−.

9.2.2 Lipschitz continuity for sζ

We show regularity of the proposed search direction vector field sζ. Namely,
it is Lipschitz continuous in a certain domain of interest.

First, we show that the solution trajectory x (t ;ζ, x0) always stays in a
bounded set.

Lemma 2. Suppose that assumptions (A1)(A3) and (A4) hold. Then, the
solution trajectory x (t ;ζ, x0) always stays in a bounded set Ω f (x0),

x (t ;ζ, x0) ∈Ω f (x0) = {x : f (x)≤ f (x0)}. (9.8)

This is to say that x (t ;ζ, x0) always stays in a set bounded by the level set of
the objective function given by the initial condition, f (x) = f (x0).

Proof. To prove the Lemma, we show that the objective function is mono-
tonic decreasing along the solution trajectory. The deformation of the
objective function f along x (t ;ζ, x0) reads,

d

d t

�

f (x (t ;ζ, x0))
�

=
d f (x)

d x
·

d x (t ;ζ, x0)
d t

=∇ f (x)T
�

−
∇ f (x)
|∇ f (x)|

−ζ
∇g (x)
|∇g (x)|

�

=−|∇ f (x)|
�

∇ f (x)T∇ f (x)
|∇ f (x)||∇ f (x)|

+ζ
∇ f (x)T∇g (x)
|∇ f (x)||∇g (x)|

�

=−|∇ f (x)|
�

1+ζcosθ (x)
�

.

(9.9)

With ζ ∈ [0, 1) and cosθ (x) ∈ [−1, 1], we have

1+ζcosθ (x)> 0. (9.10)

94

9.2 Preliminaries

Therefore,

d f (x (t ;ζ, x0))
d t

< 0. (9.11)

Thus, f (x (t ;ζ, x0)) is monotonic decreasing and the proof is complete.

The intersection of the bounded set Ω f (x0) and the feasible set gives the
bounded feasible set Ωx0

.

Definition 6 (Bounded feasible set Ωx0
). Given a feasible initialization

x0 ∈Ω, the bounded feasible set Ωx0
is defined by

Ωx0
:= {x : x ∈Ω f (x0) ∩Ω}. (9.12)

In Ωx0
, we show that the present vector field sζ is Lipschitz continuous.

Lemma 3 (Lipschitz continuity for sζ in Ωx0
). Suppose that assumptions

(A1)-(A4) hold and let the bounded feasible set Ωx0
be nonempty. Then, the

vector field sζ(x),ζ ∈ [0, 1] is Lipschitz continuous in Ωx0
, i.e., for all x , y in

Ωx0
,

|sζ(x)− sζ(y)|< L |x − y |, (9.13)

where L > 0 is a Lipschitz constant.

Proof. The bounded feasible setΩx0
is compact. Thus, by assumption (A4),

∇ f (x) and∇g (x) are Lipschitz continuous inΩx0
. Further, by assumptions

(A2) and (A3),∇ f (x) and∇g (x) are bounded away from 0, i.e.,

|∇ f (x)| ≥ a , |∇g (x)| ≥ b , ∀x ∈Ωx0
, (9.14)

for some positive numbers a , b . Therefore, ∇ f (x)
|∇ f (x)| and ∇g (x)

|∇g (x)| are Lipschitz

continuous. Thus, we have a Lipschitz continuity for sζ =−
∇ f (x)
|∇ f (x)| −ζ

∇g (x)
|∇g (x)|

in Ωx0
.

9.2.3 Deformation of the constraint function along the
solution trajectory

We show basic result of the deformation of g (x) along the solution trajec-
tory x (t ;ζ, x0).

95

9 Global behavior and convergence

Lemma 4. Suppose that assumptions (A1)(A3) and (A4) hold, then the
constraint function g decreases along the trajectory x (t ;ζ, x0) out of the
cone neighborhood Θζ and increases in Θζ.

Proof. We compute the deformation of constraint function g along the
solution trajectory x (t ;ζ, x0):

d

d t

�

g (x (t ;ζ, x0))
�

=
d g (x)

d x
·

d x (t ;ζ, x0)
d t

=∇g (x)T
�

−
∇ f (x)
|∇ f (x)|

−ζ
∇g (x)
|∇g (x)|

�

=−|∇g (x)|
�

∇g (x)T∇ f (x)
|∇g (x)||∇ f (x)|

+ζ
∇g (x)T∇g (x)
|∇g (x)||∇g (x)|

�

=−|∇g (x)|(cosθ (x) +ζ).

(9.15)

By the definition of the µ-neighborhood Θµ we get the proof directly.

9.3 Globally finding KKT solutions

In this section, we show the main result for the global behavior of the
present method in terms of first-order optimality (KKT solutions).

First, we prove that the trajectory x (t ;ζ, x0)must go out the feasible set, i.e.,
it reaches g (x (t])) = 0, for any feasible initialization x0. We further show
that the time t] is upper bounded by O(1

1−ζ). We then show that as ζ→ 1−,

cosθ (x (t]))→ −1, indicating that x (t]) is a central point. Summarizing
these results, we finally show that the trajectory x (t ;ζ, x0) globally finds
KKT solutions.

9.3.1 Reaching the boundary of the feasible set

We prove that the solution trajectory x (t ;ζ, x0)must reach the boundary
of the feasible set, i.e., it reaches g (x (t])) = 0, for some t] > 0.

Theorem 7. Suppose that assumptions (A1) - (A4) hold. Then

(i) the trajectory x (t ;ζ, x0)must go out of the feasible set with ζ ∈ [0, 1);

96

9.3 Globally finding KKT solutions

(ii) the minimum time in which the trajectory reaches the boundary of
the feasible set is at most C

1−ζ with C independent of ζ.

Proof. We proof (i) by contradiction.

Suppose that x (t ;ζ, x0) stays in the feasible set Ω for any t < Tζ,x0
. Then,

we can show that the maximal interval of existence Tζ,x0
is infinite.

By assumptions (A2) and (A3), the vector field sζ keeps C 1 continuous in
a neighborhood, since there is no critical point of f (x) and g (x) in the
feasible set. By Lemma 3, sζ(x) is uniformly Lipschitz continuous in Ωx0

.
Then, Picard’s existence theorem implies that Tζ,x0

=+∞.

We now show the contradiction. In the feasible set Ω, by assumption (A2),
we have

|∇ f (x (t ;ζ, x0))| ≥ A, (9.16)

with some positive numbers A. On the other hand, Lemma 2 ensures that
the objective function f (x) is bounded, i.e.,

| f (x (t ;ζ, x0)| ≤ B , ∀t < Tζ,x0
, (9.17)

for some positive number B . Integrating (9.9) shows
� ∞

0
−|∇ f (x (t ;ζ, x0))|(1+ζcosθ (x (t ;ζ, x0)))d t

= f (x (Tζ,x0
;ζ, x0))− f (x0)≥−2B .

(9.18)

Notice (1+ζcosθ (x (t ;ζ, x0)))> 0, for any ζ ∈ [0, 1). Therefore,
� ∞

0
|∇ f (x (t ;ζ, x0)|d t < 2B , (9.19)

which contradicts (9.16). This completes the proof for (i).

To proof (ii), let T]
ζ,x0

be the time in which the trajectory first reaches the

boundary of the feasible set, then (9.16) and (9.17) hold for 0 < t < T]
ζ,x0

.
Thus,

� T]ζ,x0

0
|∇ f |(1+ζcosθ)d t < f (x0)− f (x (Tζ,x0

;ζ, x0))≤ 2B .

97

9 Global behavior and convergence

Substitute the lower bound A for |∇ f (x)|, and the lower bound−1 for cosθ ,
then

� T]ζ,x0

0
A(1−ζ)d t < 2B . (9.20)

Hence

T]
ζ,x0

A(1−ζ)< 2B , (9.21)

which implies

T]
ζ,x0
≤

2B

A(1−ζ)
. (9.22)

Let C = 2B
A , Then T]

ζ,x0
< C

1−ζ holds. This ends the proof for (ii).

9.3.2 Finding KKT solutions at the boundary

We show that as ζ→ 1−, then, cosθ ((x (t])))→−1.

Theorem 8. Suppose that assumptions (A1) - (A4) hold. Assume ζ ∈ [0,1)
and x0 ∈Ω. Let x]ζ be the first point where the trajectory x (t ;ζ, x0) reaches
the boundary of the feasible set Ω, then

x]ζ ∈ {x : g (x) = 0, cosθ (x)≤−ζ}. (9.23)

This is to say that the point x]ζ belongs to the closure of the ζ-neighborhood

Θζ of the central path. Especially, the limit of x]ζ as ζ→ 1− is at the intersec-
tion of the central path and the boundary of the feasible set.

Proof. By Theorem 7, the trajectory x (t ;ζ, x0)must reach the boundary of

the feasible set Ω under assumptions (A1)-(A4). Let x]ζ = x (t];ζ, x0) be the
intersection point of the solution trajectory and the boundary of Ω. We
have, obviously,

(

g (x (t];ζ, x0) = 0,

g (x (t ;ζ, x0))< 0, t < t].
(9.24)

98

9.3 Globally finding KKT solutions

Hence

d

d t

�

g (x (t];ζ, x0))
�

≥ 0. (9.25)

By (9.15), we have

−|∇g (x (t];ζ, x0))|(cosθ (x (t];ζ, x0)) +ζ)≥ 0. (9.26)

Therefore,

cosθ (x (t];ζ, x0))≤−ζ. (9.27)

This ends the proof.

Remark 1. According to Theorem 8, as ζ → 1−, x (t]) is a KKT solution.
This is straightforward as the Lagrange multiplier λ? associated with the
Lagrangian function L(x ,λ) for the considered problem is

λ? =
|∇ f |
|∇g |

,

and
∇xL(x

]
ζ,λ?) =∇ f +λ?∇g = 0.

Under assumptions (A2) and (A3), λ? > 0. With g (x]ζ) = 0, the strict comple-

mentarity holds. To find out whether the point x]ζ is a local solution, one
needs to check the second-order sufficient conditions, which is the main
subject of the next chapter.

Remark 2. Based on Theorem 8, we propose an error measure ε > 0 for
the optimization solution,

ε= 1−ζ. (9.28)

According (9.23), the solution x]ζ satisfies

x]ζ ∈ {x : g (x) = 0, cosθ ≤−1+ε}. (9.29)

99

9 Global behavior and convergence

As discussed in Remark 1, the KKT conditions are satisfied for x]ζ as cosθ →
−1. A small value ε> 0 seems to be a natural error measure for the present
method. Additionally, ε is defined using the parameter ζ that determines
the shape of the optimization trajectory.

With the error measure ε, we can interpret Theorem 7(ii) as follows. It im-
plies that the solution time of the trajectory to find a first-order ε-optimal
solution is at most O(1/ε), which is the ergodic rate of convergence for
first-order methods.

9.4 Global convergence to critical points of f (x)

In the previous section, we assume that there is no critical point of f (x) in
the feasible set Ω. This implies that there is no potential optimal solution
in Ω. In general, this is certainly not the only case since there may exist
many local solutions inside the feasible set.

In this section, we show that the present method is able to find such a
critical point in the feasible set. Thus, our assumptions, naturally, cancel
out (A2).

A time-reparameterized system

First, notice that the vector field sζ is nonsmooth at critical points of f (x).
By Picard’s existence theorem, there is a difficulty in determining the
maximal interval of existence, as it may be finite1. To circumstance this
difficulty, we use a time-reparameterized system that is orbit-equivalent
to the original system (9.2).

Consider a time-reparameterized Y -system for (9.2),







d y

dτ
= |∇ f (y (τ))|sζ(y (τ)),

y (0) = x0.
(9.30)

1 If ζ= 0, the present system reduces to the normalized gradient flow for unconstrained
minimization, which is shown to be finite-time convergent using nontrivial nonsmooth
stability analysis Cortés [22, Theorem 8].

100

9.4 Global convergence to critical points of f (x)

To see the orbit-equivalence of (9.30) and (9.2), we study the reparameter-
ization in time:

dτ=
1

|∇ f (x (t))|
d t . (9.31)

(9.31) is well-defined in E (see Definition 4).

Then,

τ=
� t

0

1

|∇ f (x (u))|
d u =ψ(t), (9.32)

and

t =φ(τ) =ψ−1(τ). (9.33)

Set y (τ) = x (φ(τ)) = x (t), then y (τ) satisfies

d y (τ)
dτ

=
d x (t)

dτ

=
d x (t)

d t

d t

dτ

=
d x (t)

d t
|∇ f (x (t))|

= |∇ f (x (t))|sζ(x (t)).

(9.34)

Therefore,

d y (τ)
dτ

= |∇ f (y (τ))|sζ(y (τ)), (9.35)

which is the Y-system (9.30). Thus, we have

Lemma 5. The Y-system (9.30) is orbit-equivalent with the X-system (9.2)
in E .

Global convergence to critical points of f (x)

With Lemma 5, we now show that the solution trajectory x (t ;ζ, x0) is glob-
ally convergent to critical points of f (x).

101

9 Global behavior and convergence

Theorem 9. Suppose that the assumptions (A1)(A3)(A4) hold and∇g (x) 6= 0
in the whole Rn . Then, the trajectory converges to a connected subset of
critical points of the objective function f (x)with ζ ∈ [0, 1). Especially, if the
critical points of the objective function are isolated, then

lim
t→T −ζ,x 0

x (t ;ζ, x0) = xc , ∀ζ ∈ [0, 1), (9.36)

where∇ f (xc) = 0.

Proof. First, recall that system (9.2) is not well-defined when ∇ f (x) = 0.
At these critical points, the vector field sζ is nonsmooth. Therefore, the
maximal interval Tζ,x0

may be finite. To overcome this difficulty, we use
the Y -system (9.30). By Lemma 5, the Y-system has the same orbit as (9.2)
in the subset E ⊂Rn . It has a unique solution y (τ;ζ, x0) with an infinite
existence interval by Picard’s existence theorem.

For ζ ∈ [0, 1), consider an integral along y (τ;ζ, x0),

f (y (T ;ζ, x0)) = f (x0)−
� T

0
|∇ f |2(1+ζcosθ)(y (τ;ζ, x0))dτ.

Lemma 2 ensures
� T

0
|∇ f |2(1+ζcosθ)(y (τ;ζ, x0))dτ= f (x0)− f (y (T ;ζ, x0))≤M ,

with some positive number M independent of T . Hence

� ∞

0
|∇ f (y (τ;ζ, x0))|2dτ≤

M

1−ζ
<+∞. (9.37)

102

9.4 Global convergence to critical points of f (x)

We now show |∇ f (y (τ;ζ, x0))| is uniformly Lipschitz continuous in τ. No-
tice that

d

dτ
|∇ f (y (τ;ζ, x0))|=

d

dτ





n
∑

j=1

�

∂ f

∂ yj

�2




1
2

=
1

2





n
∑

j=1

�

∂ f

∂ yj

�2




− 1
2

n
∑

j=1

d

dτ

�

∂ f

∂ yj

�2

=
1

2

1

|∇ f |

n
∑

j=1

2
∂ f

∂ yj

d

dτ

�

∂ f

∂ yj

�

=
1

|∇ f |

n
∑

j=1

∂ f

∂ yj

n
∑

k=1

∂

∂ yk

�

∂ f

∂ yj

�

d yk

dτ

=
1

|∇ f |

n
∑

j=1,k=1

∂ f

∂ yj

∂ 2 f

∂ yj yk

d yk

dτ

=−
1

|∇ f |

n
∑

j=1,k=1

∂ f

∂ yj

∂ 2 f

∂ yj ∂ yk
|∇ f |

�

1

|∇ f |
∂ f

∂ yk
+
ζ

|∇g |
∂ g

∂ yk

�

.

Notice that for ζ ∈ [0, 1), we have
�

�

�

�

d

dτ
|∇ f (y (τ;ζ, x0))|

�

�

�

�

≤
n
∑

k=1, j=1

�

�

�

�

�

∂ f

∂ yj

�

�

�

�

�

�

�

�

�

�

∂ 2 f

∂ yk∂ yj

�

�

�

�

�

�

1

|∇ f |

�

�

�

�

∂ f

∂ yk

�

�

�

�

+
1

|∇g |

�

�

�

�

∂ g

∂ yk

�

�

�

�

�

.

By Cauchy-Schwarz inequality, we have
�

�

�

�

d

dτ
|∇ f (y (τ;ζ, x0))|

�

�

�

�

≤ |∇ f |

√

√

√

√

n
∑

k=1, j=1

�

�

�

�

�

∂ 2 f

∂ yk∂ yj

�

�

�

�

�

2√
√

√

n
∑

k=1

�

1

|∇ f |

�

�

�

�

∂ f

∂ yk

�

�

�

�

+
1

|∇g |

�

�

�

�

∂ g

∂ yk

�

�

�

�

�2

.

103

9 Global behavior and convergence

Further, we have

n
∑

k=1

�

1

|∇ f |

�

�

�

�

∂ f

∂ yk

�

�

�

�

+
1

|∇g |

�

�

�

�

∂ g

∂ yk

�

�

�

�

�2

=
n
∑

k=1

1

|∇ f |2

�

�

�

�

∂ f

∂ yk

�

�

�

�

2

+2
1

|∇ f ||∇g |

�

�

�

�

∂ f

∂ yk

∂ g

∂ yk

�

�

�

�

+
1

|∇g |2

�

�

�

�

∂ g

∂ yk

�

�

�

�

2
!

≤
n
∑

k=1

2

1

|∇ f |2

�

�

�

�

∂ f

∂ yk

�

�

�

�

2

+
1

|∇g |2

�

�

�

�

∂ g

∂ yk

�

�

�

�

2
!

= 4.

Therefore,

�

�

�

�

d

dτ
|∇ f (y (τ;ζ, x0))|

�

�

�

�

≤ 2|∇ f |

√

√

√

√

n
∑

k=1, j=1

�

�

�

�

�

∂ 2 f

∂ yk∂ yj

�

�

�

�

�

2

. (9.38)

By assumption (A4) and Lemma 2, the right-hand side of the above equa-
tion is bounded. There is a constant l so that

�

�

�

�

d

dτ
|∇ f (y (τ;ζ, x0))|

�

�

�

�

≤ l , ∀τ.

By the mean value theorem, we have a uniformly Lipschitz continuity for
|∇ f (y (τ))| in y :

�

�|∇ f (y (τ′;ζ, x0))| − |∇ f (y (τ′′;ζ, x0))|
�

�≤ l |τ′−τ′′|, ∀τ′,τ′′. (9.39)

Now, we claim

lim
τ→+∞

|∇ f (y (τ;ζ, x0))|= 0. (9.40)

If (9.40) does not hold, then there is a sequence of τ j →+∞ and a positive
constant b so that

|∇ f (x (τ j ;ζ, x0))| ≥ b > 0.

Choosing δ= b
2l , then

|∇ f (x (τ;ζ, x0))| ≥|∇ f (x (τ j ;ζ, x0))|

−
�

�|∇ f (x (τ j ;ζ, x0))| − |∇ f (x (τ;ζ, x0))|
�

�

≥ |∇ f (x (τ j ;ζ, x0))| − l |τ j −τ| ≥ b −δl =
b

2
,

104

9.4 Global convergence to critical points of f (x)

for any |τ j −τ| ≤δ. Therefore,

� ∞

0
|∇ f (x (τ;ζ, x0))|dτ≥

∞
∑

j=1

� τ j+δ

τ j−δ
|∇ f (x (τ;ζ, x0))|dτ

≥
∞
∑

j=1

� τ j+δ

τ j−δ

b

2
dτ=

∞
∑

j=1

δb =+∞.

(9.41)

This is a contradiction to (9.37). Hence,

lim
τ→+∞

|∇ f (y (τ;ζ, x0))|= 0. (9.42)

This proves that y (τ;ζ, x0) approaches the connected subset of the critical
points. An isolated condition makes sure that

lim
τ→+∞

y (τ;ζ, x0) = xc , (9.43)

for some critical point xc of the objective function. Recall that the Y-system
and the original X-system are orbit-equivalent in E , therefore

lim
t→T −ζ,x 0

x (t ;ζ, x0) = xc , ∀ζ ∈ [0, 1).

Thus, our proof is completed.

105

C
H

A
P

T
E

R

10
LOCAL BEHAVIOR AND CONVERGENCE

In this chapter, the local convergence behavior of system (9.2) is shown.
In particular, we show that the method is locally convergent to second-
order optimal solutions, provided that all saddles are strict. To our best
knowledge and refer to Nouiehed et al. [68], the present method is the first
known first-order method that finds a second-order optimal solution in the
presence of inequality constraints.

The present chapter is organized as follows. First, we introduce the relative
convex condition in 2D, which is a curvature relation between the level sets
of the objective and constraint function, and we show it is equivalent to the
second-order sufficient condition at the solution. Then, we generalize the
2D relative convex condition to higher dimensional problems using the
second fundamental form of differential geometry. As a key observation
in this work, we found that this curvature relation is hidden inside the
Jacobian matrix of the present search direction sζ. Finally, we show our
main results for local convergence by studying the linearized system.

107

10 Local behavior and convergence

10.1 Preliminary studies in 2D

Consider the nonconvex problem

min
x1,x2

f (x1, x2) = (x1−2)2+ (x2−2)2,

s.t. g (x1, x2) =−
1

10
(x1−3)2− x2+3≤ 0.

(10.1)

In figure 10.1, we plot the optimization trajectory with ζ= 0.9999 together
with a few depicted contours of both the objective function and the con-
straint function. We plot three points A, B, and C on the central path, where
the contours of the f (x1, x2) and g (x1, x2) are tangent to each other. We
choose an initial condition x0 that is located close to point A. We observe:
instead of heading to the left side of the central path, the optimization
trajectory finds its way to the right side. It then follows the central path,
but leaves at point C and reaches the other central path. It eventually finds
the optimal solution by following second central path. The question is
now, why does the optimization trajectory head to one side (point B) of a
central path over another (point A)? The answer may lie in the difference
in the curvatures of the contours of the objective and constraint function
between point A and B. We observe the following fact:

Let κ f and κg be the signed curvature of the contour curves of objective
and constraint function at the central path, respectively, both with the unit
normal vector ∇ f

|∇ f | perpendicular to the contour tangent (we refer Pressley
[71, p. 35] for a formal definition of the signed curvature). Then

- at point A: κ f −κg > 0;

- at point B: κ f −κg < 0.

Based on this observation, we conjecture the behavior of the optimization
trajectory: As ζ→ 1−, the optimization trajectory is able to approach and
follow a central path, on which the central point satisfies the relative convex
condition, which, for two-dimensional problems, is defined below.

Definition 7 (Relative Convex for 2D Problems). For problem (9.1), a point
x ? on the central path is said to be relative convex if

κ f (x
?)−κg (x

?)< 0. (10.2)

108

10.2 Relative curvature condition in higher dimensions

Figure 10.1: A study on the behavior of the optimization
trajectory for problem (10.1). Red line is the optimization

trajectory. Black dashed circles are the contours of the objective
function, while the blue dashed curves show the contours of the
constraint function. The dotted black lines are the central paths.

The conjectured condition can also be used to explain why the optimiza-
tion trajectory leaves the central path at point C, where κ f = κg , and heads
towards another central path.

10.2 Relative curvature condition in higher dimensions

We generalize the definition of the 2D relative convex condition (10.2) to
n > 2. This is done by studying the second fundamental form of the level
set manifold of the objective function f and the constraint function g . In
differential geometry, the second fundamental form of a surface imitates
the curvature of a curve and is invariant under parameter transformation
(Pressley [71, chapter 7]). In computational mechanics, it is the fundamen-
tal object used for analyzing curvatures of thin-shell structures, see, e.g.,
Basar et al. [9] and Kiendl [46].

109

10 Local behavior and convergence

10.2.1 The second fundamental form for surfaces inR3

We first briefly review the classical Gaussian definition of the second fun-
damental form for a parametric surface S inR3. In the work Disquisitiones
generales circa superficies curvas, Gauss introduced a coordinate system
x = (x1, x2, x3) for the analysis. In this particular frame, S is the graph of
a twice continuously differentiable function, x3 = S (x1, x2), and the plane
x3 = 0 is tangent to the surface S at the origin (0,0). This leads to the van-
ishing lower order terms in the second-order Taylor approximation of S ,

S (x1, x2)≈
1

2
x T Hs x = L

x 2
1

2
+M x1 x2+N

x 2
2

2
, (10.3)

where Hs is the Hessian matrix of S with respect to x1, x2 at (0,0). The
second fundamental form of the surface S at the origin is defined as the
quadratic form

IIs = Ld x 2
1 +2M d x1d x2+N d x 2

2 . (10.4)

The benefit of the choice of the coordinate frame is then obvious: the
second fundamental tensor coefficients L , M , N can be directly obtained
by computing the Hessian matrix of the function x3 = S (x1, x2). In the
following, we refer to such a coordinate frame as the Gaussian frame. We
generalize it to higher dimensional manifolds and use it to study the relative
convex condition.

10.2.2 Relative convex condition in higher dimensions

Following the Gaussian frame, we choose a coordinate system (x1, x2, ..., xn)
with the origin be a point on the central path in the feasible set, and xn lies
in the direction of ∇ f

|∇ f | , i.e.,

∇ f (0, ..., 0) = [0, ..., 0,
∂ f

∂ xn
]T 6= 0. (10.5)

In the following, we denote x̃ = (x1, x2, ..., xn−1) for brevity. By the implicit
function theorem, we have a function xn =φ(x̃), which satisfies

f (x1, ..., xn−1,φ(x̃))≡ f (0, ...0, 0
︸ ︷︷ ︸

n entries

) = constant. (10.6)

110

10.2 Relative curvature condition in higher dimensions

Figure 10.2: Curvature relations in 2D (left) and in higher
dimensions (right).

Furthermore, we have in a neighborhood of the origin,

∂ φ

∂ xk
=−

∂ f

∂ xk
/
∂ f

∂ xn
, 1≤ k ≤ n −1. (10.7)

By ∂ f
∂ xk
= 0 we have

∂ φ(0)
∂ xk

= 0, 1≤ k ≤ n −1. (10.8)

Let Hφ be the Hessian matrix of φ about variable x̃ . Then, the second
fundamental form for the level set of the objective function f at the origin
is the quadratic form

IIφ = 2d x̃ T Hφ(0)d x̃ . (10.9)

Similarly, we define the function xn =ψ(x̃) that satisfies the implicit func-
tion g= constant and has the Hessian matrix Hψ. Then, the second funda-
mental form for the level set of the constraint function g at the origin is

IIψ = 2d x̃ T Hψ(0)d x̃ . (10.10)

Comparing (10.2), we introduce the relative convex condition in higher
dimensions,

IIφ − IIψ < 0. (10.11)

111

10 Local behavior and convergence

In the sense of positive definite matrix, we have

Hφ(0)≺Hψ(0). (10.12)

We note that (10.12) is invariant under coordinate transformation on the
hypersurface (i.e., on x̃): the second fundamental coefficients of both
manifolds are components of a covariant tensor of second-order, and the
surface coordinate differentials d x̃ are contravariant vectors. An illustra-
tion of the relative convex condition in different dimensions is given in
figure 10.2.

At (x1, ..., xn−1) = (0, ..., 0), we have

∂ 2φ

∂ xk∂ x j
=
∂

∂ xk

�

∂ φ

∂ x j

�

=
∂

∂ xk

�

−
∂ f

∂ x j
/
∂ f

∂ xn

�

=−
∂ f
∂ xn

∂ 2 f
∂ xk ∂ x j

− ∂ f
∂ x j

∂ 2 f
∂ xk ∂ xn

�

∂ f
∂ xn

�2

=−
�

∂ f

∂ xn

�−1
∂ 2 f

∂ xk∂ x j
.

(10.13)

Notice that

∇2
ex f =

�

∂ 2 f

∂ xk∂ x j

�

1≤k , j≤n−1

. (10.14)

Thus, we have

Hφ(0) =−
�

∂ f

∂ xn

�−1

∇2
ex f (0). (10.15)

Similarly, we have for Hψ(0)

Hψ(0) =−
�

∂ g

∂ xn

�−1

∇2
ex g (0). (10.16)

Due to the positive definiteness (10.12), we have

−
�

∂ f

∂ xn

�−1

∇2
ex f (0)≺−

�

∂ g

∂ xn

�−1

∇2
ex g (0). (10.17)

112

10.2 Relative curvature condition in higher dimensions

Recall at the origin we have

∂ f

∂ xn
= |∇ f |,

∂ g

∂ xn
=−|∇g |.

Therefore we have

1

|∇ f |
∇2
ex f (0) +

1

|∇g |
∇2
ex g (0)� 0. (10.18)

Set

C̃ =
1

|∇ f |
∇2

x̃ f (0) +
1

|∇g |
∇2

x̃ g (0), (10.19)

which we call the relative curvature matrix.

Definition 8 (High-dimensional relative convex condition). A point x on
the central path is called nondegenerate if C̃ (x) is invertible; it is relative
convex if C̃ (x) is a positive definite matrix.

Remark 3. Let a point x ? satisfy the KKT conditions. The relative convex
condition C̃ (x ?)� 0 is equivalent to the second-order sufficient conditions
for constrained optimization. This is straightforward as the matrix

H̃ = |∇ f (x ?)|C̃ (x ?) =∇2
x̃ f (0) +

|∇ f |
|∇g |

∇2
x̃ g (0)� 0

is equivalent to the projected Hessian being positive definite (Nocedal et al.
[67, p. 348]), with a Lagrange multiplier λ? satisfying the KKT conditions
and strictly complementarity holding,

λ? =
|∇ f |
|∇g |

> 0, g (x ?) = 0.

Here, we deduce the relative convex condition from the perspective of the
difference in the curvatures of the function contours in the feasible set. It
is defined on the central path and may be seen as a perturbed version of
the second-order sufficient conditions.

113

10 Local behavior and convergence

10.3 Jacobian matrix of sζ

At the origin, the Jacobian matrix for ∇ f
|∇ f | reads

J n
f =

�

∂

∂ x j

�

∂xi
f

|∇ f |

�

�

1≤i , j≤n

. (10.20)

Recall at the origin,

∇ f

|∇ f |
=

1

|∇ f |

�

∂ f

∂ x1
, ...,

∂ f

∂ xn−1
,
∂ f

∂ xn

�T

= [0, ..., 0, 1]T . (10.21)

For 1≤ i ≤ n −1 and 1≤ j ≤ n ,

∂

∂ x j

�

∂xi
f

|∇ f |

�

=
1

|∇ f |2

�

|∇ f |
∂ 2 f

∂ xi ∂ x j
−
∂ f

∂ xi

∂ |∇ f |
∂ x j

�

=
1

|∇ f |
∂ 2 f

∂ xi ∂ x j
.

(10.22)

For i = n and 1 ≤ j ≤ n ,
∂xi

f
|∇ f | has the maximum value 1, resulting in its

partial derivatives being zero,

∂

∂ x j

�

∂xn
f

|∇ f |

�

= 0. (10.23)

Thus, the Jacobian matrix J n
f for ∇ f

|∇ f | at the origin writes

J n
f =



















∂
∂ xn

�

∂x1
f

|∇ f |

�

J n−1
f

...

∂
∂ xn

�

∂xn−1
f

|∇ f |

�

0 · · · 0 0



















, (10.24)

where J n−1
f is an (n −1)× (n −1)matrix,

J n−1
f =

1

|∇ f |

�

∂xi
∂x j

f
�

1≤i , j≤n−1
=

1

|∇ f |
∇2

x̃ f (x). (10.25)

114

10.3 Jacobian matrix of sζ

Similarly, the Jacobian matrix J n
g for ∇g

|∇g | at the origin reads

J n
g =



















∂
∂ xn

�

∂x1
g

|∇g |

�

J n−1
g

...

∂
∂ xn

�

∂xn−1
g

|∇g |

�

0 · · · 0 0



















, (10.26)

where J n−1
g is an (n −1)× (n −1)matrix,

J n−1
g =

1

|∇g |

�

∂xi
∂x j

g
�

1≤i , j≤n−1
=

1

|∇g |
∇2

x̃ g (x). (10.27)

Therefore, the Jacobian matrix of −sζ writes

∂

∂ x j

�

∇ f

|∇ f |
+ζ
∇g

|∇g |

�

1≤ j≤n

= J n
f +ζJ n

g

=
�

J n
f + J n

g

�

+ (ζ−1)J n
g ,

(10.28)

with

J n
f + J n

g =



















∂
∂ xn

�

∂x1
f

|∇ f | +
∂x1

g
|∇g |

�

J n−1
f + J n−1

g

...

∂
∂ xn

�

∂xn−1
f

|∇ f | +
∂xn−1

g
|∇g |

�

0 · · · 0 0



















. (10.29)

Note that at origin, the relative curvature matrix writes

C̃ =
1

|∇ f |
∇2

x̃ f (0) +
1

|∇g |
∇2

x̃ g (0) = J n−1
f + J n−1

g ,

which leads to our key observation: At the central path, the relative curva-
ture matrix C̃ defined in (10.19) is hidden inside the Jacobian matrix of the
search direction vector field sζ.

115

10 Local behavior and convergence

10.4 The linearized system

With (10.28) and (10.29), we can linearize sζ at the origin by Taylor approx-
imation.

A local coordinate frame

To avoid extensive local coordinate transformations, we choose a new
coordinate frame, say x̃ again, which basis vectors are the eigenvectors
of the matrix C̃ . This is possible because the second fundamental form is
invariant under parameter transformation in x̃ and that by assumption
(A4), the relative curvature matrix C̃ is symmetric.

In the new coordinate frame, the matrix C̃ transforms to a diagonal matrix
C̃λ with its eigenvalues λi , i = 1, ..., n −1,

C̃ =











λ1 0

...

0 λn−1











. (10.30)

Hence, the matrix (10.29) can be rewritten as

�

∂

∂ x j

�

∇ f

|∇ f |
+
∇g

|∇g |

�

�

1≤ j≤n

=

















λ1 µ1

...
...

λn−1 µn−1

0 · · · 0 0

















,

(10.31)

where µi =
∂
∂ xn

�

∂xi
f

|∇ f | +
∂xi

g
|∇g |

�

, 1≤ i ≤ n −1.

The tangent of the central path

We denote the tangent line of the central path at the origin as

xi = li xn , 1≤ i ≤ n −1. (10.32)

116

10.4 The linearized system

Recall that
�

∇ f
|∇ f | +

∇g
|∇g |

�

is the normalized central path condition. Then, the

directional derivatives of
�

∇ f
|∇ f | +

∇g
|∇g |

�

along the direction (10.32) are zero.
Hence,

λi li +µi = 0, 1≤ i ≤ n −1. (10.33)

Taylor approximation for sζ

With the expressions introduced above, the Taylor expansion of sζ writes

−
∇ f

|∇ f |
−ζ
∇g

|∇g |
=−

















λ1 −λ1l1

...
...

λn−1 −λn−1ln−1

0 · · · 0 0

































x1

...

xn−1

xn

















+ (1−ζ)

















b1

�

ai j

�

1≤i , j≤n−1

...

bn−1

0 · · · 0 0

































x1

...

xn−1

xn

















+

















0
...

0

ζ−1

















+o (ρ),

(10.34)

where ai j =
1
|∇g |

�

∂xi
∂x j

g
�

, 1≤ i , j ≤ n−1 and bi =
∂
∂ xn

�

∂xi
g

|∇g |

�

, 1≤ i ≤ n−1.

Summarizing the above analysis we have

Lemma 6. If a point on the central path L is nondegenerate, then the system
(9.2) may locally be considered as a perturbation of the linear system:























d xi

d t
=−λi xi +λi li xn + (1−ζ)





n−1
∑

j=1

ai j x j + bi xn



 , 1≤ i ≤ n −1

d xn

d t
=−(1−ζ).

(10.35)

117

10 Local behavior and convergence

10.5 Asymptotic local convergence behavior

In the following, we use the matrix representations






Λζ =
�

−λiδi j + (1−ζ)ai j

�

(n−1)×(n−1) ,

Bζ =
�

λi li + (1−ζ)bi

�

(n−1)×1
,

(10.36)

where δi j is the Kronecker-delta.

Lemma 7. Given an initial point x0 = [x 0
1 , x 0

2 , ..., x 0
n]

T , x 0
n > 0, the linearized

equation system (10.35) has the solution
(

x̃ = e −Λζt V0,ζ+Λ
−1
ζ Bζxn (t) + (1−ζ)Λ−2

ζ Bζ,

xn (t) = x 0
n − (1−ζ)t ,

(10.37)

with x̃ ∈Rn−1 being a column vector and

V0,ζ = x̃0−Λ−1
ζ Bζx 0

n − (1−ζ)A
−2
ζ Bζ. (10.38)

Proof. Given an initial point x0 =
�

x 0
1 , x 0

2 , ..., x 0
n

�T
, x 0

n > 0, by (10.35) we
have

xn (t) = x 0
n − (1−ζ)t . (10.39)

Insert (10.39) into the first equation of (10.35), we get

d xi

d t
=−λi xi +(1−ζ)

n−1
∑

i=1

ai j x j +[λi li +(1−ζ)bi][x
0
n − (1−ζ)t]. (10.40)

Using the matrix representations in (10.36), we have

d x̃

d t
=−Λζ x̃ + [x 0

n − (1−ζ)t]Bζ. (10.41)

(10.41) has the solution (see Appendix A.6)

x̃ = e −Λζt V0,ζ+Λ
−1
ζ Bζxn (t) + (1−ζ)Λ−2

ζ Bζ, (10.42)

where V0,ζ is a vector of constants depending on the initial point x0 and ζ,

V0,ζ = x̃0−Λ−1
ζ Bζx 0

n − (1−ζ)A
−2
ζ Bζ.

118

10.6 Local convergence to local minimizers

To observe the behavior of the linearized system (10.35) as ζ → 1−, we

eliminate the variable t with t = x 0
n−xn (t)

1−ζ , and rewrite the solution (10.42)
as

x̃ = e −Λζ
x 0

n−xn (t)
1−ζ V0,ζ+Λ

−1
ζ Bζxn + (1−ζ)Λ−2

ζ Bζ. (10.43)

Notice that d xn (t)
d t < 0, therefore xn (t) = x 0

n − (1−ζ)t < x 0
n .

Theorem 10. Let ζ → 1− and the point on the central path be relative
convex, then the solution of the system (10.35) converges to the tangent of
the central path L defined in (10.32).

Proof. We study the solution (10.43).Following the observation described

above, xn < x 0
n . let ζ→ 1−, then

(x 0
n−xn)
1−ζ → +∞. With the relative convex

condition, we have λi > 0, i = 1, ..., n − 1. If ζ → 1−, the eigenvalues of
Λζ >

1
2 min(λi)> 0. Resulting in Λ1 � 0 by denoting Λζ→1− as Λ1.

By the matrix exponential, we have

e −Λζ
x 0

n−xn
1−ζ → 0(n−1)×(n−1), as ζ→ 1−. (10.44)

Denote Bζ→1− as B1, the solution (10.43) converges to

x̃ =Λ−1
1 B1 xn =

�

li xn

�

(n−1)×1
, (10.45)

which is the tangent of the central path L as is given in (10.32).

10.6 Local convergence to local minimizers

We show that as ζ→ 1−, the present system (9.2) almost always converges
to local minimizers with random initializations in a small neighborhood
around a critical point, provided all saddles are strict. Notice, the conver-
gence here means that a part of the optimization trajectory converges to a
central path where a local minimizer locates.

First, we give a formal definition for the saddle point in the considered con-
strained optimization (9.1) using the relative curvature matrix C̃ defined
in (10.19). Our focus is on strict saddle points that have directions where
the curvature inscribed in C̃ is strictly negative. Referred to Definition

119

10 Local behavior and convergence

8, we call such a point a strict relative saddle. Referred to Remark 3, the
projected Hessian matrix of the Lagrangian function for these points has
at least one negative eigenvalue.

Definition 9 (Strict relative saddle). A nondegenerate central point x ? ∈Ω
is a strict relative saddle, if λmin(C̃) < 0, where λmin(H) is the smallest
eigenvalue of the matrix H .

We show local convergence behavior of the present system at a small
neighborhood of a central point x ?.

Theorem 11. Suppose a point x ? on the central path is nondegenerate and
strict relative saddle. Let ζ→ 1−, then the solution of system (10.35) will
leave a neighborhood of the central point x ?, provided the initialization x0 =
[x 0

1 , x 0
2 , · · · , x 0

n]
T with x 0

n > x ?n is uniformly random in a small neighborhood
around x ?.

Proof. Let ζ→ 1− throughout the proof. Applying the eigendecomposi-
tion for Λζ, we get

Λζ = Pζdiag(λ1,ζ,λ2,ζ, ...,λn−1,ζ)P
T
ζ , (10.46)

where diag(·) denotes a diagonal matrix, Pζ is an orthonormal matrix,

Pζ =
�

δi j +pi j ,ζ

�

(n−1)×(n−1) ,

and
¨

λi ,ζ =λi +o (1),

pi j ,ζ = o (1).
(10.47)

By the matrix exponential, we have

e −Λζt = Pζdiag(e −tλ1,ζ , ..., e −tλn−1,ζ)P T
ζ

= Pζdiag(e −tλi ,ζ)
�

δi j +o (1)
�T

(n−1)×(n−1) .
(10.48)

By (10.38), we have

V0,ζ = x̃0−Λ−1
ζ Bζx 0

n − (1−ζ)Λ
−2
ζ Bζ

=
�

x 0
j − l j x 0

n +o (1)
�

(n−1)×1
.

(10.49)

120

10.6 Local convergence to local minimizers

Left-multiplying e −Λζt V0,ζ by P T
ζ , we obtain

P T
ζ e −Λζt V0,ζ = diag(e −tλi ,ζ)

�

δi j +o (1)
�T �

x 0
j − l j x 0

n +o (1)
�

= diag(e −tλi ,ζ)
�

x 0
i − li x 0

n +o (1)
�

(n−1)×1
.

(10.50)

Assume a negative eigenvalue λk of C̃λ with 1≤ k ≤ n −1. By (10.42), we
have

|x̃ |= |P T
ζ x̃ | ≥ e −tλk ,ζ |x 0

k − lk x 0
n +o (1)|. (10.51)

If λk < 0, then

λk ,ζ <
1

2
λk < 0.

If x 0
k − lk x 0

n 6= 0, then as t = x 0
n−xn

1−ζ →+∞, we have

|x̃ | ≥ e −t (λk+o (1))|x 0
k − lk x 0

n +o (1)| ≥ e −
1
2 tλk

1

2
|x 0

k − lk x 0
n | →+∞.

(10.52)

Thus, the present system leaves a neighborhood of the strict saddle x ?.
For the present system to converge to the strict saddle x ?, the initial point
[x 0

1 , x 0
2 , · · · , x 0

n]
T must satisfy

x 0
k = lk x 0

n , (10.53)

with k as the index of the negative eigenvalue of the matrix C̃λ. Equation
(10.53) implies that the initial point x0 must lie in an (n −1)−dimensional
subset Es ⊂Rn . The subset Es has measure zero in Rn . If the initialization
is uniformly random in a small neighborhood of x ?, the probability of the
initial point landing inEs is zero. Obviously, the result holds if C̃λ has more
than one negative eigenvalue, and thus the proof is complete.

Remark 4. The local behavior of the present method shown in Theorem 11
closely resembles the behavior of the gradient descent method at a small
neighborhood of a critical point as shown in section 6.4: the gradient flow
avoids a strict saddle point x ? with a uniformly random initialization in a
small neighborhood around x ?.

121

C
H

A
P

T
E

R

11
THE METHOD FOR MULTIPLE

CONSTRAINTS

The present method is generalized to treat multiple inequality constrained
optimization problem (7.1),

min
x

f (x),

subject to g i (x)≤ 0, i = 1, .., m ,

where f , g1, ..., gm : Rn → R are twice continuously differentiable func-
tions.

As presented in section 7.5, we use a logarithmic barrier function based
formulation for multiple constraints. In this chapter, we formalize the
method in the framework of the gradient descent akin method. We show
that our theoretical results from the previous two chapters hold for this
formulation.

123

11 The method for multiple constraints

11.1 Derivation of the formula

First, recall the logarithmic barrier function for the optimization problem
(7.4),

Φ(x) =−
m
∑

i=1

log(−g i (x)).

As g i (x)→ 0−, Φ(x)→+∞ and is not differentiable. In order to overcome
this difficulty, we consider a level set of the barrier function,

LM (Φ(x))≡ {x : Φ(x) =M }, (11.1)

where M ∈R+. The level set LM (Φ(x)) approximates and approaches the
boundary of the original feasible set Ω as M ↑+∞.

Consider a subset of the original feasible set,

ΩM = {x : Φ(x)≤M }. (11.2)

Obviously, the boundary of ΩM is the level set LM (Φ(x)). Denote

G (x) = Φ(x)−M , (11.3)

the optimization problem (7.1) can then be approximately formulated as

minimize f (x),

subject to G (x)≤ 0,
(11.4)

which is a single constrained optimization so that our previous analysis
and results can be applied. Notice that in general∇G (x) 6= 0,∀x ∈ΩM may
not hold. To escape these critical points, we suggest using the gradient
descent −∇ f (x). Thus, we propose a dynamical system for solving the
multiple constrained optimization problem

d x

d t
=











−
∇ f (x)
|∇ f (x)|

−ζ
∇Φ(x)
|∇Φ(x)|

, if ∇Φ(x) 6= 0;

−∇ f (x), if ∇Φ(x) = 0.

(11.5)

Note that in computational practice, reaching a critical point of Φ(x) is of
rarity. The second ODE of the above system serves as a safeguard for the
present method.

124

11.2 Theoretical results

11.2 Theoretical results

Straightforwardly, we can obtain the following theoretical results.

Corollary 1. Let x]ζ be the first point where the resulting trajectory of the
system (11.5) reaches the boundary of ΩM , then

x]ζ ∈ {x : Φ(x) =M , cosθ ≤−ζ}.

This is to say that the point x]ζ belongs to the closure of ζ-neighborhood of

the central path. Especially, the limit of x]ζ as ζ→ 1− is at the intersection of
the central path and the boundary of the subset ΩM .

Proof. A similar method as used in Theorem 8 gives the proof.

Let x? ∈ΩM be a point on the central path of the barrier function method.
Set

C̃Φ =
1

|∇ f |
∇2

x̃ f (x?) +
1

|∇Φ|
∇2

x̃Φ(x
?). (11.6)

Definition 10. A point x? ∈ ΩM on the central path is relative convex if
C̃Φ(x?) is a positive definite matrix.

Corollary 2. Let ζ→ 1−, and the point x ? on the central path be relative
convex. Then, the solution of the linearized system of (11.5) converges to the
tangent line of the central path L at x ?.

Proof. In the subset ΩM ,∇Φ is Lipschitz continuous. Under the assump-
tion (A2), we have ∇Φ 6= 0 along a central path. A uniformly continuous
argument shows that∇Φ 6= 0 in a close neighborhood of the central path.
A similar method shown in section 10 gives a proof.

To conclude, using the barrier function formulation for problem (7.1), the
resulting trajectory achieves an approximated local solution that locates
on the boundary of the subsetΩM . Notice, too, that the system (11.5) does
not depend on the choice of M , and ΩM exhaust Ω, i.e., Ω = ∪M>0ΩM .
This means that the resulting trajectory keeps approaching the boundary
of the original feasible set Ω by crossing the boundary of any subset ΩM

125

11 The method for multiple constraints

dependent on M . As a result, it eases the practical implementation of
the method since no extra parameter M needs to be specified for the
stopping criterion, but rather, a check for each constraint violation would
be sufficient.

126

C
H

A
P

T
E

R

12
COMPUTATIONAL EXAMPLES

12.1 Numerical implementation

In continuous-time, the canonical flow of the present method is defined
by the differential equation

d x

d t
= sζ(x), (12.1)

where

sζ(x) =











−
∇ f (x)
|∇ f (x)|

−ζ
∇Φ(x)
|∇Φ(x)|

, if ∇Φ(x) 6= 0,

−∇ f (x), if ∇Φ(x) = 0.

Just as the gradient descent method can be seen as applying the Euler
method for a gradient flow, the simplest numerical optimization imple-
mentation for the present flow (12.1) is the explicit forward method

xk+1 = xk +αsζ(xk), (12.2)

127

12 Computational examples

where α> 0 is the step size and k is the iteration counter.

In practical applications, however, this procedure might result in poor
performance. We first notice that, according to Theorem 8 and Remark
2, the accuracy of the solution increases as the parameter ζ increases.
However, as ζ→ 1−, |sζ| ↓ 0 at the central path. This means that the velocity
of the dynamical system at a close neighborhood of the central path can
be very small, if a large ζ is chosen. In cases where the optimal solution is
still far away, this velocity may be unnecessarily small, and a larger step
size may be chosen to accelerate the optimization progress.

Another difficulty results from the potential poor scaling of the logarithmic
barrier function, which results in ill-conditioned Hessian near the bound-
ary of the feasible set (Nocedal et al. [67, p. 500-502]). We will show test
examples that suffer from this problem in the following.

To overcome these difficulties, a step size rule that considers and adapts the
parameter ζmay be needed. A good practical self-adaptive ζ is expected to
result in an optimization trajectory that behaves similar to the Mehrotra’s
practical implementation for the interior-point method (Mehrotra [59]),
which is well-known for its very good performance and its difficulty in
deriving a convergence theory.

Another way to improve the performance may be the implementation of a
momentum method or the Nesterov Accelerated Gradient (Nesterov [66])
for the present system (12.1). Although our first implementations have
shown promising performance on some test problems, we leave a sys-
tematical study together with the design of a step size rule (that considers
self-adaptive ζ) for future work.

12.1.1 A time-reparameterized system

In this work, we propose a simple yet robust1 framework that is a time-
reparameterized system of (12.1):

d x

d t
=

sζ(x)
|sζ(x)|

, (12.3)

where a fixed parameter ζ is chosen. In this way, we can only obtain solu-
tions that are (1−ζ)-suboptimal solutions (refer to Theorem 8 and Remark

1 Robustness is shown in our computational experiments.

128

12.1 Numerical implementation

2). Assume that the solutions exist only on the boundary of the feasible set,
we can define the set of all (1−ζ)-suboptimal solutions as

Xζ = {x] : x] ∈Θζ, max(g i (x
])) = 0}, (12.4)

where Θζ is the ζ-neighborhood given in Definition 5. A different way
of defining the suboptimal solutions is given in Skaf et al. [81] and some
useful applications using suboptimal solutions are shown.

Referring to the work by Murray et al. [63], we can say that the systems
(12.3) and (12.1) are topologically equivalent and solutions of (12.3) are
merely arc-length reparameterizations of (12.1) solutions. As the system
(12.1) may move slowly at the close neighborhood of a central path, the
system (12.3) moves in the same orbit with constant speed. In Murray
et al. [63], the authors show that the normalized gradient descent method
escapes saddle points ‘‘quickly’’. This might be beneficial when solving
nonconvex optimization problems, where the gradient of the function
∇ f (x) vanishes at saddle points. In fact, this phenomenon may be similar
to the present system (12.1), where |sζ| ↓ 0 at the central path as ζ→ 1−.
In the following, we show numerical experiments applying the system
(12.3) with appropriate constant step sizes. Note, by using the logarithmic
barrier function formulation for multiple constraints in the system (12.3),
we may still suffer from potential poor scaling behavior near feasible set
boundaries.

12.1.2 Numerical implementation

A sketch of the pseudocode representation for our numerical implemen-
tation is shown in Algorithm 12.1. The stopping criterion is set as any
violation of the constraints since an optimal solution is found when the
trajectory reaches the boundary of the feasible set (see Theorem 7(i), The-
orem 8, and Remark 1). In our test experiments, all optimal solutions are
nontrivially located at the boundary of the feasible set. Therefore, the pro-
posed stopping criterion is sufficient. For problems that may have a strictly
feasible solution, we suggest an additional stopping criterion akin to the
gradient descent method for unconstrained optimizations. Based on our
computational experience, we suggest choosing the parameter ζ in the
range of 0.95∼ 0.99. The step size α is, however, problem-dependent, and
parameter tuning is needed.

129

12 Computational examples

Algorithm 12.1: Constant step size and normalized sζ

Input: Step size α, parameter ζ, initial configuration x0

x ← x0

repeat
∇ f ←∇ f (x),∇Φ←∇Φ(x)

if∇Φ 6= 0 then
sζ←−

∇ f
|∇ f | −ζ

∇Φ
|∇Φ|

x ← x +α sζ
|sζ |

if∇Φ= 0 then
sζ←−∇ f
x ← x +α sζ

|sζ |

until stopping criterion is met;
Output: Optimized configuration x

12.2 Experiments with common benchmarks

We first show numerical experiments for the inequality constrained prob-
lems in the EA competition at the 2006 IEEE Congress on Evolutionary
Computation (Liang et al. [52]). These benchmarks are widely used among
the community of evolutionary algorithms. We choose them as test exam-
ples for three reasons. First, they are well defined constrained optimization
problems and have different characteristics (Rao [72]). Second, they are
nontrivial to solve with first-order methods. Third, the relatively simple
formulation of the optimization problems allows us to gain deeper in-
sight into the numerical behavior of the present method. We choose the
inequality constrained optimization problems for the experimentation.
The problem G 12 is excluded because it has a feasible set consisting of
93 disjointed spheres. For the problem G 24, which has a feasible set con-
sisting of two disconnected sub-regions, we choose initial designs in the
sub-region that contains the reported optimal solution.

12.2.1 Results with constant ζ and step size

We conduct numerical experiments with the parameter ζ= 0.98 and tuned
fixed-step sizes. All bound constraints are treated as inequalities. Random

130

12.2 Experiments with common benchmarks

initializations, that are away from the reported optimal solution, are se-
lected in the feasible sets. As shown in Table 12.1, apart from problem G19,
we find solutions for the test problems that have an absolute error less
than 2e-2 compared to the reported optima. More accurate results can be
obtained when we choose shorter step sizes and larger parameter ζ.

For problem G19, the reported optimal solution x? = (1.6699e-17, 3.9637e-
16, 3.9459, 1.060e-16, 3.2831, 9.9999, 1.1283e-17, 1.2026e-17, 2.5071 e-15,
2.2462e-15, 0.3708, 0.2785, 0.5238, 0.3886, 0.2982) is not achievable with a
fixed-step size that has a Euclidean norm of 5e −2.

For problems G01, G04, G06, G07, G08, G24, we find sub-optimal solutions
that are close to the reported optimal designs. For problems G09, G10, G18,
G19, sub-optimal solutions close to local minima are found. It appears that
the ‘‘no free lunch theorem’’ (Wolpert et al. [89]) may apply to the present
method implementation: while we solve some of the test problems in no
more than a few hundred of iterations, a much larger number of iterations
are needed for the remaining problems.

Table 12.1: Results with the parameter ζ= 0.98 and tuned step
sizes

Prob. step size iters. f(x ?) f(xζ) abs. error

G01 0.002 2362 -15 -14.7215 1.86e-2

G04 0.2 136 -3.0665e+4 -3.0657e+4 2.85e-4

G06 0.002 4826 -6.9618e+3 -6.8371e+3 1.79e-2

G07 0.0027 3009 24.3062 24.7876 1.98e-2

G08 0.01 66 -9.5825e-2 -9.5063e-2 0.80e-2

G09 0.05 120 6.8063e+2 6.9238e+2 1.73e-2

G10 0.35 5319 7.0492e+3 7.1898e+3 1.99e-2

G18 0.01 257 -0.8660 -0.8546 1.32e-2

G19 0.05 294 32.6556 2.7120e+2 7.30

G24 0.02 268 -5.5080 -5.4147 1.69e-2

Still, to get more insight into the numerical behavior of the method im-
plementation, we plot the centrality measure cosθ over the optimization
process for each test problem in figure 12.1. The dashed-lines indicate the

131

12 Computational examples

Figure 12.1: cosθ plots.

ζ-neighborhood. The results may be summarized in three categories:

Category 1. G04, G09: optimization traverses within the ζ-neighborhood;

Category 2. G01, G07, G08, G19, G19, and G24: optimization traverses to
the ζ-neighborhood but zigzags when it gets close to the solutions;

Category 3. G06 and G10: optimization zigzags around the ζ-neighborhood
during the optimization process.

132

12.2 Experiments with common benchmarks

Figure 12.2: Feasible set for problem G06

The reasons for the zigzagging may be two-folds. First, it may be due to the
poor scaling of the logarithmic barrier function near the boundary of the
feasible set. The second reason may be the ‘‘overshooting’’: a large fixed-
step size is unable to achieve a small ζ-neighborhood when close to an
optimal solution. In problem G06 and G10, the central paths locate close to
the boundaries of the respective feasible sets, thus resulting in zigzagging
throughout the whole optimization process. In figure 12.2, we show the
narrow feasible set of the test problem G06. The central path traverses close
to the two boundaries of the feasible set. A similar phenomenon can be
observed in problem G10. In problem G08, the zigzagging disappears when
sufficiently short step sizes are chosen. It thus supports our argument of
the ‘‘overshooting’’.

12.2.2 Convergence to second-order optimal solutions

In chapter 10.6, we have shown that the present method finds a second-
order optimal solution asymptotically. Here, further numerical results are
reported. To check the second-order optimality, the solution needs to
be first-order stationary (or sufficiently accurate in terms of first-order

133

12 Computational examples

optimality). Therefore, problem G04 and G09 of Category 1 are chosen for
the experiment, because both test cases converge smoothly and higher
accuracy can be achieved by increasing the parameter ζ. We note that
problem G09 is a difficult problem with a sextic polynomial objective
function and a quartic polynomial constraint function. Therefore, the
strict relative saddle condition may fail (see Definition 9 and compare Lee
et al. [50] for unconstrained optimizations).

We conduct multi-start studies with random initializations. The second-
order optimality is checked by the projected Hessian of the Lagrangian
function. First, the Hessian of the Lagrangian function for the logarithmic
barrier approximated problem at the solution x ? is computed,

∇x xL(x ?,λ?) =∇x x f (x ?) +λ?∇x xΦ(x
?). (12.5)

Referred to Remark 3, the Lagrange multiplier can be computed as

λ? =
|∇ f (x ?)|
|∇Φ(x ?)|

.

The projected Hessian matrix can then be computed by (5.46),

Z T∇x xL(x ?,λ?)Z ,

where the columns of the matrix Z span the null space of∇Φ(x ?). The ma-
trix Z can be computed by applying the QR factorization for∇Φ (Nocedal
et al. [67, p. 349]). Once the projected Hessian is obtained, we can check its
positive definiteness to justify the second-order optimality. We note that
the feasibility of a solution is guaranteed due to our choice of the stopping
criterion: the algorithm stops by any violation of the constraints.

For problem G04, we choose ζ = 0.99 and a fixed-step size α = 0.1. For
problem G09, we choose ζ= 0.98 and 0.99, and a fixed-step size α= 0.05.
All numerical experiments achieve second-order optimal solutions.

Table 12.2 shows results for problem G04 with random initializations. Table
12.3 and 12.4 show results for problem G09 with random initializations and
different parameters ζ. Comparing Table 12.3 and 12.4, it can be observed
that the method finds different local minima by varying the parameter ζ.
Thus, it is evident that the parameterζ shapes the optimization trajectories,
which can result in different local solutions for a nonconvex problem.

134

12.2 Experiments with common benchmarks

For comparison, the reported solutions for problem G04 and G09 are pre-
sented below.

The reported solution for problem G04 is

x] =







































78

33

29.9952569246815985

45

36.7758129057882073







































.

The reported optimal function value is

f (x]) =−3.066553867178332×104.

For problem G09, the reported optimal solution is

x] =































































2.33049935147405174

1.95137236847114592

−0.477541399510615805

4.36572624923625874

−0.624486959100388983

1.03813099410962173

1.5942266780671519































































.

The reported optimal function value is

f (x]) = 680.630057374402.

135

12 Computational examples

Table 12.2: Multi-start study for G04 with α= 0.1 and ζ= 0.99

initialization x0 solution x ? eig(projected Hessian) f (x ?)






































101.0646

34.0158

30.9531

44.1759

29.0849













































































78.1108

33.0649

30.0827

44.7616

36.6684

































































2.5706

1.1772

0.4358

0.0798



























×103 −3.0637×104







































99.6638

33.2691

39.1329

41.8679

39.0573













































































78.1319

33.1040

30.0972

44.6048

36.7110

































































5.8769

0.7153

0.3345

0.0413



























×103 −3.0628×104







































80.0771

34.1917

35.2778

29.5124

31.4357













































































78.0997

33.1122

30.0747

44.6436

36.7204

































































1.3193

0.0433

0.0128

0.0020



























×104 −3.0637×104







































78.9900

44.0100

44.0100

27.9900

27.9900













































































78.1017

33.1193

30.0709

44.6499

36.7175

































































2.3245

0.0255

0.0071

0.0013



























×104 −3.0638×104







































100.1555

39.8080

44.0140

36.4692

33.3848













































































78.1808

33.1729

30.1102

44.5612

36.6763

































































8.0849

0.0971

0.0387

0.0085



























×103 −3.0623×104

136

12.2 Experiments with common benchmarks

Table 12.3: Multi-start study for G09 with α= 0.05 and ζ= 0.98

initialization x0 solution x ? eig(projected Hessian) f (x ?)






























































−2.2608

−2.7430

−4.9203

0.3922

−9.7739

−6.8723

9.4189





























































































































1.7553

1.9862

−0.1713

4.3803

−0.6154

0.8642

1.6093

















































































































43.9185

36.2822

32.7452

13.3501

8.9740

0.8150



















































686.2192































































1.2675

2.7139

3.8369

0.1900

−8.7219

5.8168

6.5422





























































































































1.7751

1.9867

−0.1737

4.3863

−0.6154

0.8736

1.5991

















































































































43.8858

33.5187

32.5849

13.1799

7.6776

0.5527



















































685.5084































































1.4067

2.7577

−4.3237

−0.5279

−9.4532

−5.4089

7.9848





























































































































1.7518

1.9861

−0.1709

4.3793

−0.6154

0.8625

1.6111

















































































































43.9256

36.7740

32.7568

13.4356

9.1647

0.8602



















































686.3474































































0.8577

−2.7257

4.1926

−0.1845

−9.5364

5.4456

9.4927





























































































































1.7655

1.9865

−0.1725

4.3834

−0.6154

0.8691

1.6041

















































































































43.8995

34.8436

32.6988

13.2603

8.3590

0.6815



















































685.8503

137

12 Computational examples

Table 12.4: Multi-start study for G09 with α= 0.05 and ζ= 0.99

initialization x0 solution x ? eig(projected Hessian) f (x ?)






























































−2.2608

−2.7430

−4.9203

0.3922

−9.7739

−6.8723

9.4189





























































































































1.9616

1.9671

−0.2268

4.3939

−0.6195

0.9537

1.5827

















































































































45.2769

39.8254

33.8867

13.5914

10.9004

1.1475



















































683.8082































































1.2675

2.7139

3.8369

0.1900

−8.7219

5.8168

6.5422





























































































































1.9681

1.9670

−0.2278

4.3948

−0.6196

0.9562

1.5798

















































































































45.2378

38.6200

33.8408

13.4789

10.5630

1.0790



















































683.6521































































1.4067

2.7577

−4.3237

−0.5279

−9.4532

−5.4089

7.9848





























































































































1.9991

1.9667

−0.2325

4.3991

−0.6197

0.9680

1.5658

















































































































45.1643

34.3464

31.2763

13.0640

7.5025

0.7178



















































682.9375































































0.8577

−2.7257

4.1926

−0.1845

−9.5364

5.4456

9.4927





























































































































1.9987

1.9667

−0.2324

4.3991

−0.6197

0.9678

1.5660

















































































































45.1646

34.3548

31.3419

13.0673

7.5514

0.7219



















































682.9445

138

12.3 Academic examples in shape optimization

12.3 Academic examples in shape optimization

The presented method has been tested by various constrained shape op-
timization problems. For comparison, the gradient projection method
(Rosen [74]) is used. The gradient projection method uses the steepest
descent direction, as there is no constraint active. After it has identified the
active constraints, the gradient projection method uses a search direction
obtained by solving a subproblem with quadratic cost (Bertsekas [14]).

12.3.1 Hook with strain energy constraint

The first shape optimization example is a mass minimization of a hook
under static loading as shown in figure 12.3. A linear elastic analysis is
carried out. The Young’s Modulus E = 2.068e 11P a and the Poisson’s ratio
µ= 0.29 are assigned as material properties of the hook. The strain energy
≤ 5N m is set to be the inequality constraint.

E = 2.069e11Pa

� = 0.29

p=1e3Pa

b=240 mm

h=325mm

Figure 12.3: Hook under static pressure loading with fixed
support at the top.

A node-based shape optimization for the hook is carried out, where we
choose the surface node coordinates of the discretized hook as design

139

12 Computational examples

Figure 12.4: Optimal hook shape computed by the present
method.

Figure 12.5: Optimal hook shape computed by the gradient
projection method.

controls (number of design variables n ≈ 25000). The nodal coordinates of
the inner hook side, as well as the loading and the support area, are fixed.

As shown in figure 12.4, we obtain an optimized shape after 28 steps with
the present method. The mass of the hook is reduced to 43.64% of the
initial design. For comparison, the gradient projection method is used and
the optimized shape is illustrated in figure 12.5. Here, the mass is reduced
to 45.56% of the initial design after 29 steps. By applying the two methods,
we obtain almost the same local solution. The present method achieves a
slightly better design concerning objective value.

140

12.3 Academic examples in shape optimization

Figure 12.6: Shape updates using the gradient projection
method for the hook.

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

0 5 10 15 20 25 30

c
o
n
s
tr

a
in

t
v
a
lu

e

Number of iterations

constraint value

reference value

Figure 12.7: Constraint evolution plot using the gradient
projection method for the hook.

141

12 Computational examples

Although the two methods achieve a similar local minimum, the optimiza-
tion paths that are taken are different. To illustrate this difference, we
depict the shape update of specific optimization steps from both methods.
In figure 12.6, the shape updates of 6 individual optimization steps when
using the gradient projection method are shown. The blue lines indicate
the shape update direction of the design surface nodes. From the first to
the fifth step, the shape update direction is pointing towards the inside
of the hook. This shows that the gradient projection algorithm uses the
steepest descent direction for the shape updates. At step 6, the inequality
constraint for the strain energy is active, and the new search direction is
computed by taking the constraint information into account. We observe
there is a change in the shape update direction from step 5 to step 6. After
the inequality constraint is active, the gradient projection method travels
along the constraint to find a local minimum. The zig-zagging effect can be
observed, for example, from step 25 to step 27 as illustrated in figure 12.6,
where the direction of the shape update changes from pointing outside to
pointing inside and again vice versa. This zig-zagging effect can also be
observed in figure 12.7, where the constraint values are plotted.

In figure 12.8, the individual shape updates of 6 optimization steps when
using the present method are shown. By taking the constraint gradient
information throughout the optimization process into account, sudden
changes in the direction of shape updates from subsequent optimization
iterations are effectively avoided. The shape is updated significantly more
smoothly compared to using the gradient projection method. The evolu-
tion of the constraint value is plotted in figure 12.9. The designs of each
iteration remain in the feasible domain, and the optimization stops when
the constraint becomes active at the 28-th step.

142

12.3 Academic examples in shape optimization

Figure 12.8: Shape updates using the present method for the
hook.

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

0 5 10 15 20 25 30

c
o
n
s
tr

a
in

t
v
a
lu

e

Number of iterations

constraint value

reference value

Figure 12.9: Constraint evolution plot using the present method
for the hook.

143

12 Computational examples

12.3.2 Sphere with geometric constraints

Although it is shown that the potential poor scaling of the logarithmic
barrier function may result in increasing computational effort, we want
to point out that, for problems that fall on categories 1 and 2 described in
section 12.2, the logarithmic barrier function formulation can be very effi-
cient in treating a large number of constraints. We support our argument
with a shape optimization problem.

Here, we show an academic convex problem. The objective is to maximize
the volume of a small design sphere, which is located inside a bigger sphere
that acts as the geometric constraint. The shape geometry of both spheres
are represented with finite element meshes. The optimization problem
writes

minimize −V (x),

subject to g i (x)≤ 0, i = 1, ..., m ,
(12.6)

where V (x) is the volume function, g i (x) is a point-wise defined geometric
constraint for the i -th design node, m is the number of nodes of the design
mesh, and x ∈R3m is the field of nodal coordinates of the design sphere
mesh. The number of nodes of the small sphere (design sphere) is 19897.
Thus, the total number of design variables is 59691 and the total number
of constraints is 19897.

Figure 12.10: Shape evolution using the present method.

144

12.4 Real-world application to shape optimization

We use the logarithmic barrier function for multiple constraints and choose
the parameter ζ= 0.95. In figure 12.10, the shape variation process with
depicted iterations is shown. Initially, the design sphere is located close to
the boundary of the constraint sphere. During the shape variation process,
it moves towards the center of the constraint sphere, while adapting its
shape at each iteration. One could recognize easily that the central path
of this optimization problem is being approached and followed until the
solution is found when constraints become active.

12.4 Real-world application to shape optimization

We consider a real-world application to shape optimization, which is an
obstacle problem. The present method is implemented in ShapeModule,
which is a flexible solver agnostic optimization platform and provides
optimization algorithms as well as shape control methods, such as Vertex
Morphing (Hojjat et al. [37]). The optimization problem is to minimize
the mass of a frame structure under load-displacement constraint (i.e.,
the displacement of every surface node is bounded). The optimization
problem writes

minimize M (x),

subject to g i (x , u)≤ 0, i = 1, ..., m ,
(12.7)

where M (x) is the function for the mass, g i (x , u) is a point-wise formulated
displacement constraint for the i -th node, m is the number of nodes of the
design surface mesh, x ∈R3m is the field of nodal coordinates of the design
surface mesh, and u ∈R3m is the nodal displacement field. The number of
design variables is 144423, and the number of constraints is 48141. Note
that for multiple constraints, we can use the logarithmic barrier function
formulation as in the previous test examples. Each single displacement
constraint gradient can be efficiently computed using the adjoint sensitiv-
ity analysis. In this application, we use the load-displacement sensitivity
provided by the software OptiStruct to conform with a standard industrial
design chain. We choose the parameter ζ= 0.95.

145

12 Computational examples

Figure 12.11: The initial frame design.

Figure 12.12: The optimized frame design.

Figure 12.11 shows the initial frame design and figure 12.12 shows the
shape optimized design after 194 iterations. The mass of the structure
is reduced by 41% as shown in figure 12.13. In figure 12.14, we plot the
maximum constraint value g =max{g i } at each iteration. In figure 12.15,
we plot the centrality measure cosθ . It is shown that the optimization is
able to approach and follow a central path within the ζ-neighborhood.

146

12.4 Real-world application to shape optimization

Figure 12.13: Plot of the objective function.

Figure 12.14: Plot of the constraint function.

Remark 5. By following a central path, an intermediate design improves
not only the objective function but also the constraint function. Take the
design of iteration 80 as an example: the mass is reduced by 20.5%, and the
displacement is reduced by 12.1%. These designs may enrich the design
options if the original problem is reformulated as a bi-objective optimiza-
tion problem, in which both mass and the maximum displacement are set
as objectives. The resulting intermediate designs alongside a central path
are approximated Pareto solutions.

147

12 Computational examples

Figure 12.15: Plot of the centrality measure cosθ .

148

C
H

A
P

T
E

R

13
CONCLUSIONS

In this work, a gradient descent akin method for inequality constrained
optimization is presented. At each iteration, we compute a search direction
using a linear combination of the negative and normalized gradient of the
objective and constraint function,

sζ =−
∇ f (x)
|∇ f (x)|

−ζ
∇g (x)
|∇g (x)|

, ζ ∈ [0, 1).

The design of the method is inspired by the singular value decomposition.
A generalization of the method to multiple constraints is presented using
the logarithmic barrier function.

We use a dynamical systems approach to study the theory of the method.
We show that the method

1. is globally convergent to KKT solutions;

2. is locally convergent to local minimizers, provided that all saddles
are strict;

149

13 Conclusions

3. exhibits a convergence rate and behavior akin to that of the gradient
descent method.

Various computational experiments were conducted, including common
test examples and nontrivial large-scale shape optimizations, demonstrat-
ing that the present method is robust.

Finally, let me conclude by returning to the very first question of this thesis:

What makes a shape elegant?

Can I say that an optimal shape, in engineering design, is elegant?

150

A
P

P
E

N
D

I
X

A
APPENDIX A

A.1 Einstein summation convention

Einstein summation convention states: whenever an index variable ap-
pears twice in a product term, once as a subscript and once as a superscript,
it implies that the summation is carried out over all the values of the index
(Müller [62]). In the context of continuum mechanics, a common conven-
tion is as follows:

• Latin indices (e.g., i , k) are chosen in the 3-dimensional case (they
can take values 1,2, and 3).

• Greek indices (e.e., α,β) are chosen in the 2-dimensional case (they
can take the values 1,2).

Examples for Einstein summation convention are as follows:

a α
α = a 1

1 +a 2
2 ,

a j
i b k

j = a 1
i b k

1 +a 2
i b k

2 +a 3
i b k

3 .

151

A Appendix A

A.2 Differential operators in tensor calculus

Following (Basar et al. [10]), some of the most important differential oper-
ators in tensor calculus are presented in this section.

The Nabla-Operator is defined as

∇= gk ∂

∂ Θk
. (A.1)

The gradient of a scalar-valued function Φ is a vector defined by

grad Φ=
∂ Φ

∂ Θk
gk = Φ,k gk =∇Φ. (A.2)

When applied to scalar valued functions, grad and∇ are identical opera-
tions.

The gradient of a vector u is a second-order tensor

grad u=
∂ u

∂ Θk
⊗gk = u,k ⊗gk =ui |k gi ⊗gk , (A.3)

where (·)|k denotes covariant derivatives with respect toΘk . u,k transforms
according to the covariant rule, therefore, grad u is invariant. The gradient
increases the order of the initial tensor by one.

The product rule for gradient of Φu reads

grad (Φu) = (Φu),k ⊗gk = u⊗grad Φ+Φ grad u. (A.4)

The divergence of a vector u is a scalar-valued invariant defined by the rule

div u= grad u : I =∇·u. (A.5)

The divergence for a second-order tensor A reads

div A= grad A : I = grad A : gk ⊗gk = Ai j | j gi = A ,k gk . (A.6)

The divergence decreases the order of a tensor by one.

The product rule of divergence for (uA) reads

div (uA) = A : grad u+u ·div A. (A.7)

152

A.3 Differentiable function and smoothness

A.3 Differentiable function and smoothness

A function f : V ⊂R→R, defined on an open set V , is said to be differen-
tiable at x0 ∈V if the following condition is satisfied:

The derivative f ′(x0) = lim
h→0

f (x0+h)− f (x0)
h exists.

A function f is said to be continuously differentiable or C 1 continuous if
the derivative f ′(x) exists and is itself a continuous function (i.e., is of class
C 0). Recursively, a C k function has derivative of C k−1.

A.4 Lipschitz continuity

A function f : X → Y is called Lipschitz continuous if there exists a real
constant K ≥ 0 such that, for all x1 and x2 in X ,

| f (x1)− f (x2)|Y ≤ K |x1− x2|X ,

where | · |Y is the metric on set Y , and | · |X is the metric on set X .

A.5 Implicit function theorem

Theorem A.5.1 (The implicit function theorem forRn). Consider a contin-
uously differentiable function F :Rn →Rand a point x0 = (x 0

1 , ..., x 0
n−1, x 0

n) ∈
Rn so that F (x0) = c . If

∂ F

∂ xn
6= 0,

then there is a neighborhood of x0 so that whenever x̃= (x1, ..., xn−1) is suf-
ficiently close to x̃0 = (x 0

1 , ..., x 0
n−1) there is a unique xn so that F (x) = c .

Moreover, this assignment makes xn a continuous function of x̃.

By the implicit function theorem, differentiating both side of F (x̃, xn)with
respect to xi , i = 1, ..., n −1 gives

∂ F

∂ xi
+
∂ F

∂ xn

∂ xn

∂ xi
= 0. (A.8)

153

A Appendix A

Therefore,

∂ xn

∂ xi
=−

∂ F

∂ xi
/
∂ F

∂ xn
. (A.9)

A.6 Element of ordinary differential equations

The solution of the ODE

d x

d t
=−p x +A+B t , (A.10)

has the form

x = u (t)e −p t . (A.11)

Differentiate x we get

d x

d t
=
�

u (t)e −p t
�′
= u ′(t)e −p t −p ue −p t . (A.12)

Insert (A.12) into (A.10), we get

u ′(t)e −p t −p ue −p t =−p ue −p t +A+B t

u ′(t)e −p t = A+B t .
(A.13)

Or

u ′(t) = (A+B t)e p t . (A.14)

The function u (t) can be calculated by integrating (A.14):

u (t) =
�
(A+B t)e p t d t

= A

�
e p t d t +B

�
t e p t d t

= A

�
e p t d t +B

�
t

�

1

p
e p t

�′

d t

=
A

p
e p t +B

�

t

p
e p t −

�
1

p
e p t d t

�

=
A

p
e p t +B

�

t

p
e p t −

1

p 2
e p t

�

+C ,

(A.15)

154

A.7 Matrix exponential

where C is an arbitrary constant number. Thus, the solution of the ordinary
differential equation (A.10) is

x (t) =C e −p t +
B

p
t +

A

p
−

B

p 2
. (A.16)

A.7 Matrix exponential

The matrix exponential is a matrix function on square matrices that is
analogous to the ordinary exponential function for a single variable, i.e.,

f (x) = e x . (A.17)

Let A be an n ×n real matrix. The exponential of A is defined by the con-
vergent power series

e A =
∞
∑

k=0

1

k !
Ak = I +A+

AA

2!
+

AAA

3!
+ ..., (A.18)

which is an n ×n matrix and I is the identity matrix of dimension n .

The matrix exponential has important applications in solving systems of
linear, constant coefficient ordinary differential equations that mathemat-
ically model many physical, biological, and economic systems (Moler et al.
[61]). Consider the following systems of ordinary differential equations

d x (t)
d t

= Ax (t), (A.19)

where x (t) is a vector. Specifying the initial condition

x (0) = x0, (A.20)

the solution vector x (t) of (A.19) is given by

x (t) = e t A x0, (A.21)

and

e t A = I + t A+
t 2A2

2!
+ · · · . (A.22)

155

BIBLIOGRAPHY

[1] T. A. Albring, M. Sagebaum, and N. R. Gauger. “Efficient
aerodynamic design using the discrete adjoint method in SU2.” In:
17th AIAA/ISSMO multidisciplinary analysis and optimization
conference. 2016, p. 3518.

[2] M. M. Ali and T.-L. Oliphant. “A Trajectory-Based Method for
Constrained Nonlinear Optimization Problems.” In: Journal of
Optimization Theory and Applications 177.2 (2018), pp. 479–497.

[3] G. Allaire. Shape optimization by the homogenization method.
Vol. 146. Springer Science & Business Media, 2012.

[4] G. Allaire, F. Jouve, and A.-M. Toader. “Structural optimization
using sensitivity analysis and a level-set method.” In: Journal of
computational physics 194.1 (2004), pp. 363–393.

[5] F. Alvarez, H. Attouch, J. Bolte, and P. Redont. “A second-order
gradient-like dissipative dynamical system with hessian-driven
damping.: Application to optimization and mechanics.” In: Journal
de mathématiques pures et appliquées 81.8 (2002), pp. 747–779.

[6] H. Antil, R. H. Hoppe, and C. Linsenmann. “Path-following
primal-dual interior-point methods for shape optimization of
stationary flow problems.” In: Journal of Numerical Mathematics
15.2 (2007), pp. 81–100.

[7] E. Arian and S. Ta’asan. “Analysis of the Hessian for aerodynamic
optimization: Inviscid flow.” In: Computers & fluids 28.7 (1999),
pp. 853–877.

157

Bibliography

[8] S. Arora, N. Cohen, and E. Hazan. “On the optimization of deep
networks: Implicit acceleration by overparameterization.” In: 35th
International Conference on Machine Learning, ICML 2018.
International Machine Learning Society (IMLS). 2018, pp. 372–389.

[9] Y. Basar and W. B. Krätzig. Mechanik der Flächentragwerke: Theorie,
Berechnungsmethoden, Anwendungsbeispiele. Springer
Fachmedien Wiesbaden, 1985.

[10] Y. Basar and D. Weichert. Nonlinear continuum mechanics of solids:
fundamental mathematical and physical concepts. Springer Science
& Business Media, 2013.

[11] D. A. Bayer and J. C. Lagarias. “The nonlinear geometry of linear
programming. I. Affine and projective scaling trajectories.” In:
Transactions of the American Mathematical Society 314.2 (1989),
pp. 499–526.

[12] W. Behrman. An efficient gradient flow method for unconstrained
optimization. stanford university PhD thesis, 1998.

[13] M. P. Bendsoe and O. Sigmund. Topology optimization: theory,
methods, and applications. Springer Science & Business Media,
2013.

[14] D. P. Bertsekas. Nonlinear Programming. Athena scientific Belmont,
1999.

[15] M Bischoff and E Ramm. “Shear deformable shell elements for large
strains and rotations.” In: International Journal for Numerical
Methods in Engineering 40.23 (1997), pp. 4427–4449.

[16] C. A. Botsaris. “Differential gradient methods.” In: Journal of
Mathematical Analysis and Applications 63.1 (1978), pp. 177–198.

[17] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[18] A. E. Bryson. Applied optimal control: optimization, estimation and
control. CRC Press, 1975.

[19] L. Chen, K.-U. Bletzinger, A. Geiser, and R. Wüchner. “A modified
search direction method for inequality constrained optimization
problems using the singular-value decomposition of normalized
response gradients.” In: Structural and Multidisciplinary
Optimization (2019). DOI: 10.1007/s00158-019-02320-9.

158

https://doi.org/10.1007/s00158-019-02320-9

Bibliography

[20] L. Chen, W. Chen, and K.-U. Bletzinger. “A gradient descent akin
method for inequality constrained optimization.” In: (2019). arXiv:
1902.04040 [math.OC].

[21] L. Chizat and F. Bach. “On the global convergence of gradient
descent for over-parameterized models using optimal transport.”
In: Advances in neural information processing systems. 2018,
pp. 3036–3046.

[22] J. Cortés. “Finite-time convergent gradient flows with applications
to network consensus.” In: Automatica 42.11 (2006), pp. 1993–2000.

[23] A. Dener, G. K. Kenway, J. E. Hicken, and J. Martins. “Comparison of
inexact-and quasi-newton algorithms for aerodynamic shape
optimization.” In: 53rd AIAA Aerospace Sciences Meeting. 2015,
p. 1945.

[24] I. Diener. “Trajectory methods in global optimization.” In:
Handbook of Global optimization. Springer, 1995, pp. 649–668.

[25] H.-B. Dörr, E. Saka, and C. Ebenbauer. “A smooth vector field for
quadratic programming.” In: 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC). IEEE. 2012, pp. 2515–2520.

[26] F. Feppon, G. Allaire, and C. Dapogny. “Null space gradient flows for
constrained optimization with applications to shape optimization.”
In: ESAIM: Control, Optimisation and Calculus of Variations (2020).

[27] B. Fröhlich, J. Gade, F. Geiger, M. Bischoff, and P. Eberhard.
“Geometric element parameterization and parametric model order
reduction in finite element based shape optimization.” In:
Computational Mechanics 63.5 (2019), pp. 853–868.

[28] G. H. Golub and C. F. Van Loan. Matrix computations. Vol. 3. JHU
press, 2012.

[29] C. P. Grant. “Theory of ordinary differential equations.” In: Brigham
Young University (2014).

[30] A. O. Griewank. “Generalized descent for global optimization.” In:
Journal of optimization theory and applications 34.1 (1981),
pp. 11–39.

[31] R. T. Haftka and R. V. Grandhi. “Structural shape optimization—a
survey.” In: Computer methods in applied mechanics and
engineering 57.1 (1986), pp. 91–106.

159

https://arxiv.org/abs/1902.04040

Bibliography

[32] R. T. Haftka, J. Sobieszczanski-Sobieski, and S. L. Padula. “On
options for interdisciplinary analysis and design optimization.” In:
Structural optimization 4.2 (1992), pp. 65–74.

[33] J. Haslinger and R. A. Mäkinen. Introduction to shape optimization:
theory, approximation, and computation. SIAM, 2003.

[34] U. Helmke and J. B. Moore. Optimization and dynamical systems.
Springer Science & Business Media, 1996.

[35] J. Herskovits, G Dias, G. Santos, and C. M. Soares. “Shape structural
optimization with an interior point nonlinear programming
algorithm.” In: Structural and Multidisciplinary Optimization 20.2
(2000), pp. 107–115.

[36] J. E. Hicken and D. W. Zingg. “Aerodynamic optimization algorithm
with integrated geometry parameterization and mesh movement.”
In: AIAA journal 48.2 (2010), pp. 400–413.

[37] M. Hojjat, E. Stavropoulou, and K.-U. Bletzinger. “The vertex
morphing method for node-based shape optimization.” In:
Computer Methods in Applied Mechanics and Engineering 268
(2014), pp. 494–513. DOI: 10.1016/j.cma.2013.10.015.

[38] R. H. Hoppe, C. Linsenmann, and H. Antil. “Adaptive path following
primal dual interior point methods for shape optimization of linear
and nonlinear Stokes flow problems.” In: International Conference
on Large-Scale Scientific Computing. Springer. 2007, pp. 259–266.

[39] T. J. Hughes, M. Cohen, and M. Haroun. “Reduced and selective
integration techniques in the finite element analysis of plates.” In:
Nuclear Engineering and design 46.1 (1978), pp. 203–222.

[40] J. T. Hwang. “A modular approach to large-scale design
optimization of aerospace systems.” In: PhDT (2015).

[41] F. Jarre, M. Kocvara, and J. Zowe. “Optimal truss design by
interior-point methods.” In: SIAM Journal on Optimization 8.4
(1998), pp. 1084–1107. DOI: 10.1137/S1052623496297097.

[42] M. I. Jordan. “Dynamical, symplectic and stochastic perspectives
on gradient-based optimization.” In: Proceedings of the
International Congress of Mathematicians. Vol. 1. World Scientific,
2018, pp. 525–550.

160

https://doi.org/10.1016/j.cma.2013.10.015
https://doi.org/10.1137/S1052623496297097

Bibliography

[43] G. Kennedy. “Large-scale multi-material topology optimization for
additive manufacturing.” In: 56th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference. 2015, p. 1799.

[44] G. K. Kenway, G. J. Kennedy, and J. R. Martins. “Scalable parallel
approach for high-fidelity steady-state aeroelastic analysis and
adjoint derivative computations.” In: AIAA journal 52.5 (2014),
pp. 935–951.

[45] J Kiendl, R Schmidt, R Wüchner, and K.-U. Bletzinger. “Isogeometric
shape optimization of shells using semi-analytical sensitivity
analysis and sensitivity weighting.” In: Computer Methods in
Applied Mechanics and Engineering 274 (2014), pp. 148–167.

[46] J. Kiendl. “Isogeometric analysis and shape optimal design of shell
structures.” PhD thesis. Technische Universität München, 2011.

[47] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner.
“Isogeometric shell analysis with Kirchhoff--Love elements.” In:
Computer Methods in Applied Mechanics and Engineering
198.49-52 (2009), pp. 3902–3914.

[48] M. Kocvara and S. Mohammed. “Primal-dual interior point
multigrid method for topology optimization.” In: SIAM Journal on
Scientific Computing 38.5 (2016), B685–B709.

[49] J. Korelc. “Automation of primal and sensitivity analysis of transient
coupled problems.” In: Computational mechanics 44.5 (2009),
pp. 631–649.

[50] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. “Gradient
descent only converges to minimizers.” In: Conference on learning
theory. 2016, pp. 1246–1257.

[51] L. Lessard, B. Recht, and A. Packard. “Analysis and design of
optimization algorithms via integral quadratic constraints.” In:
SIAM Journal on Optimization 26.1 (2016), pp. 57–95.

[52] J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc,
P. N. Suganthan, C. C. Coello, and K. Deb. “Problem definitions and
evaluation criteria for the CEC 2006 special session on constrained
real-parameter optimization.” In: Journal of Applied Mechanics 41.8
(2006), pp. 8–31.

161

Bibliography

[53] J. Liedmann, S. Gerke, F.-J. Barthold, and M. Brünig. “Shape
optimization of the X0-specimen: theory, numerical simulation and
experimental verification.” In: Computational Mechanics (2020),
pp. 1–17.

[54] K. Linkwitz and H.-J. Schek. “Einige Bemerkungen zur Berechnung
von vorgespannten Seilnetzkonstruktionen.” In: Ingenieur-Archiv
40.3 (1971), pp. 145–158.

[55] A. Logg, K.-A. Mardal, and G. Wells. Automated solution of
differential equations by the finite element method: The FEniCS
book. Vol. 84. Springer Science & Business Media, 2012.

[56] D. Luft, V. H. Schulz, and K. Welker. “Efficient techniques for shape
optimization with variational inequalities using adjoints.” In: SIAM
Journal on Optimization 30.3 (2020), pp. 1922–1953.

[57] B. Maar and V. Schulz. “Interior point multigrid methods for
topology optimization.” In: Structural and Multidisciplinary
Optimization 19.3 (2000), pp. 214–224.

[58] J. R. Martins and A. B. Lambe. “Multidisciplinary design
optimization: a survey of architectures.” In: AIAA journal 51.9
(2013), pp. 2049–2075.

[59] S. Mehrotra. “On the implementation of a primal-dual interior
point method.” In: SIAM Journal on optimization 2.4 (1992),
pp. 575–601. DOI: 10.1137/0802028.

[60] J. Meiss. “Dynamical systems.” In: Scholarpedia (2007).

[61] C. Moler and C. Van Loan. “Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later.” In: SIAM review
45.1 (2003), pp. 3–49.

[62] G. Müller. Lecture script at the Technical University of Munich:
Continuum mechanics and tensor analysis. 2013.

[63] R. Murray, B. Swenson, and S. Kar. “Revisiting normalized gradient
descent: Fast evasion of saddle points.” In: IEEE Transactions on
Automatic Control (2019).

[64] S. Nadarajah and A. Jameson. “A comparison of the continuous and
discrete adjoint approach to automatic aerodynamic optimization.”
In: 38th Aerospace Sciences Meeting and Exhibit. 2000, p. 667.

162

https://doi.org/10.1137/0802028

Bibliography

[65] R. Najian Asl, I. Antonau, A. Ghantasala, W. G. Dettmer, R. Wüchner,
and K.-U. Bletzinger. “A partitioned scheme for adjoint shape
sensitivity analysis of fluid--structure interactions involving
non-matching meshes.” In: Optimization Methods and Software
(2020), pp. 1–31.

[66] Y. E. Nesterov. “A method for solving the convex programming
problem with convergence rate O (1/kˆ 2).” In: Dokl. akad. nauk
Sssr. Vol. 269. 1983, pp. 543–547.

[67] J. Nocedal and S. Wright. Numerical optimization. Springer Science
& Business Media, 2006.

[68] M. Nouiehed and M. Razaviyayn. “A Trust Region Method for
Finding Second-Order Stationarity in Linearly Constrained
Nonconvex Optimization.” In: SIAM Journal on Optimization 30.3
(2020), pp. 2501–2529.

[69] F. Otto Film. Frei Otto - Modeling with soap films. Youtube. 2015.
URL: https://www.youtube.com/watch?v=-IW7o25NmeA.

[70] R. E. Perez, P. W. Jansen, and J. R. R. A. Martins. “pyOpt: A
Python-Based Object-Oriented Framework for Nonlinear
Constrained Optimization.” In: Structures and Multidisciplinary
Optimization 45.1 (2012), pp. 101–118. DOI:
10.1007/s00158-011-0666-3.

[71] A. N. Pressley. Elementary differential geometry. Springer Science &
Business Media, 2010.

[72] R Rao. “Jaya: A simple and new optimization algorithm for solving
constrained and unconstrained optimization problems.” In:
International Journal of Industrial Engineering Computations 7.1
(2016), pp. 19–34.

[73] J. J. Reuther, A. Jameson, J. J. Alonso, M. J. Rimlinger, and
D. Saunders. “Constrained multipoint aerodynamic shape
optimization using an adjoint formulation and parallel computers,
part 1.” In: Journal of aircraft 36.1 (), p. 51.

[74] J. B. Rosen. “The gradient projection method for nonlinear
programming. Part I. Linear constraints.” In: Journal of the society
for industrial and applied mathematics 8.1 (1960), pp. 181–217.

[75] A. H. Sakka. Lecture notes on maximal interval of existence. 2010.

163

https://www.youtube.com/watch?v=-IW7o25NmeA
https://doi.org/10.1007/s00158-011-0666-3

Bibliography

[76] C. Schillings, S. Schmidt, and V. Schulz. “Efficient shape
optimization for certain and uncertain aerodynamic design.” In:
Computers & Fluids 46.1 (2011), pp. 78–87.

[77] S. Schmidt. “Efficient large scale aerodynamic design based on
shape calculus.” In: (2010).

[78] S. Schmidt, C. Ilic, V. Schulz, and N. R. Gauger. “Three-dimensional
large-scale aerodynamic shape optimization based on shape
calculus.” In: AIAA journal 51.11 (2013), pp. 2615–2627.

[79] V. H. Schulz, M. Siebenborn, and K. Welker. “Towards a
Lagrange--Newton approach for PDE constrained shape
optimization.” In: New Trends in Shape Optimization. Springer,
2015, pp. 229–249.

[80] J. A. Sethian. Level set methods and fast marching methods: evolving
interfaces in computational geometry, fluid mechanics, computer
vision, and materials science. Vol. 3. Cambridge university press,
1999.

[81] J. Skaf and S. Boyd. “Techniques for exploring the suboptimal set.”
In: Optimization and Engineering 11.2 (2010), pp. 319–337.

[82] J. Snyman and L. Fatti. “A multi-start global minimization
algorithm with dynamic search trajectories.” In: Journal of
Optimization Theory and Applications 54.1 (1987), pp. 121–141.

[83] J. Sokolowski and J.-P. Zolésio. “Introduction to shape
optimization.” In: Introduction to Shape Optimization. Springer,
1992, pp. 5–12.

[84] W. Su, S. Boyd, and E. Candes. “A differential equation for modeling
Nesterov’s accelerated gradient method: Theory and insights.” In:
Advances in Neural Information Processing Systems. 2014,
pp. 2510–2518.

[85] K. Svanberg. “The method of moving asymptotes—a new method
for structural optimization.” In: International journal for numerical
methods in engineering 24.2 (1987), pp. 359–373. DOI:
10.1002/nme.1620240207.

[86] J. Tomlow. “Designing and constructing the Olympic roof (Munich
1972).” In: International Journal of Space Structures 31.1 (2016),
pp. 62–73.

164

https://doi.org/10.1002/nme.1620240207

Bibliography

[87] S. Wang, X. Yang, and K. L. Teo. “A unified gradient flow approach to
constrained nonlinear optimization problems.” In: Computational
Optimization and Applications 25.1-3 (2003), pp. 251–268.

[88] Z. Wang. “Isogeometric shape optimization for quasi-static and
transient problems.” In: (2016).

[89] D. H. Wolpert, W. G. Macready, et al. “No free lunch theorems for
optimization.” In: IEEE transactions on evolutionary computation
1.1 (1997), pp. 67–82.

[90] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element
method: its basis and fundamentals. Elsevier, 2005.

165

Bisherige Titel der Schriftenreihe

Band Titel

1 Frank Koschnick, Geometrische Lockingeffekte bei Finiten El-
ementen und ein allgemeines Konzept zu ihrer Vermeidung,
2004.

2 Natalia Camprubi, Design and Analysis in Shape Optimization
of Shells, 2004.

3 Bernhard Thomee, Physikalisch nichtlineare Berechnung von
Stahlfaserbetonkonstruktionen, 2005.

4 Fernaß Daoud, Formoptimierung von Freiformschalen - Math-
ematische Algorithmen und Filtertechniken, 2005.

5 Manfred Bischoff, Models and Finite Elements for Thin-walled
Structures, 2005.

6 Alexander Hörmann, Ermittlung optimierter Stabwerkmod-
elle auf Basis des Kraftflusses als Anwendung plattformunab-
hängiger Prozesskopplung, 2006.

7 Roland Wüchner, Mechanik und Numerik der Formfindung und
Fluid-Struktur-Interaktion von Membrantragwerken, 2006.

8 Florian Jurecka, Robust Design Optimization Based on Meta-
modeling Techniques, 2007.

9 Johannes Linhard, Numerisch-mechanische Betrachtung des
Entwurfsprozesses von Membrantragwerken, 2009.

10 Alexander Kupzok, Modeling the Interaction of Wind and Mem-
brane Structures by Numerical Simulation, 2009.

11 Bin Yang, Modified Particle Swarm Optimizers and their Appli-
cation to Robust Design and Structural Optimization, 2009.

Band Titel

12 Michael Fleischer, Absicherung der virtuellen Prozesskette für
Folgeoperationen in der Umformtechnik, 2009.

13 Amphon Jrusjrungkiat, Nonlinear Analysis of Pneumatic Mem-
branes - From Subgrid to Interface, 2009.

14 Alexander Michalski, Simulation leichter Flächentragwerke in
einer numerisch generierten atmosphärischen Grenzschicht,
2010.

15 Matthias Firl, Optimal Shape Design of Shell Structures, 2010.

16 Thomas Gallinger, Effiziente Algorithmen zur partitionierten
Lösung stark gekoppelter Probleme der Fluid-Struktur-
Wechselwirkung, 2011.

17 Josef Kiendl, Isogeometric Analysis and Shape Optimal Design
of Shell Structures, 2011.

18 Joseph Jordan, Effiziente Simulation großer Mauerwerksstruk-
turen mit diskreten Rissmodellen, 2011.

19 Albrecht von Boetticher, Flexible Hangmurenbarrieren: Eine
numerische Modellierung des Tragwerks, der Hangmure und
der Fluid-Struktur-Interaktion, 2012.

20 Robert Schmidt, Trimming, Mapping, and Optimization in Iso-
geometric Analysis of Shell Structures, 2013.

21 Michael Fischer, Finite Element Based Simulation, Design and
Control of Piezoelectric and Lightweight Smart Structures, 2013.

22 Falko Hartmut Dieringer, Numerical Methods for the Design
and Analysis for Tensile Structures, 2014.

23 Rupert Fisch, Code Verification of Partitioned FSI Environments
for Lightweight Structures, 2014.

24 Stefan Sicklinger, Stabilized Co-Simulation of Coupled Prob-
lems Including Fields and Signals, 2014.

Band Titel

25 Madjid Hojjat, Node-based parametrization for shape optimal
design, 2015.

26 Ute Israel, Optimierung in der Fluid-Struktur-Interaktion - Sen-
sitivitätsanalyse für die Formoptimierung auf Grundlage des
partitionierten Verfahrens, 2015.

27 Electra Stavropoulou, Sensitivity analysis and regularization
for shape optimization of coupled problems, 2015.

28 Daniel Markus, Numerical and Experimental Modeling for
Shape Optimization of Offshore Structures, 2015.

29 Pablo Suárez, Design Process for the Shape Optimization of Pres-
surized Bulkheads as Components of Aircraft Structures, 2015.

30 Armin Widhammer, Variation of Reference Strategy - Genera-
tion of Optimized Cutting Patterns for Textile Fabrics, 2015.

31 Helmut Masching, Parameter Free Optimization of Shape Adap-
tive Shell Structures, 2016.

32 Hao Zhang, A General Approach for Solving Inverse Problems
in Geophysical Systems by Applying Finite Element Method and
Metamodel Techniques, 2016.

33 Tianyang Wang, Development of Co-Simulation Environment
and Mapping Algorithms, 2016.

34 Michael Breitenberger, CAD-integrated Design and Analysis of
Shell Structures, 2016.

35 Önay Can, Functional Adaptation with Hyperkinematics using
Natural Element Method: Application for Articular Cartilage,
2016.

36 Benedikt Philipp, Methodological Treatment of Non-linear
Structural Behavior in the Design, Analysis and Verification
of Lightweight Structures, 2017.

37 Michael Andre, Aeroelastic Modeling and Simulation for the
Assessment of Wind Effects on a Parabolic Trough Solar Collector,
2018.

Band Titel

38 Andreas Apostolatos, Isogeometric Analysis of Thin-Walled
Structures on Multipatch Surfaces in Fluid-Structure Interac-
tion, 2018.

39 Altuğ Emiroğlu, Multiphysics Simulation and CAD-Integrated
Shape Optimization in Fluid-Structure Interaction, 2019.

40 Mehran Saeedi, Multi-Fidelity Aeroelastic Analysis of Flexible
Membrane Wind Turbine Blades, 2017.

41 Reza Najian Asl, Shape Optimization and Sensitivity Analysis of
Fluids, Structures, and their Interaction Using Vertex Morphing
Parametrization, 2019

42 Ahmed Abodonya, Verification Methodology for Computational
Wind Engineering Presidction of Wind Loads on Structures,
2020.

43 Anna Maria Bauer, CAD-Integrated Isogeometric Analysis and
Design of Lightweight Structures, 2020.

44 Andreas Winterstein, Modeling and Simulation of Wind-
Structure Interaction of Slender Civil Engineering Structures
Including Vibration Systems, 2020.

45 Fran-Josef Ertl, Vertex Morphing for Constrained Shape Opti-
mization of Three-dimensional Solid Structures, 2020.

46 Daniel Baumgärtner, On the Grid-based Shape Optimization
of Structures with Internal Flow and the Feedback of Shape
Changes into a CAD Model, 2020.

47 Mohamed Khalil, Combining Physiscs-based Models and Ma-
chine Learning for an Enhanced Structural Health Monitoring

	Contents
	Introduction
	Shape and force
	Computational methods for modeling, simulation, and optimization
	Shape optimization by the gradient descent method
	Main results

	Basics of Continuum Mechanics
	Introduction
	Tensor
	Covariant and contravariant transformation
	Tensor of order (r,s)

	Kinematics
	Two observation basis frames: Cartesian and curvilinear coordinate system
	Deformation gradient
	A finite strain tensor: Green-Lagrangian strain

	Stress
	Conservation laws
	Conservation of mass
	Conservation of linear momentum
	Conservation of angular momentum

	Constitutive laws
	Basics of calculus of variation

	Basics of finite element method
	Introduction
	Variational principles
	Weighted residual (Galerkin) method
	Discretization
	Elements and nodes
	Shape functions and the isoparametric concept
	Element-wise integration and global assembly of the system of equations

	Finite element based shape sensitivity analysis
	Introduction
	PDE-constrained optimization: a perspective from the implicit function theorem
	Continuous and discrete shape gradient
	Discrete adjoint sensitivity analysis
	Finite element based shape gradient
	Computation of discrete adjoint variables
	Element-wise computation

	Sensitivity weighting
	Shape regularization and the vertex morphing method

	Basics of gradient-based optimization
	Optimality conditions for unconstrained optimization
	Convexity
	Convex set
	Convex function
	Strongly convex

	Gradient descent method
	Steepest descent direction in Euclidean norm
	Rate of convergence
	Co- and contravariant view of the gradient descent method

	Optimality conditions for inequality constrained optimization
	First-order optimality
	Second-order optimality

	A Dynamical systems perspective on optimization
	Introduction
	First-order optimization methods: a continuous-time dynamical systems perspective
	Initial value problem
	Uniqueness and existence of the solution of an initial value problem
	Maximal interval of existence

	Linear dynamical system

	Modified search direction
	Introduction
	Basics of singular value decomposition
	The design of the modified search direction
	Central path and centrality conditions
	The steepest descent direction for the objective and constraint function in 2-norm
	Singular value decomposition of the sensitivity matrix m
	Modifying the steepest descent direction

	Basic characteristics
	Modified search direction method for multiple inequality constraints

	Derivation of the formula
	Global behavior and convergence
	Assumptions
	Preliminaries
	Normalized central path condition
	Lipschitz continuity for s
	Deformation of the constraint function along the solution trajectory

	Globally finding KKT solutions
	Reaching the boundary of the feasible set
	Finding KKT solutions at the boundary

	Global convergence to critical points of f(x)

	Local behavior and convergence
	Preliminary studies in 2D
	Relative curvature condition in higher dimensions
	The second fundamental form for surfaces in R3
	Relative convex condition in higher dimensions

	Jacobian matrix of s
	The linearized system
	Asymptotic local convergence behavior
	Local convergence to local minimizers

	The method for multiple constraints
	Derivation of the formula
	Theoretical results

	Computational examples
	Numerical implementation
	A time-reparameterized system
	Numerical implementation

	Experiments with common benchmarks
	Results with constant and step size
	Convergence to second-order optimal solutions

	Academic examples in shape optimization
	Hook with strain energy constraint
	Sphere with geometric constraints

	Real-world application to shape optimization

	Conclusions
	Appendix A
	Einstein summation convention
	Differential operators in tensor calculus
	Differentiable function and smoothness
	Lipschitz continuity
	Implicit function theorem
	Element of ordinary differential equations
	Matrix exponential

	Bibliography

