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Interactions between their transmembrane domains (TMDs) frequently support the assembly of single-
pass membrane proteins to non-covalent complexes. Yet, the TMD-TMD interactome remains largely
uncharted. With a view to predicting homotypic TMD-TMD interfaces from primary structure, we per-
formed a systematic analysis of their physical and evolutionary properties. To this end, we generated a
dataset of 50 self-interacting TMDs. This dataset contains interfaces of nine TMDs from bitopic human
proteins (Ire1, Armcx6, Tie1, ATP1B1, PTPRO, PTPRU, PTPRG, DDR1, and Siglec7) that were experimentally
identified here and combined with literature data. We show that interfacial residues of these homotypic
TMD-TMD interfaces tend to be more conserved, coevolved and polar than non-interfacial residues.
Further, we suggest for the first time that interface positions are deficient in b-branched residues, and
likely to be located deep in the hydrophobic core of the membrane. Overrepresentation of the GxxxG
motif at interfaces is strong, but that of (small)xxx(small) motifs is weak. The multiplicity of these fea-
tures and the individual character of TMD-TMD interfaces, as uncovered here, prompted us to train a
machine learning algorithm. The resulting prediction method, THOIPA (www.thoipa.org), excels in the
prediction of key interface residues from evolutionary sequence data.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Bitopic (single-pass) proteins make up ~40% of all integral
membrane proteins in mammals [1]. Sequence-specific interac-
tions between their transmembrane domains (TMDs) frequently
contribute to the formation of homomeric or heteromeric dimers
or multimers in cellular membranes, with consequences for the
functionalities of these proteins.

Currently, the structures of only ~20 TM homodimers have been
solved by NMR spectroscopy and X-ray crystallography [2–4], and
some of these have homologous sequences. Other TMD-TMD inter-
faces have been characterised in a biological membrane using
methods which we collectively term E. coli TM reporter assay
(ETRA) techniques, such as the ToxR assay [5], TOXCAT [6], the
recently developed dsTbL [7] or the GALLEX assay [8]. In combina-
tion with scanning mutagenesis, these assays have exhaustively
explored several additional TM helix-helix interfaces. There are
many reports where limited mutagenesis has provided sparse
information on interface residues. Most TMD-TMD interfaces
remain unexplored.

To close the gap between the numbers of well characterised
TMD-TMD interfaces and the unknown ones, various methods
have been devised previously to predict them from primary
structure. These approaches rest on the known structural and evo-
lutionary properties of TMD-TMD interfaces. These properties have
been primarily derived from polytopic proteins where heterotypic
TMD-TMD interactions support folding. Combined structural and
bioinformatic approaches have shown that the TMD-TMD interfa-
cial (i.e. buried) residues are generally more conserved and more
polar than lipid-facing residues [9–12]. Further, sequence coevolu-
tion, also known as covariance or evolutionary couplings, is an
indicator of contacting residues in both soluble and membrane
proteins [13–16]. TMD-TMD interfaces are generally well packed
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and display a preference for small residues such as Gly, Ala, Ser and
Cys [11,12,17]. These residues are thought to contribute to helix-
helix interaction by supporting Van der Waals interactions and
by allowing for inter-helical Ca H-bonding [18–20]. In comparison
to the relatively abundant information on polytopic membrane
protein folding, the factors stabilising homotypic TMD-TMD inter-
faces in non-covalent membrane protein assembly are less under-
stood, and rest on a few case studies. These have emphasised the
role of simple sequence motifs, including GxxxG and (small)xxx
(small) motifs (small = Gly, Ala, Ser and Cys) [5,21–26]. The GxxxG
motif is also a dominant feature of many artificial TMDs selected
for self-affinity [27–33]. These motifs are overrepresented in
TMD sequences [34]. Their overabundance at natural homotypic
TMD interfaces is often assumed but has never been proven via
statistical analyses. Based on case studies alone, the presence of
these motifs is often assumed to indicate self-interaction or the
presence of an interface. As a consequence, motifs are usually the
first residues to be targeted in mutagenesis experiments [35–39].
There is a strong need for statistical analyses to objectively define
the importance of these motifs and other sequence properties in
homotypic TMD interaction. A major impediment is the lack of
appropriate data.

There are several automated methods that identify TMD
homodimer structures from TMD sequences alone using energy
functions: PREDDIMER [40,41], CATM [42], EFDOCK-TM [43],
TMDOCK [44], TMDIM [45], and TMHOP [46]. The PREDDIMER
algorithm works by establishing the maximal complementarity
of hydrophobic or hydrophilic surfaces of TMD homodimers. This
is followed by geometry optimisation and structure refinement.
CATM is a specialised method that is only applicable to dimers dri-
ven by (small)xxx(small) motifs. The EFDOCK-TM prediction pipe-
line incorporates evolutionary data based on the output of the LIPS
algorithm [47] and also coevolution scores. LIPS was originally
designed to predict lipid-facing residues in polytopic proteins
and can identify a helix face with high conservation and polarity.
EFDOCK-TM then identifies residue pairs via ‘‘evolutionary con-
straints”, as derived from sequence coevolution in the LIPS inter-
face. Random combinations of evolutionary constraints are finally
used to guide modelling via Rosetta membrane [48]. The TMDOCK
algorithm threads a target amino acid sequence through several
structural templates, followed by local energy minimisation.
TMHOP utilises an experimentally determined hydrophobicity
scale and ROSETTA modelling; it is a purely energy-based predictor
and can also predict higher-order oligomers.

As yet, none of the above predictors incorporate any machine-
learning components for contact or interface recognition from evo-
lutionary data. Machine learning predictors are available for
related problems including the prediction of contacting residues
within folded polytopic proteins [16,49], and the prediction of
homodimer interface residues of membrane proteins based on a
submitted protein structure [49–51]. Unfortunately, the latter
algorithms are not applicable to self-interacting TMDs of bitopic
proteins, for which structures are rarely available.

There is a strong need for algorithms that help identify putative
homotypic TM interface residues, in order to guide experimental
approaches. The current generation of energy-based predictors is
poorly suited to this task, due to several key challenges. Firstly,
there are only a few well-characterised homotypic TMD-TMD
dimer structures by which the above algorithms have been vali-
dated. Secondly, rather than reproducing residue-residue contacts,
validation has been conducted using the Ca root mean square devi-
ation (RMSD) for all [40–42,44] or subsets [43] of TMD residues. In
other cases, interface prediction has been validated using a ‘‘per-
centage of native contacts” method [43] that may be biased by fac-
tors such as the length of TMD or percentage of interface residues,
and does not specify the improvement above a random selection.
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While the validation of protein–protein interaction (PPI) site pre-
dictions for soluble proteins has been standardised in the Critical
Assessment of PRediction of Interactions (CAPRI) initiative
[52,53], there are no such guidelines for membrane proteins, nor
have comparative assessments of predictive success been con-
ducted. Thirdly, each of the above prediction algorithms generates
an ensemble of possible dimer structures, which the user must
interpret subjectively. As we have commented previously [36],
wetlab researchers typically identify potential TMD interface resi-
dues in a subjective manner based on simple sequence-motifs (e.g.
GxxxG) and/or sequence conservation, rather than the output of
energy-based prediction algorithms. Taken together, the chal-
lenges in the automated prediction of homotypic TMD interfaces
remain daunting, even without considering the complex effects
of cellular location, membrane properties, membrane inhomo-
geneity, attached soluble domains, or the interfering presence of
other proteins.

Here, we generated and characterised a comprehensive dataset
of 50 homotypic TMD interfaces. We show that interface residues
tend to exhibit higher conservation, polarity, coevolution and
depth in the bilayer, and a lower proportion of b-branched resi-
dues. We also affirm the predictive power of the known helix-
helix interaction motif, GxxxG. We then created Transmembrane
HOmodimer Interface Prediction Algorithm (THOIPA), a machine-
learning-based method that compares favourably in its ability to
predict TMD homodimer interfaces from primary structure.
2. Results

The aims of this study are laid out in Fig. 1. First, we assembled
a set of 50 well-characterised interfaces from a broad range of self-
interacting TM helices (Table 1). The full homotypic TMD dataset
comprises 21 TMDs investigated by ETRA techniques, 8 TMDs
investigated by NMR and 21 TMDs from structure databases that
were mostly investigated by X-ray crystallography. Second, a
quantitative analysis of interface residue properties was con-
ducted. Third, we developed THOIPA and compared its perfor-
mance to TMDOCK and PREDDIMER.
2.1. The ETRA dataset of TMDs self-interacting in a membrane

Nine novel non-homologous interfaces were determined exper-
imentally in this study, using scanning mutagenesis in combina-
tion with the ToxR assay (proteins shown in bold in Table 1,
Fig. S1). The nine TMDs included two receptor tyrosine kinases
(DDR1, Tie1), three receptor tyrosine phosphatases (PTPRU, PTPRG,
PTPRO), and four other human TMDs of unrelated protein families
(Siglec7, Armcx6, ATP1B1, and Ire1). All have a high level of self-
affinity. In the ToxR assay, the mean level of affinity was 153% of
the well characterised high-affinity Glycophorin A TMD, GpA [5].
To identify interface residues, we tested the effects of 263 muta-
tions at 203 positions (29 mutations per TMD, Fig. S2), mostly to
Ala (160 mutations) or Ile (51 mutations).

A detailed assessment of these nine TMD interfaces is available
in Text S2. They include three that are dominated by (small)xxx
(small) motifs (siglec7, Armcx6), one dependent on a key aromatic
residue (Ire1) and two dependent on aliphatic residues (DDR1,
PTPRO). For Ire1, our data independently corroborates the key role
of W457 as proposed in a recent functional study [54]. The remain-
ing interfaces were more difficult to classify, being composed of a
mixture of small and aliphatic residues (PTPRU, PTPRG), or a mix-
ture of small, aromatic, and strongly polar residues (ATP1B1). For
DDR1 and ATP1B1 (Na/K-ATPase b subunit), some interfacial resi-
dues had previously been proposed after limited mutagenesis.
We confirm that the DDR1 interface relies on a Leu/Ile-rich ‘‘leu-



Fig. 1. Overview of dataset creation, feature extraction, and interface prediction.
Dataset creation: The interface residues of 9 self-interacting TMDs were obtained
by experimental analysis in this study using ToxR, an E. coli TM reporter assay
(ETRA) technique. Other homotypic TM interfaces investigated by ETRA, NMR, and
structural techniques were derived from literature or structure databases. Data
from these sources were normalised and combined to form a single dataset derived
from 50 non-homologous, self-interacting TMDs. Feature extraction: For each
interface or non-interface residue in each of the 50 TMDs, we extracted features
(properties) based on conservation, polarity, co-evolution, and depth in the bilayer.
To determine which of these features are associated with homotypic TMD
interaction, we compared their values between interface and non-interface residues
for all residues in the homotypic TMD dataset. The features comprise the input for a
machine-learning algorithm to predict homotypic TM interface residues. Interface
prediction: The dataset was split into train data and test data. The train data was
used for machine learning, yielding THOIPA. Interface prediction was validated for
THOIPA, as well as the automated structural predictors TMDOCK and PREDDIMER.
For TMDOCK and PREDDIMER, we extracted the predicted interface residues from
the top-ranked 3D dimer structure.

Y. Xiao, B. Zeng, N. Berner et al. Computational and Structural Biotechnology Journal 18 (2020) 3230–3242
cine zipper” motif [37,55]. We determined the interface not only of
DDR1, but also its homologue DDR2 [37], to whom it shared 71%
identity in the TMD region. Scanning mutagenesis of DDR2
revealed a highly similar interface to DDR1 (Fig. S3). This confirms
the evolutionary conservation of TMD interfaces, which in turn
emphasises the importance of using non-redundant datasets for
statistical and machine-learning analyses. We therefore excluded
DDR2 from the overall dataset for analysis. For ATP1B1 we confirm
that the interface includes a GxxxG motif, as previously proposed
by Barwe et al. [38].

We then combined the experimental data from this study and
from the literature (Table 1) to create the complete ETRA dataset
that includes 21 TMDs, with data from 862 mutations at 432 posi-
tions (Fig. S2). For each mutation, we calculated the disruption to
dimerisation [35] as described in themethods. Disruption is positive
for mutations that decrease dimerisation, and negative for muta-
tions that increase dimerisation [66]. A cut-off value for disruption
was then chosen to define interface and non-interface residues in
all TMDs. Since there is no precedent, and the data from different
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studieswas quite heterogeneous, we used a cut-off value (0.24) that
yielded 3–10 interface residues for each TMD. At this cut-off, the
mean number of interface residues in each TMDwas 5.2, and inter-
face residues comprised 21% of the total (Fig. S4A). Summing up the
numbers of interface residues at eachposition for all 21 TMDs shows
that they tend to follow a pattern of a-helical periodicity and accu-
mulate at the centre of the TMDs (Fig. S4B).

2.2. Creation of the complete homotypic TMD dataset

We combined the ETRA dataset with homotypic interfaces
derived from NMR and X-ray structures. The NMR dataset con-
sisted of TMD dimers from literature, after removing redundant
sequences as well as three TMDs already investigated by ETRA
techniques (GpA, BNIP3, and ErbB2). For GpA and ErbB2 the
study of Elazar [7] supplied the interface residues with unprece-
dented precision, based on over 100 mutations in each TMD, and
where the effect of each mutation on dimerisation was tested in
a natural membrane environment. Although many more high-
quality NMR analyses of dimers were available, the TMD
sequences all showed strong sequence homology to an existing
TMD in the dataset and could not be included. The self-
interacting TMDs of bitopic proteins examined by ETRA and
NMR studies (29 in total) were deemed insufficient for an exten-
sive analysis of interface residue properties. A third dataset was
therefore created by identifying 21 self-interacting and parallel
TM helices derived from the structural database PDBTM [67]. This
‘‘X-ray” dataset was primarily derived from experimental crystal
structures but included three high-resolution structures derived
from electron microscopy. Most TMDs in the X-ray dataset corre-
spond to identical TMDs from polytopic subunits whose interac-
tion supports the latter’s non-covalent homo-oligomerisation. The
X-ray dataset also contains two bitopic proteins (TMDs 32 and
34, Table 1). Interface residues in the NMR and X-ray structures
were then defined using a 3.5 Å cut-off in closest heavy-atom
distance. In all datasets, interfaces were found to follow an a-
helical pattern (Fig. S5).

In total, the database of 50 TMDs contains 1091 residues, of
which 304 are interface residues and 787 are non-interface resi-
dues (mean = 6.1 interface residues per dimer, equivalent to 28%
of the total residues). The complete dataset is non-redundant at
the 20% and 40% amino acid identity level for the full-length and
TMD sequences, respectively. The structural TMD dimers show a
high level of symmetry. In the NMR and X-ray structures, 25%
and 27% of the interface residues contact the same residue (i,i con-
tact) or a direct neighbour (i,i + 1) in the opposite chain (Fig. S6),
respectively.

2.3. Interface residues tend to be conserved, polar, coevolved, and
centrally located

The evolutionary conservation of residues was calculated from
multiple sequence alignments (MSAs) against homologues. For
interfacial residues, the average conservation is significantly higher
than that of their non-interface counterparts (Fig. 2A, p < 0.00001,
Student’s t-test). Note that the conservation data and most other
data examined herein had a non-normal distribution. To obtain
more accurate estimations of statistical significance, all p-values
in this study were calculated using bootstrapped data. The strong
difference in conservation between interface and non-interface
residues shows that interfaces are less likely to change during evo-
lution than the remainder of a TMD. Although this finding seems
intuitive, it contrasts with studies of PPI interfaces in soluble pro-
teins, where a higher conservation at interfaces has been disputed
[68], and may only exist in selected conditions [69]. We also found
that the interface residues are distinguished by high polarity rela-



Table 1
Interface residues of the homotypic TMD dataset.

# Protein (acca) [ref] TMD sequenceb

ETRA TMDs
1 Ire1 (O75460)f ATIILSTFLLIGWVAFIITY

2 ATP1B1 (P05026) [38]f LLFYVIFYGCLAGIFIGTIQVMLLTI

3 PTPRG (P23470) [39] IIPLIVVSALTFVCLILLIAVLV

4 Tie1 (P35590) [37] LILAVVGSVSATCLTILAALLTLV

5 DDR1 (Q08345) [37] ILIGCLVAIILLLLLIIALML

6 PTPRO (Q16827) [39] VVVISVLAILSTLLIGLLLVTLIIL

7 Armcx6 (Q7L4S7) [35] REVGWMAAGLMIGAGACYCV

8 PTPRU (Q92729) [39] LILGICAGGLAVLILLLGAIIVII

9 Siglec7 (Q9Y286) [35] VLLGAVGGAGATALVFLSFC

10 GpA (P02724) [7] LIIFGVMAGVIGTIL

11 ErbB2 (P04626) [7,56] LTSIISAVVGILLVVVLGVVFGIL

12 ITGB3 (P05106) [57] VLLSVMGAILLIGLAALLI

13 ITGA2B (P08514) [58]f WVLVGVLGGLLLLTILVLAMW

14 FtsB (P0A6S5) [59] TLLLLAILVWLQYSLWF

15 GP1BB (P13224) [60] GALAAQLALLGLGLLHALLL

16 MPZ (P25189) [61] YGVVLGAVIGGVLGVVLLLLLLFYVV

17 PTPRJ (Q12913) [39] ICGAVFGCIFGALVIVTVGG

18 BNIP3 (Q12983) [62]f LLSHLLAIGLGIYIG

19 QSOX2 (Q6ZRP7) [63] CVVLYVASSLFLMVMY

20 ADCK3 (Q8NI60) [64] LANFGGLAVGLGFGALA

21 NS4A (Q99IB8) [65] TWVLAGGVLAAVAAYCLAT

NMR TMDs
22 CD3ff (P20963, 2hac)f LCYLLDGILFIYGVILTALFL

23 EphA1 (P21709, 2k1k) IVAVIFGLLLGAALLLGILVF

24 TYROBP (O43914, 2l34) LAGIVMGDLVLTVLIALAVYFL

25 APP (P05067, 2loh) AIIGLMVGGVVIATVIVITLVML

26 PDGFRB (P09619, 2l6w) VVVISAILALVVLTIISLIILIMLW

27 FGFR3 (P22607, 2lzl) VYAGILSYGVGFFLFILVVAAVTLC

28 TLR3 (O15455, 2mk9)f FFMINTSILLIFIFIVLL

29 DR5 (O14763, 6nhw) SGIIIGVTVAAVVLIVAVFVCKSLL

X-ray TMDs
30 KvAP (P01837, 1orqC4) GKVIGIAVMLTGISALTLLIGTVSNMFQ

31 Bacteriorhodopsin (Q8YSC4, 1xioA4) GFLMSTQIVVITSGLIADL

32 PSII-M (Q8DHA7, 2axtM1)d ATALFVLVPSVFLIILYV

33 Mgst1 (P08011, 2h8aA2) HLNDLENIVPFLGIGLLYSL

34 Wza (Q9X4B7, 2j58A1)fd SQLVPTISGVHDMTETVRYI

35 p2X purinoceptor (Q6NYR1, 3h9vA2) KFNIIPTLLNIGAGLALLGLVNVICDWIV

36 GluCl a (G5EBR3, 3rifA2) IPARVTLGVTTLLTMTAQSAGIN

37 KCNJ12 (F1NHE9, 3spcA2) PLAVFMVVVQSIVGCIIDSFMIGAIMAKM

38 fn ATPase F0 c-ring (Q8RGD7, 3zk1A1)f LGCSAVGAGLAMIAGLGPGIGEG

39 CRCM1 (Q9U6B8, 4hksA1) SWTSALLSGFAMVAMVE

40 CorA (Q9WZ31, 4i0uA1) TIIATIFMPLTFIAGIYGMNF

41 pntAB (Q72GR9, 4o9pC1) WSALYIFVLTAFLGYEL

42 AbgT (Q0VR69, 4r0cA7) ITAMEVTMASMAGYLVLMFFAAQFVAWF

43 TspO (Q81BL7, 4ryiA2)f PGMTIGMIWAVLFGLIALSVA

44 TMEM16 (C7Z7K1, 4wisA1) LKAWGLLLSILFAEHFYLVVQLAVR

45 Trpv1 (O35433, 5irzD6)e KAVFIILLLAYVILTYILLLNMLIALM

46 CRCB TM1 (Q7VYU0, 5nkqA1)f FIAIGIGATLGAWLRWVLG

47 CRCB TM3 (Q7VYU1, 5nkqA3) AAVTGFLGGLTTFSTFSAETV

48 PC2 (Q13563, 5t4dA6)e RVLGPIYFTTFVFFMFFILLNMFLAIIN

49 BCNG-1 (O60741, 5u6oA6)e ITMLSMIVGATCYAMFVGHATALI

50 NadC (Q9KNE0, 5uldA9) WKEIQKTADWGILLLFGGGLCL

aAccession number (acc) from the UniProt database. The X-ray identification code (e.g. 1orqC4) consists of the PDB accession (e.g. 1orq), the protein chain (e.g. C), and the
TMD number in the protein (e.g. 4).
bHomotypic interface residues in the TMD sequences are underlined.
cBold text indicates new interfaces identified in the current study. In these cases, the reference indicates the ETRA study in which the TMD was first tested, rather than the
source of the mutagenesis data.
dTMDs in the X-ray dataset derived from bitopic proteins.
eTMD investigated by high-resolution electron microscopy.
fTMDs included in the blind test data for THOIPA validation.
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Fig. 2. Interface residues exhibit higher conservation, coevolution, relative polarity and depth in the bilayer than non-interface residues. (A) Conservation. (B) Relative
polarity. (C) Coevolution (DImax; see Text S1). (D) Depth in the bilayer. (E) Components of the violin plot. Statistical significance was measured using a bootstrapped t-test
(*, p<0.05. **, p<0.01).
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tive to the surrounding six residues (relative polarity, Fig. 2B;
p = 0.0014).

Although these are all true PPI interfaces, the importance of
conservation and polarity shown here is consistent with the known
importance of these factors for polytopic membrane protein fold-
ing [9–12,47].

Another feature that is a strong predictor of polytopic mem-
brane protein folding is residue coevolution [70,71]. On the
assumption that coevolution is also a predictor of PPI interfaces,
it has been previously suggested that residue coevolution can also
help predict homotypic TM interfaces [43]. Here, we tested a num-
ber of different measures of coevolution (Text S1) that do not
require a priori knowledge of the interface and are thus termed
‘‘predictive” measures. Briefly, pairwise mutual information (MI)
and direct information (DI) scores were calculated from multiple
sequence alignments (MSAs) using EVfold [14,70]. We then devel-
oped several different coevolution measures that comprised the
mean or maxima of different pairwise coevolution values. Note
that unlike the approach taken previously [43], we did not use
the pairwise coevolution values directly. For example, the coevolu-
tion measure ‘‘DImax” determines whether the residue-of-interest
has a very strong signal with some other (unspecified) residue in
the TMD. As another example, the ‘‘DImean” determines whether
the residue-of-interest has a high average coevolution with its
immediate neighbouring residues. The advantage of such
residue-specific rather than pair-specific coevolution values is that
they are easily incorporated into a machine-learning algorithm
that takes residue properties as an input. When both normalised
and raw values were taken into account, a total of 52 coevolution
measures were tested, of which DImax is used as an example in
the respective figures. DImax is simply the maximum coevolution
value between the residue of interest and all other residues in the
TMD. The DImax is typical of many DI coevolution features in that
it was slightly higher for interface residues in comparison to non-
interface residues (Fig. 2C, Student’s t-test, p = 0.031). Overall, 34 of
the 52 coevolution features differed significantly between interface
and non-interface residues (Student’s t-test, p <= 0.05, Table S1),
with the most significant difference seen for DItop4mean
(p = 0.0013). Typically, DI values were higher at interfaces, while
3234
MI values were lower (Table S1). This could reflect the fact that
the MI values are artificially low at positions of high conservation
(Fig. S7). We also noticed that MI values and their distribution in
the TMD were affected by the number of homologues (Fig. S8).
Due to these effects, it is difficult to compare DI and MI values
between different TMDs. We therefore normalised the DImax val-
ues in the statistical analyses. As detailed below, however, we
included both raw and normalised values of all coevolution fea-
tures in the initial machine-learning analysis.

A previous study compared DI values of pairs of known inter-
face residues and pairs of non-interface residues [43] (see:
Fig. S6A). Since this approach requires a priori knowledge of the
interface, we refer to it here as a ‘‘retrospective” coevolution anal-
ysis. We emphasise here that the metrics used for retrospective
analyses cannot be used for interface prediction. In a detailed anal-
ysis of retrospective coevolution (legend to Fig. S6), we found it dif-
ficult to confirm whether pairwise coevolution scores are higher
between interface residues than between non-interface residues
as previously described [43]. Instead, we found that the retrospec-
tive method used previously is biased by the non-random distribu-
tion of interface residues. Simply put, homotypic interfacial
residues are often neighbours (Fig. S6) and neighbouring residues
have high coevolution scores [14,70,72]. The coevolution of any
residues that are close to each other in the sequence (interface or
not) will always appear high, even if this group of ‘‘interface-
like” residues is chosen randomly (Fig. S6). In predictors of inter-
acting residues within polytopic membrane proteins, this effect is
avoided by focusing on ‘‘long-range” interactions between residues
that are spatially close in the 3D structure, but distant in sequence
[16]. For self-interacting TM helices there are no such long-range
interactions. Until a mathematical framework is developed to
remove the ‘‘neighbour effect,” the proposed higher coevolution
of interface residues in retrospective analyses can neither be pro-
ven nor disproven. In contrast, the predictive coevolution measures
used here are free of the neighbour effect, as they do not rely on a
particular distribution of interface residues. Therefore, the moder-
ately higher DI measures at interfaces shown here (Fig. 2C,
Table S1) provide the first evidence of enhanced coevolution
between homotypic TMD interface residues.
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Separate analyses of the ETRA, NMR, and X-ray sub-datasets
confirmed the general trends given in Fig. 2 (Fig. S9, Fig. S10).
We show that the preferential coevolution of interface residues is
strongest for TMDs of the X-ray dataset. We attribute this to the
relatively high number of available homologues (Fig. S11), a factor
known to improve the usefulness of coevolution values [14,70,73].
In fact, the bitopic proteins in the ETRA and NMR datasets often
contained few valid homologues (Fig. 3, Fig. S11), which presum-
ably increased the variability of all evolutionary features.

The large dataset of TMDs also helped offset the high variability
that we observed in the evolutionary data, possibly attributable to
the small number of valid homologues found for many TMDs of
bitopic proteins (Fig. 3, Fig. S11).

A new feature discovered in this study is that interfacial resi-
dues also tend to be located deeply in the membrane (Fig. 2D;
p = 0.002). The ‘‘depth in the bilayer” (feature name: residue_-
depth) has not previously been examined for homotypic TMD
interfaces. The importance of the depth in the bilayer was particu-
larly noticeable in the ETRA dataset (Fig. S4B), whose data were
sourced from experiments in a natural membrane environment.

A different way of presenting the data shown in Fig. 2 is to cal-
culate the percentages of TMDs where the mean value of a given
property is higher for interface vs. non-interface residues. This
method minimises the biases of TMD-specific variables such as
TMD lengths, overall conservation, and overall polarity. Accord-
ingly, the interface residues of most TMDs in the homotypic TMD
dataset had higher interface conservation, coevolution, relative
polarity and depth in the membrane than non-interface residues
of the same TMD (Fig. S10A). The situation is similar when the
sub-datasets were analysed separately (Fig. S10B). The results con-
firm the trends in Fig. 2 but highlight a strong individuality in
interface properties between different TMDs.

To understand this high variance, we examined the interface
residue properties of individual TMDs more closely. In one
approach, we calculate the correlations between the properties of
individual residues and their role at an interface, as defined by
the disruptive effect of mutations on self-interaction (Fig. 3). We
restricted this analysis to the ETRA dataset because the disruption
by mutation provides a graded and more direct measure of residue
importance than the heavy-atom distances used to classify inter-
Fig. 3. The properties of interfaces are highly TMD-specific. Data is shown for the ETR
importance for self-affinity (i.e. disruption) and the relevant residue property, within t
direction of the correlation. The number of valid homologues in the respective MSA and
graph. Note that the TMDs of the ETRA dataset tended to have few homologues (Fig. S11)
of interfaces.
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face residues from NMR and X-ray structures. The results confirm
a strong variability in interface residue properties between differ-
ent TMDs. Most correlation coefficients are positive, confirming
the overall trends established in Fig. 2. In another approach, we
compared the average values of residue properties for interface
and non-interface residues for individual TMDs. Evidently, some
interfaces display highly elevated values, while interface/non-
interface differences are small in other cases or even inverted
(Fig. S12). We also visualise properties of individual interface resi-
dues in heatmaps for each TMD (Fig. S13) which confirms the dif-
ferential contributions of conservation, coevolution and relative
polarity to TMD-TMD interfaces of different biological functions.

2.4. Gly, GxxxG motifs, and strongly polar amino acids are over-
represented at interfaces

The residues Gly, strongly polar residues (Asp, Glu, Lys, Arg, Asn,
Gln, His), Leu, and Met were found to be enriched at interfaces
(Fig. 4). The enrichment of strongly polar and Gly residues is most
pronounced for interfaces of the ETRA dataset (Fig. S14).

It has been long speculated that GxxxG motifs are over-
represented at homotypic TMD interfaces. This hypothesis is based
on early studies that firstly showed that the GxxxG motif drives
GpA dimerisation [24], and furthermore that the GxxxG motif is
found in single-pass proteins far more often than expected by
chance [34]. Our dataset was no exception. GxxxG motifs were
indeed more abundant in the TMDs than would be expected based
on the percentage of Gly residues (Fig. 5A). However, we show for
the first time that GxxxG motifs are also more abundant at homo-
typic TMD interfaces than would be expected by random chance
(Fig. 5B). Of all GxxxGmotifs, 63% are interfacial, which is far above
the proportion expected by chance (15%, Fig. 5B). On the other
hand, the usefulness of the GxxxG motif as a general predictor of
self-interaction or interface location is clearly limited. Most TMDs
do not contain the motif. Furthermore, half of the GxxxG motifs in
our dataset are not found at the interface, consistent with many
case studies where the motif did not support TMD-TMD interaction
[36,74]. Enrichment of the GxxxG motif at interfaces is seen to a
greater or lesser extent in TMDs of all subsets, whether investi-
gated by ETRA, NMR, or X-ray crystallography techniques
A dataset. The correlation co-efficient (R) indicates the relationship between the
he data for that TMD. R values are shown rather than R2, in order to indicate the
the relative affinity of the wildtype homodimer is shown in the lower section of the
. As a result, coevolution (e.g. DImax, shown here) tended not to be highly indicative



Fig. 4. Interfaces are enriched in Gly, strongly polar residues, and Met, and are
deficient in Val, Ala, and Phe. An analysis of the residues in the homotypic TMD
dataset was conducted to detect the enrichment of particular residues at interfaces
(black bars). The strongly polar residue types (sp = Asp, Glu, Lys, Arg, Asn, Gln, and
His) were combined, due to lack of data when analysed individually. The residue
enrichment at the interface equals the proportion of the residue type at interfacial
positions, divided by the proportion of the residue type within all TMD sequences.
In this analysis, residues with values much larger than 1.0 (e.g. Gly) are proposed to
be enriched at interfaces, and therefore to drive homotypic TMD interactions.
Residues with values much lower than 1.0 (e.g. Val) have a lower than expected
abundance at interfaces, and therefore do not typically drive TMD interactions.
Residues with values close to 1.0 are neither over- nor under-represented, and
therefore drive TMD interactions no more than expected based on their abundance
in the TMDs. The accuracy of this analysis is heavily dependent on the amount of
data available for each residue, represented by the overall propensity in the TMDs
(blue line and also bar-chart width). Strong conclusions should only be drawn for
residues with a high overall propensity.

A B

Fig. 5. The GxxxG motif is not only overrepresented in TMDs, but also at interfaces.
(A) Motif abundance in the TMD sequences of the homotypic TMD dataset. The
higher value (black) in comparison to random (grey) shows that GxxxG and (small)
xxx(small) motifs are more abundant than expected based on the proportion of
these residues in the sequences. (B) Motif abundance at the experimentally
determined interfaces of the homotypic TMD dataset. The bar shows the percentage
of motifs where both residues reside at the interface. The much higher value (black)
in comparison to random (grey) shows that GxxxG motifs are found at interfaces at
a much higher rate than expected by chance and are powerful drivers of homotypic
TMD interaction. This trend was much weaker for (small)xxx(small) motifs, which
include GxxxG motifs. This finding suggests that (small)xxx(small) motifs in general
are not a powerful indicator of homotypic interfaces of natural TMDs, and that
much of their abundance at interfaces can be attributed to glycines or the GxxxG
motif. To obtain the abundances expected by chance, random sequences were
created with the same amino acid propensity and length as each original sequence.
The mean result for 100 randomised sequences is shown. Values higher than in the
randomised control show that the motif is overrepresented.
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(Fig. S15). The overabundance of GxxxG motifs in the interfaces of
the X-ray dataset is especially important, because these self-
interacting helices were chosen without any human bias towards
the presence of the motif. In contrast, the literature suggests that
some TMDs were chosen for previous ToxR or NMR analysis par-
tially due to the presence of the GxxxG motif. Interestingly, the
more inclusive (small)xxx(small) motif exists within 76% of our
sequences but is barely overrepresented in TMD sequences
(Fig. 5A) or at their interfaces (Fig. 5B).

Consistent with the preeminent role of Gly at interfaces,
sequence positions that are occupied by Gly TMD tend to be con-
served, polar, co-evolved and located deep in the membrane
(Fig. S16).

2.5. Development of THOIPA for interface prediction

Experimental investigation of self-interacting TMDs is difficult.
In many studies, the available resources were sufficient to test the
role of only a few selected residues in the interaction. There is
therefore a strong need for algorithms to help predict such key
residues, and to assist in the modelling of putative TM homodimer
structures. We therefore developed a Transmembrane HOmodimer
Interface Prediction Algorithm (THOIPA), which was trained as a
classifier to predict the ‘‘interface” or ‘‘non-interface” designation
of the residues derived from the homotypic TMD dataset.
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THOIPA uses extremely randomised trees [75], an ensemble
technique similar to a random forest. As input, THOIPA requires
only the sequences of the TMD and of the full-length protein.
As there are no other quantitative studies showing which residue
features are important for homotypic TMD interfaces, we gath-
ered a number of features that might be useful, including the pro-
portion of each amino acid in MSAs against homologues (position
specific scoring matrix, PSSM), and several variants of conserva-
tion, polarity, and coevolution (Fig. S17, Table S1). When roughly
grouped by type, there were 52 features related to coevolution,
25 related to the PSSM, eight features related to conservation,
eight features related to polarity, five features related to residue
position or TMD properties, three features related to motifs (e.g.
GxxxG), and two features related to physical properties of the
corresponding residue (e.g. branched). Feature reduction was
applied as described in the methods (Text S1), resulting in 27 fea-
tures than were used for prediction and validation. The train data
comprised 40 TMDs, and test data comprised 10 TMDs. The algo-
rithm was tuned by automatically splitting the train data into fur-
ther train/validation subsets, and choosing the parameters
associated with the highest average precision score. Validation
procedures included cross-validation within the train data, and
blind-validation against the test data. THOIPA performance vali-
dation was conducted using three methods that focus on
precision.

The THOIPA output score for each residue represents the prob-
ability that it lies at a homotypic interface. The algorithm is highly
economical. For a TMD of interest, homologue downloads, feature
extraction, and THOIPA prediction takes only few minutes on a
standard office computer. A webserver (www.thoipa.org) and
dockerised standalone software is available.

http://www.thoipa.org
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Depending on the method used to measure feature importance,
either the GxxxG motif or the PolarxxxPolar motif were the most
important features for THOIPA prediction (Fig. S17). Also important
were several different features related to conservation, coevolu-
tion, and the absence of branched amino acid residues (e.g. V,
branched).

To our knowledge, there are no other comparative algorithms
designed to predict the most likely interface residues of self-
interacting TMDs. There are, however, well-established algo-
rithms designed to automatically predict TM homodimer struc-
tures, such as PREDDIMER [40] and TMDOCK [44]. We therefore
analysed the top-ranked predicted structure from these algo-
rithms, inferred interface residues based on heavy-atom distances
using the same methods as applied to experimental structures,
and validated them alongside THOIPA as predictors of interface
residues.
C

A

E
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B 
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Fig. 6. Performance validation reveals that THOIPA is a powerful predictor of the most im
larger number of residues. Validation data is shown for cross-validation (plots (A), (C), an
Precision-recall curve. The higher values at the left side of the chart show that THOIPA
dataset driving TMD interaction. The barchart shows the area under the precision-reca
equally. (C, D) Performance according to best overlap (BO) validation, a method develope
Text S1). The line-chart shows the data for the top 10 residues according to the predictor,
The fraction of correctly predicted residues is analogous to precision. Higher values indi
show that THOIPA excels at identifying the small number of most-important residues dr
recall (FIMCO-PR) as per Lensink &Wodak of CAPRI [52]. Precision-recall plots were made
recall that was applied. The y-axis indicates the fraction of TMDs whose precision leve
submitted by THOIPA had recall and precision levels higher than 0.5, but only around 10%
value where x equals 0.5. Note that the predictive power of TMDOCK is slightly over-es
TMDs [44].
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Validation revealed that THOIPA is vastly superior to TMDOCK
and PREDDIMER for predicting the small number of most impor-
tant residues in the interaction (i.e. high precision, Fig. 6A, B). This
effect was seen for all TMD subsets, regardless of the experimental
method used to define the interface (Fig. S18). In the assumption
that users of THOIPA are only interested in the top 5 predicted
interface residues, we developed our own ‘‘best-overlap” (BO) val-
idation method (see Text S1). BO-validation somewhat resembles
algorithms from the field of information-retrieval used to measure
performance of internet search engines, such as precision@k, but
also takes into account the high random precision associated with
short, ~20-residue TMDs. BO-validation showed that THOIPA per-
formance peaked when the top two residues from the predictor
were considered (Fig. 6C, 6D). The overall performance for the
top one to five residues (AUBOC5) was far higher for THOIPA than
the other algorithms tested. THOIPA performance did not greatly
          

portant residues homotypic TMD interaction, but only weakly predicts the role of a
d (E)) and also blind-validation against a test-dataset (plots (B), (D), and (F)). (A, B)
is far superior at identifying the small number of most-important residues in the

ll curve. Higher values indicate better performance, when all cut-offs are regarded
d here to report the number of residues at which peak performance is obtained (see
and the bar-chart shows the area under the curve for the top 1-5 residues (AUBOC5).
cate better performance. As with (A), the higher values at the left side of the chart
iving TMD interaction. (E, F) Fractions of interfaces that meet cut-off for precision-
for each TMD separately. The x-axis indicates the cutoff value for both precision and
l was above this cutoff. For example, around 40% of the TMDs in cross-validation
of TMDs had recall and precision higher than 0.7. The barchart corresponds to the y-
timated in all the above analyses, due to the automated truncation of some longer
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differ between cross-validation (6A, 6C, 6E), and blind-validation
(6B, 6D, 6F), confirming that overfitting has been successfully
avoided.

In predicting the entire interface region, THOIPA showed mod-
est performance. To measure overall performance in predicting all
interface residues, we adopted a Critical Assessment of Predicted
Interactions (CAPRI) method developed by Lensink and Wodak
[52]. The fraction of interfaces that meet the cut-off of precision
recall (referred to here as FIMCO-PR) method revealed similar per-
formance for THOIPA and TMDOCK. In general, the newer TMDOCK
algorithm predicted interfaces better than PREDDIMER (Fig. 6,
Fig. S18).

In the CAPRI study [52], a precision-recall cutoff of 0.5
demarked a successfully predicted interface. At this cutoff, THOIPA
and TMDOCK correctly predicted over 40% of all interfaces in the
train and test data. By comparison, the best automated predictor
of soluble interfaces, HADDOCK, had correctly predicted a fraction
of only 0.38 of 20 CAPRI targets [52]. Thus, the performance of
THOIPA and TMDOCK is comparable to that of automated predic-
tors of PPI in soluble proteins [52,53], despite the challenges asso-
ciated with the membrane environment and the severe paucity of
experimental data. We also compared THOIPA to the simple LIPS
algorithm [47] using a more rigorous MCC validation than the
‘‘percentage of native contacts” applied previously [43]. THOIPA
clearly out-performed LIPS (Fig. S19). Nevertheless, we could con-
firm that the simple combination of conservation and polarity in
LIPS works surprisingly well for many TMDs. Accordingly, features
derived from LIPS often differed between interface and non-
interface residues (Table S1) and proved useful as THOIPA features
(Fig. S17).

THOIPA clearly achieved its goal by providing an objective pre-
dictor of homotypic TM interface residues to guide wet-lab exper-
iments or energy-based modelling approaches. However, a
validation of predictions for each TMD individually (Fig. S20)
clearly shows that all fully-automated algorithms tested in this
study give highly inconsistent results. Further understanding of
TMD interfaces is necessary in order to enable any de-novo predic-
tion of protein function.
3. Discussion

This study represents the most comprehensive analysis to date
of homotypic TMD-TMD interfaces. Overall, we find the PPI inter-
faces shared many properties with the TM interfaces in folded
polytopic membrane proteins. For membrane proteins, this sug-
gests that there is a strong overlap between the forces and mech-
anisms underlying both PPI and protein folding. Of the numerous
features that have been previously associated with homotypic
TMD interfaces in case studies and artificial selection
[3,36,74,76], we only find evidence for a select few.

The lack of experimental data seriously impedes our under-
standing of homotypic TMD interfaces. Here we show that classical
ToxR-based methods can be used to determine more novel homo-
typic TM interface residues than any previous single study. Impor-
tantly, we also show that datasets from multiple sources can be
combined, and that the TMD interfaces typically share the same
trends, regardless as to whether the experimental data was derived
from ETRA (ToxR-like), NMR, or X-ray crystallography techniques.

We report for the first time the statistical overabundance of the
GxxxG motif at natural homotypic TMD interfaces. This has been
long suspected, ever since the GxxxG motif was shown to occur
more often in TMD sequences than expected by random chance
[34]. In addition to the GxxxG motifs, that do not suffice as predic-
tors of TMD interfaces [36], we describe a number of other predic-
tive features, including conservation, polarity, strongly-polar
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residues, co-evolution, depth in the membrane, (small)xxx(small)
motifs, and a lack of b-branched residues. Of all these features,
however, the GxxxG motif remained the strongest predictor of a
homotypic TM interface. Nevertheless, the contribution of these
factors to different interfaces is highly diverse and we emphasise
that the structural individuality has been under-appreciated in
previous studies.

Why are Gly residues so important? We found that sequence
positions occupied by Gly residues are particularly well conserved,
coevolved, and prefer a deep location in the bilayer. Based on the
importance of polarity and residue-depth for interaction, we pro-
pose that the dominant role of the medium-polarity Gly in TMD
interactions results from the best trade-off. Specifically, the struc-
ture of Gly may endow these residues with the most favourable
contribution to helix-helix interaction [19,20] for the least disrup-
tion to membrane insertion. All in all, these findings and interpre-
tations are in line with what is known of the mostly heterotypic
TMD-TMD interfaces that support the folding of polytopic mem-
brane proteins [9,47,77–79].

The under-representation of Ile and Val at homotypic interfaces
is in good agreement with a recent genetic screen of artificial self-
interacting TMDs [80]. Possibly, the restricted side-chain mobility
of these b-branched amino acids makes them less suitable to form
a densely packed helix-helix interface, compared to the highly flex-
ible side chains of the over-represented Leu or Met [81]. It should
be noted that this contrasts an earlier view where Val had been
identified as an interfacial residue of the GpA TMD dimer [25].
There, it had been speculated that the restricted side-chain mobil-
ity of Val might limit the entropy loss associated with the fixation
of side chains within a helix-helix interface. However, mutation of
these Val residues tends not to disrupt the self-interaction of GpA
in biological membranes [5,7], arguing against a central role in the
interaction.

Our analysis shows for the first time a clear bias for interface
residues to lie at the centre of the membrane. Conceivably, this
reflects the fact that the points of closest helix-helix contact tend
to localise near the centre of the acyl chain region. There, polarity
drops to a minimum, thus optimising the contribution of polar
forces to an interface [20,82]. The central position in the TMD
may also preventing the snorkelling of polar residues to the
water–lipid boundary. According to this theory, we would expect
that polarity is a poor predictor of PPI interfaces in juxtamembrane
regions, where residues are free to interact with either water or
lipid molecules.

Our data supports the hypothesis of Wang and Barth [43] that
residues coevolve within a homotypic TMD-TMD interface. How-
ever, we argue that the retrospective scoring method used in the
previous analysis has over-estimated the preferential coevolution
of interface residues. Instead, our unbiased predictive coevolution
measures show only a modest increase in coevolution scores at
interfaces. Why would coevolution scores be such weak predictors
of homotypic TMD interaction, when they so strongly predict con-
tacts in the field of membrane protein folding? We attribute this
difference to several issues specific to TM homodimer interfaces:
(i) Coevolution can only be calculated for pairs of non-identical
residues. It cannot detect the contribution of pairs of identical resi-
dues [2,3,83], which made up 25% of the interface contacts in the
NMR and X-ray datasets. (ii) There is a high background of co-
evolution between neighbouring residues in the sequence
(Fig. S6). This background is particularly relevant to the highly
symmetric homotypic TMD interactions. In contrast, the
heterotypically interacting residues that determine the folding of
polytopic membrane proteins are distant in sequence but close in
spatial proximity, which enhances the value of their coevolution
scores for fold prediction [16,70,84]. (iii) There is a high back-
ground of coevolution between residues on the same side of an



Y. Xiao, B. Zeng, N. Berner et al. Computational and Structural Biotechnology Journal 18 (2020) 3230–3242
a-helix, visible as peaks at spacing of i,i + 4 and i,i + 7, as shown
here for TMDs (Fig. S6) and previously for soluble helices [72].
While this sidedness of coevolution might relate to interface for-
mation, part of it might reflect side-chain/side-chain interactions
determining the conformational flexibility of TMD helices [85].

Our machine-learning predictor, THOIPA, is the first of its kind
for predicting homotypic TMD interfaces. Machine learning is
already a common technique applied to related problems, includ-
ing the prediction of PPI interface residues between membrane
proteins with a known structure [49–51], or the prediction of con-
tacting residues within a folded polytopic membrane protein
[16,84,86]. THOIPA is well-placed to prioritise TMD residues in
mutational analyses of given functions, assuming that they con-
tribute to quaternary structure formation. A further advantage of
THOIPA is that it is completely agnostic to the oligomerisation
state, which is usually unknown. An interesting question for future
studies is how evolutionary predictors such as THOIPA or EFDOCK-
TM [43], and energy-based predictors, such as TMHOP [46],
TMDIM [45], or TMDOCK [44] can be most effectively combined
to improve the blind prediction of interface residues and oligo-
meric structures. For interface prediction, we present two rigorous
methods by which models can be validated. Firstly, the AUBOC5
measures the ability to predict the top 5 residues involved in the
interaction. Secondly, the FIMCO-PR measures the ability to predict
a larger number of interface residues. Although the prediction
power of all currently available algorithms appears modest, the
accuracy of machine-learning predictors, such as THOIPA, will
increase with the size of the training set, which is certain to rise
in the future. In addition, since the accuracy of coevolution mea-
sures strongly depends on the number of homologues, the perfor-
mance of THOIPA will also benefit from the exponential increase in
publicly available sequence data.

4. Materials and methods

4.1. ToxR assay

The ToxR reporter assay in E. coli was conducted as previously
described [5,23]. Single amino acids were mutated using Q5 site-
directed mutagenesis (NEB). All residues in the TMD were initially
mutated to Ala, except for positions containing Gly or Ala, which
were mutated to Ile. Further mutagenesis was done at mutation-
sensitive positions, as identified in the first round of scanning
mutagenesis. Disruption (d) to dimerisation for each mutation
was measured as follows:

d ¼ w�m
w

ð1Þ

where w is the dimerisation signal measured for the wildtype
TMD, and m is the dimerisation signal for the TMD containing that
particular mutation. The disruption at a residue position was mea-
sured as follows

d
�
¼

P
d

n
ð2Þ

and consisted of the mean disruption for all available mutations at
that position. Full details are in Text S1.

4.2. The homotypic TMD dataset

The ETRA dataset includes new scanning mutagenesis data from
this study (9 TMDs), and previous ETRA scanning mutagenesis data
from the literature (12 TMDs). The initial NMR dataset consisted of
the 13 default dimer structures included in the validation by Wang
et al. [43], plus the recently published TM dimer structure of toll-
like receptor 3 (PDB 2mk9, UniProt O15455, ref. [87]), and death
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receptor 5 (PDB 6nhw, [88]). Proteins already present in the ETRA
dataset were not considered. Interacting residues were defined as
residues that contain a pair of heavy (non-hydrogen) atoms, one
from each amino acid, being less than 3.5 Å apart. The use of
heavy-atom distances is a standard method to define contacting
residues and has been previously applied in a study of PPI in mem-
brane proteins [51], and indeed most of the case studies that com-
prised the NMR dataset. Interface positions were defined as TMD
residues that interact with any other TMD amino acid in the oppos-
ing helix. The X-ray dataset consists of self-interacting TM helices
extracted from crystal structures or high-resolution electron
microscopy. The dataset ‘‘Non-redundant alpha” was downloaded
from PDBTM [67]. Structures with a poor resolution (above
3.5 Å) were excluded. Interface residues were identified as
described above for the NMR TMDs. Only self-interacting TM helix
pairs that had at least four interface residues were retained.

The ‘‘homotypic TMD” dataset consists of the combined ETRA,
NMR and X-ray structure datasets. The homotypic TMD dataset
was non-redundant at the 20% amino acid identity level for the
full-length sequence. The helices in the X-ray dataset not only
interact homotypically, but also with other chains or proteins in
the membrane-protein complex. This contrasts with the ToxR/
NMR data, where the residues are either involved with homotypic
interactions, or lipid interactions. We therefore split the TMD resi-
dues of the X-ray dataset into three groups: (A) residues involved
in TMD self-interaction (126 residues), (B) residues assumed to
be in contact with lipids (306 residues), and (C) residues involved
in non-homotypic TMD interactions (i.e. protein folding, 47 resi-
dues). Residues in group (C) were determined objectively based
on heavy-atom contacts, exactly as for group (A), as described in
detail in the methods (Text S1). Our statistical analyses comparing
interface and non-interface residues examined the properties of
(A) against (B), and ignored group (C). Similarly, the THOIPA
machine-learning algorithm was trained on a dataset that
excluded group (C). Unlike the statistical analyses, however, all val-
idation of prediction algorithms was carried out by considering
group (A) as interacting residues, and groups (B) + (C) as non-
interacting residues. As the goal of THOIPA is the prediction of
interface residues in interacting TMDs of bitopic proteins, in theory
THOIPA could also be validated in a dataset that excluded group
(C). However, we included group (C) in THOIPA validation in order
to allow a fair comparison with the structural algorithms TMDOCK
and PREDDIMER, for which the exclusion of single residues is not
possible. Similarly, the residues of group (C) could not be excluded
in our analyses of motif abundance, for which the non-interacting
residues were assumed to be groups (B) + (C). Further details on
the methods are available in Text S1.
4.3. Calculation of residue properties

A total of 103 residue features (properties) were extracted from
the TMD sequences and evolutionary data. Homologues were
obtained by BLAST against the NCBI non-redundant dataset using
the TMD plus 20 surrounding residues as the query. Conservation
was based on Shannon entropy, but inverted to yield positive val-
ues that increased with a decreasing rate of evolution. In other fea-
tures, conservation was based on the result from rate4site [89].
Polarity was calculated using the GES scale [90] and corresponds
to the mean hydrophobicity at that position of the MSA. Relative
polarity was the polarity score of a particular position, relative to
the surrounding six residues. Residue depth refers to the relative
position of the residue in the TMD, which range from 0 (first or last
residue) to 1 (central residue). Coevolution features were calcu-
lated based on the FreeContact implementation [91] of EVfold
[15]. Further residue properties are detailed in Text S1.
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4.4. Machine learning and evaluation

THOIPA is a machine-learning classifier that uses extremely
randomised trees [75], a method distinguished by high perfor-
mance and interpretable feature importances [92]. Of the 50 TMDs
in the homotypic TMD dataset, 40 were used as train data, and 10
were used as blind test data (2j58A1, 3zk1A1, 4ryiA2, 5nkqA1,
P20963, O15455, O75460, P08514, Q12983, and P05026). TMD
homodimer structure predictions from PREDDIMER and TMDOCK
were obtained by submitting the TMD sequence to the relevant
online server. The top ranked structure according to the respective
algorithm was used for validation. Full details are in Text S1.
4.5. Statistical significance

Pairwise comparisons were conducted using an independent
Student’s t-test assuming equal variance. To allow for comparison
of data with non-normal distributions, t-tests were conducted on
bootstrapped data. P-values were represented as follows:
*, p < 0.05. **, p < 0.01, ***, p < 0.001.
Author contributions

Y.X., B.Z., D.F., D.L., and M.G.T designed research; Y.X., B.Z., M.G.
T and N.B. performed research; Y.X., B.Z., D.F., D.L., and M.G.T wrote
the paper.
Funding

This work was supported by Deutsche Forschungsgemeinschaft
(grants La699/13_2 and FR 1411/14_1) and the Center for Inte-
grated Protein Science Munich (CIPSM). Y.X. and B.Z. were each a
recipient of a China Scholarship Council Postgraduate Research
Scholarship.
Competing interests

The authors declare no conflict of interest.
CRediT authorship contribution statement

Yao Xiao: Conceptualization, Investigation, Methodology, Visu-
alization. Bo Zeng: Conceptualization, Investigation, Methodology,
Software. Nicola Berner: Investigation. Dmitrij Frishman: Con-
ceptualization, Writing - review & editing, Supervision. Dieter Lan-
gosch: Conceptualization, Writing - review & editing, Supervision.
Mark George Teese: Conceptualization, Methodology, Software,
Visualization, Supervision.
Data availability

All data are accessible via a repository of the Open Science Founda-
tion (https://osf.io/txjev/).
Acknowledgements

We are grateful to Doreen Tetzlaff for technical assistance.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2020.09.035.
3240
References

[1] Fagerberg L, Jonasson K, von Heijne G, Uhlén M, Berglund L. Prediction of the
human membrane proteome. Proteomics 2010;10(6):1141–9. https://doi.org/
10.1002/pmic.200900258.

[2] Bugge K, Lindorff-Larsen K, Kragelund BB. Understanding single-pass
transmembrane receptor signaling from a structural viewpoint—what are we
missing?. FEBS J 2016;283(24):4424–51. https://doi.org/10.1111/febs.13793.

[3] Bocharov EV, Mineev KS, Pavlov KV, Akimov SA, Kuznetsov AS, et al. (2017)
Helix-helix interactions in membrane domains of bitopic proteins: Specificity
and role of lipid environment. Biochim Biophys Acta, Biomembr
1859;4:561–76. https://doi.org/10.1016/j.bbamem.2016.10.024.

[4] Valley CC, Lewis AK. Sachs JN (2017) Piecing it together: Unraveling the elusive
structure-function relationship in single-pass membrane receptors. Biochim
Biophys Acta, Biomembr 1859;9:1398–416. https://doi.org/10.1016/j.
bbamem.2017.01.016.

[5] Langosch D, Brosig B, Kolmar H, Fritz HJ. Dimerisation of the glycophorin A
transmembrane segment in membranes probed with the ToxR transcription
activator. J Mol Biol 1996;263(4):525–30. https://doi.org/10.1006/
jmbi.1996.0595.

[6] Russ WP, Engelman DM. TOXCAT: A measure of transmembrane helix
association in a biological membrane. Proc Natl Acad Sci USA 1999;96
(3):863–8. https://doi.org/10.1073/pnas.96.3.863.

[7] Elazar A,Weinstein J, Biran I, Fridman Y, Bibi E, et al. (2016)Mutational scanning
reveals the determinants of protein insertion and association energetics in the
plasma membrane. eLife 5:e12125. http://dx.doi.org/10.7554/eLife.12125.

[8] Schneider D, Engelman DM. GALLEX, a measurement of heterologous
association of transmembrane helices in a biological membrane. J Biol Chem
2003;278(5):3105–11. https://doi.org/10.1074/jbc.M206287200.

[9] Stevens TJ, Arkin IT. Substitution rates in a-helical transmembrane proteins.
Protein Sci 2001;10(12):2507–17. https://doi.org/10.1110/ps.ps.10501.

[10] Beuming T, Weinstein H. A knowledge-based scale for the analysis and
prediction of buried and exposed faces of transmembrane domain proteins.
Bioinformatics 2004;20(12):1822–35. https://doi.org/10.1093/bioinformatics/
bth143.

[11] Walters RFS, DeGrado WF. Helix-packing motifs in membrane proteins. Proc
Natl Acad Sci USA 2006;103(37):13658–63. https://doi.org/10.1073/
pnas.0605878103.

[12] Zhang SQ, Kulp DW, Schramm CA, Mravic M, Samish I, et al. The membrane-
and soluble-protein helix-helix interactome: Similar geometry via different
interactions. Structure 2015;23(3):527–41. https://doi.org/10.1016/j.
str.2015.01.009.

[13] Hopf TA, Schärfe CPI, Rodrigues JPGLM, Green AG, Kohlbacher O, et al. (2014)
Sequence co-evolution gives 3D contacts and structures of protein complexes.
eLife 3:e03430. http://dx.doi.org/10.7554/eLife.03430.

[14] Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, et al. Protein 3D structure
computed from evolutionary sequence variation. PLoS ONE 2011;6(12):.
https://doi.org/10.1371/journal.pone.0028766e28766.

[15] Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, et al. Direct-coupling
analysis of residue coevolution captures native contacts across many protein
families. Proc Natl Acad Sci USA 2011;108(49):E1293–301. https://doi.org/
10.1073/pnas.1111471108.

[16] Teixeira PL, Mendenhall JL, Heinze S, Weiner B, Skwark MJ, et al. Membrane
protein contact and structure prediction using co-evolution in conjunction
with machine learning. PLoS ONE 2017;12(5):. https://doi.org/10.1371/
journal.pone.0177866e0177866.

[17] Eilers M, Shekar SC, Shieh T, Smith SO, Fleming PJ. Internal packing of helical
membrane proteins. Proc Natl Acad Sci USA 2000;97(11):5796–801. https://
doi.org/10.1073/pnas.97.11.5796.

[18] Smith SO, Song D, Shekar S, Groesbeek M, Ziliox M, et al. Structure of the
transmembrane dimer interface of glycophorin A in membrane bilayers.
Biochemistry 2001;40(22):6553–8. https://doi.org/10.1021/bi010357v.

[19] Senes A, Ubarretxena-Belandia I, Engelman DM. The Ca-H���O hydrogen bond:
A determinant of stability and specificity in transmembrane helix interactions.
Proc Natl Acad Sci USA 2001;98(16):9056–61. https://doi.org/10.1073/
pnas.161280798.

[20] Hong H. Toward understanding driving forces in membrane protein folding.
Arch Biochem Biophys 2014;564:297–313. https://doi.org/10.1002/
pro.5560070423.

[21] Doura AK, Fleming KG. Complex interactions at the helix-helix interface
stabilize the glycophorin A transmembrane dimer. J Mol Biol 2004;343
(5):1487–97. https://doi.org/10.1016/j.jmb.2004.09.011.

[22] Doura AK, Kobus FJ, Dubrovsky L, Hibbard E, Fleming KG. Sequence context
modulates the stability of a GxxxG-mediated transmembrane helix-helix
dimer. J Mol Biol 2004;341(4):991–8. https://doi.org/10.1016/j.
jmb.2004.06.042.

[23] Brosig B, Langosch D. The dimerization motif of the glycophorin A
transmembrane segment in membranes: Importance of glycine residues.
Protein Sci 1998;7(4):1052–6. https://doi.org/10.1002/pro.5560070423.

[24] Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engelman DM (1992)
Sequence specificity in the dimerization of transmembrane a-helices.
Biochemistry 31(51):12719-25. http://dx.doi.org/10.1021/bi00166a002.

[25] MacKenzie KR, Prestegard JH, Engelman DM. Transmembrane helix dimer:
Structure and implications. Science 1997;276(5309):131–3. https://doi.org/
10.1126/science.276.5309.131.

https://osf.io/txjev/
https://doi.org/10.1016/j.csbj.2020.09.035
https://doi.org/10.1002/pmic.200900258
https://doi.org/10.1002/pmic.200900258
https://doi.org/10.1111/febs.13793
https://doi.org/10.1016/j.bbamem.2016.10.024
https://doi.org/10.1016/j.bbamem.2017.01.016
https://doi.org/10.1016/j.bbamem.2017.01.016
https://doi.org/10.1006/jmbi.1996.0595
https://doi.org/10.1006/jmbi.1996.0595
https://doi.org/10.1073/pnas.96.3.863
https://doi.org/10.1074/jbc.M206287200
https://doi.org/10.1110/ps.ps.10501
https://doi.org/10.1093/bioinformatics/bth143
https://doi.org/10.1093/bioinformatics/bth143
https://doi.org/10.1073/pnas.0605878103
https://doi.org/10.1073/pnas.0605878103
https://doi.org/10.1016/j.str.2015.01.009
https://doi.org/10.1016/j.str.2015.01.009
https://doi.org/10.1371/journal.pone.0028766
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1073/pnas.1111471108
https://doi.org/10.1371/journal.pone.0177866
https://doi.org/10.1371/journal.pone.0177866
https://doi.org/10.1073/pnas.97.11.5796
https://doi.org/10.1073/pnas.97.11.5796
https://doi.org/10.1021/bi010357v
https://doi.org/10.1073/pnas.161280798
https://doi.org/10.1073/pnas.161280798
https://doi.org/10.1002/pro.5560070423
https://doi.org/10.1002/pro.5560070423
https://doi.org/10.1016/j.jmb.2004.09.011
https://doi.org/10.1016/j.jmb.2004.06.042
https://doi.org/10.1016/j.jmb.2004.06.042
https://doi.org/10.1002/pro.5560070423
https://doi.org/10.1126/science.276.5309.131
https://doi.org/10.1126/science.276.5309.131


Y. Xiao, B. Zeng, N. Berner et al. Computational and Structural Biotechnology Journal 18 (2020) 3230–3242
[26] Kim S, Jeon TJ, Oberai A, Yang D, Schmidt JJ, et al. Transmembrane glycine
zippers: Physiological and pathological roles in membrane proteins. Proc Natl
Acad Sci USA 2005;102(40):14278–83. https://doi.org/10.1073/
pnas.0501234102.

[27] Dawson JP, Weinger JS, Engelman DM. Motifs of serine and threonine can drive
association of transmembrane helices. J Mol Biol 2002;316(3):799–805.
https://doi.org/10.1006/jmbi.2001.5353.

[28] Schneider D, Engelman DM. Motifs of two small residues can assist but are not
sufficient to mediate transmembrane helix interactions. J Mol Biol 2004;343
(4):799–804. https://doi.org/10.1016/j.jmb.2004.08.083.

[29] Ridder A, Skupjen P, Unterreitmeier S, Langosch D. Tryptophan supports
interaction of transmembrane helices. J Mol Biol 2005;354(4):894–902.
https://doi.org/10.1016/j.jmb.2005.09.084.

[30] Unterreitmeier S, FuchsA, Schäffler T,HeymRG, FrishmanD, et al. Phenylalanine
promotes interaction of transmembrane domains via GxxxG motifs. J Mol Biol
2007;374(3):705–18. https://doi.org/10.1016/j.jmb.2007.09.056.

[31] Herrmann JR, Fuchs A, Panitz JC, Eckert T, Unterreitmeier S, et al. Ionic
interactions promote transmembrane helix-helix association depending on
sequence context. J Mol Biol 2010;396(2):452–61. https://doi.org/10.1016/j.
jmb.2009.11.054.

[32] Herrmann JR, Panitz JC, Unterreitmeier S, Fuchs A, Frishman D, et al. Complex
patterns of histidine, hydroxylated amino acids and the GxxxG motif mediate
high-affinity transmembrane domain interactions. J Mol Biol 2009;385
(3):912–23. https://doi.org/10.1016/j.jmb.2008.10.058.

[33] Leeds JA, Boyd D, Huber DR, Sonoda GK, Luu HT, et al. Genetic selection for and
molecular dynamic modeling of a protein transmembrane domain
multimerization motif from a random Escherichia coli genomic library. J Mol
Biol 2001;313(1):181–95. https://doi.org/10.1006/jmbi.2001.5007.

[34] Senes A, Gerstein M, Engelman DM. Statistical analysis of amino acid patterns
in transmembrane helices: The GxxxG motif occurs frequently and association
with b-branched residues at neighboring positions. J Mol Biol 2000;296
(3):921–36. https://doi.org/10.1006/jmbi.1999.3488.

[35] Kirrbach J, Krugliak M, Ried CL, Pagel P, Arkin IT, et al. Self-interaction of
transmembrane helices representing pre-clusters from the human single-span
membrane proteins. Bioinformatics 2013;29(13):1623–30. https://doi.org/
10.1093/bioinformatics/btt247.

[36] Teese MG, Langosch D. Role of GxxxG motifs in transmembrane domain
interactions. Biochemistry 2015;54(33):5125–35. https://doi.org/10.1021/acs.
biochem.5b00495.

[37] Finger C, Escher C, Schneider D. The single transmembrane domains of human
receptor tyrosine kinases encode self-interactions. Sci Signaling 2009;2:89.
https://doi.org/10.1126/scisignal.2000547.

[38] Barwe SP, Kim S, Rajasekaran SA, Bowie JU, Rajasekaran AK. Janus model of the
Na, K-ATPase b-subunit transmembrane domain: distinct faces mediate a/b
assembly and b-b homo-oligomerization. J Mol Biol 2007;365(3):706–14.
https://doi.org/10.1016/j.jmb.2006.10.029.

[39] Chin CN, Sachs JN, Engelman DM. Transmembrane homodimerization of
receptor-like protein tyrosine phosphatases. FEBS Lett 2005;579(17):3855–8.
https://doi.org/10.1016/j.febslet.2005.05.071.

[40] Polyansky AA, Volynsky PE, Efremov RG. Multistate organization of
transmembrane helical protein dimers governed by the host membrane. J
Am Chem Soc 2012;134(35):14390–400. https://doi.org/10.1021/ja303483k.

[41] Polyansky AA, Chugunov AO, Volynsky PE, Krylov NA, Nolde DE, et al.
PREDDIMER: A web server for prediction of transmembrane helical dimers.
Bioinformatics 2014;30(6):889–90. https://doi.org/10.1093/bioinformatics/
btt645.

[42] Mueller BK, Subramaniam S, Senes A. A frequent, GxxxG-mediated,
transmembrane association motif is optimized for the formation of
interhelical Ca-H hydrogen bonds. Proc Natl Acad Sci USA 2014;111(10):
E888–95. https://doi.org/10.1073/pnas.1319944111.

[43] Wang Y, Barth P. Evolutionary-guided de novo structure prediction of self-
associated transmembrane helical proteins with near-atomic accuracy. Nat
Comms 2015;6:7196. https://doi.org/10.1038/ncomms8196.

[44] Lomize AL, Pogozheva ID (2017) TMDOCK: An energy-based method for
modeling a-helical dimers in membranes. J Mol Biol 429(3):390-8. http://
dx.doi.org/https://doi.org/10.1016/j.jmb.2016.09.005.

[45] Cao H, Ng MCK, Jusoh SA, Tai HK, Siu SWI. TMDIM: an improved algorithm for
the structure prediction of transmembrane domains of bitopic dimers. J
Comput Aided Mol Des 2017;31(9):855–65. https://doi.org/10.1007/s10822-
017-0047-0.

[46] Weinstein JY, Elazar A, Fleishman SJ. A lipophilicity-based energy function for
membrane-protein modelling and design. PLoS Comput Biol 2019;15(8):.
https://doi.org/10.1371/journal.pcbi.1007318e1007318.

[47] Adamian L, Liang J. Prediction of transmembrane helix orientation in polytopic
membrane proteins. BMC Struct Biol 2006;6:13. https://doi.org/10.1186/1472-
6807-6-13.

[48] Barth P, Schonbrun J, Baker D. Toward high-resolution prediction and design of
transmembrane helical protein structures. Proc Natl Acad Sci USA 2007;104
(40):15682–7. https://doi.org/10.1073/pnas.0702515104.

[49] Zeng B, Hönigschmid P, Frishman D (2019) Residue co-evolution helps predict
interaction sites in a-helical membrane proteins. J Struct Biol 206(2):156-69.
http://dx.doi.org/https://doi.org/10.1016/j.jsb.2019.02.009.

[50] Asadabadi EB, Abdolmaleki P. Predictions of protein-protein Interfaces within
membrane protein complexes. Avicenna J Med Biotechnol 2013;5(3):148–57.

[51] Bordner AJ. Predicting protein-protein binding sites in membrane proteins.
BMC Bioinf 2009;10:312. https://doi.org/10.1186/1471-2105-10-312.
3241
[52] Lensink MF, Wodak SJ. Blind predictions of protein interfaces by docking
calculations in CAPRI. Proteins Struct Funct Bioinformat 2010;78
(15):3085–95. https://doi.org/10.1002/prot.22850.

[53] Lensink MF, Velankar S, Baek M, Heo L, Seok C, et al. The challenge of modeling
protein assemblies: the CASP12-CAPRI experiment. Proteins Struct Funct
Bioinformat 2018;86:257–73. https://doi.org/10.1002/prot.25419.

[54] Cho H, Stanzione F, Oak A, Kim GH, Yerneni S, et al. (2019) Intrinsic structural
features of the human IRE1a transmembrane domain sense membrane lipid
saturation. Cell Rep 27(1):307-20.e5. http://dx.doi.org/10.1016/j.
celrep.2019.03.017.

[55] Noordeen NA, Carafoli F, Hohenester E, Horton MA, Leitinger B. A
transmembrane leucine zipper is required for activation of the dimeric
receptor tyrosine kinase DDR1. J Biol Chem 2006;281(32):22744–51. https://
doi.org/10.1074/jbc.M603233200.

[56] Gerber D, Sal-Man N, Shai Y. Two motifs within a transmembrane domain, one
for homodimerization and the other for heterodimerization. J Biol Chem
2004;279(20):21177–82. https://doi.org/10.1074/jbc.M400847200.

[57] Zhu H, Metcalf DG, Streu CN, Billings PC, DeGrado WF, et al. Specificity for
homooligomer versus heterooligomer formation in integrin transmembrane
helices. J Mol Biol 2010;401(5):882–91. https://doi.org/10.1016/j.
jmb.2010.06.062.

[58] Li R, Gorelik R, Nanda V, Law PB, Lear JD, et al. Dimerization of the
transmembrane domain of integrin aIIb subunit in cell membranes. J Biol
Chem 2004;279(25):26666–73. https://doi.org/10.1074/jbc.M314168200.

[59] LaPointe LM, Taylor KC, Subramaniam S, Khadria A, Rayment I, et al. Structural
organization of FtsB, a transmembrane protein of the bacterial divisome.
Biochemistry 2013;52(15):2574–85. https://doi.org/10.1021/bi400222r.

[60] Wei P, Liu X, Hu MH, Zuo LM, Kai M, et al. The dimerization interface of the
glycoprotein Ibb transmembrane domain corresponds to polar residues within
a leucine zipper motif. Protein Sci 2011;20(11):1814–23. https://doi.org/
10.1002/pro.713.

[61] Plotkowski ML, Kim S, Phillips ML, Partridge AW, Deber CM, et al.
Transmembrane domain of myelin protein zero can form dimers: Possible
implications for myelin construction. Biochemistry 2007;46(43):12164–73.
https://doi.org/10.1021/bi701066h.

[62] Lawrie CM, Sulistijo ES, MacKenzie KR. Intermonomer hydrogen bonds
enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain:
Roles for sequence context in helix-helix association in membranes. J Mol Biol
2010;396(4):924–36. https://doi.org/10.1016/j.jmb.2009.12.023.

[63] Ried CL, Scharnagl C, Langosch D. Entrapment of water at the transmembrane
helix-helix Interface of Quiescin Sulfhydryl Oxidase 2. Biochemistry 2016;55
(9):1287–90. https://doi.org/10.1021/acs.biochem.5b01239.

[64] Khadria AS, Mueller BK, Stefely JA, Tan CH, Pagliarini DJ, et al. A gly-zipper
motif mediates homodimerization of the transmembrane domain of the
mitochondrial kinase ADCK3. J Am Chem Soc 2014;136(40):14068–77. https://
doi.org/10.1021/ja505017f.

[65] Kohlway A, Pirakitikulr N, Barrera FN, Potapova O, Engelman DM, et al.
Hepatitis C virus RNA replication and virus particle assembly require specific
dimerization of the NS4A protein transmembrane domain. J Virol 2014;88
(1):628–42. https://doi.org/10.1128/JVI.02052-13.

[66] Sulistijo ES, MacKenzie KR. Sequence dependence of BNIP3 transmembrane
domain dimerization implicates side-chain hydrogen bonding and a tandem
GxxxG motif in specific helix-helix interactions. J Mol Biol 2006;364
(5):974–90. https://doi.org/10.1016/j.jmb.2006.09.065.

[67] Kozma D, Simon I, Tusnády GE. PDBTM: Protein data bank of transmembrane
proteins after 8 years. Nucleic Acids Res 2013;41(D1). https://doi.org/
10.1093/nar/gks1169.

[68] Caffrey DR, Somaroo S, Hughes JD, Mintseris J, Huang ES. Are protein-
protein interfaces more conserved in sequence than the rest of the protein
surface?. Protein Sci 2004;13(1):190–202. https://doi.org/10.1110/
ps.03323604.

[69] Xue LC, Dobbs D, Honavar V. HomPPI: a class of sequence homology based
protein-protein interface prediction methods. BMC Bioinf 2011;12(1):244.
https://doi.org/10.1186/1471-2105-12-244.

[70] Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, et al. Three-dimensional
structures of membrane proteins from genomic sequencing. Cell 2012;149
(7):1607–21. https://doi.org/10.1016/j.cell.2012.04.012.

[71] Fuchs A, Martin-Galiano AJ, Kalman M, Fleishman S, Ben-Tal N, et al. Co-
evolving residues in membrane proteins. Bioinformatics 2007;23(24):3312–9.
https://doi.org/10.1093/bioinformatics/btm515.

[72] Caporaso JG, Smit S, Easton BC, Hunter L, Huttley GA, et al. Detecting
coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution
perform as well as tree-aware metrics. BMC Evol Biol 2008;8(1):327. https://
doi.org/10.1186/1471-2148-8-327.

[73] Avila-Herrera A, Pollard KS. Coevolutionary analyses require phylogenetically
deep alignments and better null models to accurately detect inter-protein
contacts within and between species. BMC Bioinf 2015;16:268. https://doi.
org/10.1186/s12859-015-0677-y.

[74] Li E, Wimley WC. Hristova K (2012) Transmembrane helix dimerization:
Beyond the search for sequence motifs. Biochim Biophys Acta, Biomembr
1818;2:183–93. https://doi.org/10.1016/j.bbamem.2011.08.031.

[75] Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning
2006;63(1):3–42. https://doi.org/10.1007/s10994-006-6226-1.

[76] Langosch D, Arkin IT. Interaction and conformational dynamics of membrane-
spanning protein helices. Protein Sci 2009;18(7):1343–58. https://doi.org/
10.1002/pro.154.

https://doi.org/10.1073/pnas.0501234102
https://doi.org/10.1073/pnas.0501234102
https://doi.org/10.1006/jmbi.2001.5353
https://doi.org/10.1016/j.jmb.2004.08.083
https://doi.org/10.1016/j.jmb.2005.09.084
https://doi.org/10.1016/j.jmb.2007.09.056
https://doi.org/10.1016/j.jmb.2009.11.054
https://doi.org/10.1016/j.jmb.2009.11.054
https://doi.org/10.1016/j.jmb.2008.10.058
https://doi.org/10.1006/jmbi.2001.5007
https://doi.org/10.1006/jmbi.1999.3488
https://doi.org/10.1093/bioinformatics/btt247
https://doi.org/10.1093/bioinformatics/btt247
https://doi.org/10.1021/acs.biochem.5b00495
https://doi.org/10.1021/acs.biochem.5b00495
https://doi.org/10.1126/scisignal.2000547
https://doi.org/10.1016/j.jmb.2006.10.029
https://doi.org/10.1016/j.febslet.2005.05.071
https://doi.org/10.1021/ja303483k
https://doi.org/10.1093/bioinformatics/btt645
https://doi.org/10.1093/bioinformatics/btt645
https://doi.org/10.1073/pnas.1319944111
https://doi.org/10.1038/ncomms8196
https://doi.org/10.1007/s10822-017-0047-0
https://doi.org/10.1007/s10822-017-0047-0
https://doi.org/10.1371/journal.pcbi.1007318
https://doi.org/10.1186/1472-6807-6-13
https://doi.org/10.1186/1472-6807-6-13
https://doi.org/10.1073/pnas.0702515104
http://refhub.elsevier.com/S2001-0370(20)30419-0/h0250
http://refhub.elsevier.com/S2001-0370(20)30419-0/h0250
https://doi.org/10.1186/1471-2105-10-312
https://doi.org/10.1002/prot.22850
https://doi.org/10.1002/prot.25419
https://doi.org/10.1074/jbc.M603233200
https://doi.org/10.1074/jbc.M603233200
https://doi.org/10.1074/jbc.M400847200
https://doi.org/10.1016/j.jmb.2010.06.062
https://doi.org/10.1016/j.jmb.2010.06.062
https://doi.org/10.1074/jbc.M314168200
https://doi.org/10.1021/bi400222r
https://doi.org/10.1002/pro.713
https://doi.org/10.1002/pro.713
https://doi.org/10.1021/bi701066h
https://doi.org/10.1016/j.jmb.2009.12.023
https://doi.org/10.1021/acs.biochem.5b01239
https://doi.org/10.1021/ja505017f
https://doi.org/10.1021/ja505017f
https://doi.org/10.1128/JVI.02052-13
https://doi.org/10.1016/j.jmb.2006.09.065
https://doi.org/10.1093/nar/gks1169
https://doi.org/10.1093/nar/gks1169
https://doi.org/10.1110/ps.03323604
https://doi.org/10.1110/ps.03323604
https://doi.org/10.1186/1471-2105-12-244
https://doi.org/10.1016/j.cell.2012.04.012
https://doi.org/10.1093/bioinformatics/btm515
https://doi.org/10.1186/1471-2148-8-327
https://doi.org/10.1186/1471-2148-8-327
https://doi.org/10.1186/s12859-015-0677-y
https://doi.org/10.1186/s12859-015-0677-y
https://doi.org/10.1016/j.bbamem.2011.08.031
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1002/pro.154
https://doi.org/10.1002/pro.154


Y. Xiao, B. Zeng, N. Berner et al. Computational and Structural Biotechnology Journal 18 (2020) 3230–3242
[77] Donnelly D, Overington JP, Ruffle SV, Nugent JHA, Blundell TL. Modeling a-
helical transmembrane domains: The calculation and use of substitution
tables for lipid-facing residues. Protein Sci 1993;2(1):55–70. https://doi.org/
10.1002/Prot.22809.

[78] Eyre TA, Partridge L, Thornton JM. Computational analysis of a-helical
membrane protein structure: implications for the prediction of 3D structural
models. Protein Eng Des Sel 2004;17(8):613–24. https://doi.org/10.1093/
protein/gzh072.

[79] Illergard K, Kauko A, Elofsson A. Why are polar residues within the membrane
core evolutionary conserved?. Proteins Struct Funct Bioinformat 2011;79
(1):79–91. https://doi.org/10.1002/Prot.22859.

[80] Steindorf D, Schneider D (2017) In vivo selection of heterotypically interacting
transmembrane helices: Complementary helix surfaces, rather than conserved
interaction motifs, drive formation of transmembrane hetero-dimers. Biochim
Biophys Acta Biomembr 1859(2):245-56. http://dx.doi.org/https://doi.org/
10.1016/j.bbamem.2016.11.017.

[81] Chellgren BW, Creamer TP. Side-chain entropy effects on protein secondary
structure formation. Proteins Struct Funct Bioinformat 2005;62(2):411–20.
https://doi.org/10.1002/prot.20766.

[82] Bowie JU. Membrane protein folding: how important are hydrogen bonds?.
Curr Opin Struct Biol 2011;21(1):42–9. https://doi.org/10.1016/j.
sbi.2010.10.003.

[83] Bordag N, Keller S. a-Helical transmembrane peptides: A ‘‘Divide and
Conquer” approach to membrane proteins. Chem Phys Lipids 2010;163
(1):1–26. https://doi.org/10.1016/j.chemphyslip.2009.07.009.

[84] Hönigschmid P, Frishman D. Accurate prediction of helix interactions and
residue contacts in membrane proteins. J Struct Biol 2016;194(1):112–23.
https://doi.org/10.1016/j.jsb.2016.02.005.
3242
[85] Quint S, Widmaier S, Minde D, Hornburg D, Langosch D, et al. Residue-specific
side-chain packing determines the backbone dynamics of transmembrane
model helices. Biophys J 2010;99(8):2541–9. https://doi.org/10.1016/j.
bpj.2010.08.031.

[86] Fuchs A, Kirschner A, Frishman D. Prediction of helix-helix contacts and
interacting helices in polytopic membrane proteins using neural networks.
Proteins Struct Funct Bioinf 2009;74(4):857–71. https://doi.org/10.1002/
prot.22194.

[87] Mineev KS, Goncharuk SA, Arseniev AS. Toll-like receptor 3 transmembrane
domain is able to perform various homotypic interactions: An NMR structural
study. FEBS Lett 2014;588(21):3802–7. https://doi.org/10.1016/j.
febslet.2014.08.031.

[88] Pan L, Fu T-M, Zhao W, Zhao L, Chen W, et al. (2019) Higher-order clustering of
the transmembrane anchor of DR5 drives signaling. Cell 176(6):1477-89.e14.
http://dx.doi.org/10.1016/j.cell.2019.02.001.

[89] Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N. Rate4Site: An algorithmic tool
for the identification of functional regions in proteins by surface mapping of
evolutionary determinants within their homologues. Bioinformatics 2002;18
(Suppl 1):S71–7. https://doi.org/10.1093/bioinformatics/18.suppl_1.s71.

[90] Engelman DM, Steitz TA, Goldman A. Identifying nonpolar transbilayer helices
in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys
Chem 1986;15:321–53. https://doi.org/10.1146/annurev.
bb.15.060186.001541.

[91] Kaján L, Hopf TA, Kalaš M, Marks DS, Rost B. FreeContact: Fast and free
software for protein contact prediction from residue co-evolution. BMC Bioinf
2014;15(1):85. https://doi.org/10.1186/1471-2105-15-85.

[92] Louppe G, Wehenkel L, Sutera A, Geurts P. Understanding variable importances
in forests of randomized trees. Adv Neur Inform Proc Syst 2013;1:431–9.

https://doi.org/10.1002/Prot.22809
https://doi.org/10.1002/Prot.22809
https://doi.org/10.1093/protein/gzh072
https://doi.org/10.1093/protein/gzh072
https://doi.org/10.1002/Prot.22859
https://doi.org/10.1002/prot.20766
https://doi.org/10.1016/j.sbi.2010.10.003
https://doi.org/10.1016/j.sbi.2010.10.003
https://doi.org/10.1016/j.chemphyslip.2009.07.009
https://doi.org/10.1016/j.jsb.2016.02.005
https://doi.org/10.1016/j.bpj.2010.08.031
https://doi.org/10.1016/j.bpj.2010.08.031
https://doi.org/10.1002/prot.22194
https://doi.org/10.1002/prot.22194
https://doi.org/10.1016/j.febslet.2014.08.031
https://doi.org/10.1016/j.febslet.2014.08.031
https://doi.org/10.1093/bioinformatics/18.suppl_1.s71
https://doi.org/10.1146/annurev.bb.15.060186.001541
https://doi.org/10.1146/annurev.bb.15.060186.001541
https://doi.org/10.1186/1471-2105-15-85
http://refhub.elsevier.com/S2001-0370(20)30419-0/h0460
http://refhub.elsevier.com/S2001-0370(20)30419-0/h0460

	Experimental determination and data-driven prediction of homotypic transmembrane domain interfaces
	1 Introduction
	2 Results
	2.1 The ETRA dataset of TMDs self-interacting in a membrane
	2.2 Creation of the complete homotypic TMD dataset
	2.3 Interface residues tend to be conserved, polar, coevolved, and centrally located
	2.4 Gly, GxxxG motifs, and strongly polar amino acids are over-represented at interfaces
	2.5 Development of THOIPA for interface prediction

	3 Discussion
	4 Materials and methods
	4.1 ToxR assay
	4.2 The homotypic TMD dataset
	4.3 Calculation of residue properties
	4.4 Machine learning and evaluation
	4.5 Statistical significance

	Author contributions
	Funding
	Competing interests
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Supplementary data
	References


