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Abstract
Many applications today like Uber, Yelp, Tinder, etc. rely on spatial data or locations from its users. These applications and 
services either build their own spatial data management systems or rely on existing solutions. JTS Topology Suite (JTS), its 
C++ port GEOS, Google S2, ESRI Geometry API, and Java Spatial Index (JSI) are some of the spatial processing libraries 
that these systems build upon. These applications and services depend on indexing capabilities available in these libraries for 
high-performance spatial query processing. In this work, we compare these libraries qualitatively and quantitatively based 
on four different spatial queries using two real world datasets. We also compare these libraries with an open-source imple-
mentation of the Vantage Point Tree—an index structure that has been well studied in image retrieval and nearest-neighbor 
search algorithms for high-dimensional data. We found that Vantage Point Trees are very competitive and even outperform 
the aforementioned libraries in two queries.

Keywords Spatial · Spatial libraries · Spatial data management

1 Introduction

In recent years, services such as recommending close-by social 
events, businesses, or restaurants as well as navigation, loca-
tion-based mobile advertising, and social media platforms have 
fueled an exponential growth in location-enabled data. Industry 
giants like Google, Facebook, Uber, Foursquare, and Yelp are 
some of the various companies that provide such services. In 
order to handle location data from their users, these companies 
either build their own spatial data management systems from 
scratch, or rely on existing solutions.

The unprecedented rise of location-based services has led 
to a considerable amount of research efforts that have been 
focused on four broad areas; (1) systems that scale out [2–4, 9, 

10, 17, 58, 59, 61, 69, 71, 72], (2) support for spatial processing 
in databases [14, 32, 35, 38, 41], (3) improving spatial query 
processing [12, 22–26, 42, 43, 46, 49, 62–64, 74], and (4) lev-
eraging modern hardware and compiling techniques [6, 7, 27, 
54–56, 73], to handle the increasing demands of applications 
today.

Some of the most popular spatial libraries are: JTS Topol-
ogy Suite (JTS), its C++ port Geometry Engine Open Source 
(GEOS), Google S2 (S2), ESRI Geometry API, and Java Spa-
tial Index (JSI). Today, these libraries are being used in a variety 
of services and research projects alike. We highlight the major 
services and research projects that use these libraries in Sect. 4. 
Many of the services that use these libraries are multi-million 
dollar business models, such as on-demand ride-hailing and 
dating applications. Moreover, many research efforts today in 
the systems community also use these libraries for their spatial-
processing capabilities. Given how prevalent and relevant these 
libraries are in present-day services and systems, we believe it 
becomes a necessity to evaluate these libraries.

In this work, we extend the previous work done 
in [42]. We take an application-oriented approach in evalu-
ating these libraries. Many open datasets such as Open Street 
Maps or NYC taxi rides datasets provide location informa-
tion using raw GPS coordinates. Moreover, millions of 
GPS devices in use today send location information in the 
form of GPS coordinates. Thus, unless stated otherwise, we 
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assume that applications receive raw GPS coordinates and 
have to process spatial queries based on them.

With this Experiment and Analysis paper we contribute:

• A study of problems arising when using planar geometry 
libraries directly with GPS coordinates.

• A survey of modern spatial libraries, highlighting their 
features and indexes.

• A thorough performance analysis of these libraries using 
four spatial queries: range, distance, k-NN, and a spatial 
join query.

The rest of the paper is structured as follows: Sect. 2 discusses 
the background for planar and spherical geometry, and iden-
tifies potential pitfalls when using these libraries. Section 3 
formally defines the spatial queries we used for evaluation and 
presents practical examples of these queries. Section 4 intro-
duces the aforementioned modern spatial libraries. Section 5 
presents the experimental setup used for evaluation, which 
is followed by the evaluation itself in Sect. 6. In Sect. 7 we 
highlight a potential research area and discuss how distributed 
spatial query processing can be implemented using any spatial 
libraries. Section 8 discusses related work and is followed by 
takeaways and conclusions in Sect. 9.

2  Background

The libraries evaluated in this paper either use planar or 
spherical geometry. In this section, we describe what these 
two terms mean and why a naive usage of planar geometry 
libraries can introduce unintended errors.

2.1  Geometry Models

Earth can be projected onto many surfaces, but today the 
most widely adopted surfaces to project Earth on are planes 
and spheres.

Planar Geometry: is geometry on a plane. The basis of 
planar geometries is a plane, i.e., all the calculations on the 
geometries such as distance between geometries, area cov-
ered by a geometry, intersection between geometries is done 
on a plane using cartesian mathematics. In planar geometry, 
the distance between two points on a plane is a straight line 
distance between the points.

Spherical Geometry: is geometry on a sphere. The basis 
of spherical geometries is thus a sphere. On the sphere there 
are no straight lines as in case of a plane. In spaces involv-
ing curvature (such as spheres), straight lines are replaced 
by geodesics.

The shortest distance between two points on the surface 
of a sphere is called the great-circle distance or orthodromic 
distance [67].

To make planar geometries work with geographic data, 
Earth has to be projected onto a plane. There are multiple 
projections available, some of which are based on the area 
that they cover such as city based, region based, country 
based, and even on continental and global scale but they all 
come with different trade-offs [36]. Most notably, there is 
no planar projection that preserves distance. Projections can 
only minimize distance distortion. When working with pla-
nar geometries, it thus becomes essential to choose the right 
projection that is best suited to the application concerned.

Spherical geometries on the other hand work on spheri-
cal projections, which maps the points on Earth’s surface 
to a perfect mathematical sphere. As Earth is not a perfect 
sphere, spherical projections of the Earth also create distor-
tions, but are limited to a maximum distortion of 0.56% [52]. 
Spherical projections also preserve the correct topology of 
the Earth with no singularities and low distortions every-
where. An even more accurate projection of Earth is on an 
ellipsoid, but operations on ellipsoids are orders of magni-
tude slower than on a sphere. Spherical geometry are also 
slower than their planar geometry counterparts usually since 
the computations are on a sphere rather than on a plane. But 
spherical geometry is generally considered better suited to 
work with geographic data on a global scale.

2.2  When Can Things Go Wrong In Planar 
Geometries?

In this section, we show how applications can end up using 
planar geometry libraries in a wrong way. We motivate this 
by using an illustrative example of a ride-hailing application 
in two scenarios: operating in a city and on a global scale. 
We highlight potential pitfalls which can lead to applications 
getting wrong results.

Consider a ride-hailing application scenario in New York 
City that stores the location data as raw GPS coordinates 
(lat/long),1 and matches riders with the nearest drivers 
using the k-NN query (we formally define k-NN query in 
Sect. 3.3). A part of k-NN query processing is the distance 
computation between two points, the user and the drivers 
in this case. Planar geometry libraries come with distance 
functions2 that compute Euclidean distance. The applica-
tion could naively compute Euclidean distance between two 
raw GPS coordinates, in which case, the distance would be 
in degrees and does not have any meaning. The correct 

1 Many open datasets today provide location information in lat/long 
format.
2 JTS/GEOS do not support geodetic operations: https ://locat ionte 
ch.githu b.io/jts/jts-faq.html#geode tic_opera tions . ESRI geometry API 
has geodesic distance function: https ://githu b.com/Esri/geome try-api-
java/wiki.

https://locationtech.github.io/jts/jts-faq.html#geodetic_operations
https://locationtech.github.io/jts/jts-faq.html#geodetic_operations
https://github.com/Esri/geometry-api-java/wiki
https://github.com/Esri/geometry-api-java/wiki
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approach is to project the raw GPS coordinates using a spa-
tial reference system, such as EPSG:32118 [11] that mini-
mizes the distance distortion for the New York area, and the 
measurement unit is in meters. The Euclidean distance can 
then be computed on the projected coordinates using the 
distance function in the planar geometry library. Another 
way is to compute the Haversine distance between the GPS 
coordinates, but it is slower to compute because it involves 
computing multiple sine and cosine operations.

Now as another example, consider the same application 
as in the previous example, but the application now oper-
ates at a global level and uses a planar geometry library. 
The application may naively start using EPSG:3857 [51] as 
the projected coordinate system, which projects the whole 
Earth onto a plane, and not just a city as in the case with 
EPSG:32118. In EPSG:3857, distances are only accurate 
along the equator, and the error increases with gain or loss 
in latitude. The application receives two ride requests, one 
in city A which lies on the equator, and the other in city 
B which is closer to the North (or the South) Pole where 
distance distortions are large (distances become larger than 
they actually are). While the distance computation will be 
correct for city A, for city B the distance distortions will be 
large. In EPSG:3857 the distance distortion can be signifi-
cant. So if the application is using planar geometry, or more 
accurately using Euclidean distance, to compute the distance 
between the users and the drivers in city B, a user might 
not be assigned any driver as the application may wrongly 
interpret that the drivers are far away from the user, while in 
reality the driver might be parked next to the user. A better 
approach would be to detect during query processing that 
the user is in city B, and then transform coordinates into 
a reference system specific to the city as mentioned in the 
previous example to compute the distances.

A more hidden potential pitfall is while using a spatial 
index in a planar geometry library. Many popular spatial 
index structures in these libraries are either designed or 
implemented with Euclidean distance as a basis for dis-
tance computation during various types of index traversals, 
depending on the query. For example, the R-tree in Java Spa-
tial Index (JSI) assumes Euclidean distance as the metric. 
So, if an application uses the R-tree to index GPS coordi-
nates and issues a k-NN query to the R-tree, it is bound to get 
wrong results because the nearest-neighbor search algorithm 
in the index uses Euclidean distance. Similarly in JTS and 
GEOS, if a user does not provide a distance metric to the k-
NN (or NN) query in the R-tree, the library uses Euclidean 
distance by default. These problems are further compounded 

because many other libraries utilize these spatial libraries. 
As an example, consider the description of STR-Packed 
R-tree in Shapely,3 a popular python geospatial library which 
is used in more than 12 thousand projects on GitHub.4 The 
description gives a simple example of R-tree for a nearest-
neighbor query. The user might be using GPS coordinates in 
the R-tree, and might not be aware that the underlying library 
GEOS uses Euclidean distance as the metric for the nearest-
neighbor queries and thus obtain an unintended error. The 
correct approach for using a spatial index that indexes geo-
dectic coordinates is shown in [48].

3  Queries

In this work we have considered four queries, namely, range, 
distance, k-nearest neighbor (k-NN) and a spatial point-in-
polygon join query. We selected these four queries based on 
recent research in systems [69] and applications [73]. Simba 
[69] is a big spatial data analytics system that is optimized 
for storing location-data and considers (1) range, (2) dis-
tance, and (3) k-nearest neighbors Query (k-NN) queries. 
[73] showcases multiple motivating examples of spatial 
point-in-polygon join queries which are particularly useful 
for visual exploration and analysis of urban data.

3.1  Range Query

A range query takes a range r (i.e., min/max values for all 
dimensions N) and a set of geometric objects S. It returns 
all objects in S that are contained in the range r. Formally:

Practical Example: Retrieve all objects at current zoom level 
in a maps application (e.g., Google Maps) for a browser 
window.

3.2  Distance Query

A distance query takes a query point q, a distance d, and a 
set of geometric objects S. It returns all objects in S that lie 
within the distance d of query point q. Formally:

Practical Example: Retrieve all dating profiles within 5 kilo-
meters of a user’s location.

Range(r, S) = { s|s ∈ S ∧ ∀n ∈ N ∶

r[n].min ≤ s[n] ≤ r[n].max }.

Distance(q, d, S) = { s|s ∈ S ∧ distance(q, s) ≤ d}.

3 https ://shape ly.readt hedoc s.io/en/lates t/manua l.html#str-packe d-r-
tree.
4 https ://githu b.com/Toble rity/Shape ly/netwo rk/depen dents ?packa 
ge_id=UGFja 2FnZS 00OTk zMjI1 MA%3D%3D.

https://shapely.readthedocs.io/en/latest/manual.html#str-packed-r-tree
https://shapely.readthedocs.io/en/latest/manual.html#str-packed-r-tree
https://github.com/Toblerity/Shapely/network/dependents?package_id=UGFja2FnZS00OTkzMjI1MA%3D%3D
https://github.com/Toblerity/Shapely/network/dependents?package_id=UGFja2FnZS00OTkzMjI1MA%3D%3D
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3.3  k‑Nearest Neighbors Query

A k-NN query takes a set of points S, a query point q, and 
an integer k ≥ 1 as input, and finds the k-nearest points in S 
to q. Formally:

Practical Example: Find five closest pizzerias from a user’s 
location.

3.4  Spatial Join

A spatial join takes two input sets of spatial records R and 
S and a join predicate � (e.g., overlap, intersect, contains, 
within, or withindistance) and returns a set of all pairs (r, s) 
where r ∈ R , s ∈ S , and the join predicate � is fulfilled. 
Formally:

Practical Example: Given two datasets, taxi rides (R: points) 
and neighborhood boundaries (S: polygons), join the two 
datasets to find how many rides originate ( � : within) from 
each neighborhood.

k − NN(q, k, S) = { s|s ∈ T ⊆ S ∧ |T| = k ∧ ∀t ∈ T ,

∀r ∈ S − T ∶ distance(q, t) ≤ distance(q, r)}.

R ⋈� S = {(r, s) | r ∈ R, s ∈ S, �(r, s) holds}.

4  Libraries

In the following section, we describe the major features of 
the evaluated libraries. We also highlight the major ser-
vices, applications, and systems that use these libraries. 
Table 1 summarizes various features of the libraries, and 
Table 2 summarizes the features of the indexes found in 
these libraries.

4.1  ESRI Geometry API

ESRI Geometry API5 is a planar geometry library written 
in Java. ESRI Geometry API comes with a rich support for 
multiple geometry datatypes, such as point, multipoint, line, 
polyline, polygon, and envelope and OGC variants of these 
datatypes. It has support for various topological operations, 
such as cut, difference, intersection, symmetric, union and 
various relational operations using DE-9IM matrix such as 
contains, crosses, overlaps etc. ESRI Geometry API also 
supports a variety of I/O formats, WKT, WKB, GeoJSON, 
ESRI shape and REST JSON. The geometry library also 
comes with Quadtree index which cannot be classified into 

Table 1  Selected features of the libraries

Features S2 GEOS ESRI JTS JSI jvptree

Language C++ C++ Java Java Java Java
Indexes ShapeIndex, 

PointIndex, 
RegionTer-
mIndexer

STRtree, Quadtree Quadtree STRtree, Quadtree, k-d tree R-Tree Vantage Point Tree

Geometry Type Spherical Planar Planar Planar Planar Metric space
Geometry Model Point, Line, 

Area, 
Geometry 
Collections

Point, Line, Area, 
Geometry Collec-
tions

Point, Line, Area, 
Geometry Collec-
tions

Point, Line, Area, Geometry 
Collections

Point, Area Point

License Apache v2.0 LGPL Apache v2.0 Dual licence (EPL 1.0, BSD) LGPL MIT

Table 2  Selected features of all indexes

S2 ESRI JTS JSI jvptree

Feature Point Index Quadtree k-d tree Quadtree STRtree R-tree jvptree
Implemen- tation Linear Quadtree Quadtree k-d tree MX-CIF Quadtree STR packed R-tree R-tree VPTree
Geometry Point Rectangle Point Rectangle Rectangle Rectangle Point
Native queries Range, Distance, 

k-NN
Range Range Range Range, k-NN Range, k-NN Distance, k-NN

Updates Yes Yes Insert:Yes 
Delete:No

Yes No insertion after 
build

Yes No

Default Fanout 32 4 2 4 10 20–50 2

5 https ://githu b.com/Esri/geome try-api-java.

https://github.com/Esri/geometry-api-java
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a particular type from the Quadtree family. The key property 
of any Quadtree is its decomposition rule, in ESRI Quadtree, 
a leaf node splits into four when the node element count 
reaches 5 elements, and they are pushed to the children 
quads if possible.

ESRI Geometry API is used in a variety of products by 
ESRI such as ArcGIS, ESRI GIS tools for Hadoop, and 
various ArcGIS APIs. It is also used by the Hive UDFs and 
by developers building geometry functions for third-party 
applications such as Cassandra, HBase, Storm, and many 
other Java-based “big data” applications.

4.2  Java Spatial Index

The Java Spatial Index (JSI)6 is a main-memory optimized 
implementation of the R-tree [15]. JSI relies heavily on the 
trove4j7 library to optimize performance and reduce the 
memory footprint. The code is open-source, and is released 
under the GNU Lesser General Public License, version 2.1 
or later. The JSI spatial index is limited in features, and only 
supports a few operations. It is a lightweight R-tree imple-
mentation, specifically designed for the following features 
(in order of importance): fast intersection performance by 
using only main memory to store entries, low memory foot-
print, and fast updates. JSI’s R-tree implementation avoids 
creating unnecessary objects by using primitive collections 
from the trove4j library. JSI only supports rectangle and 
point datatypes, and has support for only two predicates for 
refinement, intersects and contains. The R-tree index can be 
queried natively for ranges and k-NN.

We could not find any reference of JSI being used in a 
major system or service, which we believe is mostly due to 
its limited capabilities. Although limited in features, JSI is 
still regularly utilized in diverse research areas [28, 29, 33, 
34, 57].

4.3  JTS Topology Suite and Geometry Engine Open 
Source

The JTS Topology Suite (JTS) is an open-source Java library 
that provides an object model for planar geometry together 
with a set of fundamental geometric functions. JTS conforms 
to the Simple Features Specification for SQL published by 
the Open GIS Consortium8. GEOS (Geometry Engine Open 
Source)9 is a C++ port of the JTS Topology Suite (JTS). 
Both JTS and GEOS provide support for basic spatial data-
types such as points, linestrings and polygons along with 

indexes such as the STR packed R-tree [30] and MX-CIF 
Quadtree [31]. They also support a variety of geometry oper-
ations such as area, distance between geometries, length/
perimeter, spatial predicates, overlay functions, and buffer 
computations. They also support a number of input/output 
formats including Well-Known Text (WKT), Well-Known 
Binary (WKB).

JTS is used in many modern distributed spatial analytics 
systems such as Hadoop-GIS [2], SpatialHadoop [9], Geo-
Spark [72], and SpatialSpark [71] and other research areas 
[55]. GEOS on the other hand is used in a number of data-
base systems and their spatial extensions such as MonetDB, 
PostGIS, SpatiaLite, Ingres, and it is also used by a number 
of frameworks, applications, and proprietary packages.

JTS is used in many modern distributed spatial analytics 
systems such as Hadoop-GIS [2], SpatialHadoop [9], Geo-
Spark [72] and SpatialSpark [71] and other research areas 
[55]. GEOS on the other hand is used in a number of data-
base systems and their spatial extensions such as MonetDB, 
PostGIS, SpatiaLite, Ingres. GeoPandas and Shapely, two 
popular geospatial libraries in python, internally use GEOS. 
It is also used by a number of frameworks, applications and 
proprietary packages.10

4.4  Google S2 Geometry

S211 is a library that is primarily designed to work with 
spherical geometry, i.e., shapes drawn on a sphere rather 
than on a planar 2D map, which makes it especially suitable 
for working with geographic data. S2 supports a variety of 
spatial datatypes including points, polylines, and polygons. 
It also has two index structures, namely (1) S2PointIndex 
to index collections of points in memory and is a variant of 
Linear Quadtree [31], and (2) S2ShapeIndex to index arbi-
trary collections of shapes, i.e., points, polylines and poly-
gons in memory. S2 also defines a number of queries that 
can be issued against these indexes. Indexes also define itera-
tors to allow for more fine-grained access. S2 also accepts 
input in lat/long (GPS) format.

In recent years, S2 has become a popular choice among 
various location-based services. It is used by on-demand 
ride-hailing services such as Uber [44] and GO-JEK [47]. It 
is also used by location-sharing applications like Zenly [50] 
(recently acquired by Snap Inc. [18]) and Foursquare [60]. 
Even popular games such as Pokémon GO [53], Ingress [1], 
and a popular location-based dating application Tinder [45] 
utilize S2. Moreover, S2 is also used by many database sys-
tems, including MemSQL [14], MongoDB [35], and HyPer’s 

6 https ://githu b.com/aled/jsi.
7 http://trove 4j.sourc eforg e.net/html/overv iew.html.
8 https ://www.openg eospa tial.org/stand ards/sfa.
9 https ://trac.osgeo .org/geos/.

10 https ://trac.osgeo .org/geos/wiki/Appli catio ns/.
11 https ://githu b.com/googl e/s2geo metry .

https://github.com/aled/jsi
http://trove4j.sourceforge.net/html/overview.html
https://www.opengeospatial.org/standards/sfa
https://trac.osgeo.org/geos/
https://trac.osgeo.org/geos/wiki/Applications/
https://github.com/google/s2geometry
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[21] geospatial extension HyPerSpace [41]. It has also been 
used in other research areas [22–24, 27, 68].

4.5  Vantage Point Tree

The vantage point tree [70] is based on metric space and has 
been well studied in image retrieval and nearest-neighbor 
search algorithms for high-dimensional data. It is a binary 
tree which is built recursively. At each node in the tree, 
the points are split into two equal-sized partitions, and are 
assigned to its two children. This process is repeated until 
no points are left or a certain threshold is reached. A node 
partitions its points by picking one point p at random, the 
vantage point. The points assigned to the node are then are 
sorted by their distance to the vantage point p. The result-
ing sorted array is then split in the middle and assigned to 
the two children. The distance of the split point from the 
vantage point p serves as the radius r for the node. All the 
points that are within the radius r (i.e., the left part of the 
sorted array) are assigned to the left child of the node, and 
the rest of the points are assigned to the right child. Based on 
this partitioning, the tree can then be traversed efficiently to 
answer distance and k-NN queries. We refer readers to [70] 
for more details on vantage point trees. We use the library 
jvptree12 for an implementation of vantage point tree in our 
experiments.

5  Methodology

To benchmark the various libraries and measure memory 
costs, we use language specific open-source tools. For Java 
based libraries, we use the Java Microbenchmark Harness 
(JMH),13 which is a framework for building, running, and 

analyzing benchmarks. To measure the memory consump-
tion in Java, we use the Memory Measurer tool.14 To bench-
mark C++ based libraries, we use Google Benchmark,15 
and for memory consumption of the indexes in C++, we use 
the Heap Profiler in TCMalloc.16 TCMalloc overrides the 
malloc and new implementations, and can thus track the 
memory usage of an application from the amount of memory 
allocated/deallocated.

For evaluation, we used two location (points) datasets, the 
New York City Taxi Rides dataset [37] (NYC Taxi Rides) 
and geo-tagged tweets in the New York City area (NYC 
Tweets). NYC Taxi Rides contains 305 million rides from 
the years 2014 and 2015. NYC Tweets data was collected 
using Twitter’s Developer API [65] and contains 83 mil-
lion tweets. Figure 1 shows the distribution of the rides and 
tweets in the NYC region. It can be seen that the Taxi rides 
are mostly centered around central New York whereas the 
tweets are well distributed over the entire city.

We further generated query datasets that consist of ranges 
(bounding boxes) in case of range query, query points and 
distances in case of distance query, and query points in 
case of k-NN query. For range queries and distance queries, 
we created seven different query datasets for seven differ-
ent selectivities, ranging from 0.0001 to 1% (i.e., the query 
selects 0.0001–1% of the data). These query datasets consist 
of one million queries each. We evaluate various indexes in 
the libraries by issuing these queries sequentially. We chose 
to generate a large number of queries to minimize the effect 
of caching tree nodes from a previously issued query. Test-
ing with many queries is especially important in cases with 
low selectivity where many indexes achieve a throughput 
of more than 100,000 queries per second. The benchmark 
frameworks that we use for evaluation run a benchmark mul-
tiple number of times until the result is statistically stable. It 
is thus necessary that we have sufficient queries that do not 
touch the same nodes in the index structures, but rather exer-
cises several paths in the indexes. To generate these datasets, 
we uniformly generated points within the New York City 
bounding box and continuously expanded the range or the 
distance, depending on which query dataset is being gen-
erated, to meet the selectivity requirements. For the k-NN 
query dataset, we uniformly generated points within the 
NYC bounding box. For the point-in-polygon spatial join 
query, we use 289 polygons of neighborhood boundaries in 
NYC. For planar geometry libraries, we projected the data-
sets to EPSG:32118 using ogr2ogr tool in GDAL. We used 
the ogr2ogr tool in GDAL to transform the lat/long coordi-
nates in the datasets.

(a) Tweets dataset (b) Taxi Trips dataset

Fig. 1  Datasets: NYC Taxi trips are clustered in central New York 
while Tweets are spread across the city

12 https ://githu b.com/jcham bers/jvptr ee.
13 https ://openj dk.java.net/proje cts/code-tools /jmh/.

14 https ://githu b.com/mstei ndorf er/memor y-measu rer.
15 https ://githu b.com/googl e/bench mark.
16 https ://githu b.com/gperf tools /gperf tools .

https://github.com/jchambers/jvptree
https://openjdk.java.net/projects/code-tools/jmh/
https://github.com/msteindorfer/memory-measurer
https://github.com/google/benchmark
https://github.com/gperftools/gperftools
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6  Evaluation

All experiments were run single threaded on a two-socket 
Ubuntu 18.04 machine with an Intel Xeon E5-2660 v2 CPU 
(2.20 GHz, 3.00 GHz turbo)17 and 256 GB DDR3 RAM. We 
use the numactl command to bind the thread and memory to 
one node to avoid NUMA effects. CPU scaling was also dis-
abled during benchmarking using the cpupower command.

We have benchmarked libraries written both in Java and 
C++. Although we have used language specific framework 
and tools to measure the performance of libraries, there are 
inherently many differences between the languages. As an 
example consider the size of an integer in the two languages. 
A type int Object in Java requires 16 bytes (depending on 
JVM implementation) while a type int in C++ requires 4 
bytes. We ask the readers to carefully take such differences 
between languages into account while comparing perfor-
mance of libraries written in different languages.

To evaluate the queries, we perform two experiments 
for each query. In the first experiment, we fix the selectiv-
ity of the query to 0.1% (we fix k to 10 in case of k-NN 
query) and vary the cardinality of the points dataset from 
100,000 records to the maximum size of the dataset (i.e., 
83 M records for Twitter dataset and 305 M for the Taxi 
dataset). In the second experiment, we fix the number of 
points to the maximum size of the dataset and vary the selec-
tivity of the query from 0.0001 to 1% (we vary k from 1 to 
10,000 in case of k-NN query). For all these experiments, 
we measure the throughput for each library in queries/s. In 
case of spatial join query, we report the join time in seconds. 
All query implementations are covered under the respec-
tive section. If a particular index does not support a query 
natively, the query is implemented using the filter and refine 
[39] approach.

6.1  Indexing Costs

ESRI Quadtree and JSI R-tree accept the rectangular range 
to index, and an identifier for the rectangular range, whereas 
other index structures are more liberal and allow users to put 
any user data along with the rectangular range. To be fair to 
all index structures, we only store the rectangular range to 
index and an identifier in every case and measure the size of 
these indexes in memory.

It is important at this point to categorize indexes in the 
libraries to better understand their behavior. Indexes in the 
libraries can be classified as: Point Access Methods (PAMs) 
and Spatial Access Methods (SAMs) [31]. PAMs are index-
ing methods that index point data, whereas SAMs index 
extended spatial objects such as rectangles, polygons etc. 
S2PointIndex, k-d tree and vptree are PAMs and the rest are 
SAMs. The indexes can also be categorized as space-driven 
(follow the embedding space hierarchy), or data-driven 
(follow the data space hierarchy). k-d tree and Quadtrees 
are space-driven structures and the rest of the indexes are 
data-driven.

Figure 2 shows the sizes of indexes in various libraries 
and Fig. 3 the time it takes to construct them. S2PointIn-
dex, and vptree are PAMs which stores only points (at 
least two doubles) and hence the memory consumption 
is minimal. S2PointIndex is a B-tree that stores 64-bit 
integers (cell ids), and the overhead in inner nodes is 
minimal. jvptree only stores a vantage point, and a radius 
at every node, hence the intermediate nodes consume 
minimal memory. The rest of the indexes are SAMs and 
store rectangles and consume more memory than PAMs. 
This is expected, as the trees store rectangles.18 each of 
which require storage of at least four doubles. Figure 2 
also shows that the R-tree in JSI consumes very little 
memory even though it stores rectangles. JSI heavily 
relies on trove4j19 collections, which are generally faster 
to access, and consumes much less memory than Java’s 
Util collections. There are two reasons for low memory 
consumption. First is that (any) primitive collections store 
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17 CPU: https ://ark.intel .com/conte nt/www/us/en/ark/produ cts/75272 
/intel -xeon-proce ssor-e5-2660-v2-25m-cache -2-20-ghz.html.

18 We store points from the datasets as degerate rectangles in SAMs.
19 http://trove 4j.sourc eforg e.net/html/bench marks .shtml .

https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html
http://trove4j.sourceforge.net/html/benchmarks.shtml
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data directly in an array of primitives (int, long, dou-
ble, char), and thus only a single reference to an array of 
primitives is needed instead of an array of references to 
data objects. JSI also uses floating-point precision while 
the other index structure use double precision values. Sec-
ond, each primitive data element consumes less mem-
ory than the Object (e.g., type int only requires 4 bytes 
instead of 16 bytes object Integer). The reason for better 
performance is that trove4j avoids boxing and unboxing 
elements every time a primitive value is queried to/from 
the collection. It can also be seen that the space-driven 
indexes, i.e., Quadtrees and k-d tree, consumes more 
memory compared to the other index structures. Since 
space-driven structures divide the space they index, more 
internal nodes are formed as they keep dividing the space 
until a certain threshold is not met for the leaf node size.

Index construction times have been measured using the 
benchmarking frameworks, and are averaged over several 
runs until the runtime is statistically stable. For both Taxi 
and Twitter datasets, jvptree is the fastest to construct, 
whereas k-d tree and STRtree in JTS, Quadtree in ESRI 
geometry API and R-tree in JSI are among the slowest to 
construct for all datasets.

6.2  Range Query

Implementation: All indexes, except for jvptree, natively pro-
vide an interface for range queries. To implement range que-
ries in jvptree we first compute the centroid q of the query 
rectangle. Next, we determine the distance of the centroid q 
to one of the rectangle’s corner vertices. The resulting circle 
(q, d) is always larger then the range query rectangle and can 
therefore be used as a filter to retrieve a list with qualifying 
points. This list is then refined to determine which points 
are actually contained in the range query rectangle. As men-
tioned earlier, k-d tree in JTS keeps a count of points, in case 
of duplicate points (up to a certain distance tolerance), rather 
than creating a new node for the duplicate points. We make 
sure that we materialize all such points for the range query, 
but we do use them as an optimization in distance and join 
query to reduce the refinement costs (i.e., skip refinement for 
duplicate points if one point qualifies the refinement check).

Another point to mention here is that Quadtree imple-
mentation in ESRI geometry API requires tuning. The ini-
tialization of the Quadtree expects a height parameter for 
the index. As mentioned in Sect. 5, we generated range que-
ries with varying selectivities from 0.0001 to 1%. We ran 

Fig. 4  Range query perfor-
mance varying the number of 
points and selectivity of the 
query rectangle for NYC Taxi 
and Twitter Datasets
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Table 3  CPU Counters: Range 
query datasize = 50M tweets, 
selectivity = 0.1%, 1 thread, 
normalized by the number of 
range queries

All values are in millions except IPC

Cycles ipc instr L1 miss LLC miss Branch miss

esri-quadtree 116 0.84 98 1.34 0.54 0.08
geos-quadtree 105 0.75 79 0.97 0.75 0.09
geos-strtree 236 0.37 88 4.04 2.68 0.51
geos-cfstrtree 91 0.87 80 1.21 0.57 0.46
jsi-rtree 8 1.25 10 0.13 0.06 0.03
jts-kdtree 8 1.12 9 0.14 0.02 0.04
jts-quadtree 68 1.17 80 0.82 0.27 0.19
jts-strtree 31 0.81 25 0.42 0.22 0.01
s2-pointindex 44 1.34 59 0.42 0.05 0.36
vptree 30 0.70 21 0.68 0.21 0.05
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all these range queries from selectivity 0.0001–1% on both 
datasets, and varied the height of the Quadtree from 1 to 64 
for both datasets and for each selectivity. We then ranked 
these heights based on the lowest query runtime for each 
query selectivity, and compute the aggregated rank of all 
heights across all selectivities. We then selected the height 
with the lowest rank for both datasets. We found that the 
Quadtree performed best with heights 18 and 9 for the Taxi 
and Tweets datasets respectively.

Analysis: Fig. 4 shows the range query performance 
of various libraries on the Taxi and Twitter datasets. For 
both datasets, JSI R-tree show the best throughput numbers 
(259.87 and 72.779 queries per second, respectively, for 
Twitter and Taxi dataset for 0.1% selectivity). JSI R-tree is 
optimized for main memory usage for range queries and has 
the least height of all indexes (5 and 7 in the two datasets). 
Many of the tree nodes are cached and it suffers from the 
least number of cache misses as shown in Table 3.

An interesting case in the results is the low query through-
put of GEOS STRtree (17.8315 queries per second in the 
Tweets dataset for 50 M points and 0.1% selectivity). GEOS 
STRtree is much slower than the JTS STRtree. Upon investi-
gation, we found that the reason for the low query through-
put of STRtree in GEOS is an implementation artifact. It 
can be seen in Table 3 that GEOS STRtree suffers from a 
large number of LLC misses, 2.68 million in the Twitter 
dataset and 1.28 million in the Taxi dataset (not shown in 
table). R-trees in general store multiple rectangles at every 
node. When the tree is queried, the decision to explore the 
branches from each node in the tree is based on whether 
the query range overlaps any of these rectangles. In both 
cases, JTS and GEOS, every node in the STRtree contains a 
maximum of 10 such rectangles by default. GEOS STRtree 
stores a vector of pointers to these rectangles at every node.

At every node, the algorithm in the range query iterates 
over these pointers, retrieves these rectangles from mem-
ory and checks whether there is any overlap with the query 
range and then based on the overlap explores the various 
branches from the node. Retrieving these rectangles from 
memory causes many cache misses in GEOS STRtree during 

the query execution. To validate this, we implemented a 
cache-friendly STRtree (designated as cfstrtree in Table 3) 
in GEOS on top of the existing tree. We basically intro-
duced another vector at every node in the tree, which stores 
the objects of these rectangles in contiguous memory. We 
replaced the logic to check for overlap to use these rectan-
gle objects rather than the pointers to the rectangles. This 
reduces the number of LLC misses in the CFSTRtree rela-
tive to STRtree, by a large number as can be seen in Table 3.

STRtree implementation in JTS does not suffer from this. 
In both libraries, GEOS and JTS, the algorithm for con-
structing and traversing the trees are the same, but the differ-
ence in performance stems from how memory management 
works in the JVM. Every node in JTS STRtree stores the 
rectangle objects in a List. Lists in Java store the references 
to the objects, so logically it is similar to storing a vector of 
pointers in C++. But where this differs is that JVM makes 
a distinction between small and large objects during object 
allocation [66]. The limit for when an object is considered 
large depends on the JVM version, the heap size, the gar-
bage collection strategy and the platform used, but is usu-
ally somewhere between two and 128 kB. Small objects are 
allocated in thread local areas (TLAs). The thread local areas 
are free chunks reserved from the heap and given to a Java 
thread for exclusive use. The thread can then allocate objects 
in its TLA without synchronizing with other threads. The 
size of the rectangle objects in JTS is 48 bytes each. This 
means that the rectangle objects qualify as small objects 
and are in contiguous memory. Only the access to the first 
rectangle causes a cache miss, and the other objects are most 
likely brought into memory as a side effect of that cache 
miss (speculative loading).

6.3  Distance Query

Implementation: S2PointIndex and jvptree provide native 
support for distance queries, so we directly issue the query 
point and the distance to these two indexes. The other 
indexes do not support distance query natively. To imple-
ment distance queries in these indexes, we again use the 

Fig. 5  Distance query perfor-
mance varying the number of 
points and selectivity of the 
query rectangle for NYC Taxi 
Dataset and Twitter Datasets
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filter and refine paradigm. We first filter using a rectangle, 
whose corner vertices are at a distance of d from the query 
point q. We issue a range query to the various range based 
indexes using this rectangle. We then refine the resulting 
candidate set of points by using a withinDistance predicate 
(available in ESRI Geometry API, JTS, and GEOS). For 
JSI, we implemented our own predicate, which computes the 
Euclidean distance for all candidate points from the query 
point and checks if the candidate point is within distance d * 
d rather than d from the query point. This helps in skipping 
the square root operation to calculate Euclidean distance.

Analysis: Fig. 5 shows the distance query performance 
on Taxi and Twitter datasets. The performance for distance 
query is dominated by range query lookup for most indexes, 
apart from S2PointIndex and jvptree. These index support 
distance queries natively, i.e., have specialized tree traversal 
algorithms for distance query. For other indexes, we deploy 
the filter and refine paradigm. The performance of these 
indexes thus follows directly from the range query perfor-
mance. JSI R-tree is slightly better than JTS k-d tree as we 
optimize the Euclidean distance computation by skipping 
the square root operation. We would also advise the readers 
to use this approach for refinement in GEOS as well. The 
isWithinDistance function in GEOS returns whether two 
geometries are within a certain distance from each other. 
By profiling the function we noticed that this function makes 
six malloc() calls, for every candidate point, which degrades 
the performance. By using our own predicate distance func-
tion, we were able to speed up distance query by up to 2 × 
in GEOS. In many geometric operations, GEOS frequently 
allocates and deallocates memory, which is an overhead. 
This problem in memory management was also observed by 
[71], where authors use GEOS to introduce spatial process-
ing in Impala.

6.4  k‑NN Query

Implementation: Out of all the available indexes, only 
S2PointIndex, JTS STRtree, JSI R-tree, and jvptree support 
k-NN queries natively. We directly issue the query point to 

these indexes and measure their performance. We did not 
implement any tree traversal algorithms for any other avail-
able tree because we wanted to measure the performance 
of the libraries without making any changes to the library 
source code.

Analysis: Fig. 6 shows k-NN query performance of vari-
ous indexes on the Taxi and Twitter datasets. jvptree again 
takes the crown as the best performing index for k-NN que-
ries, with S2PointIndex close behind. It can be observed that 
for the Twitter dataset the performance of JSI R-tree fluctu-
ates quite a bit. This can be explained by how the nearest-
neighbor algorithm works in JSI R-tree (and also in JTS 
STRtree), which is known as branch-and-bound traversal. 
The algorithm starts with adding the root node to a priority 
queue of size k. The algorithm, then iterates over the tree 
continuously adding nodes until the priority queue is full. 
The algorithm then continues traversing the tree observing 
nodes, replacing the current farthest node in the queue with 
the current node being looked at, if it is closer. JSI R-tree is a 
dynamic tree, it is built in a top-down fashion (spatial objects 
are inserted from the root to the leaf), and the nodes are split 
(or merged) based on various factors. It is evident that sev-
eral R-trees can represent same set of data rectangles [16], 
depending on insertion order and grouping of data objects 
into leaves. The JSI R-trees for different sized datasets are 
therefore vastly different. Thus, during the tree traversal for 
k-NN query, sometimes a large number of branches from 
a node can be dropped since they are not closer than the 
current farthest node in the priority queue and sometimes 
they cannot be dropped. This can lead to multiple search 
paths to be evaluated and hence the fluctuation in perfor-
mance. JTS STRtree packed R-tree does not suffer from this 
because it is a type of static R-tree. It is built bottom-up 
and once built, no more elements can be added. STRtree is 
built by first sorting the leaf node in the x dimension, and 
then dividing the data in vertical slices, each containing an 
equal number of points. Within each slice, the data is sorted 
in the y dimension, and again divided into slices containing 
an equal number of points. The tree is then built on top of 
these slices by packing a predefined number of slices into 

Fig. 6  k-NN query performance 
varying the number of points 
and k for NYC Taxi and Twitter 
Datasets
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nodes. The difference in tree node boundaries is still there 
in JTS STRtree but is more profound in the lower levels 
of the tree, rather than at various levels as in the case of 
JSI R-tree. Thus, JSI R-tree can sometime quickly discard 
branches at the top of the tree and other times it cannot, and 
this is reflected in the query throughput.

6.5  Point‑In‑Polygon Join Query

Implementation: In S2, we used the S2ShapeIndex, instead 
of S2PointIndex, which provides a native interface for the 
contains predicate. S2ShapeIndex20 stores a map from 
S2CellId to the set of shapes that intersect that cell. The 
shapes are identified by a ShapeId. As shapes are added 
to the index, their cell ids are computed and added along 
with the shape id to the index. When a query point is issued 
against the index it retrieves the cells that contain the query 
point and identifies the shape(s) that this containing cell 
belongs to using the shape id. For other indexes, we again 
use the filter and refine approach. For GEOS and JTS we use 
PreparedGeometry21 to index line segments of all individual 
polygons, which helps in accelerating the refinement check. 
In JTS, we also use k-d tree’s points snapping technique to 
skip refinement for duplicate points in case one point quali-
fies or disqualifies the predicate check. In ESRI implementa-
tion, we use AcceleratedGeometry and set its accelDegree to 
enumHot22 for the fastest containment performance.

Analysis: Fig. 7 shows joins query performance on the 
Taxi and the Twitter datasets. Spatial join queries are notori-
ously expensive and this is reflected in the figure. For join 
queries S2ShapeIndex performs the best. As mentioned ear-
lier, we skip the refinement check for duplicate points if one 
such point qualifies (or disqualifies) the refinement check 
and that is why it does slightly better than the other indexes. 
S2ShapeIndex natively supports the containment query and 
traverses the index appropriately and does not have to deal 

with refining many candidate set of points. The performance 
of other indexes follows from the range query performance. 
JTS/GEOS STRtree and Quadtree perform better than ESRI 
Quadtree because the refinement using PreparedGeometry 
is faster than AcceleratedGeometry in ESRI.

7  Discussion

In this section, we first discuss a research direction that we 
believe might not be getting the attention in the community 
that it should, before we outline how to use modern spatial 
libraries as building blocks for building distributed spatial 
systems.

7.1  Why Refinement Should Be Looked At?

As we learned in the past sections, the modern spatial librar-
ies provide index structures which arrange spatial objects 
in a way that the access time to these geometric objects 
reduces. But we also learned that these index structures 
only support a limited set of native queries (range lookup 
and k-NN query in most cases). In other queries, such as 
distance query and spatial joins, these index structures pri-
marily act as filters. The resulting candidate set of points (or 
geometries) after the filter phase needs to be further refined 
based on a spatial predicate. For distance query, the predi-
cate is withinDistance, and for spatial joins, the predicate 
can be one of many predicates, such as contains, intersects, 
overlaps, etc. For these queries, we used the filter and refine 
paradigm. The set of geometry objects from the candidate 
set that do not qualify the predicate check are known as false 
drops and the ones that do are known as candidate hits. 
Generally, we can determine how good these indexes are for 
such queries by analyzing the ratio of number of false drops 
to the number of candidate hits. If the ratio is more than 1, 
it can be deduced that the amount of work being done for 
false drops is more than for candidate hits. This work done 
can be classified as an overhead, and the goal is to minimize 
this overhead.

In this study we also looked at an index structure, namely, 
Vantage Point Tree, which is specially designed to answer 
distance and k-NN queries. We saw in Sect. 6 that for dis-
tance queries an open-source implementation of VPTree, 
performs 2.48× better for the Taxi dataset (and 2.74× for 
the Twitter dataset) than its closest competitors S2PointIn-
dex and JSI R-tree. Please note that in JSI R-tree we even 
skipped the overhead of square root operation in Euclidean 
distance computation. This is because jvptree reduces the 
overhead of false drops during the index lookup itself. In 
essence, the index structure completely skips the refinement 
phase for distance and k-NN queries and does not have to 
deal with false drops. This shows that if an index structure is 
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built to answer certain queries, and no refinement is needed, 
the performance implications can be large.

Recent research acknowledges [5, 62] that there is poten-
tial in accelerating the refinement step for join queries. We 
consider the spatial point-in-polygon join query here, where 
filter and refinement is also required for some indexes. In 
point-in-polygon join, after the filter phase, the candidates 
set of points is typically refined using an algorithm known as 
ray tracing. In this algorithm, a line (ray) is drawn from the 
query point to a point known to be outside the polygon, and 
then the number of intersections of this line with all edges 
in the polygon is counted. This algorithm is linear with the 
number of edges in the polygon. So if the cardinality of the 
filtered candidate set of points after filtering from the index 
is n, then the work to be done is O(nk) , where k is the num-
ber of edges in the polygon. If the n is large or if the poly-
gons are complex, with a large number of edges then this has 
the potential to become a bottleneck. Midtown Manhattan is 
one of the neighborhoods in NYC that is highly skewed for 
the Taxi and the Twitter dataset alike. Using the bounding 
box of Midtown Manhattan and querying any range-based 
index (i.e., which can be queried using a range, in this case 
MBR of Midtown Manhattan) as a filter with 305 million 
taxi rides, yields a candidate set with 78.35 million points. 
The final result after refinement has 42.55 million points 
(candidate hits), with 35.8 million points being false drops.

Using Midtown Manhattan as a query polygon, we car-
ried out an experiment to determine the costs of refinement 
using various contains functions in JTS and the results 
are shown in Fig. 8. In PreparedGeometry, the individual 
geometry objects are indexed and the indexing scheme 
varies based on the geometry datatype. For example, for 
polygons, PreparedGeometry indexes the line segments 
of the polygons. If the refinement step can be skipped for 
false drops, there is gain of 2.10× in query performance 
(12.3 s without false drops vs. 25.93 s with false drops). 
The figure also shows the effect of indexing individual 
polygons. If line segments in polygons are not indexed, 

the polygon contains function takes 747.62 s compared to 
2.93 s (28.83× improvement).

There are two potential research directions for improv-
ing point-in-polygon spatial join queries. As mentioned 
earlier, the potential work to be done in the refinement 
phase after filtering is O(nk) . We can either try to reduce 
n or k (or both). Some of the recent research work [22–24, 
73] tries to address the former and skip the refinement 
phase altogether. The latter is addressed to some extent 
in the libraries via PreparedGeometry (in JTS and GEOS) 
and AcceleratedGeomerty (in ESRI Geometry API). There 
is also a research [75] work that show that the refinement 
step can be improved by using interval trees to index the 
polygon line segments.

7.2  Distributed Spatial Analytics Systems

In the past few years, a number of big spatial analytics 
systems have emerged. While they differ in some archi-
tectural design aspects, many of the core fundamentals 
remain the same in terms of building a distributed spatial 
processing system. In this section, we briefly highlight 
these fundamentals and how a distributed spatial analyt-
ics system can be built from scratch using the libraries 
studied in this work. A cluster of commodity machines 
coordinating to complete a task generally have the follow-
ing structure: a master node (the coordinator) and multi-
ple worker nodes. Big spatial analytics systems today also 
deploy the same cluster setup since they are primarily built 
on big data infrastructures in the form of Hadoop, Apache 
Spark, Impala etc. There are three main components to 
designing a big spatial analytics system: (1) Partitioning 
Technique, (2) Index Structures, and (3) Supported Data-
types and Queries.

Index structures, as we saw in this work, are important for 
answering spatial queries. Spatial indexes allow access to the 
desired spatial objects in sub-linear time and thus acceler-
ate spatial query processing. Index structures hence form 
an integral part of any spatial processing system, whether 
it be a relational database system, or a distributed spatial 
processing system. Spatial partitioning is also an important 
part of distributed spatial processing system, which we now 
discuss in detail:

7.2.1  Spatial Partitioning

Spatially partitioning the input dataset(s) is an important 
aspect of distributed spatial processing system. Since there 
are multiple worker nodes in a cluster, an input dataset 
should be partitioned to fully utilize the parallel comput-
ing capability of the cluster. Also, since many of the spatial 
datasets are inherently spatially skewed, it is important to 
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partition them spatially. A naive grid partitioning would 
introduce skew in some individual grid cells, and thus leads 
to the straggling nodes in the cluster, which would affect the 
overall query efficiency.

How is it done?: The usual practice today to build par-
titions is to sample the input dataset and to determine 
partitions based on the sample. Previous research [8] has 
shown that sampling 1% of the input dataset is sufficient 
to produce high-quality partitions. To further delve into 
detail, we will walk through an example, using an R-tree 
index. After sampling the input dataset, an R-tree is built 
on the sample. Sampling helps in capturing the density 
distribution of the input dataset, and indexing the sam-
ples in an R-tree spatially partitions the sample, thereby 
providing the partitions boundaries of the sample dataset. 
The minimum bounding rectangle (MBR) of the leaves 
of the R-tree are then used as the partition boundaries. 
Once the partition boundaries have been determined, the 
input dataset can then be loaded in parallel using these 
boundaries. Now since these partition boundaries were 
determined using only a sample of the dataset, and the 
input dataset may contain spatial objects that do not lie, 
or even overlap multiple partition boundaries. The com-
mon practice today is to expand the partition boundaries 
or duplicate the object in multiple partitions. We refer the 
readers to [8] to understand the trade-offs related to such 
decisions. Once the partitions have been built, the indi-
vidual partition are indexed in an R-tree. The index does 
not necessarily have to be an R-tree but for the sake of 
continuity, we continue using the R-tree as an example. 
These index within individual partitions are called local 
index (i.e., local to a partition). Once these local indexes 
have been built, finally a global index is built using the 
spatial extent of these local indexes. We walked through 
an example with R-tree as the index to determine the parti-
tion boundaries, but R-tree may not be the best partitioning 
scheme in certain scenarios. We refer the readers to [8], 

which thoroughly compares and evaluates various spatial 
partitioning techniques.

Why is it done?: Spatial partitioning an input data-
set helps in query processing. To better understand the 
importance of spatial partitioning, we will walk through an 
example. Consider a large input dataset, and a range query 
is issued to determine which spatial objects in the input 
dataset lie within the given range. The global index is first 
used to determine which partitions the input range over-
laps and then the overlapping partitions can be scanned 
with the given range. This saves unnecessary scans of the 
partitions that do not overlap the input range. This is a 
very simple example, but things get more complex when 
join queries are considered. A join query can be processed 
as follows: the global indexes of the two datasets are first 
consulted to determine the partitions that overlap each 
other and then these partitions can be joined in parallel. 
This is again a very simple example of how the spatial 
partitions and indexes can be used to process a join query, 
and how to avoid joining partitions that do not spatially 
overlap. In reality, the systems deploy query optimizers 
that determine the best way to join the two datasets. For 
example, when the two global indexes are considered to 
determine which partitions overlap, it could very well be 
that a large number of partition pairs overlap (since they 
are two different datasets). A system may choose to repar-
tition one dataset to minimize these overlapping partition 
pairs. These are design choices that these systems make, 
and they are based on various trade-offs. We refer the read-
ers to the individual systems to better understand these 
design choices and trade-offs.

8  Related Work

To the best of our knowledge, no previous work in lit-
erature has evaluated the spatial libraries studied here 
empirically. One research work [19] compares indexing 

Table 4  Strengths/Weaknesses 
of the Libraries

Library Strengths Weaknesses

ESRI (1) Active development and support (1) Quadtree requires tuning
(2) Full geometric types, refinements, and operations

JSI (1) R-tree performance as a filter (1) No active development
(2) No geometric refinements

GEOS and JTS (1) Active development and support (1) Memory management in 
GEOS requires improve-
ment

(2) Full geometric types, refinements, and operations

jvptree (1) Best distance and k-NN performance (1) No geometric refinements
S2 (1) Best suited for geographic data

(2) Active development and support
(3) Many practical queries natively supported
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techniques for big spatial data, where the authors consider 
many big spatial data systems and one spatial library JSI, 
only to report the performance of each system/library on 
a standalone basis. The authors in [71] implement spatial 
query processing in Apache Spark, and Apache Impala 
using JTS and GEOS, respectively. They do observe some 
of the implementation differences between JTS and GEOS, 
but largely the work is about a comparative study of spa-
tial processing in Spark and Impala. Another research 
work [40] compares five Spark based spatial analytics 
systems, some of which use JTS library for spatial query 
processing. The authors in [13] shows how to efficiently 
implement distance join queries in distributed spatial data 
management systems. A research work [20] compares 
Quadtree and R-tree as filters in Oracle Spatial.

9  Conclusions

In this work we empirically compared popular spatial 
libraries using four different queries: range query, distance 
query, k-NN query, and a point-in-polygon join query. We 
performed a thorough experimental evaluation of these 
libraries using two real-world points datasets. While we 
evaluated the libraries on the point dataype, there are other 
datatypes (such as linestring, polylines etc.) in the librar-
ies that should also be evaluated. We leave evaluating the 
libraries on other geometric datatypes for future work. 
Table 4 summarizes the strengths and weaknesses of the 
spatial libraries.

There is no clear winner for each of the considered que-
ries, and this is mostly because all the indexes available 
in the libraries do not support all these queries natively 
(i.e., do not have specialized tree traversal algorithms for 
each query). ESRI geometry API and JTS/GEOS are com-
plete planar geometry libraries, and are rich in features. 
They support multiple datatypes, and have a variety of 
topological and geometry operations. They are also under 
active development and have a community for support. 
They do, however, come with some drawbacks. ESRI 
Quadtree has to be tuned for the dataset that it indexes, 
and memory management in GEOS could be improved. 
We also identified a difference in implementation of GEOS 
STRtree and JTS STRtree which has performance implica-
tions. Although both index structures implement the same 
algorithm for tree traversal, the difference in performance 
stems from memory management in Java. To validate 
this, we implemented a cache friendly version of GEOS 
STRtree and highlight the improvement in performance. 
The R-tree in JSI exhibited the best performance for range 
lookups, however, JSI is very limited in features, and is 
also not under active development. We also highlighted the 

difference in k-NN query performance of JSI R-tree and 
JTS STRtree. Both index structures implement branch-
and-bound traversal to answer k-NN query and the dif-
ference in performance is due to the structure of the trees 
being different. JSI R-tree is a dynamic tree (constructed 
top-down by inserting objects at the root node), and the 
nodes are split (or merged) based on multiple factors, 
whereas JTS STRtree is a static tree (constructed bottom-
up by sorting points in both dimensions, partitioning into 
slices, and packing the slices to nodes). Google S2 is a 
spherical geometry library and is best suited to work with 
geographic data. It is under active development and is used 
in many multimillion-dollar industries. It also has many 
practically used queries that are implemented natively on 
various indexes. Finally, jvptree, is a library that imple-
ments the Vantage Point Tree. It exhibits the best perfor-
mance for distance and k-NN queries as it is specifically 
designed to answer these queries. The index can only be 
used as a filter for other queries, and users have to imple-
ment their own refinement operations for such queries.

We also identified areas of potential pitfalls when using 
the planar geometry libraries which can be critical from 
the perspective of actual users, either of these libraries or 
any system that is based on them. Particularly for distance 
computations, the differences can be significant when using 
planar geometry for processing GPS coordinates. Many 
important business decisions might be based on the out-
come of such queries and there are potentially hundreds of 
users and companies that are using software that is based on 
these state-of-the-art spatial libraries. While these libraries 
and systems correctly execute what they are designed to do, 
users should be aware of how to use them correctly.
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