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1. Introduction

Optimal configuration of control strategies for discrete production systems is manually impos-

sible due to the increasing frequency of changes. This thesis addresses this challenge with

a combination of machine learning techniques and constrained optimization for the configu-

ration of transport, storage, and pick-and-place systems. The novel approach finds optimal

command signals without predefined behavior or simulation models. This chapter describes

the motivation and scope of command signal configuration for control strategies in discrete

manufacturing and builds on previous work by the author, and extends the published con-

cepts [ON15, OVN16, OVN18b, OVN18a].

Section 1.1 introduces the motivation and scope of this thesis. Section 1.2 describes the

requirements for an optimal command signal configuration solution. Section 1.3 explains how

to read this work.

1.1. Motivation and Scope

Cyber-physical systems address the requirements of production systems; they are networks

of software and hardware components that control time-dependent and concurrent physical

processes [Lee08, Cal+17, Bos+17, Kar+18, Lei+18, Kar+19]. Cyber-physical production

systems should adapt to new or changing production goals, such as new products or product

variants, without requiring extensive manual engineering effort [RSV16, VH16].

In discrete manufacturing, cyber-physical production systems consist of modular hardware

components such as robots, conveyors, compressors, laser units, fillers, or storage sys-

tems. The example production system shown in Figure 1 consists of three heterogeneous

and reusable hardware components: a filler M1, a robot M2, and a conveyor system M3.

The production goal of this production system is to fill a bottle with material; for this purpose,

filler M1 fills a bottle, robot M2 picks up and places the bottle on conveyor M3, and conveyor

M3 transports the bottle to another location. Modular hardware design is outside the scope of

this work, but from an automation perspective, modular hardware components must be mir-

rored by modular software components. A software component is an organizational unit of an

automation software structure and implements a hardware component behavior, for example:

fill , pick and move (see Figure 1: Automation software structure A1 − A3). In this work, the

behavior of a software component is called “activity.”

The production goal is described by a behavior model that encodes sequences of activities.

The aim of this work is not to introduce another modeling language. Inspired by [KST14] and

the analyzed related work in model-based development, a behavior model can be described

by a UML 2 activity diagram. Each swim lane reflects a hardware component, each activ-
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ity reflects a software component, and fork nodes and merge nodes represent concurrent

behaviors.

A software component (SWC) contains one or more control methods with command sig-

nals that implement the behavior of an activity with different control strategies (see Fig-

ure 1: A1 : fill -B1 (P11), A2 : pick -C1 (P21) or pick -C2 (P22), A3 : move-D1 (P31) or

move-D2 (P32)). For example, in some production scenarios, a slow pick activity with high

precision is implemented by control method pick -C1 (P21) is required, and in other production

scenarios, a fast pick activity with low precision implemented by control method pick -C2 (P22)

is sufficient, and so on.

Behavior
model

(1) fill : A1 (2) pick : A2 (3) move : A3

Automation
software
structure

SWC: A1

(1) fill -B1 (P11)

SWC: A2

(1) pick -C1 (P21)
(2) pick -C2 (P22)

SWC: A3

(1) move-D1 (P31)
(2) move-D2 (P32)

Production
system
structure

Filler: M1 Robot: M2 Conveyor: M3

Figure 1 Concept of adapting reusable software components A1 −A3 with control methods A1 : fill -B1 , A2 : pick -C1 or
pick -C2 , A3 : move-D1 or move-D2 that implement different control strategies and command signals P11, P21, P22, P31,
P32 to new or changing production goals (adapted from [OVN18b]).

The general idea is to increase the reusability of software components by adding de-

grees of freedom in the form of different control strategies with parameters (command

signals) [HHL11, HHL13, ON15, OVN16, OVN18b, OVN18a]. The software components can

then be configured for a specific production scenario and do not need to be rewritten for each

adaption.

The scope of this work is a novel approach to machine learning and constrained optimization

of command signal configuration that automates the following two tasks:

(i) Selection of optimal control methods from software components of an automation soft-

ware structure that implement different control strategies; and

(ii) calculation of optimal command signals for the selected control strategies.
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1.2. Requirements

This section describes the requirements for an optimal command signal configuration solu-

tion. The requirements for the solution are divided into the following three classes: require-

ments for an optimal command signal configuration described in Section 1.2.1, requirements

for an optimization model described in Section 1.2.2, and requirements for a behavior model

described in Section 1.2.3. Not only the requirements for an optimal command signal configu-

ration but also the requirements for an optimization model and the requirements for a behavior

model should be considered. This work is about a configuration approach that automates the

following two tasks: (1) selecting optimal control methods from software components of an

automation software structure implementing different control strategies and (2) calculating

optimal command signals for selected control strategies.

The requirements are derived from three common application scenarios in discrete manufac-

turing, shown in Figure 2.

Transport scenario Storage scenario Pick-and-place scenario

Figure 2 Overview of application scenarios: transport scenario, storage scenario, and pick-and-place scenario (adapted
from [OVN16, OVN18b, OVN18a]).

The transport scenario describes a process to transport a product between locations. For

example, transporting a product between different production modules or between production

modules and storage solutions. The storage scenario describes a process to stock products,

e.g., produced products that need to be stored temporarily. The pick-and-place scenario

describes a process to pick and place products, e.g., pick a product from a conveyor system

and place it in a production module.

1.2.1. Requirements for an Optimal Command Signal Configuration
This section describes six requirements R1 - R6 for an optimal command signal configura-

tion.

R1 - Manual engineering steps: Requirement R1 states that an optimal command signal

configuration solution should have no manual engineering steps because the vision of cyber-

physical production systems is to adapt to new production goals without extensive manual

engineering effort. Manual engineering effort is hard to quantify, so only the engineering

steps required to create a configuration are considered.
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R2 - Global optimum: Requirement R2 states that an optimal command signal configura-

tion solution should find a global optimal command signal configuration for each software

component, not just a local optimal command signal configuration. For example, an optimal

command signal configuration for an automation software that leads to minimizing energy

consumption within a given target time.

R3 - Implicit timing: Requirement R3 states that an optimal command signal configuration

solution should specifically consider timing signals, as they are necessary to find an optimal

command signal configuration within a given target time.

R4 - Sequences of control methods: Requirement R4 states that an optimal command

signal configuration should use behavior knowledge to find an optimal configuration, as they

encode the activities necessary to meet a given production goal.

R5 - Parallel sequences of control methods: Requirement R5 states that an optimal com-

mand signal configuration should incorporate knowledge of parallel sequences of control

methods since production systems can perform multiple parallel activities.

R6 - Selection of different control methods: Requirement R6 states that an optimal com-

mand signal configuration should accommodate different control methods for a given activity,

increasing the reusability of software components. For example, a robot may use a simple

control strategy for simple movements and a model-predictive control approach for complex

movements.

Table 1 summarizes the six requirements R1 - R6 and the corresponding scenarios. The

reduction of manual engineering steps applies to all three scenarios because the produc-

tion systems are cyber-physical production systems. Therefore, an optimal command signal

configuration should use behavior knowledge in sequences of control methods. Only the pick-

and-place scenario has parallel behavior, and only the storage and pick-and-place scenarios

have activities with more than one control method, so selecting optimal control methods from

software components of an automation software structure that implement different control

strategies is necessary.

ID Transport Storage Pick-and-place

R1 + + +
R2 + + +
R3 + + +
R4 + + +
R5 − − +
R6 − + +

Table 1 Overview of requirements for an optimal command signal configuration and the corresponding scenarios (+ applicable
and − not applicable).
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1.2.2. Requirements for an Optimization Model
This section describes six requirements M1 - M6 for an optimization model. In this work,

command signal configuration is defined as an optimization problem. Optimization modeling

can be used to solve real-world problems [Sch04]. These real-world problems can be used to

build optimization models, which can then be used in combination with observed data, such

as energy consumption of production systems, to compute solutions, e.g., optimal command

signal configurations, using suitable algorithms. In general, an optimization model consists

either of a concave, non-concave, convex, non-convex, linear, or non-linear objective func-

tion [BV04]. Unlike optimization problems, constrained optimization problems have additional

linear or nonlinear constraints on the variables of the objective function. Constrained opti-

mization problems are the focus of this work. Another classification criterion is the use of only

discrete, only continuous, or a mixture of continuous and discrete variables [Rot11].

An optimization model should fulfill the following requirements:

M1 - Linear objective function: Requirement M1 states that an optimization model must be

able to describe a linear objective function.

M2 - Nonlinear objective function: Requirement M2 states that an optimization model must

be able to describe a nonlinear objective function.

M3 - Linear constraints: Requirement M3 states that an optimization model must be able to

describe linear constraints.

M4 - Nonlinear constraints: Requirement M4 states that an optimization model must be

able to describe nonlinear constraints.

M5 - Continuous variables: Requirement M4 states that an optimization model must be able

to describe continuous variables.

M6 - Discrete variables: Requirement M6 states that an optimization model must be able to

describe discrete variables.

Table 2 summarizes the six requirements M1 - M6 for an optimization model and the cor-

responding scenarios. Each scenario has a nonlinear objective function because, in this

work, the cost values are energy consumption values. Nonlinear constraints are not required,

and only linear constraints are necessary to describe an optimization model for each sce-

nario. Continuous variables are used to describe energy consumption, and discrete variables

are used to describe the selection of control methods. Only the storage and pick-and-place

scenarios have activities with more than one control method, so discrete variables are not

required for the transport scenario.

Command Signal Configuration for Control Strategies of Discrete Production Systems 8



ID Transport Storage Pick-and-place

M1 − − −
M2 + + +
M3 + + +
M4 − − −
M5 + + +
M6 − + +

Table 2 Requirements M1 - M6 for an optimization model and the corresponding scenarios (+ applicable and − not
applicable).

1.2.3. Requirements for a Behavior Model
This section describes four requirements B1 - B4 for behavior models. An optimal command

signal configuration should use behavior knowledge to find an optimal command signal con-

figuration because they encode the activities required to meet a specific production goal. The

following requirements are defined to compare existing behavior models for technical systems

such as cyber-physical production systems:

B1 - Time behavior: Requirement B1 specifies whether timing is part of the underlying be-

havior model. Section 1.2.1 describes that an optimal command signal configuration solution

should consider timing signals in particular since they are necessary to find an optimal control

configuration within a given target time. For this purpose, timing can be used to find optimal

command signal configurations.

B2 - Continuous behavior: Requirement B2 specifies whether continuous behavior is a part

of the underlying behavior model. Section 2.2.1 describes two types of observations: (1) time

and (2) energy consumption. These observations are used to learn cost models for each

control strategy represented by a control method. For this purpose, a continuous behavior

can be used to create cost models.

B3 - Cost behavior: Requirement B3 specifies whether cost behavior is part of the under-

lying behavior model. Section 2.2 describes that without the possibility of feedback from a

production system, e.g., in the form of energy consumption observations or time observations,

the selection of optimal control strategies from software components of an automation soft-

ware structure and the calculation of optimal command signals for selected control strategies

is not possible. For this purpose, cost behavior can be used to compare control strategies

and command signal configurations.

B4 - Parallel behavior: Requirement B4 specifies whether parallel behavior is part of the

underlying behavior model. Section 1.2 describes that an optimal command signal configu-

ration should be able to incorporate knowledge about parallel sequences of control methods

since production systems have many parallel activities. For this purpose, parallel behavior

can be used to account for knowledge about sequences of control methods.

Command Signal Configuration for Control Strategies of Discrete Production Systems 9



Table 3 summarizes the four requirements B1 - B4 for a behavior model and their corre-

sponding scenario. The behavior model for each scenario should describe the timing and

cost behavior for each control method since the scope of this work is a command signal con-

figuration approach. This approach automates the following two tasks: (1) selecting optimal

control methods from software components of an automation software structure that imple-

ment different control strategies, and (2) calculating optimal command signals for selected

control strategies. For this goal, no additional description of continuous behavior is required.

Only the pick-and-place scenario involves parallel behavior, so the behavior model should be

able to describe it.

ID Transport Storage Pick-and-place

B1 + + +
B2 − − −
B3 + + +
B4 − − +

Table 3 Requirements B1 - B4 for a behavior model and the corresponding scenarios (+ applicable and − not applicable).

1.3. Structure of Work

Chapter 2 describes the limitations of the research scope. The research scope constraints

are divided into the following five parts: parameters classification, component level observa-

tions, control level observations, optimization process, and development process. Chapter 3

analyzes the state of the art. The analysis of state of the art is divided into three sections:

existing configuration approaches, optimization models, and behavior models. The existing

configuration approaches are generalized into classes. Based on the defined requirements, it

is analyzed which configuration class, optimization model, and behavior model can be used to

realize a new command signal configuration approach. Chapter 4 formally describes the com-

mand signal configuration problem, which must be solved by a configuration approach to au-

tomate the task of manual configuration. The notations of the concepts automation software

structure, command signals, decision parameters, command signal constraints, cost models,

sequences of control methods, optimal command signal configuration, and the task to find

an optimal command signal configuration are described. An automation software structure

describes components with one or more control methods that implement control strategies.

Command signals are used to increase the reusability of automation software components by

adding degrees of freedom to control methods that implement control strategies. Command

signal constraints restrict command signals and describe valid ranges of values for command

signal configurations. Cost values are energy consumption values in this work. Cost models

are required to compare control strategies and command signal configurations. A cost model

is a mathematical description of measured cost values that allows predicting the expected

cost for a command signal configuration.

Chapter 5 introduces the CyberOpt framework. The CyberOpt framework is a formal frame-
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work for command signal configuration and describes tasks necessary to find an optimal

command signal configuration. A task description is independent of a solution technique.

The framework consists of six tasks: Task 1: find a valid command signal configuration,

Task 2: record new data from the production system, Task 3: learn cost models, Task 4: learn

sequences of control methods, Task 5: find an optimal command signal configuration, and

Task 6: improve cost models. Chapter 6 describes the CyberOpt algorithm, a novel approach

to machine learning and constrained optimization of command signal configuration. The Cy-

berOpt algorithm automates the following two tasks: (1) selecting optimal control methods

from software components of automation software that implement different control strate-

gies, and (2) calculating optimal command signals for selected control strategies. CyberOpt

uses the following four machine learning techniques: (1) a machine learning technique of

regression and polynomial expansion to learn cost models from observations of the produc-

tion system, (2) the expected improvement criterion to calculate new valid command signal

configurations that should be evaluated to obtain more observations, (3) a machine learning

technique named process mining to learn sequences of control methods from production sys-

tem observations, and (4) mixed-integer nonlinear programming to solve the command signal

configuration problem. The CyberOpt algorithm consists of the following five subalgorithms:

an algorithm named CyberOpt-SIC that realizes Task 1, an algorithm named CyberOpt-LCM

that realizes Task 3, an algorithm named CyberOpt-LSC that realizes Task 4, an algorithm

named CyberOpt-SPC that realizes Task 5, and an algorithm named CyberOpt-ICM that re-

alizes Task 6. Chapter 7 describes application scenarios from discrete manufacturing. The

automation software structure, command signals, command signal constraints, and control

method sequences are described for each scenario. Chapter 8 evaluates the CyberOpt al-

gorithm. The following five experiments are defined: (1) ground truth, (2) random walk, (3)

black-box optimization, (4) CyberOpt approach, and (5) CyberOpt MEM. The results of the

ground truth experiment are used as reference results. The random walk experiment attempts

to find an optimal command signal configuration with random sampling. The black-box opti-

mization attempts to find an optimal command signal configuration. The CyberOpt and Cy-

berOpt MEM experiments attempt to find an optimal command signal configuration using the

CyberOpt algorithm. The memory operation mode MEM uses all energy consumption values

from previous calculations. Chapter 9 evaluates the CyberOpt subalgorithms. The evalua-

tion aims to prove that the four machine learning techniques used in the CyberOpt algorithm

reduce manual engineering effort. Four hypotheses are defined. Hypothesis H1 describes

that an optimal command signal configuration solution does not require manual engineering

steps. Hypothesis H2 describes that a machine learning algorithm exists that learns cost

models that can then be used by a command signal configuration algorithm to find optimal

command signal configurations. Hypothesis H3 describes that a machine learning algorithm

exists that learns sequences of control methods that can then be used by a command sig-

nal configuration algorithm to find optimal command signal configurations. Hypothesis H4

describes that an algorithm exists that finds optimal command signal configurations. Sub-

hypotheses are defined to prove the four hypotheses of this work. Chapter 10 describes the

assessment of the introduced requirements for an optimal command signal configuration so-
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lution, requirements for an optimization model, and requirements for a behavior model. The

CyberOpt algorithm consists of five subalgorithms. In the summary, all requirements for each

subalgorithm are assessed. Chapter 11 describes the summary of this work and provides an

outlook of this research.

The contents and contributions of this work are based on previous publications of the au-

thor, namely [ON15, OVN16, OVN18b, OVN18a]. A brief summary of the contributions and

contents of the publications is given in the following list:

[ON15] A thorough search of the literature found that this paper is the first to present a

solution to the parameterization problem of adaptable software systems. Due

to the nature of cyber-physical production systems, a direct computation of pa-

rameters is not possible. Instead, an iteration-based approach is required that

uses a model of both the plant and the automation system.

[OVN16] This paper presents a solution for automatically determining the parameters for

the automation software of cyber-physical production systems. A scenario from

discrete manufacturing illustrates the underlying concepts.

[OVN18b] This paper addresses this key research question and presents a novel approach

for parameter estimation approach to select optimal system configurations for

cyber-physical production systems automatically. Various scenarios from dis-

crete production systems are used to evaluate the solution approach.

[OVN18a] Models, e.g., of energy consumption, are learned automatically from data ob-

served during production system operation. Therefore, manual engineering

effort is minimized, as postulated by the cyber-physical production system

paradigm. The presented approach combines MINLP, process mining, and

black-box optimization techniques to calculate optimal timing parameter con-

figurations for automation software components with free parameters in the

discrete manufacturing domain.
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2. Research Scope

This chapter describes the limitations of the research scope. This chapter is based on pre-

vious work by the author and extends the published analyses [ON15, OVN16, OVN18b,

OVN18a]. The scope of this work is a novel approach to command signal configuration based

on machine learning and constrained optimization that automates the following two tasks:

(1) selecting optimal control methods from software components of an automation software

implementing different control strategies and (2) calculating optimal command signals for se-

lected control strategies. The approach is not a general-purpose solution for all cyber-physical

production systems. In this work, only cyber-physical production systems from the discrete

manufacturing field are considered. The limitations of the research scope are divided into the

following five parts: classification of parameters, component level observations, control level

observations, optimization process, and development process.

Section 2.1 classifies the parameters of automation software components, e.g., automation

software components developed according to IEC 61131 - 3. Section 2.2 classifies feedback

from production systems into component-level observations and control-level observations.

Section 2.3 describes the general idea of adapting automation software components with

different control strategies and parameters to specific production scenarios through a three-

step optimization process. Section 2.4 describes a possible integration of this optimization

process into a V-Model XT-based development process.

2.1. Classification of Parameters

Software parameters increase the reusability of automation software components. Automa-

tion software parameters add degrees of freedom to automation software components to be

configured for a specific production scenario. In this work, automation software parameters

are classified into three different classes, shown in Figure 3: decision parameters, timing pa-

rameters, and command signals. A decision parameter describes which control strategy of an

automation software component should be used to perform a given activity. Only one control

strategy can be selected from an automation software component. For example, the automa-

tion software component A3 of the example production system (see Figure 1) implements

the activity move with two control strategies. The control strategy move-D1 (P31) uses linear

acceleration and deceleration ramps and the control strategy move-D2 (P32) uses nonlinear

acceleration and deceleration ramps. A timing parameter of a control strategy describes the

time period within which the control strategy should execute the activity. For example, the

conveyor hardware component M3 can execute the control strategy move-D1 (P31) within

10 seconds, 15 seconds, or 20 seconds (see Figure 3: Timing parameters). Command

signals specify the degrees of freedom of control strategy implementations. For example,

acceleration and deceleration ramp command signals for control strategy move-D1 (P31) that
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implements activity move (see Figure 3: Command signals). In many cases, there are other

command signals in a system that are hidden or not directly accessible to software compo-

nents. For example, when conveyor systems use frequency converters, the command signals

for the acceleration and deceleration ramps are configured separately. In this work, it is as-

sumed that command signals are directly accessible by software components.

move-D1 (P31) or
move-D2 (P32)

(3) move : A3Decision parameters

move-D1 (P31)
Timing: 10s

(3) move : A3Timing parameters

move-D1 (P31)
Acceleration: 10Hz/s

(3) move : A3Command signals

Figure 3 Classification of parameters: decision parameters, timing parameters and command signals (adapted from [OVN18b,
OVN18a]).

2.2. Classification of Observations

This section classifies the observations. Without the possibility of feedback from a produc-

tion system, e.g., in the form of energy consumption observations or time observations, the

selection of optimal control strategies from software components of an automation software

structure and the calculation of optimal command signals for selected control strategies are

not possible. Therefore, feedback in the form of observations of the production system is

needed to calculate cost models that can then be used to compare different control strategies

and command signal configurations. A cost model is a mathematical description of mea-

sured cost values that allows predicting expected costs (e.g., energy consumption). Control

strategies implement the behavior of activities in terms of various control methods with pa-

rameters.

In general, control strategies can be classified into open-loop and closed-loop control strate-

gies [Oga01], as shown in Figure 4. Open-loop control strategies use no feedback. The

control strategy implementation is independent of the output of the controlled system. For

example, a washing machine uses an open-loop control strategy. The control implementa-

tion is based on a timer, e.g., to use the spin mode for 600 seconds and then use the wash

mode for 300 seconds. The control strategy is not to observe, e.g., the cleanliness level of

the clothes [Oga01]. In discrete manufacturing, open-loop control strategies are common be-

cause fewer sensors are required for a hardware design, or the feedback from a production

system is hard to measure or economically not feasible. For example, the filler hardware com-

ponent M1 shown in Figure 4 has an open-loop control strategy implementation fill -B1 (P11).

The fill level is controlled by a timer and does not depend on, e.g., a sensor. However, ev-

ery open-loop system has at least two observable physical quantities: the amount of time

and energy consumption. Closed-loop control strategies use feedback. The control strat-

egy implementation depends on the output of the controlled system. For example, a room
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temperature control system measures the temperature and compares the measured temper-

ature value with a reference temperature value. Depending on the results, the control strategy

heats up or not [Oga01]. In discrete manufacturing, closed-loop control strategies are used if

hardware components need to be controlled, e.g., with high-precision motions. For example,

the robot hardware component M2 shown in Figure 4 uses a closed-loop control strategy

implementation pick -C1 (P21). In many cases, closed-loop control strategies are black boxes

where command signals cannot be changed, nor observations can be read, e.g., for safety

reasons. Incorrect command signals from robots can cause damage. However, these sys-

tems also have observable physical quantities such as time and energy consumption, and in

many cases, high-level command signals such as positions and velocities.

Software
components

SWC: A2

(1) pick -C1 (P21)
(2) pick -C2 (P22)

Closed-Loop

SWC: A3

(1) move-D1 (P31)
(2) move-D2 (P32)

Open-Loop

Hardware
components

Robot: M2 Conveyor: M3co
nt

ro
ls

feedback co
nt

ro
ls

Figure 4 Classification of control strategies: closed-loop control strategies with feedback (left) and open-loop control strategies
without feedback (right) (adapted from [OVN18b, OVN18a]).

2.2.1. Component Level Observations
Since the amount of time and energy consumed are the only universally observable quan-

tities, no distinction is made between open-loop and closed-loop control strategies. Control

strategies are encapsulated as control methods with command signals and observations are

classified into two classes, shown in Figure 5: time quantity and energy consumption quan-

tity.

Observation 1 (Time quantity): How much time does a control strategy take to perform an

activity? For example, the robot hardware component M2 takes 10 seconds to execute the

control method pick -C1 (P21) and 20 seconds to execute the control method pick -C2 (P22).

Observation 2 (Energy consumption quantity): How much energy does a control strategy

require to perform an activity? For example, the robot hardware component M2 requires 800

Joules to execute the control method pick -C1 (P21) and 1600 Joules to execute the control

method pick -C2 (P22).

In this work, the two types of observations described above are used to learn cost models

(energy consumption) for each control strategy represented by a control method with com-

mand signals. This step is described by a task description with inputs and outputs, called
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“learn cost models”. The inputs are time and energy consumption values, and the outputs

are cost models. The task to learn cost models is formalized in Section 5.3.

Software
component

SWC: A2

(1) pick -C1 (P21)
(2) pick -C2 (P22)

Hardware
component

Robot: M2

Time quantity

Energy consumption quantity

Cost model: pick -C1 (P21)

Cost model: pick -C2 (P22)

Figure 5 Classification of production system observations: time quantity and energy consumption quantity (adapted
from [OVN18b, OVN18a]).

2.2.2. Control Level Observations
In this work, a third observation class is defined, “sequences of control methods”. The produc-

tion goal is described by a behavior model. Behavior models encode sequences of activities,

illustrated in Figure 6, e.g., fill , pick , and move.

(2) pick : A1(1) fill : A1 (3) move : A1

Time fill -B1 (P11) pick -C1 (P21) move-D1 (P31)

60s 1 0 0
120s 0 1 0
180s 0 0 1

Observation from production system

Name Sequence
S1 fill -B1 (P11), pick -C1 (P21), move-D1 (P31)
S2 fill -B1 (P11), pick -C2 (P22), move-D1 (P31)
S3 fill -B1 (P11), pick -C1 (P21), move-D2 (P32)

Sequences of control methods

S
te

p
1

S
tep

2

Figure 6 Classification of production system observations: sequences of control methods (adapted from [OVN18a]).

During the operation of a production system, the sequences of control method calls are ob-

servable. For example, the following sequence of control methods can be observed in the

example production system shown in Figure 6: Step 1: fill -B1 (P11), pick -C1 (P21), and

move-D1 (P31). A behavior model can be learned from these control method call sequences.

The knowledge from this behavior model combined with an automation software structure can

then be used to calculate all possible sequences of control methods. This step is described

by a task with inputs and outputs, called “learn sequences of control methods”. The inputs to

this task are sequences of control method calls, and the outputs are all possible sequences

of control methods, shown in Figure 6: Step 2. The task of learning sequences of control

methods is formalized in Section 5.4.
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2.3. Optimization Process

This section describes the idea of adapting automation software components with different

control strategies and command signals to specific production scenarios through a three-step

optimization process. The three-step optimization process consists of three decision stages:

selecting the optimal sequence of control methods, calculating the optimal timing parameters,

and calculating the optimal command signals. Based on the knowledge about the production

goal in the form of a behavioral model that encodes sequences of activities, e.g., fill , pick

and move, knowledge about the automation software structure A1 −A3, and cost models for

each control method, the following three decisions must be made:

Decision 1 (Optimal sequence of control methods): An optimal control strategy must be

selected for each software component. For this purpose, cost models from production system

observations are used. For example, should the control strategy pick -C1 (P21) or the control

strategy pick -C2 (P22) be used for the activity pick .

Decision 2 (Optimal timing parameters): The optimal timing parameters must be calculated

for each selected control strategy. For example, should the control strategy pick -C2 (P22)

execute the activity pick within 10 seconds, 15 seconds or 20 seconds.

Decision 3 (Optimal command signals): The optimal command signals must be calculated

for each selected control strategy. For example, acceleration and deceleration command

signals for control method fill -B1 (P11) or control method move-D1 (P31).

The three-step optimization process is described by a command signal configuration problem

that is formally defined in Section 4.8.

2.4. Development Process

Technical behavior models are mostly used in combination with development processes and

assist engineers in developing technical systems. In general, the specification and implemen-

tation of a cyber-physical production system can be carried out using the V-Model XT-based

development process [Vog+15], shown in Figure 7.

The V-Model XT-based development process defines (1) project-independent and (2) project-

related activities. The results of the project-independent activities are partial solutions, such

as automation software components with parameters that are stored in a solution repository.

In order to reduce costs and shorten project duration, partial solutions can be reused to

create, for example, a system design. If a cyber-physical production system is specified with

a V-Model XT-based development process, then the automation software structure, command

signals, and decision parameters can be described in the activity of the project-independent
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“solution element implementation”. Cost models for each control method can be created in

the project-independent “solution test” activity. The sequences of control methods can be

calculated from an activity diagram created in the project-related “system design” activity. An

optimal command signal configuration can be calculated in the activity of the project-related

“system integration”.

Model-based development for automation software is proposed by recent research [Hei+13,

OBV15, Vog+15] and increases the quality and effectiveness of embedded software [Lie+14].

First, structural and behavioral models are created with engineering tools [OBV15, Hei+13,

HB13], then generators translate these models into a specific source code in a forward engi-

neering step, i.e. IEC 61131 - 3 [Tik+14] for automation software. For example, the modular

automation for reuse in manufacturing systems approach [OBV15] focuses on central pro-

grammable logic controller systems to support model-driven engineering of object-oriented

manufacturing automation software. The notations are based on the Unified Modeling Lan-

guage (UML) [Ric+10] and the Systems Modeling Language [DeT+13] with the intent of im-

proving the representation of the relationships between structure and behavior. The behavior

model is based on the state diagram and the activity diagram of UML. Also, the Mechatron-

icUML approach [Hei+13] integrates software and control engineering with reconfiguration

support [HB13]. The main concept of MechatronicUML is the specification of structure and

behavior, and the modeling language is a refinement of UML.

(1) Project-independent activities to create reusable partial solutions

Solution
test

... Solution element
implementation

... Requirement
specification

Solution
repository

......

Requirement
specification

... System
design

... System
integration

... Project
completion

Operation

(2) Project-related activities over the lifetime of a production plant

... ... ...

Command signal configuration
(optimization process)

Figure 7 V-Model XT-based development process for cyber-physical production systems (adapted from [Vog+15, OVN16]).
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3. State of the Art

This chapter summarizes the state of the art analysis in the field of parameter configura-

tion. This chapter is based on previous work by the author and extends the published anal-

yses [ON15, OVN16, OVN18b, OVN18a]. The chapter is divided into three main concepts:

existing approaches to parameter configuration, existing optimization models and existing be-

havior models. The existing approaches to parameter configuration are arranged as classes.

Based on the requirements that are described in Section 1.2, it is analyzed which class of pa-

rameter configuration approaches, which optimization model, and which behavior model can

be used to automate the manual parameter configuration for automation software compo-

nents in the domain of discrete manufacturing. Requirements R1 - R6 for an optimal parame-

ter configuration, which are described in Section 1.2.1, are used to compare the following pa-

rameter configuration classes: manual parameter configuration, simulation-based parameter

configuration, data-driven parameter configuration, and hybrid parameter configuration. Re-

quirements M1 - M6 for an optimization model, which are described in Section 1.2.2, are used

to compare the following optimization models: linear programming, nonlinear programming,

mixed-integer linear programming, mixed-integer nonlinear programming, knapsack problem,

and multiple-choice knapsack problem. Requirements B1 - B4 for a behavior model, which

are described in Section 1.2.3, are used to compare the following concepts: timed automata,

hybrid timed automata, priced timed automata, activity diagram, and petri net.

Section 3.1 describes the comparison of existing parameter configuration approaches, Sec-

tion 3.2 describes the comparison of existing optimization models, Section 3.3 describes the

comparison of existing behavior models and Section 3.4 describes the conclusions from the

state of the art.

3.1. Parameter Configuration Approaches

This section classifies and compares existing parameter configuration approaches. Param-

eter configuration approaches can be classified into the following four classes: manual pa-

rameter configuration, simulation-based parameter configuration, data-driven parameter con-

figuration and hybrid parameter configuration. Manual parameter configuration is performed

by a domain expert who specifies parameter configurations for software components of an

automation software structure based on their domain knowledge. Simulation-based parame-

ter configuration uses manually predefined optimization models and optimization algorithms

to find optimal parameter configurations. Data-driven parameter configuration configures pa-

rameters during the operation of the production system based on feedback. Hybrid parameter

configuration is a combination of simulation-based and data-driven parameter configuration

approaches.
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Section 3.1.1 describes the manual parameter configuration class, Section 3.1.2 describes

the simulation-based parameter configuration class, Section 3.1.3 describes the data-driven

parameter configuration class, and Section 3.1.4 describes the hybrid parameter configura-

tion class.

3.1.1. Manual Parameter Configuration
This section describes the manual parameter configuration class. Manual parameter configu-

ration means that a domain expert tries to find parameter configurations for software compo-

nents of an automation software structure based on his domain knowledge [ON15, OVN16,

OVN18b, Zou+18]. Manual parameter configuration performed by a domain expert can be

described by the following four steps: (1) a domain expert selects a plausible parameter con-

figuration according to his domain knowledge, (2) the automation software is set up with the

selected parameter configuration, (3) costs are measured during the operation of the produc-

tion system, e.g., the overall energy consumption, and (4) the domain expert evaluates the

costs and changes the parameter configuration based on his domain knowledge. Parame-

ters are changed until the domain expert thinks an optimal parameter configuration is found.

Manual parameter configuration has the highest manual engineering effort (R1). There is no

evidence that manual parameter configuration finds a global optimal parameter configuration

(R2). Timing parameters are likely to be considered by a domain expert (R3). Sequences

of control methods (R4), parallel sequences of control methods (R5), and different control

methods (R6) are probably not considered.

3.1.2. Simulation-Based Parameter Configuration
This section describes the simulation-based parameter configuration class. Simulation-based

parameter configuration is performed by a simulation model and an optimization algorithm

and can be described by the following four steps: (1) an optimization algorithm calculates

a valid parameter configuration, (2) the automation software is set up with the calculated

parameter configuration, (3) during operation of the simulation model, costs are measured,

e.g., the overall energy consumption, and (4) an optimization algorithm evaluates the costs

and calculates a new parameter configuration. Parameters are changed until a predefined

solution quality threshold value or time limit value is reached. Simulation-based parame-

ter configuration approaches use optimization modeling [Sch04, Zou+18] to build simulation

models of production systems. Important for the use of optimization modeling is the com-

putability of models [Rot11]. The computability depends on the level of detail modeled by

real production systems. In cases of costly evaluations, e.g., physical simulations, black-

box optimization approaches can be used [HHL13, CN14, ON15]. The objective function is

unknown, and an evaluation of the simulation model is performed for each parameter con-

figuration. Model-based black-box optimization approaches construct a regression model,

also called a response surface model or surrogate model, that predicts the costs. Then, this

model is used for optimization. Sequential model-based optimization, described in [HHL11],

iterates between fitting a model and gathering additional data. It uses Gaussian process mod-

els [Ras06] to build a response surface model that predicts which data to evaluate. Gaussian
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processes are a generic supervised learning method used, for example, to solve regression

problems. Parameter configurations that should be evaluated are calculated using an ex-

pected improvement criterion-based on [JSW98] to enhance the quality of surrogate models.

In [Ana+14], the authors developed an approach to building holistic system designs to identify

optimization potential for mechatronic systems. An approach for calculating optimal sched-

ules for production systems is introduced in [Ked+15]. The production system is described

by production resources, capabilities, and the material flow between production resources.

Workflows consist of production steps to which capabilities are assigned and translated into

sequences of actions that are translated into timed automata. In [Höl+12], a hierarchical mul-

tiobjective optimization of drive modules of a rail-bound transportation system is introduced.

The drive modules are divided into different modules with suitable optimization models that

are arranged hierarchically. The solution optimizes from the bottom up.

Simulation-based parameter configuration involves a high manual engineering effort (R1)

because simulation models must be created manually from data, and expert knowledge is

required to create them. Furthermore, it is impossible to simulate the real world entirely

for computability reasons. Simulation-based parameter configuration is capable of finding a

global optimum (R2), but the simulation model may be inaccurate. The class is not able to

model implicit timing parameters (R3), does not use explicit sequences of control methods

(R4), does not use parallel sequences of control methods (R5), and is not explicitly able to

select different control methods (R6).

3.1.3. Data-Driven Parameter Configuration
This section describes the data-driven parameter configuration class. In data-driven param-

eter configuration approaches, parameters are configured during the operation of the pro-

duction system based on feedback. Data-driven parameter configuration based on feedback

can be described by the following four steps: (1) an algorithm calculates a valid parameter

configuration based on the current feedback from the production system in the form of obser-

vations, e.g., energy consumption, (2) the automation software is set up with the calculated

parameter configuration, (3) feedback is measured at runtime of the production system, and

(4) an algorithm directly adjusts the parameter configuration. In [RLL10], an approach to cal-

culating concurrent behavior of a production system from observed data is introduced. The

method is based on a formalism called non-deterministic autonomous automaton with output

and uses simulated annealing to divide the system into subsystems. An optimization for laser

welding at runtime is introduced in [Gün+14]. The solution is able to observe the laser welding

process, extract knowledge, and find a strategy to control and optimize it. High dimensional

sensor data are used to improve a laser welding system using neural networks and rein-

forcement learning. The neural networks reduce the dimensionality of the sensor data, and

reinforcement learning is used to control the process. Data-driven parameter configuration

involves minimal manual engineering effort (R1). However, the data-driven parameter config-

uration is not a generic solution and is mostly specific for one use case, e.g., laser welding.

Data-driven parameter configuration can find a global optimum (R2) and model implicit timing

parameters (R3). The class does not use explicit sequences of control methods (R4), parallel
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sequences of control methods (R5), or different control methods (R6).

3.1.4. Hybrid-Based Parameter Configuration
Hybrid-based parameter configuration approaches combine simulation-based and data-

driven parameter configuration approaches and use data and internal models. Hybrid-based

parameter configuration approaches are based on feedback and internal simulation models.

They can be described by the following four steps: (1) an algorithm calculates a valid pa-

rameter configuration based on the current feedback of the production system in the form

of observations, e.g., energy consumption, (2) the automation software is set up with the

calculated parameter configuration based on the internal simulation models and the current

feedback, (3) feedback is measured at runtime of the production system, and (4) an algorithm

directly adjusts the parameter configuration. Model predictive control approaches can be

used to calculate parameter configurations at runtime, e.g., coke furnaces [ZXG14] and high-

performance control tasks such as electric drives [WB10, Rod+13, SMG13]. In [WNS15], an

approach to find optimal sequences of movement parameters is introduced. The approach

minimizes energy consumption by adjusting the movement of electric drives. The idea of

using energy as a planning resource is introduced in [Vog+14] as model-based energy

management of manufacturing plants in real-time. The approach consists of the following

steps: creating a simulation model of the production system, synchronization with the real

production system, simulation of the parameterized simulation model, and optimization of the

energetic behavior based on simulation results. Hybrid-based parameter configuration is a

compromise between model creation effort and optimization abilities. The class combines

simulation models with observed data from the runtime of production systems and has no

manual engineering effort (R1), is able to find a global optimum (R2), and can model implicit

timing parameters (R3). The class does not use explicit sequences of control methods (R4),

parallel sequences of control methods (R5), or different control methods (R6).

3.1.5. Comparison of Parameter Configuration Approaches
Table 4 describes the comparison of parameter configuration classes and the CyberOpt ap-

proach, based on the six requirements R1 - R6 for an optimal parameter configuration ap-

proach, described in Section 1.2.1. The manual parameter configuration has the highest

manual engineering effort (R1) and can be considered the upper limit, whereas data-driven

parameter configuration is the lower limit without any manual engineering effort. However,

data-driven parameter configuration approaches are not generic solutions and are mostly

specific for one use case, e.g., laser welding. Simulation-based parameter configuration has

high manual engineering effort because simulation models must be manually created from

data, and expert knowledge is required to create them. Furthermore, it is impossible to sim-

ulate the real world entirely for computability reasons. Hybrid parameter configuration is a

compromise between the model-building effort and the optimization abilities. They combine

simulation models with observed data from the runtime of production systems. Except for

manual parameter configuration, the simulation-based, data-driven, and hybrid-based ap-

proaches are able to find a global optimum (R2) and model implicit timing parameters (R3).
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None of the approaches use explicit sequences of control methods (R4) or parallel sequences

of control methods (R5) or are able to handle different control methods (R6). CyberOpt can

be classified as a data-driven and hybrid command signal configuration solution. Observed

data from production system runtime and machine learning techniques are used to reduce

manual engineering effort (R1). Cost models and sequences of control methods are learned,

and cost models are improved. The learned cost models with implicit timing parameters (R3),

the learned behavior knowledge in the form of sequences of control methods R4 - R5, and

the knowledge of the software structure (R6) can then be used to calculate a global optimal

command signal configuration (R2) for a production system by solving a command signal

configuration problem.

Parameter Configuration Class R1 R2 R3 R4 R5 R6

Manual parameter configuration − 0 0 0 0 0
Simulation-based parameter configuration − + + 0 0 0
Data-driven parameter configuration + + + 0 0 0
Hybrid parameter configuration + + + 0 0 0

CyberOpt approach + + + + + +

Table 4 Overview of different parameter configuration classes, the CyberOpt approach and requirements: (+ fulfilled, 0 not
specified and − not fulfilled).

3.2. Optimization Models

This section describes a classification of optimization models, solving techniques, and math-

ematical solvers. The idea is to automatically calculate an optimal command signal config-

uration that can then be used to set up a production system. In this work, command signal

configuration is defined as an optimization problem. The command signal configuration prob-

lem described in Section 4.8 must be solved to find optimal configurations. This section ex-

amines existing optimization problem classes: linear programming, nonlinear programming,

mixed-integer linear programming, mixed-integer nonlinear programming, knapsack problem,

and multiple-choice knapsack problem.

Optimization modeling can be used to solve real-world problems [Sch04]. Optimization mod-

els can be created from these real-world problems, which can then be used in combination

with observed data, such as energy consumption from production systems, to compute so-

lutions, e.g., optimal command signal configurations, using suitable algorithms. An optimiza-

tion model generally consists either of a concave, non-concave, convex, nonconvex, linear, or

nonlinear objective function [BV04]. Unlike optimization problems, constrained optimization

problems have additional linear or nonlinear constraints on variables of the objective func-

tion. Constrained optimization problems are the focus of this work. Another classification

criterion is the use of only discrete, only continuous, or a mixture of continuous and discrete

variables [Rot11].
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Important for the usage of optimization modeling is the concept of computability of mod-

els [Rot11]. Computability depends on the model formalism used. Computational complexity

theory allows statements about the computability of optimization problems. The complexity

classes P, NP, NP-complete, and NP-hard are sets of problems with the same asymptotic

behavior of time and space required to solve them [Rot11]. The set of class P describes

problems that are easily solved by algorithms in polynomial time. The set of class NP-hard

describes problems that are hard to solve because no polynomial-time algorithm is known,

and it is impossible to verify whether a solution is a feasible solution in polynomial time. The

set of class NP-complete describes problems in the set of class NP-hard and the set of class

NP. This means that these problems are difficult to solve because no polynomial-time algo-

rithm is known, but it is possible to check whether a solution is feasible in polynomial time.

Section 3.2.1 describes the classification of optimization problems, Section 3.2.2 describes

various solving techniques for solving convex and nonconvex mixed-integer nonlinear pro-

gramming problems, Section 3.2.3 describes solvers for mixed-integer nonlinear program-

ming problems, and Section 3.2.4 describes the comparison of optimization models.

3.2.1. Classification of Optimization Problems
This section describes the classification of optimization problems. The following list of opti-

mization problems are classified: (1) mixed-integer nonlinear programming, (2) mixed-integer

linear programming, (3) nonlinear programming, (4) linear programming, (5) knapsack prob-

lem, and (6) multiple-choice knapsack problem.

The notation of the mixed-integer nonlinear programming (MINLP) [LL12] concept consists of

a linear objective function or a nonlinear objective function (M1 and M2), linear or nonlinear

constraints (M3 and M4), and continuous and discrete variables (M5 and M6). MINLP prob-

lems belong to the NP-hard complexity class [BL12a]. The formal definition of the MINLP

concept is described in Definition 1.

Definition 1 (Mixed Integer Nonlinear Programming):

min{f0(x, y) : f j(x, y) ≤ 0 (j = 1, . . . ,m), x ∈ Zn1
+ , y ∈ Rn2

+ }, (3.1)

where n1 describes the number of integer-constrained variables, n2 describes the num-

ber of continuous variables, m describes the number of constraints, f j(x, y) are arbi-

trary function mapping Zn1
+ ×R

n2
+ to the set of real numbers and f0, . . . , fn are nonlinear

functions.

The notation of the mixed-integer linear programming (MILP) [Mar99] concept consists of a

linear objective function (M1), linear constraints (M3), and continuous and discrete variables

(M5 and M6). MILP problems belong to the NP-hard complexity class [Jün+09]. The formal

definition of the MILP concept is described in Definition 2.
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Definition 2 (Mixed Integer Linear Programming):

min{f0(x, y) : f j(x, y) ≤ 0 (j = 1, . . . ,m), x ∈ Zn1
+ , y ∈ Rn2

+ }, (3.2)

where n1 describes the number of integer-constrained variables, n2 describes the num-

ber of continuous variables, m describes the number of constraints, f j(x, y) are arbi-

trary function mapping Zn1
+ × Rn2

+ to the set of real numbers and f0, . . . , fn are linear

functions.

The notation of the nonlinear programming (NLP) [LY15] concept consists of a nonlinear ob-

jective function (M2), linear constraints or nonlinear constraints (M3 and M4), and continuous

variables (M5). NLP problems belong to the NP-hard complexity class [MK87]. The formal

definition of the NLP concept is described in Definition 3.

Definition 3 (Nonlinear Programming):

min{f0(x) : f j(x) ≤ 0 (j = 1, . . . ,m), x ∈ Rn1
+ }, (3.3)

where n1 describes the number of continuous variables, m describes the number of

constraints, f j(x) are arbitrary function mapping Rn1
+ to the set of real numbers and

f0, . . . , fn are nonlinear functions.

The notation of the linear programming (LP) concept [Dan98] consists of a linear objective

function (M1), linear constraints and continuous variables (M3 and M4). LP problems belong

to the P complexity class [Kha80]. The formal definition of the LP concept is described in

Definition 4.

Definition 4 (Linear Programming):

min{f0(x) : f j(x) ≤ 0 (j = 1, . . . ,m), x ∈ Rn1
+ }, (3.4)

where n1 describes the number of continuous variables, m describes the number of

constraints, f j(x) are arbitrary function mapping Rn1
+ to the set of real numbers and

f0, . . . , fn are linear functions.

The knapsack problem (KP) and the multiple-choice knapsack problem (MCKP) are sub-

classes of optimization problems with discrete variables, where the domain of discrete vari-

ables is reduced to the domain of binary variables [MPT00, KPP04]. KP is in the complexity

class NP-complete, and MCKP is in the NP-hard complexity class [KPP04]. The knapsack

problem (KP) is described in Definition 5.
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Definition 5 (Knapsack Problem):

Given profit values pi ∈ R and weight values wi ∈ R the problem is defined as follows:

maximize:
k∑

i=1

pi bi (3.5)

s.t.:
k∑

i=1

wi bi ≤ Obj, (3.6)

bi ∈ {0, 1}, i = 1, . . . , k (3.7)

A similar problem is the well-studied multiple-choice knapsack problem (MCKP), where the

goal is to choose exactly one item j from each of the k classes Ni, i = 1, . . . , k such that the

profit sum is maximized.

Definition 6 (Multiple-Choice Knapsack Problem):

Given profit values pij ∈ R and weight values wij ∈ R the problem is defined as follows:

maximize:
k∑

i=1

∑
j∈Ni

pij bij (3.8)

s.t.:
k∑

i=1

∑
j∈Ni

wij bij ≤ Obj, (3.9)

∑
j∈Ni

bij = 1, i = 1, . . . , k, (3.10)

bij ∈ {0, 1}, i = 1, . . . , k, j ∈ Ni (3.11)

Despite the theoretical fact that NLP, MILP, MINLP, and MCKP belong to the NP-hard com-

plexity class, research has been published to implement efficient algorithms to solve these

optimization problems. Section 3.2.2 describes various solving techniques for convex and

nonconvex MINLP problems.

3.2.2. Solving Techniques for Optimization Problems
The command signal configuration problem described in Section 4.8 is defined as a mixed-

integer nonlinear programming (MINLP) problem with a nonlinear objective function, linear

constraints, and a mixture of continuous and binary variables. Therefore, this section de-

scribes different solving techniques for convex and nonconvex MINLP problems.

If the objective function f0 and all constraints f1, . . . , fm of an MINLP problem are convex,

then the MINLP problem is called convex MINLP problem. Convex MINLP problems can

be solved by, e.g., branch-and-bound, outer approximation, and the extended cutting plane
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method. If the objective function f0 or one constraint f i, i > 1 of an MINLP problem is

nonconvex, then the MINLP is called nonconvex. In this case, the nonconvex functions must

be replaced by underestimating or overestimating functions, or by separable functions, or the

problem must be rewritten by factorization [BL12b].

Branch-and-Bound: The branch-and-bound technique is a general approach to solve op-

timization problems. Branch-and-bound is also known as divide-and-conquer. The general

idea is to divide an optimization problem into subproblems until the subproblems are easy to

solve. The branch-and-bound technique was introduced for solving MILP problems [LD60].

This technique was later used to solve MINLP problems [Dak65, GR85]. The branch-and-

bound technique begins with the relaxation of integer constraints on MINLP problems. An

MINLP problem is then reduced to an NLP problem and can be solved by an NLP solver. If

the NLP problem is infeasible, then the MINLP problem is also infeasible. If the solution to the

NLP problem is an integer, then it also solves the MINLP problem. Otherwise, the branch-and-

bound technique creates a search tree. The nodes of the search tree correspond to the NLP

subproblems, and edges of the search tree correspond to the branching decisions [Bel+13].

The division of subproblems into smaller subproblems is called branching. Standard branch-

ing describes a simple branching rule [Kro+18, Bel+13, BL12b]. If an integer-constrained

variable xi takes a fractional value x∗i , e.g. x∗i = 0.5, then two subproblems with additional

constraints are created: Subproblem 1 with the additional constraint xi ≤ x∗i and Subprob-

lem 2 with the additional constraint xi ≥ x∗i . Spatial branching describes the partitioning of

the domain of continuous variables [BL12b]. For example, consider a continuous variable yi

whose domain is [li, ui], then a value b with li < b < ui is chosen. Two subproblems are

created: Subproblem 1 with the domain [li, b] and a Subproblem 2 with the domain [b, ui].

Subproblems are removed from the search tree under the following three conditions: (1) the

NLP subproblem is feasible, and its optimal solution is accurate within a specified tolerance,

(2) the associated lower bound is not better than the best upper bound found so far, or (3) the

NLP subproblem is infeasible.

Cutting Planes: Tight continuous relaxation (NLP subproblem) is important to avoid large

branch-and-bound search trees. Cutting planes can be used to strengthen continuous re-

laxation. The general idea is to cut off fractional optimal solutions by adding cutting planes.

This should lead to a significant reduction in the size of the search tree [SM99, Bel+13]. The

extended cutting plane technique [WP95, WP02] uses a linearization of the nonlinear con-

straints. More precisely, the technique constructs an iteratively improving polyhedral outer ap-

proximation [Kro+18]. There are several cutting-plane approaches to tighten the convex hull

of MINLP problems; details are described in [Bel+13]: mixed-Integer rounding cuts [AMR01],

perspective cuts [AG06], and disjunctive cutting planes [CS99].

Outer Approximation: The general idea of outer approximation is to create an equivalent

linear representation of MINLP problems and apply relaxation. The outer approximation is a

decomposition technique [DG86]. The optimal solution of MINLP problems is found by solving
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a sequence of MILP and NLP subproblems [FL94]. First, an upper bound is calculated by

solving an NLP problem with fixed integer variables. Second, a lower bound is calculated by

solving an MILP problem based on the results of the NLP problem. If the upper and lower

bounds match, an optimal solution is found. Otherwise, an integer cut is added to the NLP

problem, and the NLP problem and the MILP problem are solved again, and so on. The

detailed MILP problem and NLP problem are described in [Kro+18].

Primal Heuristics: Primal heuristics should find good feasible solutions with less computa-

tional effort than solving the original problem. A good feasible solution avoids large branch-

and-bound search trees and provides a tight upper bound [Kro+18]. An example is the un-

dercover primal heuristic [BG14]. The general idea is to explore an MINLP problem by a

sub-MIP problem. The sub-MIP problem is created by fixing a minimal set of variables suffi-

cient to linearize all nonlinear constraints. The heuristic is based on the observation that any

given MINLP problem can be reduced to a sub-MIP problem by fixing certain variables to a

value within their bounds. Any feasible solution to this sub-MIP problem is then a feasible

solution to the original MINLP problem.

Preprocessing: Preprocessing improves solving performance. The feasibility-based bound

tightening technique and the optimization-based bound tightening technique tighten the

bounds of an MINLP problem. The feasibility-based bound tightening technique analyzes

constraints sequentially to tighten variable ranges [Bel+10], while the optimization-based

bound tightening technique [LM06] solves relaxed problems where each variable is maxi-

mized and minimized to tighten variable bounds. A tighter polyhedral outer approximation

can be reached by reformulating the original problem. Nonlinear constraints are divided into

multiple constraints by introducing new variables [HBO14, Lub+16].

3.2.3. Solver for Mixed Integer Nonlinear Programming Problems
This section describes six different solvers that use the solving techniques described above.

Each solver is capable of solving convex and nonconvex MINLP problems.

AlphaECP: The Alpha Extended Cutting Plane approach is an MINLP problem solver. The

solver is capable of solving general MINLP problems and uses the extended cutting plane

method. The method only requires solving a mixed integer programming subproblem in each

iteration. The mixed-integer programming subproblems are solved in intermediate iterations

to the optimal solution, feasibility, or just an integer relaxed solution [WP02, PW00, SW01,

WP95, Wes+98].

ANTIGONE: The Algorithms for coNTinuous Integer Global Optimization of Nonlinear Equa-

tions approach is an MINLP problem solver. The solver is capable of solving convex problems

and nonconvex problems. It uses reformulations to decompose nonlinear functions into, e.g.,

linear, quadratic, and exponential terms. A branch-and-cut approach solves generated con-

vex relaxations of the decomposed nonconvex terms [MF13, MF14, MSF15].
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BARON: The Branch-And-Reduce Optimization Navigator approach is an MINLP problem

solver. The solver uses a polyhedral branch-and-bound technique that solves LP relax-

ations in branch-and-bound nodes, MILP relaxations, nonlinear relaxations, convex under-

estimators, and concave overestimators in combination with a spatial branch-and-bound, au-

tomatic reformulations, convexity identification, and decomposition of nonconvex functions

into simpler functions with known convex or concave relaxations [RS95, RS96, Sah96, TS05,

Zho+17].

BONMIN and Couenne: The Basic Open-source Nonlinear Mixed INteger programming ap-

proach is an MINLP problem solver. The solver uses an NLP-based branch-and-bound, a

branch-and-cut, an outer approximation decomposition, and a hybrid outer approximation-

based branch-and-cut technique [Bon+08]. The Convex Over and Under ENvelopes for Non-

linear Estimation approach is an MINLP problem solver. The solver is capable of solving

convex and nonconvex MINLP problems and uses an LP-based spatial branch-and-bound

technique, bound reduction, and primal heuristics [Bel+09]. Couenne extends the BONMIN

approach to calculate valid linear outer approximations for nonconvex MINLP problems.

DICOPT: The DIscrete Continuous OPTimizer approach is an MINLP problem solver. The

solver uses outer approximation and solves a series of NLP problems and MIP problems.

The performance is improved by a feasible pump-primal heuristic [Ber+20].

SCIP: The Solving Constraint Integer Programs approach is an MINLP problem solver. The

solver uses a polyhedral outer approximation, a spatial branch-and-bound, LP relaxations,

constraint programming, cutting planes, and primal heuristics [Ach09, VG17].

3.2.4. Comparison of Optimization Models
Table 5 describes the comparison of optimization problems based on six requirements M1 -

M6 for an optimization model described in Section 1.2.2.

Optimization Problem M1 M2 M3 M4 M5 M6

Mixed-integer nonlinear programming + + + + + +
Mixed-integer linear programming + − + − + +
Nonlinear programming + + + + + −
Linear programming + − + − + −
Knapsack problem + 0 + 0 0 +
Multiple-choice knapsack problem + 0 + 0 0 +

Command signal configuration problem + + + + + +

Table 5 Overview of different approaches and requirements: (+ fulfilled, 0 not specified, − not fulfilled).

MINLP is capable of modeling a linear objective function or a nonlinear objective function,

linear constraints, nonlinear constraints, continuous variables, and discrete variables, thus

satisfying requirements M1 - M6. MILP can be used to model a linear case of MINLP. MILP

is capable of modeling a linear objective function, linear constraints, continuous variables,
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and discrete variables, and thus satisfies requirements M1, M3, M5, and M6. NLP has the

same capability as MINLP except for discrete variables. NLP is capable of modeling a linear

objective function or a nonlinear objective function, linear constraints, nonlinear constraints,

continuous variables, and discrete variables, and thus satisfies M1 - M5. LP is capable of

modeling a linear objective function, linear constraints, and continuous variables and thus

satisfies M1, M3, and M5. KP and MCKP are capable of modeling a linear objective func-

tion, linear constraints, and discrete variables. A nonlinear objective function, nonlinear con-

straints, and continuous variables are not provided, so they are marked as unspecified. They

satisfy requirements M1, M3, and M6. The command signal configuration problem is defined

as a mixed-integer nonlinear programming problem with a nonlinear objective function, linear

constraints, and a mixture of continuous and binary variables, see Section 4.8. A command

signal configuration problem satisfies requirements M1 - M6.

The modeling abilities come at a price. Table 6 summarizes the optimization problems and

their corresponding complexity classes. Only LP is in the P complexity class. MINLP, MILP,

NLP, MCKP, and command signal configuration problems are in the NP-hard complexity class.

KP is in the NP-complete complexity class.

Complexity Class MINLP MILP NLP LP KP MCKP CSCP

NP-hard + + + − − + +
NP-complete − − − − + − −
P − − − + − − −

Table 6 Overview of different optimization problems and complexity classes: (+ fulfilled, − not fulfilled, CSCP = Command
Signal Configuration Problem).

3.3. Behavior Models

This section describes existing automata-based behavior models and engineering behavior

models. An optimal command signal configuration should use behavior knowledge to find

optimal command signal configurations because they encode the activities that are necessary

to meet a specific production goal of a cyber-physical production system. Behavior models

can be classified into sequential and parallel behavior models [Men+03]. The sequential

behavior models compared are timed automata, hybrid timed automata, and priced timed

automata, and the parallel behavior models compared are activity diagram and petri net.

Section 3.3.1 describes automata-based behavior models, Section 3.3.2 describes engineer-

ing behavior models, and Section 3.3.3 describes the comparison of behavior models.

3.3.1. Automata-Based Behavior Models
This section explains the differences between the concepts of timed automata, hybrid timed

automata, and priced timed automata. Recent research has focused on building behavior

models. Behavior models can be used to validate, analyze, control, and simulate technical
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systems. Each behavior model describes different aspects of a technical system. Timed au-

tomata (TA) can model the behavior of real-time systems over time [AD94], e.g., open-loop

control strategies that do not use feedback. Hybrid timed automata (HTA) are a general-

ization of TA and can model continuous behavior of real-time systems over time [Alu+93],

e.g., closed-loop control strategies that use feedback. Priced timed automata (PTA) are TA

that can model linear costs of real-time systems [Beh+01], e.g., a linear approximation of the

energy consumption of open-loop control strategies.

The example of a filling process, shown in Figure 8, is introduced to explain the differences

between the concept timed automata, the concept hybrid timed automata, and the concept

priced timed automata.

a1

s1

a2
s2
s3
a3
s4

(3) Conveyor system

(1) Heating component

(2) Filler component

PLC

IO-Device

Actuators

a4a3a2a1

Sensors

s3s2s1s1

Figure 8 Example of a filling process: actuator a1 controls the heating component, actuators a2, a3 control valve 1 and valve 2
of the filler component, actuator a4 controls the conveyor system, sensor s1 measures the temperature of the water, sensors
s2, s3 are filling level sensors, and sensor s4 is a light barrier sensor (adapted from [ON15]).

The goal of this filling process is to fill 0.100l heated water into a bottle. The water must be

heated to 70◦C degrees Celsius, e.g., to kill bacteria before it can be filled into the bottle.

The example filling process is implemented by three automation components: (1) a heating

component, (2) a filling component, and (3) a conveying system. The automation components

are controlled by four actuators a1 – a4 and four sensors s1 – s4, which are connected to

a programmable logic controller (PLC) via an IO device. Actuator a1 controls the heating

component. If actuator a1 = 0, then the heating component is off. If actuator a1 = 1, then

the heating component is on. Sensor s1 measures the temperature of the water. Actuator a2
and actuator a3 control valve 1 and valve 2 of the filling component. Sensor s2 and sensor

s3 are filling level sensors. Actuator a4 controls the conveyor system and s4 is a light barrier

sensor.

Timed Automata:

The concept is that timed automata (TA) are able to model the behavior of real-time systems

over time, e.g., the timing behavior of cyber-physical production systems (B1). Continuous

behavior (B2), cost behavior (B3), and parallel behavior (B4) are not part of the TA concept.

Command Signal Configuration for Control Strategies of Discrete Production Systems 31



The formal definition of the TA concept is described in Definition 7.

Definition 7 (Timed Automata):

This is a special case of timed automata adapted from [Mai+11]. A timed automata

TA = (L, l0, F,Σ, T,∆, c) is described as a 7-tuple, where

(i) States: States are defined as a finite set L. The state l0 ∈ L describes the initial

state, e.g., the start state of a production system. The finite set F ⊆ S describes

the set of final states, e.g., the product is being manufactured, or the production

system is in an error state. For example, the states of the example filling process

are: heating l0, measuring l1, filling l2, and moving l3.

(ii) Events: The finite set Σ describes the alphabet comprising all events. For

example, the alphabet comprising all events of the example filling process is

Σ = {s1, s2, s3, s4}. An event s1, s2, s3, or s4 is triggered when the sensor valve

is one, e.g., s1 = 1.

(iii) Transitions: Transitions between states are described by the finite set T ⊆
S×Σ×S. For example, the following list of transitions exists for the sample filling

process: between state l0 and state l1, between state l1 and state l2, between

state l2 and state l3, and between state l3 and state l0.

(iv) Single clock: The single clock c is used to record the time. The clock is reset at

each transition.

(v) Timing constraints: The finite set ∆ describes timing constraints with δ : T →
I, where δ ∈ ∆ and I is the set of time intervals. For example, the timing

constraint c ≥ 208s describes that a transition is only taken after 208 seconds.

Figure 9 illustrates the timed automata concept of the example filling process.

State l0 (heating): The filling process begins with the heating of the water a1 = 1. Event s1
is triggered and the heating of the water ends after 208s. The state is switched from state l0

to state l1, the heating element is deactivated a1 = 0, and valve a2 = 1 is open.

State l1 (measuring): Event s2 is triggered, after 6s the filler is filled with 0.100l heated water.

The state is switched from state l1 to state l2, valve a2 is closed, and valve a3 is open.

State l2 (filling): Event s3 is triggered, after 6s the bottle is filled with heated water. The state

is switched from state l2 to state l3, valve a3 is closed, and the conveyor a4 = 1 starts to

move the bottle.
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State l3 (moving): Event s4 is triggered, after 10s the bottle is moved. The state is switched

from state l3 to state l0, the conveyor system is off a4 = 0, the heating element on a1 = 1,

and the filling process starts again.

l0start l1

l2l3

c ≥ 208s

s1

c ≤ 6s

s2

c ≤ 6s

s3

c ≤ 10s

s4

a1 = 1 a2 = 1

a3 = 1a4 = 1
Figure 9 Timed automata of the example filling process: actuator a1 controls the heating component, actuators a2, a3 control
valve 1 and valve 2 of the filler component, actuator a4 controls the conveyor system, sensor s1 measures the temperature of
the water, sensors s2, s3 are filling level sensors, and sensor s4 is a light barrier sensor. Sensor signals s1 − s2 are events.

Table 7 summarizes the sequences of actuator signals a1 − a4 and sensor signals s1 −
s4 of the example filling process. The column “Step” describes the iteration of the filling

process from state l0 to state l0 via the states l1, l2, l3, the column “Time” describes the

overall time in seconds, and the column “Constraint” describes the timing constraints of the

timed automata.

Actuators Sensors

Step Time Constraint a1 a2 a3 a4 s1 s2 s3 s4

1 0s c ≥ 208s 1 0 0 0 1 0 0 0
1 208s c ≤ 6s 0 1 0 0 0 1 0 0
1 304s c ≤ 6s 0 0 1 0 0 0 1 0
1 310s c ≤ 10s 0 0 0 1 0 0 0 1
2 518s c ≥ 208s 1 0 0 0 1 0 0 0
2 . . .
3 540s c ≥ 208s 1 0 0 0 1 0 0 0

. . .

Table 7 Timed automata of the example filling process: the column “Step” describes the iteration of the filling process, the
column “Time” describes the overall time in seconds, the column “Constraint” describes timing constraints, the columns
a1 − a4 describe sequences of actuator signals, and the columns s1 − s4 describe sensor signals.

Hybrid Timed Automata:

Hybrid timed automata (HTA) are capable of modeling continuous behavior (B2) over time

(B1) of real-time systems. Cost behavior and parallel behavior (B3 and B4) are not part of

the hybrid timed automata concept. The formal definition of the HTA concept is described in

Definition 8.
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Definition 8 (Hybrid Timed Automata):

This is a special case of hybrid timed automata adapted from [Nig+12]. HTA =

(L, l0, F,Σ, T,∆, c,Θ) is described as an 8-tuple, where

(i) States: States are defined as a finite set L. The state l0 ∈ L describes the initial

state, e.g., the start state of a production system. The finite set F ⊆ S describes

the set of final states, e.g., the product is being manufactured, or the production

system is in an error state. For example, the states of the example filling process

are: heating l0, measuring l1, filling l2, and moving l3.

(ii) Events: The finite set Σ describes the alphabet comprising all events. For

example, the alphabet comprising all events of the example filling process is

Σ = {s1, s2, s3, s4}. An event s1, s2, s3 or s4 is triggered, if the sensor valve is

one, e.g., s1 = 1.

(iii) Transitions: Transitions between states are described by the finite set T ⊆
S×Σ×S. For example, the following list of transitions exists for the sample filling

process: between state l0 and state l1, between state l1 and state l2, between

state l2 and state l3, and between state l3 and state l0.

(iv) Single clock: The single clock c is used to record the time. The clock is reset at

each transition.

(v) Timing constraints: The finite set ∆ describes timing constraints with δ : T →
I, where δ ∈ ∆ and I is the set of time intervals. For example, the timing

constraint c ≥ 208s describes that a transition occurs only after 208 seconds.

(vi) Continuous behavior: Continuous behavior Θ describes a finite set of functions

with elements θl : Rn → Rm, ∀l ∈ L, n ∈ N,m ∈ N ; i.e. θl is the function

expressing single valve changes within a single state l.

Figure 10 illustrates the concept of hybrid timed automata of the example filling process.

State l0 (heating): The filling process begins with the heating of the water a1 = 1. When

70◦C are reached, then event s1 is triggered and heating of the water ends after 208s. The

state is switched from state l0 to state l1, the heating element is deactivated a1 = 0, and

valve a2 = 1 is open.

State l1 (measuring): Event s2 is triggered. After 6s the filler is filled with 0.100l heated

water. The state is switched from state l1 to state l2, valve a2 is closed, and valve a3 is

open.
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State l2 (filling): Event s3 is triggered. After 6s the bottle is filled with heated water. The

state is switched from state l2 to state l3, valve a3 is closed, and the conveyor a4 = 1 starts

to move the bottle.

State l3 (moving): Event s4 is triggered. After 10s the bottle is moved. The state is switched

from state l3 to state l0, the conveyor system is off a4 = 0, the heating element is on a1 = 1,

and the filling process starts again.

l0
start

l1

l2l3

s1 ≥ 70◦C
c ≥ 208s

s1

c ≤ 6s

s2

c ≤ 6s

s3

c ≤ 10s

s4

a1 = 1 a2 = 1

a3 = 1a4 = 1

Figure 10 Hybrid timed automata of the example filling process: actuator a1 controls the heating element, actuators a2, a3
control valve 1 and valve 2, actuator a4 controls the conveyor system, sensor s1 measures the temperature of the water,
sensors s2, s3 are filling level sensors, and sensor s4 is a light barrier sensor. Sensor signals s1 − s2 are events..

Table 8 summarizes the sequences of actuator signals a1 − a4 and sensor signals s1 − s4 of

the example filling process. The column “Step” describes the iteration of the filling process

from state l0 to state l0 via the states l1, l2, l3, the column “Time” describes the overall time in

seconds, and the column “Constraint” describes the timing and continuous constraints of the

hybrid timed automata.

Actuators Sensors

Step Time Constraint a1 a2 a3 a4 s1 s2 s3 s4

1 0s s1 ≥ 70◦C 1 0 0 0 70 0 0 0
1 208s c ≤ 6s 0 1 0 0 68 1 0 0
1 304s c ≤ 6s 0 0 1 0 65 0 1 0
1 310s c ≤ 10s 0 0 0 1 60 0 0 1
2 518s s1 ≥ 70◦C 1 0 0 0 70 0 0 0
2 . . .
3 540s s1 ≥ 70◦C 1 0 0 0 70 0 0 0

. . .

Table 8 Hybrid timed automata of the example filling process: the column “Step” describes the iteration of the filling process,
the column “Time” describes the overall time in seconds, the column “Constraint” describes timing and continuous constraints,
the columns a1 − a4 describe sequences of actuator signals, and the columns s1 − s4 describe sensor signals.

Priced Timed Automata:
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Priced timed automata (PTA) extends timed automata (B1) with prices (B3). Prices allow the

calculation of the cost of reaching a designated set of target states. Continuous behavior (B2)

and parallel behavior (B4) are not part of the concept of priced timed automata. The formal

definition of the concept PTA is described in Definition 9.

Definition 9 (Priced Timed Automata):

PTA = (L, l0, F,Σ, T,∆, c, P ) is described as a 7-tuple, where

(i) States: States are defined as a finite set L. The state l0 ∈ L describes the initial

state, e.g., the start state of a production system. The finite set F ⊆ S describes

the set of final states, e.g., the product is being manufactured, or the production

system is in an error state. For example, the states of the example filling process

are: heating l0, measuring l1, filling l2, and moving l3.

(ii) Events: The finite set Σ describes the alphabet comprising all events. For

example, the alphabet comprising all events of the example filling process is

Σ = {s1, s2, s3, s4}. An event s1, s2, s3, or s4 is triggered when the sensor valve

is one, e.g., s1 = 1.

(iii) Transitions: Transitions between states are described by the finite set T ⊆
S×Σ×S. For example, the following list of transitions exists for the sample filling

process: between state l0 and state l1, between state l1 and state l2, between

state l2 and state l3, and between state l3 and state l0.

(iv) Single clock: The single clock c is used to record time. The clock is reset at

each transition.

(v) Timing constraints: The finite set ∆ describes timing constraints with δ : T →
I, where δ ∈ ∆ and I is the set of time intervals. For example, the timing

constraint c ≥ 208s describes that a transition occurs only after 208 seconds.

(vi) Prices: P : L→ N assigns prices to states. For example, the state l0 has a price

of 10J , e.g., energy consumption in Joules. More precisely, the price describes

a cost rate. The costs of heating the state l0 is 10J ∗ 208s = 2080J .

Figure 11 illustrates the priced timed automata of the example filling process.

State l0 (heating): The filling process begins with the heating of the water a1 = 1. Event s1
is triggered and the heating of the water ends after 208s. The state is switched from state l0

to state l1, the heating element is deactivated a1 = 0, and valve a2 = 1 is open.

State l1 (measuring): Event s2 is triggered. After 6s the filler is filled with 0.100l water. The

state is switched from state l1 to state l2, valve a2 is closed, and valve a3 is open.
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State l2 (filling): Event s3 is triggered. After 6s the bottle is filled with heated water. The

state is switched from state l2 to state l3, valve a3 is closed, and the conveyor a4 = 1 starts

to move the bottle.

State l3 (moving): Event s4 is triggered. After 10s the bottle is moved. The state is switched

from state l3 to state l0, the conveyor system is off a4 = 0, the heating element is on a1 = 1,

and the filling process starts again.
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start

l1
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l2

2

l3
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s1

c ≤ 6s

s2

c ≤ 6s

s3

c ≤ 10s

s4

a1 = 1 a2 = 1

a3 = 1a4 = 1

Figure 11 Priced timed automata of the example filling process: actuator a1 controls the heating element, actuators a2, a3
control valve 1 and valve 2, actuator a4 controls the conveyor system, sensor s1 measures the temperature of the water,
sensors s2, s3 are filling level sensors, and sensor s4 is a light barrier sensor. Sensor signals s1 − s2 are events..

Table 9 summarizes the sequences of actuator signals a1 − a4 and sensor signals s1 − s4 of

the example filling process. The column “Step” describes the iteration of the filling process

from state l0 to state l0 via the states l1, l2, l3, the column “Time” describes the overall time

in seconds, the column “Price” describes the energy consumption in Joules, and the column

“Constraint” describes the timing constraints of the timed automata.

Actuators Sensors

Step Time Cost Constraint a1 a2 a3 a4 s1 s2 s3 s4

1 0s 0 c ≥ 208s 1 0 0 0 1 0 0 0
1 208s 2080J c ≤ 6s 0 1 0 0 0 1 0 0
1 304s 2092J c ≤ 6s 0 0 1 0 0 0 1 0
1 310s 2104J c ≤ 10s 0 0 0 1 0 0 0 1
2 518s 4484J c ≥ 208s 1 0 0 0 1 0 0 0
2 . . .
3 540s 8968J c ≥ 208s 1 0 0 0 1 0 0 0

. . .

Table 9 Priced timed automata of the example filling process: the column “Step” describes the iteration of the filling process,
the column “Time” describes the overall time in seconds, the column “Cost” describes the overall energy consumption, the
column “Constraint” describes timing constraints, the columns a1 − a4 describe sequences of actuator signals, and the
columns s1 − s4 describe sensor signals.
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3.3.2. Engineering Behavior Models
This section describes engineering behavior models. Recent research has focused on build-

ing engineering behavior models. Engineering behavior models can be used to validate,

analyze, control, and simulate technical systems. Engineering behavior models are mostly

used in combination with development processes. Each engineering behavior model de-

scribes different aspects of a technical system. Activity diagrams encode sequences of ac-

tivities and consist of initial nodes, final nodes, activities, fork nodes, merge nodes and swim

lanes [KST14]. Each swim lane reflects a hardware component, each activity reflects a soft-

ware component, and fork nodes and merge nodes represent concurrent behavior. Petri

nets describe the asynchronous, concurrent, distributed, and parallel behavior of information

processing systems [Mur89], technical systems, or cyber-physical production systems.

Activity Diagram:

Knowledge about the production goal in the form of behavior models that encode sequences

of activities is required to select an optimal control strategy for each activity and to calcu-

late optimal parameters for each selected control strategy, as described by the three-step

decision process in Section 2.3. This knowledge can be described by a UML 2 activity dia-

gram [KST14]. Activity diagrams encode sequences of activities and consist of initial nodes,

final nodes, activities, fork nodes, merge nodes, and swim lanes (B4). Timing behavior (B1),

continuous behavior (B2), and cost behavior (B3) are not part of the activity diagram concept.

It is described in Definition 10.

Definition 10 (Activity Diagram):

The subset of the UML 2 activity diagram consists of the following elements:

(i) Initial node: The node l1 describes the start of a production scenario. It is called

initial node, illustrated in Figure 12: Initial.

(ii) Final node: The node le describes the end of a production scenario. It is called

final node, illustrated in Figure 12: Final.

(iii) Activities: An activity represents a software component with one or more control

methods, illustrated in Figure 12: Activities.

(iv) Fork nodes: A fork node is a node that splits sequences of activities into multiple

concurrent sequences of activities, illustrated in Figure 12: Fork.

(v) Merge nodes: A merge node is a node that brings together multiple concurrent

sequences of activities, illustrated in Figure 12: Merge.

(vi) Swim lanes: A swim lane represents a modular hardware component, illustrated

in Figure 12: Swim lanes.
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Figure 12 illustrates the visual representation of the subset of the UML 2 activity diagram.

Each swim lane reflects a hardware component, each activity reflects a software component,

and fork nodes and merge nodes represent concurrent behavior.

A1

A2 A3 A4

A5

M1 M2 M3

l1

le

Fork

Merge

Initial

FinalSwim lanes
Figure 12 Subset of the UML 2 activity diagram: the initial node l1 describes the start of a production scenario, the final node
le describes the end of a production scenario, A1 −A5 describe activities, the fork node splits the sequences of activities into
multiple concurrent sequences of activities, the merge node brings together multiple concurrent sequences of activities, and
the swim lanes represent modular hardware components M1 −M3 (adapted from [OVN18b]).

Petri Net:

Petri nets describe the asynchronous, concurrent, distributed, and parallel behavior of infor-

mation processing systems [Mur89], technical systems, or cyber-physical production systems

(B4). Timing behavior (B1), continuous behavior (B2), and cost behavior (B3) are not a part of

the concept of the Petri net. The formal definition of the concept of the Petri net is described

in Definition 11.

Definition 11 (Petri Net):

A Petri net is a 5-tuple, PN = (P, T, F,W,M0), where:

(i) Places: P is defined as a finite set of places P = {p1, . . . , pm},

(ii) Transitions: T is defined as a finite set of transitions T = {t1, . . . , tn},

(iii) Arcs: F is defined as a finite set of arcs F ⊆ (P × T ) ∪ (T × P ),

(iv) Weight function: Weight function W is defined as W : F → N,

(v) Initial marking: Initial marking is defined as M0 : P → N,

P ∩ T = ∅ and P ∪ T ̸= ∅
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3.3.3. Comparison of Behavior Models
Table 10 describes the comparison of the behavior models presented above. None of the

existing behavior models covers all requirements B1 - B4 described in Section 1.2.3.

Timed automata are capable of modeling the behavior of real-time systems over time, e.g.,

the timing behavior of cyber-physical production systems (B1). Continuous behavior (B2),

cost behavior (B3), and parallel behavior (B4) are not part of the concept of timed automata.

Hybrid timed automata are capable of modeling continuous behavior (B2) over time (B1) of

real-time systems. Cost behavior (B3) and parallel behavior (B4) are not part of the concept of

hybrid timed automata. Priced timed automata extend timed automata (B1) with prices (B3).

Prices allow the calculation of the cost of reaching a designated set of target states. Con-

tinuous behavior (B2) and parallel behavior (B4) are not part of the concept of priced timed

automata. Activity diagrams encode sequences of activities and consist of initial nodes, final

nodes, activities, fork nodes, merge nodes, and swim lanes (B4). Timing behavior (B1), con-

tinuous behavior (B2), and cost behavior (B3) are not part of the concept activity diagram.

Petri nets describe the asynchronous, concurrent, distributed, and parallel behavior of infor-

mation processing, technical, or cyber-physical production systems (B4). Timing behavior

(B1), continuous behavior (B2), and cost behavior (B3) are not part of the Petri net concept.

The behavior model of CyberOpt is simply defined as a directed graph of activities (B4) with

UML 2 activity diagram semantics. The design concept separation of concerns (SoC) is used

in this work. Cost models (B3) are learned from timing behavior (B1) and continuous behav-

ior (B2). The activities refer to control methods, and each control method has a cost model.

Therefore, the behavior model of CyberOpt satisfies all requirements B1 - B4.

Behavior Model B1 B2 B3 B4

Timed automata + − − −
Hybrid timed automata + + − −
Priced timed automata + − + −
Activity diagram − − − +
Petri net − − − +

CyberOpt approach + + + +

Table 10 Classification of different behavior models: (+ fulfilled and − not fulfilled).

3.4. Conclusions From State of the Art

This section describes the conclusions drawn from state of the art. The analyzed state of

the art is divided into the following three sections: (1) existing parameter configuration ap-

proaches, described in Section 3.1, (2) optimization models, described in Section 3.2, and

(3) behavior models, described in Section 3.3.

The comparison of parameter configuration classes described in Section 3.1.5 has shown that

none of the existing parameter solutions satisfies all defined requirements R1 - R6, but a com-
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bination of data-driven and hybrid-based parameter configuration can satisfy all requirements.

The manual parameter configuration involves the highest manual engineering effort and can

be considered as the upper limit, while the data-driven parameter configuration represents

the lower limit without any manual engineering effort. However, data-driven parameter con-

figuration approaches are not generic solutions and are mostly specific for one use case, e.g.,

laser welding. Simulation-based parameter configuration involves a high manual engineering

effort because simulation models must be created from data manually, and expert knowledge

is required to create them. Furthermore, it is impossible to simulate the real world entirely, for

computability reasons. Hybrid-based parameter configurations are a compromise between

the model-building effort and optimization capabilities. They combine simulation models with

observed data from the runtime of production systems. Except manual parameter config-

uration, the simulation-based, data-driven, and hybrid-based approaches are able to find a

global optimum and model implicit timing parameters. None of the approaches use explicit

sequences of control methods or parallel sequences of control methods or are able to han-

dle different control methods. CyberOpt can be classified as a data-driven and hybrid-based

command signal configuration solution. Observed data from production system runtime and

machine learning techniques are used to reduce manual engineering effort. Cost models

and sequences of control methods are learned, and cost models are improved. The learned

cost models with implicit timing parameters, the learned behavior knowledge in the form of

sequences of control methods, and the knowledge of the software structure can then be used

to calculate a global optimal command signal configuration for a production system.

The comparison of optimization models described in Section 3.2.4 has shown that the com-

mand signal configuration problem introduced in Section 4.8 can be classified as a mixed-

integer nonlinear programming problem with a nonlinear objective function, linear constraints,

and a mixture of continuous and binary variables. Therefore, the command signal configu-

ration problem of CyberOpt satisfies all the requirements M1 - M6. The modeling abilities

come at a price. The command signal configuration problem belongs to the class of NP-hard

complexity. Section 3.2.2 and Section 3.2.3 have shown that solving techniques and solvers

exist to solve such problems.

The comparison of behavior models described in Section 3.3.3 has outlined that both classes

of models, automata-based behavior models as well as engineering behavior models, can

be used to represent different aspects of a technical system. No behavior model satisfies all

requirements B1 - B4. The behavior model of CyberOpt is simply defined as a directed graph

of activities with the semantics of the UML 2 activity diagram. Using the design concept of

separation of concerns (SoC), it is unnecessary to define a behavior model representing all

aspects (timing behavior, continuous behavior, cost behavior, and parallel behavior). Cost

models are learned from timing behavior and continuous behavior. Activities refer to control

methods, and each control method has a cost model. Therefore, the behavior model of

CyberOpt satisfies all requirements B1 - B4.
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4. Problem Description

This chapter describes the command signal configuration problem. This chapter is based on

previous work by the author and expands the published concepts [ON15, OVN16, OVN18b,

OVN18a]. The command signal configuration problem must be solved by a configuration

approach in order to automate the task of manual configuration for automation software com-

ponents in discrete manufacturing. The command signal configuration problem is described

by a task with inputs and outputs as shown in Figure 13. The task describes a three-step de-

cision process, see Section 2.3. The inputs of the task are: an automation software structure

Ā, described in Definition 12; command signals P̄ , described in Definition 13; decision pa-

rameters B, described in Definition 14; parameter constraints G, described in Definition 15;

cost models C, described in Definition 16; sequences of control methods S̄ described in

Definition 17; and an objective time value obj , described in Definition 19. The output of the

command signal configuration problem description is an optimal command signal configura-

tion X∗ = (X, opt).

Command signal con-
figuration problem

Symbol Name Reference
Ā Automation software structure Definition 12
P̄ Command signals Definition 13
B Decision parameters Definition 14
G Command signal constraints Definition 15
C Cost models Definition 16
S̄ Sequences of controls methods Definition 17
obj Objective time value Definition 19

Symbol Name Reference
X∗ = (X, opt) Optimal command signal configura-

tion, where X = (P̄ , B) is a valid
command signal configuration and
opt is the cost value

Definition 18

In
pu

ts
O

ut
pu

ts

Figure 13 Overview of the command signal configuration problem, described as a task with inputs and outputs.

4.1. Automation Software Structure

An automation software structure describes automation software components with one or

more control methods that implement control strategies.
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Definition 12 describes the formal notation of an automation software structure.

Definition 12 (Automation Software Structure):

Ā = (A1, . . . , Am), m ∈ N1 is defined as an m-tuple of one or more reusable software

components. It is called automation software structure.

Each reusable software component Ai = {1, . . . , ni}, ni ∈ N1 is defined as finite set

of control method indices and n =
∑m

i=1 ni is defined as the number of all control

methods.

Example 1 describes the automation software structure of the example production system

(see Figure 1). The automation software structure Ā = (A1, A2, A3) has three automation

software components A1 − A3 and five control methods n = n1 + n2 + n3 = 5, see Equa-

tion 4.5. The software component A1 has one control method fill -B1 (P11), the software

component A2 has two control methods: pick -C1 (P21), pick -C2 (P22), and the software

component A3 has two control methods: move-D1 (P31), move-D2 (P32).

Example 1 (Automation Software Structure):

The automation software structure of the example production system (see Figure 1):

SWC: A1

(1) fill -B1 (P11)

SWC: A2

(1) pick -C1 (P21)

(2) pick -C2 (P22)

SWC: A3

(1) move-D1 (P31)

(2) move-D2 (P32)

Ā = (A1, A2, A3), m = 3 (4.1)

A1 = {1}, n1 = 1 (4.2)

A2 = {1, 2}, n2 = 2 (4.3)

A3 = {1, 2}, n3 = 2 (4.4)

n = n1 + n2 + n3 = 5 (4.5)

4.2. Command Signals

Command signals are used to increase the reusability of automation software components

by adding degrees of freedom to control methods that implement control strategies.

Parameters are classified into three classes, see Section 2.1: (1) timing parameters, (2) com-

mand signals, and (3) decision parameters. Each control method j of the software component

Ai has a timing parameter, command signals, and a decision parameter. The decision pa-

rameters are described in Section 4.3. The timing parameters of control strategies describe
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the time period within which the control strategy should perform its activity, e.g., execute the

control strategy move-D1 (P31) within 10 seconds, 15 seconds, or 20 seconds. Command

signals specify the degrees of freedom of control strategy implementations, e.g., acceleration

and deceleration parameters of conveyor systems.

Definition 13 describes the formal notation of command signals.

Definition 13 (Command Signals):

P̄ = (Pij | i ∈ {1, . . . ,m} ∧ j ∈ Ai) is defined as an n-tuple of all command signals,

where Pij = (p
(1)
ij , . . . , p

(k)
ij ), k ∈ N≥1 are the command signals of the control method

j from the software component Ai.

The command signals (p
(1)
ij ∈ D

(1)
ij ), . . . , (p

(k)
ij ∈ D

(k)
ij ) are defined by domains. A

domain is a finite set of possible command signal values.

The command signal p(1)ij describes the time to execute a control method j from soft-

ware component Ai. Note that timing parameters are also command signals.

Example 2 describes all parameters of the example production system (see Figure 1). Equa-

tion 4.6 describes all command signals P̄ = (P11, P21, P22, P31, P32). Equations 4.7 - 4.11

describe the parameters of the control methods fill -B1 (P11), move-D1 (P31), move-D2 (P32),

pick -C1 (P21) and pick -C2 (P22). The domains of these parameters are described in Equa-

tion 4.12.

Example 2 (Command Signals):

The command signals of the example production system (see Figure 1):

SWC: A1

(1) fill -B1 (P11)

SWC: A2

(1) pick -C1 (P21)

(2) pick -C2 (P22)

SWC: A3

(1) move-D1 (P31)

(2) move-D2 (P32)

P̄ = (P11, P21, P22, P31, P32) (4.6)

P11 = (p
(1)
11 , p

(2)
11 , p

(3)
11 , p

(4)
11 ) (4.7)

P21 = (p
(1)
21 ) (4.8)

P22 = (p
(1)
22 ) (4.9)

P31 = (p
(1)
31 ) (4.10)

P32 = (p
(1)
32 ) (4.11)

D
(1)
11 , D

(2)
11 , D

(3)
11 , D

(4)
11 , D

(1)
21 , D

(1)
22 , D

(1)
31 , D

(1)
32 = R>0 (4.12)
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Parameters p
(1)
11 , p

(1)
21 , p

(1)
22 , p

(1)
31 and p

(1)
32 are timing parameters. Possible timing parameter

values are described in Example 3: Equation 4.13 - Equation 4.15.

Example 3 (Timing Parameters):

Timing parameter values (s=seconds) of the example production system (see Figure 1):

p
(1)
11 = 5s (4.13)

. . . (4.14)

p
(1)
32 = 10s (4.15)

The parameters p
(2)
31 , p

(3)
31 , and p

(4)
31 of the example production system are command signals

(see Figure 1). Possible command signal values are described in Example 4: Equation 4.16 -

Equation 4.18.

Example 4 (Command Signals):

Command signals values of the example production system (Hz=Hertz) (see Figure 1):

p
(2)
31 = 1Hz/s (4.16)

p
(3)
31 = 10Hz (4.17)

p
(4)
31 = 20Hz/s (4.18)

4.3. Decision Parameters

A decision parameter describes which control method j of a software component Ai should

be used to perform its corresponding activity. Only one control strategy can be selected for

a software component. For example, only the control method pick -C1 (P21) or the control

method pick -C2 (P22) can be used for the activity pick .

Definition 14 describes the formal notation of decision parameters.

Definition 14 (Decision Parameters):

B = (bij | i ∈ {1, . . . ,m} ∧ j ∈ Ai ∧ bij ∈ {0, 1}) is defined as an n-tuple of 1 or 0

values. If bij = 1, then the control method j from the software component Ai is used,

and if bij = 0, then the control method j from software component Ai is not used.
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Possible decision parameters of the example production system are described in Example 5:

Equation 4.19 - Equation 4.20.

Example 5 (Decision Parameters):

Decision parameters of the example production system (see Figure 1):

B = (b11, b21, b22, b31, b32) = (1, 1, 0, 1, 0) (4.19)

B = (b11, b21, b22, b31, b32) = (1, 0, 1, 1, 0) (4.20)

4.4. Command Signal Constraints

Command signal constraints restrict command signals. They describe valid values of com-

mand signal configurations.

Definition 15 describes the formal notation of command signal constraints. Command sig-

nal constraints are defined as command signal constraint functions. The command signals

(p
(1)
ij ∈ D

(1)
ij ), . . . , (p

(k)
ij ∈ D

(k)
ij ) are defined by domains, see Definition 13. A command sig-

nal constraint function gij : D
(1)
ij ×· · ·×D

(k)
ij → {0, 1} describes valid command signal values

of timing parameters p
(1)
ij and command signal parameters p

(2)
ij . . . p

(k)
ij of a control method j

from software component Ai.

The function value of a command signal constraint function encodes the results of con-

straints. If gij(p
(1)
ij , . . . , p

(k)
ij ) = 0, then the command signal constraints are not fulfilled. If

gij(p
(1)
ij , . . . , p

(k)
ij ) = 1, then the command signal constraints are fulfilled.

For example, the constraint 5s ≤ p
(1)
11 ≤ 10s restricts the value of the timing parameter

p
(1)
11 ∈ [5s, 10s]. Note that in this case, defining constraints is equivalent to restricting the

domains. In this work, all constraints are defined by command signal constraint functions.

Definition 15 (Command Signal Constraints):

G = (gij | i ∈ {1, . . . ,m} ∧ j ∈ Ai) is defined as an n-tuple of command signal

constraint functions, where gij : D
(1)
ij × · · · × D

(k)
ij → {0, 1}. It is called command

signal constraint.

The command signal constraints of command signals of the example production system are

described in Example 6. Equation 4.21 defines five command signal constraint functions

G = (g11, g21, g22, g31, g32).
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The constraint function g11(p
(1)
11 , p

(2)
11 , p

(3)
11 , p

(4)
11 ) defines a constraint for the timing parameter

p
(1)
11 and constraints for the command signals p

(2)
11 , p

(3)
11 and p

(4)
11 , see Equation 4.22. The

constraint functions g21(p
(1)
21 ), g22(p

(1)
22 ), g31(p

(1)
31 ) and g32(p

(1)
32 ) define a constraint for each

timing parameter, see Equation 4.23.

Example 6 (Command Signal Constraints):

Command signal constraints of the example production system (see Figure 1):

G = (g11, g21, g22, g31, g32) (4.21)

g31(p
(1)
11 , p

(2)
11 , p

(3)
11 , p

(4)
11 ) =



1 7.7s ≤ p
(1)
11 ≤ 26.25s

1 1Hz/s ≤ p
(2)
11 ≤ 20Hz/s

1 10Hz ≤ p
(3)
11 ≤ 50Hz

1 1Hz/s ≤ p
(4)
11 ≤ 20Hz/s

1 p
(2)
11 , p

(3)
11 , p

(4)
11 > 0

0 otherwise.

(4.22)

g11(p
(1)
31 ), g21(p

(1)
21 ), g22(p

(1)
22 ),

g32(p
(1)
32 )

=

1 5s ≤ p
(1)
ij ≤ 10s (timing parameter)

0 otherwise.
(4.23)

4.5. Cost Models

Cost models are required for comparing control strategies and command signal configura-

tions. A cost model is a mathematical description of measured cost values during the opera-

tion of a production system that allows the prediction of expected cost for a command signal

configuration. In this work, the cost values are the energy consumption values.

Definition 16 describes the formal notation of cost models. Cost models are defined as cost

functions. The command signals (p
(1)
ij ∈ D

(1)
ij ), . . . , (p

(k)
ij ∈ D

(k)
ij ) are defined by domains,

see Definition 13. Each control method j from the software component Ai has a cost function

cij : D
(1)
ij × · · · × D

(k)
ij → R. A cost function cij(p

(1)
ij , . . . , p

(k)
ij ) maps the command signal

values p
(1)
ij , . . . , p

(k)
ij to a cost value.

Definition 16 (Cost Models):

C = (cij | i ∈ {1, . . . ,m} ∧ j ∈ Ai) is defined as an n-tuple of cost functions

cij : D
(1)
ij × · · · ×D

(k)
ij → R. It is called cost model.

Command Signal Configuration for Control Strategies of Discrete Production Systems 47



The cost models for each control method of the example production system are described in

Example 7. For each control method j from the software component Ai, a static cost function

is defined in Equation 4.24 - Equation 4.26. This is just an example to explain the concept

of optimal command signal configuration. Cost models in the real world are, e.g., complex

nonlinear functions.

Example 7 (Cost Models):

Cost models of the example production system (see Figure 1):

C = (c11, c21, c22, c31, c32) (4.24)

c11(p
(1)
11 , p

(2)
11 , p

(3)
11 , p

(4)
11 ), c22(p

(1)
22 ), c31(p

(1)
31 ) = 1 (4.25)

c21(p
(1)
21 ), c32(p

(1)
32 ) = 10 (4.26)

4.6. Sequences of Control Methods

Sequences of control methods describe all possible execution paths of an automation soft-

ware structure. The sequences must be calculated from behavioral models that encode se-

quences of activities.

Definition 17 describes the formal notation of sequences of control methods.

Definition 17 (Sequences of Control Methods):

S̄ = (S1, . . . , Sh, . . . , Sr), r ∈ N1 are defined as an r-tuple of so-called possible exe-

cution paths of control methods. They are called sequences of control methods.

Each path Sh = {ij | i ∈ {1, . . . ,m} ∧ j ∈ Ai} is defined as a finite set of index

values ij used to denote domains Dij , constraints gij , and costs cij of control method

command signals Pij . Note that it is called “sequences of control methods,” but a path

is defined as indices of command signals, see Example 8.

The sequences of control methods of the example production system are described in Exam-

ple 8. The sequences of control methods are defined in Equations 4.27 - 4.31.
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Example 8 (Sequences of Control Methods):

Sequences of control methods of the example production system (see Figure 1):

S̄ = (S1, S2, S3, S4) (4.27)

S1 = {11, 21, 31} fill -B1 (P11), pick -C1 (P21),move-D1 (P31) (4.28)

S2 = {11, 22, 31} fill -B1 (P11), pick -C2 (P22),move-D1 (P31) (4.29)

S3 = {11, 21, 32} fill -B1 (P11), pick -C1 (P21),move-D2 (P32) (4.30)

S4 = {11, 22, 32} fill -B1 (P11), pick -C2 (P22),move-D2 (P32) (4.31)

4.7. Optimal Command Signal Configuration

An optimal command signal configuration is the result of a command signal configuration. An

optimal command signal configuration is a command signal configuration with a minimal cost

value. In this work, cost values are energy consumption values, and “optimal” means energy

efficient.

Definition 18 describes the formal notation of an optimal command signal configuration.

Definition 18 (Optimal Command Signal Configuration):

Let X = (P̄ , B) be a command signal configuration of command signals P̄ (see Defi-

nition 13) and decision parameters B (see Definition 14). An optimal command signal

configuration is a tuple X∗ = (X, opt). The value opt describes the cost value of the

command signal configuration X.

The costs are calculated for the three valid command signal configurations of the example

production system. The optimal command signal configuration X∗ is X(2), see Equation 4.33,

because it has the lowest cost value.

Example 9 (Optimal Command Signal Configuration):

Valid command signal configurations of the example production system (see Figure 1):

X(1) = (X(1), c11 + c21 + c31 = 13) (4.32)

X(2) = (X(2), c11 + c22 + c31 = 3) = X∗ (4.33)

X(3) = (X(3), c11 + c22 + c32 = 13) (4.34)
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4.8. Command Signal Configuration Problem

This section describes the command signal configuration problem. The objective is to au-

tomatically calculate an optimal command signal configuration that can then be used to set

up a production system. Given an automation software structure Ā (see Definition 12), com-

mand signals P̄ (see Definition 13), decision parameters B (see Definition 14), command

signal constraints G (see Definition 15), cost models C (see Definition 16) for each control

method, sequences of control methods S̄ (see Definition 16), and an objective time value

obj defined in Definition 19, the objective is to find an optimal command signal configuration

X∗ = (X, opt) (see Definition 18) that minimizes the costs. In this work, cost values are

energy consumption values and “optimal” means energy efficient.

Definition 19 (Objective Time):

obj ∈ R>0 defines the objective time period for the execution of all control methods for

each path Sh, see Definition 17. It is called objective time.

Definition 20 defines the formal notation of the command signal configuration problem.

The minimization criterion is described in Equation 4.35. The command signals (p
(1)
ij ∈

D
(1)
ij ), . . . , (p

(k)
ij ∈ D

(k)
ij ) are defined by domains, see Definition 13. The sum of the costs

cij(p
(1)
ij , . . . , p

(k)
ij ) of all selected control methods should be minimized under:

Equation 4.36: Objective time constraint: The objective time constraint defines that the

sum of the chosen values for the timing parameters p
(1)
ij , p(1)ij ∈ D

(1)
ij of all selected control

methods p
(1)
ij bij , bij ∈ {0, 1} is smaller than the objective time value obj .

Equation 4.37: Command signal constraints are valid constraints: All command signal

constraints are valid constraints describes that each command signal constraint function gij ,

∀ i ∈ {1, . . . ,m}, j ∈ Ai must be valid gij(p
(1)
ij , . . . , p

(k)
ij ) = 1.

Equation 4.38: Only one control method constraint: The only one control method con-

straint describes that only one control method j can be selected from a software component

Ai. The selected control method j is then used to execute the corresponding activity.
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Definition 20 (Command Signal Configuration Problem):

Given an automation software structure Ā (see Definition 12), command signals P̄

(see Definition 13), decision parameters B (see Definition 14), command signal con-

straints G (see Definition 15), cost models C (see Definition 16), sequences of control

methods S̄ (see Definition 17), and an objective time value obj (see Definition 19), the

objective is to find an optimal command signal configuration X∗ = (X, opt) (see Defi-

nition 18) that minimizes the cost sum:

min
∑

i∈{1,...,m}

∑
j∈Ai

cij(p
(1)
ij , . . . , p

(k)
ij ) bij ,

p
(1)
ij ∈ D

(1)
ij , . . . , p

(k)
ij ∈ D

(k)
ij , bij ∈ {0, 1}

(4.35)

under the following constraints:

(i) Objective time constraint: ∑
ij ∈ Sh

p
(1)
ij bij ≤ obj ,

∀ h ∈ {1, . . . , r}, p
(1)
ij ∈ D

(1)
ij , bij ∈ {0, 1}, obj ∈ R>0

(4.36)

(ii) Command signal constraints are valid constraints:

gij(p
(1)
ij , . . . , p

(k)
ij ) = 1,

∀ i ∈ {1, . . . ,m}, j ∈ Ai

(4.37)

(iii) Only one control method constraint: ∑
j ∈Ai

bij = 1,

∀ i ∈ {1, . . . ,m}, bij ∈ {0, 1}

(4.38)
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5. CyberOpt Framework

This chapter introduces the CyberOpt framework. This chapter is based on previous work

by the author and expands the published ideas [ON15, OVN16, OVN18b, OVN18a]. The

CyberOpt framework is a formal framework for command signal configuration. Chapter 4

describes the command signal configuration problem. The command signal configuration

problem must be solved by a configuration approach in order to find an optimal configuration.

An optimal command signal configuration is a configuration with a minimal cost value. Cost

values in this work are energy consumption values. The command signal configuration prob-

lem is described by the following concepts: an automation software structure Ā (see Defini-

tion 12), command signals P̄ (see Definition 13), decision parameters B (see Definition 14),

command signal constraints G (see Definition 15), cost models C (see Definition 16) for

each control method, sequences of control methods S̄ (see Definition 17), and an objective

time value obj (see Definition 19). The CyberOpt framework, shown in Figure 14, describes

tasks required to find an optimal command signal configuration X∗ = (X, opt) (see Defini-

tion 18).

Bootstrapping

Exploration

Task 1:
find a valid command
signal configuration

Task 2:
record new data from
the production system

Task 4:
learn sequences of

control methods

Task 3:
learn

cost models

Task 5:
find an optimal command

signal configuration

Task 6:
improve

cost models

Task 2:
record new data from
the production system

S̄C̄∗

X∗ = (X, opt)

Figure 14 Overview of all tasks to find an optimal command signal configuration: cost model training data C̄∗ (described in
Section 5.2), sequences of control methods S̄ (see Definition 17), and an optimal command signal configuration
X∗ = (X, opt) (see Definition 18).

A task description is independent of a solution technique. The framework consists of six tasks,

input and output concepts: Task 1: find a valid command signal configuration (described in

Section 5.1), Task 2: record new data from the production system (described in Section 5.2),

Task 3: learn cost models (described in Section 5.3), Task 4: learn sequences of control

methods (described in Section 5.4), Task 5: find an optimal command signal configuration

(described in Section 5.5), and Task 6: improve cost models (described in Section 5.6). The

framework consists of two parts: (1) a bootstrapping part and (2) an exploration part. The

goal of the bootstrapping part is to calculate the initial cost model training data C̄∗ (see Defi-

nition 22) and to learn sequences of control methods S̄ (see Definition 17). Therefore, task 1

calculates valid command signal configurations X = (P̄ , B) (see Definition 21) from an au-

tomation software structure Ā (see Definition 12), command signals P̄ (see Definition 13),
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decision parameters B (see Definition 14), and command signal constraints G (see Defini-

tion 15). The concept valid command signal configuration X = (P̄ , B) is described in Defi-

nition 21. A valid command signal configuration X = (P̄ , B) (see Definition 21) is required

to set up the automation software of a production system. When the automation software is

set up, then Task 2 records new data from the production system to obtain an event log S∗

(see Definition 23) and cost model training data C̄∗. The concept event log S∗ is described

in Definition 23 and the concept cost model training data C̄∗ is described in Definition 22.

Task 4 learns sequences of control methods S̄ (see Definition 17) from the recorded event

log S∗ (see Definition 23). The goal of the exploration part is to calculate an optimal com-

mand signal configuration X∗ = (X, opt) (see Definition 18). Task 3 learns cost models C

(see Definition 16) from the recorded cost model training data C̄∗ (see Definition 22). Task 5

solves the command signal configuration problem. Task 6 improves the quality of cost models

C (see Definition 16). A new valid command signal configuration X = (P̄ , B) (see Defini-

tion 21) is calculated, which should be evaluated in order to obtain more observations of

the production system. With more observations, the cost models are more accurate. The

number of evaluations of a production system is important. An exhaustive evaluation of all

possible command signal configurations is usually not possible since each evaluation of a

production system takes time and is therefore expensive. Few evaluations shorten the time in

which a production system does not operate optimally. In this work, “optimal” means energy

efficient.

5.1. Task 1: Find a Valid Command Signal Configuration

This section describes the task of finding a valid command signal configuration. The idea

is to automatically calculate valid command signal configurations that can then be used to

record new data from a production system. A valid command signal configuration describes:

(1) which control method j is selected for each software component Ai and (2) which timing

parameter value and command signal values are used for each selected control method j.

The formal definition of a valid command signal configuration X is described in Defini-

tion 21.

Definition 21 (Valid Command Signal Configuration):

A valid command signal configuration is a tuple X = (P̄ , B) of command signals P̄

(see Definition 13) and decision parameters B (see Definition 14).

Example 10 describes in Equation 5.1 - Equation 5.3 three valid command signal config-

urations X(1) − X(3) of the example production system shown in Figure 1. For example,

the tuple (1, 1, 0, 1, 0) encodes the selected control methods. In this case, the control meth-

ods fill -B1 (P11), pick -C1 (P21), and move-D1 (P31) are selected. The timing parameter and
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command signals used are P11 = (5s, 1Hz , 10Hz , 20Hz ), P21 = (7s) and P31 = (6s).

Example 10 (Valid Command Signal Configuration):

Valid command signal configurations of the example production system (see Figure 1):

X(1) = ((p
(1)
11 , p

(2)
11 , p

(3)
11 , p

(4)
11 , p

(1)
21 , p

(1)
22 , p

(1)
31 , p

(1)
32 ), (b11, b21, b22, b31, b32))

= ((5s, 1Hz , 10Hz , 20Hz , 7s, 8s, 6s, 10s), (1, 1, 0, 1, 0)) (5.1)

X(2) = ((p
(1)
11 , p

(2)
11 , p

(3)
11 , p

(4)
11 , p

(1)
21 , p

(1)
22 , p

(1)
31 , p

(1)
32 ), (b11, b21, b22, b31, b32))

= ((6s, 1Hz , 30Hz , 10Hz , 5s, 10s, 10s, 5s), (1, 0, 1, 1, 0)) (5.2)

X(3) = ((p
(1)
11 , p

(2)
11 , p

(3)
11 , p

(4)
11 , p

(1)
21 , p

(1)
22 , p

(1)
31 , p

(1)
32 ), (b11, b21, b22, b31, b32))

= ((10s, 1Hz , 10Hz , 5Hz , 10s, 6s, 7s, 8s), (1, 0, 1, 1, 0)) (5.3)

The formal definition of the task of finding a valid command signal configuration is given in

Task 21.

Task 1 (Find a Valid Command Signal Configuration):

Given an automation software structure Ā (see Definition 12), command signals P̄

(see Definition 13), decision parameters B (see Definition 14), and command signal

constraints G (see Definition 15), the objective is to find a valid command signal con-

figuration X = (P̄ , B) (see Definition 21) under the following constraints:

(i) Command signal constraints:

gij(p
(1)
ij , . . . , p

(k)
ij ) = 1,

∀ i ∈ {1, . . . ,m}, j ∈ Ai, p
(1)
ij ∈ D

(1)
ij , . . . , p

(k)
ij ∈ D

(k)
ij

(5.4)

(ii) Only one control method constraint: ∑
j ∈Ai

bij = 1,

∀ i ∈ {1, . . . ,m}, bij ∈ {0, 1}

(5.5)

Equation 5.4 describes that all command signal constraints must be satisfied. Each command
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signal constraint function gij , ∀ i ∈ {1, . . . ,m}, and j ∈ Ai must be valid gij(p
(1)
ij , . . . , p

(k)
ij ) =

1, p(1)ij ∈ D
(1)
ij , . . . , p

(k)
ij ∈ D

(k)
ij . Equation 5.5 describes that only one control method j can

be selected from a software component Ai. The selected control method j is then used to

perform the corresponding activity.

5.2. Task 2: Record New Data From the Production System

This section describes the task of evaluating a production system. The problem of evaluating

a production system is described by a task description with inputs and outputs, shown in Fig-

ure 15. The input of this task is a valid command signal configuration X = (P̄ , B) (see Defi-

nition 21). The outputs of this task are cost model training data C̄∗ (see Definition 22) and an

event log S∗ (see Definition 23).

Task 2:
record new data from
the production system

Production system

Symbol Name Reference
X = (P̄ , B) Valid command signal configuration Definition 21

Symbol Name Reference
C̄∗ Cost model training data Definition 22
S∗ Event log Definition 23

In
pu

t
O

ut
pu

ts

Figure 15 Task 2: Record new data from the production system.

Cost model training data C̄∗ (see Definition 22) are needed to learn cost models C (see Def-

inition 16). Cost models are required for comparing control strategies and command signal

configurations. A cost model cij is a mathematical description of measured cost values dur-

ing the operation of a production system that allows the prediction of expected cost for a

command signal configuration. Training datasets are needed to calculate cost models.

The formal definition of cost model training data is described in Definition 22.

Definition 22 (Cost Model Training Data):

Let Pij (see Definition 13) be a command signal configuration for control method j from

software component Ai, then C∗
ij = {(P

(k)
ij , v(k))}

n

k=1
, n ∈ R>1 is defined as a tuple of

a command signal configuration Pij and a cost value v. It is called a cost model training

dataset.

Cost model training data C̄∗ = (C∗
ij | i ∈ {1, . . . ,m} ∧ j ∈ Ai) is defined as a tuple of

cost model training datasets C∗
ij .

Command Signal Configuration for Control Strategies of Discrete Production Systems 55



Example 11 describes a cost model training dataset C∗
ij and energy consumption values of

control method pick -C1 (P21) from software component A1 of the example production system

shown in Figure 1.

Example 11 (Cost Model Training Dataset):

Cost model training dataset example of the example production system (see Figure 1):

C∗
11 ={(P

(1)
11 , 21.16J), (P

(2)
11 , 42.33J), (P

(3)
11 , 63.49J)

(P
(4)
11 , 84.65J), (P

(5)
11 , 105.81J), (P

(6)
11 , 126.97J)} (5.6)

In this example, the unit is Joules.

Event logs of activities are used for learning behavior models. They include information about

the number of evaluations of the production system, activities, originator hardware compo-

nents, and time values.

The formal definition of an event log of activities is described in Definition 23. This definition

is based on the definition in [WvDD06]. This concept was originally called transaction log.

Definition 23 (Event Log of Activities):

S∗ = ((s, a, o, ts, te)k)
n
k=1, n ∈ R>1 is defined as an n−tuple of quadruples, where s

describes the number of evaluations of the production system, a describes the activity,

o describes the originator hardware component, ts describes the start timestamp, and

te describes the end timestamp.

Example 12 describes an event log of the example production system. In this example, the

evaluations of the production system are recorded.

Example 12 (Event Log):

Event log of the example production system (see Figure 1):

S∗ = ((1, A1,M1, 10:00:00, 10:00:05)1,

(1, A2,M2, 10:00:05, 10:00:10)2,

(1, A3,M3, 10:00:10, 10:00:15)3,

(2, A1,M1, 11:00:00, 10:00:06)4,

. . . )

(5.7)

Command Signal Configuration for Control Strategies of Discrete Production Systems 56



The formal definition of the task of recording new data from the production system is given in

Task 2.

Task 2 (Record New Data From the Production System):

Given a valid command signal configuration X = (P̄ , B) (see Definition 21), then:

(i) Set up the automation software with this valid command signal configuration X =

(P̄ , B) (see Definition 21),

(ii) measure observations during the runtime of the production system (see Sec-

tion 2.2.1 and Section 2.2.2), and

(iii) transform observations into cost model training data C̄∗ (see Definition 22) and

into an event log of activities S∗ (see Definition 23).

5.3. Task 3: Learn Cost Models

This section describes the task of learning cost models C (see Definition 16) from cost model

training data C̄∗ (see Definition 22). Unlike simulation-based parameter configuration ap-

proaches that use manually predefined optimization models or simulation models, an optimal

command signal configuration approach should use machine learning algorithms to learn cost

models from observations, reducing manual engineering effort. The idea is to automatically

learn cost models using observations of production systems.

The formal definition of the task for learning cost models is described in Task 3.

Task 3 (Learn Cost Models):

Given cost model training data C̄∗ = (C∗
ij | i ∈ {1, . . . ,m}∧j ∈ Ai) (see Definition 22),

where C∗
ij = {(P

(k)
ij , v(k))}

n

k=1
, n ∈ R>1 are cost model training datasets, the objective

is to learn a cost model cij for each control method j from software component Ai.

5.4. Task 4: Learn Sequences of Control

This section describes the task of learning sequences of control methods. The objective is to

automatically learn sequences of control methods S̄ (see Definition 17) using observations of

production systems in the form of an event log S∗ (see Definition 23).

The formal definition of the task of learning sequences of control is given in Task 4.
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Task 4 (Learn Sequences of Control Methods):

Given an event log S∗ = ((s, a, o, ts, te)k)
n
k=1, n ∈ R>1 (see Definition 23), the ob-

jective is to learn sequences of control methods S̄ = (S1, . . . , Sh, . . . , Sr), r ∈ N1

(see Definition 17), where Sh = {ij | i ∈ {1, . . . ,m} ∧ j ∈ Ai} describes a path of

control methods.

5.5. Task 5: Find an Optimal Command Signal Configuration

This section describes the task of finding an optimal command signal configuration. The goal

is to find an optimal command signal configuration X∗ = (X, opt) (see Definition 18) by

solving a command signal configuration problem (see Definition 20). The command signal

configuration problem is described in detail in Section 4.8. The formal definition of the task of

finding an optimal command signal configuration is given in Task 5.

Task 5 (Find an optimal command signal configuration):

Solve a command signal configuration problem described in Definition 20 to find an

optimal command signal configuration X∗ = (X, opt) (see Definition 18) that minimizes

the cost. In this work, the cost is represented by energy consumption.

5.6. Task 6: Improve Cost Models

This section describes the task of improving cost models. The formal definition of the task

of improving cost models is given in Task 6. Task 6 improves the quality of cost models

C (see Definition 16). A new valid command signal configuration X = (P̄ , B) (see Defini-

tion 21) is calculated, which should be evaluated in order to obtain more observations of the

production system. With more observations, cost models are more accurate. The number

of evaluations of command signal configurations is important. An exhaustive evaluation of all

possible command signal configurations is usually impossible since each evaluation of a com-

mand signal configuration takes time and is therefore expensive. Few evaluations shorten the

time during which a production system does not operate optimally.

Task 6 (Improve Cost Models):

Given an automation software structure Ā (see Definition 12), command signals P̄

(see Definition 13), and cost model training data C̄∗ (see Definition 22), the objective is

to calculate a valid command signal configuration X = (P̄ , B) (see Definition 21) that

should be evaluated to improve cost models C (see Definition 16).
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6. CyberOpt Algorithm

This chapter describes the CyberOpt algorithm, a novel approach to machine learning and

constrained optimization-based command signal configuration. This chapter builds on pre-

vious work by the author and extends the published algorithms [ON15, OVN16, OVN18b,

OVN18a]. CyberOpt algorithm automates the manual command signal configuration for au-

tomation software components in discrete manufacturing. CyberOpt automates the following

two tasks:

(i) Selection of optimal control methods from software components of an automation soft-

ware structure that implement different control strategies and

(ii) calculation of optimal command signal for selected control strategies.

Chapter 4 describes the command signal configuration problem. The problem must be solved

by CyberOpt in order to find an optimal command signal configuration. An optimal configura-

tion is a command signal configuration with a minimum cost value. Cost values in this work

are energy consumption values. The CyberOpt algorithm uses the following machine learning

techniques to reduce manual engineering effort:

T1 - Learn cost models: CyberOpt uses a machine learning technique of regression and

polynomial expansion to learn cost models from production system observations (energy

consumption values) to reduce manual engineering effort, as opposed to using manually

predefined optimization models or simulation models.

T2 - Improve cost models: CyberOpt uses the expected improvement (EI) criterion to cal-

culate new valid command signal configurations that should be evaluated in order to obtain

more observations (energy consumption values) of the production system. Black-box opti-

mization approaches use this technique to gather additional data by iterating between fitting

cost models and gathering additional observations. With more observations, the cost models

become more accurate.

T3 - Learn sequences of control methods: CyberOpt uses a machine learning technique

named process mining to learn sequences of control methods from production system ob-

servations to reduce manual engineering effort. Manual creation of a behavior model is not

necessary, reducing the manual engineering effort and synchronizing the learned behavior

model with the current status of the production system.

T4 - Find optimal command signal configurations: CyberOpt uses mixed-integer nonlin-

ear programming to find an optimal command signal configuration. The command signal con-

figuration problem uses learned cost models, which are instances of predefined mathematical

models, and learned sequences of control methods, which are instances of predefined be-
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havior models, to find the optimal configuration.

Section 1.2 describes the requirements R1 - R6 for an optimal command signal configura-

tion, the requirements M1 - M6 for an optimization model, and the requirements B1 - B4

for a behavior model. Table 11 summarizes the machine learning techniques T1 - T4, re-

quirements R1 - R6 for an optimal command signal configuration, requirements M1 - M6 for

a mathematical model, and requirements B1 - B4 for a behavior model. T4 calculates an

optimal command signal configuration, and therefore it satisfies requirements R2 - R6 and

M1 - M6. T1, T2, and T4 reduce the manual engineering effort R1 by automatically learning

cost models, improving cost models, and learning sequences of control methods required to

calculate an optimal command signal configuration. T1 also satisfies requirement R3 and

requirements B1 - B3, T2 satisfies requirement R2, and T3 satisfies requirements R4, R5,

and B4. Therefore, CyberOpt satisfies all the requirements described: R1 - R6, M1 - M6, and

B1 - B4.

ID Requirement T1 T2 T3 T4

R1 Manual engineering steps + + + −
R2 Global optimum − + − +
R3 Implicit timing parameters − − − +
R4 Sequences of control methods − − − +
R5 Parallel sequences of control methods − − − +
R6 Selection of different control methods − − − +

M1 Linear objective function − − − +
M2 Nonlinear objective function − − − +
M3 Linear constraints − − − +
M4 Nonlinear constraints − − − +
M5 Continuous variables − − − +
M6 Discrete variables − − − +

B1 Time behavior + − − −
B2 Continuous behavior + − − −
B3 Cost behavior + − − −
B4 Parallel behavior − − + −

Table 11 Requirements R1 - R6 for an optimal command signal configuration, requirements M1 - M6 for a mathematical
model, requirements B1 - B4 for a behavior model, and the corresponding features (+ fulfilled and − not fulfilled).

Chapter 5 describes the CyberOpt framework. The CyberOpt framework describes necessary

tasks to find an optimal command signal configuration. A task description is independent of

a solution technique. The framework consists of six tasks: Task 1: find a valid command

signal configuration, Task 2: record new data from the production system, Task 3: learning

cost models, Task 4: learn sequences of control methods, Task 5: find an optimal command

signal configuration, and Task 6: improve cost models.

The CyberOpt algorithm consists of five subalgorithms: (1) CyberOpt-SIC subalgorithm

described in Section 6.1, (2) CyberOpt-LCM subalgorithm described in Section 6.2, (3)

CyberOpt-LSC subalgorithm described in Section 6.3, (5) CyberOpt-SPC subalgorithm de-
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scribed in Section 6.4, and (4) CyberOpt-ICM subalgorithm described in Section 6.5. Each

subalgorithm realizes a task of the CyberOpt framework. Table 12 summarizes input and

output concepts of tasks implemented by CyberOpt subalgorithms.

Task Subalgorithm Technique Inputs Outputs

Task 1 CyberOpt-SIC − Ā, P̄ , B, G X = (P̄ , B)
Task 2 − − X = (P̄ , B) C̄∗, S∗

Task 3 CyberOpt-LCM T1 C̄∗ C
Task 4 CyberOpt-LSC T3 S∗ S̄
Task 5 CyberOpt-SPC T4 Ā, P̄ , B, G, C, S̄, obj X∗ = (X, opt)
Task 6 CyberOpt-ICM T2 Ā, P̄ , C X = (P̄ , B)

Table 12 Overview of algorithms: automation software structure Ā described in Definition 12, command signals P̄ described in
Definition 13, decision parameters B described in Definition 14, command signal constraints G described in Definition 15,
objective time value obj described in Definition 19, sequences of control methods S̄ described in Definition 17, cost models C
described in Definition 16, event log of activities S∗ described in Definition 23, cost model training data C̄∗ described in
Definition 22, and valid command signal configuration X described in Definition 21.

The CyberOpt-SIC subalgorithm realizes Task 1. The subalgorithm samples valid command

signal configurations X = (P̄ , B) (see Definition 21). A valid command signal configuration

X is required to set up the automation software of a production system. When the automation

software is set up, Task 2 records new data from the production system to obtain an event log

of activities S∗ (see Definition 23) and cost model training data C̄∗ (see Definition 22). The

CyberOpt-LSC subalgorithm realizes Task 4. The subalgorithm learns sequences of control

methods S̄ from an event log of activities S∗. The CyberOpt-LCM subalgorithm realizes

Task 3. The subalgorithm learns cost models C (see Definition 16) from cost model training

data C̄∗ (see Definition 22). Cost model training data is recorded by an evaluation of a valid

command signal configuration described in Task 2. The CyberOpt-SPC subalgorithm realizes

Task 5. The subalgorithm solves the command signal configuration problem. The CyberOpt-

ICM subalgorithm realizes Task 6. The subalgorithm improves the quality of cost models

C (see Definition 16). A new valid command signal configuration X (see Definition 21) is

calculated, which should be evaluated in order to obtain more observations of the production

system.

The CyberOpt algorithm is described in Algorithm 1 and has the following four algorithm

parameters:

Objective time: Objective time obj ∈ R>0 defines the objective time period to execute all

control methods of an automation software, see Definition 19.

Bootstrapping steps: Parameter δ ∈ R>2 defines the number of recording steps of the

production system. Task 2 records new data from the production system to obtain an event

log of activities S∗ and cost model training data C̄∗. At least two recording steps are required

to learn a linear cost model for each control method.

Termination criterion: Parameter ϱ ∈ R>1 defines the maximum allowed number of itera-
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tions of the CyberOpt algorithm. It is the termination criterion of the CyberOpt algorithm. The

CyberOpt algorithm iterates the subalgorithms, and the production system is evaluated auto-

matically to acquire new data from the production system in each iteration. Each evaluation

of a production system takes time and is therefore expensive. A domain expert can define the

maximal number of iterations to find an optimal command signal configuration. For example,

if an evaluation of a production system takes 5 minutes and the maximal iterations are set to

ϱ = 10, then the total evaluation time of the production system is 50 minutes.

Quality of command signal configuration: Parameter ϵ ∈ R>0 specifies the maximum dis-

tance to a new optimal command signal configuration. It defines the quality of the calculated

command signal configuration. In each iteration, new data is acquired from the production

system, but each evaluation of a production system takes time and is therefore expensive.

For example, suppose a domain expert sets the maximum iterations to ϱ = 10 and the maxi-

mum distance to ϵ = 200J . In the best case, the CyberOpt algorithm terminates before ten

evaluations are performed because of the assumption that a better optimal command signal

configuration will be found in each iteration. In the worst case, the CyberOpt algorithm ter-

minates after ten evaluations. Then a better optimal command signal configuration is found

in each iteration, and the energy consumption of the production system can be improved by

more than 200J . A domain expert can then decide to increase the maximum iterations ϱ to

have more time to find an optimal command signal configuration.

The CyberOpt algorithm consists of the following two steps:

Algorithm 1: Step 1 (Bootstrapping): In the first step, sequences of control methods S̄

(see Definition 17) are learned from an event log of activities and initial cost model train-

ing data C̄∗ (see Definition 22) are recorded, represented by function bootstrapping . The

CyberOpt bootstrapping step is described in Algorithm 2.

Algorithm 1: Step 2 (Exploration): In the second step, an optimal command signal con-

figuration X∗ = (X, opt) (see Definition 18) is calculated, represented by the function

exploration. The CyberOpt exploration step is described in Algorithm 3.
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Algorithm 1: CyberOpt algorithm
Input : Bootstrapping steps δ

: Termination criterion ϱ
: Quality of command signal configuration ϵ
: Maximal degree of polynomial features λ
: Objective time obj
: Automation software structure Ā
: Command signals P̄
: Decision parameters B
: Command signal constraints G

Output : Optimal command signal configuration X∗ = (X, opt)

▷ Step 1 (Bootstrapping):

1 S̄, C̄∗ ← bootstrapping(δ, Ā, P̄ ,B ,G)

▷ Step 2 (Exploration):

2 X, opt ← exploration(ϱ, ϵ, λ, obj , S̄, C̄∗, Ā, P̄ , B,G)

3 return X, opt

The CyberOpt bootstrapping step is described in Algorithm 2. The algorithm consists of the

following three steps:

Algorithm 2: Step 1 (Sample a valid command signal configuration): The first step is to

calculate a valid command signal configuration X (see Definition 21). A valid command signal

configuration X = (P̄ , B) is a tuple of command signals P̄ (see Definition 13) and decision

parameters B (see Definition 14). The sampling of the valid command signal configuration X

is realized by the CyberOpt-SIC subalgorithm described in Section 6.1. The CyberOpt-SIC

subalgorithm is represented by function SIC .

Algorithm 2: Step 2 (Record new data from the production system): In the second step,

the automation software is set up with the valid command signal configuration X and new

data from the production system is recorded, represented by function record . The function

implements Tasks 2 and encapsulates the recording of an event log of activities S∗ (see Def-

inition 23) and cost model training data C̄∗ (see Definition 22).

Algorithm 2: Step 3 (Learn sequences of control methods): In the third step, the se-

quences of control methods S̄ (see Definition 17) are learned from the event log of activities

S∗ (see Definition 23). The learning of sequences of control methods S̄ is realized by the

CyberOpt-LSC subalgorithm, which is described in Section 6.3. The CyberOpt-LSC subalgo-

rithm is represented by function LSC . Sequences of control methods S̄ are required to solve

the command signal configuration problem, see Definition 20.
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Algorithm 2: CyberOpt bootstrapping
Input : Bootstrapping steps δ

: Automation software structure Ā
: Command signals P̄
: Decision parameters B
: Command signal constraints G

Output : Sequences of control methods S̄
: Cost model training data C̄∗

1 for 1 to δ do

▷ Step 1 (Sample a valid command signal configuration):

2 X ← SIC (Ā, P̄ , B,G)

▷ Step 2 (Record new data from the production system):

3 S∗, C̄∗ ← record(X,S∗, C̄∗)

▷ Step 3 (Learn sequences of control methods)

4 S̄ ← LSC (S∗, Ā)

5 return S̄, C̄∗

The CyberOpt exploration step is described in Algorithm 3. The algorithm consists of the

following five steps:

Algorithm 3: Step 1 (Learn cost models): In the first step, for each control method j

from software component Ai, a cost model cij is learned from cost model training data C∗
ij

(see Definition 22). The learning of cost models C (see Definition 16) is realized by the

CyberOpt-LCM subalgorithm described in Section 6.2. The CyberOpt-LCM subalgorithm is

represented by function LCM .

Algorithm 3: Step 2 (Solve the command signal configuration problem): In the second

step, the command signal configuration problem (see Definition 20) is solved. The solving

is realized by the CyberOpt-SPC subalgorithm described in Section 6.4. The CyberOpt-SPC

subalgorithm is represented by the function SPC .

Algorithm 3: Step 3 (Check if the command signal configuration is good enough): In

the third step, the termination criterion of CyberOpt algorithm is checked. For this purpose,

the Euclidean distance ∥ ˆopt − opt∥ ≤ ϵ between the newly calculated optimal energy con-

sumption value opt and the previously calculated optimal energy consumption value ˆopt is

calculated. If opt is not better than ˆopt , then the calculation is finished. The CyberOpt al-

gorithm returns an optimal command signal configuration X∗ = (X, opt) (see Definition 18).

Parameter ϵ is used to describe a deviation between opt and ˆopt , e.g., ϵ = 0.05.

Algorithm 3: Step 4 (Create a new command signal configuration to improve cost mod-

els): In the fourth step, a new valid command signal configuration X = (P̄ , B) (see Defini-

tion 21) is calculated to be evaluated by the production system to improve the quality of

the cost models C (see Definition 16). Therefore, for each control method j from software
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component Ai, the CyberOpt-ICM subalgorithm calculates a new command signal configu-

ration Pij (see Definition 13) represented by the function ICM . The implementation of the

CyberOpt-ICM subalgorithm is described in Section 6.5.

Algorithm 3: Step 5 (Record new data from the production system): In the fifth step,

the automation software is set up with the valid command signal configuration X = (P̄ , B)

(see Definition 21) and new data from the production system is recorded, represented by

function record . The function implements Tasks 2 and encapsulates the recording cost model

training data C̄∗ (see Definition 22).

Algorithm 3: CyberOpt exploration
Input : Objective time obj

: Termination criterion ϱ
: Quality of command signal configuration ϵ
: Maximal degree of polynomial features λ
: Sequences of control methods S̄
: Cost model training data C̄∗

: Automation software structure Ā
: Command signals P̄
: Decision parameters B
: Command signal constraints G

Output : Optimal command signal configuration X∗ = (X, opt)

1 ˆopt ←∞ ;
2 for 1 to ϱ do

▷ Step 1 (Learn cost models):

3 C ← (cij | i ∈ {1, . . . ,m} ∧ j ∈ Ai) for j ∈ Ai do
4 for i ∈ {1, . . . ,m} do
5 cij ← LCM (λ,C∗

ij)

▷ Step 2 (Solve the command signal configuration problem):

6 X∗ ← SPC (Ā, P̄ , B,G,C, S̄, obj )

▷ Step 3 (Check if the command signal configuration is good enough):

7 if ∥ ˆopt − opt∥ ≤ ϵ then
8 return X∗

9 ˆopt ← opt

▷ Step 4 (Create a new command signal configuration):

10 P̄ ← (Pij | i ∈ {1, . . . ,m} ∧ j ∈ Ai) for j ∈ Ai do
11 for i ∈ {1, . . . ,m} do
12 Pij ← ICM(C∗

ij)

13 B∗ ← random(B) X ← (P̄ , B∗)

▷ Step 5 (Record new data from the production system):

14 C̄∗ ← record(X, C̄∗)

Command Signal Configuration for Control Strategies of Discrete Production Systems 65



6.1. CyberOpt-SIC Subalgorithm

This section describes the CyberOpt-SIC subalgorithm. The CyberOpt-SIC subalgorithm re-

alizes Task 1, which is shown in Figure 16. The motivation of the CyberOpt-SIC subalgorithm

is to automatically sample a valid command signal configuration X. A valid command sig-

nal configuration X is required to set up automation software. When automation software

is set up with a valid command signal configuration X, energy consumption values can be

measured, and an event log of activities can be recorded during the runtime of a production

system, see Task 2.

Task 1:
find a valid command
signal configuration

CyberOpt-SIC
subalgorithm

Symbol Name Reference
Ā Automation software structure Definition 12
P̄ Command signals Definition 13
B Decision parameters Definition 14
G Command signal constraints Definition 15

Symbol Name Reference
X = (P̄ , B) Valid command signal configuration,

where P̄ are command signals and B
are decision parameters

Definition 21
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Figure 16 Task 1: Find a valid command signal configuration.

The CyberOpt-SIC subalgorithm realizes Task 1 and is described in Algorithm 4. Command

signals P̄ are uniformly sampled, and then validated by command signal constraints G, rep-

resented by function random_parameters . The decision parameters B are sampled from a

discrete uniform distribution, repeated by function random_decisions .

Algorithm 4: The CyberOpt-SIC subalgorithm samples a valid command signal con-
figuration

Input : Automation software structure Ā
: Command signals P̄
: Decision parameters B
: Command signal constraints G

Output : Valid command signal configuration X = (P̄ , B)

1 P̄ ← (Pij | i ∈ {1, . . . ,m} ∧ j ∈ Ai) for j ∈ Ai do
2 for i ∈ {1, . . . ,m} do
3 Pij ← random_parameters(gij )

4 B∗ ← random_decisions(B , Ā)
5 X ← (P̄ , B∗)

6 return X
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6.2. CyberOpt-LCM Subalgorithm

This section describes the CyberOpt-LCM subalgorithm. The CyberOpt-LCM subalgorithm

realizes Task 3, shown in Figure 17. The motivation of the CyberOpt-LCM subalgorithm is to

automatically learn a cost model cij for each control method j from a software component

Ai. In order to compare different command signal configurations, cost models are required to

find an optimal command signal configuration. Manual creation of cost models is not required,

reducing the manual engineering effort.

Task 3:
learn

cost models

CyberOpt-LCM
subalgorithm

Symbol Name Reference
C̄∗ Cost model training data, where C∗

ij =

{(P (k)
ij , v(k))}

n

k=1
are cost model training

data sets of tuple of a command signal
configuration Pij and a cost value v

Definition 22

Symbol Name Reference
C Cost models C = (cij | i ∈ {1, . . . ,m}∧

j ∈ Ai), where cij : D
(1)
ij × · · ·×D

(k)
ij →

R are cost functions

Definition 16
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Figure 17 Task 3: Learn cost models.

Regression analysis can be used to learn cost models. Regression analysis describes a

statistical process for estimating relationships between dependent and independent variables.

In this work, the dependent variable is energy consumption, and the independent variables

are command signals. The most common form of regression analysis is linear regression.

Definition 24 describes the concept of a linear cost model. For example, the method of

ordinary least squares calculates coefficient values Wij of a linear model cij(Wij , Pij) such

that the distances between observed values C∗
ij = {(P

(k)
ij , v(k))}

n

k=1
, n ∈ R>1 and values of

the linear model cij(Wij , Pij) are minimized. The linear model can then be used to predict

energy consumption values.

Definition 24 (Linear Cost Models):

The linear cost model Wij = (w
(1)
ij , . . . , w

(k+1)
ij ) is defined as (k + 1)-tuple of co-

efficients, where w
(1)
ij is defined as intercept. cij is defined as cij(Wij , Pij) =

w
(1)
ij + w

(2)
ij p

(1)
ij + · · ·+ w

(k+1)
ij p

(k)
ij .
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In cases where the energy consumption is not linear, polynomial expansion can be used.

Polynomial expansion is a transformation of the feature space [Ger74]. It allows linear models

to capture nonlinearities; more precisely, it allows a linear model to learn polynomial relation-

ships between dependent and independent variables [YHL12]. Definition 25 describes the

concept of nonlinear cost model.

Definition 25 (Nonlinear Cost Model):

Wij = (w
(1)
ij , . . . , w

(k+1)
ij ) is defined as (k + 1)-tuple of coefficients, where w

(1)
ij is

defined as intercept. Let expand(Pij , d) be an algorithm [NH18] that calculates a poly-

nomial expansion of degree d, then the calculated polynomial expansion is called non-

linear cost model.

For example, expand((p
(1)
ij , p

(2)
ij , p

(3)
ij ), 2) generates the following nonlinear cost model,

see Example 13:

Example 13 (Polynomial Expansion):

c(Pij ,Wij) = p
(1)
ij w

(2)
ij + p

(2)
ij w

(3)
ij + p

(3)
ij w

(4)
ij + w

(1)
ij (6.1)

For example, expand((p
(1)
ij , p

(2)
ij , p

(3)
ij ), 3) generates the following nonlinear cost model,

see Example 14:

Example 14 (Polynomial Expansion):

c(Pij ,Wij) = p
(1)
ij w

(2)
ij + p

(2)
ij w

(3)
ij + p

(3)
ij w

(4)
ij (6.2)

+ p
(1)
ij p

(1)
ij w

(1)
ij w

(5)
ij + p

(1)
ij p

(2)
ij w

(6)
ij (6.3)

+ p
(1)
ij p

(3)
ij w

(7)
ij + p

(1)
ij w

(2)
ij (6.4)

+ p
(2)
ij p

(2)
ij w

(8)
ij + p

(2)
ij p

(3)
ij w

(9)
ij (6.5)

+ p
(2)
ij w

(3)
ij + p

(3)
ij p

(3)
ij w

(10)
ij + p

(3)
ij w

(4)
ij + w

(1)
ij (6.6)

Nonlinear cost models are used in this work. Manual approximation with linear cost models is

not necessary because MILP problems and MINLP problems are in the NP-hard complexity

class. Section 3.2.2 describes various solving techniques for solving convex and nonconvex

MINLP problems. In cases where the cost models are nonconvex, any global MINLP solver

introduced in Section 3.2.3 automatically uses underestimating or overestimating functions,

separable functions, or the problem is rewritten using factorization techniques.
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The CyberOpt-LCM subalgorithm is described in Algorithm 5. Given a cost model training

dataset C∗
ij = {(P (k)

ij , v(k))}
n

k=1
, n ∈ R>1, the algorithm learns a cost model cij for control

method j from the automation software component Ai. The CyberOpt-LCM subalgorithm

consists of the following four steps:

Algorithm 5: Step 1 (Generate polynomial expansion): In the first step, a polynomial

expansion for a command signal configuration P
(1)
ij is generated. The algorithm parameter d

describes the degree of the generated polynomial.

Algorithm 5: Step 2 (Fit the generated cost model c to data C∗
ij): In the second step, the

generated nonlinear cost model c is fitted to the cost model training dataset C∗
ij .

Algorithm 5: Step 3 (Calculate the regression score between data C∗
ij and cost model

c∗): In the third step, a score value s ∈ [−∞, 1] is calculated by a regression score function. In

this case, the “coefficient of determination” is used, where s = 1 describes the best possible

regression score value.

Algorithm 5: Step 4 (Select cost model with the highest score): In the fourth step, the

nonlinear cost model c∗ with the highest regression score value is selected because this

nonlinear cost model has the best fit to the cost model training dataset C∗
ij .

The first step is repeated until the maximum degree λ is reached.

Algorithm 5: The CyberOpt-LCM subalgorithm learns a cost model cij from a cost
model training dataset C∗

ij

Input : Maximum degree of polynomial features λ
: Cost model training dataset C∗

ij

Output : Cost model cij

1 R← ∅ ; ▷ a set of tuple (s, c∗) of score regression value s and learned cost model c∗

2 for d = 1 to λ do

▷ Step 1 (Generate polynomial expansion):

3 c← expansion(P
(1)
ij , d)

▷ Step 2 (Fit the generated cost model c to data C∗
ij):

4 c∗ ← fit(c, C∗
ij)

▷ Step 3: (Calculate regression score between data C∗
ij and cost model c∗):

5 s← score(C∗
ij , c

∗)

6 R← R ∪ (s, c∗)

▷ Step 4: (Select cost model with the highest score):

7 cij ← max(R)

8 return cij
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6.3. CyberOpt-LSC Subalgorithm

This section describes the CyberOpt-LSC subalgorithm. The CyberOpt-LSC subalgorithm

realizes Task 4, shown in Figure 17. The motivation of the CyberOpt-LSC subalgorithm is to

learn sequences of control methods S̄ from an event log of activities S∗. Manual creation of

a behavior model is not required, reducing manual engineering effort and synchronizing the

learned behavior model with the current state of the production system.

Task 4:
learn sequences of

control methods

CyberOpt-LSC
subalgorithm

Symbol Name Reference
S∗ Event log of activities

S∗ = ((s, a, o, ts, te)k)
n
k=1, n ∈ R>1,

where s describes the numbers of eval-
uation of the production system, a de-
scribes the activity, o describes the origi-
nator hardware component, ts describes
the start timestamp, and te describes the
end timestamp

Definition 23

Symbol Name Reference
S̄ Sequences of control methods

S̄ = (S1, . . . , Sh, . . . , Sr), r ∈ N1, where
Sh = {ij | i ∈ {1, . . . ,m} ∧ j ∈ Ai}
describes a path of control methods

Definition 17
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Figure 18 Task 4: Learn sequences of control methods.

In Section 3.3, behavior models are classified into automata-based behavior models and en-

gineering behavior models. These behavior models can be learned by automata learning

algorithms or process mining, respectively. Automata learning algorithms learn automata-

based behavior models, and the process mining technique learns engineering behavior mod-

els. The HyBUTLA algorithm is introduced in [Nig+12]. The algorithm is capable of learning

a hybrid timed automata model from synchronized signals and events. In the first step, a

prefix-acceptor tree is created. A prefix-acceptor tree is a hybrid timed automaton in the form

of a tree. In a prefix-acceptor tree, each sequence of observations results in a path from the

root to a leaf. In a second step, the states compatible with the prefix acceptor tree are merged

until a smaller automaton is reached that can still predict the system behavior. An algorithm

named BUTLA is introduced in [Mai+11] that is able to learn a timed automata model from

synchronized signals and events, and in [Mai14], an algorithm named OTALA is introduced

that is able to learn online. The basic concept of process mining is to extract information about

processes from transaction logs recorded by an information system [vdAal+03]. A transac-

tion log contains events, and each event has a timestamp and refers to an activity and a
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case, e.g., a process instance. An activity defines a specific step in the process. Control-flow

mining algorithms, e.g., the α algorithm [vdAWM04], create a dependency graph (directed

graph) directly from transaction logs. A graph with Petri net semantics is then created from

the dependency graph. For example, if a transaction log contains an event E1 followed by an

event E2, a relationship is created between a state E1 and a state E2 in the corresponding

dependency graph. The problem with these algorithms is that even a single incorrect obser-

vation can completely disturb the derivation of a correct conclusion. To solve this problem, the

heuristic miner algorithm introduced in [WvDD06] uses a frequency-based metric to calculate

how certain a relationship between events is. For example, if the transaction log contains

the observation 40 times that event E1 is followed by event E2, it is more likely that a rela-

tionship exists between E1 and E2 than if this observation was seen only once. Moreover,

the fuzzy mining algorithm described in [GV07] implements adaptive simplifications based on

data clustering and graph clustering, e.g., to solve the concurrency problem. The problem

occurs when event E1 and event E2 can be observed in any order, e.g., they are on two

distinct parallel paths, then the transaction log contains both possible cases: event E1 follows

event E2 and vice versa. In this work, process mining is used to learn a behavior model.

Section 3.3.3 describes a comparison of behavior models. Timed automata, hybrid timed

automata, and priced timed automata are sequential behavior models. Therefore, sequential

behavior models cannot be used to satisfy the requirement R5 of an optimal command signal

configuration described in Section 1.2. An optimal command signal configuration should be

able to incorporate knowledge about parallel sequences of control methods since production

systems have many parallel activities.

The CyberOpt-LSC subalgorithm realizes Task 4 and is described in Algorithm 6. Given

an event log of activities S∗ = ((s, a, o, ts, te)k)
n
k=1, n ∈ R>1 and an automation software

structure Ā, the algorithm learns sequences of control methods S̄ = (S1, . . . , Sh, . . . , Sr), r ∈
N1, where Sh = {ij | i ∈ {1, . . . ,m} ∧ j ∈ Ai} describes a path of control methods. The

CyberOpt-LSC subalgorithm consists of the following two steps:

Algorithm 6: Step 1 (Learn directed graph of activities): In the first step, the fuzzy miner

presented in [GV07] is used to calculate a directed graph of activities from an event log of

activities S∗, represented by function mine. The directed graph D of activities is defined as

quadruple D = (L, l0, le, T ). The finite set L describes the nodes of the directed graph of

activities, where l0 describes the start node and le describes the end node. T ⊆ L × L

describes the transitions between nodes. Each node has an activity index i that refers to

a software component Ai. The directed graph is only required for internal algorithm use to

calculate sequences of control methods.

Algorithm 6: Step 2 (Calculate sequences of control): In the second step, a simple deep-

first search algorithm and knowledge about the automation software structure Ā are used to

calculate sequences of control methods S̄, represented by the function search. The directed

graph of activities is expanded to a directed graph of control methods. The directed graph of
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control methods contains every possible path from the start node l0 to the end node le.

Algorithm 6: The CyberOpt-LSC subalgorithm learns sequences of control methods
S̄ from an event log of activities S∗

Input : Event log S∗

: Automation software structure Ā
Output : Sequences of control methods S̄

1 S̄ ← ∅

▷ Step 1: (Learn directed graph D of activities):

2 D ← mine(S∗)

▷ Step 2: (Calculate sequences of control):

3 S̄ ← search(D, Ā)

4 return S̄

6.4. CyberOpt-SPC Subalgorithm

This section describes the CyberOpt-SPC subalgorithm. The CyberOpt-SPC subalgorithm

realizes Task 5, shown in Figure 17. The motivation of the CyberOpt-SPC subalgorithm is

to automatically find optimal command signal configurations by solving the command signal

configuration problem (see Definition 20).

Task 5:
find an optimal command

signal configuration

CyberOpt-SPC
subalgorithm

Symbol Name Reference
Ā Automation software structure Definition 12
P̄ Command signals Definition 13
B Decision parameters Definition 14
G Command signal constraints Definition 15
C Cost models Definition 16
S̄ Sequences of controls methods Definition 17
obj Objective time value Definition 19

Symbol Name Reference
X∗ = (X, opt) Optimal command signal configuration,

where X = (P̄ , B) is a valid command
signal configuration and opt describes
the cost value

Definition 18

In
pu

ts
O

ut
pu

t

(cf.C
hapter4)

(cf.C
hapter4)

Figure 19 Task 5: Find an optimal command signal configuration.

A command signal configuration problem can be solved with (1) black-box optimization, (2)

human-in-the-loop, (3) a sampling and validating approach, and (4) a general mixed-integer

nonlinear programming solver. In the case of costly evaluations, e.g., physical simulations,
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black-box optimization approaches can be used as a less costly alternative [HHL13, CN14,

ON15]. The objective function is unknown, and an evaluation of the simulation model is

performed for each command signal configuration. Model-based black-box optimization ap-

proaches construct a regression model, also named response surface model or surrogate

model, that predicts the costs. The model is then used for optimization. Sequential model-

based optimization, described in [HHL11], iterates between fitting a model and gathering

additional data. It uses Gaussian process models [Ras06] to build a response surface model

to predict which data needs to be evaluated. Gaussian processes are a generic supervised

learning method used to solve, for example, regression problems. Command signal config-

urations that should be evaluated are calculated using an expected improvement criterion

based on [JSW98] to improve the quality of surrogate models. Human-in-the-loop describes

a process in which a domain expert selects a plausible command signal configuration ac-

cording to his domain knowledge. For each software component Ai, a control method j must

be selected, and timing parameter values and command signal values must be defined for

each selected control method j. Sampling and validation describes a process in which a

heuristic samples uniform random values to select a control method j for each component

Ai and uniform random values for timing parameters and command signal for the selected

control methods j. The sampled values are then validated by the command signal configura-

tion problem constraints: objective timing constraint (see Equation 4.36) and command signal

constraints (see Equation 5.4). The command signal configuration problem is defined as a

mixed-integer nonlinear programming problem with a nonlinear objective function, linear con-

straints, and a mixture of continuous and binary variables (see Section 4.8). Section 3.2.2 de-

scribes various solving techniques for solving convex and nonconvex mixed-integer nonlinear

programming problems. The different solving techniques are bundled by a solver described

in Section 3.2.3.

This work uses general mixed-integer nonlinear programming solvers to solve the command

signal configuration problem. In costly evaluations, black-box optimization approaches are

useful because they iterate between fitting a model and gathering additional data to improve

the quality of surrogate models that predict costs. Empirical results have shown that black-

box approaches, compared to general mixed-integer nonlinear programming solvers, are not

suitable for this type of combinatorial constraint optimization [OVN16, OVN18b]. Black-box

optimization approaches have the problem of determining constraint valid command signal

configurations. The human-in-the-loop technique contradicts the general idea of automating

manual command signal configuration for automation software components in discrete man-

ufacturing. In [OVN18b], we have shown that the probability of capturing a valid command

signal configuration with a sampling and validating heuristic is near zero.

The CyberOpt-SPC subalgorithm is described in Algorithm 7. The command signal configu-

ration problem is defined as a mixed-integer nonlinear programming problem with a nonlinear

objective function, linear constraints, and a mixture of continuous and binary variables. The

problem is defined in Algorithm 7: line 1 and function solve(Problem) represents the calcula-
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tion of an optimal command signal configuration X∗ = (X, opt). Any general mixed-integer

nonlinear programming solver described in Section 3.2.3 can be used to solve the command

signal configuration problem.

Algorithm 7: The CyberOpt-SPC subalgorithm calculates an optimal command signal
configuration X∗

Input : Objective time value obj
: Automation software structure Ā
: Command signals P̄
: Decision parameters B
: Command signal constraints G
: Sequences of control methods S̄
: Cost models C

Output : Optimal command signal configuration X∗ = (X, opt)

1 Problem :

minimize:
∑

i∈{1,...,m}

∑
j∈Ai

cij(p
(1)
ij , . . . , p

(k)
ij ) bij ,

p
(1)
ij ∈ D

(1)
ij , . . . , p

(k)
ij ∈ D

(k)
ij , bij ∈ {0, 1}

(6.7)

s.t.:
∑

ij ∈ Sh

p
(1)
ij bij ≤ obj ,

∀ h ∈ {1, . . . , r}, p(1)ij ∈ D
(1)
ij , bij ∈ {0, 1}

(6.8)

gij(p
(1)
ij , . . . , p

(k)
ij ) = 1,

∀ i ∈ {1, . . . ,m}, j ∈ Ai, p
(1)
ij ∈ D

(1)
ij , . . . , p

(k)
ij ∈ D

(k)
ij

(6.9)

∑
j ∈Ai

bij = 1,

∀ i ∈ {1, . . . ,m}, bij ∈ {0, 1}

(6.10)

X∗ ← solve(Problem)

2 return X∗
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6.5. CyberOpt-ICM Algorithm

This section describes the CyberOpt-ICM subalgorithm. The CyberOpt-ICM subalgorithm

realizes Task 20 shown in Figure 17. The motivation of the CyberOpt-ICM subalgorithm is

to avoid exhaustive evaluation of all possible command signal configurations. An exhaustive

evaluation of all possible command signal configurations is usually impossible since each

evaluation of a command signal configuration takes time and is therefore expensive. Few

evaluations shorten the time in which a production system does not operate optimally. Op-

timal in this work means energy efficient. The CyberOpt-ICM subalgorithm is to calculate

a new valid command signal configuration X = (P̄ , B), which should be evaluated in or-

der to obtain more energy consumption values of the production system. With more energy

consumption values, cost models are more accurate.

Task 6:
improve cost models

CyberOpt-ICM
subalgorithm

Symbol Name Reference
Ā Automation software structure Definition 12
P̄ Command signals Definition 13
C̄∗ Cost model training data Definition 22

Symbol Name Reference
X = (P̄ , B) Valid command signal configuration,

where P̄ are command signals and B
are decision parameters

Definition 18

In
pu

ts
O

ut
pu

t

(cf.C
hapter4,5)

(cf.C
hapter4)

Figure 20 Task 6: Improve cost models.

In this work, the expected improvement (EI) criterion [JSW98] is used to calculate new valid

command signal configurations. The EI criterion, described in Definition 26, calculates new

command signals for a regression model. A regression model predicts cost values. The

dependent variable is energy consumption, and the independent variables are command

signals. The calculated command signals should be evaluated to improve the quality of the

regression model because the dependent variable for these command signals (independent

variables) is unknown. The idea is to calculate acquisition values using the EI criterion for

a regression model. The command signal configuration with the highest acquisition value

should be evaluated to improve the quality of the cost model cij .

Figure 21 illustrates the general idea. A reference cost function is known (see Figure 21:

reference). The dependent variable is energy consumption (see Figure 21: energy consump-

tion) and the independent variable is a timing parameter (see Figure 21: t [seconds]). In the

first iteration, only two energy consumption values are known (Figure 21: evaluations). A
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regression model is calculated for these two energy consumption values (Figure 21: predict).

The acquisition values (Figure 21: EIC) are calculated for each command signal value be-

tween three and ten seconds. The command signal value with the highest acquisition value

is selected. The real energy consumption value for this command signal value is calculated

by the reference cost function. In the second iteration, three energy consumption values are

known. A regression model is calculated for these three energy consumption values, and so

on.
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Figure 21 Expected improvement criterion example, four iterations that calculate new command signal configurations (adapted
from [OVN18a]).

The expected improvement criterion requires the mean µ and the variance σ for each en-

ergy consumption value. The Gaussian process can be used to calculate these values,

see Definition 27. The Gaussian process is a generic nonparametric supervised learning

method [Ras06, BR13]. The Gaussian process is a generalization of the Gaussian distribu-

tion and describes a distribution over functions. It defines a collection of Gaussian distributed

random variables. Random variables represent the values of a cost function cij . The ker-
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nel matrix K that represents the collection of Gaussian distributed random variables is con-

structed by evaluating the covariance function between all pairs of inputs points (command

signal configurations).

Definition 26 (Expected Improvement Criterion):

The expected improvement criterion function to calculate acquisition values (cdf is the

standard normal cumulative distribution function, pdf is the standard normal probability

density function, and cmin is the minimal cost value of all predicted cost values of a

regression model):

EIC (cmin , µ, σ) = (cmin − µ) cdf (
cmin − µ

σ
) +
√
σ pdf (

cmin − µ

σ
) (6.11)

Definition 27 (Gaussian Process Regression Model Predict):

Let P be training command signal configurations, v1:n be a vector of training cost val-

ues, σ2 be the variance of measurement noise, P ∗ be the command signal configura-

tions for which cost value should be predicted, the identity matrix I and the parameter

l be the length scale of the kernel.

(i) Predict function:

GP(P, v1:n, P
∗, σ2) = K(P ∗, P ) [K(P, P ) + σ2 I]

−1
v1:n (6.12)

(ii) Kernel matrix:

K =


k(P

(1)
ij , P

(1)
ij ) · · · k(P

(1)
ij , P

(k)
ij )

. . .

k(P
(k)
ij , P

(1)
ij ) · · · k(P

(k)
ij , P

(k)
ij )

 (6.13)

(iii) Kernel function (squared exponential):

k(Pij , P
∗
ij) = σ2 exp

−
∥∥∥Pij − P ∗

ij

∥∥∥2
2 l2

 (6.14)

The CyberOpt-ICM subalgorithm realizes Task 6 and is described in Algorithm 8. The algo-

rithm consists of the following four steps:

Algorithm 8: Step 1 (Generate command signal configurations): In the first step, m

command signal configurations are generated by a Latin hypercube design [San+]. Latin hy-

percube sampling can be used to perform computer experiments [Kan+15]. The algorithm
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generates n command signal values from a d-dimensional hypercube. The continuous range

for each command signal is partitioned into n equally spaced intervals. The command sig-

nal configuration values generated by this sampling method are distributed uniformly in the

hypercube space [Che+06].

Algorithm 8: Step 2 (Fit and predict Gaussian process): In the second step, regression is

used to fit a Gaussian process GP to the cost model training dataset C∗
ij . Then the cost mean

values Eµ and cost variance values Eσ for the generated command signal configurations Ep

are predicted using algorithm 2.1 from [RW06]. Fitting and prediction are represented by the

function GP(P,Ep, v1:n, σ
2). Please note that fitting a Gaussian process can be computa-

tionally expensive. Inverting the matrix takes time O(n3).

Algorithm 8: Step 3 (Calculate expected improvement criterion): In the third step, an

expected improvement criterion value is calculated for each generated command signal con-

figuration.

Algorithm 8: Step 4 (Choose command signal configuration): In the last step, the com-

mand signal configuration with the highest expected improvement criterion value is nominated

to be evaluated to enhance the quality of the cost model cij .

Algorithm 8: The CyberOpt-ICM subalgorithm calculates a new valid command signal
configuration

Input : Cost model training dataset C∗
ij = {(P

(k)
ij , v(k))}

n

k=1
, n ∈ R>1

Output : Command signal values Pij

▷ Step 1 (Generate command signal configurations):

1 Ep ← lhd(m)

▷ Step 2 (Fit and predict Gaussian process):

2 Eσ, Eµ = GP(P
(1)
ij , . . . , P

(n)
ij , v(1), . . . , v(n), Ep, σ

2) ; ▷ cost means Eµ, cost variances
Eσ and variance of measurement
noise σ2

▷ Step 3 (Calculate expected improvement criterion):

3 cmin = min(Eµ) ; ▷ minimum predicted energy
consumption value

4 ACQ ← ∅ ; ▷ set of acquisition values
5 for k ∈ {1, . . .m} do

6 acq = (cmin − e
(k)
µ ) cdf (

cmin−e(k)
µ

e
(k)
σ

) +

√
e
(k)
σ pdf (

cmin−e(k)
µ

e
(k)
σ

)

7 ACQ ← ACQ ∪ (acq , E
(k)
p )

▷ Step 4 (Choose command signal configuration):

8 Pij ← max (ACQ)

9 return Pij
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7. Description of Scenarios and Extensions

This chapter describes in detail three common application scenarios and their synthetic ex-

tensions. This chapter is based on previous work by the author and extends the published

scenarios [ON15, OVN16, OVN18b, OVN18a]. The application scenarios, briefly introduced

in Section 1.2 to derive requirements for an optimal command signal configuration, are used

to systematically analyze the introduced CyberOpt approach in Chapter 8.

The application scenarios show that CyberOpt can be used for applications in discrete man-

ufacturing. There are three ways to show that an algorithm can solve different classes of

problems:

Data from real-world applications: Data from real-world applications are good for showing

that an algorithm is capable of solving real-world problems and are not just so-called “toy

models.” However, the problem of using data from real applications is that it is impossible

to show that these data cover all possible cases, e.g., hardware combinations in discrete

manufacturing.

Synthetic data: Synthetic data is good for showing that an algorithm is capable of handling

various problems and the expected results are known. However, the problem of using syn-

thetic data is that they could be seen as so-called “toy models.” There is a lack of belief that

these data correspond to real-world applications.

Synthetic extensions: In this work, synthetic extensions are introduced. The idea is to

extend common real-world applications with synthetic data to overcome the above-described

drawbacks of real-world applications and synthetic data.

Section 7.1 describes the transport scenario. The transport scenario describes a process for

transporting a product between locations, such as transporting a product between different

production modules or between production modules and storage solutions. Section 7.2 de-

scribes the storage scenario. The storage scenario describes a process to stock products,

e.g., produced products that need to be stored temporarily. Section 7.3 describes the pick-

and-place scenario. The pick-and-place scenario describes a process for picking and placing

products, e.g., to pick a product from a conveyor system and place it in a production module.

The automation software structure, the command signals, the command signal constraints,

and the sequences of control methods are described for each scenario. Section 7.4 describes

the synthetic extensions.
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7.1. Transport Scenario

This section describes the transport scenario. Transport scenarios are used to transport

products between locations, e.g., between different production modules or between produc-

tion modules and storage solutions. The goal of the transport scenario, shown in Figure 22, is

to move a product from position A to position B. The automation software controls a conveyor

system, represented by hardware component M1.

(1) (2)

A B

Figure 22 A conveyor system that realizes the transport scenario: M1 labels the hardware component, A and B label
predefined positions, (1) labels the electrical motor and (2) labels the frequency converter.

The hardware component M1 consists of five automation components: an electric motor, a

frequency converter, a conveyor belt, a light barrier, and a programmable logic controller.

The electrical motor is controlled by the frequency converter. The frequency converter is

controlled by a control strategy implementation that runs on the programmable logic controller.

A product is moved from position A to position B by the conveyor belt during a single drive.

The distance d between position A and position B is 120cm.

The automation software structure of the transport scenario is described in Example 15.

The automation software structure of the conveyor hardware component M1 has a software

component A1 with a control strategy move-B(P11), cf. Equation 7.1, Equation 7.2 and Equa-

tion 7.3.
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Example 15 (Automation Software Structure):

The automation software structure of the transportation scenario:

SWC: A1

(1) move-B(P11)

Ā = (A1), m = 1 (7.1)

A1 = {1}, n1 = 1 (7.2)

n = n1 = 1 (7.3)

The frequency converter used has tree different modes: (1) an acceleration mode, (2) a

constant mode, and (3) a deceleration mode, illustrated in Figure 23. The control method

move-B(P11) implements the logic to switch between these modes. The frequency converter

works with angles and not with distances. The area under the curve describes the total angle

ϕ = ϕa+ϕc+ϕc. When the product reaches the light barrier at position B, the motor stops.

f(t)

t

p
(3)
11

ϕa ϕc ϕd

ta tc td
Figure 23 Acceleration and deceleration ramp: ta describes the time in the acceleration mode, tc describes the time in the
constant mode and td describes the time in the deceleration mode.

The command signals of the transport scenario are described in Example 16 and summarized

in Table 13.

Command Signals Description Minimum Maximum Unit

p
(1)
11 time 7.7 26.25 s

p
(2)
11 acceleration 1 20 Hz/s

p
(3)
11 constant 10 50 Hz

p
(4)
11 deceleration 1 20 Hz/s

Table 13 Description of timing parameter p(1)11 and command signals p
(2)
11 , p

(3)
11 , p

(4)
11

The control strategy move-B(P11) implements the logic to switch between acceleration mode,

constant mode, and deceleration mode. It has a timing parameter p(1)11 and three command

signals p
(2)
11 , p

(3)
11 , p

(4)
11 , see Equation 7.5. Each mode of the frequency converter is de-

scribed by a command signal. The acceleration mode is controlled by command signal p(2)11 ∈
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[1Hz/s, 20Hz/s], the constant mode is controlled by command signal p(3)11 ∈ [10Hz , 50Hz ],

and the deceleration mode is controlled by command signal p(4)11 ∈ [1Hz/s, 20Hz/s].

Example 16 (Command Signals):

The command signals of the transportation scenario:

SWC: A1

(1) move-B(P11)

P̄ = (P11) (7.4)

P11 = (p
(1)
11 , p

(2)
11 , p

(3)
11 , p

(4)
11 ) (7.5)

D
(1)
11 = R>0 (7.6)

The control strategy move-D1 (P31) calculates from timing parameters p
(1)
11 , p(2)11 and p

(3)
11 and

command signals ta, tc and td. The command signals are used to switch between the different

modes. The command signal ta describes the time of the acceleration phase, the command

signal tc describes the time of the constant phase, and the command signal td describes the

time of the deceleration phase.

Equation 7.9 - Equation 7.11 describes the geometric derivation of command signal tc, which

is shown in Figure 23. Equation 7.12 describes the calculation from timing parameters p
(1)
11 ,

p
(2)
11 , p(3)11 , and p

(4)
11 to the command signal tc. Equation 7.8 describes the calculation from

p
(2)
11 and p

(3)
11 to ta. Equation 7.13 describes the calculation from p

(3)
11 and p

(4)
11 to td. The

timing parameter p
(1)
11 describes the time to perform the activity move and is described in

Equation 7.7.

(i) Timing parameter p(1)11 :

p
(1)
11 = ta + tc + td (7.7)

(ii) Command signal ta:

ta =
p
(3)
11

p
(2)
11

maximal frequency / acceleration (7.8)
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(iii) Command signal tc:

ϕ =
1

2
p
(3)
11 ta + p

(3)
11 tc +

1

2
p
(3)
11 td (7.9)

ϕ− 1

2
p
(3)
11 ta −

1

2
p
(3)
11 td = p

(3)
11 tc (7.10)

ϕ

p
(3)
11

− 1

2
ta −

1

2
td = tc (7.11)

tc =
ϕ

p
(3)
11

− 1

2
(ta + td) (7.12)

(iv) Command signal td:

td =
p
(3)
11

p
(4)
11

maximal frequency / deceleration (7.13)

The command signal constraints of the transport scenario are described in Example 17. The

command signal constraint function g21(p
(1)
11 , p

(2)
11 , p

(3)
11 , p

(4)
11 ) defines a timing constraint and

command signal constraints, see Equation 7.15. The constraint p(2)11 , p
(3)
11 , p

(4)
11 > 0 ensures

that every mode is used.

Example 17 (Command Signal Constraints):

The command signal constraints of the transportation scenario:

G = (g11) (7.14)

g21(p
(1)
11 , p

(2)
11 , p

(3)
11 , p

(4)
11 ) =



1 7.7s ≤ p
(1)
11 ≤ 26.25s

1 1Hz/s ≤ p
(2)
11 ≤ 20Hz/s

1 10Hz ≤ p
(3)
11 ≤ 50Hz

1 1Hz/s ≤ p
(4)
11 ≤ 20Hz/s

1 p
(2)
11 , p

(3)
11 , p

(4)
11 > 0

0 otherwise.

(7.15)

The transport scenario has only one sequence of control methods S̄ = ((11)1).

7.2. Storage Scenario

This section describes the storage scenario. Storage scenarios are used to stock products,

e.g., produced products that need to be stored temporarily. The modular storage system,
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shown in Figure 24, consists of four hardware components M1 −M4 and realizes two trans-

ports: (1) from position G to position A, via position F and position C, or via position F ,

position D, and position C.

GFDB

CA

M1M2

M3

M4

Figure 24 Modular storage system that realizes a storage scenario: M1 −M3 are transport components and A−G are
predefined positions (adapted from [OVN18b, OVN18a]).

The hardware component M1, hardware component M3, and hardware component M4 are

capable of moving horizontally from position G to position F , from position C to position A,

and from position D to position B. The hardware component M2 can move vertically from

position D to position C, or from position F to position C, as well as horizontally from position

F to position D. Each component has a programmable logic controller connected to a central

programmable logic controller.

The automation software structure of the storage scenario is described in Example 18. The

automation software structure of the modular storage system consists of three software com-

ponents A1, A2, and A3, see Equation 7.16, and four control methods, see Equation 7.20.

The software component A1 has one control method drive-F (P11) that implements the move-

ment from position G to position F , see Equation 7.17. The software component A2 has two

control methods drive-C1 (P21) and drive-C2 (P22), see Equation 7.18. The control method

drive-C1 (P21) implements the movement from position F to position C via position D, and

the control method drive-C2 (P22) implements the direct movement from position C to posi-

tion D. The software component A3 has one control method drive-A(P31) that implements

the movement from position C to position A, see Equation 7.19.
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Example 18 (Automation Software Structure):

The automation software structure of the storage scenario:

SWC: A1

(1) drive-F (P11)

SWC: A2

(1) drive-C1 (P21)

(2) drive-C2 (P22)

SWC: A3

(1) drive-A(P31)

Ā = (A1, A2, A3), m = 3 (7.16)

A1 = {1}, n1 = 1 (7.17)

A2 = {1, 2}, n2 = 2 (7.18)

A3 = {1}, n3 = 1 (7.19)

n = n1 + n2 + n3 = 4 (7.20)

The command signals of the storage scenario are described in Example 19. The con-

trol methods drive-F (P11), drive-C1 (P21), drive-C2 (P22), and drive-A(P31) use the same

model predictive control approach that is described in [WNS15]. The model predictive control

approach minimizes energy consumption by adjusting movements of electric drives during

runtime to find optimal sequences of movement parameters so that all control strategies have

only one timing parameter, see Equation 7.22 - Equation 7.25.

Example 19 (Command Signals):

The command signals of the storage scenario:

SWC: A1

(1) drive-F (P11)

SWC: A2

(1) drive-C1 (P21)

(2) drive-C2 (P22)

SWC: A3

(1) drive-A(P31)

P̄ = (P11, P21, P22, P31) (7.21)

P11 = (p
(1)
11 ) (7.22)

P21 = (p
(1)
21 ) (7.23)

P22 = (p
(1)
22 ) (7.24)

P31 = (p
(1)
31 ) (7.25)

D
(1)
11 , D

(1)
21 , D

(1)
22 , D

(1)
31 = R>0 (7.26)

The command signal constraints of the transport scenario are described in Example 20. For

each control method drive-F (P11), drive-C1 (P21), drive-C2 (P22), and drive-A(P31), a com-

mand signal constraint function is defined G = (g11, g21, g22, g31), see Equation 7.27. Each

constraint function, see Equation 7.28 - Equation 7.31, describes a timing constraint.
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Example 20 (Command Signal Constraints):

The command signal constraints of the storage scenario:

G = (g11, g21, g22, g31) (7.27)

g11(p
(1)
11 ) =

1 3s ≤ p
(1)
11 ≤ 10s

0 otherwise.
(7.28)

g21(p
(1)
21 ) =

1 2s ≤ p
(1)
21 ≤ 6s

0 otherwise.
(7.29)

g22(p
(1)
22 ) =

1 6s ≤ p
(1)
22 ≤ 10s

0 otherwise.
(7.30)

g31(p
(1)
31 ) =

1 3s ≤ p
(1)
31 ≤ 10s

0 otherwise.
(7.31)

The activity diagram, shown in Figure 25, describes software components and control meth-

ods required to achieve the goal of the storage scenario.

A1

A2

A3

M1 M2 M3

l0

le

Initial

Final

Figure 25 Activity diagram of the storage scenario (adapted from [OVN18b, OVN18a]).

The sequences of control methods S̄ are defined as:

S̄ = (S1, S2) (7.32)

S1 = {11, 21, 31} (7.33)

S2 = {11, 22, 31} (7.34)
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7.3. Pick-and-Place Scenario

This section describes the pick-and-place scenario. Pick-and-place scenarios are used to

pick and place products, e.g., to pick a product from a conveyor system and place it in a

production module. The goal of the process step pick-and-place, shown in Figure 26, is to

take a customer product from position B and place it in a box at position C.

A

B

C

Figure 26 A robot system that realizes the pick-and-place scenario (adapted from [OVN18b]).

The automation software controls three heterogeneous hardware components: a conveyor

system M1, a robot M2, and a compressor M3. The robot is equipped with a vacuum gripper.

The conveyor system consists of transportation components. Each transport component has

a frequency converter to adjust the speed continuously. The compressor generates pressure,

which is buffered by a pressure accumulator with a volume of 350 liters. Each hardware com-

ponent has a programmable logic controller for implementing reusable software components.

Each controller is connected to a central programmable logic controller via the real-time com-

munication protocol PROFINET, which implements the automation software that controls the

hardware components M1 −M3.

The automation software structure of the pick-and-place scenario is described in Example 21.

The automation software structure of the modular storage system has seven software com-

ponents A1, A2, A3, A4, A5, A6, and A7, see Equation 7.35, and eight control methods,

see Equation 7.43. The software component A1 has a control method drive-B(P11) that im-

plements the movement of the conveyor hardware component M1 to position B, see Equa-

tion 7.36. The software component A2 has a control method drive-B(P21) that implements
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the movement of the robot hardware component M2 to position F , see Equation 7.37. The

software component A3 has a control method produce-P(P31) that implements the logic of

the compressor hardware component M3 to generate compressed air, see Equation 7.38.

The software component A4 has a control method take-B(P41) that implements the logic of

picking the hardware component M2 at position B, see Equation 7.39. The software compo-

nent A5 has a control method drive-A(P51) that implements the movement of the hardware

component M1 M1 from position B to position A, see Equation 7.40. The software compo-

nent A6 has two control methods drive-C1 (P61) and drive-C2 (P62). They implement the

movement of the hardware component M2 from position B to position C, see Equation 7.41.

The software component A7 has a control method drive-F (P11) that implements the logic of

placing the hardware component M2 at position C, see Equation 7.42.

Example 21 (Automation Software Structure):

The automation software structure of the pick-and-place scenario:

SWC: A1

(1) drive-B(P11)

SWC: A2

(1) drive-B(P21)

SWC: A3

(1) produce-P(P31)

SWC: A4

(1) take-B(P41)

SWC: A5

(1) drive-A(P51)

SWC: A6

(1) drive-C1 (P61)

(2) drive-C2 (P62)

SWC: A7

(1) drop-C (P71)

Ā = (A1, A2, A3, A4, A5, A6, A7), m = 7 (7.35)

A1 = {1}, n1 = 1 (7.36)

A2 = {1}, n2 = 1 (7.37)

A3 = {1}, n3 = 1 (7.38)

A4 = {1}, n4 = 1 (7.39)

A5 = {1}, n5 = 1 (7.40)

A6 = {1, 2}, n6 = 2 (7.41)

A7 = {1}, n7 = 1 (7.42)

n = n1 + n2 + n3 + n4 + n5 + n6 + n7 = 8 (7.43)

The command signals of the pick-and-place scenario are described in Example 22. The

control methods drive-B(P11) and drive-A(P51) use the model predictive control approach

described in [WNS15]. They have only one timing parameter, see Equations 7.45 and

Equation 7.49. The robot hardware component M2 has a vendor-specific black box control

strategy implementation. The control methods drive-B(P21), take-B(P41), drive-C1 (P61),

drive-C2 (P62), and drop-C (P72) have one timing parameter, see Equation 7.46, 7.48, 7.50,

7.51, and 7.52. The compressor hardware component M3 also has a vendor-specific black

box control strategy implementation. The control method produce-P(P31) has one timing

Command Signal Configuration for Control Strategies of Discrete Production Systems 88



parameter, see Equation 7.49.

Example 22 (Command Signals):

Automation

software

structure

SWC: A1

(1) drive-B1 (P11)

SWC: A2

(1) drive-B1 (P21)

SWC: A3

(1) produce-P1 (P31)

SWC: A4

(1) take-B1 (P41)

SWC: A5

(1) drive-A1 (P51)

SWC: A6

(1) drive-C1 (P61)

(2) drive-C2 (P62)

SWC: A7

(1) drop-C1 (P71)

The command signals of the example production system:

P̄ = (P11, P21, P31, P41, P51, P61, P62, P71) (7.44)

P11 = (p
(1)
11 ) (7.45)

P21 = (p
(1)
21 ) (7.46)

P31 = (p
(1)
31 ) (7.47)

P41 = (p
(1)
41 ) (7.48)

P51 = (p
(1)
51 ) (7.49)

P61 = (p
(1)
61 ) (7.50)

P62 = (p
(1)
62 ) (7.51)

P71 = (p
(1)
71 ) (7.52)

D
(1)
11 , D

(1)
21 , D

(1)
31 , D

(1)
41 = R>0 (7.53)

D
(1)
51 , D

(1)
61 , D

(1)
62 , D

(1)
71 = R>0 (7.54)
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The command signal constraints of the pick-and-place scenario are described in Example 23.

For each control method drive-B1 (P11), drive-B1 (P21), produce-P1 (P31), take-B1 (P41),

drive-A1 (P51), drive-C1 (P61), drive-C2 (P62), and drop-C1 (P71) a command signal con-

straint function is defined G = (g11, g21, g31, g41, g51, g61, g62, g71), see Equation 7.55. Each

constraint function, see Equation 7.56 - Equation 7.63, describes a timing constraint.

Example 23 (Command Signal Constraints):

Command signal constraints of the pick-and-place scenario:

G = (g11, g21, g31, g41, g51, g61, g62, g71) (7.55)

g11(p
(1)
11 ) =

1 3s ≤ p
(1)
11 ≤ 10s

0 otherwise.
(7.56)

g21(p
(1)
21 ) =

1 5s ≤ p
(1)
21 ≤ 10s

0 otherwise.
(7.57)

g31(p
(1)
31 ) =

1 6s ≤ p
(1)
31 ≤ 12s

0 otherwise.
(7.58)

g41(p
(1)
41 ) =

1 2s ≤ p
(1)
41 ≤ 6s

0 otherwise.
(7.59)

g51(p
(1)
51 ) =

1 3s ≤ p
(1)
51 ≤ 10s

0 otherwise.
(7.60)

g61(p
(1)
61 ) =

1 2s ≤ p
(1)
61 ≤ 8s

0 otherwise.
(7.61)

g62(p
(1)
62 ) =

1 8s ≤ p
(1)
62 ≤ 10s

0 otherwise.
(7.62)

g71(p
(1)
71 ) =

1 2s ≤ p
(1)
71 ≤ 6s

0 otherwise.
(7.63)

The activity diagram, shown in Figure 27, describes software components and control meth-

ods required to achieve the goal of the pick-and-place scenario.

The sequences of control methods S̄ are defined as:

S̄ = (S1, S2) (7.64)

S1 = {11, 21, 31, 41, 51, 61, 71} (7.65)

S2 = {11, 21, 31, 41, 51, 62, 71} (7.66)
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Figure 27 Activity diagram of the pick-and-place scenario (adapted from [OVN18b]).

7.4. Synthetic Extensions

This section describes synthetic extensions of the common application scenarios described

above. The idea is to extend the common application scenarios with synthetic data to elimi-

nate the disadvantage of data from real-world applications and synthetic data.

Reference Cost Functions: The reference cost functions defined in Section 7.4.1 extend the

transport scenario. The evaluation can therefore be carried out with four reference functions

rather than just one function. The defined reference cost functions fackley , frastrigin , fsphere ,

and fgriewangk are well-known benchmark functions in the domain of optimization.

Behavior Model Generator: The behavior models of the storage scenario and pick-and-

place scenario are relatively “small.” Therefore, a behavior model generator is defined to

generate “larger” behavior models.
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7.4.1. Extension 1: Reference Cost Functions
This section describes four canonical 10-dimensional reference cost functions. For each of

these cost functions, the global optimum is x∗ = [0, . . . , 0] with function value f(x∗) = 0.

Ackley Reference Cost Function:

Definition 28 defines the fackley reference cost function and illustrates the reference cost

function in 1D and 2D.

Definition 28 (Ackley Reference Cost Function):

fackley(x) = 20− 20 ∗ exp

−0.2
√√√√ n∑

i=1

x2i
n

+ exp(1)− exp

[
n∑

i=1

cos(2πxi)

n

]
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Rastrigin Reference Cost Function:

Definition 29 defines the frastrigin reference cost function and illustrates the reference cost

function in 1D and 2D.

Definition 29 (Rastrigin Reference Cost Function):

frastrigin(x) = 10 ·

[
n−

n∑
i=1

cos(2πxi)

]
+

n∑
i=1

x2i
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Sphere Reference Cost Function:

Definition 30 defines the fsphere reference cost function and illustrates the reference cost

function in 1D and 2D.

Definition 30 (Sphere Reference Cost Function):

fsphere(x) =
n∑

i=1

x2i
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Griewangk Reference Cost Function:

Definition 31 defines the fgriewangk reference cost function and illustrates the reference cost

function in 1D and 2D.

Definition 31 (Griewangk Reference Cost Function):

fgriewangk (x) = 1−
n∏

i=1

cos(
xi√
(i)

) +
n∑

i=1

x2i
4000
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7.4.2. Extension 2: Behavior Model Generator
This section describes the behavior model generator in the following steps:

Step 1 (Generate paths, activities, and control methods): In the first step, a behavior

model generator generates np ∈ N1 paths with na ∈ N1 activities and nc ∈ N1 control

methods.

Step 2 (Sample command signal configurations): In the second step, for each control

method j from the software component Ai, the command signals Pij = (p
(1)
ij , . . . , p

(k)
ij ),

k ∈ N≥1 are uniformly sampled. Decision parameters B = (bij | i ∈ {1, . . . ,m} ∧ j ∈
Ai ∧ bij ∈ {0, 1}) are sampled from a discrete uniform distribution.

Step 3 (Validate constraints): In the third step, each path is validated against the objec-

tive time constraint, see Definition 20. Valid command signal configurations are counted to

calculate a success rate.

Figure 28 shows a generated behavior model with np = 3 paths and na = 2 activities.

Generated methods are not visualized.

1 2 3

4 5 6

7 8 9

l0start le

Figure 28 Example result of the behavior model generator: np = 3 and na = 2 (methods are not visualized).
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8. Evaluation of CyberOpt

This chapter evaluates the approach to machine learning and constrained optimization of

command signal configuration named CyberOpt, presented in Chapter 6. This chapter builds

on previous work by the author and extends the published results [ON15, OVN16, OVN18b,

OVN18a]. The following experiments are defined for a systematic analysis of the CyberOpt

approach:

Experiment 1 (Ground truth): The results from the ground truth experiment are used as

reference results. The results from the random walk experiment, the black-box optimization

experiment results, the CyberOpt approach experiment, and the results from the CyberOpt

MEM experiment are compared to these results. In [OVN18b], an evaluation of the storage

scenario and the pick-and-place scenario showed that the cost per control method can be

estimated by the following linear clinij (p
(1)
ij ) and nonlinear cexpij (p

(1)
ij ) exponential functions with

coefficients εij , ϱij , ςij ∈ R:

clinij (p
(1)
ij ) = ϱij p

(1)
ij + ςij (8.1a)

cexpij (p
(1)
ij ) = εij e

−ϱij p
(1)
ij + ςij (8.1b)

Experiment 2 (Random walk): Experiment 2 tries to find an optimal command signal con-

figuration by random sampling. For each control method j from the software component Ai,

the command signals Pij = (p
(1)
ij , . . . , p

(k)
ij ), k ∈ N≥1 are uniformed sampled. Decision pa-

rameters B = (bij | i ∈ {1, . . . ,m} ∧ j ∈ Ai ∧ bij ∈ {0, 1}) are sampled from a discrete

uniform distribution. For each objective time value obj , 1000 command signal configurations

are generated. The sampled values are then validated by the command signal configuration

problem constraints. If these are valid, then they are evaluated by the reference objective

function. The best command signal configuration is selected.

Experiment 3 (Black-box optimization): Experiment 3 tries to find an optimal command sig-

nal configuration using a black-box optimization approach. The RBFOpt algorithm described

in [CN14] is used for this experiment.

Experiment 4 (CyberOpt approach): Experiment 4 tries to find an optimal command signal

configuration using the CyberOpt approach.

Experiment 5 (CyberOpt MEM): Experiment 5 tries to find an optimal command signal con-

figuration using the CyberOpt approach. The memory operation mode MEM uses all en-

ergy consumption values from previous calculations, e.g., the results from a calculation for
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obj = 13s are used to calculate an optimal solution for obj = 14s and so on.

8.1. Storage Scenario

This section describes the results of the storage scenario. Figure 29 illustrates the resulting

energy consumption relative to the objective time value of the reference (Experiment 1). The

results are published in [OVN18b] and are calculated by finding an optimal solution for each

objective time value obj in range [8s, 30s], with step size 0.5, such that 46 optimal solutions

are calculated. The minimum energy consumption is 702.72J and the maximum energy

consumption is 786.48J when the scenario performs its behavior in 30s or 8s. If the objective

time value obj ≤ 16.5s, then the control method drive-C1 (P21) is used; otherwise, if the

objective time value obj > 16.5s, then the control method drive-C2 (P22) is used.
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Figure 29 Ground truth of the storage scenario, x-axis objective time value obj in range [8s, 30s] in seconds, y-axis energy
consumption in Joules.

The following cost functions and coefficients are used:

cexp11 , cexp31 , clin21 ,c
lin
22 (8.2a)

ε11, ε31 = 33.03, ϱ11, ϱ31 = −0.99, ς11, ς31 = 12.63, (8.2b)

ϱ21 = 500, ϱ22 = 387.5, ς21 = −500, ς22 = −1875 (8.2c)

Section 8.1.1 describes the results of the random walk experiment. Section 8.1.2 describes

the results of the black-box experiment. Section 8.1.3 describes the results of the CyberOpt

experiment. Section 8.1.4 describes the results of the CyberOpt MEM mode experiment.

8.1.1. Storage Scenario: Random Walk
This section describes the results of the random walk of the storage scenario. The results

shown in Figure 30 are calculated by finding an optimal solution for each objective time value

obj in range [8s, 30s] with step size 1, so that 22 solutions are calculated. For each obj in

range [8s, 30s], 1000 command signal configurations are uniformly sampled and evaluated

with the reference cost functions. The command signal configuration with the minimal cost

value is selected. Each evaluation is repeated 20 times. Table 14 summarizes the results of

the random walk. In nine out of 22 cases, the distance between the ground truth optref and
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the mean optimal value optmean is greater than 10. The sampling approach R1000 is unable

to find a solution for obj = 8.
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Figure 30 Results of the random walk (storage scenario), x-axis objective time value obj in seconds and in range [8s, 30s]

with step size 1, y-axis energy consumption in Joules and number of evaluations.

obj optref optmin optmean optmax optstd optdist

8 786 NSF NSF NSF NSF NSF
9 773 900.9279 988.8169 1111.7279 72.7583 -215.8169
10 765 767.9404 856.4873 1056.1030 78.2048 -91.4873
11 760 765.8132 801.5464 885.9590 27.2687 -41.5464
12 757 764.1548 790.7006 848.9165 21.8777 -33.7006
13 755 724.5657 768.8227 793.4232 14.8617 -13.8227
14 754 718.4507 755.8107 793.0004 22.2644 -1.8107
15 753 716.9081 745.9851 775.5675 17.0244 7.0149
16 753 712.0425 731.8156 775.8639 18.7404 21.1844
17 705 710.1256 724.4573 754.3771 10.2411 -19.4573
18 704 710.4492 721.3627 746.0513 9.9821 -17.3627
19 703 704.7446 714.1975 726.6075 4.9335 -11.1975
20 703 704.7477 711.6047 720.9809 5.3991 -8.6047
21 703 703.8890 711.2303 723.0519 5.2034 -8.2303
22 702 703.6426 708.4655 719.8426 3.6600 -6.4655
23 702 703.1116 711.0285 721.3317 5.2410 -9.0285
24 702 703.5296 710.0481 719.7134 4.3503 -8.0481
25 702 703.4374 708.4664 718.1470 4.4060 -6.4664
26 702 703.7324 708.0408 716.4453 3.0146 -6.0408
27 702 703.0879 708.6443 714.1509 3.4084 -6.6443
28 702 704.0457 708.4751 715.5699 3.5653 -6.4751
29 702 703.4226 709.8340 722.0039 4.5399 -7.8340
30 702 703.3426 708.7500 720.3681 4.5243 -6.7500

Table 14 Optimal solutions of the random walk (storage scenario), NSF=no solution found, optdist ≥ ±10 are highlighted.

8.1.2. Storage Scenario: Black-Box Optimization
This section describes the results of the black-box optimization of the storage scenario. The

results shown in Figure 31 are calculated by finding an optimal solution for each objective

time value obj in range [8s, 30s] with step size 1, so that 22 solutions are calculated. For
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each obj in range [8s, 30s], the black-box optimization can sample a maximum of 100 values

of the reference cost function. Each evaluation is repeated 20 times. Table 15 summarizes

the results of the black-box optimization. In four out of 22 cases, the distance between the

ground truth optref and the mean optimal value optmean is greater than 10. The black-box

optimization unable to find a solution for obj = 8 and for obj = 9.
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Figure 31 Results of the black-box optimization (storage scenario), x-axis objective time value obj in seconds and in range
[8s, 30s] with step size 1, y-axis energy consumption in Joules and number of evaluations.

obj optref optmin optmean optmax optstd optdist

8 786 NSF NSF NSF NSF NSF
9 773 NSF NSF NSF NSF NSF
10 765 765.4542 765.4542 765.4542 0.0000 -0.4542
11 760 762.2708 762.4995 762.6227 0.1679 -2.4995
12 757 759.0478 759.5213 759.9949 0.4736 -2.5213
13 755 759.9253 760.0390 760.6833 0.2707 -5.0390
14 754 754.7234 755.0171 755.3107 0.2936 -1.0171
15 753 754.3213 755.8524 756.0338 0.5104 -2.8524
16 753 754.4359 754.4872 755.4626 0.2238 -1.4872
17 705 753.7574 754.2909 754.9109 0.4573 -49.2909
18 704 753.4523 753.6317 753.8111 0.1794 -49.6317
19 703 708.5320 720.4006 721.0252 2.7228 -17.4006
20 703 715.9417 725.5553 727.9587 4.8068 -22.5553
21 703 703.7221 703.7677 704.6346 0.1989 -0.7677
22 702 703.3808 703.6154 703.9020 0.2593 -1.6154
23 702 702.9805 703.0162 703.6947 0.1557 -1.0162
24 702 702.9805 703.0665 703.1954 0.1053 -1.0665
25 702 702.9805 703.0557 703.1954 0.1025 -1.0557
26 702 702.7247 702.8800 703.0353 0.1553 -0.8800
27 702 702.7247 702.7403 703.0353 0.0677 -0.7403
28 702 702.7247 702.7247 702.7247 0.0000 -0.7247
29 702 702.7247 702.7247 702.7247 0.0000 -0.7247
30 702 702.7247 702.7247 702.7247 0.0000 -0.7247

Table 15 Optimal solutions of the black-box optimization (storage scenario), NSF=no solution found, optdist ≥ ±10 rows
highlighted.
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8.1.3. Storage Scenario: CyberOpt Approach
This section describes the results of the CyberOpt approach of the storage scenario. The

results shown in Figure 32 are calculated by finding an optimal solution for each objective

time value obj in range [8s, 30s] with step size 1, so that 22 solutions are calculated. For

each obj in range [8s, 30s], the CyberOpt approach can sample a maximum of 100 values of

the reference cost function. Each evaluation is repeated 20 times.
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Figure 32 Results of the CyberOpt approach (storage scenario), x-axis objective time value obj in seconds and in range
[8s, 30s] with step size 1, y-axis energy consumption in Joules and number of evaluations.

Table 16 summarizes the results of the CyberOpt approach. The maximum distance between

the ground truth optref and the mean optimal value optmean is optdist = −0.9300. The Cy-

berOpt approach is able to find an optimal solution for each obj in range [8s, 30s] in each

of the 20 repetitions. Table 17 summarizes the number of cost function evaluations. The

maximum number of evaluations is rmax = 5.
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obj optref optmin optmean optmax optstd optdist

8 786 786.4803 786.4803 786.4803 0.0000 -0.4803
9 773 773.2778 773.2778 773.2778 0.0000 -0.2778
10 765 765.1567 765.1925 765.2340 0.0376 -0.1925
11 760 760.3327 760.3330 760.3333 0.0003 -0.3330
12 757 757.3464 757.3468 757.3475 0.0005 -0.3468
13 755 755.4549 755.5214 755.5284 0.0196 -0.5214
14 754 754.3591 754.4108 754.4200 0.0214 -0.4108
15 753 753.6037 753.7349 753.7708 0.0358 -0.7349
16 753 753.4052 753.4052 753.4052 0.0000 -0.4052
17 705 705.4906 705.4906 705.4906 0.0000 -0.4906
18 704 704.4196 704.4198 704.4200 0.0002 -0.4198
19 703 703.7429 703.7440 703.7448 0.0008 -0.7440
20 703 703.4052 703.4052 703.4052 0.0000 -0.4052
21 703 703.0539 703.0539 703.0543 0.0001 -0.0539
22 702 702.9300 702.9300 702.9300 0.0000 -0.9300
23 702 702.8368 702.8368 702.8368 0.0000 -0.8368
24 702 702.7751 702.7751 702.7751 0.0000 -0.7751
25 702 702.7296 702.7296 702.7296 0.0000 -0.7296
26 702 702.3838 702.6665 702.8432 0.1658 -0.6665
27 702 702.3951 702.7099 702.8248 0.1098 -0.7099
28 702 702.3838 702.7031 702.8432 0.1222 -0.7031
29 702 702.3766 702.6521 702.8432 0.1509 -0.6521
30 702 702.3951 702.6866 702.8320 0.1246 -0.6866

Table 16 Optimal solutions of the CyberOpt approach (storage scenario); the maximum distance between optref and optmean

is highlighted.

obj rmin rmean rstd rmax success

8 1 1.0000 0.0000 1 20/20
9 2 2.0000 0.0000 2 20/20
10 2 2.0000 0.0000 2 20/20
11 2 2.5000 0.5000 3 20/20
12 2 2.6500 0.4770 3 20/20
13 2 2.2000 0.4000 3 20/20
14 2 2.1500 0.3571 3 20/20
15 2 2.2500 0.6225 4 20/20
16 3 3.0000 0.0000 3 20/20
17 3 3.0000 0.0000 3 20/20
18 2 2.0000 0.0000 2 20/20
19 2 2.1000 0.3000 3 20/20
20 3 3.0000 0.0000 3 20/20
21 4 4.0000 0.0000 4 20/20
22 3 3.0000 0.0000 3 20/20
23 3 3.0000 0.0000 3 20/20
24 3 3.0000 0.0000 3 20/20
25 3 3.0000 0.0000 3 20/20
26 1 2.6500 1.1522 4 20/20
27 1 2.2500 1.2990 4 20/20
28 1 2.7500 1.2600 4 20/20
29 1 2.6000 1.2000 4 20/20
30 1 2.5000 1.4318 5 20/20

Table 17 Number of evaluations of the CyberOpt approach (storage scenario); the maximum value of rmax is highlighted.
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8.1.4. Storage Scenario: CyberOpt MEM
This section describes the results of the CyberOpt MEM of the storage scenario. The results

shown in Figure 33 are calculated by finding an optimal solution for each objective time value

obj in range [8s, 30s] with step size 1, so that 22 solutions are calculated. For each obj in

range [8s, 30s], the CyberOpt MEM can sample a maximum of 100 values of the reference

cost function. Each evaluation is repeated 20 times.

10 15 20 25 30
700

720

740

760

780

en
er

gy
 c

on
su

m
pt

io
n 

[jo
ul

e]

optref

optmean

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

t [seconds]

0

5

10

ev
al

ua
tio

ns

ch
an

ge

m
in

m
ax

rmin

rmean

rmax

Figure 33 Results of the CyberOpt MEM (storage scenario), x-axis objective time value obj in seconds and in range [8s, 30s]
with step size 1, y-axis energy consumption in Joules and number of evaluations.

Table 18 summarizes the results of the CyberOpt MEM. The maximum distance between the

ground truth optref and the mean optimal value optmean is optdist = −0.8630. The CyberOpt

approach is able to find an optimal solution for each obj in range [8s, 30s] in each of the 20

repetitions. Table 17 summarizes the number of cost function evaluations. The maximum

number of evaluations is rmax = 4.
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obj optref optmin optmean optmax optstd optdist

8 786 786.3382 786.4147 786.4803 0.0512 -0.4147
9 773 773.2778 773.4816 773.5824 0.0751 -0.4816
10 765 765.1274 765.2622 765.3882 0.0915 -0.2622
11 760 760.1605 760.2424 760.4292 0.0771 -0.2424
12 757 757.1763 757.2302 757.3475 0.0365 -0.2302
13 755 755.4215 755.5005 755.6007 0.0418 -0.5005
14 754 754.4196 754.4750 754.5284 0.0355 -0.4750
15 753 753.7748 753.8127 753.8619 0.0243 -0.8127
16 753 753.2395 753.3665 753.4179 0.0380 -0.3665
17 705 705.4379 705.5026 705.6171 0.0399 -0.5026
18 704 704.3819 704.4683 704.5365 0.0419 -0.4683
19 703 703.7862 703.8263 703.8663 0.0231 -0.8263
20 703 703.3270 703.3680 703.4105 0.0247 -0.3680
21 703 702.9595 703.0437 703.1029 0.0366 -0.0437
22 702 702.7831 702.8630 702.9300 0.0406 -0.8630
23 702 702.7342 702.8037 702.8590 0.0260 -0.8037
24 702 702.7620 702.7940 702.8563 0.0239 -0.7940
25 702 702.7296 702.8002 702.8608 0.0283 -0.8002
26 702 702.7139 702.7962 702.8460 0.0310 -0.7962
27 702 702.4904 702.7834 702.8495 0.0715 -0.7834
28 702 702.3951 702.7846 702.8447 0.0931 -0.7846
29 702 702.7190 702.7970 702.8701 0.0357 -0.7970
30 702 702.7606 702.8038 702.8491 0.0227 -0.8038

Table 18 Optimal solutions of the CyberOpt MEM (storage scenario), the maximum distance between optref and optmean is
highlighted.

obj rmin rmean rstd rmax success

8 1 1.0000 0.0000 1 20/20
9 1 1.7000 0.4583 2 20/20
10 1 1.3000 0.4583 2 20/20
11 1 1.0500 0.2179 2 20/20
12 1 1.0500 0.2179 2 20/20
13 1 1.1000 0.4359 3 20/20
14 1 1.1500 0.3571 2 20/20
15 1 1.0000 0.0000 1 20/20
16 1 1.1000 0.4359 3 20/20
17 1 1.1000 0.4359 3 20/20
18 1 1.0500 0.2179 2 20/20
19 1 1.1500 0.4770 3 20/20
20 1 1.1000 0.4359 3 20/20
21 1 1.0000 0.0000 1 20/20
22 1 1.2000 0.6000 3 20/20
23 1 1.1000 0.4359 3 20/20
24 1 1.2000 0.6000 3 20/20
25 1 1.1000 0.4359 3 20/20
26 1 1.1000 0.4359 3 20/20
27 1 1.0500 0.2179 2 20/20
28 1 1.3000 0.7810 4 20/20
29 1 1.0000 0.0000 1 20/20
30 1 1.0500 0.2179 2 20/20

Table 19 Number of evaluations of the CyberOpt MEM (storage scenario), the maximum value of rmax is highlighted.
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8.1.5. Storage Scenario: Comparison
This section compares the results of the above approaches. Figure 34 illustrates the results

of the reference optref (ground truth), the results of the R1000 sampling, the results of the

black-box optimization, the results of the CyberOpt approach, and the results of CyberOpt

MEM.

10 15 20 25 30

700

720

740

760

780

en
er

gy
 c

on
su

m
pt

io
n 

[jo
ul

e]

ref
R1000

Black-box
CyberOpt

CyberOpt MEM

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

t [seconds]

10
2

ev
al

ua
tio

ns

ch
an

ge

m
in

m
ax

R1000
Black-box

CyberOpt CyberOpt MEM

Figure 34 Comparison of approaches (storage scenario), x-axis objective time value obj in seconds and in range [8s, 30s]
with step size 1, y-axis energy consumption in Joules and number of evaluations.

Table 20 summarizes the distances between the ground truth and the found optimal solutions

of the different approaches. For each objective time value obj , the CyberOpt approach and

the CyberOpt MEM calculate more optimal solutions than the R1000 sampling and the black-

box optimization. They are able to find an optimal solution with fewer cost function evaluations

in every case and every repetition.
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obj optref R1000 Black-box CyberOpt MEM

8 786 NSF NSF -0.4803 -0.4147
9 773 -215.8169 NSF -0.2778 -0.4816
10 765 -91.4873 -0.4542 -0.1925 -0.2622
11 760 -41.5464 -2.4995 -0.3330 -0.2424
12 757 -33.7006 -2.5213 -0.3468 -0.2302
13 755 -13.8227 -5.0390 -0.5214 -0.5005
14 754 -1.8107 -1.0171 -0.4108 -0.4750
15 753 7.0149 -2.8524 -0.7349 -0.8127
16 753 21.1844 -1.4872 -0.4052 -0.3665
17 705 -19.4573 -49.2909 -0.4906 -0.5026
18 704 -17.3627 -49.6317 -0.4198 -0.4683
19 703 -11.1975 -17.4006 -0.7440 -0.8263
20 703 -8.6047 -22.5553 -0.4052 -0.3680
21 703 -8.2303 -0.7677 -0.0539 -0.0437
22 702 -6.4655 -1.6154 -0.9300 -0.8630
23 702 -9.0285 -1.0162 -0.8368 -0.8037
24 702 -8.0481 -1.0665 -0.7751 -0.7940
25 702 -6.4664 -1.0557 -0.7296 -0.8002
26 702 -6.0408 -0.8800 -0.6665 -0.7962
27 702 -6.6443 -0.7403 -0.7099 -0.7834
28 702 -6.4751 -0.7247 -0.7031 -0.7846
29 702 -7.8340 -0.7247 -0.6521 -0.7970
30 702 -6.7500 -0.7247 -0.6866 -0.8038

Table 20 Distances between the ground truth and the found optimal solutions of the different approaches (storage scenario),
NSF=no solution found.

8.2. Pick-and-Place Scenario

This section describes the results of the pick-and-place scenario. Figure 35 illustrates the

resulting energy consumption relative to the objective time value of reference.
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Figure 35 Ground truth of the pick-and-place scenario, x-axis objective time value obj in range [12s, 34s] in seconds, y-axis
energy consumption in Joules.

The results are published in [OVN18b] and are calculated by finding an optimal solution for

each objective time value obj in range [12s, 34s], with step size 0.5, so that 46 optimal solu-

tions are calculated. The minimum energy consumption is 1159.85J and the maximum en-

ergy consumption 1357.96J when the pick-and-place scenario performs its behavior in 34s or

12s. If the objective time value obj ≤ 17.5s, then the control method drive-C1 (P61) is used;

otherwise, if the objective time value obj > 17.5s, then the control method drive-C2 (P62) is
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used. The following cost functions and coefficients are used:

cexp11 , cexp21 , cexp31 , cexp41 , cexp51 , cexp71 ,clin61 , c
lin
62 (8.3a)

ε11, ε21, ε31, ε41, ε51, ε71 = 33.03, (8.3b)

ϱ11, ϱ21, ϱ31, ϱ41, ϱ51, ϱ71 = −0.99, (8.3c)

ς11, ς21, ς31, ς41, ς51, ς71 = 12.63, (8.3d)

ϱ61 = 333.3, ϱ62 = 800, ς61 = −166.7, ς62 = −6000 (8.3e)

Section 8.2.1 describes the results of the random walk experiment. Section 8.2.2 describes

the results of the black-box experiment. Section 8.2.3 describes the results of the CyberOpt

experiment. Section 8.2.4 describes the results of the CyberOpt MEM mode experiment.

8.2.1. Pick-and-Place: Random Walk
This section describes the results of the random walk of the pick-and-place scenario. The

results shown in Figure 36 are calculated by finding an optimal solution for each objective

time value obj in range [12s, 34s] with step size 1, so that 22 solutions are calculated. For

each obj in range [12s, 34s], 1000 command signal configurations are uniformly sampled

and evaluated by the reference cost functions. The command signal configuration with the

minimum cost value is selected. Each evaluation is repeated 20 times.
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Figure 36 Results of the random walk (pick-and-place scenario), x-axis objective time value obj in seconds and in range
[12s, 34s] with step size 1, y-axis energy consumption in Joules and number of evaluations.

Table 21 summarizes the results of the random walk. In seven out of 22 cases, the distance

between the ground truth optref and the mean optimal value optmean is greater than 10. The

sampling approach R1000 is only able to find a solution for obj ∈ {28, 29, 30, 31, 32, 33, 34}.
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obj optref optmin optmean optmax optstd optdist

12 1357 NSF NSF NSF NSF NSF
13 1319 NSF NSF NSF NSF NSF
14 1296 NSF NSF NSF NSF NSF
15 1282 NSF NSF NSF NSF NSF
16 1274 NSF NSF NSF NSF NSF
17 1268 NSF NSF NSF NSF NSF
18 1251 NSF NSF NSF NSF NSF
19 1216 NSF NSF NSF NSF NSF
20 1194 NSF NSF NSF NSF NSF
21 1181 NSF NSF NSF NSF NSF
22 1173 NSF NSF NSF NSF NSF
23 1168 NSF NSF NSF NSF NSF
24 1165 NSF NSF NSF NSF NSF
25 1163 NSF NSF NSF NSF NSF
26 1161 NSF NSF NSF NSF NSF
27 1160 NSF NSF NSF NSF NSF
28 1160 1406.6618 1545.4134 1684.1650 138.7516 -385.4134
29 1159 1576.8717 1765.2713 2118.9721 250.2820 -606.2713
30 1159 1368.4387 1640.1907 1988.1840 210.6989 -481.1907
31 1159 1318.7656 1531.3286 1908.1532 176.2895 -372.3286
32 1159 1307.1587 1397.7711 1567.9231 72.7594 -238.7711
33 1159 1299.7244 1374.3007 1498.1282 61.9761 -215.3007
34 1159 1287.7350 1373.9593 1614.0599 73.2958 -214.9593

Table 21 Optimal solutions of the random walk (pick-and-place scenario), NSF=no solution found, optdist ≥ ±10 are
highlighted.

8.2.2. Pick-and-Place: Black-Box Optimization
This section describes the results of the black-box optimization of the pick-and-place scenario.

The results shown in Figure 37 are calculated by finding an optimal solution for each objective

time value obj in range [12s, 34s] with step size 1, so that 22 solutions are calculated. For

each obj in range [12s, 34s], the black-box optimization can sample a maximum of 100 values

of the reference cost function. Each evaluation is repeated 20 times.

Table 22 summarizes the results of the black-box optimization. In four out of 22 cases, the

distance between the ground truth optref and the mean optimal value optmean is greater than

10. The black-box optimization is only able to find a solution for obj ∈ {31, 32, 33, 34}.
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Figure 37 Results of the black-box optimization (pick-and-place scenario), x-axis objective time value obj in seconds and in
range [12s, 32s] with step size 1, y-axis energy consumption in Joules and number of evaluations.

obj optref optmin optmean optmax optstd optdist

12 1357 NSF NSF NSF NSF NSF
13 1319 NSF NSF NSF NSF NSF
14 1296 NSF NSF NSF NSF NSF
15 1282 NSF NSF NSF NSF NSF
16 1274 NSF NSF NSF NSF NSF
17 1268 NSF NSF NSF NSF NSF
18 1251 NSF NSF NSF NSF NSF
19 1216 NSF NSF NSF NSF NSF
20 1194 NSF NSF NSF NSF NSF
21 1181 NSF NSF NSF NSF NSF
22 1173 NSF NSF NSF NSF NSF
23 1168 NSF NSF NSF NSF NSF
24 1165 NSF NSF NSF NSF NSF
25 1163 NSF NSF NSF NSF NSF
26 1161 NSF NSF NSF NSF NSF
27 1160 NSF NSF NSF NSF NSF
28 1160 NSF NSF NSF NSF NSF
29 1159 NSF NSF NSF NSF NSF
30 1159 NSF NSF NSF NSF NSF
31 1159 1305.6218 1305.6218 1305.6218 0.0000 -146.6218
32 1159 1295.6014 1295.6014 1295.6014 0.0000 -136.6014
33 1159 1295.6014 1295.6014 1295.6014 0.0000 -136.6014
34 1159 1313.7720 1313.7720 1313.7720 0.0000 -154.7720

Table 22 Optimal solutions of the black-box optimization (pick-and-place scenario), NSF=no solution found, optdist ≥ ±10 are
highlighted.
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8.2.3. Pick-and-Place: CyberOpt Approach
This section describes the results of the CyberOpt approach of the pick-and-place scenario.

The results shown in Figure 38 are calculated by finding an optimal solution for each objective

time value obj in range [12s, 34s] with step size 1, so that 22 solutions are calculated. For

each obj in range [12s, 34s], the CyberOpt approach can sample a maximum of 100 values

of the reference cost function. Each evaluation is repeated 20 times.
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Figure 38 Results of the CyberOpt approach (pick-and-place scenario), x-axis objective time value obj in seconds and in
range [12s, 32s] with step size 1, y-axis energy consumption in Joules and number of evaluations.

Table 23 summarizes the results of the CyberOpt approach. The maximum distance between

the ground truth optref and the mean optimal value optmean is optdist = −2.6159. The Cy-

berOpt approach is able to find an optimal solution for each obj in range [12s, 34s] in each

of the 20 repetitions. Table 24 summarizes the number of cost function evaluations. The

maximum number of evaluations is rmax = 7.
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obj optref optmin optmean optmax optstd optdist

12 1357 1357.9647 1357.9647 1357.9647 0.0000 -0.9647
13 1319 1319.9359 1321.6159 1325.4027 2.4791 -2.6159
14 1296 1296.6055 1296.6746 1296.7711 0.0430 -0.6746
15 1282 1282.4866 1282.5553 1282.6008 0.0291 -0.5553
16 1274 1273.8540 1273.9928 1274.0613 0.0661 0.0072
17 1268 1268.8523 1268.9180 1269.4377 0.1214 -0.9180
18 1251 1251.7048 1251.7235 1251.7734 0.0225 -0.7235
19 1216 1216.0343 1216.1147 1216.2291 0.0445 -0.1147
20 1194 1194.1199 1194.4920 1194.6610 0.1436 -0.4920
21 1181 1180.8715 1181.2014 1181.3027 0.1104 -0.2014
22 1173 1173.2065 1173.2396 1173.2833 0.0279 -0.2396
23 1168 1168.2492 1168.3079 1168.3884 0.0454 -0.3079
24 1165 1165.1689 1165.4881 1165.7457 0.1965 -0.4881
25 1163 1163.3803 1163.4152 1163.4605 0.0241 -0.4152
26 1161 1161.2000 1161.7664 1162.4717 0.3131 -0.7664
27 1160 1160.1831 1160.6246 1160.8189 0.1683 -0.6246
28 1160 1159.7810 1159.9860 1160.2367 0.1680 0.0140
29 1159 1159.4983 1159.7631 1160.0287 0.2063 -0.7631
30 1159 1159.3787 1159.7961 1159.9493 0.1808 -0.7961
31 1159 1159.3743 1159.7789 1159.8946 0.1521 -0.7789
32 1159 1159.0657 1159.7322 1159.9054 0.2376 -0.7322
33 1159 1159.5255 1159.8187 1159.9706 0.1449 -0.8187
34 1159 1159.5183 1159.8524 1159.9664 0.0825 -0.8524

Table 23 Optimal solutions of the CyberOpt approach (pick-and-place scenario), the maximum distance between optref and
optmean is highlighted.

obj rmin rmean rstd rmax success

12 2 2.0000 0.0000 2 20/20
13 2 3.4000 0.9165 4 20/20
14 3 3.7500 0.4330 4 20/20
15 3 3.6000 0.4899 4 20/20
16 3 3.7500 0.6225 5 20/20
17 3 3.7000 0.4583 4 20/20
18 2 3.7000 0.8426 5 20/20
19 2 3.8500 1.0137 5 20/20
20 2 3.1000 0.8307 4 20/20
21 3 4.1500 0.5723 5 20/20
22 3 3.8500 0.7921 6 20/20
23 3 3.7500 0.8292 5 20/20
24 3 3.5000 0.5916 5 20/20
25 3 3.8000 0.8718 5 20/20
26 2 4.1000 1.5780 7 20/20
27 2 3.8500 1.1079 6 20/20
28 2 3.2500 0.8292 5 20/20
29 2 2.7500 0.8874 5 20/20
30 2 4.0500 0.9206 5 20/20
31 2 4.0500 1.0235 6 20/20
32 1 3.2500 1.5452 6 20/20
33 1 3.2500 1.5452 6 20/20
34 1 2.8000 1.5684 5 20/20

Table 24 Number of evaluations of the CyberOpt approach (pick-and-place scenario), the maximum value of rmax is
highlighted.
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8.2.4. Pick-and-Place: CyberOpt MEM
This section describes the results of the CyberOpt MEM of the pick-and-place scenario. The

results shown in Figure 39 are calculated by finding an optimal solution for each objective

time value obj in range [12s, 34s] with step size 1, so that 22 solutions are calculated. For

each obj in range [12s, 34s], the CyberOpt MEM can sample a maximum of 100 values of the

reference cost function. Each evaluation is repeated 20 times.
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Figure 39 Results of the CyberOpt MEM (pick-and-place scenario), x-axis objective time value obj in seconds and in range
[12s, 34s] with step size 1, y-axis energy consumption in Joules and number of evaluations.

Table 25 summarizes the results of the CyberOpt approach. The maximum distance between

the ground truth optref and the mean optimal value optmean is optdist = −1.2250. The Cy-

berOpt MEM is able to find an optimal solution for each obj in range [12s, 34s] in each of the

20 repetitions. Table 26 summarizes the number of cost function evaluations. The maximum

number of evaluations is rmax = 4.
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obj optref optmin optmean optmax optstd optdist

12 1357 1357.8397 1357.9868 1358.0968 0.0757 -0.9868
13 1319 1319.7898 1320.2250 1325.4027 1.1935 -1.2250
14 1296 1296.4194 1296.5563 1296.6937 0.0846 -0.5563
15 1282 1282.2882 1282.4702 1282.6982 0.1206 -0.4702
16 1274 1273.9421 1274.1323 1274.3234 0.0883 -0.1323
17 1268 1268.6725 1268.9452 1269.2116 0.1348 -0.9452
18 1251 1251.5421 1251.6707 1251.7582 0.0789 -0.6707
19 1216 1216.2019 1216.3340 1216.5284 0.0862 -0.3340
20 1194 1194.2888 1194.4419 1194.6623 0.1028 -0.4419
21 1181 1181.0715 1181.2513 1181.3607 0.0794 -0.2513
22 1173 1173.1591 1173.3006 1173.5633 0.0879 -0.3006
23 1168 1168.2945 1168.4606 1168.6624 0.1310 -0.4606
24 1165 1165.2911 1165.3995 1165.6163 0.0869 -0.3995
25 1163 1162.9379 1163.2657 1163.4129 0.1087 -0.2657
26 1161 1161.5582 1161.7919 1162.0356 0.1473 -0.7919
27 1160 1160.5950 1160.7496 1160.8779 0.0736 -0.7496
28 1160 1160.1531 1160.2189 1160.3382 0.0633 -0.2189
29 1159 1159.7839 1160.0408 1160.1919 0.0977 -1.0408
30 1159 1159.5410 1159.9636 1160.1683 0.1284 -0.9636
31 1159 1159.7859 1159.9581 1160.1516 0.0822 -0.9581
32 1159 1159.8536 1159.9498 1160.1307 0.0757 -0.9498
33 1159 1159.5862 1159.9547 1160.1038 0.1137 -0.9547
34 1159 1159.7278 1159.9292 1160.1333 0.0930 -0.9292

Table 25 Optimal solutions of the CyberOpt MEM (pick-and-place scenario), the maximum distance between optref and
optmean is highlighted.

obj rmin rmean rstd rmax success

8 1 1.0000 0.0000 1 20/20
9 1 1.7000 0.4583 2 20/20
10 1 1.3000 0.4583 2 20/20
11 1 1.0500 0.2179 2 20/20
12 1 1.0500 0.2179 2 20/20
13 1 1.1000 0.4359 3 20/20
14 1 1.1500 0.3571 2 20/20
15 1 1.0000 0.0000 1 20/20
16 1 1.1000 0.4359 3 20/20
17 1 1.1000 0.4359 3 20/20
18 1 1.0500 0.2179 2 20/20
19 1 1.1500 0.4770 3 20/20
20 1 1.1000 0.4359 3 20/20
21 1 1.0000 0.0000 1 20/20
22 1 1.2000 0.6000 3 20/20
23 1 1.1000 0.4359 3 20/20
24 1 1.2000 0.6000 3 20/20
25 1 1.1000 0.4359 3 20/20
26 1 1.1000 0.4359 3 20/20
27 1 1.0500 0.2179 2 20/20
28 1 1.3000 0.7810 4 20/20
29 1 1.0000 0.0000 1 20/20
30 1 1.0500 0.2179 2 20/20

Table 26 Number of evaluations of the CyberOpt MEM (pick-and-place scenario), the maximum value of rmax is highlighted.
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8.2.5. Pick-and-Place: Comparison
This section compares the results of the above approaches. Figure 40 illustrates the results

of the reference optref (ground truth), the results of the R1000 sampling, the results of the

black-box optimization, the results of the CyberOpt approach, and the results of CyberOpt

MEM.
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Figure 40 Comparison of approaches (pick-and-place scenario), x-axis objective time value obj in seconds and in range
[12s, 32s] with step size 1, y-axis energy consumption in Joules and number of evaluations.

Table 27 summarizes the distances between the ground truth and the found optimal solutions

of the different approaches. For each objective time value obj , the CyberOpt approach and

the CyberOpt MEM calculate more optimal solutions than the R1000 sampling and the black-

box optimization. They are able to find an optimal solution with fewer cost function evaluations

in every case and every repetition.
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obj optref R1000 Black Box CyberOpt MEM

12 1357 NSF NSF -0.9647 -0.9868
13 1319 NSF NSF -2.6159 -1.2250
14 1296 NSF NSF -0.6746 -0.5563
15 1282 NSF NSF -0.5553 -0.4702
16 1274 NSF NSF 0.0072 -0.1323
17 1268 NSF NSF -0.9180 -0.9452
18 1251 NSF NSF -0.7235 -0.6707
19 1216 NSF NSF -0.1147 -0.3340
20 1194 NSF NSF -0.4920 -0.4419
21 1181 NSF NSF -0.2014 -0.2513
22 1173 NSF NSF -0.2396 -0.3006
23 1168 NSF NSF -0.3079 -0.4606
24 1165 NSF NSF -0.4881 -0.3995
25 1163 NSF NSF -0.4152 -0.2657
26 1161 NSF NSF -0.7664 -0.7919
27 1160 NSF NSF -0.6246 -0.7496
28 1160 -385.4134 NSF 0.0140 -0.2189
29 1159 -606.2713 NSF -0.7631 -1.0408
30 1159 -481.1907 NSF -0.7961 -0.9636
31 1159 -372.3286 -146.6218 -0.7789 -0.9581
32 1159 -238.7711 -136.6014 -0.7322 -0.9498
33 1159 -215.3007 -136.6014 -0.8187 -0.9547
34 1159 -214.9593 -154.7720 -0.8524 -0.9292

Table 27 Distances between the ground truth and the found optimal solutions of the different approaches (pick-and-place
scenario), NSF=no solution found.

8.3. Summary of the Evaluation

This section summarizes the above described four experiments: (1) random walk, (2) black-

box optimization, (3) CyberOpt and (4) CyberOpt MEM. The minimum pointwise distance

between the reference optimal energy consumption and the optimal energy consumption

found by the algorithms is calculated for all obj in range [8s, 30s] (storage scenario) and

in range [12s, 34s] (pick-and-place scenario), see Table 14, Table 15, Table 16, Table 18,

Table 21, Table 22, Table 23, and Table 25. The evaluations that are required to find a solution

for each obj are summarized in Table 17, Table 19, Table 24 and Table 26. The random walk

R1000 always requires 1000 evaluations and the black-box optimization always requires 100

evaluations. The best case summarizes the minimum absolute mean distance value dbc of

each experiment and the minimum mean evaluations ebc required to find a solution. The

average case summarizes the mean absolute mean distance value dac of each experiment

and the mean evaluations eac required to find a solution. The worst case summarizes the

maximum absolute mean distance value dwc of each experiment and the mean evaluations

ewc required to find a solution.

In the best case, in the average case, and the worst case, CyberOpt finds optimal solutions for

the storage scenario and the pick-and-place scenario with fewer evaluations than the random

walk R1000 and the black-box optimization.
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The Best Case:

Table 28 summarizes the minimum absolute mean distance value dbc of each experiment. Cy-

berOpt finds the best optimal solutions for the storage scenario (CyberOpt: dbc = 0.0539 and

CyberOpt MEM: dbc = 0.0437) and the pick-and-place scenario (CyberOpt: dbc = 0.0072 and

CyberOpt MEM: dbc = 0.1323). In this case, the best means the one with the smallest dis-

tance from the reference. The random walk R1000 finds the worst optimal solutions (storage

scenario dbc = 1.8107, pick-and-place scenario dbc = 214.9593). The black-box optimization

finds a good optimal solution for the storage scenario (dbc = 0.4542), but the worst optimal

solution for the pick-and-place scenario (dbc = 136.6014).

Scenario R1000 Black Box CyberOpt MEM

Storage 1.8107 0.4542 0.0539 0.0437
Pick-and-place 214.9593 136.6014 0.0072 0.1323

Table 28 The best case: minimum absolute mean distance value dbc of each experiment.

Table 29 summarizes the minimum mean evaluations ebc that are required to find a solution for

each experiment. The random walk R1000 samples 1000 command signal configurations and

the black-box optimization samples a maximum of 100 values of the reference cost function.

In the best case, CyberOpt only needs ebc = 2.1304 evaluations for the storage scenario and

ebc = 2.2609 evaluations for the pick-and-place scenario to find an optimal solution. CyberOpt

MEM requires only one evaluation to find an optimal solution.

Scenario R1000 Black Box CyberOpt MEM

Storage 1000 100 2.1304 1.0
Pick-and-place 1000 100 2.2609 1.0

Table 29 The best case: minimum mean evaluations ebc that are required to find a solution.

The Average Case:

Table 30 summarizes the average absolute mean distance value dac of each experiment.

CyberOpt finds the best optimal solutions for the storage scenario (CyberOpt: dac = 0.5437

and CyberOpt MEM: dac = 0.5748) and the pick-and-place scenario (CyberOpt: dac =

0.6463 and CyberOpt MEM: dac = 0.6520). In this case, the best means the one with the

smallest mean distance to the reference. The random walk R1000 finds the worst solutions

(storage scenario dac = 25.2268, pick-and-place scenario dac = 359.1764). The black-box

optimization finds a good solution for the storage scenario (dac = 7.8126), but the second

worst solution for the pick-and-place scenario (dac = 143.6491).

Scenario R1000 Black Box CyberOpt MEM

Storage 25.2268 7.8126 0.5437 0.5748
Pick-and-place 359.1764 143.6491 0.6463 0.6520

Table 30 The average case: mean absolute mean distance value dac of each experiment.

Table 31 summarizes the mean evaluations eac that are required to find a solution for each

experiment. The random walk R1000 samples 1000 command signal configurations and the
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black-box optimization samples a maximum of 100 values of the reference cost function. In

the average case, CyberOpt only needs eac = 2.5478 evaluations for the storage scenario and

e = 3.5326 evaluations for the pick-and-place scenario to find an optimal solution. CyberOpt

MEM requires only eac = 1.1283 evaluations for the storage scenario and eac = 1.3522

evaluations for the pick-and-place scenario to find an optimal solution.

Scenario R1000 Black Box CyberOpt MEM

Storage 1000 100 2.5478 1.1283
Pick-and-place 1000 100 3.5326 1.3522

Table 31 The average case: mean evaluations that are required to find a solution.

The Worst Case:

Table 30 summarizes the maximum absolute mean distance value dwc of each experiment.

CyberOpt finds the best optimal solutions for the storage scenario (CyberOpt: dwc = 0.9300

and CyberOpt MEM: dwc = 0.8630) and the pick-and-place scenario (CyberOpt: dwc =

2.6159 and CyberOpt MEM: dwc = 1.2250). In this case, the best means the one with the

smallest mean distance to the reference. The random walk R1000 finds the worst solutions

(storage scenario dwc = 215.8169, pick-and-place scenario dwc = 606.2713). The black-box

optimization finds a good solution for the storage scenario (dwc = 49.6317), but the second

worst solution for the pick-and-place scenario (dwc = 154.7720).

Scenario R1000 Black Box CyberOpt MEM

Storage 215.8169 49.6317 0.9300 0.8630
Pick-and-place 606.2713 154.7720 2.6159 1.2250

Table 32 The worst case: maximum absolute mean distance value dwc of each experiment.

Table 33 summarizes the maximum mean evaluations ewc that are required to find a solution

for each experiment. The random walk R1000 samples 1000 command signal configura-

tions and the black-box optimization samples a maximum of 100 values of the reference cost

function. In the worst case, CyberOpt requires only ewc = 3.1304 evaluations of the storage

scenario and ewc = 4.9565 evaluations of the pick-and-place scenario to find an optimal so-

lution. CyberOpt MEM requires only ewc = 2.3478 evaluations of the storage scenario and

ewc = 3.2609 evaluations of the pick-and-place scenario to find an optimal solution.

Scenario R1000 Black Box CyberOpt MEM

Storage 1000 100 3.1304 2.3478
Pick-and-place 1000 100 4.9565 3.2609

Table 33 The worst case: maximum mean evaluations ewc that are required to find a solution.
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9. Proof of Hypotheses

The evaluation of the CyberOpt subalgorithms aims to prove that the machine learning tech-

niques are used to reduce the manual engineering effort. This chapter builds on previous

work by the author and extends the published results [ON15, OVN16, OVN18b, OVN18a].

Hypothesis H1 describes that an optimal command signal configuration solution does not

require manual engineering steps. The CyberOpt algorithm consists of five subalgorithms,

see Chapter 6. Each subalgorithm implements a task of the CyberOpt framework, described

in Chapter 5, and uses a particular machine learning technique. In order to prove that hy-

pothesis H1 is valid, hypotheses H2, H3, and H4 must be valid. Hypothesis H1 describes

that an optimal command signal configuration solution does not require manual engineering

steps if:

H2: a machine learning algorithm exists that learns cost models that can then be used by

a command signal configuration algorithm to find optimal configurations,

H3: a machine learning algorithm exists that learns sequences of control methods that can

then be used by a command signal configuration algorithm to find optimal command

signal configurations, and

H4: an algorithm exists that finds optimal command signal configurations.

In order to prove hypotheses H2, H3, and H4, nine sub-hypotheses are defined, which are

summarized in Table 34.

ID Description Subalgorithm

H2.1 Regression analysis can be used to learn cost models. CyberOpt-LCM
H2.2 Linear cost models are not sufficient to predict energy con-

sumption values. Nonlinear cost models should be used.
CyberOpt-LCM

H2.3 Polynomial expansion can be used to model nonlinear cost
models.

CyberOpt-LCM

H2.4 The expected improvement criterion can be used to enhance
the quality of cost models.

CyberOpt-ICM

H3.1 Event logs of activities can be used to learn a behavior model. CyberOpt-LSC
H3.2 The fuzzy mining algorithm can be used to learn a behavior

model.
CyberOpt-LSC

H4.1 Human-in-the-loop and sampling is not suitable for finding an
optimal command signal configuration.

CyberOpt-SIC

H4.2 A general mixed-integer nonlinear programming solver can be
used to find an optimal command signal configuration.

CyberOpt-SIC

H4.3 The command signal configuration problem is in the complexity
class NP-hard.

CyberOpt-SPC

Table 34 Sub-hypotheses to prove hypotheses H2 - H4.

Proof idea of hypothesis H2: In order to prove hypothesis H2, it can be shown that re-
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gression analysis can be used to learn cost models (see sub-hypothesis H2.1), a nonlinear

cost model should be used (see sub-hypothesis H2.2), polynomial expansion can be used

to model nonlinear cost models (see sub-hypothesis H2.3), and the expected improvement

criterion can be used to enhance the quality of cost models (see sub-hypothesis H2.4).

Proof idea of hypothesis H3: In order to prove hypothesis H3, it can be shown that event

logs of activities can be used to learn a behavior model (see sub-hypothesis H3.1), and the

fuzzy mining algorithm can be used to learn a behavior model (see sub-hypothesis H3.2).

Proof idea of hypothesis H4: In order to prove hypothesis H4, it can be shown that human-

in-the-loop and sampling are not suitable for finding an optimal command signal configura-

tion (see sub-hypothesis H4.1), that a general mixed-integer nonlinear programming solver

can be used to find an optimal command signal configuration (see sub-hypothesis H4.2)

and the command signal configuration problem is in the complexity class NP-hard (see sub-

hypothesis H4.3).

9.1. Learning Cost Models

This section describes the evaluation of the CyberOpt-LCM subalgorithm, see Section 6.2.

The motivation of the CyberOpt-LCM subalgorithm is to automatically learn a cost model cij
for each control method j from a software component Ai. To find an optimal command signal

configuration, cost models are required to compare different command signal configurations.

Manual creation of cost models is not required, reducing the manual engineering effort. Sub-

hypotheses H2.1, H2.2, and H2.3 should be proven to prove hypothesis H2. Sub-hypothesis

H2.1 describes that regression analysis can be used to learn cost models. Sub-hypothesis

H2.2 describes that a linear model is not sufficient to predict energy consumption values.

A nonlinear cost model should be used. Sub-hypothesis H2.3 describes that polynomial

expansion can be used to model nonlinear cost models.

The evaluation of the CyberOpt-LCM subalgorithm is performed by the following experimental

setup. The fackley reference cost function described in Definition 28, the frastrigin reference

cost function described in Definition 29, the fsphere reference cost function described in Def-

inition 30, and the fgriewangk reference cost function described in Definition 31 are used to

generate synthetic cost values C∗
ij . Then, regression analysis is used to learn linear and

nonlinear cost models, which are then compared using a calculated regression score value.

Regression analysis can be used to learn cost models. Regression analysis describes a sta-

tistical process for estimating relationships between dependent and independent variables.

The ordinary least squares method used calculates the coefficient values Wij of a linear

model cij(Wij , Pij), such that the distances between observed values C∗
ij and values of the

linear model cij(Wij , Pij) are minimized, see Definition 24. In the case of a nonlinear model,

polynomial expansion can be used. It allows linear models to capture nonlinearities; more

precisely, it allows a linear model to learn polynomial relationships between dependent and

Command Signal Configuration for Control Strategies of Discrete Production Systems 117



independent variables, see Definition 25. In the following evaluations, regression analysis is

used to calculate linear and nonlinear cost models.

The experiments are described by the following list of steps:

Step 1 (Generating command signal configurations): In the first step, 100000 command

signal configurations are generated for each reference function by a Latin hypercube design.

From a hypercube with dimension df , the algorithm generates n command signal values.

The continuous range for each command signal is partitioned into n equally spaced intervals.

The command signal configuration values generated by this sampling method are uniformly

distributed in the hypercube space.

Step 2 (Generating a polynomial expansion): In the second step, a polynomial expan-

sion is generated (nonlinear cost model cij). The parameter dp describes the degree of the

generated polynomial.

Step 3 (Fitting the generated cost model cij to data C∗
ij): In the third step, the generated

nonlinear cost model cij is fitted to the cost model training dataset C∗
ij (the known function

values of the reference cost functions).

Step 4 (Calculating the regression score between data C∗
ij and cost model c∗): In the

fourth step, a score value s ∈ [−∞, 1] is calculated by standard k-fold cross validation and a

regression score function. In this case, the coefficient of determination is used, where s = 1

describes the best possible score value.

9.1.1. Evidence of Sub-Hypothesis H2.1
The proof 1 examines sub-hypothesis H2.1, which describes that regression analysis can be

used to learn cost models. Note that this proof is based on empirical results.

Proof 1 (Evidence of H2.1):

Proof. Regression analysis can be used to learn cost models.

1. The results in Table 35 show that regression analysis can be used to calculate

a linear cost model for the reference cost functions fackley , frastrigin , fsphere , and

fgriewangk .

2. The results in Table 36, Table 37, Table 38, and Table 39 show that regression

analysis can be used to calculate a nonlinear cost model for the reference cost

functions fackley , frastrigin , fsphere , and fgriewangk .

From Description 1 and Description 2, it follows that the sub-hypothesis H2.1, which

describes that regression analysis can be used to learn cost models, is valid.
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9.1.2. Evidence of Sub-Hypothesis H2.2
Table 35 summarizes the mean and standard deviation values of the calculated regression

scores. The linear cost models were learned from data generated by the reference cost func-

tions. For the reference cost functions fackley , frastrigin , fsphere , and fgriewangk , a polynomial

of degree dp = 1 is not sufficient to predict cost values. This statement is valid for the function

dimensions df = 1, df = 2, df = 3, df = 4, and df = 5.

df = 1 df = 2 df = 3 df = 4 df = 5

fackley -0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0002)

frastrigin -0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0000)

-0.0001
(+/- 0.0001)

-0.0002
(+/- 0.0001)

-0.0002
(+/- 0.0001)

fsphere -0.0001
(+/- 0.0000)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0002)

-0.0001
(+/- 0.0001)

fgriewangk -0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

Table 35 Mean and standard deviation of the regression score values s ∈ [−∞, 1] of linear cost models learned from
reference cost function data (s = 1 describes the best possible score value).

Proof 2 examines sub-hypothesis H2.2. Sub-hypothesis H2.2 describes that a linear cost

model is not sufficient to predict energy consumption values. A nonlinear cost model should

be used. Please note that this proof is based on empirical results.

Proof 2 (Evidence of H2.2):

Proof. Linear cost models are not sufficient to predict energy consumption values.

The results in Table 35 show that:

1. A linear cost model cij learned from data of the fackley reference cost function is

not sufficient to predict energy consumption values.

2. A linear cost model cij learned from data of the frastrigin reference cost function

is not sufficient to predict energy consumption values.

3. A linear cost model cij learned from data of the fsphere reference cost function is

not sufficient to predict energy consumption values.

4. A linear cost model cij learned from data of the fgriewangk reference cost function

is not sufficient to predict energy consumption values.

From Descriptions 1 - 4, it follows that sub-hypothesis H2.2, which describes that linear

cost models are not sufficient to predict energy consumption values, is valid.
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9.1.3. Evidence of Sub-Hypothesis H2.3
Results of the CyberOpt-LCM subalgorithm are compared with the reference cost functions

fackley , frastrigin , fsphere , and fgriewangk .

Table 36 summarizes the mean and standard deviation values of the regression scores cal-

culated for the cost models learned from the data generated by the reference cost function

fackley . The parameter df ∈ {1, 2, 4, 8, 12} describes the degree of polynomial expansion

used. The scoring method used is the coefficient of determination. A polynomial cost model

cij of degree dp = 12 has the best regression score value for the dimensions df ∈ {1, 2, 3, 4}:
df = 1 : s = 0.9670 (+/- 0.0002), df = 2 : s = 0.9678 (+/- 0.0003), df = 3 : s = 0.9657 (+/-

0.0004), and df = 4 : s = 0.9633 (+/- 0.0005). A polynomial cost model cij of degree dp = 8

has the best regression score value of s = 0.9602 (+/- 0.0005) for the dimension df = 5.

df = 1 df = 2 df = 3 df = 4 df = 5

dp = 1 -0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0002)

dp = 2 0.7469
(+/- 0.0018)

0.7808
(+/- 0.0030)

0.8144
(+/- 0.0026)

0.8423
(+/- 0.0013)

0.8635
(+/- 0.0022)

dp = 4 0.8992
(+/- 0.0006)

0.9194
(+/- 0.0014)

0.9314
(+/- 0.0013)

0.9397
(+/- 0.0008)

0.9451
(+/- 0.0009)

dp = 8 0.9565
(+/- 0.0003)

0.9618
(+/- 0.0005)

0.9621
(+/- 0.0003)

0.9615
(+/- 0.0004)

0.9602
(+/- 0.0005)

dp = 12 0.9670
(+/- 0.0002)

0.9678
(+/- 0.0003)

0.9657
(+/- 0.0004)

0.9633
(+/- 0.0005)

0.9581
(+/- 0.0006)

Table 36 Mean and standard deviation of regression score values s ∈ [−∞, 1] of cost models learned from data generated by
the fackley reference cost function (s = 1 describes the best possible score value): df ∈ {1, 2, 3, 4, 5} describes the
dimension of the fackley reference cost function, and df ∈ {1, 2, 4, 8, 12} describes the degree of polynomial expansion used.

Table 37 summarizes the mean and the standard deviation values of the regression scores

calculated for the cost models learned from the data generated by the reference cost function

frastrigin . The parameter df ∈ {1, 2, 4, 8, 12} describes the degree of polynomial expansion

used. The scoring method used is the coefficient of determination. For the dimensions

df ∈ {1, 2, 3, 4} a polynomial cost model cij of degree df = 12 has the best regression score

value and for the dimension df = 5 a polynomial cost model of degree df = 2. A polynomial

cost model cij of degree dp = 12 has the best regression score value for the dimensions

df ∈ {1, 2, 3, 4}: df = 1 : s = 0.9670 (+/- 0.0002), df = 2 : s = 0.9678 (+/- 0.0003),

df = 3 : s = 0.9657 (+/- 0.0004), and df = 4 : s = 0.9633 (+/- 0.0005). A polynomial cost

model cij of degree dp = 2 has the best regression score value of s = 0.9602 (+/- 0.0005)

for the dimension df = 5.

Table 38 summarizes the mean and the standard deviation values of the regression scores

calculated for the cost models learned from the data generated by the reference cost func-

tion fsphere . The parameter df ∈ {1, 2, 4, 8, 12} describes the degree of polynomial ex-

pansion used. The scoring method used is the coefficient of determination. A polynomial
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df = 1 df = 2 df = 3 df = 4 df = 5

dp = 1 -0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0000)

-0.0001
(+/- 0.0001)

-0.0002
(+/- 0.0001)

-0.0002
(+/- 0.0001)

dp = 2 0.9467
(+/- 0.0007)

0.9469
(+/- 0.0004)

0.9470
(+/- 0.0006)

0.9469
(+/- 0.0008)

0.9466
(+/- 0.0007)

dp = 4 0.9467
(+/- 0.0007)

0.9469
(+/- 0.0004)

0.9470
(+/- 0.0006)

0.9469
(+/- 0.0008)

0.9465
(+/- 0.0007)

dp = 8 0.9468
(+/- 0.0007)

0.9471
(+/- 0.0004)

0.9470
(+/- 0.0006)

0.9468
(+/- 0.0008)

0.9459
(+/- 0.0008)

dp = 12 0.9478
(+/- 0.0007)

0.9480
(+/- 0.0003)

0.9478
(+/- 0.0006)

0.9469
(+/- 0.0007)

0.9420
(+/- 0.0006)

Table 37 Mean and standard deviation of regression score values s ∈ [−∞, 1] of cost models learned from data generated by
the frastrigin reference cost function (s = 1 describes the best possible score value): df ∈ {1, 2, 3, 4, 5} describes the
dimension of the frastrigin reference cost function, and df ∈ {1, 2, 4, 8, 12} describes the degree of polynomial expansion
used.

cost model cij of degree dp = 2 has the best regression score value for the dimensions

df ∈ {1, 2, 3, 4, 5}: df = 1 : s = 1, df = 2 : s = 1, df = 3 : s = 1, df = 4 : s = 1, and

df = 5 : s = 1.

df = 1 df = 2 df = 3 df = 4 df = 5

dp = 1 -0.0001
(+/- 0.0000)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0002)

-0.0001
(+/- 0.0001)

dp = 2 1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

dp = 4 1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

dp = 8 1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

dp = 12 1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

1.0000
(+/- 0.0000)

Table 38 Mean and standard deviation of regression score values s ∈ [−∞, 1] of cost models learned from data generated by
the fsphere reference cost function (s = 1 describes the best possible score value): df ∈ {1, 2, 3, 4, 5} describes the
dimension of the fsphere reference cost function, and df ∈ {1, 2, 4, 8, 12} describes the degree of polynomial expansion used.

Table 39 summarizes the mean and the standard deviation values of the regression scores

calculated for the cost models learned from the data generated by the reference cost function

fgriewangk . The parameter df ∈ {1, 2, 4, 8, 12} describes the degree of polynomial expansion

used. The scoring method used is the coefficient of determination. A polynomial cost model

cij of degree dp = 12 has the best regression score value for the dimensions df ∈ {1, 2, 3, 4}:
df = 1 : s = 0.9995 (+/- 0.0000), df = 2 : s = 0.5691(+/- 0.0037), df = 3 : s = 0.1467(+/-

0.0048), and df = 4 : s = 0.0130(+/- 0.0039). A polynomial cost model cij of degree dp = 2

has the best regression score value of s = 0.0076(+/- 0.0004) for the dimension df = 5.

Proof 3 examines sub-hypothesis H2.3. Sub-hypothesis H2.3 describes that polynomial ex-
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df = 1 df = 2 df = 3 df = 4 df = 5

dp = 1 -0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

-0.0001
(+/- 0.0001)

dp = 2 0.0631
(+/- 0.0012)

0.0033
(+/- 0.0010)

0.0008
(+/- 0.0005)

0.0037
(+/- 0.0008)

0.0076
(+/- 0.0004)

dp = 4 0.2552
(+/- 0.0038)

0.0173
(+/- 0.0019)

0.0007
(+/- 0.0006)

0.0031
(+/- 0.0006)

0.0061
(+/- 0.0005)

dp = 8 0.8175
(+/- 0.0005)

0.1692
(+/- 0.0043)

0.0149
(+/- 0.0013)

-0.0010
(+/- 0.0016)

-0.0070
(+/- 0.0025)

dp = 12 0.9995
(+/- 0.0000)

0.5691
(+/- 0.0037)

0.1467
(+/- 0.0048)

0.0130
(+/- 0.0039)

-0.0965
(+/- 0.0057)

Table 39 Mean and standard deviation regression score values s ∈ [−∞, 1] of cost models learned from data generated by
the fgriewangk reference cost function (s = 1 describes the best possible score value): df ∈ {1, 2, 3, 4, 5} describes the
dimension of the fgriewangk reference cost function, and df ∈ {1, 2, 4, 8, 12} describes the degree of polynomial expansion
used.

pansion can be used to model nonlinear cost models. Note that this proof is based on empir-

ical results.

Proof 3 (Evidence of H2.3):

Proof. Polynomial expansion can be used to model nonlinear cost models.

1. The results in Table 36 show that polynomial expansion can be used to create a

nonlinear cost model of data from the fackley reference cost function.

2. The results in Table 37 show that polynomial expansion can be used to create a

nonlinear cost model of data from the frastrigin reference cost function.

3. The results in Table 38 show that polynomial expansion can be used to create a

nonlinear cost model of data from the fsphere reference cost function.

4. The results in Table 39 show that polynomial expansion can be used to create a

nonlinear cost model of data from the fgriewangk reference cost function.

From Descriptions 1 - 4, it follows that the sub-hypothesis H2.3, which describes that

polynomial expansion can be used to model nonlinear cost models, is valid.
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9.2. Improving Cost Models

This section describes the evaluation of the CyberOpt-ICM subalgorithm, see Section 6.5.

The motivation of the CyberOpt-ICM subalgorithm is to calculate a new valid command signal

configuration X = (P̄ , B), which should be evaluated to obtain more observations of the

production system. The more observations, the more accurate cost models. Black-box opti-

mization approaches use this technique to gather additional data. They iterate between fitting

cost models and gathering additional observations. Sub-hypothesis H2.4 describes that the

expected improvement criterion can be used to enhance the quality of regression models.

This sub-hypothesis should be proven to prove hypothesis H2.

The evaluation of the CyberOpt-ICM subalgorithm is performed by the following experimental

setup. The expected improvement criterion can be used to calculate new valid command

signal configurations. An exhaustive evaluation of a production system is not suitable. Each

evaluation of a production system takes time and is therefore expansive. Few evaluations

shorten the time in which a production system does not operate optimally. The fackley refer-

ence cost function described in Definition 28, the frastrigin reference cost function described in

Definition 29, the fsphere reference cost function described in Definition 30, and the fgriewangk

reference cost function described in Definition 31 are used to generate synthetic cost values

C∗
ij . The experiments are described by the following list of steps:

Step 1 (Generating command signal configurations): In the first step, 10 command signal

configurations are generated by a Latin hypercube design [San+].

Step 2 (Fitting and predicting a Gaussian process): In the second step, regression is

used to fit a Gaussian process GP to the cost model training data set C∗
ij . The training data

is generated from the reference cost functions.

Step 3 (Calculation of expected improvement criterion): In the third step, an expected

improvement criterion value is calculated for each generated parameter configuration.

Step 4 (Selecting command signal configuration): In the last step, the command signal

configuration with the highest expected improvement criterion value is used because this

configuration should be evaluated to enhance the quality of the cost model cij .

Step 2 - 4 are repeated 200 times. Each experiment is repeated 20 times.

9.2.1. Evidence of Sub-Hypothesis H2.4
The following sections describe the results of expected improvement criterion and the refer-

ence cost functions fackley , frastrigin , fsphere , andfgriewangk .

The best results are archived with 200 iterations. Table 40 summarizes the mean and stan-
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dard deviation of optimal (minimum) values of the calculated cost models learned from data

generated with the reference cost function fackley with 40, 80, 160, and 200 samples. The

distances for each dimension between the optimal value of the reference cost function fackley

and the learned cost model cij are 0.3654 (+/- 0.4386) for the dimension df = 1, 3.2367 (+/-

1.0766) for dimension df = 2, 5.0161 (+/- 1.1086) for dimension df = 3, 5.8550 (+/- 1.2835)

for dimension df = 4, and 6.5893 (+/- 1.4243) for dimension df = 5.

Samples df = 1 df = 2 df = 3 df = 4 df = 5

40 13.0059
(+/- 5.0763)

12.2761
(+/- 4.6312)

15.8849
(+/- 2.9742)

16.7408
(+/- 2.3318)

17.4374
(+/- 1.2039)

80 13.3478
(+/- 5.4959)

14.5044
(+/- 3.6069)

14.9196
(+/- 3.2187)

16.5143
(+/- 1.5653)

17.3778
(+/- 0.8343)

120 12.4026
(+/- 5.2946)

15.0863
(+/- 2.6976)

14.8109
(+/- 2.3751)

15.3758
(+/- 2.1839)

16.8097
(+/- 0.9060)

160 13.0219
(+/- 5.9075)

14.3049
(+/- 2.1603)

14.2563
(+/- 3.5148)

15.7681
(+/- 1.2912)

16.3185
(+/- 2.2794)

200 0.3654
(+/- 0.4386)

3.2367
(+/- 1.0766)

5.0161
(+/- 1.1086)

5.8550
(+/- 1.2835)

6.5893
(+/- 1.4243)

Table 40 Mean and standard deviation of the optimal (minimum) values of cost models learned from data generated by the
fackley reference cost function with 40, 80, 160, and 200 samples (command signal configurations): df ∈ {1, 2, 3, 4, 5}
describes the dimensions of the fackley reference cost function.

The best results are archived with 200 iterations. Table 41 summarizes the mean and the

standard deviation of optimal (minimum) values of calculated cost models learned from data

generated with the reference cost function frastrigin with 40, 80, 160, and 200 samples.

The distances for each dimension between the optimal value of the reference cost function

frastrigin and the learned cost model cij are 0.5913 (+/- 0.5355) for the dimension df = 1,

6.7001 (+/- 4.2751) for dimension df = 2, 18.4839 (+/- 6.9347) for dimension df = 3, 41.5583

(+/- 10.1736) for dimension df = 4, and 64.5394 (+/- 9.5546) for dimension df = 5.

Samples df = 1 df = 2 df = 3 df = 4 df = 5

40 35.7112
(+/- 22.9366)

91.9611
(+/- 50.9549)

143.0117
(+/- 38.3754)

180.8194
(+/- 47.4205)

203.1626
(+/- 67.9034)

80 48.2276
(+/- 28.4287)

99.9021
(+/- 37.6711)

139.7111
(+/- 43.0305)

154.9491
(+/- 40.7630)

209.2135
(+/- 54.3193)

120 61.2737
(+/- 33.5985)

87.1851
(+/- 40.2845)

127.5408
(+/- 49.0087)

175.8328
(+/- 67.6486)

224.3829
(+/- 51.0432)

160 47.0781
(+/- 29.7800)

76.4048
(+/- 41.2929)

136.4197
(+/- 55.9365)

165.7892
(+/- 69.3931)

221.2368
(+/- 75.0243)

200 0.5913
(+/- 0.5355)

6.7001
(+/- 4.2751)

18.4839
(+/- 6.9347)

41.5583
(+/- 10.1736)

64.5394
(+/- 9.5546)

Table 41 Mean and standard deviation of the optimal (minimum) values of cost models learned from data generated by the
frastrigin reference cost function with 40, 80, 160, and 200 samples (command signal configurations): df ∈ {1, 2, 3, 4, 5}
describes the dimensions of the frastrigin reference cost function.

The best results are archived with 200 iterations. Table 42 summarizes the mean and the

Command Signal Configuration for Control Strategies of Discrete Production Systems 124



standard deviation of optimal (minimum) values of the calculated cost models learned from

data generated with the reference cost function fsphere with 40, 80, 160, and 200 samples.

The distances for each dimension between the optimal value of the fsphere reference cost

function and the learned cost model cij are 0.0054 (+/- 0.0088) for the dimension df = 1,

0.7926 (+/- 0.7430) for dimension df = 2, 4.5367 (+/- 3.5937) for dimension df = 3, 10.7288

(+/- 4.8807) for dimension df = 4, and 22.2899 (+/- 11.0030) for dimension df = 5.

Samples df = 1 df = 2 df = 3 df = 4 df = 5

40 35.2736
(+/- 28.4845)

63.6836
(+/- 44.0134)

109.5623
(+/- 41.7751)

122.4817
(+/- 44.9136)

161.4139
(+/- 52.5357)

80 28.1721
(+/- 23.0162)

73.1547
(+/- 39.7185)

102.9314
(+/- 57.7892)

112.4325
(+/- 52.5923)

139.7518
(+/- 62.5227)

120 37.9670
(+/- 35.6007)

68.2701
(+/- 51.9483)

101.0767
(+/- 46.4419)

134.3414
(+/- 40.9701)

187.3160
(+/- 50.3305)

160 46.8398
(+/- 33.5332)

47.9186
(+/- 32.1122)

94.8047
(+/- 53.5147)

132.3483
(+/- 57.3794)

159.1670
(+/- 63.2687)

200 0.0054
(+/- 0.0088)

0.7926
(+/- 0.7430)

4.5367
(+/- 3.5937)

10.7288
(+/- 4.8807)

22.2899
(+/- 11.0030)

Table 42 Mean and standard deviation of the optimal (minimum) values of cost models learned from data generated by the
fsphere reference cost function with 40, 80, 160, and 200 samples (command signal configurations): df ∈ {1, 2, 3, 4, 5}
describes the dimensions of the fsphere reference cost function.

The best results are archived with 200 iterations. Table 43 summarizes the mean and stan-

dard deviation of optimal (minimum) values of the calculated cost models learned from data

generated with the reference cost function fgriewangk with 40, 80, 160, and 200 samples.

Samples df = 1 df = 2 df = 3 df = 4 df = 5

40 0.0049
(+/- 0.0049)

0.3404
(+/- 0.6164)

0.3555
(+/- 0.5273)

0.5848
(+/- 0.5504)

0.7895
(+/- 0.4936)

80 0.0044
(+/- 0.0049)

0.0169
(+/- 0.0106)

0.3072
(+/- 0.4826)

0.7143
(+/- 0.5325)

0.4916
(+/- 0.4725)

120 0.0030
(+/- 0.0045)

0.0169
(+/- 0.0106)

0.3110
(+/- 0.5406)

0.6913
(+/- 0.4868)

0.7649
(+/- 0.5943)

160 0.0030
(+/- 0.0045)

0.0168
(+/- 0.0106)

0.2683
(+/- 0.4502)

0.6441
(+/- 0.4219)

0.6019
(+/- 0.4744)

200 0.0025
(+/- 0.0043)

0.0168
(+/- 0.0106)

0.0440
(+/- 0.0541)

0.0428
(+/- 0.0494)

0.0748
(+/- 0.1061)

Table 43 Mean and standard deviation of the optimal (minimum) values of cost models that are learned from data generated
by the fgriewangk reference cost function with 40, 80, 160, and 200 samples (command signal configurations):
df ∈ {1, 2, 3, 4, 5} describes the dimensions of the fgriewangk reference cost function.

The distances for each dimension between the optimal value of the fgriewangk reference cost

function and the learned cost model cij are 0.0025 (+/- 0.0043) for the dimension df = 1,

0.0168 (+/- 0.0106) for the dimension df = 2, 0.0440 (+/- 0.0541) for the dimension df = 3,

0.0428 (+/- 0.0494) for the dimension df = 4, and 0.0748 (+/- 0.1061) for the dimension

df = 5.
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Proof 4 examines sub-hypothesis H2.4. Sub-hypothesis H2.4 describes that the expected

improvement criterion can be used to enhance the quality of regression models. Note that

this proof is based on empirical results.

Proof 4 (Evidence of H2.4):

Proof. The expected improvement criterion can be used to enhance the quality of cost

models.

1. The results in Table 20 show that the expected improvement criterion can be

used to enhance the quality of the cost models of the storage scenario.

2. The results in Table 27 show that the expected improvement criterion can be

used to enhance the quality of the cost models of the pick-and-place scenario.

3. The results in Table 40 show that the expected improvement criterion can be

used to enhance the quality of cost models learned from data generated by the

fackley reference cost function.

4. The results in Table 41 show that the expected improvement criterion can be

used to enhance the quality of cost models learned from data generated by the

frastrigin reference cost function.

5. The results in Table 42 show that the expected improvement criterion can be

used to enhance the quality of cost models learned from data generated by the

fsphere reference cost function.

6. The results in Table 43 show that the expected improvement criterion can be

used to enhance the quality of cost models learned from data generated by the

fgriewangk reference cost function.

From Descriptions 1 - 6, it follows that the sub-hypothesis H2.4, which describes that

the expected improvement criterion enhances the quality of cost models, is valid.

9.3. Learning Sequences of Control Methods

This section describes the evaluation of the CyberOpt-LSC subalgorithm, see Section 6.3.

The motivation of the CyberOpt-LSC algorithm is to learn sequences of control methods from

an event log automatically. Sequences of control methods are required to solve the command

signal configuration problem. Manual creation of a behavior model is not required, reducing

manual engineering effort and synchronizing the learned behavior model with the current

state of the production system. Sub-hypotheses H3.1 and H3.2 should be proven to prove

hypothesis H3. Sub-hypothesis H3.1 describes that event logs of activities can be used to
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learn a behavior model, and sub-hypothesis H3.2 describes that the fuzzy mining algorithm

can be used to learn a behavior model from an event log.

9.3.1. Evidence of Sub-Hypothesis H3.1
Event logs of activities include information about the number of evaluations of the production

system, activities, originator hardware components, and time values. The basic concept of

process mining is to extract information about processes from event logs recorded by an

information system. An event log contains events, and each event has a timestamp and

refers to an activity and a case, e.g., a process instance. An activity defines a specific step

in the process. Control-flow mining algorithms directly create a dependency graph (directed

graph) from event logs. In order to prove sub-hypothesis H3.1, which describes that event

logs of activities can be used to learn a behavior model, knowledge of event logs is analyzed,

more precisely the ability to extract behavior and parallel behavior of an event log.

Table 44 describes an event log of the storage scenario, see Section 7.2.

Case Activity Start date End date Resource

1 A1 2020 - 01 - 01 09:00:00 2020 - 01 - 01 09:02:00 M1

1 A2 2020 - 01 - 01 09:02:00 2020 - 01 - 01 09:05:00 M2

1 A3 2020 - 01 - 01 09:05:00 2020 - 01 - 01 09:07:00 M3

2 A1 2020 - 02 - 01 09:00:00 2020 - 02 - 01 09:02:00 M1

2 A2 2020 - 02 - 01 09:02:00 2020 - 02 - 01 09:05:00 M2

. . . . . . . . . . . . . . .

Table 44 Event log of the storage scenario; hardware components: M1, M2 and M3; activities: A1 realizes drive-F , A2

realizes drive-C , and A3 realizes drive-A.

The behavior model is described by the following activities: A1 : drive-F (hardware compo-

nent M1), A2 : drive-C (hardware component M2), and A3 : drive-A (hardware component

M3) are performed sequentially. Figure 41 illustrates the event log of Table 44. A data point

(activity) is shown for each start and end date. Horizontal lines represent the start of a new

activity. Knowledge about behavior can be extracted from the event log.

Table 45 describes an event log of the pick-and-place scenario, see Section 7.3.

Case Activity Start date End date Resource

1 A1 2020 - 01 - 01 08:00:00 2020 - 01 - 01 08:05:00 M1

1 A2 2020 - 01 - 01 08:00:00 2020 - 01 - 01 08:04:00 M2

1 A3 2020 - 01 - 01 08:00:00 2020 - 01 - 01 08:03:00 M3

1 A4 2020 - 01 - 01 08:05:00 2020 - 01 - 01 08:10:00 M2

1 A5 2020 - 01 - 01 08:10:00 2020 - 01 - 01 08:12:00 M1

1 A6 2020 - 01 - 01 08:10:00 2020 - 01 - 01 08:11:00 M2

1 A7 2020 - 01 - 01 08:12:00 2020 - 01 - 01 08:15:00 M2

Table 45 Event log of the pick-and-place scenario; hardware components: a conveyor system M1, a robot M2, and a
compressor M3; activities: A1 realizes drive-B , A2 realizes drive-B , A3 realizes produce-P , A4 realizes take-B , A5

realizes drive-A, A6 realizes drive-C , and A7 realizes drop-C .
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Figure 41 Illustration of the storage event log, see Table 44: Activities A1 - A3 are mapped to A1 −A3, A1 realizes drive-F ,
A2 realizes drive-C , and A3 realizes drive-A.

The behavior model is described by the following activities: A1 : drive-B (conveyor system

M1), A2 : drive-B (robot M2), and A3 : produce-P (compressor M3) are performed at

the same time, then A4 : take-B (robot M2) and A5 : drive-A (conveyor system M1) are

performed, and finally A6 : drive-C and A7 : drop-C (robot M2) are performed.

Figure 42 illustrates the event log of Table 45. A data point (activity) is shown for each start

and end date. All activities between two horizontal lines are performed in parallel.
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Figure 42 Illustration of the pick-and-place event log (see Table 45): A1 - A7 map to A1 −A7, A1 realizes drive-B , A2

realizes drive-B , A3 realizes produce-P , A4 realizes take-B , A5 realizes drive-A, A6 realizes drive-C , and A7 realizes
drop-C .

Proof 5 examines sub-hypothesis H3.1. Sub-hypothesis H3.1 describes that event logs of

activities can be used to learn a behavior model. Note that this proof is based on empirical

results.
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Proof 5 (Evidence of H3.1):

Proof. Event logs of activities can be used to learn a behavior model.

1. Figure 41 shows that an event log of activities can be used to extract behavior.

2. Figure 42 shows that an event log of activities can be used to extract parallel

behavior.

From Descriptions 1 and 2, it follows that the sub-hypothesis H3.1, which describes

that event logs of activities can be used to learn a behavior model, is valid.

9.3.2. Evidence of Sub-Hypothesis H3.2
The basic concept of process mining is to extract information about processes from transac-

tion logs recorded by an information system [vdAal+03]. A transaction log contains events,

and each event has a timestamp and refers to an activity and a case, e.g., a process in-

stance. An activity defines a specific step in the process. The fuzzy mining algorithm de-

scribed in [GV07] implements adaptive simplifications based on data clustering and graph

clustering, e.g., to solve the concurrency problem. The problem occurs when event A and

event B can be observed in any order, e.g., they are on two distinct parallel paths, then the

transaction log contains both possible cases: event A is followed by event B and vice versa.

Figure 43 illustrates the fuzzy mining algorithm result for the storage scenario.

l0start 1 2 3 le

Figure 43 Fuzzy mining result of the storage scenario.

The directed graph of activities is defined as a quadruple (G, l0, le, T ). The finite set G

describes the nodes of the directed graph of activities, where l0 describes the start node and

le describes the end node. T ⊆ G×G describes the transitions between nodes. Each node

has an activity index i that refers to a software component Ai.

Figure 44 illustrates the fuzzy mining algorithm result for the pick-and-place scenario.

l0start
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7 le

Figure 44 Fuzzy mining result of the pick-and-place scenario.

Proof 6 examines sub-hypothesis H3.2. Sub-hypothesis H3.2 describes that the fuzzy mining
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algorithm can be used to learn a behavior model from an event log. Note that this proof is

based on empirical results.

Proof 6 (Evidence of H3.2):

Proof. The fuzzy mining algorithm can be used to learn a behavior model.

1. In [GV07], it is shown that the fuzzy mining algorithm can be used to learn a

behavior model from an event log.

2. Figure 43 shows that a behavior model for the storage scenario can be learned

with the fuzzy mining algorithm.

3. Figure 44 shows that a behavior model for the pick-and-place scenario can be

learned with the fuzzy mining algorithm.

From Descriptions 1 - 3, it follows that the sub-hypothesis H3.2, which describes that

the fuzzy mining algorithm can be used to learn a behavior model from an event log, is

valid.

9.4. Solving the Command Signal Configuration Problem

This section describes the evaluation of the CyberOpt-SPC subalgorithm. The motivation of

the CyberOpt-SPC algorithm is to automatically find optimal command signal configurations

by solving the command signal configuration problem.

Sub-hypotheses H4.1, H4.2, and H4.3 should be proven to prove hypothesis H4. Sub-

hypothesis H4.1 describes that human-in-the-loop and sampling are unsuitable for finding an

optimal command signal configuration, sub-hypothesis H4.2 describes that a general mixed-

integer nonlinear programming solver can be used to find an optimal command signal config-

uration, and sub-hypothesis H4.3 describes that the command signal configuration problem

is in the complexity class NP-hard.

The evaluation of the CyberOpt-SIC subalgorithm is performed with the following experimen-

tal setup. The behavior model generator creates a scenario with np paths with na activities

and nc control methods, see Section 7.4.2.

9.4.1. Evidence of Sub-Hypothesis H4.1:
Human-in-the-loop describes a process in which a domain expert selects a plausible com-

mand signal configuration according to his domain knowledge. The human-in-the-loop is

simulated using a heuristic that samples uniform random values. Sampling and validation

describe a process in which a heuristic samples uniform random values to select a control
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method j for each software component Ai and uniform random values for command signals

for the selected control methods.

Table 46 summarizes the results from the behavior model generator. Each experiment is

repeated 10000 times. The probability of finding an optimal command signal configuration

with one path np = 1, one activity na = 1, and one control method nc = 1 is 49.47%.

ID Paths Activities Methods Probability Success

1 1 1 1 0.4947 1.0

2 2 1 1 0.3652 1.0
3 4 1 1 0.2605 1.0
4 8 1 1 0.1985 0.8
5 16 1 1 0.1707 0.6

6 1 2 1 0.4996 1.0
7 1 4 1 0.4993 0.95
8 1 8 1 0.5 0.85
9 1 16 1 0.5002 0.775

10 1 1 2 0.4973 1.0
11 1 1 4 0.4973 1.0
12 1 1 8 0.5016 1.0
13 1 1 16 0.4973 1.0

14 2 2 2 0.3924 1.0
15 4 4 4 0.3584 0.7
16 8 8 8 0.3584 0.55
17 16 16 16 0.3742 0.5

Table 46 Results from the behavior model generator.

Variation of paths: If the paths are varied (np = 2, np = 4, np = 8, and np = 16), then

the probability of sampling an optimal command signal configuration is reduced to 36.52%

for 2 paths, 26.05% for 4 paths, 19.85% for 8 paths, and 17.07% for 16 paths. The success

rate that describes the percentage of optimal command signal configurations is reduced from

100% to 60%.

Variation of activities: If the activities are varied (na = 2, na = 4, na = 8, and na = 16), then

the probability of sampling an optimal command signal configuration is 49.96% for 2 activities,

49.93% for 4 activities, 50% for 8 activities and 50.02% for 16 activities. The success rate that

describes the percentage of optimal command signal configurations is reduced from 100% to

75.75%.

Variation of methods: If the control methods are varied (nc = 2, nc = 4, nc = 8 and nc =

16), then the probability of sampling an optimal command signal configuration is 49.73% for

2 control methods, 49.73% for 4 control methods, 50.16% for 8 control methods and 49.73%

for 16 control methods. The success rate that describes the percentage of optimal command

signal configurations is not reduced.
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Variation of paths, activities and methods: If paths np, activities na and methods nc are

varied, then the probability is between 35.84% and 39.24%. The success rate is between 50%

and 100%.

Figure 45 summarizes the different generator configurations and the corresponding success

rates for each calculated time value.
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Figure 45 Success rates of sampling.

Proof 7 examines sub-hypothesis H4.1. Sub-hypothesis H4.1 describes that human-in-the-

loop and sampling are not suitable for finding an optimal command signal configuration. Note

that this proof is based on empirical results.

Proof 7 (Evidence of H4.1):

Proof. Sampling is not suitable for finding an optimal command signal configuration.

The results in Table 46 and Figure 45 show that sampling is not able to find an optimal

command signal configurations. Sub-hypothesis H4.1, which describes that human-in-

the-loop and sampling are not suitable for finding an optimal command signal configu-

ration, is valid.

9.4.2. Proof of Sub-Hypothesis H4.2
Proof 8 examines sub-hypothesis H4.2. Sub-hypothesis H4.2 describes that a general mixed-

integer nonlinear programming solver can be used to find an optimal command signal config-
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uration.

Proof 8 (Proof of H4.2):

Proof. A general mixed-integer nonlinear programming solver can be used to find an

optimal command signal configuration.

The command signal configuration problem is defined as a mixed-integer nonlinear pro-

gramming problem with a nonlinear objective function, linear constraints, and a mixture

of continuous and binary variables. A general mixed-integer nonlinear programming

solver can be used to solve the command signal configuration problem. Therefore, the

sub-hypothesis H4.2 is valid.

9.4.3. Proof of Sub-Hypothesis H4.3
In the following proof, the complexity class of the command signal configuration problem is

analyzed; more precisely, it is proven that the command signal configuration problem is NP-

hard. The proof is published in [OVN16]. Proof 9 examines sub-hypothesis H4.3. A similar

problem is the multiple-choice knapsack problem defined in Definition 6, where the goal is to

choose exactly one item j from each of k classes Ni, i = 1, . . . , k, such that the profit sum

is maximized. The multiple-choice knapsack problem is NP-hard [KPP04]. The idea is to

show that one special case of a command signal configuration problem is a multiple-choice

knapsack problem. If this is the case, the problem is NP-hard.

Proof 9 (Proof of H4.3):

Proof. The multiple-choice knapsack problem is NP-hard. The command signal config-

uration problem is NP-hard if the command signal configuration problem≥ the multiple-

choice knapsack problem. If a special case exists where the command signal configu-

ration problem = multiple-choice knapsack problem, then the command signal configu-

ration problem ≥ the multiple-choice knapsack problem.

1. We know that min f(.) = −max−f(.) so that Equation (3.8) and Equation (4.35)

are equal if cij(.) = pij and all cost models cij(.) are static.

2. Equation (3.9) and Equation (4.36) are equal if only one parameter for each con-

trol method pij = wij exists and only one sequence |S̄| = 1 exists.

From the above Descriptions 1 and 2, it follows that a special case exists where the

command signal configuration problem = the multiple-choice knapsack problem, so that

the command signal configuration problem ≥ the multiple-choice knapsack problem

and the command signal configuration problem is NP-hard.
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10. Evaluation of the CyberOpt Algorithm

This chapter describes the evaluation of the CyberOpt algorithm. Section 1.2 describes the

requirements R1 - R6 for an optimal command signal configuration, the requirements M1 -

M6 for an optimization model, and the requirements B1 - B4 for a behavior model. The

requirements for an optimal command signal configuration should be considered, as well

as the requirements for an optimization model and the requirements for a behavior model.

CyberOpt automates the following two tasks: (1) selection of optimal control methods from

software components of an automation software structure that implement different control

strategies and (2) calculation of optimal command signals for selected control strategies.

Chapter 4 describes the command signal configuration problem that must be solved by Cy-

berOpt in order to find an optimal configuration. An optimal command signal configuration

is one with a minimum cost value. Cost values in this work are energy consumption val-

ues. Chapter 6 describes the CyberOpt algorithm that uses the following machine learning

techniques to reduce manual engineering effort: a machine learning technique of regression

and polynomial expansion to learn cost models from production system observations (T1),

the expected improvement criterion to calculate new valid command signal configurations

that should be evaluated in order to obtain more observations of the production system (T2),

a machine learning technique called process mining to learn sequences of control methods

from production system observations (T3), and mixed-integer nonlinear programming to solve

the command signal configuration problem (T4). The CyberOpt algorithm consists of five sub-

algorithms: (1) CyberOpt-SIC subalgorithm described in Section 6.1, (2) CyberOpt-LCM sub-

algorithm described in Section 6.2, (3) CyberOpt-LSC subalgorithm described in Section 6.3,

(5) CyberOpt-SPC subalgorithm described in Section 6.4, and (4) CyberOpt-ICM subalgo-

rithm described in Section 6.5. Chapter 7 describes application scenarios from discrete

manufacturing. For each scenario, the automation software structure, command signals,

command signal constraints, and sequences of control methods are described. Chapter 8

evaluates the CyberOpt algorithm. Optimal command signal configurations are calculated

for the application scenarios. For this purpose, the following five experiments are defined:

(1) ground truth, (2) random walk, (3) black-box optimization, (4) CyberOpt approach, and

(5) CyberOpt MEM. The results from the ground truth experiment are used as reference re-

sults. The random walk experiment tries to find an optimal command signal configuration by

random sampling. The black-box optimization attempts to find an optimal command signal

configuration using a black-box optimization approach. The CyberOpt and CyberOpt MEM

experiments attempt to find the optimal command signal configuration using the CyberOpt

algorithm. The memory operation mode MEM uses all energy consumption values from pre-

vious calculations. Chapter 9 evaluates the CyberOpt subalgorithms. The evaluation aims to

prove that the four machine learning techniques reduce the manual engineering effort. For

this purpose, four hypotheses are defined. Hypothesis H1 describes that an optimal com-

mand signal configuration solution does not require manual engineering steps. Hypothesis
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H2 describes that a machine learning algorithm exists that learns cost models that can then

be used by a command signal configuration algorithm to find optimal command signal con-

figurations. Hypothesis H3 describes that a machine learning algorithm exists that learns

sequences of control methods that can then be used by a command signal configuration

algorithm to find optimal command signal configurations. Hypothesis H4 describes that an

algorithm exists that finds optimal command signal configurations. Sub-hypotheses are de-

fined to prove the four hypotheses of this work. Table 47 assesses the requirements R1 - R6,

M1 - M6, B1 - B4, and the sub-hypotheses H2.1 - H4.3 for each CyberOpt subalgorithm.

ID CyberOpt-
SIC

CyberOpt-
LCM

CyberOpt-
ICM

CyberOpt-
LSC

CyberOpt-
SPC

CyberOpt

R1 + + + + − +
R2 − − + − + +
R3 + + − − + +
R4 + − − − + +
R5 + − − − + +
R6 + − − − + +

M1 + − − − + +
M2 − − − − + +
M3 + − − − + +
M4 + − − − + +
M5 + − − − + +
M6 + − − − + +

B1 − + − − − +
B2 − + − − − +
B3 − + − − − +
B4 − − − + − +

H2.1 − + − − − +
H2.2 − + − − − +
H2.3 − + − − − +
H2.4 − − + − − +
H3.1 − − − + − +
H3.2 − − − + − +
H4.1 − − − − + +
H4.2 − − − − + +
H4.3 − − − − + +

Table 47 Overview of requirements R1 - R6 for an optimal command signal configuration, requirements M1 - M6 for an
optimization model, requirements B1 - B4 for a behavior model, sub-hypotheses H2.1 - H4.3, and their corresponding
subalgorithm.

The CyberOpt-SIC subalgorithm automatically calculates valid command signal configura-

tions. It reduces manual engineering steps (R1). Implicit timing parameters are used (R3).

Sequences (R4), parallel sequences (R5), and the selection of different control methods (R6)

are supported. Valid command signal configurations are required to set up automation soft-

ware. When an automation software is set up with a valid command signal configuration,

energy consumption values can be measured, and an event log can be recorded during the

runtime of a production system.

Command Signal Configuration for Control Strategies of Discrete Production Systems 135



The CyberOpt-LCM subalgorithm automatically learns a cost model for each control method

from a software component. Cost models are required to compare different command signal

configurations in order to find an optimal command signal configuration. Manual creation of

cost models is not required, reducing the manual engineering effort (R1). In Section 9.1, the

CyberOpt-LCM subalgorithm is used to learn cost models from data generated by the refer-

ence cost functions fackley , frastrigin , fsphere , and fgriewangk , see Section 7.4.1. Proof 1 exam-

ines sub-hypothesis H2.1, which describes that regression analysis can be used to learn cost

models. A cost model can be learned for each reference cost function. The sub-hypothesis

H2.1 is valid. Proof 2 examines sub-hypothesis H2.2. For the reference cost functions fackley ,

frastrigin , fsphere , and fgriewangk , a polynomial of degree dp = 1 is not sufficient to predict

cost values. This statement is valid for the function dimensions df ∈ {1, 2, 3, 4, 5}. Sub-

hypothesis H2.2, which describes that linear cost models are not sufficient to predict energy

consumption values, is valid. Proof 3 examines sub-hypothesis H2.3. For each reference cost

function, a nonlinear cost model can be learned. The sub-hypothesis H2.3, which describes

that polynomial expansion can be used to model nonlinear cost models, is valid. Note that

Proof 1, Proof 2, and Proof 3 are based on empirical results. Each cost model has implicit

timing parameters and is used to represent the timing (B1), continuous behavior (B2) and

cost (B3) of the behavior model.

The CyberOpt-LSC subalgorithm automatically learns sequences of control methods from an

event log. Sequences of control methods are required to solve the command signal con-

figuration problem. Manual creation of a behavior model is not required, reducing manual

engineering effort (R1) and synchronizing the learned behavior model with the current state

of the production system. Proof 5 described in Section 9.3 examines sub-hypothesis H3.1.

Sub-hypothesis H3.1 describes that event logs of activities can be used to learn a behavior

model. Using the event log of the storage scenario, it is shown that an event log of activi-

ties can be used to extract behavior, and using an event log of the pick-and-place scenario,

it is shown that an event log of activities can be used to extract parallel behavior. Proof 6

examines sub-hypothesis H3.2, which describes that the fuzzy mining algorithm can be used

to learn a behavior model from an event log. In [GV07], it is shown that this is possible. It

is shown that fuzzy mining can also be used to learn sequences of control methods from

events logs of the storage scenario and the pick-and-place scenario. The behavior model of

the CyberOpt-LSC subalgorithm is defined as a directed graph of activities (B4). The design

concept separation of concerns is used. Cost models (B3) are learned from the timing be-

havior (B1) and continuous behavior (B2). The activities refer to control methods, and each

control method has a cost model. Therefore, the behavior model of CyberOpt satisfies all the

requirements B1 - B4. Note that the directed graph is only required for internal use of the

algorithm to calculate sequences of control methods.

The CyberOpt-SPC subalgorithm solves the command signal configuration problem. A global

optimal command signal configuration is found (R2), and implicit timing parameters are used

(R3). Sequences (R4), parallel sequences (R5), and the selection of different control meth-

Command Signal Configuration for Control Strategies of Discrete Production Systems 136



ods (R6) are supported. The command signal configuration problem can have a linear or

nonlinear objective function (M1) and (M2), linear or nonlinear constraints (M3) and (M4),

continuous (M5), and discrete (M6) variables. An optimal command signal configuration can

be calculated by human-in-the-loop, a sampling and validation approach, or by using mixed-

integer nonlinear programming solving techniques. Proof 7 described in Section 9.4 examines

sub-hypothesis H4.1, which describes that human-in-the-loop and sampling are not suitable

for finding an optimal command signal configuration. Experimental results have shown that

the probability of finding an optimal command signal configuration is 39.24% for a scenario

with np = 2 paths, na = 2 activities, and nc = 2 control methods with a success rate of

100%. For a scenario with np = 16 paths, na = 16 activities, and nc = 16 control methods,

the probability of finding an optimal command signal configuration is 37.42% with a success

rate of 50%. By solving the command signal configuration problem, an optimal command

signal configuration is found. A nonlinear objective function (M2) and a global optimum (R2)

are not required. Proof 8 examines sub-hypothesis H4.2, which describes that a general

mixed-integer nonlinear programming solver can be used to find an optimal command signal

configuration. Sub-hypothesis H4.1 is valid if the command signal configuration problem is

described by at least linear cost models. Note that two cost values are required for a lin-

ear cost model. The command signal configuration problem can have a linear or nonlinear

objective function (M1) and (M2), linear or nonlinear constraints (M3) and (M4), continuous

(M5), and discrete (M6) variables. Proof 9 examines sub-hypothesis H4.3, proving that the

command signal configuration problem is NP-hard. The set of NP-hard problems describes

problems that are difficult to solve because no polynomial-time algorithm is known, and it is

not possible to verify if a solution is a feasible solution in polynomial time. Despite the theo-

retical fact that the command signal configuration problem falls into the NP-hard complexity

class, research was published to implement efficient algorithms to solve these optimization

problems. Section 3.2.2 describes several techniques for solving mixed-integer nonlinear

programming problems.

The CyberOpt-ICM subalgorithm calculates new valid command signal configurations that

should be evaluated in order to obtain more observations of the production system. With

more observations, cost models become more accurate, improving a global optimum (R2). In

Section 9.2, the CyberOpt-ICM subalgorithm is used to learn cost models from data gener-

ated by the reference cost functions fackley , frastrigin , fsphere , and fgriewangk . More precisely,

the CyberOpt-ICM subalgorithm calculates a new valid command signal configuration that

should be evaluated to obtain more observations of the production system. The observations

of the production system are simulated by the reference cost functions. Proof 4 examines

sub-hypothesis H2.4, which describes that the expected improvement criterion can be used

to enhance the quality of regression models. It is shown that the expected improvement cri-

terion can be used to enhance the quality of cost models learned from data generated by

the reference functions fackley , frastrigin , fsphere and fgriewangk . Note that Proof 4 is based on

empirical results.
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The CyberOpt algorithm satisfies the requirements R1 - R6 for an optimal command signal

configuration, the requirements M1 - M6 for an optimization model, and the requirements

B1 - B4 for a behavior model. The main hypothesis H1 of this work describes that an optimal

command signal configuration solution does not require manual engineering steps because

the vision of cyber-physical production systems is that they adapt to new production goals

without extensive manual engineering effort. It could be proven that this hypothesis is valid.

Therefore, the following hypotheses and sub-hypotheses are proven:

H2: Given valid command signal configurations and observations from the runtime of a

production system, a machine learning algorithm exists that learns cost models that can

then be used by a command signal configuration algorithm to find optimal command

signal configurations. Hypothesis H2 is valid because sub-hypotheses H2.1, H2.2,

H2.3, and H2.4 are valid:

H2.1: Regression analysis can be used to learn cost models (see Proof 1).

H2.2: Linear cost models are not sufficient to predict energy consumption values. Non-

linear cost models should be used (see Proof 2).

H2.3: Polynomial expansion can be used to model nonlinear cost models (see Proof 3).

H2.4: The expected improvement criterion can be used to enhance the quality of cost

models (see Proof 4).

H3: Given valid command signal configurations and observations from the runtime of the

production system, a machine learning algorithm exists that learns sequences of con-

trol methods that can then be used by a command signal configuration algorithm to

find optimal command signal configurations. Hypothesis H3 is valid because sub-

hypotheses H3.1 and H3.2 are valid:

H3.1: Event logs of activities can be used to learn a behavior model (see Proof 5).

H3.2: The fuzzy mining algorithm can be used to learn a behavior model (see Proof 6).

H4: Given a command signal configuration problem, an algorithm exists that finds optimal

command signal configurations. Hypothesis H4 is valid, because sub-hypotheses H4.1,

H4.2, and H4.3 are valid:

H4.1: Human-in-the-loop and sampling are not suitable for finding an optimal command

signal configuration (see Proof 7).

H4.2: A general mixed-integer linear programming solver can be used to find an optimal

command signal configuration (see Proof 8).

H4.3: The command signal configuration problem falls into the NP-hard complexity

class (see Proof 9).
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11. Summary and Outlook

This work introduces a novel approach to machine learning and constrained optimization

of command signal configuration named CyberOpt. The approach helps to adapt cyber-

physical production systems to new requirements and is not a general-purpose solution for

all cyber-physical production systems. CyberOpt can be used for the following three specific

production scenarios from the discrete manufacturing domain: (1) transport scenarios, (2)

storage scenarios, and (3) pick-and-place scenarios.

The production goal is described by a behavior model that encodes sequences of activities.

A software component contains one or more control methods with command signals that

implement the behavior of an activity with different control strategies. Command signals

increase the reusability of automation software components. Command signals add degrees

of freedom to automation software components so that automation software components

can be configured for a specific production scenario. A decision parameter describes which

control strategy of an automation software component should be used to perform an activity.

Only one control strategy can be selected from an automation software component. A timing

parameter of a control strategy describes the time period within which the control strategy

should perform the activity. Command signals specify the degrees of freedom of control

strategy implementations.

The CyberOpt approach automates the following two tasks:

(i) Selection of optimal control methods from software components of an automation soft-

ware structure that implement different control strategies.

(ii) Calculation of optimal command signals for the selected control strategies.

Without the possibility of feedback from a production system, e.g., in the form of energy

consumption observations or time observations, the selection of optimal control strategies

from software components of an automation software structure and the calculation of optimal

command signals for selected control strategies is not possible. Production system observa-

tions are used to calculate cost models, which can then be used to compare different control

strategies and different command signal configurations. Since the amount of time and energy

consumed are universally observable quantities, no distinctions are made between open-loop

control strategies and closed-loop control strategies.

The general idea of adapting automation software components to different control strategies

and command signals to specific production scenarios is described by a three-step optimiza-

tion process. The three-step optimization process consists of three decisions: (1) selecting

the optimal sequence of control methods, (2) calculating the optimal timing parameters, and
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(3) calculating optimal command signals. Decision 1 describes that an optimal control strat-

egy must be selected for each software component. Cost models from production system

observations are used for this purpose. Decision 2 describes that optimal timing parame-

ters must be calculated for each selected control strategy. Decision 3 describes that optimal

command signals must be calculated for each selected control strategy.

CyberOpt implements this three-step optimization process. Therefore, a formal framework

for command signal configuration is introduced. The framework consists of a formal problem

description, input and output concepts, and six tasks: Task 1: find valid command signal con-

figuration, Task 2: record new data from the production system, Task 3: learn cost models,

Task 4: learn sequences of control methods, Task 5: find an optimal command signal configu-

ration, and Task 6: improve cost models. Each task is described by input and output concepts.

The formal framework is implemented by the CyberOpt algorithm. The CyberOpt algorithm

consists of five subalgorithms: (1) CyberOpt-SIC subalgorithm, (2) CyberOpt-LSC subalgo-

rithm, (3) CyberOpt-LCM subalgorithm, (4) CyberOpt-SPC subalgorithm, and (5) CyberOpt-

ICM subalgorithm. The CyberOpt-SIC subalgorithm realizes Task 1. The subalgorithm sam-

ples initial and valid command signal configurations. The initial and valid command signal

configuration is required to set up the automation software of a production system. Once the

automation software is set up, an evaluation of the production system can be performed to

obtain an event log and cost model training data. The evaluation of the production system

is described in Task 2. The CyberOpt-LSC subalgorithm realizes Task 4. The subalgorithm

learns sequences of control methods from an event log. The event log is created by an

evaluation of the production system described in Task 2. The CyberOpt-LCM subalgorithm

realizes Task 3. The subalgorithm learns cost models from cost model training data. Cost

model training data is created by an evaluation of the production system described in Task 2.

The CyberOpt-SPC subalgorithm realizes Task 5. The subalgorithm solves the command

signal configuration problem. The CyberOpt-ICM subalgorithm realizes Task 6. The subal-

gorithm improves the quality of the cost models. A new valid command signal configuration

is calculated, which should be evaluated to obtain more observations of the production sys-

tem.

Detailed and systematic analysis of state of the art has shown that the following machine

learning techniques have not yet been used in this combination to solve the command signal

configuration problem:

(i) In contrast to using manually predefined optimization models or simulation models,

CyberOpt uses a machine learning technique called regression and polynomial expan-

sion to learn cost models from observations of the production system, reducing manual

engineering effort.

(ii) A machine learning technique named process mining is used to learn sequences of

control methods from observations of the production system to reduce manual engi-

neering effort. Manual creation of a behavior model is unnecessary, so manual en-
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gineering effort is reduced, and the learned behavior model is synchronized with the

current state of the production system.

(iii) CyberOpt uses the expected improvement criterion to calculate new valid command

signal configurations that should be evaluated to obtain more observations of a pro-

duction system. With more observations, cost models are more accurate. Black-box

optimization approaches use this technique to gather additional data. They iterate be-

tween fitting cost models and gathering additional observations.

(iv) CyberOpt uses a modified mixed-integer nonlinear programming problem, standard

solving techniques, and a standard solver to find optimal command signal configura-

tions. The mixed-integer nonlinear programming problem is modified to use learned

cost models instead of predefined mathematical models.

Three general applied scenarios are defined: a transport scenario, a storage scenario, and a

pick-and-place scenario. Based on the application scenarios, it is shown that CyberOpt can

be used for these specific production scenarios. Furthermore, synthetic extensions are intro-

duced: four reference cost functions and a behavior model generator. The idea is to extend

common real-world applications with synthetic data to eliminate the “toy model” problem and

the problem of assuming that synthetic data does not correspond to real-world applications.

The main hypothesis of this work describes that an optimal command signal configuration

solution does not require manual engineering steps because the concept of cyber-physical

production systems is that they adapt to new production goals without much manual engineer-

ing effort. It could be proven that this hypothesis is valid. Therefore, the following hypotheses

and sub-hypotheses are proven:

(i) Given valid command signal configurations and observations from the runtime of a

production system, a machine learning algorithm exists that learns cost models that can

then be used by a command signal configuration algorithm to find optimal command

signal configurations.

(i) Regression analysis can be used to learn cost models.

(ii) Linear cost models are not sufficient to predict energy consumption values. Non-

linear cost models should be used.

(iii) Polynomial expansion can be used to model nonlinear cost models.

(iv) The expected improvement criterion can be used to enhance the quality of cost

models.

(ii) Given valid command signal configurations and observations from the runtime of the

production system, a machine learning algorithm exists that learns sequences of con-

trol methods that can then be used by a command signal configuration algorithm to find

optimal command signal configurations.
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(i) Event logs of activities can be used to learn a behavior model.

(ii) The fuzzy mining algorithm can be used to learn a behavior model.

(iii) Given a command signal configuration problem, an algorithm exists that finds optimal

command signal configurations.

(i) Human-in-the-loop and sampling are not suitable for finding an optimal command

signal configuration.

(ii) A general mixed-integer nonlinear programming solver can be used to find opti-

mal command signal configurations.

(iii) The command signal configuration problem falls into the NP-hard complexity

class.

A systematic analysis has shown that the CyberOpt approach finds optimal command signals

with fewer costly evaluations of the production systems compared to black-box optimization.

In future work, the CyberOpt framework can be used to develop new algorithms. The for-

mal framework defines the six tasks that are independent of any specific machine learning

technique. Task 6 that describes the improvement of cost models to reduce the number of

evaluations of command signal configurations is realized by the CyberOpt-ICM subalgorithm.

The CyberOpt-ICM subalgorithm uses Gaussian processes and the expected improvement

(EI) criterion. Gaussian processes can be replaced by decision trees, or gradient boosted

trees. The expected improvement criterion can be replaced by a lower confidence limit or

a probability of improvement criterion. Task 5, which solves the command signal configura-

tion problem, is realized by the CyberOpt-SPC subalgorithm. The problem is defined as a

mixed-integer nonlinear programming problem with a nonlinear objective function, linear con-

straints, and a mixture of continuous and binary variables. The signal configuration problem

is NP-hard. This work uses general mixed-integer nonlinear programming solvers to solve

a signal configuration problem. Research was published to implement efficient algorithms

to solve these optimization problems. A possible research question could be whether quan-

tum computers can solve this problem better. The hyperparameter optimization of neural

networks can also benefit from CyberOpt. CyberOpt implements black-box optimization with

constraints. Usually, hyperparameter optimization of neural networks uses only black-box

optimization without constraints. An open question is whether constraints can optimize the

process of hyperparameter optimization and how they can be formulated. The CyberOpt

approach can also be used for behavior optimization in other domains, e.g., real-time local-

ization, mobile robot scenarios, process automation, website optimization, and transportation

planning. In general, there are no limitations to using CyberOpt for other problems. CyberOpt

can be used for any problem with sequences of activities and observable feedback.
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