
Vol.:(0123456789)1 3

Data Science and Engineering
https://doi.org/10.1007/s41019-020-00147-9

How Good Are Modern Spatial Libraries?

Varun Pandey1 · Alexander van Renen1 · Andreas Kipf2 · Alfons Kemper1

Received: 17 June 2020 / Revised: 1 October 2020 / Accepted: 16 October 2020
© The Author(s) 2020

Abstract
Many applications today like Uber, Yelp, Tinder, etc. rely on spatial data or locations from its users. These applications and
services either build their own spatial data management systems or rely on existing solutions. JTS Topology Suite (JTS), its
C++ port GEOS, Google S2, ESRI Geometry API, and Java Spatial Index (JSI) are some of the spatial processing libraries
that these systems build upon. These applications and services depend on indexing capabilities available in these libraries for
high-performance spatial query processing. In this work, we compare these libraries qualitatively and quantitatively based
on four different spatial queries using two real world datasets. We also compare these libraries with an open-source imple-
mentation of the Vantage Point Tree—an index structure that has been well studied in image retrieval and nearest-neighbor
search algorithms for high-dimensional data. We found that Vantage Point Trees are very competitive and even outperform
the aforementioned libraries in two queries.

Keywords Spatial · Spatial libraries · Spatial data management

1 Introduction

In recent years, services such as recommending close-by social
events, businesses, or restaurants as well as navigation, loca-
tion-based mobile advertising, and social media platforms have
fueled an exponential growth in location-enabled data. Industry
giants like Google, Facebook, Uber, Foursquare, and Yelp are
some of the various companies that provide such services. In
order to handle location data from their users, these companies
either build their own spatial data management systems from
scratch, or rely on existing solutions.

The unprecedented rise of location-based services has led
to a considerable amount of research efforts that have been
focused on four broad areas; (1) systems that scale out [2–4, 9,

10, 17, 58, 59, 61, 69, 71, 72], (2) support for spatial processing
in databases [14, 32, 35, 38, 41], (3) improving spatial query
processing [12, 22–26, 42, 43, 46, 49, 62–64, 74], and (4) lev-
eraging modern hardware and compiling techniques [6, 7, 27,
54–56, 73], to handle the increasing demands of applications
today.

Some of the most popular spatial libraries are: JTS Topol-
ogy Suite (JTS), its C++ port Geometry Engine Open Source
(GEOS), Google S2 (S2), ESRI Geometry API, and Java Spa-
tial Index (JSI). Today, these libraries are being used in a variety
of services and research projects alike. We highlight the major
services and research projects that use these libraries in Sect. 4.
Many of the services that use these libraries are multi-million
dollar business models, such as on-demand ride-hailing and
dating applications. Moreover, many research efforts today in
the systems community also use these libraries for their spatial-
processing capabilities. Given how prevalent and relevant these
libraries are in present-day services and systems, we believe it
becomes a necessity to evaluate these libraries.

In this work, we extend the previous work done
in [42]. We take an application-oriented approach in evalu-
ating these libraries. Many open datasets such as Open Street
Maps or NYC taxi rides datasets provide location informa-
tion using raw GPS coordinates. Moreover, millions of
GPS devices in use today send location information in the
form of GPS coordinates. Thus, unless stated otherwise, we

 * Varun Pandey
 pandey@in.tum.de

 Alexander van Renen
 renen@in.tum.de

 Andreas Kipf
 kipf@mit.edu

 Alfons Kemper
 kemper@in.tum.de

1 Technical University of Munich, Munich, Germany
2 Massachusetts Institute of Technology, Cambridge, MA,

USA

http://orcid.org/0000-0002-1314-9061
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00147-9&domain=pdf

 V. Pandey et al.

1 3

assume that applications receive raw GPS coordinates and
have to process spatial queries based on them.

With this Experiment and Analysis paper we contribute:

• A study of problems arising when using planar geometry
libraries directly with GPS coordinates.

• A survey of modern spatial libraries, highlighting their
features and indexes.

• A thorough performance analysis of these libraries using
four spatial queries: range, distance, k-NN, and a spatial
join query.

The rest of the paper is structured as follows: Sect. 2 discusses
the background for planar and spherical geometry, and iden-
tifies potential pitfalls when using these libraries. Section 3
formally defines the spatial queries we used for evaluation and
presents practical examples of these queries. Section 4 intro-
duces the aforementioned modern spatial libraries. Section 5
presents the experimental setup used for evaluation, which
is followed by the evaluation itself in Sect. 6. In Sect. 7 we
highlight a potential research area and discuss how distributed
spatial query processing can be implemented using any spatial
libraries. Section 8 discusses related work and is followed by
takeaways and conclusions in Sect. 9.

2 Background

The libraries evaluated in this paper either use planar or
spherical geometry. In this section, we describe what these
two terms mean and why a naive usage of planar geometry
libraries can introduce unintended errors.

2.1 Geometry Models

Earth can be projected onto many surfaces, but today the
most widely adopted surfaces to project Earth on are planes
and spheres.

Planar Geometry: is geometry on a plane. The basis of
planar geometries is a plane, i.e., all the calculations on the
geometries such as distance between geometries, area cov-
ered by a geometry, intersection between geometries is done
on a plane using cartesian mathematics. In planar geometry,
the distance between two points on a plane is a straight line
distance between the points.

Spherical Geometry: is geometry on a sphere. The basis
of spherical geometries is thus a sphere. On the sphere there
are no straight lines as in case of a plane. In spaces involv-
ing curvature (such as spheres), straight lines are replaced
by geodesics.

The shortest distance between two points on the surface
of a sphere is called the great-circle distance or orthodromic
distance [67].

To make planar geometries work with geographic data,
Earth has to be projected onto a plane. There are multiple
projections available, some of which are based on the area
that they cover such as city based, region based, country
based, and even on continental and global scale but they all
come with different trade-offs [36]. Most notably, there is
no planar projection that preserves distance. Projections can
only minimize distance distortion. When working with pla-
nar geometries, it thus becomes essential to choose the right
projection that is best suited to the application concerned.

Spherical geometries on the other hand work on spheri-
cal projections, which maps the points on Earth’s surface
to a perfect mathematical sphere. As Earth is not a perfect
sphere, spherical projections of the Earth also create distor-
tions, but are limited to a maximum distortion of 0.56% [52].
Spherical projections also preserve the correct topology of
the Earth with no singularities and low distortions every-
where. An even more accurate projection of Earth is on an
ellipsoid, but operations on ellipsoids are orders of magni-
tude slower than on a sphere. Spherical geometry are also
slower than their planar geometry counterparts usually since
the computations are on a sphere rather than on a plane. But
spherical geometry is generally considered better suited to
work with geographic data on a global scale.

2.2 When Can Things Go Wrong In Planar
Geometries?

In this section, we show how applications can end up using
planar geometry libraries in a wrong way. We motivate this
by using an illustrative example of a ride-hailing application
in two scenarios: operating in a city and on a global scale.
We highlight potential pitfalls which can lead to applications
getting wrong results.

Consider a ride-hailing application scenario in New York
City that stores the location data as raw GPS coordinates
(lat/long),1 and matches riders with the nearest drivers
using the k-NN query (we formally define k-NN query in
Sect. 3.3). A part of k-NN query processing is the distance
computation between two points, the user and the drivers
in this case. Planar geometry libraries come with distance
functions2 that compute Euclidean distance. The applica-
tion could naively compute Euclidean distance between two
raw GPS coordinates, in which case, the distance would be
in degrees and does not have any meaning. The correct

1 Many open datasets today provide location information in lat/long
format.
2 JTS/GEOS do not support geodetic operations: https ://locat ionte
ch.githu b.io/jts/jts-faq.html#geode tic_opera tions . ESRI geometry API
has geodesic distance function: https ://githu b.com/Esri/geome try-api-
java/wiki.

https://locationtech.github.io/jts/jts-faq.html#geodetic_operations
https://locationtech.github.io/jts/jts-faq.html#geodetic_operations
https://github.com/Esri/geometry-api-java/wiki
https://github.com/Esri/geometry-api-java/wiki

How Good Are Modern Spatial Libraries?

1 3

approach is to project the raw GPS coordinates using a spa-
tial reference system, such as EPSG:32118 [11] that mini-
mizes the distance distortion for the New York area, and the
measurement unit is in meters. The Euclidean distance can
then be computed on the projected coordinates using the
distance function in the planar geometry library. Another
way is to compute the Haversine distance between the GPS
coordinates, but it is slower to compute because it involves
computing multiple sine and cosine operations.

Now as another example, consider the same application
as in the previous example, but the application now oper-
ates at a global level and uses a planar geometry library.
The application may naively start using EPSG:3857 [51] as
the projected coordinate system, which projects the whole
Earth onto a plane, and not just a city as in the case with
EPSG:32118. In EPSG:3857, distances are only accurate
along the equator, and the error increases with gain or loss
in latitude. The application receives two ride requests, one
in city A which lies on the equator, and the other in city
B which is closer to the North (or the South) Pole where
distance distortions are large (distances become larger than
they actually are). While the distance computation will be
correct for city A, for city B the distance distortions will be
large. In EPSG:3857 the distance distortion can be signifi-
cant. So if the application is using planar geometry, or more
accurately using Euclidean distance, to compute the distance
between the users and the drivers in city B, a user might
not be assigned any driver as the application may wrongly
interpret that the drivers are far away from the user, while in
reality the driver might be parked next to the user. A better
approach would be to detect during query processing that
the user is in city B, and then transform coordinates into
a reference system specific to the city as mentioned in the
previous example to compute the distances.

A more hidden potential pitfall is while using a spatial
index in a planar geometry library. Many popular spatial
index structures in these libraries are either designed or
implemented with Euclidean distance as a basis for dis-
tance computation during various types of index traversals,
depending on the query. For example, the R-tree in Java Spa-
tial Index (JSI) assumes Euclidean distance as the metric.
So, if an application uses the R-tree to index GPS coordi-
nates and issues a k-NN query to the R-tree, it is bound to get
wrong results because the nearest-neighbor search algorithm
in the index uses Euclidean distance. Similarly in JTS and
GEOS, if a user does not provide a distance metric to the k-
NN (or NN) query in the R-tree, the library uses Euclidean
distance by default. These problems are further compounded

because many other libraries utilize these spatial libraries.
As an example, consider the description of STR-Packed
R-tree in Shapely,3 a popular python geospatial library which
is used in more than 12 thousand projects on GitHub.4 The
description gives a simple example of R-tree for a nearest-
neighbor query. The user might be using GPS coordinates in
the R-tree, and might not be aware that the underlying library
GEOS uses Euclidean distance as the metric for the nearest-
neighbor queries and thus obtain an unintended error. The
correct approach for using a spatial index that indexes geo-
dectic coordinates is shown in [48].

3 Queries

In this work we have considered four queries, namely, range,
distance, k-nearest neighbor (k-NN) and a spatial point-in-
polygon join query. We selected these four queries based on
recent research in systems [69] and applications [73]. Simba
[69] is a big spatial data analytics system that is optimized
for storing location-data and considers (1) range, (2) dis-
tance, and (3) k-nearest neighbors Query (k-NN) queries.
[73] showcases multiple motivating examples of spatial
point-in-polygon join queries which are particularly useful
for visual exploration and analysis of urban data.

3.1 Range Query

A range query takes a range r (i.e., min/max values for all
dimensions N) and a set of geometric objects S. It returns
all objects in S that are contained in the range r. Formally:

Practical Example: Retrieve all objects at current zoom level
in a maps application (e.g., Google Maps) for a browser
window.

3.2 Distance Query

A distance query takes a query point q, a distance d, and a
set of geometric objects S. It returns all objects in S that lie
within the distance d of query point q. Formally:

Practical Example: Retrieve all dating profiles within 5 kilo-
meters of a user’s location.

Range(r, S) = { s|s ∈ S ∧ ∀n ∈ N ∶

r[n].min ≤ s[n] ≤ r[n].max }.

Distance(q, d, S) = { s|s ∈ S ∧ distance(q, s) ≤ d}.

3 https ://shape ly.readt hedoc s.io/en/lates t/manua l.html#str-packe d-r-
tree.
4 https ://githu b.com/Toble rity/Shape ly/netwo rk/depen dents ?packa
ge_id=UGFja 2FnZS 00OTk zMjI1 MA%3D%3D.

https://shapely.readthedocs.io/en/latest/manual.html#str-packed-r-tree
https://shapely.readthedocs.io/en/latest/manual.html#str-packed-r-tree
https://github.com/Toblerity/Shapely/network/dependents?package_id=UGFja2FnZS00OTkzMjI1MA%3D%3D
https://github.com/Toblerity/Shapely/network/dependents?package_id=UGFja2FnZS00OTkzMjI1MA%3D%3D

 V. Pandey et al.

1 3

3.3 k‑Nearest Neighbors Query

A k-NN query takes a set of points S, a query point q, and
an integer k ≥ 1 as input, and finds the k-nearest points in S
to q. Formally:

Practical Example: Find five closest pizzerias from a user’s
location.

3.4 Spatial Join

A spatial join takes two input sets of spatial records R and
S and a join predicate � (e.g., overlap, intersect, contains,
within, or withindistance) and returns a set of all pairs (r, s)
where r ∈ R , s ∈ S , and the join predicate � is fulfilled.
Formally:

Practical Example: Given two datasets, taxi rides (R: points)
and neighborhood boundaries (S: polygons), join the two
datasets to find how many rides originate (� : within) from
each neighborhood.

k − NN(q, k, S) = { s|s ∈ T ⊆ S ∧ |T| = k ∧ ∀t ∈ T ,

∀r ∈ S − T ∶ distance(q, t) ≤ distance(q, r)}.

R ⋈� S = {(r, s) | r ∈ R, s ∈ S, �(r, s) holds}.

4 Libraries

In the following section, we describe the major features of
the evaluated libraries. We also highlight the major ser-
vices, applications, and systems that use these libraries.
Table 1 summarizes various features of the libraries, and
Table 2 summarizes the features of the indexes found in
these libraries.

4.1 ESRI Geometry API

ESRI Geometry API5 is a planar geometry library written
in Java. ESRI Geometry API comes with a rich support for
multiple geometry datatypes, such as point, multipoint, line,
polyline, polygon, and envelope and OGC variants of these
datatypes. It has support for various topological operations,
such as cut, difference, intersection, symmetric, union and
various relational operations using DE-9IM matrix such as
contains, crosses, overlaps etc. ESRI Geometry API also
supports a variety of I/O formats, WKT, WKB, GeoJSON,
ESRI shape and REST JSON. The geometry library also
comes with Quadtree index which cannot be classified into

Table 1 Selected features of the libraries

Features S2 GEOS ESRI JTS JSI jvptree

Language C++ C++ Java Java Java Java
Indexes ShapeIndex,

PointIndex,
RegionTer-
mIndexer

STRtree, Quadtree Quadtree STRtree, Quadtree, k-d tree R-Tree Vantage Point Tree

Geometry Type Spherical Planar Planar Planar Planar Metric space
Geometry Model Point, Line,

Area,
Geometry
Collections

Point, Line, Area,
Geometry Collec-
tions

Point, Line, Area,
Geometry Collec-
tions

Point, Line, Area, Geometry
Collections

Point, Area Point

License Apache v2.0 LGPL Apache v2.0 Dual licence (EPL 1.0, BSD) LGPL MIT

Table 2 Selected features of all indexes

S2 ESRI JTS JSI jvptree

Feature Point Index Quadtree k-d tree Quadtree STRtree R-tree jvptree
Implemen- tation Linear Quadtree Quadtree k-d tree MX-CIF Quadtree STR packed R-tree R-tree VPTree
Geometry Point Rectangle Point Rectangle Rectangle Rectangle Point
Native queries Range, Distance,

k-NN
Range Range Range Range, k-NN Range, k-NN Distance, k-NN

Updates Yes Yes Insert:Yes
Delete:No

Yes No insertion after
build

Yes No

Default Fanout 32 4 2 4 10 20–50 2

5 https ://githu b.com/Esri/geome try-api-java.

https://github.com/Esri/geometry-api-java

How Good Are Modern Spatial Libraries?

1 3

a particular type from the Quadtree family. The key property
of any Quadtree is its decomposition rule, in ESRI Quadtree,
a leaf node splits into four when the node element count
reaches 5 elements, and they are pushed to the children
quads if possible.

ESRI Geometry API is used in a variety of products by
ESRI such as ArcGIS, ESRI GIS tools for Hadoop, and
various ArcGIS APIs. It is also used by the Hive UDFs and
by developers building geometry functions for third-party
applications such as Cassandra, HBase, Storm, and many
other Java-based “big data” applications.

4.2 Java Spatial Index

The Java Spatial Index (JSI)6 is a main-memory optimized
implementation of the R-tree [15]. JSI relies heavily on the
trove4j7 library to optimize performance and reduce the
memory footprint. The code is open-source, and is released
under the GNU Lesser General Public License, version 2.1
or later. The JSI spatial index is limited in features, and only
supports a few operations. It is a lightweight R-tree imple-
mentation, specifically designed for the following features
(in order of importance): fast intersection performance by
using only main memory to store entries, low memory foot-
print, and fast updates. JSI’s R-tree implementation avoids
creating unnecessary objects by using primitive collections
from the trove4j library. JSI only supports rectangle and
point datatypes, and has support for only two predicates for
refinement, intersects and contains. The R-tree index can be
queried natively for ranges and k-NN.

We could not find any reference of JSI being used in a
major system or service, which we believe is mostly due to
its limited capabilities. Although limited in features, JSI is
still regularly utilized in diverse research areas [28, 29, 33,
34, 57].

4.3 JTS Topology Suite and Geometry Engine Open
Source

The JTS Topology Suite (JTS) is an open-source Java library
that provides an object model for planar geometry together
with a set of fundamental geometric functions. JTS conforms
to the Simple Features Specification for SQL published by
the Open GIS Consortium8. GEOS (Geometry Engine Open
Source)9 is a C++ port of the JTS Topology Suite (JTS).
Both JTS and GEOS provide support for basic spatial data-
types such as points, linestrings and polygons along with

indexes such as the STR packed R-tree [30] and MX-CIF
Quadtree [31]. They also support a variety of geometry oper-
ations such as area, distance between geometries, length/
perimeter, spatial predicates, overlay functions, and buffer
computations. They also support a number of input/output
formats including Well-Known Text (WKT), Well-Known
Binary (WKB).

JTS is used in many modern distributed spatial analytics
systems such as Hadoop-GIS [2], SpatialHadoop [9], Geo-
Spark [72], and SpatialSpark [71] and other research areas
[55]. GEOS on the other hand is used in a number of data-
base systems and their spatial extensions such as MonetDB,
PostGIS, SpatiaLite, Ingres, and it is also used by a number
of frameworks, applications, and proprietary packages.

JTS is used in many modern distributed spatial analytics
systems such as Hadoop-GIS [2], SpatialHadoop [9], Geo-
Spark [72] and SpatialSpark [71] and other research areas
[55]. GEOS on the other hand is used in a number of data-
base systems and their spatial extensions such as MonetDB,
PostGIS, SpatiaLite, Ingres. GeoPandas and Shapely, two
popular geospatial libraries in python, internally use GEOS.
It is also used by a number of frameworks, applications and
proprietary packages.10

4.4 Google S2 Geometry

S211 is a library that is primarily designed to work with
spherical geometry, i.e., shapes drawn on a sphere rather
than on a planar 2D map, which makes it especially suitable
for working with geographic data. S2 supports a variety of
spatial datatypes including points, polylines, and polygons.
It also has two index structures, namely (1) S2PointIndex
to index collections of points in memory and is a variant of
Linear Quadtree [31], and (2) S2ShapeIndex to index arbi-
trary collections of shapes, i.e., points, polylines and poly-
gons in memory. S2 also defines a number of queries that
can be issued against these indexes. Indexes also define itera-
tors to allow for more fine-grained access. S2 also accepts
input in lat/long (GPS) format.

In recent years, S2 has become a popular choice among
various location-based services. It is used by on-demand
ride-hailing services such as Uber [44] and GO-JEK [47]. It
is also used by location-sharing applications like Zenly [50]
(recently acquired by Snap Inc. [18]) and Foursquare [60].
Even popular games such as Pokémon GO [53], Ingress [1],
and a popular location-based dating application Tinder [45]
utilize S2. Moreover, S2 is also used by many database sys-
tems, including MemSQL [14], MongoDB [35], and HyPer’s

6 https ://githu b.com/aled/jsi.
7 http://trove 4j.sourc eforg e.net/html/overv iew.html.
8 https ://www.openg eospa tial.org/stand ards/sfa.
9 https ://trac.osgeo .org/geos/.

10 https ://trac.osgeo .org/geos/wiki/Appli catio ns/.
11 https ://githu b.com/googl e/s2geo metry .

https://github.com/aled/jsi
http://trove4j.sourceforge.net/html/overview.html
https://www.opengeospatial.org/standards/sfa
https://trac.osgeo.org/geos/
https://trac.osgeo.org/geos/wiki/Applications/
https://github.com/google/s2geometry

 V. Pandey et al.

1 3

[21] geospatial extension HyPerSpace [41]. It has also been
used in other research areas [22–24, 27, 68].

4.5 Vantage Point Tree

The vantage point tree [70] is based on metric space and has
been well studied in image retrieval and nearest-neighbor
search algorithms for high-dimensional data. It is a binary
tree which is built recursively. At each node in the tree,
the points are split into two equal-sized partitions, and are
assigned to its two children. This process is repeated until
no points are left or a certain threshold is reached. A node
partitions its points by picking one point p at random, the
vantage point. The points assigned to the node are then are
sorted by their distance to the vantage point p. The result-
ing sorted array is then split in the middle and assigned to
the two children. The distance of the split point from the
vantage point p serves as the radius r for the node. All the
points that are within the radius r (i.e., the left part of the
sorted array) are assigned to the left child of the node, and
the rest of the points are assigned to the right child. Based on
this partitioning, the tree can then be traversed efficiently to
answer distance and k-NN queries. We refer readers to [70]
for more details on vantage point trees. We use the library
jvptree12 for an implementation of vantage point tree in our
experiments.

5 Methodology

To benchmark the various libraries and measure memory
costs, we use language specific open-source tools. For Java
based libraries, we use the Java Microbenchmark Harness
(JMH),13 which is a framework for building, running, and

analyzing benchmarks. To measure the memory consump-
tion in Java, we use the Memory Measurer tool.14 To bench-
mark C++ based libraries, we use Google Benchmark,15
and for memory consumption of the indexes in C++, we use
the Heap Profiler in TCMalloc.16 TCMalloc overrides the
malloc and new implementations, and can thus track the
memory usage of an application from the amount of memory
allocated/deallocated.

For evaluation, we used two location (points) datasets, the
New York City Taxi Rides dataset [37] (NYC Taxi Rides)
and geo-tagged tweets in the New York City area (NYC
Tweets). NYC Taxi Rides contains 305 million rides from
the years 2014 and 2015. NYC Tweets data was collected
using Twitter’s Developer API [65] and contains 83 mil-
lion tweets. Figure 1 shows the distribution of the rides and
tweets in the NYC region. It can be seen that the Taxi rides
are mostly centered around central New York whereas the
tweets are well distributed over the entire city.

We further generated query datasets that consist of ranges
(bounding boxes) in case of range query, query points and
distances in case of distance query, and query points in
case of k-NN query. For range queries and distance queries,
we created seven different query datasets for seven differ-
ent selectivities, ranging from 0.0001 to 1% (i.e., the query
selects 0.0001–1% of the data). These query datasets consist
of one million queries each. We evaluate various indexes in
the libraries by issuing these queries sequentially. We chose
to generate a large number of queries to minimize the effect
of caching tree nodes from a previously issued query. Test-
ing with many queries is especially important in cases with
low selectivity where many indexes achieve a throughput
of more than 100,000 queries per second. The benchmark
frameworks that we use for evaluation run a benchmark mul-
tiple number of times until the result is statistically stable. It
is thus necessary that we have sufficient queries that do not
touch the same nodes in the index structures, but rather exer-
cises several paths in the indexes. To generate these datasets,
we uniformly generated points within the New York City
bounding box and continuously expanded the range or the
distance, depending on which query dataset is being gen-
erated, to meet the selectivity requirements. For the k-NN
query dataset, we uniformly generated points within the
NYC bounding box. For the point-in-polygon spatial join
query, we use 289 polygons of neighborhood boundaries in
NYC. For planar geometry libraries, we projected the data-
sets to EPSG:32118 using ogr2ogr tool in GDAL. We used
the ogr2ogr tool in GDAL to transform the lat/long coordi-
nates in the datasets.

(a) Tweets dataset (b) Taxi Trips dataset

Fig. 1 Datasets: NYC Taxi trips are clustered in central New York
while Tweets are spread across the city

12 https ://githu b.com/jcham bers/jvptr ee.
13 https ://openj dk.java.net/proje cts/code-tools /jmh/.

14 https ://githu b.com/mstei ndorf er/memor y-measu rer.
15 https ://githu b.com/googl e/bench mark.
16 https ://githu b.com/gperf tools /gperf tools .

https://github.com/jchambers/jvptree
https://openjdk.java.net/projects/code-tools/jmh/
https://github.com/msteindorfer/memory-measurer
https://github.com/google/benchmark
https://github.com/gperftools/gperftools

How Good Are Modern Spatial Libraries?

1 3

6 Evaluation

All experiments were run single threaded on a two-socket
Ubuntu 18.04 machine with an Intel Xeon E5-2660 v2 CPU
(2.20 GHz, 3.00 GHz turbo)17 and 256 GB DDR3 RAM. We
use the numactl command to bind the thread and memory to
one node to avoid NUMA effects. CPU scaling was also dis-
abled during benchmarking using the cpupower command.

We have benchmarked libraries written both in Java and
C++. Although we have used language specific framework
and tools to measure the performance of libraries, there are
inherently many differences between the languages. As an
example consider the size of an integer in the two languages.
A type int Object in Java requires 16 bytes (depending on
JVM implementation) while a type int in C++ requires 4
bytes. We ask the readers to carefully take such differences
between languages into account while comparing perfor-
mance of libraries written in different languages.

To evaluate the queries, we perform two experiments
for each query. In the first experiment, we fix the selectiv-
ity of the query to 0.1% (we fix k to 10 in case of k-NN
query) and vary the cardinality of the points dataset from
100,000 records to the maximum size of the dataset (i.e.,
83 M records for Twitter dataset and 305 M for the Taxi
dataset). In the second experiment, we fix the number of
points to the maximum size of the dataset and vary the selec-
tivity of the query from 0.0001 to 1% (we vary k from 1 to
10,000 in case of k-NN query). For all these experiments,
we measure the throughput for each library in queries/s. In
case of spatial join query, we report the join time in seconds.
All query implementations are covered under the respec-
tive section. If a particular index does not support a query
natively, the query is implemented using the filter and refine
[39] approach.

6.1 Indexing Costs

ESRI Quadtree and JSI R-tree accept the rectangular range
to index, and an identifier for the rectangular range, whereas
other index structures are more liberal and allow users to put
any user data along with the rectangular range. To be fair to
all index structures, we only store the rectangular range to
index and an identifier in every case and measure the size of
these indexes in memory.

It is important at this point to categorize indexes in the
libraries to better understand their behavior. Indexes in the
libraries can be classified as: Point Access Methods (PAMs)
and Spatial Access Methods (SAMs) [31]. PAMs are index-
ing methods that index point data, whereas SAMs index
extended spatial objects such as rectangles, polygons etc.
S2PointIndex, k-d tree and vptree are PAMs and the rest are
SAMs. The indexes can also be categorized as space-driven
(follow the embedding space hierarchy), or data-driven
(follow the data space hierarchy). k-d tree and Quadtrees
are space-driven structures and the rest of the indexes are
data-driven.

Figure 2 shows the sizes of indexes in various libraries
and Fig. 3 the time it takes to construct them. S2PointIn-
dex, and vptree are PAMs which stores only points (at
least two doubles) and hence the memory consumption
is minimal. S2PointIndex is a B-tree that stores 64-bit
integers (cell ids), and the overhead in inner nodes is
minimal. jvptree only stores a vantage point, and a radius
at every node, hence the intermediate nodes consume
minimal memory. The rest of the indexes are SAMs and
store rectangles and consume more memory than PAMs.
This is expected, as the trees store rectangles.18 each of
which require storage of at least four doubles. Figure 2
also shows that the R-tree in JSI consumes very little
memory even though it stores rectangles. JSI heavily
relies on trove4j19 collections, which are generally faster
to access, and consumes much less memory than Java’s
Util collections. There are two reasons for low memory
consumption. First is that (any) primitive collections store

esri-quadtree jsi-rtree jts-kdtree jts-quadtree jts-strtree
geos-quadtree geos-strtree s2-point-index vptree

0

5

10

15

tweets (83M)

in
de

x
si
ze

(G
B
s)

0

10

20

taxi (305M)

Fig. 2 Index sizes for the two datasets

esri-quadtree jsi-rtree jts-kdtree jts-quadtree jts-strtree
geos-quadtree geos-strtree s2-point-index vptree

0

100

200

tweets (83M)

ti
m
e
(s
ec
)

0

200

400

600

taxi (305M)

Fig. 3 Index building times for the two datasets

17 CPU: https ://ark.intel .com/conte nt/www/us/en/ark/produ cts/75272
/intel -xeon-proce ssor-e5-2660-v2-25m-cache -2-20-ghz.html.

18 We store points from the datasets as degerate rectangles in SAMs.
19 http://trove 4j.sourc eforg e.net/html/bench marks .shtml .

https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html
http://trove4j.sourceforge.net/html/benchmarks.shtml

 V. Pandey et al.

1 3

data directly in an array of primitives (int, long, dou-
ble, char), and thus only a single reference to an array of
primitives is needed instead of an array of references to
data objects. JSI also uses floating-point precision while
the other index structure use double precision values. Sec-
ond, each primitive data element consumes less mem-
ory than the Object (e.g., type int only requires 4 bytes
instead of 16 bytes object Integer). The reason for better
performance is that trove4j avoids boxing and unboxing
elements every time a primitive value is queried to/from
the collection. It can also be seen that the space-driven
indexes, i.e., Quadtrees and k-d tree, consumes more
memory compared to the other index structures. Since
space-driven structures divide the space they index, more
internal nodes are formed as they keep dividing the space
until a certain threshold is not met for the leaf node size.

Index construction times have been measured using the
benchmarking frameworks, and are averaged over several
runs until the runtime is statistically stable. For both Taxi
and Twitter datasets, jvptree is the fastest to construct,
whereas k-d tree and STRtree in JTS, Quadtree in ESRI
geometry API and R-tree in JSI are among the slowest to
construct for all datasets.

6.2 Range Query

Implementation: All indexes, except for jvptree, natively pro-
vide an interface for range queries. To implement range que-
ries in jvptree we first compute the centroid q of the query
rectangle. Next, we determine the distance of the centroid q
to one of the rectangle’s corner vertices. The resulting circle
(q, d) is always larger then the range query rectangle and can
therefore be used as a filter to retrieve a list with qualifying
points. This list is then refined to determine which points
are actually contained in the range query rectangle. As men-
tioned earlier, k-d tree in JTS keeps a count of points, in case
of duplicate points (up to a certain distance tolerance), rather
than creating a new node for the duplicate points. We make
sure that we materialize all such points for the range query,
but we do use them as an optimization in distance and join
query to reduce the refinement costs (i.e., skip refinement for
duplicate points if one point qualifies the refinement check).

Another point to mention here is that Quadtree imple-
mentation in ESRI geometry API requires tuning. The ini-
tialization of the Quadtree expects a height parameter for
the index. As mentioned in Sect. 5, we generated range que-
ries with varying selectivities from 0.0001 to 1%. We ran

Fig. 4 Range query perfor-
mance varying the number of
points and selectivity of the
query rectangle for NYC Taxi
and Twitter Datasets

esri-quadtree geos-strtree geos-quadtree jsi-rtree jts-kdtree
jts-strtree jts-quadtree s2-point-index vptree

105 106 107 108
100
101
102
103
104
105

tweets (83M)

qu
er
ie
s/
s
(l
og

)

105 106 107 108
100
101
102
103
104
105

taxi (305M)

(a) Varying number of points

0.0001% 0.01% 1%
100
101
102
103
104

tweets (83M)

0.0001% 0.01% 1%
100
101
102
103
104

taxi (305M)

(b) Varying selectivity

Table 3 CPU Counters: Range
query datasize = 50M tweets,
selectivity = 0.1%, 1 thread,
normalized by the number of
range queries

All values are in millions except IPC

Cycles ipc instr L1 miss LLC miss Branch miss

esri-quadtree 116 0.84 98 1.34 0.54 0.08
geos-quadtree 105 0.75 79 0.97 0.75 0.09
geos-strtree 236 0.37 88 4.04 2.68 0.51
geos-cfstrtree 91 0.87 80 1.21 0.57 0.46
jsi-rtree 8 1.25 10 0.13 0.06 0.03
jts-kdtree 8 1.12 9 0.14 0.02 0.04
jts-quadtree 68 1.17 80 0.82 0.27 0.19
jts-strtree 31 0.81 25 0.42 0.22 0.01
s2-pointindex 44 1.34 59 0.42 0.05 0.36
vptree 30 0.70 21 0.68 0.21 0.05

How Good Are Modern Spatial Libraries?

1 3

all these range queries from selectivity 0.0001–1% on both
datasets, and varied the height of the Quadtree from 1 to 64
for both datasets and for each selectivity. We then ranked
these heights based on the lowest query runtime for each
query selectivity, and compute the aggregated rank of all
heights across all selectivities. We then selected the height
with the lowest rank for both datasets. We found that the
Quadtree performed best with heights 18 and 9 for the Taxi
and Tweets datasets respectively.

Analysis: Fig. 4 shows the range query performance
of various libraries on the Taxi and Twitter datasets. For
both datasets, JSI R-tree show the best throughput numbers
(259.87 and 72.779 queries per second, respectively, for
Twitter and Taxi dataset for 0.1% selectivity). JSI R-tree is
optimized for main memory usage for range queries and has
the least height of all indexes (5 and 7 in the two datasets).
Many of the tree nodes are cached and it suffers from the
least number of cache misses as shown in Table 3.

An interesting case in the results is the low query through-
put of GEOS STRtree (17.8315 queries per second in the
Tweets dataset for 50 M points and 0.1% selectivity). GEOS
STRtree is much slower than the JTS STRtree. Upon investi-
gation, we found that the reason for the low query through-
put of STRtree in GEOS is an implementation artifact. It
can be seen in Table 3 that GEOS STRtree suffers from a
large number of LLC misses, 2.68 million in the Twitter
dataset and 1.28 million in the Taxi dataset (not shown in
table). R-trees in general store multiple rectangles at every
node. When the tree is queried, the decision to explore the
branches from each node in the tree is based on whether
the query range overlaps any of these rectangles. In both
cases, JTS and GEOS, every node in the STRtree contains a
maximum of 10 such rectangles by default. GEOS STRtree
stores a vector of pointers to these rectangles at every node.

At every node, the algorithm in the range query iterates
over these pointers, retrieves these rectangles from mem-
ory and checks whether there is any overlap with the query
range and then based on the overlap explores the various
branches from the node. Retrieving these rectangles from
memory causes many cache misses in GEOS STRtree during

the query execution. To validate this, we implemented a
cache-friendly STRtree (designated as cfstrtree in Table 3)
in GEOS on top of the existing tree. We basically intro-
duced another vector at every node in the tree, which stores
the objects of these rectangles in contiguous memory. We
replaced the logic to check for overlap to use these rectan-
gle objects rather than the pointers to the rectangles. This
reduces the number of LLC misses in the CFSTRtree rela-
tive to STRtree, by a large number as can be seen in Table 3.

STRtree implementation in JTS does not suffer from this.
In both libraries, GEOS and JTS, the algorithm for con-
structing and traversing the trees are the same, but the differ-
ence in performance stems from how memory management
works in the JVM. Every node in JTS STRtree stores the
rectangle objects in a List. Lists in Java store the references
to the objects, so logically it is similar to storing a vector of
pointers in C++. But where this differs is that JVM makes
a distinction between small and large objects during object
allocation [66]. The limit for when an object is considered
large depends on the JVM version, the heap size, the gar-
bage collection strategy and the platform used, but is usu-
ally somewhere between two and 128 kB. Small objects are
allocated in thread local areas (TLAs). The thread local areas
are free chunks reserved from the heap and given to a Java
thread for exclusive use. The thread can then allocate objects
in its TLA without synchronizing with other threads. The
size of the rectangle objects in JTS is 48 bytes each. This
means that the rectangle objects qualify as small objects
and are in contiguous memory. Only the access to the first
rectangle causes a cache miss, and the other objects are most
likely brought into memory as a side effect of that cache
miss (speculative loading).

6.3 Distance Query

Implementation: S2PointIndex and jvptree provide native
support for distance queries, so we directly issue the query
point and the distance to these two indexes. The other
indexes do not support distance query natively. To imple-
ment distance queries in these indexes, we again use the

Fig. 5 Distance query perfor-
mance varying the number of
points and selectivity of the
query rectangle for NYC Taxi
Dataset and Twitter Datasets

esri-quadtree geos-strtree geos-quadtree jsi-rtree jts-kdtree
jts-strtree jts-quadtree s2-point-index vptree

105 106 107 108
101
102
103
104
105

tweets (83M)

qu
er
ie
s/
s
(l
og

)

105 106 107 108

101
102
103
104
105

taxi (305M)

(a) Varying number of points

0.0001% 0.01% 1%

101
102
103
104

tweets (83M)

0.0001% 0.01% 1%

100
101
102
103
104

taxi (305M)

(b) Varying selectivity

 V. Pandey et al.

1 3

filter and refine paradigm. We first filter using a rectangle,
whose corner vertices are at a distance of d from the query
point q. We issue a range query to the various range based
indexes using this rectangle. We then refine the resulting
candidate set of points by using a withinDistance predicate
(available in ESRI Geometry API, JTS, and GEOS). For
JSI, we implemented our own predicate, which computes the
Euclidean distance for all candidate points from the query
point and checks if the candidate point is within distance d *
d rather than d from the query point. This helps in skipping
the square root operation to calculate Euclidean distance.

Analysis: Fig. 5 shows the distance query performance
on Taxi and Twitter datasets. The performance for distance
query is dominated by range query lookup for most indexes,
apart from S2PointIndex and jvptree. These index support
distance queries natively, i.e., have specialized tree traversal
algorithms for distance query. For other indexes, we deploy
the filter and refine paradigm. The performance of these
indexes thus follows directly from the range query perfor-
mance. JSI R-tree is slightly better than JTS k-d tree as we
optimize the Euclidean distance computation by skipping
the square root operation. We would also advise the readers
to use this approach for refinement in GEOS as well. The
isWithinDistance function in GEOS returns whether two
geometries are within a certain distance from each other.
By profiling the function we noticed that this function makes
six malloc() calls, for every candidate point, which degrades
the performance. By using our own predicate distance func-
tion, we were able to speed up distance query by up to 2 ×
in GEOS. In many geometric operations, GEOS frequently
allocates and deallocates memory, which is an overhead.
This problem in memory management was also observed by
[71], where authors use GEOS to introduce spatial process-
ing in Impala.

6.4 k‑NN Query

Implementation: Out of all the available indexes, only
S2PointIndex, JTS STRtree, JSI R-tree, and jvptree support
k-NN queries natively. We directly issue the query point to

these indexes and measure their performance. We did not
implement any tree traversal algorithms for any other avail-
able tree because we wanted to measure the performance
of the libraries without making any changes to the library
source code.

Analysis: Fig. 6 shows k-NN query performance of vari-
ous indexes on the Taxi and Twitter datasets. jvptree again
takes the crown as the best performing index for k-NN que-
ries, with S2PointIndex close behind. It can be observed that
for the Twitter dataset the performance of JSI R-tree fluctu-
ates quite a bit. This can be explained by how the nearest-
neighbor algorithm works in JSI R-tree (and also in JTS
STRtree), which is known as branch-and-bound traversal.
The algorithm starts with adding the root node to a priority
queue of size k. The algorithm, then iterates over the tree
continuously adding nodes until the priority queue is full.
The algorithm then continues traversing the tree observing
nodes, replacing the current farthest node in the queue with
the current node being looked at, if it is closer. JSI R-tree is a
dynamic tree, it is built in a top-down fashion (spatial objects
are inserted from the root to the leaf), and the nodes are split
(or merged) based on various factors. It is evident that sev-
eral R-trees can represent same set of data rectangles [16],
depending on insertion order and grouping of data objects
into leaves. The JSI R-trees for different sized datasets are
therefore vastly different. Thus, during the tree traversal for
k-NN query, sometimes a large number of branches from
a node can be dropped since they are not closer than the
current farthest node in the priority queue and sometimes
they cannot be dropped. This can lead to multiple search
paths to be evaluated and hence the fluctuation in perfor-
mance. JTS STRtree packed R-tree does not suffer from this
because it is a type of static R-tree. It is built bottom-up
and once built, no more elements can be added. STRtree is
built by first sorting the leaf node in the x dimension, and
then dividing the data in vertical slices, each containing an
equal number of points. Within each slice, the data is sorted
in the y dimension, and again divided into slices containing
an equal number of points. The tree is then built on top of
these slices by packing a predefined number of slices into

Fig. 6 k-NN query performance
varying the number of points
and k for NYC Taxi and Twitter
Datasets

jsi-rtree jts-strtree s2-point-index vptree

105 106 107
101
102
103
104
105

tweets (83M)

qu
er
ie
s/
s
(l
og

)

105 106 107 108
101
102
103
104
105

taxi (305M)

(a) Varying number of points

100 102 104
100

102

104

106

tweets (83M)
100 102 104

102

104

106

taxi (305M)

(b) Varying k

How Good Are Modern Spatial Libraries?

1 3

nodes. The difference in tree node boundaries is still there
in JTS STRtree but is more profound in the lower levels
of the tree, rather than at various levels as in the case of
JSI R-tree. Thus, JSI R-tree can sometime quickly discard
branches at the top of the tree and other times it cannot, and
this is reflected in the query throughput.

6.5 Point‑In‑Polygon Join Query

Implementation: In S2, we used the S2ShapeIndex, instead
of S2PointIndex, which provides a native interface for the
contains predicate. S2ShapeIndex20 stores a map from
S2CellId to the set of shapes that intersect that cell. The
shapes are identified by a ShapeId. As shapes are added
to the index, their cell ids are computed and added along
with the shape id to the index. When a query point is issued
against the index it retrieves the cells that contain the query
point and identifies the shape(s) that this containing cell
belongs to using the shape id. For other indexes, we again
use the filter and refine approach. For GEOS and JTS we use
PreparedGeometry21 to index line segments of all individual
polygons, which helps in accelerating the refinement check.
In JTS, we also use k-d tree’s points snapping technique to
skip refinement for duplicate points in case one point quali-
fies or disqualifies the predicate check. In ESRI implementa-
tion, we use AcceleratedGeometry and set its accelDegree to
enumHot22 for the fastest containment performance.

Analysis: Fig. 7 shows joins query performance on the
Taxi and the Twitter datasets. Spatial join queries are notori-
ously expensive and this is reflected in the figure. For join
queries S2ShapeIndex performs the best. As mentioned ear-
lier, we skip the refinement check for duplicate points if one
such point qualifies (or disqualifies) the refinement check
and that is why it does slightly better than the other indexes.
S2ShapeIndex natively supports the containment query and
traverses the index appropriately and does not have to deal

with refining many candidate set of points. The performance
of other indexes follows from the range query performance.
JTS/GEOS STRtree and Quadtree perform better than ESRI
Quadtree because the refinement using PreparedGeometry
is faster than AcceleratedGeometry in ESRI.

7 Discussion

In this section, we first discuss a research direction that we
believe might not be getting the attention in the community
that it should, before we outline how to use modern spatial
libraries as building blocks for building distributed spatial
systems.

7.1 Why Refinement Should Be Looked At?

As we learned in the past sections, the modern spatial librar-
ies provide index structures which arrange spatial objects
in a way that the access time to these geometric objects
reduces. But we also learned that these index structures
only support a limited set of native queries (range lookup
and k-NN query in most cases). In other queries, such as
distance query and spatial joins, these index structures pri-
marily act as filters. The resulting candidate set of points (or
geometries) after the filter phase needs to be further refined
based on a spatial predicate. For distance query, the predi-
cate is withinDistance, and for spatial joins, the predicate
can be one of many predicates, such as contains, intersects,
overlaps, etc. For these queries, we used the filter and refine
paradigm. The set of geometry objects from the candidate
set that do not qualify the predicate check are known as false
drops and the ones that do are known as candidate hits.
Generally, we can determine how good these indexes are for
such queries by analyzing the ratio of number of false drops
to the number of candidate hits. If the ratio is more than 1,
it can be deduced that the amount of work being done for
false drops is more than for candidate hits. This work done
can be classified as an overhead, and the goal is to minimize
this overhead.

In this study we also looked at an index structure, namely,
Vantage Point Tree, which is specially designed to answer
distance and k-NN queries. We saw in Sect. 6 that for dis-
tance queries an open-source implementation of VPTree,
performs 2.48× better for the Taxi dataset (and 2.74× for
the Twitter dataset) than its closest competitors S2PointIn-
dex and JSI R-tree. Please note that in JSI R-tree we even
skipped the overhead of square root operation in Euclidean
distance computation. This is because jvptree reduces the
overhead of false drops during the index lookup itself. In
essence, the index structure completely skips the refinement
phase for distance and k-NN queries and does not have to
deal with false drops. This shows that if an index structure is

esri-quadtree jts-kdtree jts-quadtree jts-strtree geos-strtree
geos-quadtree s2-point-index

0

50

100

150

tweets(83M)

jo
in

ti
m
e
(s
ec
)

0

200

400

600

taxi(305M)

jo
in

ti
m
e
(s
ec
)

Fig. 7 Join query performance for NYC Taxi and Twitter Datasets

20 http://s2geo metry .io/devgu ide/s2sha peind ex.html.
21 https ://locat ionte ch.githu b.io/jts/javad oc/org/locat ionte ch/jts/geom/
prep/Prepa redGe ometr y.html.
22 https ://esri.githu b.io/geome try-api-java/javad oc/com/esri/core/
geome try/Geome try.Geome tryAc celer ation Degre e.html.

http://s2geometry.io/devguide/s2shapeindex.html
https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/prep/PreparedGeometry.html
https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/prep/PreparedGeometry.html
https://esri.github.io/geometry-api-java/javadoc/com/esri/core/geometry/Geometry.GeometryAccelerationDegree.html
https://esri.github.io/geometry-api-java/javadoc/com/esri/core/geometry/Geometry.GeometryAccelerationDegree.html

 V. Pandey et al.

1 3

built to answer certain queries, and no refinement is needed,
the performance implications can be large.

Recent research acknowledges [5, 62] that there is poten-
tial in accelerating the refinement step for join queries. We
consider the spatial point-in-polygon join query here, where
filter and refinement is also required for some indexes. In
point-in-polygon join, after the filter phase, the candidates
set of points is typically refined using an algorithm known as
ray tracing. In this algorithm, a line (ray) is drawn from the
query point to a point known to be outside the polygon, and
then the number of intersections of this line with all edges
in the polygon is counted. This algorithm is linear with the
number of edges in the polygon. So if the cardinality of the
filtered candidate set of points after filtering from the index
is n, then the work to be done is O(nk) , where k is the num-
ber of edges in the polygon. If the n is large or if the poly-
gons are complex, with a large number of edges then this has
the potential to become a bottleneck. Midtown Manhattan is
one of the neighborhoods in NYC that is highly skewed for
the Taxi and the Twitter dataset alike. Using the bounding
box of Midtown Manhattan and querying any range-based
index (i.e., which can be queried using a range, in this case
MBR of Midtown Manhattan) as a filter with 305 million
taxi rides, yields a candidate set with 78.35 million points.
The final result after refinement has 42.55 million points
(candidate hits), with 35.8 million points being false drops.

Using Midtown Manhattan as a query polygon, we car-
ried out an experiment to determine the costs of refinement
using various contains functions in JTS and the results
are shown in Fig. 8. In PreparedGeometry, the individual
geometry objects are indexed and the indexing scheme
varies based on the geometry datatype. For example, for
polygons, PreparedGeometry indexes the line segments
of the polygons. If the refinement step can be skipped for
false drops, there is gain of 2.10× in query performance
(12.3 s without false drops vs. 25.93 s with false drops).
The figure also shows the effect of indexing individual
polygons. If line segments in polygons are not indexed,

the polygon contains function takes 747.62 s compared to
2.93 s (28.83× improvement).

There are two potential research directions for improv-
ing point-in-polygon spatial join queries. As mentioned
earlier, the potential work to be done in the refinement
phase after filtering is O(nk) . We can either try to reduce
n or k (or both). Some of the recent research work [22–24,
73] tries to address the former and skip the refinement
phase altogether. The latter is addressed to some extent
in the libraries via PreparedGeometry (in JTS and GEOS)
and AcceleratedGeomerty (in ESRI Geometry API). There
is also a research [75] work that show that the refinement
step can be improved by using interval trees to index the
polygon line segments.

7.2 Distributed Spatial Analytics Systems

In the past few years, a number of big spatial analytics
systems have emerged. While they differ in some archi-
tectural design aspects, many of the core fundamentals
remain the same in terms of building a distributed spatial
processing system. In this section, we briefly highlight
these fundamentals and how a distributed spatial analyt-
ics system can be built from scratch using the libraries
studied in this work. A cluster of commodity machines
coordinating to complete a task generally have the follow-
ing structure: a master node (the coordinator) and multi-
ple worker nodes. Big spatial analytics systems today also
deploy the same cluster setup since they are primarily built
on big data infrastructures in the form of Hadoop, Apache
Spark, Impala etc. There are three main components to
designing a big spatial analytics system: (1) Partitioning
Technique, (2) Index Structures, and (3) Supported Data-
types and Queries.

Index structures, as we saw in this work, are important for
answering spatial queries. Spatial indexes allow access to the
desired spatial objects in sub-linear time and thus acceler-
ate spatial query processing. Index structures hence form
an integral part of any spatial processing system, whether
it be a relational database system, or a distributed spatial
processing system. Spatial partitioning is also an important
part of distributed spatial processing system, which we now
discuss in detail:

7.2.1 Spatial Partitioning

Spatially partitioning the input dataset(s) is an important
aspect of distributed spatial processing system. Since there
are multiple worker nodes in a cluster, an input dataset
should be partitioned to fully utilize the parallel comput-
ing capability of the cluster. Also, since many of the spatial
datasets are inherently spatially skewed, it is important to

0

200

400

600

800

12.3 25.93

407.15

747.62
ti
m
e
(s
ec
)

Prepared Contains
Only Candidate Hits
Prepared Contains
Full Candidate Set
Normal Contains

Only Candidate Hits
Normal Contains
Full Candidate Set

Fig. 8 Refinement costs for Midtown Manhattan Polygon for NYC
Taxi Dataset using various contains functions in JTS

How Good Are Modern Spatial Libraries?

1 3

partition them spatially. A naive grid partitioning would
introduce skew in some individual grid cells, and thus leads
to the straggling nodes in the cluster, which would affect the
overall query efficiency.

How is it done?: The usual practice today to build par-
titions is to sample the input dataset and to determine
partitions based on the sample. Previous research [8] has
shown that sampling 1% of the input dataset is sufficient
to produce high-quality partitions. To further delve into
detail, we will walk through an example, using an R-tree
index. After sampling the input dataset, an R-tree is built
on the sample. Sampling helps in capturing the density
distribution of the input dataset, and indexing the sam-
ples in an R-tree spatially partitions the sample, thereby
providing the partitions boundaries of the sample dataset.
The minimum bounding rectangle (MBR) of the leaves
of the R-tree are then used as the partition boundaries.
Once the partition boundaries have been determined, the
input dataset can then be loaded in parallel using these
boundaries. Now since these partition boundaries were
determined using only a sample of the dataset, and the
input dataset may contain spatial objects that do not lie,
or even overlap multiple partition boundaries. The com-
mon practice today is to expand the partition boundaries
or duplicate the object in multiple partitions. We refer the
readers to [8] to understand the trade-offs related to such
decisions. Once the partitions have been built, the indi-
vidual partition are indexed in an R-tree. The index does
not necessarily have to be an R-tree but for the sake of
continuity, we continue using the R-tree as an example.
These index within individual partitions are called local
index (i.e., local to a partition). Once these local indexes
have been built, finally a global index is built using the
spatial extent of these local indexes. We walked through
an example with R-tree as the index to determine the parti-
tion boundaries, but R-tree may not be the best partitioning
scheme in certain scenarios. We refer the readers to [8],

which thoroughly compares and evaluates various spatial
partitioning techniques.

Why is it done?: Spatial partitioning an input data-
set helps in query processing. To better understand the
importance of spatial partitioning, we will walk through an
example. Consider a large input dataset, and a range query
is issued to determine which spatial objects in the input
dataset lie within the given range. The global index is first
used to determine which partitions the input range over-
laps and then the overlapping partitions can be scanned
with the given range. This saves unnecessary scans of the
partitions that do not overlap the input range. This is a
very simple example, but things get more complex when
join queries are considered. A join query can be processed
as follows: the global indexes of the two datasets are first
consulted to determine the partitions that overlap each
other and then these partitions can be joined in parallel.
This is again a very simple example of how the spatial
partitions and indexes can be used to process a join query,
and how to avoid joining partitions that do not spatially
overlap. In reality, the systems deploy query optimizers
that determine the best way to join the two datasets. For
example, when the two global indexes are considered to
determine which partitions overlap, it could very well be
that a large number of partition pairs overlap (since they
are two different datasets). A system may choose to repar-
tition one dataset to minimize these overlapping partition
pairs. These are design choices that these systems make,
and they are based on various trade-offs. We refer the read-
ers to the individual systems to better understand these
design choices and trade-offs.

8 Related Work

To the best of our knowledge, no previous work in lit-
erature has evaluated the spatial libraries studied here
empirically. One research work [19] compares indexing

Table 4 Strengths/Weaknesses
of the Libraries

Library Strengths Weaknesses

ESRI (1) Active development and support (1) Quadtree requires tuning
(2) Full geometric types, refinements, and operations

JSI (1) R-tree performance as a filter (1) No active development
(2) No geometric refinements

GEOS and JTS (1) Active development and support (1) Memory management in
GEOS requires improve-
ment

(2) Full geometric types, refinements, and operations

jvptree (1) Best distance and k-NN performance (1) No geometric refinements
S2 (1) Best suited for geographic data

(2) Active development and support
(3) Many practical queries natively supported

 V. Pandey et al.

1 3

techniques for big spatial data, where the authors consider
many big spatial data systems and one spatial library JSI,
only to report the performance of each system/library on
a standalone basis. The authors in [71] implement spatial
query processing in Apache Spark, and Apache Impala
using JTS and GEOS, respectively. They do observe some
of the implementation differences between JTS and GEOS,
but largely the work is about a comparative study of spa-
tial processing in Spark and Impala. Another research
work [40] compares five Spark based spatial analytics
systems, some of which use JTS library for spatial query
processing. The authors in [13] shows how to efficiently
implement distance join queries in distributed spatial data
management systems. A research work [20] compares
Quadtree and R-tree as filters in Oracle Spatial.

9 Conclusions

In this work we empirically compared popular spatial
libraries using four different queries: range query, distance
query, k-NN query, and a point-in-polygon join query. We
performed a thorough experimental evaluation of these
libraries using two real-world points datasets. While we
evaluated the libraries on the point dataype, there are other
datatypes (such as linestring, polylines etc.) in the librar-
ies that should also be evaluated. We leave evaluating the
libraries on other geometric datatypes for future work.
Table 4 summarizes the strengths and weaknesses of the
spatial libraries.

There is no clear winner for each of the considered que-
ries, and this is mostly because all the indexes available
in the libraries do not support all these queries natively
(i.e., do not have specialized tree traversal algorithms for
each query). ESRI geometry API and JTS/GEOS are com-
plete planar geometry libraries, and are rich in features.
They support multiple datatypes, and have a variety of
topological and geometry operations. They are also under
active development and have a community for support.
They do, however, come with some drawbacks. ESRI
Quadtree has to be tuned for the dataset that it indexes,
and memory management in GEOS could be improved.
We also identified a difference in implementation of GEOS
STRtree and JTS STRtree which has performance implica-
tions. Although both index structures implement the same
algorithm for tree traversal, the difference in performance
stems from memory management in Java. To validate
this, we implemented a cache friendly version of GEOS
STRtree and highlight the improvement in performance.
The R-tree in JSI exhibited the best performance for range
lookups, however, JSI is very limited in features, and is
also not under active development. We also highlighted the

difference in k-NN query performance of JSI R-tree and
JTS STRtree. Both index structures implement branch-
and-bound traversal to answer k-NN query and the dif-
ference in performance is due to the structure of the trees
being different. JSI R-tree is a dynamic tree (constructed
top-down by inserting objects at the root node), and the
nodes are split (or merged) based on multiple factors,
whereas JTS STRtree is a static tree (constructed bottom-
up by sorting points in both dimensions, partitioning into
slices, and packing the slices to nodes). Google S2 is a
spherical geometry library and is best suited to work with
geographic data. It is under active development and is used
in many multimillion-dollar industries. It also has many
practically used queries that are implemented natively on
various indexes. Finally, jvptree, is a library that imple-
ments the Vantage Point Tree. It exhibits the best perfor-
mance for distance and k-NN queries as it is specifically
designed to answer these queries. The index can only be
used as a filter for other queries, and users have to imple-
ment their own refinement operations for such queries.

We also identified areas of potential pitfalls when using
the planar geometry libraries which can be critical from
the perspective of actual users, either of these libraries or
any system that is based on them. Particularly for distance
computations, the differences can be significant when using
planar geometry for processing GPS coordinates. Many
important business decisions might be based on the out-
come of such queries and there are potentially hundreds of
users and companies that are using software that is based on
these state-of-the-art spatial libraries. While these libraries
and systems correctly execute what they are designed to do,
users should be aware of how to use them correctly.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. A Comprehensive Guide to S2 Cells and Pokémon GO (2019).
https ://pokem ongoh ub.net/post/artic le/compr ehens ive-guide
-s2-cells -pokem on-go/

 2. Aji A, Wang F, Vo H, Lee R, Liu Q, Zhang X, Saltz JH (2013)
Hadoop-gis: a high performance spatial data warehousing sys-
tem over mapreduce. PVLDB 6(11):1009–1020. https ://doi.
org/10.14778 /25362 22.25362 27

http://creativecommons.org/licenses/by/4.0/
https://pokemongohub.net/post/article/comprehensive-guide-s2-cells-pokemon-go/
https://pokemongohub.net/post/article/comprehensive-guide-s2-cells-pokemon-go/
https://doi.org/10.14778/2536222.2536227
https://doi.org/10.14778/2536222.2536227

How Good Are Modern Spatial Libraries?

1 3

 3. Amemiya K, Nakao A (2020) Layer-integrated edge distributed
data store for real-time and stateful services. In: NOMS 2020—
IEEE/IFIP network operations and management symposium, pp
1–9. IEEE. https ://doi.org/10.1109/NOMS4 7738.2020.91104 36

 4. Boric N, Gildhoff H, Karavelas M, Pandis I, Tsalouchidou I
(2020) Unified spatial analytics from heterogeneous sources
with amazon redshift. In: Proceedings of the 2020 international
conference on management of data, SIGMOD conference 2020,
pp 2781–2784. ACM. https ://doi.org/10.1145/33184 64.33847 04

 5. Bouros P, Mamoulis N (2019) Spatial joins: What’s next? SIG-
SPATIAL Special 11(1):13–21

 6. Doraiswamy H, Freire J (2020) A gpu-friendly geometric data
model and algebra for spatial queries. In: Proceedings of the
2020 international conference on management of data, SIG-
MOD conference 2020, pp 1875–1885. ACM. https ://doi.
org/10.1145/33184 64.33897 74

 7. Doraiswamy H, Freire J (2020) A gpu-friendly geometric data
model and algebra for spatial queries: extended version. CoRR
arXiv :2004.03630

 8. Eldawy A, Alarabi L, Mokbel MF (2015) Spatial partitioning
techniques in spatial hadoop. PVLDB 8(12):1602–1605. https
://doi.org/10.14778 /28240 32.28240 57

 9. Eldawy A, Mokbel MF (2015) Spatialhadoop: a mapreduce
framework for spatial data. In: ICDE 2015, Seoul, South Korea,
April 13–17, 2015, pp 1352–1363. IEEE Computer Society.
https ://doi.org/10.1109/ICDE.2015.71133 82

 10. Eldawy A, Sabek I, Elganainy M, Bakeer A, Abdelmotaleb A,
Mokbel MF (2017) Sphinx: empowering impala for efficient
execution of SQL queries on big spatial data. In: SSTD 2017.
https ://doi.org/10.1007/978-3-319-64367 -0_4

 11. EPSG:32118—NAD83/New York Long Island. https ://spati alref
erenc e.org/ref/epsg/32118 /

 12. García-García F, Corral A, Iribarne L, Vassilakopoulos M
(2020) Improving distance-join query processing with voro-
noi-diagram based partitioning in spatialhadoop. Future Gener
Comput Syst 111:723–740. https ://doi.org/10.1016/j.futur
e.2019.10.037

 13. García-García F, Corral A, Iribarne L, Vassilakopoulos M,
Manolopoulos Y (2020) Efficient distance join query processing
in distributed spatial data management systems. Inf Sci 512:985–
1008. https ://doi.org/10.1016/j.ins.2019.10.030

 14. Gomes D (2019) MemSQL Live: Nikita Shamgunov on the Data
Engineering Podcast. https ://www.memsq l.com/blog/memsq
l-live-nikit a-shamg unov-on-the-data-engin eerin g-podca st/

 15. Guttman A (1984) R-trees: a dynamic index structure for spa-
tial searching. In: SIGMOD’84. https ://doi.org/10.1145/60225
9.60226 6

 16. Hadjieleftheriou M, Manolopoulos Y, Theodoridis Y, Tsotras VJ
(2017) R-trees: a dynamic index structure for spatial searching, pp
1805–1817. Springer. https ://doi.org/10.1007/978-3-319-17885
-1_1151

 17. Hagedorn S, Götze P, Sattler K (2017) The STARK framework
for spatio-temporal data analytics on spark. In: Datenbanksysteme
für Business, Technologie und Web (BTW 2017)

 18. Heath A (2017) Snap confirms that it paid $213 million to buy
Zenly and $135 million for Placed. https ://www.busin essin sider
.com/snapc hat-paid-213-milli on-for-zenly -and-135-milli on-for-
place d-2017-8/

 19. Jhummarwala A, Alkathiri M, Karamta M, Potdar MB (2016)
Comparative evaluation of various indexing techniques of geospa-
tial vector data for processing in distributed computing environ-
ment. In: Proceedings of the 9th annual ACM India conference,
2016, pp 167–172. https ://doi.org/10.1145/29984 76.29984 93

 20. Kanth KVR, Ravada S, Abugov D (2002) Quadtree and r-tree
indexes in oracle spatial: a comparison using GIS data. In: Pro-
ceedings of the 2002 ACM SIGMOD international conference

on management of data, 2002, pp 546–557. ACM. https ://doi.
org/10.1145/56469 1.56475 5

 21. Kemper A, Neumann T (2011) Hyper: a hybrid oltp&olap main
memory database system based on virtual memory snapshots. In:
Proceedings of the 27th international conference on data engineer-
ing, ICDE 2011, pp 195–206

 22. Kipf A, Lang H, Pandey V, Persa RA, Anneser C, Zachara-
tou ET, Doraiswamy H, Boncz PA, Neumann T, Kemper A
(2020) Adaptive main-memory indexing for high-performance
point-polygon joins. In: Proceedings of the 23nd international
conference on extending database technology, EDBT 2020, pp
347–358. OpenProceedings.org. https ://doi.org/10.5441/002/
edbt.2020.31

 23. Kipf A, Lang H, Pandey V, Persa RA, Boncz PA, Neumann T,
Kemper A (2018) Adaptive geospatial joins for modern hard-
ware. CoRR arxiv :1802.09488

 24. Kipf A, Lang H, Pandey V, Persa RA, Boncz PA, Neumann T,
Kemper A (2018) Approximate geospatial joins with precision
guarantees. In: 34th IEEE international conference on data engi-
neering, ICDE 2018, pp 1360–1363. https ://doi.org/10.1109/
ICDE.2018.00150

 25. Kipf A, Pandey V, Böttcher J, Braun L, Neumann T, Kemper A
(2017) Analytics on fast data: Main-memory database systems
versus modern streaming systems. In: EDBT 2017, pp 49–60.
OpenProceedings.org. https ://doi.org/10.5441/002/edbt.2017.06

 26. Kipf A, Pandey V, Böttcher J, Braun L, Neumann T, Kemper
A (2019) Scalable analytics on fast data. ACM Trans Database
Syst 44(1):1:1–1:35. https ://doi.org/10.1145/32838 11

 27. Lang H, Kipf A, Passing L, Boncz PA, Neumann T, Kemper A
(2018) Make the most out of your SIMD investments: counter
control flow divergence in compiled query pipelines. In: Pro-
ceedings of the 14th international workshop on data manage-
ment on new hardware, 2018, pp 5:1–5:8. ACM. https ://doi.
org/10.1145/32119 22.32119 28

 28. Lee K, Ganti RK, Srivatsa M, Liu L (2014) Efficient spatial
query processing for big data. In: Proceedings of the 22nd ACM
SIGSPATIAL, 2014. https ://doi.org/10.1145/26663 10.26664 81

 29. Lee K, Liu L, Ganti RK, Srivatsa M, Zhang Q, Zhou Y, Wang
Q (2019) Lightweight indexing and querying services for big
spatial data. IEEE Trans Serv Comput 12(3):343–355. https ://
doi.org/10.1109/TSC.2016.26373 32

 30. Leutenegger ST, Edgington JM, López MA (1997) STR: a sim-
ple and efficient algorithm for r-tree packing. In: Proceedings
of the thirteenth international conference on data engineering,
April 7–11, 1997, Birmingham, UK, pp 497–506. IEEE Com-
puter Society. https ://doi.org/10.1109/ICDE.1997.58201 5

 31. Liu L, Özsu MT (eds) (2018) Encyclopedia of database systems,
2nd edn. Springer. https ://doi.org/10.1007/978-1-4614-8265-9

 32. Makris A, Tserpes K, Spiliopoulos G, Anagnostopoulos D
(2019) Performance evaluation of mongodb and postgresql for
spatio-temporal data. In: Proceedings of the workshops of the
EDBT/ICDT 2019 joint conference, EDBT/ICDT 2019, Lisbon,
Portugal, March 26, 2019, CEUR Workshop Proceedings, vol
2322. CEUR-WS.org

 33. Malensek M, Pallickara SL, Pallickara S (2013) Polygon-based
query evaluation over geospatial data using distributed hash
tables. In: IEEE/ACM 6th international conference on utility
and cloud computing, UCC, 2013. https ://doi.org/10.1109/
UCC.2013.46

 34. Malensek M, Pallickara SL, Pallickara S (2014) Evaluating geo-
spatial geometry and proximity queries using distributed hash
tables. Comput Sci Eng 16(4):53–61. https ://doi.org/10.1109/
MCSE.2014.48

 35. MongoDB Releases—New Geo Features in MongoDB 2.4
(2013) https ://www.mongo db.com/blog/post/new-geo-featu
res-in-mongo db-24/

https://doi.org/10.1109/NOMS47738.2020.9110436
https://doi.org/10.1145/3318464.3384704
https://doi.org/10.1145/3318464.3389774
https://doi.org/10.1145/3318464.3389774
http://arxiv.org/abs/2004.03630
https://doi.org/10.14778/2824032.2824057
https://doi.org/10.14778/2824032.2824057
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1007/978-3-319-64367-0_4
https://spatialreference.org/ref/epsg/32118/
https://spatialreference.org/ref/epsg/32118/
https://doi.org/10.1016/j.future.2019.10.037
https://doi.org/10.1016/j.future.2019.10.037
https://doi.org/10.1016/j.ins.2019.10.030
https://www.memsql.com/blog/memsql-live-nikita-shamgunov-on-the-data-engineering-podcast/
https://www.memsql.com/blog/memsql-live-nikita-shamgunov-on-the-data-engineering-podcast/
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://doi.org/10.1007/978-3-319-17885-1_1151
https://doi.org/10.1007/978-3-319-17885-1_1151
https://www.businessinsider.com/snapchat-paid-213-million-for-zenly-and-135-million-for-placed-2017-8/
https://www.businessinsider.com/snapchat-paid-213-million-for-zenly-and-135-million-for-placed-2017-8/
https://www.businessinsider.com/snapchat-paid-213-million-for-zenly-and-135-million-for-placed-2017-8/
https://doi.org/10.1145/2998476.2998493
https://doi.org/10.1145/564691.564755
https://doi.org/10.1145/564691.564755
https://doi.org/10.5441/002/edbt.2020.31
https://doi.org/10.5441/002/edbt.2020.31
http://arxiv.org/abs/1802.09488
https://doi.org/10.1109/ICDE.2018.00150
https://doi.org/10.1109/ICDE.2018.00150
https://doi.org/10.5441/002/edbt.2017.06
https://doi.org/10.1145/3283811
https://doi.org/10.1145/3211922.3211928
https://doi.org/10.1145/3211922.3211928
https://doi.org/10.1145/2666310.2666481
https://doi.org/10.1109/TSC.2016.2637332
https://doi.org/10.1109/TSC.2016.2637332
https://doi.org/10.1109/ICDE.1997.582015
https://doi.org/10.1007/978-1-4614-8265-9
https://doi.org/10.1109/UCC.2013.46
https://doi.org/10.1109/UCC.2013.46
https://doi.org/10.1109/MCSE.2014.48
https://doi.org/10.1109/MCSE.2014.48
https://www.mongodb.com/blog/post/new-geo-features-in-mongodb-24/
https://www.mongodb.com/blog/post/new-geo-features-in-mongodb-24/

 V. Pandey et al.

1 3

 36. Moore L (1997) Transverse mercator projections and us geo-
logical survey digital products. US Geological Survey, Profes-
sional Paper

 37. NYC Taxi and Limousine Commission (TLC)—TLC Trip Record
Data (2019) https ://www1.nyc.gov/site/tlc/about /tlc-trip-recor
d-data.page

 38. Oracle Spatial and Graph Spatial Features (2019) https ://www.
oracl e.com/techn etwor k/datab ase/optio ns/spati aland graph /overv
iew/spati alfea tures -19020 20.html/

 39. Orenstein JA (1989) Redundancy in spatial databases. In: Pro-
ceedings of the 1989 ACM SIGMOD international conference on
management of data, 1989. https ://doi.org/10.1145/67544 .66954

 40. Pandey V, Kipf A, Neumann T, Kemper A (2018) How good are
modern spatial analytics systems? PVLDB 11(11):1661–1673.
https ://doi.org/10.14778 /32361 87.32362 13

 41. Pandey V, Kipf A, Vorona D, Mühlbauer T, Neumann T, Kem-
per A (2016) High-performance geospatial analytics in hyper-
space. In: Proceedings of the 2016 international conference on
management of data, SIGMOD conference 2016, San Francisco,
CA, USA, June 26–July 01, 2016. https ://doi.org/10.1145/28829
03.28994 12

 42. Pandey V, van Renen A, Kipf A, Kemper A (2020) An evaluation
of modern spatial libraries. In: Database systems for advanced
applications—25th international conference, DASFAA 2020,
Jeju, South Korea, Sept 24–27, 2020, Proceedings, Part II, Lec-
ture Notes in Computer Science, vol 12113, pp 711–727. Springer.
https ://doi.org/10.1007/978-3-030-59416 -9_46

 43. Pandey V, van Renen A, Kipf A, Sabek I, Ding J, Kemper A
(2020) The case for learned spatial indexes. CoRR arXiv
:2008.10349

 44. Ranney M (2015) Scaling uber’s real-time market platform. https
://www.infoq .com/prese ntati ons/uber-marke t-platf orm/

 45. Ren F, Li X, Thomson D, Geng D (2018) Geosharded recom-
mendations part 1: sharding approach. https ://tech.gotin der.com/
geosh arded -recom menda tions -part-1-shard ing-appro ach-2/

 46. Richly K (2019) Optimized spatio-temporal data structures for
hybrid transactional and analytical workloads on columnar in-
memory databases. In: VLDB 2019 PhD workshop, CEUR work-
shop proceedings, vol 2399. CEUR-WS.org. http://ceur-ws.org/
Vol-2399/paper 10.pdf

 47. Saxena S (2017) Appreciating the geo/S2 library. https ://blog.
gojek engin eerin g.com/fe-f0e4a 909d5 6f

 48. Schubert E, Zimek A, Kriegel H (2013) Geodetic distance queries
on r-trees for indexing geographic data. In: Advances in spatial
and temporal databases—13th international symposium, SSTD
2013, Munich, Germany, Aug 21–23, 2013. Proceedings, pp
146–164. https ://doi.org/10.1007/978-3-642-40235 -7_9

 49. Sidlauskas D, Chester S, Zacharatou ET, Ailamaki A (2018)
Improving spatial data processing by clipping minimum bounding
boxes. In: 34th IEEE international conference on data engineer-
ing, ICDE 2018, pp 425–436. IEEE Computer Society. https ://doi.
org/10.1109/ICDE.2018.00046

 50. Sinton A (2018) Geospatial indexing on Hilbert curves. https ://
blog.zen.ly/geosp atial -index ing-on-hilbe rt-curve s-2379b 929ad dc/

 51. SR-ORG:6864|EPSG:3857. https ://spati alref erenc e.org/ref/
sr-org/6864/

 52. S2Geometry Overview—Spherical Geometry. https ://s2geo metry
.io/about /overv iew/

 53. S2 cells and Pokémon GO (2018). https ://pokem ongoh ub.net/post/
wiki/s2-cells -pokem on-go/

 54. Tahboub RY, Essertel GM, Rompf T (2018) How to architect a
query compiler, revisited. In: Proceedings of the 2018 interna-
tional conference on management of data, SIGMOD conference
2018, Houston, TX, USA, June 10–15, 2018, pp 307–322. ACM.
https ://doi.org/10.1145/31837 13.31968 93

 55. Tahboub RY, Rompf T (2016) On supporting compilation in spa-
tial query engines: (vision paper). In: Proceedings of the 24th
ACM SIGSPATIAL international conference on advances in
geographic information systems, GIS 2016, Burlingame, Cali-
fornia, USA, Oct 31–Nov 3, 2016. https ://doi.org/10.1145/29969
13.29969 45

 56. Tahboub RY, Rompf T (2020) Architecting a query compiler for
spatial workloads. In: Proceedings of the 2020 international con-
ference on management of data, SIGMOD conference 2020, pp
2103–2118. ACM. https ://doi.org/10.1145/33184 64.33897 01

 57. Tang M, Tahboub RY, Aref WG, Atallah MJ, Malluhi QM, Ouz-
zani M, Silva YN (2016) Similarity group-by operators for multi-
dimensional relational data. IEEE Trans Knowl Data Eng. https
://doi.org/10.1109/TKDE.2015.24804 00

 58. Tang M, Yu Y, Malluhi QM, Ouzzani M, Aref WG (2016)
Locationspark: A distributed in-memory data management sys-
tem for big spatial data. PVLDB 9(13):1565–1568. https ://doi.
org/10.14778 /30072 63.30073 10

 59. Theocharidis K, Liagouris J, Mamoulis N, Bouros P, Terrovitis M
(2019) SRX: efficient management of spatial RDF data. VLDB J
28(5):703–733. https ://doi.org/10.1007/s0077 8-019-00554 -z

 60. Titlow JP (2013) How foursquare is building a humane map
framework to rival google. https ://www.fastc ompan y.com/30073
94/how-fours quare -build ing-human e-map-frame work-rival -googl
es/

 61. Toliopoulos T, Nikolaidis N, Michailidou A, Seitaridis A, Gou-
naris A, Bassiliades N, Georgiadis A, Liotopoulos F (2020)
Developing a real-time traffic reporting and forecasting back-end
system. In: Research challenges in information science—14th
international conference, RCIS 2020, Limassol, Cyprus, Sept
23–25, 2020, Proceedings, Lecture Notes in Business Infor-
mation Processing, vol 385, pp 58–75. Springer. https ://doi.
org/10.1007/978-3-030-50316 -1_4

 62. Tsitsigkos D, Bouros P, Mamoulis N, Terrovitis M (2019) Parallel
in-memory evaluation of spatial joins. CoRR arXiv :1908.11740

 63. Tsitsigkos D, Bouros P, Mamoulis N, Terrovitis M (2019) Paral-
lel in-memory evaluation of spatial joins. In: Proceedings of the
27th ACM SIGSPATIAL international conference on advances
in geographic information systems, SIGSPATIAL 2019, Chi-
cago, IL, USA, Nov 5–8, 2019, pp 516–519. ACM. https ://doi.
org/10.1145/33471 46.33593 43

 64. Tsitsigkos D, Lampropoulos K, Bouros P, Mamoulis N, Terrovi-
tis M (2020) A two-level spatial in-memory index. CoRR arXiv
:2005.08600

 65. Tutorials (2020) Filtering tweets by location. https ://devel oper.
twitt er.com/en/docs/tutor ials/filte ring-tweet s-by-locat ion

 66. Understanding Memory Management—Oracle. https ://docs.oracl
e.com/cd/E1315 0_01/jrock it_jvm/jrock it/genin fo/diagn os/garba
ge_colle ct.html/

 67. Weisstein EW (2002) Great circle. https ://mathw orld.wolfr
am.com/Great Circl e.html

 68. Winter C, Kipf A, Neumann T, Kemper A (2019) Geoblocks:
a query-driven storage layout for geospatial data. CoRR arXiv
:1908.07753

 69. Xie D, Li F, Yao B, Li G, Zhou L, Guo M (2016) Simba: efficient
in-memory spatial analytics. In: Proceedings of the 2016 interna-
tional conference on management of data, SIGMOD conference
2016, San Francisco, CA, USA, June 26–July 01, 2016. https ://
doi.org/10.1145/28829 03.29152 37

 70. Yianilos PN (1993) Data structures and algorithms for nearest
neighbor search in general metric spaces. In: Proceedings of the
fourth annual ACM/SIGACT-SIAM symposium on discrete algo-
rithms, 25–27 Jan 1993, Austin, Texas, USA

 71. You S, Zhang J, Gruenwald L (2015) Large-scale spatial join
query processing in cloud. In: 31st IEEE international conference

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/spatialfeatures-1902020.html/
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/spatialfeatures-1902020.html/
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/spatialfeatures-1902020.html/
https://doi.org/10.1145/67544.66954
https://doi.org/10.14778/3236187.3236213
https://doi.org/10.1145/2882903.2899412
https://doi.org/10.1145/2882903.2899412
https://doi.org/10.1007/978-3-030-59416-9_46
http://arxiv.org/abs/2008.10349
http://arxiv.org/abs/2008.10349
https://www.infoq.com/presentations/uber-market-platform/
https://www.infoq.com/presentations/uber-market-platform/
https://tech.gotinder.com/geosharded-recommendations-part-1-sharding-approach-2/
https://tech.gotinder.com/geosharded-recommendations-part-1-sharding-approach-2/
http://ceur-ws.org/Vol-2399/paper10.pdf
http://ceur-ws.org/Vol-2399/paper10.pdf
https://blog.gojekengineering.com/fe-f0e4a909d56f
https://blog.gojekengineering.com/fe-f0e4a909d56f
https://doi.org/10.1007/978-3-642-40235-7_9
https://doi.org/10.1109/ICDE.2018.00046
https://doi.org/10.1109/ICDE.2018.00046
https://blog.zen.ly/geospatial-indexing-on-hilbert-curves-2379b929addc/
https://blog.zen.ly/geospatial-indexing-on-hilbert-curves-2379b929addc/
https://spatialreference.org/ref/sr-org/6864/
https://spatialreference.org/ref/sr-org/6864/
https://s2geometry.io/about/overview/
https://s2geometry.io/about/overview/
https://pokemongohub.net/post/wiki/s2-cells-pokemon-go/
https://pokemongohub.net/post/wiki/s2-cells-pokemon-go/
https://doi.org/10.1145/3183713.3196893
https://doi.org/10.1145/2996913.2996945
https://doi.org/10.1145/2996913.2996945
https://doi.org/10.1145/3318464.3389701
https://doi.org/10.1109/TKDE.2015.2480400
https://doi.org/10.1109/TKDE.2015.2480400
https://doi.org/10.14778/3007263.3007310
https://doi.org/10.14778/3007263.3007310
https://doi.org/10.1007/s00778-019-00554-z
https://www.fastcompany.com/3007394/how-foursquare-building-humane-map-framework-rival-googles/
https://www.fastcompany.com/3007394/how-foursquare-building-humane-map-framework-rival-googles/
https://www.fastcompany.com/3007394/how-foursquare-building-humane-map-framework-rival-googles/
https://doi.org/10.1007/978-3-030-50316-1_4
https://doi.org/10.1007/978-3-030-50316-1_4
http://arxiv.org/abs/1908.11740
https://doi.org/10.1145/3347146.3359343
https://doi.org/10.1145/3347146.3359343
http://arxiv.org/abs/2005.08600
http://arxiv.org/abs/2005.08600
https://developer.twitter.com/en/docs/tutorials/filtering-tweets-by-location
https://developer.twitter.com/en/docs/tutorials/filtering-tweets-by-location
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html/
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html/
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html/
https://mathworld.wolfram.com/GreatCircle.html
https://mathworld.wolfram.com/GreatCircle.html
http://arxiv.org/abs/1908.07753
http://arxiv.org/abs/1908.07753
https://doi.org/10.1145/2882903.2915237
https://doi.org/10.1145/2882903.2915237

How Good Are Modern Spatial Libraries?

1 3

on data engineering workshops, ICDE Workshops 2015, Seoul,
South Korea, April 13–17, 2015. https ://doi.org/10.1109/ICDEW
.2015.71295 41

 72. Yu J, Wu J, Sarwat M (2015) Geospark: a cluster computing
framework for processing large-scale spatial data. In: Proceedings
of the 23rd SIGSPATIAL international conference on advances in
geographic information systems, Bellevue, WA, USA, Nov 3–6,
2015. https ://doi.org/10.1145/28207 83.28208 60

 73. Zacharatou ET, Doraiswamy H, Ailamaki A, Silva CT, Freire
J (2017) GPU rasterization for real-time spatial aggregation
over arbitrary polygons. PVLDB 11(3):352–365. https ://doi.
org/10.14778 /31577 94.31578 03

 74. Zacharatou ET, Sidlauskas D, Tauheed F, Heinis T, Ailamaki A
(2019) Efficient bundled spatial range queries. In: ACM SIGS-
PATIAL 2019, pp 139–148. ACM. https ://doi.org/10.1145/33471
46.33590 77

 75. Zhou T, Wei H, Zhang H, Wang Y, Zhu Y, Guan H, Chen H
(2013) Point-polygon topological relationship query using hier-
archical indices. In: 21st SIGSPATIAL international conference
on advances in geographic information systems, SIGSPATIAL
2013, Orlando, FL, USA, Nov 5–8, 2013, pp 562–565. https ://
doi.org/10.1145/25253 14.25272 63

https://doi.org/10.1109/ICDEW.2015.7129541
https://doi.org/10.1109/ICDEW.2015.7129541
https://doi.org/10.1145/2820783.2820860
https://doi.org/10.14778/3157794.3157803
https://doi.org/10.14778/3157794.3157803
https://doi.org/10.1145/3347146.3359077
https://doi.org/10.1145/3347146.3359077
https://doi.org/10.1145/2525314.2527263
https://doi.org/10.1145/2525314.2527263

	How Good Are Modern Spatial Libraries?
	Abstract
	1 Introduction
	2 Background
	2.1 Geometry Models
	2.2 When Can Things Go Wrong In Planar Geometries?

	3 Queries
	3.1 Range Query
	3.2 Distance Query
	3.3 k-Nearest Neighbors Query
	3.4 Spatial Join

	4 Libraries
	4.1 ESRI Geometry API
	4.2 Java Spatial Index
	4.3 JTS Topology Suite and Geometry Engine Open Source
	4.4 Google S2 Geometry
	4.5 Vantage Point Tree

	5 Methodology
	6 Evaluation
	6.1 Indexing Costs
	6.2 Range Query
	6.3 Distance Query
	6.4 k-NN Query
	6.5 Point-In-Polygon Join Query

	7 Discussion
	7.1 Why Refinement Should Be Looked At?
	7.2 Distributed Spatial Analytics Systems
	7.2.1 Spatial Partitioning

	8 Related Work
	9 Conclusions
	References

