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a b s t r a c t

NMR-based screening, especially fragment-based drug discovery is a valuable approach in early-stage
drug discovery. Monitoring fragment-binding in protein-detected 2D NMR experiments requires analysis
of hundreds of spectra to detect chemical shift perturbations (CSPs) in the presence of ligands screened.
Computational tools are available that simplify the tracking of CSPs in 2D NMR spectra. However, to the
best of our knowledge, an efficient automated tool for the assessment and binning of multiple spectra for
ligand binding has not yet been described. We present a novel and fast approach for analysis of multiple
2D HSQC spectra based on machine-learning-driven statistical discrimination. The CSP Analyzer features
a C# frontend interfaced to a Python ML classifier. The software allows rapid evaluation of 2D screening
data from large number of spectra, reducing user-introduced bias in the evaluation. The CSP Analyzer
software package is available on GitHub https://github.com/rubbs14/CSP-Analyzer/releases/tag/v1.0
under the GPL license 3.0 and is free to use for academic and commercial uses.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction binding fragments, in an environment more representative of
In recent times, fragment-based drug discovery (FBDD) has
become progressively more important in early-stage drug design.
Fragment-based screening (FBS) offers an efficient, rational, way
to find small molecule inhibitors. By testing for binding of small
fragments, a large chemical space can be tested with fewer mole-
cules than with other approaches. This is due to the higher proba-
bility of a suitable binding pocket or position being present with
lower complexity molecules [1], leading to higher efficiency (both
screening efficiency and ligand efficiency), and elucidating possible
starting points for further drug discovery. The binding sites of
these fragments can then be located on the surface of the protein
and from there, fragments connected or grown to maximize inter-
actions with the surrounding area, eventually leading to hit and
lead molecules. X-ray crystallography and nuclear magnetic reso-
nance (NMR) can be used to both identify hits and get structural
information about the binding. NMR, working in the solution state,
and requiring low concentrations, is well placed to detect weakly-
in vivo conditions. Since the turn of the century [2], FBS has grown
in use, in both academic and industrial settings, owing to its speed
and reliability at testing large chemical space with standard and
cost-effective biophysical methods. As such, thousands-strong
libraries can be quickly measured against a huge variety of biolog-
ical targets.

With NMR, both target- and ligand-observed screening
approaches are possible [3–8]. From a technical point of view,
NMR FBS allows medium to large libraries of fragments (1000–
5000 fragments) to be efficiently screened. Concerning binding
affinity ranges, FBS by NMR allows detecting binding of ligands
with affinities as weak as low millimolar [2]. Furthermore, certain
experiments may provide helpful insights into the kinetics and
dynamics of fragment binding [9].

Ligand-observed NMR screening utilizes simple and sensitive
1D experiments (i.e. STD [8], WaterLOGSY [10], SLAPSTIC [11], T2
and T1rho [12]) and requires no isotopic-labeling of the target pro-
tein, simplifying the experimental preparation. These ligand-
observed NMR experiments are applicable to medium to very high
molecular-weight targets. Depending on the ligand affinity, direct
or competitive binding is monitored [8,9,13].
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For smaller proteins (<30 kDa), protein-observed 2D heteronu-
clear NMR experiments, such as 1H, 15N correlation (HSQC [14],
SOFAST-HMQC [15]) are also used [16]. This requires isotope label-
ing of the target protein – often 15N or 13C alone for small proteins
or combined with 2H-labeling [17] for larger proteins [18]. As STD
and T1rho, for example, work better with larger proteins as a result
of slower tumbling, 2D experiments are especially preferred with
small proteins as a reliable procedure that measures the direct
effect on protein chemical environment, rather than transferred
magnetization or change in ligand properties. It has the additional
advantage, in cases where the amino acid shifts are assigned, that it
gives an indication of possible binding regions by means of the
peaks’ chemical shift perturbations (CSP) [19–21].

Automated analysis tools are available for 1D NMR experiments
[22–24] and 2D NMR experiments [25–27]. These tools allow the
analysis of 2D NMR titration experiments by tracking of CSP. Fol-
lowing titration assignments in order to determine rate constants
as in NvMap [25], however, is quite different to the needs of frag-
ment screening, which requires a more global view of whether the
overall spectrum is significantly altered. In practice, this means
that a significant number of peaks alter position or intensity or
broaden upon addition of the fragment or ligand in question. Each
spectrum measured with a fragment is overlaid with the reference
spectrum and compared directly. This is easily done by eye, but,
depending on the number of NMR spectra recorded in an FBS cam-
paign, manual analysis can be time-consuming. The other signifi-
cant issue with manual analysis is the addition of human bias.
Whether as a result of tiredness, splitting the analysis over multi-
ple sessions, or simply as a result of comparison with those already
considered, the same spectrum can be classified differently
depending on its position within the dataset. Automation or partial
automation of this process would improve efficiency and accuracy,
as well as reducing opportunities for the introduction of human
bias. It would enable direct comparisons of achieved hit rates with
different proteins, as currently these campaigns are often analyzed
by different people, leading to differences in subjective evaluation
of the spectra. As far as we are aware, fast and reliable automated
analysis software for the simultaneous analysis of large numbers of
2D NMR spectra that provides useful binning for hit identification
has not been reported in the literature.

In this work, we present a novel approach for very fast analysis
of hundreds of 2D NMR spectra in FBS based on advanced machine-
learning-driven statistical discrimination. Our CSP Analyzer fea-
tures a C# frontend that is interfaced with a Python Machine
Learning classifier.

According to the principles of target-based NMR 2D FBS, the
software is designed to identify the ‘‘active” fragments by compar-
ing each spectrum (protein with fragment or fragment pool) in a
screening set to its reference spectrum (protein only). This opera-
tion does not require the assignment of the peaks because the
statistics are based on the fingerprinting of each spectrum proper-
ties (peaks position, peaks scattering, intensities, etc.). In other
words, the algorithms included in the package are capable of indi-
cating, with good recall, the ‘‘most different” experiments to the
reference spectrum. The software is designed to enable either par-
tial or fully automated hit determination from measured 2-D spec-
tra, depending on the user’s requirements, thus being a versatile
tool for FBS campaigns by NMR.
2. Results

To train the machine-learning (ML) model, we focused on
developing an input representation, borrowing heavily from
advances in computer vision, to enable multi-protein spectral
analysis without retraining for each new target of interest. We
optimized our architecture for the particulars of this challenge,
specifically recognizing the relative importance, and rarity, of ‘ac-
tive’ vs. ‘inactive’ spectra. To accomplish these objectives, we
adopted a mixture of strategies, engineering a useful feature repre-
sentation that draws on computer vision methodology, and
through synthetic data enhancement, weighting, and hyperparam-
eter optimization.

We tested the program and the ML discriminator on our in-
house datasets of NMR-based fragment screening of four different
protein targets. We refer in this work to the ‘‘active” spectra as the
spectra of those fragments that cause CSP, when compared to the
protein reference spectrum for each dataset. On the other hand,
the ‘‘inactive” spectra are the spectra generated by fragments that
are not interacting with the protein, thus not causing any notice-
able CSP. A ‘‘broken” spectrum is defined when problems in locking
or shimming of the samples caused unreadable or very noisy
spectra.

Spectral CSP plots were generated using the TopSpin 3.2 (Bru-
ker) automatic peak picking algorithm and exported as XML files
for each experiment, keeping the minimum intensity contour
threshold limits as the intensity of the reference spectrum in the
dataset. The limits for the F1 and F2 dimensions of the spectra were
also set in order to exclude the noise due to the water signal in the
F1 region (lower limit higher than 6 ppm) in order to avoid peak
picking of the noise signals. While this approach is subject to the
accuracy of the peak picking capabilities of TopSpin software, we
decided to use this method to test our proof-of-concept ML-
based discriminator.

We trained the ML model using randomly-picked experiments
from all four protein datasets which were previously processed
by expert NMR spectroscopists. The total set of experiments avail-
able for analysis consisted of 1611 2-D HSQC NMR spectra
recorded after screening our in-house library of 1500 fragments.
The full dataset contained both spectra recorded using cocktail
pools of fragments, as well as single ligand pools used for deconvo-
lution. The screening campaigns were conducted against four dif-
ferent protein targets. A total number of 32 active spectra were
then mixed with randomly-picked inactive and noisy spectra com-
ing from each of the available protein datasets, creating training
sets consisting of 100 spectra (6.2% of the total number of spectra).
The aim of the mixed sampling was to avoid overfitting of the
model and avoid introducing a bias toward one of the datasets with
the highest amount of active spectra. We then trained the discrim-
inator using a training set of randomly-picked selections from
active and inactive spectra in all the datasets. Validation was then
performed on all the available experiments. Even with a small
training set, the algorithm was capable of identifying the spectra
correctly with good efficiency (Fig. 1).

The relatively high number of false positives identified by the
ML analysis is due to the fact that the algorithm was designed in
order to include all the spectral plots that are consistently different
from the given reference spectrum. While this approach impacts
negatively on the overall accuracy of the predictions, it keeps the
number of false negatives as low as possible. Ultimately, the pur-
pose of this method is to avoid the case that potentially active
compounds are not identified and reported to the user during the
FBS campaign data processing.

On the other hand, noisy spectra or partially failed experiments
may be reported as actives when they are not. In light of this, the
parameters chosen for peak picking in TopSpin are crucial for a cor-
rect analysis. Protein 4 is an example of a dataset containing exper-
iments with very variable background noise and low-intensity
local peak clustering. Due to this behavior, the identification of
active pools for this specific target represented a challenging task
even for the human experimentalist. Nevertheless, the ML analysis
was capable of recalling the interesting experiments keeping the



Fig. 1. Machine Learning-based discriminator results for protein datasets. In Figure is reported the overall performance of the ML analysis. Correct predictions refer to the
number of experiments that were identified correctly by the ML-based discriminator, as compared to the user selection (marked as ‘‘active” or ‘‘inactive”, depending on the
CSPs). False positives refer to those experiments that were predicted as ‘‘inactive” while the manual user marked them as ‘‘active”. False negatives refer to the number of
experiments that were marked as ‘‘active” by the ML-based discriminator but marked as ‘‘inactive” by the user. The results displayed are referred to FBS campaigns against
four different proteins. For each protein, the first stacked column represents the distribution of the experiments after manual selection; the second column summarizes the
results of the automated analysis. The third stacked column shows the distribution of the statistics of the discriminator, reporting for each protein the number of correct
predictions, false positives and false negatives in the corresponding datasets.
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false-negative rate low, thus confirming its robustness and
efficiency.

With an average model accuracy of 0.87, we demonstrated that
the ML-discriminator can be used to assist in the rapid processing
of hundreds of spectra, whilst maintaining good reliability.

Furthermore, with the graphical user interface (GUI) of the CSP
Analyzer, which is designed to handle, display and process several
hundred spectra as efficiently as possible, the user can easily keep
track of the status of the analysis and get an overall estimation of
the dataset quality. At the end of the analysis, all the data can be
exported and saved either as a PDF report or as an Excel
spreadsheet.
3. Frontend

3.1. GUIi

The GUI for the CSP analyzer (Fig. 2) is written in C# using the .
NET Framework 4.6 available in Microsoft Visual Studio 2017 Com-
munity Edition. Plots and graphs use the LiveCharts 0.9.1 libraries
[28].

The user can browse through folders, select and load the XML
file for the reference spectrum in the dataset. A custom lower-
bound intensity threshold high-pass filter can be set independently
for the reference and for the dataset in order to deal with eventual
noisy peak picking. Once the reference is loaded, the spectral plot
XML files for the desired dataset can be loaded at once by selecting
a folder that contains all of the files. Only experiments that contain
the proper ‘‘peaklist.xml” files will be displayed and overlaid with
the reference spectrum. A message will display a log of the loading
process, reporting back to the user in the event of an empty folder
(i.e. failed experiment).

The user interface displays useful information about the NMR
screening data, such as the total number of peaks in both the ref-
erence spectrum and the dataset spectrum, the peak number dif-
ference between the overlaid experiments, the minimum and the
maximum intensity, the average minimum and maximum intensi-
ties in the dataset and the average number of peaks in the dataset
experiments. Fig. 3 shows a side-by-side comparison of the spectra
rendering for experiments marked respectively as active, inactive
and broken or noisy spectrum from the processed datasets used
for validation and analysis.

A control module can be used to skim quickly through the data-
set experiments. A go-to function allows quick navigation to the
selected experiment.

All the plots are fully zoomable and the probability and peak
difference distribution bar plots are also clickable. Customized key-
board shortcuts are available in order to facilitate the use of the
program (Fig. 4).

Furthermore, clicking on the ‘‘Help” button, the user can access
a troubleshooting guide for known issues (such as memory excep-
tions that may be caused by the Conda environment distributed
with the software package) and some guidelines to optimize peak
picking in TopSpin. To this purpose, a string-generator module can
be used to easily generate command-line strings with the proper
syntax required by TopSpin peak-picking automation.

Before running the ML-backend discriminator for analysis, the
software converts the spectra loaded according to the noise-filter
to JSON strings using the Newtonsoft JSON serializer libraries avail-
able for C# .NET framework. [29] The processed JSON may be also
be saved to a custom path for further processing (i.e. for training
purposes). After the analysis, the user can selectively display the
subsets marked as ‘‘active” or as ‘‘inactive” by the ML-
discriminator and use the player module to skim through the
desired experiments. A list of keyboard shortcuts can be displayed
by clicking on the corresponding button. The user can mark a spec-
trum in the dataset manually as ‘‘active” or ‘‘inactive” using the
respective buttons in the overlay area. The status can be reset at
any time using the respective button.

Clicking the ‘‘Export” button a new window (Fig. 5) with a
detailed overview of the analysis data will be shown; the user
can choose if print the analysis output (either sending the job to
an installed printer or to PDF) or export the data analysis to Excel
for further processing.

Distributed with the software package is provided a separate
program, named PeakListExtractor.exe, that can be used to retrieve
only the peak lists generated after peak picking preserving the
same folder-tree structure used by TopSpin, thus avoiding to copy
the full experiments data on the local drive. For the ease of



Fig. 2. GUI of the CSP Analyzer.
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deployability for this and future versions of the CSP Analyzer, we
decided to build a Miniconda environment (https://docs.conda.io/
en/latest/miniconda.html) containing the framework and the
libraries required for the ML discriminator which is distributed
with the software release.

The software package can be downloaded from GitHub https://
github.com/rubbs14/CSP-Analyzer/releases/tag/v1.0 as a Visual
Studio C# project, which can then be compiled to generate the
binaries (among with the Miniconda3 and the ML framework)
needed to run the program. The project can be also forked from
the original GitHub repository. A demo dataset for testing the cor-
rect installation is provided alongside the build binaries and is
located in the folder from where the software is launched.

4. Backend

4.1. Computational assessment

Whilst in the early versions of the software we approached the
active identification issue using a purely analytical method based
on local distance calculation using a customized version of the
Hungarian algorithm (HA) [30], this approach was seen to give
an high false-negative rate (FNR), defined as the ratio of false neg-
atives to the sum of false-negative and true positives.

In our modified HA routine, for each spectrum in the dataset a
local search for nearby the assigned reference peaks is computed.
If the distance of the peaks in the tested spectrum to the peaks
in the reference is more than 0 and below a defined threshold
(0.4 ppm for the F1 and 0.04 ppm for F2), then the peak is consid-
ered as a ‘‘moved” and its shift is added to the total sum of differ-
ences reported to the user for each spectrum. If the shift is above
this threshold the peak is defined as ‘‘missing” and the total num-
ber of ‘‘missing” peaks is also presented to the user, thus indicating
some interaction with the protein or an acquisition problem; such
a spectrum is thus considered as an active upon user review. If
there are no peaks moving, then the spectrum is marked as
inactive.

In Table 1 is reported a side-by-side comparison of the perfor-
mances between the analytical approach based on the customized
Hungarian method and our ML-based discriminator.

While the overall accuracy of both HA and ML discriminators
are comparable, the FNR is considerably lower for the ML-based
analysis. This is a highly desired feature for an automatic discrim-
inator because a high number of false negatives means that some
of the active fragments may not be considered during the process-
ing of the FBS data.

Our model had to cope with three major issues to make success-
ful predictions; first, that protein spectra vary substantially from
protein to protein, second, that the binding of a ligand results in
different peak behavior depending on which specific residues it
interacts with, and thirdly, that we have very imbalanced out-
comes, with, in general, many more inactives than actives, but with
the minority class the more interesting of the two for end-users.

From the user perspective, we aimed to create intuitive, reliable
software to facilitate the rapid analysis of many spectra, and rigor-
ously distinguish the actives from the inactives, to help the user
optimizing their workflow and standardizing results.

4.2. Spectrum processing

To minimize the difficulty of resolving the first and second
issues, we optimized the input representation passed to our
machine-learning model by adopting a range of approaches from
the field of computer vision and image analysis. This results in a fif-
teen element vector for each spectrum, representing the structural
transformation between it and the spectrum provided as a
reference.

Broadly, these can be divided into two approaches, descriptor-
based and statistical. Beginning with the descriptor approaches,
the histograms of oriented gradients (HOG) approach [32]

https://docs.conda.io/en/latest/miniconda.html
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Fig. 3. Side-by-side comparison of CSP maps for experiments marked as active (A, B), inactive (C, D) and noisy or broken spectrum (E, F). For reader reference: TopSpin
visualization is always shown in the left panel, while CSP Analyzer rendering results are always shown in the right panel. The diameter of the peaks in the CSP Analyzer
rendering corresponds to the absolute intensity of the peak in the output XML file after TopSpin peak picking. After mouse-over on a peak, its coordinates and the intensity
will be shown as a popup message. If the automatic analysis is performed, the spectra can be clustered by their activity and the user can cycle to the selected subset only from
the respective panel in the GUI.
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Fig. 4. A list of available keyboard shortcuts for the CSP Analyzer GUI.

Fig. 5. Export window with printing preview and a sample dataset exported to Excel.
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describes the distribution of ‘edges’ (regions of high peak concen-
tration) in an image, capturing information on local contours, sil-
houette, and some associated textural information. The local
peak contour map is then binned, and compared to a similarly-
prepared reference representation.

To account for the appearance and disappearance of peaks, we
also register the translation of our query on the reference [33]. This
approach determines the shifts that would be required to map one
onto the other by cross-correlation, with a zero-error, zero-phase
result indicating that they are identical. Rather than using the
shifts themselves, we consider the error term which incorporates
them, and the sum of the phase-difference. The phase-difference
term takes the sum of the absolute position-wise differences
between spectra.

The last of these is the oriented FAST and rotated BRIEF (ORB) [34]
method for point-matching. It differs from the other methods dis-
cussed in that it attempts an explicit mapping between points in the
reference and the query spectra, and can copewith an affine transfor-
mation from one to the other. We then calculate pairwise distances
between the observed features and retain the largest ten of these to
capture thosepointswithmostmovement,which are likely those cor-
responding to theon-targetbinding, ifpresent. In addition,we take the
median of all ORB distance values to give a more general measure of
the degree of peak-shifting between spectra.



Table 1
Comparison of HA and ML discriminators versus the user selection for each protein tested. FP and FN refer to false positives and false negatives respectively; TA and TI refer to
predicted true actives and predicted true inactives. CP is the total number of correct predictions (TA + TI); accuracy is the correct prediction rate and is defined as CP over the
number of the total experiments. FNR refers to the false-negative rate and is defined as the ratio between the number of FN to the sum of the TA and FN; FPR is the false-positive
rate, defined as the ratio between the number of FP and the sum of the TI and FP. Sensitivity is calculated as 1 – FNR; specificity is calculated as TI over the sum of TI and FP. MCC is
the Matthews correlation coefficient [31].

Protein 1 Protein 2 Protein 3 Protein 4 Total

ActivesManual 13 67 45 51 176
InactivesManual 321 212 519 383 1435
Total 334 279 564 434 1611

HA ML HA ML HA ML HA ML HA ML

Actives 1 28 53 73 6 63 97 128 157 292
Inactives 333 306 226 206 558 501 337 306 1454 1319
FP 1 20 15 11 6 40 74 95 96 166
FN 13 5 29 5 45 22 28 18 115 50
TA 0 8 38 62 0 23 23 33 61 126
TI 320 301 197 201 513 479 309 288 1339 1269
CP 320 309 235 263 513 502 332 321 1400 1395
Accuracy 0.96 0.93 0.84 0.94 0.91 0.89 0.76 0.74 0.87 0.87
FP (%) 0.30 5.99 5.38 3.94 1.06 7.09 17.05 21.89 5.96 10.30
FN (%) 3.89 1.50 10.39 1.79 7.98 3.90 6.45 4.15 7.14 3.10
Sensitivity 0.00 0.62 0.57 0.93 0.00 0.51 0.45 0.65 0.35 0.72
Specificity 1.00 0.94 0.93 0.95 0.99 0.92 0.81 0.75 0.93 0.88
FNR 1.00 0.38 0.43 0.07 1.00 0.49 0.55 0.35 0.65 0.28
FPR 0.00 0.06 0.07 0.05 0.01 0.08 0.19 0.25 0.07 0.12
MCC �0.01 0.39 0.54 0.85 �0.03 0.37 0.20 0.28 0.29 0.49
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Coming from another perspective, we begin with the structural
similarity index [35]. This is a highly noise-sensitive measure of
the structural ‘integrity’ of our query spectrum compared to the
reference. Its inclusion allows for the incorporation of information
about the relative noisiness of our spectrum, and also a bulk-
similarity measure. When compared to mean square error (MSE),
a simple measure of the squared intensity difference, pixel-to-
pixel, of two images, the structural similarity index produces a
more human-consistent value, punishing images with a lot of
Gaussian noise [36]. Similarly, we employ the well-established
Hu moment estimation [37] to calculate the invariant properties
of the reference and query spectra. These allow us to capture infor-
mation about the localized dispersion of peaks in our frame of ref-
erence. We then take a simple paired-distance approach to
compare the similarity of the two spectra. The final elements of
this statistical approach that are included are the traditional nor-
malized MSE and peak signal-to-noise ratio as absolute compara-
tors, although their performance is somewhat lower than the
aforementioned methods on most image-analysis tasks. As an
additional simple metric, we include the difference in Jensen-
Shannon entropy between the spectra (Fig. 6).
4.3. Machine-learning discriminator

From the machine-learning perspective, the imbalance in our
data classes represents a significant challenge, with the regions
of our descriptor space containing inactives considerably more
densely populated than the rest. This also means that any
machine-learning algorithm can perform relatively well by always
predicting a spectrum as inactive, given their relative abundance.
Two solutions to this problem are to weight our predictions, such
that the model places equal importance on the relatively few
actives as the many inactives, or data synthesis (also known as
oversampling), where we create pseudo-actives, based on similar-
ity in their descriptor representation. For training our model, we
trialed both of these methods, ultimately deciding on the latter
on the basis of performance.

The synthetic active spectra were generated combining syn-
thetic minority over-sampling technique (SMOTE) [38] with edited
nearest-neighbor under-sampling (ENN) [39] (SMOTE-ENN).
SMOTE generates new data examples by considering pairs of active
spectra, and generating synthetic data with descriptor vectors
intermediate between the two samples. ENN cleans up the result-
ing data representation by removing points whose nearest neigh-
bors have mixed classes. We used this to balance the number of
experimental inactives and mixed experimental-synthetic active
spectra.

To reduce the impact of highly-correlated data in our input rep-
resentation, we undertook dimensionality reduction of the input
by means of principal components analysis (PCA), projecting into
a lower-dimensional space and identifying combinations of input
features which capture most of the variance in the data. Given
the impact of widely-varying units in estimating the contribution
of each component, it was necessary to first normalize each ele-
ment of the vectors by use of a robust scaler which scales according
to the interquartile range. This method is somewhat more resilient
in the presence of outliers than mean scaling.

As we wished to delineate a region of this space that captures
inactive spectra, support-vector classification (SVC) was a natural
choice. Briefly, this approach transforms a set of data that cannot
be easily separated in the input space into a higher-dimensional
space where it is possible, using a kernel approach. We utilized a
radial basis function kernel, with heavy error penalization
(C = 3), and enable classification probability estimation. This latter
component is accomplished by Platt scaling, which fits a logistic
regression model to the classification scores produced by the
model. This allows us to return some measure of the model’s con-
fidence about any given spectrum to the end-user, and therefore to
rank them in a natural way. Our parameters were optimized so as
to minimize the false-negative rate.
5. Conclusions and future development

Our method is capable of discriminating and recalling with
good reliability the spectra which show sufficient change, promot-
ing greater efficiency in screening analysis, and reduction of
human bias induced by the repetitive nature of the task. While
the program currently relies on third-party software for peak pick-
ing, future versions might directly utilize raw NMR time-domain
data in order to create a comprehensive NMR analysis tool for



Fig. 6. Overview of the ML discriminator approach. Given a set of CSP peak lists (prepared as discussed above), along with a chosen reference peak list, the program calculates
a set of computer vision-based descriptors for each. During training, the provided peak lists have an associated label, indicating whether or not they are associated with a
binding event. These labels are then used, in the first instance, to facilitate synthetic enhancement through the SMOTE-ENN data synthesis approach, essentially generating
‘fake’ examples of what a binding-associated peak list looks like. In both training and prediction modes, each peak list is then compared to the annotated reference, and the set
of per-element distances used passed to a dimensionality-reduction approach (PCA). Finally, these reduced, comparative distance vectors are passed to a support-vector
classifier (SVC). In the case of training, the associated labels are also provided to this algorithm, in which case it is directed to learn a maximally-separating hyperplane
between the set of peak lists considered active, and those considered inactive. In addition, the kernel is directed to learn a calibrated probability, i.e. to produce probabilistic
assessments of a given novel peak list indicating binding, given what it has seen before. In the prediction case, this ‘pseudo-probability’ is then returned to the end-user.
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FBDD. Allowing the user to adjust the intensity levels to their needs
and set the thresholds for peak picking, would be a logical exten-
sion of the GUI. We also considered implementing functionalities
to bridge the visualization module with available NMR data pro-
cessing and visualization tools currently available, such as
NMRPipe [40], PINT [41], NMRView [42], Sparky [43], and CCPNMR
[27]. While the CSP Analyzer was designed to screen HSQC 1H-15N
spectra, it could also be used for 1H–13C or any other bidimensional
experiment. To facilitate this, a module for automatic recognition
of the F1 and F2 dimensions could be added. We also considered
the development of a KNIME [44] node for the CSP Analyzer which
could then be interfaced with a general workflow for batch NMR
data processing.

The backend utilizes several established computer vision
approaches, coupled with Machine Learning, to achieve solid
results in the recall of active-labeled spectra. Future work might
replace this image-based approach with a model that can directly
analyze waveform data [45], perhaps combined with some more
direct means of determining which noise level can be safely
ignored [46].

Overall, however, the relatively simple framework set out here
sufficed to achieve good recall on a laborious task. It is uncertain
how much of the gap from perfect recall to that achieved is owing
to ambiguity and variation between experts in analysis of these
spectra, but, in general, we could demonstrate that the speed of
NMR FBDD data analysis can be greatly improved using our imple-
mentation of Machine Learning methods without a substantial
decline in accuracy.

6. Materials and methods

6.1. NMR fragment-based screening

The in-house libraries of fragments were purchased from
Thermo. Aqueous protein solutions of approximately 100 lM con-
centration with 10% D2O were added to 1.8 mL of fragment cocktails
dissolved in deuterated DMSO in a 96-well plate with a total vol-
ume of 180 mL. Samples of 160 mL were then transferred to 3 mm
NMR tubes using a Gilson liquid handling robot and So-fast HMQC
or HSQC spectra were recorded at 298 K using Bruker Avance
600 MHz spectrometer equipped with a 5 mm QCI cryo-cooled
probe head. A reference sample was made with d6-DMSO instead
of fragment solution.
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