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A B S T R A C T

Most fMRI studies investigating smooth pursuit (SP) related brain activity have used simple synthetic stimuli such
as a sinusoidally moving dot. However, real-life situations are much more complex and SP does not occur in
isolation but within sequences of saccades and fixations. This raises the question whether the same brain networks
for SP that have been identified under laboratory conditions are activated when following moving objects in a
movie.

Here, we used the publicly available studyforrest data set that provides eye movement recordings along with 3
T fMRI recordings from 15 subjects while watching the Hollywood movie “Forrest Gump”. All three major eye
movement events, namely fixations, saccades, and smooth pursuit, were detected with a state-of-the-art algo-
rithm. In our analysis, smooth pursuit (SP) was the eye movement of interest, while saccades were acting as the
steady state of viewing behaviour due to their lower variability. For the fMRI analysis we used an event-related
design modelling saccades and SP as regressors initially. Because of the interdependency of SP and content
motion, we then added a new low-level content motion regressor to separate brain activations from these two
sources.

We identified higher BOLD-responses during SP than saccades bilaterally in MTþ/V5, in middle cingulate
extending to precuneus, and in the right temporoparietal junction. When the motion regressor was added, SP
showed higher BOLD-response relative to saccades bilaterally in the cortex lining the superior temporal sulcus,
precuneus, and supplementary eye field, presumably due to a confounding effect of background motion. Only
parts of V2 showed higher activation during saccades in comparison to SP.

Taken together, our approach should be regarded as proof of principle for deciphering brain activity related to
SP, which is one of the most prominent eye movements besides saccades, in complex dynamic naturalistic
situations.
1. Introduction

Because of the dramatically space-variant resolution of their visual
system, humans make several eye movements per second to sample their
surroundings with the high-resolution fovea. Consequently, the neural
implementation of gaze behaviour as one of the fundamental aspects of
visual information processing is an active research topic. In particular,
functional magnetic resonance imaging (fMRI) has been previously used
along with eye tracking in order to identify brain areas (localized BOLD-
responses) and networks related to specific eye movements such as fix-
ations and saccades (Luna et al., 1998; Beauchamp et al., 2001; Sestieri
Agtzidis), inga.meyhoefer@ukm
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et al., 2007; McDowell et al., 2008; Ettinger et al., 2008; Kleiser et al.,
2009; Lukasova et al., 2018). However, brain areas subserving smooth
pursuit (SP) eye movements have been studied to a lesser extent only
(Petit and Haxby, 1999; Lencer et al., 2004; Nagel et al., 2006; Kimmig
et al., 2008; Kellar et al., 2018), possibly due to technical challenges in
the analysis of dynamic setups. Therefore, there is a need to further
investigate possible solutions and their confounds in situations closer to
real-world visual tracking.

When segmented eye tracking data are directly related to brain
activation, the majority of experiments use specifically designed syn-
thetic stimuli (Lencer et al., 2004; Nagel et al., 2006; Kimmig et al.,
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2008). Such stimuli can take the form of fixation crosses that change
position when saccades are studied, or of linearly or sinusoidally moving
dots when smooth pursuit is investigated. The biggest advantage of
synthetic stimuli is that their properties are well defined and can
explicitly represent specific features, which simplifies the analysis of both
the eye tracking and BOLD signals. By ideally modulating the stimulus
along one isolated feature dimension only, the link to specific brain ac-
tivations can be established more precisely. These advantages come at
the cost of using paradigms that are not representative of normal human
vision, because ecologically valid visual input is much more complex and
real-world SP does not occur in isolation but within sequences of sac-
cades and fixations. Thus, the use of synthetic stimuli moving on a uni-
form background ignores the possible influence of background
information (Brenner and Smeets, 2015), crowding effects (Sanocki
et al., 2015), and overall eye movement planning processes (Gold and
Shadlen, 2007; Tatler et al., 2017). Another important limitation is that
following a uniform synthetic stimulus over a longer time interval can
result in reduced maintenance of attention (Tagliazucchi and Laufs,
2014; Vanderwal et al., 2015).

Because of the increased complexity of naturalistic stimuli, some
studies have restricted themselves to the presentation of static natural-
istic scenes, i.e. images (Kay et al., 2011; Mannion, 2015). Going beyond
static scenes, significant improvements in both vigilance and head mo-
tion were achieved by (Vanderwal et al., 2015), who used an abstract
dynamic pattern to enhance the participant’s attention, together with
fMRI resting state analysis. An even better approximation to uncon-
strained human vision then are fully naturalistic dynamic stimuli.
Consequently, both the neuroimaging and eye tracking communities
have recently started to explore the possibilities of more immersive ex-
periments (Hasson et al., 2004, 2008; Lahnakoski et al., 2012; Nardo
et al., 2014; Andric et al., 2016; Marsman et al., 2016). Some recorded
data sets of naturalistic fMRI (Hanke et al., 2016) and eye tracking
studies (Dorr et al., 2010; Mathe and Sminchisescu, 2012; Linnea Larsson
et al., 2013) have even become publicly available.

Under conditions that resemble daily life more, parallel processing of
conflicting information is often required during smooth pursuit on
background textures, which by themselves may contain multiple dy-
namic objects moving in different directions. This is of particular interest
to the present study because it has been concluded from monkey studies
that neurons in V5 play an important role not only during smooth pursuit,
but also for the interaction of different, even conflicting retinal stimuli
(for a review see (Ilg and peter, 2008)). However, in such naturalistic
settings, care has to be taken to disentangle neural activations arising
from dynamic visual input and those that arise from smooth pursuit eye
movements. Fortuitously, recent advances in computer vision are
beginning to enable an automated understanding of dynamic complex
visual scenes even for large and diverse data sets.

Compared to synthetic stimuli and experiments with typically explicit
instructions on how to move the eyes (e.g. “follow the dot”, “make a
saccade when the target appears”, etc.), segmentation of a gaze trace into
its constituent eye movements is also more challenging when uncon-
strained dynamic naturalistic stimuli are used. As reported by (Hooge
et al., 2018), hand-labelling of “ground-truth data”, which is considered
the gold standard in eye movement segmentation, of only fixations and
saccades can take anywhere between 4 and 15 s for each second of gaze
signal. This process becomes infeasible when data sets increase in size.
For example, the studyforrest project provided by (Hanke et al., 2016)
contains roughly 30 h of simultaneous fMRI and gaze recordings.
Therefore, the authors of the studyforrest data set reported brain acti-
vations related to visual versus non-visual cues, but did not differentiate
between different eye movement subtypes.

In recent years, however, progress has been made on the automatic
analysis of eye movement data and smooth pursuit in particular. Several
eye movement classification algorithms have been developed based on
publicly available large-scale data sets along with partial or full ground-
truth annotations of eye movements (Dorr et al., 2010; Mathe and
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Sminchisescu, 2012; Hooge et al., 2018; Startsev et al., 2019). Most of the
established classification algorithms only label fixations and saccades
because they were developed with static stimuli in mind. As a conse-
quence, these algorithms misclassify SP as fixations or saccades, thereby
preventing the identification of neural correlates of smooth pursuit. To
solve this problem, the automatic multi-observer smooth pursuit algo-
rithms (MOSP) have been developed (Agtzidis et al., 2016) that are able
to differentiate all three major eye movements, i.e. fixations, saccades,
and SP, with high classification quality (for an evaluation, see (Startsev
et al., 2019)).

In the present study, we make use of several of these recent de-
velopments. Using state-of-the-art computer vision and eye movement
classification algorithms, we analyse gaze and fMRI recordings from the
large-scale studyforrest data set and are able to identify specific brain
areas related to smooth pursuit and saccadic eye movements evoked by
complex naturalistic scenes, i.e. a Hollywood movie.

2. Methods

2.1. Data set

For our analysis, we used the publicly available studyforrest data set
as an approximation to a complex natural environment; for full experi-
mental details, we refer to the paper presenting the original data set
(Hanke et al., 2016). Briefly, this data set includes 15 participants who
watched the Hollywood movie “Forrest Gump” while their gaze was
tracked in an fMRI scanner, and another 15 participants with in-lab gaze
only recordings (which we used here only to improve the automatic
detection of smooth pursuit events, see below). The stimulus was pre-
sented to the in-scanner participants through an LCD projector in com-
bination with a front-reflective mirror and to the in-lab participants
through an LCD monitor. The gaze data were recorded with a
high-frequency eye tracker (EyeLink 1000, set to 1000 Hz sampling rate
with telephoto lens for the fMRI recordings) and a 13-points calibration
was performed at the beginning of each session. The fMRI recordings
were acquired with a 3 T scanner (Philips Achieva dStreamMRI scanner)
with repetition time (TR) of 2 s and 3 � 3 � 3 mm3 voxel size.

2.2. Motion estimation in the stimulus

Because smooth pursuit behaviour is tightly linked to moving targets,
we estimated the overall motion per video frame with computer vision
techniques. Despite all recent advances, such algorithms can still yield
noisy outputs, so we used two different algorithms for additional
robustness. The first algorithm computed motion based on the minors of
the structure tensor as described by (Barth, 2000) with the aim to provide
a sparse optical flow field by estimating motion only at points that are not
susceptible to the aperture problem, i.e. corners. Initially, the input video
was spatially subsampled by a factor of two, and then a spatio-temporal
Gaussian pyramid with five spatial and two temporal levels was created.
For each level of this multiscale representation, velocity per pixel was
computed. These velocity estimates were normalized relative to the
original video resolution and combined in a procedure similar to pyramid
synthesis described by (Adelson and Burt, 1981); higher speed values
were clipped to the 90th percentile speed. The second algorithm used
edge-preserving interpolation of correspondences for optical flow
(EpicFlow) computation as described by (Revaud et al., 2015). The al-
gorithm first used dense matching with edge-preserving interpolation,
followed by an energy minimization step. An example content motion
computation of the EpicFlow algorithm is provided in Fig. 1b. For both
algorithms, finally, the mean length of pixel displacements was computed
per video frame.

2.3. Eye movement classification

From the provided data we created a quadruplet of values for each



Fig. 1. a) Example frame from the studyforrest data set with superimposed gaze traces (over a 400 ms period; one colour per subject) from the in-scanner participants.
Smooth pursuit is evidenced by the elongated point clouds. b) Optical flow computed by the EpicFlow algorithm. The estimated motion corresponds well with the
actual motion in the video. Black lines indicate the Multiple Observer Smooth Pursuit (MOSP) algorithm output, i.e. automatically detected smooth pursuit segments
(in the 400 ms window).
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gaze sample that comprised time, x and y coordinates on the monitor
coordinate system, and a confidence estimation of the eye tracking
quality. Since the data set used monocular eye tracking, a confidence
value of 1 meant good tracking of the eye and a value of 0 meant tracking
loss. After inspection of the data, lost tracking varied from 1.2% to 16.7%
among subjects with the notable exception of subjects 05 and 20. For
these two subjects the lost tracking was 86.7% and 39.0%, respectively,
and they were excluded from all subsequent analyses.

The remaining gaze traces were segmented into eye movements by
the MOSP algorithms from (Agtzidis et al., 2016) as implemented by
(Startsev et al., 2019). This algorithm achieved state-of-the-art perfor-
mance in an online benchmark against a manually labelled data set
(Startsev et al., 2016) compared to several recent eye movement detec-
tion algorithms (Linn�ea Larsson et al., 2015; Dar et al., 2019). Another
aspect of the MOSP algorithm that is advantageous for our application is
the fact that it uses simple-to-understand thresholds that can be easily
tweaked (unlike deep learning approaches such as (Startsev et al., 2019;
Zemblys et al., 2019)). In particular, MOSP achieves high SP detection
precision (i.e. low number of false positives), which is central to our
analysis.

The MOSP algorithm has two distinct components, with the first one
being responsible for saccade detection and the second for differentiation
of fixations and SP. The saccade detector is based on the algorithm
described by (Dorr et al., 2010) and uses a high and a low speed
threshold. The high speed threshold is used for initiation of saccade
detection, which is then extended on both sides until the speed falls
below the low threshold. This high speed threshold, which is higher than
the speed of sample-to-sample noise of the input, makes the algorithm
specifically robust to noise. The second component of MOSP further
processes the intersaccadic intervals by initially assigning the fixation
label to the samples that almost certainly belong to a fixation. The
remaining samples are then marked as SP candidates and pooled among
all the participants. Then they are clustered with an algorithm (DBSCAN)
that creates a cluster only if the gaze sample density is above a certain
threshold. This density-based clustering reliably detects SP because of
two significant SP properties. Firstly, SP can occur only if motion is
present in the stimulus at a given time, and the number of moving targets
per video frame is typically low. Secondly, moving targets attract
attention (especially in a Hollywoodmovie) and they are usually pursued
by more than one participant. An example of the clustering property
along with the output of the MOSP algorithm is presented in Fig. 1. The
combination of these two properties allows the algorithm to robustly
distinguish drift and SP-like motion from actual SP, which is particularly
important for gaze recordings in fMRI experiments because they tend to
have higher noise levels than lab recordings. For example, if some gaze
samples are erroneously marked as SP candidates, they will not be
labelled as SP as long as no other subject has a similar pattern in the same
area in space and time. While this has the possible drawback of missing
some SP episodes when not enough subjects pursue a target (reduced
sensitivity), the increased specificity is more important in the context of
this study to identify brain areas related to SP processing.
3

Since the original MOSP algorithms were designed and optimized for
the GazeCom data set (Dorr et al., 2010), some parameters were adjusted
(see online data for full details). We further improved the SP detection by
using both in-lab and in-scanner recordings together because the SP
detection algorithm improves with increasing number of gaze traces.
Despite the different stimulus sizes, we used the same pixel-space for
both sets of recordings by scaling the pixel-per-degree values for the (less
noisy) in-lab recordings; the agreement in detected SP episodes for the
two sets was high (r2 of 0.84 for share of SP in 2-s intervals).

2.4. fMRI analysis

The fMRI data analysis was performed with SPM12 using Matlab 9.2.
We initially followed a standard preprocessing pipeline for each
recording (Poldrack et al., 2011). The process comprised realigning the
functional data to the mean image of each session (without slice timing
correction), coregistering them to the anatomical T1 scan, normalizing
them to the MNI template, and resampling them into 3 � 3 � 3 mm3

voxels. Finally, we applied smoothing with a Gaussian kernel of 8 mm at
full width half maximum (FWHM).

During the recording of the studyforrest data set its authors split the
movie stimulus into 8 different segments of approximately 15 min each
with each one displayed separately in the scanner. In the first level
analysis we combined all 8 recording sessions into one design matrix in
order to model the full Forrest Gump movie. For each session in the
design matrix we fitted an SP, a saccade, and a movie motion regressor
when needed. In order to account for variations in the onset and width of
the hemodynamic response among subjects, we used the canonical he-
modynamic response function (HRF) along with its time and dispersion
derivatives. Apart from the previous regressors, we also used the six head
movement components that were returned from the realignment step
during preprocessing as nuisance regressors.

The eye movement and motion regressors were modelled as event
time series with events placed 2 s apart, which by design coincides with
the scanner’s TR and therefore each event was representing the regressor
variance between scans. The amplitude of each event was modulated by
the prevalence of the corresponding eye movement or the amount of
motion in the 2-s window: It had a value of 0 when it was the same as the
overall mean and was linearly increasing up to a maximum value of 1. A
detailed description of the regressor modelling procedure is given in the
next section. As it becomes evident from how the regressors were
modelled, it would have been impossible to model both fixations and SPs
with this process without creating strong (negative) correlations between
the two. To make this interdependence more clear, let us consider that a
subject starts pursuing a target. Then consequently the amplitude of the
SP regressor would increase with the fixation amplitude decreasing
proportionally.

After fitting the GLM to the data of each subject independently, we
used the amplitude component of the HRF of each regressor that spanned
8 recording sessions in order to compute the contrasts of interest. These
contrasts included the main effect of the eye movements and motion, the
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comparison between SP and saccades, and the comparison of the eye
movements to motion. Finally, at the second level of the fMRI analysis we
performed a one-sample t-test for each of the previous contrasts for the 13
valid subjects. The resulting clusters (p < 0.05 Family Wise Error [FWE]
corrected with an initial threshold of p< 0.001) were overlaid on a three-
dimensional brain model and are presented in the results section.

2.4.1. Regressor modelling
As outlined above, our regressors were not modelling each eye

movement event independently, but were placed in 2-s intervals, which
were modulated by the amount of the respective eye movement in that
window. For the experiments that were taking movie motion into ac-
count, this was modelled through the mean movie motion and as before
in consecutive 2-s windows.

More specifically, the computation of the magnitude of the eye
movement modulation parameters was taking into account three main
factors: i) The first factor was capturing the changes in eye movements
between different naturalistic stimuli and was represented by the mean
percentage of each eye movement of each subject; this is equivalent to
the mean viewing behaviour. ii) The second factor was capturing the
differences in prevalence and variance between different eye movements
and it was a constant value with the modulation parameter being
inversely proportional to it. The value of this factor was chosen from the
data in order to bring approximately 95% of the modulated values below
1 (for a visualization, see Fig. 2). Therefore, it was set to modulationsacc
¼ 1.5 for saccades due to their small variance in relation to different
input stimuli. For SP it was set to modulationSP ¼ 5 in order to reflect the
large variance of smooth pursuit eye movements, which cannot occur in
the absence of a moving target but can be continuously performed for
long periods of time when a salient moving object exists. iii) The third
factor was capturing the variance among subjects. This subject-specific
factor was based on the observation that the prevalence of each eye
movement varies among subjects and it may directly or indirectly relate
to the differences in brain connectivity (Mueller et al., 2013; Vanderwal
et al., 2017). In the case of the studyforrest data set, saccades varied from
5.8% to 12.4% and SPs from 11.5% to 19.3% among the subjects; thus, if
the overall mean were used, the relevant activations in some subjects
would be suppressed and in some would be amplified.

As an illustrative example, consider a hypothetical subject that has an
overall mean SP percentage of overallSP ¼ 15% and performed SP clipSP
¼ 10% of the time in a given clip. Now in a particular 2-s window win-
dowSP ¼ 85% of its duration was labelled as SP. The modulation
magnitude will be (windowSP-clipSP)/(modulationSP*overallSP) ¼
Fig. 2. Probability distribution of saccade (left) and smooth pursuit (right) ratios as
analysis, normalized so that 1 corresponds to each subject’s mean. A wide distributio
variability and are centred around 1. SP ratios (blue) are more variable and the peak
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(85�10)/(5*15) ¼ 1. After computing the modulation parameters across
all 2-s intervals of the data set according to the previous formula, we
found that the SP and saccade regressors were uncorrelated (Pearson
correlation r ¼ 0.02), which is a good indication of no shared variability
between the two.

For the magnitude of the motion estimation modulation parameters,
we followed a similar process as with the modelling of eye movement
parameters. Again, here the steady state was captured through the mean
content motion for each stimulus independently. The resulting value was
normalized with the 90th percentile of the motion values across all clips
and was bound to a maximum value of 1 in order to limit the influence of
outliers.

2.5. Additional validation regressors

Apart from the eye movement regressors of SP and saccade we also
used a motion regressor, which in the nominal case was modelling the
global motion in the video. We further explored two variations of it. In
the first variation of motion modelling, we used a window around the
gaze position to get a local estimation of the motion and in the second
variation we subtracted the smooth pursuit velocity from the mean
content velocity in the same window with the aim of approximating the
retinal motion. Since the results for local motion were subpar in com-
parison to global motion, we do not present them in the results section
but discuss them at the end of the manuscript.

To further understand what drives eye movements, we also ran
models which included scene complexity and edge density estimation as
additional regressors, with their values being modelled identically to
motion regressor as explained in the previous section. The scene
complexity was computed as the entropy of the saliency of each frame
using a standard saliency model (Itti et al., 1998). Similar to the entropy
of image saliency, we calculated edge density as the per-frame entropy of
the absolute pixel values on the third level of a Laplacian pyramid (which
represents edges in the spatial frequency range of approximately 3–6
cycles per degree, i.e. close to the peak of the human contrast sensitivity
function). Again these results are discussed at the end of the manuscript.

2.6. Data and code availability

The full source code and resulting labels for the eye movement
analysis are available at https://web.gin.g-node.org/ioannis.agtzidis/st
udyforrest_analysis. The fMRI and eye tracking data was taken from
the publicly available data set of (Hanke et al., 2016).
detected in the 2-s windows that were used during the event-related 1st level
n indicates high variability across subjects and time. Saccades (red) have lower
close to 0 represents the absence of SP (e.g. no SP target is moving in the scene).

https://web.gin.g-node.org/ioannis.agtzidis/studyforrest_analysis
https://web.gin.g-node.org/ioannis.agtzidis/studyforrest_analysis


Table 1
List of clusters with peak activation T-value and location along with cluster level
FWE-corrected p-values that are related to SP and saccadic eye movements.

Cluster Name Peak activation Cluster
Size

PFWE-corr Peak
T-value

X Y Z

SP1 �3 �91 14 7647 <0.001 15.11
SP2 6 �43 56 2048 <0.001 8.48
SP3 57 �40 17 109 0.011 6.94
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3. Results

The presented functional group results of this section were mapped to
the three-dimensional cortical template of the “Population-Average,
Landmark- and Surface-based” Atlas (PALS) (Van Essen, 2005) with the
metric-enclosing-voxel algorithm in Caret (version 5.65) (Van Essen
et al., 2001). When needed, the provided coordinates are reported in the
Montreal Neurological Institute (MNI) coordinate system.
Sac1 �9 �82 17 6437 <0.001 16.84
Sac2 �6 �52 56 245 <0.001 6.25
3.1. Eye movement statistics

Overall, for the valid in-scanner subjects the algorithm classified 53%
of gaze samples as fixations, 8.4% as saccades, and 14.8% as SP with the
rest being labelled as noise (tracking loss, blinks, cluster noise, etc.).
Because we here were interested in separating e.g. saccades and SP as
cleanly as possible, this relatively high noise level was acceptable. Fix-
ations showed the highest absolute variation among participants (std:
10.1%), which is to be expected since the fixation detection is very
sensitive to eye tracking noise and our objective was not to model this
type of eye movement. Saccades (std: 2.5%) and SP (std: 3%) had lower
absolute variance but very high relative variations among participants.
This relatively high between-subject variability was captured by the
subject-specific modulation factor during the first level analysis.

Apart from the between-subject variability there exists within-subject
variability, which varies for different eye movements. In Fig. 2 we
visualize the probability distributions of the ratios in 2-s windows of
saccades and SP per subject in relation to the same subject’s overall
mean. Because the range of the distributions differed between eye
movement types, we chose the eye movement specific modulation factors
of Section 2.4.1 with the aim of normalizing them into comparable
ranges. Here, a value of 1 indicates that the share of each eye movement
type in a given interval is equal to the overall subject mean. A value of
0 denotes that the respective eye movement does not occur in that in-
terval and values above 1 mean that we have above-average occurrence.
As can be seen from Fig. 2, saccades show lower within-subject vari-
ability and are centred around the mean ratio of 1. On the other hand, the
occurrence of SP shows higher variability with a peak close to 0, which
represents the absence of SP when no moving target is present in the
stimulus, i.e. movie.
3.2. SP- and saccade-related activations

The mean effects of SP- and saccade-related BOLD-responses are
given in Fig. 3, where we present clusters at pFWE < 0.05 using an initial
threshold of p < 0.001. This procedure yielded three clusters related to
SP (SP1-SP3) and two clusters related to saccades (Sac1-Sac2), see
Fig. 3. a) SP-related activity with pFWE < 0.05 with initial threshold of p < 0.001. Ac
the SP-related MTþ/V5), bilaterally the middle cingulate expanding to the precuneu
Saccade-related activity with pFWE < 0.05 with initial threshold of p < 0.001. Activ
precuneus (Sac2: kE ¼ 245). For a detailed list of the subareas refer to Table 1.
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Table 1. The notable difference between the SP1 and Sac1 clusters is the
strong activation within the middle temporal gyrus, presumably visual
motion area MTþ/V5 in SP1 but not Sac1, which is to be expected since
this area is associated both with SP and motion processing. The second
large cluster marked as SP2 mainly covers parts of the middle cingulate
cortex and the precuneus. Also there exists a much smaller saccade-
related cluster that covers part of the precuneus and is marked as Sac2
and a small SP-specific cluster related to the right temporoparietal
junction (rTPJ) is marked as SP3. In order to check whether the presented
clusters robustly represent brain areas that are involved in each eye
movement, we ran a simple cross-validation procedure (for more details,
see Supplementary Material). The resulting high correlation (r2 ¼ 0.81)
between the activations of the two independent models (Fig. S1) shows
that our regressors are fitting a pattern instead of only the provided data.

Table 2 lists a more detailed description of anatomical and functional
areas included in the identified clusters SP1-SP3 and Sac1-Sac2, respec-
tively. Anatomical areas were parcellated with the automated anatomical
atlas (Tzourio-Mazoyer et al., 2002; Rolls et al., 2015). In order to avoid
cluttering the table with anatomical areas that are represented by rela-
tively few voxels, we applied a cutoff threshold as a percentage of the
total voxel count in each cluster. For the two biggest clusters of Table 2
the threshold was set at ~2% and for the rest at 5%.
3.3. SP-saccade related activations

In the way that we structured our analysis, saccades were used as a
proxy to represent the steady-state condition of our visual system because
of their lower variability, with smooth pursuits being the eye movement
of interest. Hence, we were interested in the specific differences between
SP- and saccade-related brain activations during natural viewing. These
contrasts with pFWE < 0.05 and initial threshold of p < 0.001 are visu-
alized in Fig. 4.

This procedure identified three areas with stronger activation during
tivations span bilaterally the visual areas of the brain (SP1: kE ¼ 7647, including
s (SP2: kE ¼ 2048), and the right temporoparietal junction (SP3: kE ¼ 109). b)
ations span bilaterally the visual areas of the brain (Sac1: kE ¼ 6437) and the



Table 2
List of brain areas involved in both SP- and saccade-related clusters (coloured gray) and areas that are unique to SP
(coloured white). The threshold for visualization was chosen at ~2% for the big clusters and 5% for the smaller clusters
of Table 1. Therefore, the values do not sum up to the total number of voxels in each cluster.
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SP compared to saccades. In Fig. 4a the first area has bilateral activations
of the motion processing and SP-related area MTþ/V5 (right: kE ¼ 169,
left: kE ¼ 89), with the second area containing the middle cingulate and
extending to precuneus (kE ¼ 655). Lastly, the third area comprises of an
activation in the right temporo-parietal junction (rTPJ; kE ¼ 158). Fig. 4b
shows that the saccade > SP contrast has significant activations in V2
(right: kE ¼ 91). The full list of anatomical areas that are part of these
clusters is provided in Table 3.
3.4. Accounting for movie motion

To differentiate SP from content motion related brain activations, we
added an additional motion regressor during the first level analysis,
which was again modelled as time-series with its values computed in a
6

process similar to eye movement modulation of Section 2.4.1. Here, we
present the results using the EpicFlow algorithm and whole frame mean
motion modelling (results for the algorithm based on the minors of the
structure tensor were qualitatively similar; data not shown). To better
understand the relation between the EpicFlowmotion estimation and our
motion regressor, refer to the Supplementary Material and Fig. S2. The
resulting motion regressor was uncorrelated with the saccade regressor
(Pearson r¼ �0.11) and the same held true for the SP regressor (Pearson
r ¼ 0.18). The mean effects of SP-, saccade-, and motion-related BOLD-
responses are visualized in Fig. 5. As can be seen from Fig. 5a and b, the
activations for SP and saccades are qualitatively very close to the acti-
vations of Fig. 3 but with reduced size and intensity for SP when motion
was included in the model (Fig. 5a). This reduction in SP-related acti-
vations followed from strong positive motion-related (Fig. 5c) activations



Fig. 4. a) Activations for SP > saccade at p FWE < 0.05 with an initial threshold of 0.001. Activations in bilateral MTþ/V5 (right: kE ¼ 169, left: kE ¼ 89), in the middle
cingulate extending to precuneus (kE ¼ 665), and in the right temporo-parietal junction (rTPJ) (kE ¼ 158). b) Activations for saccade > SP contrast with pFWE < 0.05
with initial threshold of 0.001. Activation in V2 (right: kE ¼ 91).
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in roughly the same areas as the SP-related activations shown in Fig. 3a.
Moreover, the activity in the cortex lining the superior temporal sulcus
(STS) and in the supplementary motor area including the supplementary
eye field (SEF) was negatively correlated with our motion regressor.

Following this model, the contrast SP > saccade yielded significant
activations only in the middle cingulate (kE ¼ 106) and rTPJ (kE ¼ 104)
areas (not shown graphically). The MTþ/V5 and precuneus activations
seen in Fig. 4a did not reach the significance threshold of 0.05 FWE.

The SP >motion contrast (Fig. 6) revealed bilateral activations in the
cortex lining the superior temporal sulcus (STS; right: kE ¼ 536, left: kE ¼
194), the precuneus (kE ¼ 102), and the supplementary motor area
Table 3
List of areas involved in the SP > saccade and saccade > SP contrasts. The
threshold for visualization was set to 15 voxels for all clusters and they do not
sum up to the total voxel number for each cluster.

Anatomical
Area

Peak Activation Part of Number of
Voxels

Peak
T-
value

X Y Z

R Temporal Sup 60 �31 20 Cluster
1

73 5.95

R Supramarginal 60 �34 23 Cluster
1

36 5.83

L Temporal Mid �51 �73 8 Cluster
2

23 5.79

R Temporal Mid 51 �70 �1 Cluster
2

103 10.11

L Occipital Mid �48 �76 5 Cluster
2

89 7.46

L Cingulate Mid �9 �31 44 Cluster
3

157 10.18

R Cingulate Mid 9 �22 44 Cluster
3

145 8.01

L Precuneus �12 �44 44 Cluster
3

30 5.63

R Precuneus 12 �52 58 Cluster
3

92 6.72

R Paracentral
Lobule

12 �37 47 Cluster
3

32 6.36

R Postcentral 15 �49 68 Cluster
3

32 6.77

R Parietal Sup 18 �49 68 Cluster
3

26 6.06

R Occipital Inf 24 �97 �7 Cluster
4

42 7.32

R Occipital Mid 39 �88 �1 Cluster
4

18 7.11

R Lingual 24 �91 �4 Cluster
4

15 5.64
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including the supplementary eye field (SEF; kE ¼ 177). To the contrary,
the saccade > motion contrast did not reveal any significantly activated
areas.

4. Discussion

The aim of this study was to analyse brain activations related to SP
and saccades as the most prominent eye movements in complex dynamic
naturalistic scenes. To this end, we here presented methods based on off-
the-shelf algorithms and modelling techniques that can handle the noisy
and unstructured nature of motion and eye tracking data coming from
scanner recordings, when dynamic natural scenes are used as stimuli. Our
main results are in line with previous studies showing activations in the
MTþ/V5 area during SP, when SP and saccades were modelled sepa-
rately. When an additional regressor representing motion content of the
stimulus was included in the model, specific attention-related areas were
identified, while some other brain areas (including MTþ/V5) fell below
the significance threshold due to the similar SP and motion evoked BOLD
mean effects. These results were shown to be robust in a simple cross-
validation procedure (see Supplementary Material and Fig. S1).

4.1. Validity of eye movement classification

The MOSP algorithm that we used for automatic eye movement
detection has previously achieved state-of-the-art performance in a
manually annotated data set (Startsev et al., 2016). To ensure that the
MOSP algorithm returned high quality output in the studyforrest data set,
we manually tuned its parameters based on visual inspection of a small
portion of the results. A full manual annotation of a data set as big as the
studyforrest (ca. 30 h) was not feasible given the fact that it takes
approximately 15 s to label 1 s of gaze, and multiple annotators are
needed for best results (Startsev et al., 2019).

4.2. Validity of algorithms defining motion content

A potential weak point in using motion estimation algorithms to
define motion content of a stimulus is the fact, that they tend to give
noisy results. For that reason, we validated the presented results by using
two different motion estimation algorithms (Barth, 2000; Revaud et al.,
2015). In both cases the identified brain activations were comparable,
underlining the validity of our approach. In the second analysis of our
study, we were interested in specifically identifying what drives SP in
humans in the presence of motion. To this end, we used the mean frame
motion as an approximation to background motion. However, there exist
many other ways of modellingmotion andwe investigated two of them in
more detail. In the first approach we modelled motion in a five degree



Fig. 5. Mean effects of SP and saccade when motion is included in the model, and the mean effect of motion itself, with pFWE < 0.05 with initial threshold of p <

0.001. a) SP-related activations span bilaterally the visual areas of the brain (kE ¼ 3706, including the MTþ/V5) and bilaterally the middle cingulate expanding to the
precuneus (kE ¼ 605) b) Saccade-related activations span bilaterally the visual areas of the brain up to precuneus (kE ¼ 7715) c) Motion-related activations span
bilaterally the visual areas of the brain (including the MTþ/V5) and extend up to the middle cingulate and precuneus (kE ¼ 10876). Also negative activations exist
bilaterally in the cortex lining the superior temporal sulcus (right: kE ¼ 456, left: kE ¼ 450), the temporo-parietal junction (right: kE ¼ 118, left: kE ¼ 242), and the
supplementary motor area (kE ¼ 304).

Fig. 6. Activations for SP > motion contrast with the motion regressor
computed with EpicFlow and pFWE < 0.05 with initial threshold of 0.001. Ac-
tivations appear in the right superior and middle temporal gyri (posterior and
anterior STS) (kE ¼ 536, peak xyz: 60, �55, 26) and in the left middle temporal
gyrus (posterior STS) (kE ¼ 194, peak xyz: �60, �28, 11), bilaterally in the
precuneus (kE ¼ 102, peak xyz: 6, �58, 35), and bilaterally in the supplementary
eye field (kE ¼ 177, peak xyz: �6, 11, 62).
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window around each gaze position. In the second approach we aimed at
decorrelating the two regressors by modelling retinal motion. For this
purpose, we subtracted the SP velocity (speed and direction) from the
motion velocity in the same window and then used the magnitude of the
resulting vector in our model. The resulting activations, while qualita-
tively similar, were weaker for both approaches in their extent and in-
tensity. This can be partially attributed to the fact that in both of these
approaches the correlation between the motion and SP regressors was
higher than when only mean frame motion was used (window r ¼ 0.21,
window - SP velocity r ¼ 0.51 vs. mean frame r ¼ 0.18). The changes in
the correlation values can be attributed to many factors. Generally the
noisy results of motion estimation algorithms may become even noisier
as we use the mean of a smaller window instead of the full frame. Also the
reported gaze can be noisy and oftentimes has spatial offsets, which can
result in missing completely or partially the moving target in the motion
computation. As a result, SP velocity disproportionately influences the
result of its subtraction from the window motion and thus returns higher
correlation values. A similar effect appears with targets of very small size.
It should be noted that the reported gaze position from the eye tracker
was much noisier in the scanner than in the lab: the median dispersion of
25 ms windows of gaze data was 31 pixels in the scanner vs. 10 pixels in
the lab for the studyforrest data set.
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4.3. Brain areas related to variance in smooth pursuit

The contrast of SP > saccade with only the SP and saccade regressors
included in the first level design matrix revealed activations in middle
cingulate and precuneus, which have been previously associated with SP
eye movement control (Tanabe et al., 2002; Kimmig et al., 2008) and
visuo-spatial processing (Berman et al., 1999; Cavanna and Trimble,
2006). Additionally, this contrast yielded higher activation during SP
than saccades related to the rTPJ, an area that is involved in guidance
towards unattended areas (Corbetta et al., 2000; Wu et al., 2015; Mars-
man et al., 2016). Most importantly, this contrast revealed bilateral ac-
tivations related to area MTþ/V5, which is regarded a core motion
processing area and has been associated with SP eye movements in
previous studies (Kimmig et al., 2008; Petit and Haxby, 1999; Lencer and
Peter, 2008; Nagel et al., 2006; Ohlendorf et al., 2010; Marsman et al.,
2016). Notably, the MTþ/V5 area became non-significant in the same
contrast when a third regressor modelling the overall stimulus motion
was added. This may be best explained by the fact that the variance of the
BOLD response in this area was now shared between two regressors (SP
and motion) instead of one (Ohlendorf et al., 2010), as can be seen from
the mean effect of SP and motion in Fig. 5a and c. This demonstrates the
difficulty in finding a single source of activation in natural scenes where
many different factors may provoke activation of a specific area, and a
complete disentanglement of such confounds may prove elusive.

4.4. Benefits of considering motion content in the model

Adding motion as a regressor to the model allowed us to identify SP-
related activations that were not per se driven by the overall motion of
the stimulus (Fig. 5a). Interestingly, motion itself additionally resulted in
negative effects related to STS and SEF areas. Thus, when directly con-
trasting SP > motion, these two areas together with the precuneus
occurred as being significantly stronger activated during SP than by
motion content alone (Fig. 6). STS is considered a hub for information
processing including the processing of biological motion (Saygin, 2007;
Jastorff and Orban, 2009; Grossman et al., 2010) as well as processing of
faces in situations requiring social cognition (Allison et al., 2000; Hoff-
man and Haxby, 2000; Lahnakoski et al., 2012). In line with this model,
inhibiting STS activity by transcranial magnetic stimulation (TMS)
resulted in difficulties perceiving biological motion (Grossman et al.,
2005). Also, reduced activity in the STS (Freitag et al., 2008; Alaerts
et al., 2014) has been associated with difficulties in understanding bio-
logical motion and emotional content in autism spectrum disorder pa-
tients (Hubert et al., 2007; Nackaerts et al., 2012; Alaerts et al., 2014).
SEF activations have been associated with anticipatory eye movements,
even in situations with invisible targets, reflecting cognitive input to
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smooth pursuit planning independent from visual input (Lencer et al.,
2004; Missal and Heinen, 2004; Ohlendorf et al., 2010).

When interpreting our finding related to motion content, it should be
considered that our motion regressor was based on a low-level account of
pixel-wise motion energy which might have failed to capture semantic
properties of natural scenes. Thus, high values of motion content from
our analyses were related to background and camera motion, which are
both extensively used in professionally shot cinematic videos (Cutting
et al., 2011), see Supplementary Material and Fig. S2. In contrast, moving
mid-sized objects, i.e. socially meaningful targets, were linked to low
motion content values. Thus, irrelevant motion modelled by our motion
content regressor may have led to the observed negative activations
bilaterally in the STS and the SEF unless SP to a meaningful target was
performed.

Given the current rapid pace of progress in computer vision algo-
rithms for high-level scene segmentation and understanding (Sevilla-Lara
et al., 2016; Zhang et al., 2018), more complex modelling of the se-
mantics of different types of motion information might enable a more
fine-grained analysis of such effects in the future. Moreover, a correlation
analysis as the one performed by (Hasson et al., 2004) could offer further
insights into how each brain area relates to the scene flow and its se-
mantic content.

4.5. Considering additional possible confounds

To at least partially alleviate the potential confounds of the motion
energy analysis, we included additional regressors modelling basic video
characteristics. In two control experiments, we modelled scene
complexity based on saliency and edge density as attention-grabbing
parameters in order to test whether these parameters interfere with the
activations related to SP and motion content. In both cases, the mean
effect of the validation regressor showed significant activations in some
very small clusters (approx. 150–300 voxels overall in the posterior part
of the brain and mostly in the visual cortex), but did not influence the
activations regarding the main contrasts of interest. From these obser-
vations, we conclude that the eye movement planning processes are
predominantly driven by the underlying motion based on the way we
modelled each characteristic. However, a more exhaustive search of all
the potential parameters and modelling techniques may be required in
future studies of SP in dynamic natural scenes.

4.6. Lack of associations with frontal eye fields under natural viewing
conditions

We did not identify any activations related to the frontal eye fields
(FEF) which have been described to be involved in planning and
execution of both SP and saccades (MacAvoy et al., 1991; Berman et al.,
1999; Gagnon et al., 2006; Kimmig et al., 2008). One possible explana-
tion might be that in typical experiments, participants switch between
baseline periods of prolonged fixation and e.g. dot following or scene
viewing. Instead, in the data set used here, participants were likely to
constantly engage in some form of eye movement planning during
continuous movie viewing, which is more representative of real-world
viewing behaviour. Therefore, the variance of e.g. saccades in consecu-
tive 2-s windows may not have been sufficient to identify all
saccade-related activations, including FEF. Another limiting factor may
be the small size of the FEF regions and the big variance in their reported
location (Vernet et al., 2014) along with their activation being dependent
on specific experimental conditions and instructions (Lencer et al., 2004).

5. Conclusions

In this study, we demonstrate brain networks specifically related to
the often-overlooked smooth pursuit eye movements in complex dy-
namic naturalistic scenes. Our findings underline the notion that special
care has to be taken to model variance across subjects, within subjects,
9

and for different eye movement types. We also identified some of the
confounds which arise from the semantic variation in movie content and
which cannot be captured by a low-level image-based analysis alone.
Nevertheless, our results show that findings from previous research with
impoverished synthetic scenes can be qualitatively confirmed for highly
complex, ecologically valid naturalistic stimuli.
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