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Abstract

A top-down approach to the flavor problem motivated from string theory leads to the concept of eclectic 
flavor groups that combine traditional and modular flavor symmetries. To make contact with models con-
structed in the bottom-up approach, we analyze a specific example based on the eclectic flavor group �(1)

(a nontrivial combination of the traditional flavor group �(54) and the finite modular group T ′) in order to 
extract general lessons from the eclectic scheme. We observe that this scheme is highly predictive since it 
severely restricts the possible group representations and modular weights of matter fields. Thereby, it con-
trols the structure of the Kähler potential and the superpotential, which we discuss explicitly. In particular, 
both Kähler potential and superpotential are shown to transform nontrivially, but combine to an invariant 
action. Finally, we find that discrete R-symmetries are intrinsic to eclectic flavor groups.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

We elaborate on a new approach to the flavor problem that combines traditional (discrete) 
flavor symmetries with modular flavor symmetries. This approach originated in top-down model 
building motivated by string theory. It has been developed in a series of papers [1–3], culminating 
in the concept of eclectic flavor groups [3]. The eclectic flavor group is a maximal extension of 
the traditional flavor group by (finite) discrete modular symmetries. It allows a new approach to 
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the flavor problem compared to previous attempts that rely separately either on the traditional 
flavor symmetry or the modular flavor symmetry.

Although discrete flavor symmetries (traditional or modular) are natural ingredients in string 
theory, not many explicit models have been constructed yet in a top-down (TD) approach. Models 
with modular symmetries have been constructed in heterotic orbifolds, magnetized branes and 
intersecting D-brane models [4–7]. In particular, several promising models have been found with 
different orbifold geometries [8–16]. Even in the absence of a large number of explicit and fully 
satisfactory models, we think that it is time to combine the TD-approach with existing bottom-
up (BU) models that exhibit successful fits to masses and mixing angles of quarks and leptons. 
Our analysis will clarify several conceptional and technical considerations that have not yet been 
fully addressed in the available literature, such as the need for the consideration of the eclectic 
extension and a new link between representations and modular weights. To illustrate these ques-
tions, we shall use a scheme based on the T 2/Z3 orbifold which appears, for example, in models 
based on the T 6/Z3 × Z3 orbifold discussed in ref. [15]. It exhibits the traditional flavor sym-
metry �(54), the finite modular flavor group T ′ ∼= [24, 3] and the resulting eclectic flavor group 
�(1) ∼= [648, 533] (according to the classification of the computer program GAP [17], where the 
first number gives the order of the group).

There is still a gap between available TD and BU constructions [18–20] and there are some 
questions to be addressed when one tries to explicitly combine them. In BU constructions one 
freely assumes a certain modular flavor group (like �N

∼= S3, A4, S4, A5) as well as all the non-
trivial modular weights and representations of these groups (like triplets and nontrivial singlets) 
that are needed to provide a successful fit to the data [21–54] following the influential work of 
Feruglio [20]. In the cases discussed so far there does not yet exist a TD-model that matches all 
these ingredients (in particular the appearance of all the nontrivial representations).

Our TD example based on the eclectic flavor group �(1) is the one that comes closest to it. 
This model is suitable to illustrate the following lessons learned from the TD perspective:

i) the representations and modular weights of the fields that appear in the low energy effective 
field theory are highly constrained,

ii) the eclectic flavor group is more predictive than the traditional flavor group or the finite 
modular group alone: it severely restricts the superpotential and the Kähler potential,

iii) discrete R-symmetries are naturally related to the eclectic flavor group.

Once these lessons are taken into account, a meaningful link between TU and BU models can be 
discussed.

The paper is structured as follows: in section 2 we shall present the �(1) model in detail and 
identify the modular weights and representations of the fields that appear in the massless sector 
of explicit MSSM-like string models. We emphasize the possibility of having fields with frac-
tional modular weights and discuss how modular weights affect the traditional flavor symmetry. 
The results are summarized in Table 1. Section 3 is devoted to the discussion of the effective 
action of the T 2/Z3 orbifold sector, including the superpotential and the Kähler potential.1 Both 
of them transform nontrivially under the modular transformation (but combine to a modular in-
variant action). We shall separately discuss the restrictions based on T ′ and �(54), and illustrate 

1 The relevance of the Kähler potential has typically not been discussed in the existing literature of BU constructions, 
but has been emphasized in ref. [44].
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the relevance of both for the eclectic picture. Finally, conclusions and outlook will be given in 
section 4.

2. Spectrum and symmetries

We focus on symmetric Abelian toroidal orbifold compactifications of the heterotic string [55–
57] that yield both, a T ′ finite modular symmetry and a �(54) traditional flavor symmetry. As 
derived in refs. [58,59], a �(54) traditional flavor symmetry appears in compactifications en-
dowed with a T 2/Z3 orbifold sector with trivial Wilson line background fields. Moreover, such 
a T 2/Z3 orbifold sector yields a finite modular symmetry T ′ ∼= SL(2, 3) [60–62]. Importantly, 
these modular and traditional flavor symmetries do not commute and, hence, combine nontriv-
ially to the so-called eclectic flavor group, �(1) ∼= [648, 533] in this particular case, as explained 
in ref. [3]. See also ref. [63,64] for BU flavor model building based on �(1), and ref. [65] for 
notation. Examples of six-dimensional orbifolds with such a T 2/Z3 sector include orbifolds 
like T 6/Z6-II, T 6/Z3 × Z3 and T 6/Z3 × Z6. These orbifolds are known to reproduce some 
properties of the MSSM when used to compactify the E8 × E8 heterotic string [66,15,16,67,68].

Since the relevant flavor symmetries are fully determined by the two-dimensional Z3 orbifold 
sector, we can restrict our discussion to this sector. There, the orbifold action is generated by a 
twist θ = exp(2π i/3) using complex coordinates for the torus T 2. This twist defines a Z3 point 
group with elements {1, θ, θ2}. Closed strings on T 2/Z3 fall into three categories:

(i) Untwisted strings that are trivially closed, even in uncompactified space, associated with the 
element 1 of the point group.

(ii) Untwisted winding strings that are also associated with the element 1 of the point group but 
wind around some torus-directions e1, e2 of the orbifold. In the model discussed here, the 
winding modes are typically heavy and therefore not relevant for our analysis.

(iii) Twisted strings, which are closed only due to the action of the twist θ or θ2.

First of all, in the untwisted sector we find the Kähler modulus T of the T 2/Z3 orbifold 
sector that arises from the metric and the antisymmetric B-field of the two-torus T 2. In contrast, 
the complex structure modulus U is fixed to U = exp(2π i/3) for a T 2/Z3, as is well-known. In 
addition, there are massless untwisted matter strings in four dimensions that originate from ten-
dimensional gauge bosons AM , M = 0, . . . , 9 of E8 × E8 (or SO(32)). Depending on the internal 
vector index M , we denote the corresponding untwisted (i.e. bulk) matter fields by

�−1 if M = 4,5 and �0 if M = 6,7,8,9, (1)

assuming that the T 2/Z3 orbifold sector lies in the compactified directions M = 4, 5. Note that, 
as discussed later in section 2.1, the label n of a matter field �n gives the so-called modular 
weight under a finite modular transformation.

The T 2/Z3 orbifold sector has three fixed points, as illustrated in Fig. 1. At these fixed points, 
additional massless strings from the θ and θ2 twisted sectors can be localized. For each twisted 
sector, there are two classes of massless twisted strings: either with or without oscillator excita-
tions. Consequently, we have two kinds of twisted (i.e. localized) matter fields in the θ twisted 
sector. We denote them by

�−2/3 = (X,Y,Z)T without oscillator excitations, (2a)

�−5/3 = (X̃, Ỹ , Z̃)T with one holomorphic oscillator excitation, (2b)
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Fig. 1. The T2/Z3 orbifold sector: the vectors e1 and e2 define the two-torus T2 that exhibits a Z3 rotational symmetry. 
The fundamental domain of the T2/Z3 orbifold is depicted as the (yellow) colored region and the three inequivalent 
fixed points are represented by the (blue) bullets. (X, Y, Z)T and (X̃, Ỹ , Z̃)T denote localized triplets of matter fields 
corresponding to twisted strings from the θ twisted sector without and with oscillator excitations, respectively. (For 
interpretation of the colors in the figure, the reader is referred to the web version of this article.)

respectively, where for example the three matter fields X, Y and Z are localized at the three 
fixed points of the T 2/Z3 orbifold sector. We focus in this paper on the couplings of untwisted 
and θ -twisted matter fields �0, �−1, �−2/3 and �−5/3 only. For completeness, let us mention the 
possible massless anti-triplets of θ2-twisted matter fields, being

�−1/3 without oscillator excitations, (3a)

�+2/3 with one anti-holomorphic oscillator excitation. (3b)

In general, twisted matter fields with further modular weights are possible, but we find that they 
do not appear in MSSM-like heterotic orbifold compactifications with a T 2/Z3 sector possibly 
due to constraints similar to those presented in ref. [69, table 3]. As a remark, the CPT-partners 
of the θk-twisted string states originate from the θ2k twisted sector for k = 1, 2.

2.1. T ′ representations

Let us discuss the modular transformation properties of untwisted and twisted matter fields 
�n for orbifolds having a T 2/Z3 sector.

The modular group SL(2, Z) is defined as

γ =
(

a b

c d

)
∈ SL(2,Z) ⇔ ad − bc = 1 and a, b, c, d ∈ Z . (4)

It can be generated by two elements,

S :=
(

0 1
−1 0

)
and T :=

(
1 1
0 1

)
, S,T ∈ SL(2,Z), (5)

which satisfy the defining relations

S4 = (S T)3 = 1 and S2 T = T S2 (6)

of SL(2, Z). Under a general modular transformation γ ∈ SL(2, Z) from eq. (4), the Kähler 
modulus T transforms as

T
γ−→ a T + b

. (7)

c T + d
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Table 1
T ′ and �(54) irreducible representations of (massless) matter fields �n with modular weights n in MSSM-like heterotic 
orbifold compactifications with a T2/Z3 sector, see refs. [1,2] for the derivations. T ′ and �(54) combine nontrivially 
to the �(1) ∼= [648, 533] eclectic flavor group [3], generated by ρs (S), ρs (T), ρr (A) and ρr (B). For ρr (C), both C = S2

and the modular weight n are important, as discussed later in eq. (21). Untwisted matter fields �n (with integer modular 
weights n) form one-dimensional representations, while twisted matter fields �n (with fractional modular weights n) 
form (anti-)triplet representations.

Sector Matter 
fields 
�n

Osc. Eclectic flavor group �(1)

Modular T ′ subgroup Traditional �(54) subgroup

irrep s ρs (S) ρs (T) n irrep r ρr (A) ρr (B) ρr (C)

Bulk �0 no 1 1 1 0 1 1 1 +1
�−1 no 1 1 1 −1 1′ 1 1 −1

θ �−2/3 no 2′ ⊕ 1 ρ(S) ρ(T) −2/3 32 ρ(A) ρ(B) −ρ(C)

�−5/3 yes 2′ ⊕ 1 ρ(S) ρ(T) −5/3 31 ρ(A) ρ(B) +ρ(C)

θ2 �−1/3 no 2′′ ⊕ 1 (ρ(S))∗ (ρ(T))∗ −1/3 3̄1 ρ(A) (ρ(B))∗ +ρ(C)

�+2/3 yes 2′′ ⊕ 1 (ρ(S))∗ (ρ(T))∗ +2/3 3̄2 ρ(A) (ρ(B))∗ −ρ(C)

Superpotential W – 1 1 1 −1 1′ 1 1 −1

Since T transforms identically for ±γ , it feels only PSL(2, Z) instead of the full SL(2, Z) mod-
ular group. In contrast, a general matter field �n transforms under γ ∈ SL(2, Z) as

�n
γ−→ �n

′ := (c T + d)n ρs(γ )�n, (8)

where (c T + d)n is the so-called automorphy factor with modular weight n ∈Q. Note that frac-
tional modular weights of both signs are common to string theory, see for example refs. [70,69]. 
Moreover, for orbifolds with a T 2/Z3 sector, the matrices ρs(γ ) build a (reducible or irreducible) 
representation s of the finite modular group T ′ ∼= SL(2, 3), which satisfy the defining relations 
of T ′,

ρs(S)4 = ρs(T)3 = (ρs(S) ρs(T))3 = 1, (ρs(S))2ρs(T) = ρs(T)(ρs(S))2, (9)

cf. eq. (6). In more detail, for the generators S and T of SL(2, Z), given in eq. (5), a general 
matter field �n transforms as

�n
S−→ �n

′ := (−T )n ρs(S)�n, (10a)

�n
T−→ �n

′ := ρs(T)�n. (10b)

In the following, we specify ρs(S) and ρs(T) for the matter fields �n of our orbifold theory: In 
the untwisted sector, there are two kinds of bulk fields, denoted by �0 and �−1 with modular 
weight n = 0 and n = −1, respectively, see eq. (1). Both transform as trivial singlets of T ′, 
i.e. ρ1(S) = ρ1(T) = 1. In the twisted sectors of the orbifold, where matter fields build triplets 
associated to the three fixed points of the T 2/Z3 orbifold sector, we have to distinguish between 
four cases: matter fields �n from the θ or θ2 twisted sector with or without oscillator excitations, 
see eqs. (2) and (3). They carry different modular weights n and transform in different three-
dimensional representations s of T ′, as displayed in Table 1. In all four cases, ρs(S) and ρs(T)

are related to the 3 × 3 matrices
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ρ(S) := i√
3

⎛⎝ 1 1 1
1 ω2 ω

1 ω ω2

⎞⎠ and ρ(T) :=
⎛⎝ ω2 0 0

0 1 0
0 0 1

⎞⎠ , (11)

where ω := exp(2π i/3). Note that we use a different convention compared to ref. [2]: we redefine 
S3 from ref. [2] to S. Consequently, we are now using the presentation eq. (6) of SL(2, Z) instead 
of S4 = 1, S2 = (S T)3. For this change of convention, we redefine the outer automorphism K̂S
of the Narain lattice (as defined in ref. [2]) from K̂3

S to K̂S (and analogously for ĈS). This results 
in a redefinition of ρ(S)3 to ρ(S).

The three-dimensional T ′ representations s of twisted matter fields (listed in Table 1) are re-
ducible representations. They decompose into irreducible representations as doublets plus trivial 
singlets of T ′. In more detail, for the triplet �−2/3 = (X, Y, Z)T of θ -twisted fields without os-
cillator excitations we find the decomposition 2′ ⊕ 1 using the T ′ conventions of ref. [71] with 
p = i. Explicitly, the doublet 2′ and the singlet 1 are given by the linear combinations

2′ :
(

1√
2
(Y + Z)

−X

)
and 1 : 1√

2
(Y − Z) . (12)

An analogous combination holds for the θ -twisted fields with oscillator excitations �−5/3.
For the anti-triplet �−1/3 = (U, V, W)T of twisted fields from the θ2 twisted sector without os-

cillator excitations, the following linear combinations build the doublet 2′′ and the trivial singlet 
1 of T ′

2′′ :
(

U
1√
2
(V + W)

)
and 1 : 1√

2
(V − W) . (13)

An analogous combination holds for the θ2-twisted fields with oscillator excitations �+2/3.

2.2. �(54) representations

In addition to a T ′ finite modular symmetry, our T 2/Z3 orbifold sector enjoys a �(54) tradi-
tional flavor symmetry [58]. �(54) can be generated by three elements, denoted by A, B and C. 
From a string point of view (based on the Narain space group [72] and its outer automorphisms), 
the generators A and B originate from translations, while C is given by a 180◦ rotation [1,2]. 
The different origin of A and B as translations on one side and C as a rotation on the other has 
important consequences, as we discuss in the following.

To do so, let us describe how �(54) acts on matter fields. Take a generator g ∈ {A, B, C} of 
�(54). Then, for matter fields originating from the orbifold bulk, we find

�0
g−→ �0

′ = �0, (14a)

�−1
g−→ �−1

′ = ρ1′(g)�−1. (14b)

Moreover, g acts on triplets of localized matter fields �n from the θ twisted sector as2

�−2/3

g−→ �−2/3
′ = ρ32(g)�−2/3, (15a)

�−5/3

g−→ �−5/3
′ = ρ31(g)�−5/3, (15b)

2 In this work, �(54) triplets are denoted by 31, 32, 3̄1 and 3̄2 and correspond, in the conventions of ref. [71], to 31(1) , 
32(1) , 31(2) and 32(2) , respectively.
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while for twisted fields from the θ2 twisted sectors we have

�−1/3
g−→ �−1/3

′ = ρ3̄1
(g)�−1/3, (16a)

�+2/3

g−→ �+2/3
′ = ρ3̄2

(g)�+2/3. (16b)

The corresponding three-dimensional matrix representations of A, B and C are given in terms of 
the matrices

ρ(A) :=
⎛⎝ 0 1 0

0 0 1
1 0 0

⎞⎠ , ρ(B) :=
⎛⎝ 1 0 0

0 ω 0
0 0 ω2

⎞⎠ and ρ(C) :=
⎛⎝ 1 0 0

0 0 1
0 1 0

⎞⎠ , (17)

see Table 1. Let us stress that the transformation property of matter fields �n under the generator 
C depends not only on the twisted sector of �n but also on its modular weight n, see eq. (14) for 
fields form the bulk, eq. (15) for θ -twisted fields, and eq. (16) for θ2-twisted fields.

Before we analyze the origin of this behavior, let us briefly comment on the �(54) generators 
A and B. Since A and B correspond to translations in the Narain lattice, twisted matter fields 
from the same twisted sector transform independently of oscillator excitations under A and B. 
Moreover, a matter field from the θ2 twisted sector transforms in the complex conjugate repre-
sentation compared to a matter field from the θ twisted sector [2]. Furthermore, one can check 
easily that the generators A and B generate a �(27) ∼= Z(perm.)

3 � (Z(PG)
3 × Z3) subgroup of 

�(54). Here, as one sees from eq. (17), the transformation A generates the Z(perm.)

3 subgroup of 

the full S3 permutation symmetry within �(54) [58]. In addition, the Z(PG)
3 × Z3 subgroup of 

�(27) corresponds to the point and space group selection rules [73,74] generated by

A2B2A B and B, (18)

respectively. Explicitly, for twisted matter fields from the θ twisted sector, eq. (18) yields(
ρ(A)

)2(
ρ(B)

)2
ρ(A) ρ(B) = diag(ω,ω,ω) and ρ(B) = diag(1,ω,ω2), (19)

as expected from the Z(PG)
3 × Z3 point and space group selection rules. Analogously, one can 

check eq. (19) for twisted fields from the θ2 twisted sector. Let us emphasize that this Z3 × Z3
is not built in by hand in order to identify �(54) as the traditional flavor symmetry of the T 2/Z3
orbifold sector, as done in ref. [58], but a direct consequence from translations in the Narain 
formulation of strings on orbifolds.

Note that for each pair of matter fields in eqs. (14), (15) and (16), the �(54) representations r
depend on the respective modular weights n. This is due to the fact that the �(54) generator C is 
related to the modular S transformation via C = S2, see ref. [2]. Since the Kähler modulus T is 
invariant under S2, the transformation C can be interpreted as an element of the traditional flavor 
group. In more detail, applying the modular S transformation eq. (10a) twice for a field �n that 
transforms in a representation s of T ′ yields

�n
S−→ (−T )nρs(S)�n

S−→ (1/T )n (−T )n
(
ρs(S)

)2
�n = (−1)n

(
ρs(S)

)2
�n. (20)

Consequently, the �(54) generator C = S2 acts on a matter field �n as

�n
C−→ �n

′ = ρr(C)�n, where ρr(C) := (−1)n
(
ρs(S)

)2
. (21)

Hence, ρr(C) is a matrix representation r of �(54) which depends on both, the modular weight 
n and the representation matrix ρs(S) of T ′. Consider for example the bulk matter fields �0 and 
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�−1: At a generic point in moduli space massless strings from the bulk must have vanishing 
winding and Kaluza-Klein numbers. Hence, �0 and �−1 are invariant under the �(54) gener-
ators A and B and they form trivial singlets of T ′, i.e. ρ1(S) = ρ1(T) = 1, see refs. [1,2] and 
Table 1. Yet, due to their modular weights being n = 0 or n = −1 the respective representations 
of the �(54) generator C are given by

ρ1(C) = (−1)0 = + 1 for �0, (22a)

ρ1′(C) = (−1)−1 = − 1 for �−1, (22b)

as stated already in eq. (14) and in Table 1. The analogous discussion applies to twisted matter 
fields from eqs. (15) and (16). Note that in these cases (−1)n is multivalued, since the modular 
weight n is fractional. For example, for the representation matrix ρr(C) = (−1)n(ρs(S))2 of the 
θ -twisted matter fields �−2/3 we obtain a factor

(−1)
−2/3 = {1,ω,ω2}, (23)

while (−1)
−5/3 = −(−1)

−2/3 for �−5/3. Then, any of the values of (−1)
−2/3 in the definition of 

ρr(C) in eq. (21) can be absorbed by multiplying powers of the Z(PG)
3 point group generator (19). 

This implies that eq. (21) reads for example for the twisted matter fields �−2/3

ρr(C) = (
ρs(S)

)2 =
⎛⎝ −1 0 0

0 0 −1
0 −1 0

⎞⎠ = − ρ(C), (24)

up to point group elements and ρ(C) is defined in eq. (17). Thus, the θ -twisted matter fields �−2/3

with modular weight n = −2/3 transform in the representation r = 32 of �(54). Analogously, we 
find that for �−5/3 the representation matrix reads ρr(C) = ρ(C) and, hence, r = 31. Note that 
the different �(54) representations 32 and 31 for θ -twisted strings without and with oscillator 
excitation (denoted by �−2/3 and �−5/3, respectively) have an intuitive interpretation in string 
theory: Since C acts as a 180◦ rotation in the T 2/Z3 orbifold sector, an oscillator excitation 
picks up an additional factor −1 under C, see e.g. ref. [8]. This fact gives rise to the �(54)

representations 32 and 31 which differ only by a minus-sign for the generator C.
We point out that �(54) doublets do not appear in the massless spectrum of strings in the 

T 2/Z3 orbifold sector for an arbitrary value of the Kähler modulus T . However, �(54) doublets 
do appear as (generically massive) winding strings which are instrumental for CP violation [75]. 
Only at some special points in moduli space (e.g. T = exp(2π i/3)) some of these doublets can 
become massless.

2.3. Comment on fractional modular weights

Let us emphasize a remarkable connection between matter fields with fractional modular 
weights n and the traditional flavor symmetry. As we have seen, the generator C = S2 is a tra-
ditional symmetry as it leaves the Kähler modulus T invariant, cf. eq. (20). From the defining 
relations (9) of T ′ we know that (ρs(S))4 = 1. Hence, one might expect that C generates a Z2
symmetry. However, due to the presence of the automorphy factor with modular weight n we 
obtain form eq. (21)(

ρr(C)
)2 = (−1)2n

(
ρs(S)

)4 = (−1)2n1, (25)
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for the transformation C2 = S4 of a matter field �n. If the modular weights of all fields are 
integer, the naive expectation is correct and C = S2 generates a Z2 traditional flavor symmetry. 
However, in string theory fractional modular weights appear frequently, for example, n = −2/3

for the θ -twisted matter field �−2/3 in our T 2/Z3 orbifold discussion. Using that eq. (25) is 
multivalued for a fractional modular weight like n = −2/3, see eq. (23), we find that (ρr(C))2

gives rise to a nontrivial Z3 traditional flavor symmetry, which coincides in this case with the 
Z(PG)

3 point group selection rule given in eq. (19).
Consequently, we arrive at a general result that is also valid in bottom-up constructions: in the 

eclectic picture, consistency between the modular symmetry and the traditional flavor symme-
try constrains the allowed choices for fractional modular weights. On the one hand, if one first 
specifies the finite modular symmetry and some fractional weights for matter fields, the tradi-
tional flavor symmetry has to be chosen accordingly. On the other hand, if one chooses first the 
traditional flavor symmetry and looks for its eclectic extension by a modular symmetry (with-
out enlarging the traditional flavor symmetry further), the set of consistent fractional modular 
weights is limited.

2.4. Summary

In summary, in this section we have described the transformation properties of massless mat-
ter fields appearing in MSSM-like models with a T 2/Z3 orbifold sector under both, modular 
and traditional flavor symmetries. This sector is naturally endowed with an �(1) eclectic flavor 
symmetry, which comprises the T ′ finite modular symmetry and the �(54) traditional flavor 
symmetry. The representations and modular weights n of all six admissible types of massless 
matter fields �n are determined by the compactification. Relevant details can be read off from 
Table 1.

It should be emphasized that only a subset of �(54) and T ′ representations and only a couple 
of (fractional) modular weights, which are consistent with both the modular and the traditional 
flavor symmetries, are realized among the massless states in string theory. This has important 
consequences for explicit TD model building and the connection to the BU approach.

3. Effective action of the T 2/Z3 orbifold sector

The phenomenological consequences of compactifying string theory on an orbifold arise from 
its low-energy effective field theory limit, which in our case is a theory of N = 1 supergravity in 
four dimensions. In this work, we focus on the superpotential W and the Kähler potential K for 
(twisted) matter fields and construct the most general W and K , consistent with all symmetries 
of the T 2/Z3 orbifold sector. This includes the traditional flavor symmetry �(54) that com-
bines with the finite modular symmetry T ′ (given as a realization of the full modular symmetry 
SL(2, Z) for twisted matter fields) to the eclectic flavor symmetry �(1). Since W and K depend 
on the (dimensionless) Kähler modulus T and the matter fields �n, the properties of W and K
must combine to yield a theory that is invariant under these symmetries.

The superpotential is a holomorphic function of the matter fields �n, whose coefficients are 
in general modular forms Ŷ (nY )(T ) (with integer modular weights nY ) of the Kähler modulus 
T . Under a general modular transformation γ ∈ SL(2, Z), the superpotential must transform 
as [60–62]

W(T ,�n)
γ−→ W

(
a T + b

,�′
n

)
= (c T + d)−1 W(T ,�n), (26)
c T + d
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where the transformed matter fields �n
′ are given in eq. (8). Thus, the superpotential behaves 

like a chiral superfield with modular weight n = −1, as we will discuss in more detail later in 
eq. (31). This implies in particular that under C = S2 (which leaves the modulus T invariant) the 
superpotential transforms as

W(T ,�n)
S2−→ −W(T ,�n), (27)

using the automorphy factor (0 · T − 1)−1 = −1 for S2 = −1, see eq. (5). Hence, C = S2 acts 
as an R-symmetry that transforms the Grassmann number ϑ of N = 1 superspace as ϑ → i ϑ
such that L ⊃ ∫

d2ϑ W is invariant. This might have been expected since C is defined as a 180◦
rotation in the T 2/Z3 orbifold sector [1,2]. Moreover, C acts as a Z2 R-symmetry on bosons but 
as a Z4 R-symmetry on fermions. In this sense, �(54) is the traditional flavor symmetry of the 
bosonic particle content.

Furthermore, under the generators A and B of the traditional flavor group �(54) the superpo-
tential must be invariant, i.e.

W(T ,�n)
A,B−→ W(T ,�n

′) = W(T ,�n), (28)

using that the modulus T is invariant under A and B. In summary, the transformations under A, 
B, and C imply that W builds a 1′ representation of �(54).

Let us stress two important results concerning the R-symmetry transformation eq. (27):

i) First, this R-symmetry is part of both, modular and traditional flavor transformations: 
S2 ∈ SL(2, Z) and C ∈ �(54), where C = S2. Hence, the intersection of T ′ and �(54) is 
nontrivial and the eclectic flavor group �(1) is not given by a semi-direct product of these 
factors, even though �(54) is a normal subgroup of �(1) [3].

ii) Secondly, note that the existence of this discrete R-symmetry is linked to a nontrivial au-
tomorphy factor in eq. (26). Since other nontrivial automorphy factors are possible e.g. at 
specific points in the moduli space of the T modulus, discrete R-symmetries are natural to 
models with eclectic flavor symmetries. We shall explore in detail this aspect, associated 
with the concept of local flavor unification [2], in a forthcoming work [76].

On the other hand, as emphasized in ref. [44], the structure of the Kähler potential is as 
important as the superpotential, in particular for flavor phenomenology. The Kähler potential K is 
a Hermitian function of the modulus T , the chiral superfields �n, and their complex conjugates, 
T̄ and �̄n. It must be invariant under the traditional flavor symmetry �(54) (since 

∫
d2ϑd2ϑ̄ is 

invariant under ϑ → i ϑ ) and transforms covariantly under the modular symmetry. The general 
�-independent contribution to the Kähler potential is given by [77]

K ⊃ − ln
(−iT + i T̄

)
, (29)

in Planck units, MPl = 1. This term is invariant under �(54) and transforms under a nontrivial 
modular transformation γ ∈ SL(2, Z) as

−ln
(−iT + i T̄

) γ−→ − ln
(−iT + i T̄

) + f (T ) + f (T ), (30)

where f (T ) = ln(c T + d). Then, the terms f (T ) + f (T ) are removed by a Kähler transforma-
tion [78, ch.23], which affects both the Kähler potential and the superpotential as
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K
γ−→ K + f (T ) + f (T )

Kähler−→ K, (31a)

W γ−→ (c T + d)−1W Kähler−→ (c T + d)−1ef (T ) W = W, (31b)

using f (T ) = ln(c T + d). This renders the theory modular invariant under γ ∈ SL(2, Z). Con-
sequently, all additional terms in the Kähler potential eq. (29), especially those including matter 
fields, have to be invariant under modular transformations. Thus, the transformation properties 
displayed in eq. (31b) explain why the superpotential W has to have modular weight n = −1 in 
eq. (26).

3.1. Superpotential

We are interested in building the most general superpotential that is trilinear in the matter 
fields and compatible with all symmetries of the two-dimensional T 2/Z3 orbifold sector: the 
modular symmetry SL(2, Z) and the associated eclectic flavor group �(1). In addition, we take 
into account the standard ZR

18 R-symmetry related to a Z3 sublattice rotation in the T 2/Z3 sector 
of the full six-dimensional orbifold, see ref. [79] and also [80,76]. Using the transformation 
properties of matter fields displayed in Table 1, we find that only superpotential terms of the 
following form are allowed3

W ⊃ α(0)(T )�−1 �0 �0 + β(1)(T )�−2/3 �−2/3 �−2/3 + γ (4)(T )�−5/3 �−5/3 �−5/3 , (32)

i.e. we find either purely untwisted or purely twisted couplings, where the latter contain only 
matter fields corresponding to twisted strings either without or with oscillator excitations. The 
coupling strengths α(0)(T ), β(1)(T ), and γ (4)(T ) in eq. (32) are T -dependent modular forms due 
to the modular symmetry SL(2, Z). Their modular weights have to be 0, 1 and 4, respectively, 
such that the superpotential transforms with modular weight −1, as shown in eq. (31). A modular 
form α(0)(T ) with weight 0 is modular invariant. Thus, α(0)(T ) has to be proportional to Klein’s 
j function j (T ), which is the unique SL(2, Z) invariant and holomorphic (away from its cusp) 
function of weight 0. Hence,

α(0)(T ) = α j (T ), (33)

where α ∈ C is a free parameter. However, for any value of the Kähler modulus T , the value 
of α(0)(T ) can be chosen freely, from a bottom-up perspective, by adjusting the free parameter 
α ∈ C appropriately. The couplings β(1)(T ) and γ (4)(T ) have non-vanishing modular weights 
and, hence, they transform as nontrivial T ′ representations: β(1)(T ) is a doublet and γ (4)(T ) is 
a triplet plus two singlets of T ′. As we will see in section 3.1.1, they are fixed uniquely up to an 
overall (complex) factor.

After constructing the relevant couplings β(1)(T ) and γ (4)(T ) explicitly in section 3.1.1 using 
the theory of modular forms, we will build the twisted couplings from eq. (32) step-by-step: 
First, we only impose the finite modular symmetry T ′ in sections 3.1.2 and 3.1.3. Afterwards, 
we impose the traditional flavor symmetry �(54) in section 3.1.4. By doing so, we will see that 
the symmetries of the theory constrain the most general trilinear superpotential eq. (32) such that 

3 Here, we restrict ourselves to matter fields from the untwisted and θ twisted sector. Including fields from the θ2

twisted sector leads to W ⊃ δ(0)(T )�0�−2/3�−1/3 +ε(0)(T )�0�−5/3�2/3 + ζ (2)(T )�−1�−5/3�−1/3, where δ(0)(T )

and ε(0)(T ) are modular invariant forms (see eq. (33)), while ζ (2)(T ) is a modular form with weight 2 that builds a triplet 
of T ′ .
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it is parameterized by only three numbers c(0), c(1) and c(4) ∈ C. As we shall see, proper field 
redefinitions allow a further restriction of these constants to be c(0), c(1), c(4) ∈ R. All the rest is 
fixed by the symmetries of the T 2/Z3 orbifold sector.

3.1.1. T ′ properties of modular forms
Let us denote a general modular form by Ŷ (nY )

s (T ) and its modular weight by nY ∈ N . Since 
we are dealing with the double covering group T ′ of A4, nY can be both even or odd [35]. First, 
a modular form is invariant under the traditional flavor symmetry, as it only depends on the 
modulus T of the T 2/Z3 orbifold sector. Second, under a modular transformation γ ∈ SL(2, Z), 
it transforms by definition as a modular form of weight nY ,

Ŷ (nY )
s (T )

γ−→ Ŷ (nY )
s

(
a T +b
c T +d

)
= (c T + d)nY ρs(γ ) Ŷ (nY )

s (T ) , (34)

where s is the representation of the finite modular group T ′ under which Ŷ (nY )
s (T ) transforms.

In addition, it is known that all modular forms with modular weights nY > 1 can be con-
structed by tensor products of modular forms of weight nY = 1 and the number of independent 
modular forms of a given weight nY is finite. Thus, understanding T ′ modular forms with mod-
ular weight 1 provides the information about all possible couplings of the theory.

At weight 1, there are two independent modular forms of T ′. A basis is given by [35]

ê1(T ) := η3(3T )

η(T )
and ê2(T ) := η3(T /3)

η(T )
, (35)

where η(T ) is the Dedekind η-function of the Kähler modulus T . For later convenience we 
perform the basis change(

Ŷ1(T )

Ŷ2(T )

)
:=

( −3
√

2 0
3 1

)(
ê1(T )

ê2(T )

)
. (36)

Then, using

η (T )
S−→ η

(
− 1

T

)
= √−iT η(T ), (37a)

η (T )
T−→ η (T + 1) = exp

(
iπ

12

)
η(T ), (37b)

and

η3
(

T + 1

3

)
= exp

(
iπ

12

)
η3(T ) + 3

√
3 exp

(
− iπ

12

)
η3(9T ) , (38)

one can verify that(
Ŷ1(T )

Ŷ2(T )

)
S−→

(
Ŷ1

(− 1
T

)
Ŷ2

(− 1
T

) )
= (−T )ρ2′′(S)

(
Ŷ1(T )

Ŷ2(T )

)
, (39a)(

Ŷ1(T )

Ŷ2(T )

)
T−→

(
Ŷ1(T + 1)

Ŷ2(T + 1)

)
= ρ2′′(T)

(
Ŷ1(T )

Ŷ2(T )

)
, (39b)

where (c T + d)nY = (−1 · T + 0)1 = (−T ) is the automorphy factor with weight nY = 1 for the 
modular S transformation, and
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Table 2
Flavor representations of relevant modular forms Ŷ (nY )

s (T ) with modular weights nY = 1, 4, transforming in the repre-
sentations s of the finite modular group T ′ . Here ω = exp(2π i/3).

Modular
forms 
Ŷ

(nY )
s

Eclectic flavor group �(1)

Modular T ′ subgroup Traditional �(54) subgroup

irrep s ρs (S) ρs (T) nY irrep r ρr (A) ρr (B) ρr (C)

Ŷ
(1)

2′′ 2′′ ρ2′′ (S) ρ2′′ (T) 1 1 1 1 1

Ŷ
(4)
1 1 1 1 4 1 1 1 1

Ŷ
(4)

1′ 1′ 1 ω 4 1 1 1 1

Ŷ
(4)
3 3 ρ3(S) ρ3(T) 4 1 1 1 1

ρ2′′(S) := − i√
3

(
1

√
2√

2 −1

)
and ρ2′′(T) :=

(
ω 0
0 1

)
. (40)

Consequently, the couplings Ŷ (1)

2′′ (T ) :=
(
Ŷ1(T ), Ŷ2(T )

)T
transform as a doublet 2′′ of T ′, see 

ref. [71] for notations.
From the structure of the general trilinear superpotential eq. (32) we know that we need the T ′

modular forms with modular weights nY = 1 and nY = 4. The later ones correspond to the non-
vanishing and inequivalent modular forms contained in the tensor product of weight 1 modular 
forms 2′′ ⊗ 2′′ ⊗ 2′′ ⊗ 2′′. As shown in ref. [35], they build the T ′ representations 1 ⊕ 1′ ⊕ 3 and 
are given by

Ŷ
(4)
1 (T ) = 2

√
2 Ŷ1(T )3 Ŷ2(T ) − Ŷ2(T )4 , (41a)

Ŷ
(4)

1′ (T ) = Ŷ1(T )4 + 2
√

2 Ŷ1(T ) Ŷ2(T )3 , (41b)

Ŷ
(4)
3 (T ) =

⎛⎜⎝
√

2 Ŷ1(T )3 Ŷ2(T ) + Ŷ2(T )4

Ŷ1(T )4 − √
2 Ŷ1(T ) Ŷ2(T )3

−3Ŷ1(T )2 Ŷ2(T )2

⎞⎟⎠ , (41c)

in terms of the basis forms Ŷi(T ) defined in eq. (36). One can readily show by using eq. (39) that 
only Ŷ (4)

1 (T ) and Ŷ (4)

1′ (T ) acquire the automorphy factor (−T )4 under the modular S transforma-

tion, while Ŷ (4)
1 (T ) is left invariant by T and Ŷ (4)

1′ (T ) gets the phase ω. This implies, according to 

eq. (34), that Ŷ (4)
1 (T ) and Ŷ (4)

1′ (T ) build the 1 and 1′ representations of T ′, respectively. Finally, 

the triplet Ŷ (4)
3 (T ) transforms under S and T according to eq. (34) with

ρ3(S) = 1

3

⎛⎝ −1 2 −2
2 −1 −2

−2 −2 −1

⎞⎠ , ρ3(T) =
⎛⎝ 1 0 0

0 ω 0
0 0 ω2

⎞⎠ . (42)

Consequently, Ŷ (4)
3 (T ) builds a representation 3 of T ′. The T ′ (and �(54)) representations of all 

relevant modular forms are summarized in Table 2.

3.1.2. T ′ modular invariant superpotential for matter fields with n = −2/3

Let us construct now the most general trilinear superpotential of three copies of twisted matter 
fields �i

−2 = (Xi, Yi, Zi)
T, i = 1, 2, 3. These fields correspond to θ -twisted strings without 
/3
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oscillator excitations. In this case, the modular weight nY of the coupling strength Ŷ (nY )
s (T ) and 

the modular weights n = −2/3 of the three twisted matter fields �i
−2/3, i = 1, 2, 3, have to fulfill 

the condition nY + 3 · (−2/3) = −1, see eq. (26). Thus, we need nY = 1 and the coupling strength 
is given by the T ′ doublet Ŷ (1)

2′′ (T ) in eq. (36). Then, a trilinear coupling of twisted matter fields 
�i

−2/3 originates from the trivial singlet 1 resulting from the tensor products of T ′ representations

1 ⊂ 2′′ ⊗ (
2′ ⊕ 1

) ⊗ (
2′ ⊕ 1

) ⊗ (
2′ ⊕ 1

)
, (43)

corresponding to

W ⊃
(

Ŷ1(T )

Ŷ2(T )

)
⊗

⎛⎝ X1
Y1
Z1

⎞⎠ ⊗
⎛⎝ X2

Y2
Z2

⎞⎠ ⊗
⎛⎝ X3

Y3
Z3

⎞⎠ , (44)

see Table 1, and we assume that only the product of the three different twisted triplets, 
�1

−2/3 �2
−2/3 �3

−2/3, is allowed, for example, by gauge invariance. Then, writing out the tensor 
products (43) explicitly using ref. [71] (with p = i, p1 = 1 and p2 = −1), we obtain four inde-
pendent T ′ singlets Wa(T , Xi, Yi, Zi), given by eq. (65) in Appendix A. Therefore, at first sight, 
the trilinear superpotential W(T , Xi, Yi, Zi) of the Kähler modulus T and the twisted fields 
(Xi, Yi, Zi)

T contains four independent coefficients ca ∈ C, a = 1, . . . , 4 (or modular invariant 
functions ca(T ), cf. the discussion around eq. (33)),

W ⊃
4∑

a=1

ca Wa(T ,Xi,Yi,Zi). (45)

In other words, the superpotential eq. (45) is the most general trilinear superpotential of twisted 
fields with modular weights n = −2/3 if one assumes invariance only under the modular sym-
metry T ′. It is parameterized by four (modular invariant) coefficients ca . As we shall see in 
section 3.1.4, these four coefficients are reduced to one, after imposing invariance under the 
traditional flavor symmetry �(54).

3.1.3. T ′ modular invariant superpotential for matter fields with n = −5/3

Next, we construct the most general trilinear superpotential of three copies of twisted mat-
ter fields �i

−5/3 = (X̃i , Ỹi , Z̃i)
T, i = 1, 2, 3, again under the assumption that only the product 

�1
−5/3 �2

−5/3 �3
−5/3 is allowed by gauge invariance. From a string point of view, these fields orig-

inate from θ -twisted strings with oscillator excitations. As anticipated, the couplings are given 
in this case by modular forms of weight nY = 4 such that nY + 3 · (−5/3) = −1 is the modular 
weight of the superpotential.

The three triplets of twisted matter fields �i
−5/3 transform in the T ′ representations 2′ ⊕ 1, see 

Table 1. Thus, T ′ invariant couplings must result from the T ′ tensor products

1 ⊂ (
1 ⊕ 1′ ⊕ 3

) ⊗ (
2′ ⊕ 1

) ⊗ (
2′ ⊕ 1

) ⊗ (
2′ ⊕ 1

)
, (46)

corresponding to

W ⊃
(
Ŷ

(4)
1 (T ) ⊕ Ŷ

(4)

1′ (T ) ⊕ Ŷ
(4)
3 (T )

)
⊗

⎛⎝ X̃1

Ỹ1

Z̃1

⎞⎠ ⊗
⎛⎝ X̃2

Ỹ2

Z̃2

⎞⎠ ⊗
⎛⎝ X̃3

Ỹ3

Z̃3

⎞⎠ . (47)

Here, the modular forms Ŷ (4)
s (T ) of weight nY = 4 are given in eq. (41). These tensor products 

yield seven independent T ′ invariant couplings W̃a(T , X̃i , Ỹi , Z̃i), a = 1, . . . , 7, given in eq. (66)
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of Appendix A. Then, the trilinear superpotential of three copies of twisted matter fields �i
−5/3, 

i = 1, 2, 3, reads

W ⊃
7∑

a=1

c̃a W̃a(T , X̃i, Ỹi , Z̃i) , (48)

where c̃a , a = 1, . . . , 7, denote seven independent coefficients (i.e. modular invariant functions 
as discussed around eq. (33)). We shall show shortly that the traditional flavor symmetry �(54)

invariance further constrains these superpotential couplings, reducing the number of free coeffi-
cients to single one.

3.1.4. Restrictions from �(54)

Since T ′ represents only the modular subgroup of the full eclectic flavor group �(1) of the 
T 2/Z3 orbifold sector, we must impose additional constraints to arrive at a consistent superpo-
tential. These constraints arise from the �(54) traditional flavor group. As shown in Table 1, 
W must transform as a nontrivial singlet 1′ of �(54). While the untwisted trilinear couplings 
in eq. (32) satisfy this condition automatically, one must identify the linear combinations of the 
twisted couplings, i.e. Wa(T , Xi, Yi, Zi) in eq. (45) and W̃a(T , X̃i, Ỹi , Z̃i) in eq. (48), that are 
invariant under the �(54) generators A and B and transform covariantly under the R-symmetry 
generator C.

We find that consistency with �(54) restricts the coefficients ca in eq. (45) to be equal, reduc-
ing these terms in the superpotential to

W(T ,Xi, Yi,Zi) ⊃ c(1)
[
Ŷ2(T )

(
X1 X2 X3 + Y1 Y2 Y3 + Z1 Z2 Z3

)
(49a)

− Ŷ1(T )√
2

(
X1 Y2 Z3 + X1 Y3 Z2 + X2 Y1 Z3 (49b)

+X3 Y1 Z2 + X2 Y3 Z1 + X3 Y2 Z1
)]

,

where c(1) = ca for a = 1, . . . , 4 can be chosen to be a constant. Interestingly, the relative cou-
pling strength −√

2Ŷ2(T )/Ŷ1(T ) of twisted matter fields localized at the same orbifold fixed 
point (e.g. X1 X2 X3) and twisted matter fields localized at three different orbifold fixed points 
(e.g. X1 Y2 Z3) is completely fixed by the eclectic flavor symmetry �(1) without any free param-
eter. Moreover, note that one can absorb the phase of the overall constant c(1) in eq. (49) into a 
redefinition of the fields Xi , Yi , Zi , such that we can set c(1) ∈R.

Similarly, we find that �(54) covariance of eq. (48) requires c(4) = c̃1 = −c̃2 = c3 and 
c̃4,5,6,7 = 0, which leads to the superpotential contribution

W(T , X̃i, Ỹi , Z̃i) ⊃ c(4) Ŷ
(4)

1′ (T )
(
X̃1 Ỹ3 Z̃2 − X̃1 Ỹ2 Z̃3 + X̃2 Ỹ1 Z̃3 (50)

−X̃2 Ỹ3 Z̃1 + X̃3 Ỹ2 Z̃1 − X̃3 Ỹ1 Z̃2

)
.

Similar to eq. (49), the complex phase of the overall constant c(4) can be absorbed by a field 
redefinition such that c(4) ∈ R. Note that eq. (50) is antisymmetric in the exchange of �i

−5/3 =
(X̃i , Ỹi , Z̃i)

T and �j
−5/3 = (X̃j , Ỹj , Z̃j )

T, for i, j = 1, 2, 3 and i �= j . Furthermore, the coupling 

strength Ŷ (4)
′ (T ) of this interaction is given by eq. (41b).
1
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A couple of remarks on the twisted superpotential are in order. First, we recall that Im(T )

corresponds to the volume of the T 2/Z3 orbifold sector. Then, in the so-called large-volume 
limit defined by T → i∞, the superpotential couplings become

Ŷ1(T ) → 0 and Ŷ2(T ) → 1. (51)

Hence, this yields Ŷ (4)

1′ (T ) → 0. We note that this limit reproduces the intuitive result that cou-
plings of twisted strings are suppressed if the strings have to stretch in order to meet in the 
compactified dimensions and then join together: the couplings in eq. (49a) of three twisted 
strings localized at the same fixed point of the T 2/Z3 orbifold sector are unsuppressed (e.g. 
for X1 X2 X3), while the couplings in eqs. (49b) and (50) of three twisted strings localized at 
three different fixed points vanish (e.g. for X1 Y2 Z3).

Secondly, we realize that trilinear interactions of twisted matter fields �i
−5/3 = (X̃i, Ỹi , Z̃i)

T

are excluded in eq. (50) if the three twisted matter fields are localized at the same orbifold fixed 
point: In contrast to the interactions in eq. (49a), there are no terms analogous to, for example, 
X1 X2 X3. At first sight, this might seem to contradict the intuitive picture of string interactions on 
orbifolds. However, it is known in string theory [81] that twisted strings localized at the same Z3
orbifold fixed point must satisfy the condition that in each coupling the number of holomorphic 
oscillator excitations must equal the number of anti-holomorphic excitations modulo six. This 
string constraint is known as “rule 4”, see refs. [81,82]. In our case, each twisted string carries 
one holomorphic oscillator excitation and there are no anti-holomorphic excitations. Thus, a 
coupling like X̃1 X̃2 X̃3 is forbidden by rule 4. Interestingly, our superpotential eq. (50) shows 
that rule 4 is automatically satisfied if the theory is �(1) invariant.

3.2. Kähler potential

It is known that the leading order Kähler potential of general matter fields �n with modular 
weights n originating from string compactifications on Abelian orbifolds has the form [77]

K ⊃
∑
�n

(−iT + iT̄ )n|�n|2 . (52)

Here, additional (gauge) charges are assumed that forbid terms like �n,1�̄n,2 + �n,2�̄n,1 com-
bining different matter fields �n,1 and �n,2. As suggested in ref. [44], invariance under the 
modular group alone does not fix the structure of eq. (52). From a bottom-up perspective, 
the Kähler potential can in principle receive unsuppressed contributions from modular forms 
Ŷ

(nY )
s (T ). These extra terms can significantly alter the phenomenological predictions that have 

been obtained by using just the standard Kähler potential eq. (52). To be specific, such terms can 
introduce nontrivial mixtures in the quark and lepton sectors.

Based on these observations, we follow ref. [44] and generalize eq. (52) to the following 
ansatz for the Kähler potential of matter fields:

K ⊃
∑
�n

∑
nY ≥0

(−iT + iT̄ )n+nY
∑
a

κ(nY )
a

[
Ŷ (nY )

s (T ) ⊗ �n ⊗
(
Ŷ (nY )

s (T )
)∗ ⊗ �̄n

]
1,a

, (53)

where we sum over all fields �n with modular weights n = 0, −1, −2/3, −5/3 from the T 2/Z3

orbifold sector and we introduce coefficients κ(nY )
a ∈ R. Moreover, we sum over all modular 

weights nY ∈ N of the modular forms Ŷ (nY )
s (T ) and all (�(54) and T ′) singlet contractions, 
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labeled by the index a. Here, we also allow for nY = 0, taking Ŷ (0)
s = 1 in this case.4 Furthermore, 

for each nY we consider implicitly all admissible T ′ representations s of Ŷ (nY )
s . Since untwisted 

matter fields are �(54) and T ′ singlets, the structure of their Kähler potential is rather trivial and 
we can skip their discussion in the following.

By construction and considering that [. . .]1,a refers to singlet contractions, the ansatz (53) for 
the matter Kähler potential is �(54) and T ′ invariant. Moreover, according to our discussion in 
section 3 the matter Kähler potential must be invariant under modular transformations SL(2, Z)

as well. In detail, under an arbitrary modular transformation γ ∈ SL(2, Z), we see that the first 
factor in eq. (53) transforms as

(−iT + iT̄ )n+nY
γ−→ (c T + d)−n−nY (c T̄ + d)−n−nY (−iT + iT̄ )n+nY . (54)

According to eqs. (8) and (34), the T ′ singlet contractions [. . .]1,a in eq. (53) transform precisely 
with the correct automorphy factors to compensate the factors in eq. (54). Hence, the Kähler 
potential eq. (53) is invariant under both, SL(2, Z) and the finite modular group T ′. We point out 
that invariance under only T ′ and �(54) would allow additional terms involving modular forms 
of different modular weights. However, these terms are forbidden by the automorphy factors of 
SL(2, Z).

Let us now explore more explicitly the Kähler potential of a twisted matter field that follows 
from the ansatz (53). For a twisted matter field �n, the Kähler potential is independent of the 
specific modular weight n. Thus, we can choose for example a triplet of θ -twisted matter fields 
�−2/3 = (X, Y, Z)T with n = −2/3. In this case, just demanding that K be Hermitian restricts the 
matter Kähler potential to the general form

K ⊃
∑
nY ≥0

(−iT + iT̄ )n+nY

[
A

(nY )
1 (T , T̄ )|X|2 + A

(nY )
2 (T , T̄ )|Y |2 + A

(nY )
3 (T , T̄ )|Z|2 (55a)

+A
(nY )
4 (T , T̄ )

(
XȲ + X̄Y

) + A
(nY )
5 (T , T̄ )

(
XZ̄ + X̄Z

)
(55b)

+A
(nY )
6 (T , T̄ )

(
Y Z̄ + ȲZ

)]
, (55c)

where, compared to eq. (53), the real functions A(nY )
m (T , T̄ ), m = 1, . . . , 6, depend on κ(nY )

a , 
the modular forms Ŷ (nY )

s (T ) and the Clebsch–Gordan coefficients of the tensor products. This 
parameterization of K is beneficial in order to see the non-diagonal terms A(nY )

m (T , T̄ ) for m =
4, 5, 6 in eqs. (55b) and (55c). From a phenomenological point of view, independently of the 
form of the superpotential, these non-diagonal terms can lead to mixed mass eigenstates and, 
hence, nontrivial textures in the mixing matrices for �n corresponding to quark or lepton fields. 
However, the functions A(nY )

m are constrained by imposing invariance under all symmetries of the 
theory, as we discuss next. We proceed in two steps: first, we only impose modular invariance 
under SL(2, Z) and T ′ and, in a second step, we consider restrictions from the traditional flavor 
symmetry �(54). By doing so, we will uncover some of the advantages of the eclectic approach 
to flavor symmetries.

4 Formally Ŷ (0)
s ∝ j (T ), however, following our discussion around eq. (33), it is possible to fix Ŷ (0)

s = 1.
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3.2.1. T ′ invariant Kähler potential
Let us consider first only T ′ invariance and compute explicitly the resulting Kähler potential 

of a twisted matter field �n = (X, Y, Z)T for some specific modular forms Ŷ (nY )
s of modular 

weights nY .
For nY = 0 (i.e. in the absence of modular forms Ŷ (nY )

s ), we find that the general ansatz (53)
for the Kähler potential of twisted matter fields �n is given by

K ⊃ (−iT + i T̄
)n

[
κ

(0)
1 |X|2 + 1

2

(
κ

(0)
1 + κ

(0)
2

) (
|Y |2 + |Z|2

)
(56a)

+ 1

2

(
κ

(0)
1 − κ

(0)
2

) (
Y Z̄ + ȲZ

)]
. (56b)

These terms originate from the T ′ tensor product (2′ ⊕ 1) ⊗ (2′′ ⊕ 1) that yields two independent 
invariants with coefficients κ(0)

1 and κ(0)
2 . Comparing with eq. (55), we realize that here, A(0)

1 , 

A
(0)
2 , A(0)

3 and A(0)
6 are non-vanishing constants. That is, considering only T ′ invariance, there is 

a non-diagonal mixing among fields in this case, see eq. (56b). As we shall see shortly, imposing 
in addition the �(54) traditional flavor symmetry eliminates this mixing.

For nY = 1, the general ansatz (53) depends on the modular forms Ŷ (1)

2′′ (T ) defined in eq. (36). 

Considering the three T ′ invariants contained in the tensor product of |Ŷ (1)

2′′ (T ) ⊗ �n|2 (related 
to |2′′ ⊗ (2′ ⊕ 1)|2 = |1 ⊕ 3 ⊕ 2′′|2), we find

K ⊃ (−iT + i T̄
)n+1 1

2

[(
(κ

(1)
1 + κ

(1)
2 ) |Ŷ1(T )|2 + 2κ

(1)
2 |Ŷ2(T )|2

)
|X|2 (57)

+ 1

2

(
(κ

(1)
1 + κ

(1)
2 ) |Ŷ2(T )|2 + 2κ

(1)
2 |Ŷ1(T )|2

)
|Y + Z|2

+ 1

2
κ

(1)
3

(
|Ŷ1(T )|2 + |Ŷ2(T )|2

)
|Y − Z|2

+√
2 Re

{
Ŷ ∗

1 (T )Ŷ2(T )(κ
(1)
1 − κ

(1)
2 )X̄(Y + Z)

}]
.

Comparing this Kähler potential with the general scheme eq. (55), we find that, if only the T ′
modular flavor symmetry is taken into account, admitting modular forms with the lowest modular 
weight in the Kähler potential leads to non-vanishing A(1)

m for all m = 1, . . . , 6, which in turn 
yield nontrivial mixings. Furthermore, the explicit expressions of the functions A(1)

m do not seem 
to have a simple connection to the constants A(0)

m of eq. (56). These findings reveal that the T ′
finite modular symmetry is not very restrictive for the Kähler potential. In general, all coefficients 
A

(nY )
m (T , T̄ ) in eq. (55) appear at some modular weight nY , resulting in all the possible non-

diagonal mixings.

3.2.2. Restrictions from �(54)

The traditional flavor symmetry �(54) includes the Z(PG)
3 ×Z3 point group and space group 

symmetries, see eq. (19). Thus, demanding invariance first under Z(PG)
3 × Z3 implies that the 

Kähler potential eq. (55) reduces to the terms contained in eq. (55a), i.e. it has to be a function 
of |X|2, |Y |2 and |Z|2 only: A(nY )

m = 0 for m = 4, 5, 6. In addition, applying the �(54) transfor-
mation ρ(A) from eq. (17) on the triplet �n interchanges the twisted matter fields X, Y and Z. 
Thus, the terms in eq. (55) are further constrained to
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K ⊃
∑
nY ≥0

(−iT + iT̄ )n+nY A
(nY )
1 (T , T̄ )

(
|X|2 + |Y |2 + |Z|2

)
, (58)

where A(nY )
1 = A

(nY )
2 = A

(nY )
3 . Hence, we observe that, in contrast to the (finite) modular sym-

metry only, the traditional flavor symmetry �(54) forbids all non-diagonal terms.
Notice that |�n|2 = |X|2 +|Y |2 +|Z|2 is the unique �(54) and T ′ singlet from �̄n ⊗�n. On 

the other hand, under a general modular transformation γ ∈ SL(2, Z), |�n|2 transforms with an 
automorphy factor,

|X|2 + |Y |2 + |Z|2 γ−→ ∣∣(c T + d)n
∣∣2

(
|X|2 + |Y |2 + |Z|2

)
, (59)

using ρ3n(γ )†ρ3n(γ ) = 1 which follows from ρ3n(S)†ρ3n(S) = ρ3n(T)†ρ3n(T) = 1. Conse-

quently, A(nY )
1 (T , T̄ ) is restricted to be a trivial singlet 1 of T ′ transforming under γ ∈ SL(2, Z)

as

A
(nY )
1 (T , T̄ )

γ−→ ∣∣(c T + d)nY
∣∣2

A
(nY )
1 (T , T̄ ). (60)

Then, the Kähler contributions eq. (58) are modular invariant after taking into account eq. (54). 
Hence, comparing eq. (58) with our original ansatz eq. (53), we find that

A
(nY )
1 (T , T̄ ) =

∑
a

κ(nY )
a

∣∣∣Ŷ (nY )
s (T )

∣∣∣2

1,a
. (61)

In summary, we can conclude that the most general Kähler potential bilinear in twisted matter 
fields, compatible with the eclectic flavor group �(1), is given by

K ⊃
∑
�n

⎛⎝ ∑
nY ≥0

(−iT + i T̄
)n+nY

∑
a

κ(nY )
a

∣∣∣Ŷ (nY )
s (T )

∣∣∣2

1,a

⎞⎠ |�n|2 (62a)

=:
∑
�n

gn(T , T̄ ) |�n|2 , (62b)

where gn(T , T̄ ) is defined as the element of the diagonal Kähler metric corresponding to the 
matter field �n. From its definition, one can explicitly compute gn(T , T̄ ) for each matter field 
evaluating the modular forms with different modular weights nY . For example, for nY = 0, 1, 2
we obtain

gn(T , T̄ ) = κ
(0)
1

(−iT + i T̄
)n

(63a)

+ κ
(1)
1

(−iT + i T̄
)n+1

(
|Ŷ1(T )|2 + |Ŷ2(T )|2

)
(63b)

+ κ
(2)
1

(−iT + i T̄
)n+2

(
|Ŷ1(T )|2 + |Ŷ2(T )|2

)2
. (63c)

Although somewhat cumbersome, it is straightforward to continue the computation for nY > 2, 
where two or more singlet contractions of modular forms appear for each value of nY .

From these general results in eqs. (62b) and (63), one can now impose invariance under the 
�(54) traditional flavor symmetry to the T ′ invariant contributions to the Kähler potential found 
in eqs. (56) and (57). We see that they are compatible with the full eclectic flavor group provided 
that

κ
(0)
1 = κ

(0)
2 and κ

(1)
1 = κ

(1)
2 = 1

κ
(1)
3 . (64)
2
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It is important to remark that, in contrast to the results of ref. [44], in our setup the �(54)

traditional flavor symmetry prevents the appearance of non-diagonal contributions to the Kähler 
metric, as one can most easily read off from eq. (62b). Therefore, adding in our model an explicit 
dependence on the modular forms in the Kähler potential does not strongly alter the phenomeno-
logical predictions obtained by assuming a canonical Kähler potential. In particular, the resulting 
mixing parameters of a model that includes the whole modular dependence in gn(T , T̄ ) do not 
differ from those described solely by the contribution proportional to κ(0)

1 .

3.3. Summary

Let us summarize our main findings of this section on the structure of the trilinear superpo-
tential and bilinear Kähler potential of matter fields. We realize that the trilinear superpotential 
has the general structure eq. (32), where the coefficients are combinations of the modular forms 
Ŷ

(nY )
s (T ) detailed in Table 2 with specific modular weights nY and T ′ representations s. Af-

ter discussing separately the constraints on the superpotential arising from T ′ (sections 3.1.2
and 3.1.3) and �(54) (section 3.1.4), we find that the twisted matter contributions to the super-
potential are explicitly given by eq. (49) and eq. (50) in terms of the components of the matter 
triplet fields �−2/3 = (X, Y, Z)T and �−5/3 = (X̃, Ỹ , Z̃)T. Interestingly, the constraints from the 
symmetries reduce the number of free parameters from eleven (without traditional flavor symme-
try) to only two (when including the traditional flavor symmetry). We then proceed to compute 
the bilinear Kähler potential of matter fields, assuming the most general consistent structure 
eq. (53). We find that the restrictions arising from T ′ and �(54) result in a diagonal Kähler 
potential, eq. (62b), implying that in this case nontrivial flavor mixings can only arise from the 
superpotential, as usually assumed. It should be emphasized that in these models, superpotential 
and Kähler potential transform both nontrivially under modular transformations, but combine to 
an invariant action. The eclectic nature of the symmetry in the TD constructions gives severe 
restrictions on the parameters of the theory, both for the superpotential and the Kähler potential.

4. Conclusions and outlook

In the present paper we have worked out in detail a specific model that illustrates the proper-
ties of a new approach [1–3] to the flavor problem based on top-down (TD) model building in 
string theory that emphasizes the eclectic nature of the flavor group [3]. The specific properties 
of our eclectic model are separately summarized in the individual sections: section 2.4 reviews 
the representations including the (integer or fractional) modular weights and their nontrivial in-
terrelations, section 3.3 summarizes the power of the eclectic flavor approach to constrain the 
superpotential and the Kähler potential. From this construction, we derive the following mes-
sages for flavor model building:

• There is no possible scheme with just modular flavor symmetries. We always have a non-
trivial traditional flavor group that completes the eclectic picture. This traditional flavor 
symmetry might forbid certain couplings in a given model and spoil the phenomenologi-
cal predictions. The traditional flavor symmetry reduces the number of free parameters. A 
satisfactory eclectic model thus has more predictive power than a model with just modular 
flavor symmetries. The interplay between the traditional flavor group and the modular flavor 
symmetry is manifest in the consistency constraints on the admissible (fractional) modular 
weights of matter fields.
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• One should not consider only the superpotential of the model. The Kähler potential plays a 
crucial role as well [44]. In TD constructions, the superpotential typically transforms non-
trivially under the modular flavor symmetry. The Kähler potential has to compensate this 
transformation. This leads to the appearance of new free parameters that might interfere 
with the predictions derived solely from the superpotential. But again, the presence of the 
traditional flavor group might reduce the number of these parameters and lead to enhanced 
predictive power.

• In TD model constructions, only a subset of the possible representations and the modular 
weights of the flavor group appear in the low-energy effective theory. This is true for the 
modular symmetries (T ′ in our example) and the traditional flavor symmetry (here �(54)) 
as well. This is a challenge for TD model building in comparison to BU-models that typically 
assume the presence of many of these possible representations. On the other hand it could 
lead to problems for ultraviolet completions of some of the BU constructions.

• In the eclectic scheme the appearance of discrete R-symmetries is an unavoidable con-
sequence of modular transformations. Their specific properties shall be investigated else-
where [76].

Given these observations, one should try to intensify TD model building. Our example was 
motivated from constructions based on the T 6/Z3 × Z3 orbifold [15] and there is a substantial 
landscape of heterotic orbifold models that should be explored as well. The same is true for 
models base on type II string constructions or F-theory. In fact, when we were in the final stage 
of the present paper, we became aware of ref. [83]. This paper confirms the eclectic picture of 
ref. [3] and provides new models in the framework of magnetized branes in type II theories.
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Appendix A. T ′ invariant superpotential terms of T 2/Z3 orbifolds

The contributions to the trilinear superpotential of a T 2/Z3 orbifold resulting from twisted 
matter fields �i

−2/3 = (Xi, Yi, Zi)
T without oscillator excitations, considering only invariance 

under the modular symmetry T ′ are

W1 = 1

4

(
Ŷ2(T )(4X1 X2 X3 + (Y1 + Z1)(Y2 + Z2)(Y3 + Z3)) (65a)

−√
2Ŷ1(T ) ((Y1 + Z1)(Y2 + Z2)X3 + ((Y1 + Z1)X2 + X1(Y2 + Z2))(Y3 + Z3))

)
,
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W2 = 1

4

(√
2Ŷ1(T )X1 + Ŷ2(T )(Y1 + Z1)

)
(Y2 − Z2)(Y3 − Z3), (65b)

W3 = 1

4
(Y1 − Z1)

(√
2Ŷ1(T )X2 + Ŷ2(T )(Y2 + Z2)

)
(Y3 − Z3), (65c)

W4 = 1

4
(Y1 − Z1)(Y2 − Z2)

(√
2Ŷ1(T )X3 + Ŷ2(T )(Y3 + Z3)

)
. (65d)

The contributions to the trilinear superpotential arising from twisted matter fields �i
−5/3 =

(X̃i , Ỹi , Z̃i)
T with oscillator excitations, considering only invariance under the modular symme-

try T ′ are

W̃1 = 1
2
√

2
Ŷ

(4)

1′ (T )
(
X̃2(Ỹ1 + Z̃1) − X̃1(Ỹ2 + Z̃2)

)
(Ỹ3 − Z̃3) , (66a)

W̃2 = 1
2
√

2
Ŷ

(4)

1′ (T )
(
X̃3(Ỹ1 + Z̃1) − X̃1(Ỹ3 + Z̃3)

)
(Ỹ2 − Z̃2) , (66b)

W̃3 = 1
2
√

2
Ŷ

(4)

1′ (T )
(
X̃3(Ỹ2 + Z̃2) − X̃2(Ỹ3 + Z̃3)

)
(Ỹ1 − Z̃1) , (66c)

W̃4 = 1
2
√

2
Ŷ

(4)
1 (T ) (Ỹ1 − Z̃1)(Ỹ2 − Z̃2)(Ỹ3 − Z̃3) , (66d)

W̃5 = 1
2
√

2
(Ỹ3 − Z̃3)

[
X̃2

(
2 Ŷ

(4)
3,3 (T )X̃1 + Ŷ

(4)
3,2 (T )(Ỹ1 + Z̃1)

)
(66e)

+ (Ỹ2 + Z̃2)
(
Ŷ

(4)
3,2 (T )X̃1 + Ŷ

(4)
3,1 (T )(Ỹ1 + Z̃1)

)]
,

W̃6 = 1
2
√

2
(Ỹ2 − Z̃2)

[
X̃3

(
2 Ŷ

(4)
3,3 (T )X̃1 + Ŷ

(4)
3,2 (T )(Ỹ1 + Z̃1)

)
(66f)

+ (Ỹ3 + Z̃3)
(
Ŷ

(4)
3,2 (T )X̃1 + Ŷ

(4)
3,1 (T )(Ỹ1 + Z̃1)

)]
,

W̃7 = 1
2
√

2
(Ỹ1 − Z̃1)

[
X̃3

(
2 Ŷ

(4)
3,3 (T )X̃2 + Ŷ

(4)
3,2 (T )(Ỹ2 + Z̃2)

)
(66g)

+ (Ỹ3 + Z̃3)
(
Ŷ

(4)
3,2 (T )X̃2 + Ŷ

(4)
3,1 (T )(Ỹ2 + Z̃2)

)]
,

where Ŷ (4)
1 (T ), Ŷ (4)

1′ (T ) and the components Ŷ (4)
3,j (T ), j = 1, 2, 3, are given in eqs. (41).
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