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1 Introduction

Heavy quarkonium production and decay processes are multiscale problems that are sensi-
tive to both short-distance and long-distance natures of QCD. As many of these processes
have been measured experimentally, a great amount of effort has been made towards under-
standing them theoretically [1, 2]. Much of the heavy quarkonium phenomenology is based
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on nonrelativistic effective field theories, which provide factorization formalisms that sep-
arate the perturbative short-distance physics from nonperturbative long-distance physics.
In the nonrelativistic QCD (NRQCD) factorization formalism [3, 4], production or decay
rates of a heavy quarkonium are given by sums of products of the perturbatively calcula-
ble short-distance coefficients (SDCs) and long-distance matrix elements (LDMEs). The
LDMEs are nonperturbative quantities that correspond to the probability to find a heavy
quark Q and a heavy antiquark Q̄ inside a quarkonium. The LDMEs have known scalings
in v, the typical heavy-quark velocity inside the quarkonium, and the sum is organized in
powers of v. While the SDCs can be computed in perturbative QCD, accurate determi-
nations of the LDMEs, especially the ones that appear at the lowest orders in v, are also
important in making predictions of production or decay rates of heavy quarkonia.

So far, many phenomenological studies on heavy quarkonium production and decay
have relied on model calculations of the LDMEs [5–9]. One major disadvantage of model
calculations is that in general, they do not reproduce the correct ultraviolet (UV) behaviors
of the LDMEs that are predicted in perturbative QCD. Perturbative QCD calculations
show that the LDMEs contain UV divergences, which require renormalization [4]. That
is, the LDMEs are renormalization scheme dependent. The scale associated with the
renormalization of the LDMEs is often called the NRQCD factorization scale. The SDCs
also depend on the scheme in which the LDMEs are renormalized, in the way that the
scheme dependence cancels between the SDCs and the LDMEs in the factorization formula.
It has been found from perturbative QCD calculations that strong dependencies on the
factorization scale start to appear in the SDCs from two loops [10–13]. Therefore, in order
to make accurate predictions based on NRQCD, it is critically important to determine the
LDMEs that exhibit the correct scale dependence. Since perturbative QCD calculations are
most conveniently done in dimensional regularization (DR), the SDCs are usually computed
in the MS scheme. In order to be consistent with the MS calculations of the SDCs, the
LDMEs must also be determined in the MS scheme.

While lattice QCD determinations of certain LDMEs exist [14–19], these calculations
are usually done in quenched lattice QCD, and their results have large uncertainties. More-
over, the relations between the LDMEs in lattice and continuum are known only at one-loop
level. Hence, existing lattice QCD determinations are not accurate enough to reproduce
the factorization-scale dependence that is expected in perturbative QCD.

It has been known that NRQCD LDMEs can be computed from quarkonium wave-
functions at the origin [4]. Rigorous formulations for quarkonium wavefunctions have been
developed in the potential NRQCD (pNRQCD) effective field theory approach [20–22].
This formalism provides a Schrödinger formulation, from which the quarkonium wave-
functions can be computed. The potentials that appear in the Schrödinger equation have
field-theoretical definitions in terms of Wilson loops, and they can be computed nonpertur-
batively in lattice QCD [23, 24]. While this makes possible the nonperturbative determina-
tion of quarkonium wavefunctions, there are still challenges in computing the wavefunctions
at the origin from first principles. One major challenge is that the wavefunctions at the ori-
gin involve divergences that require renormalization. These divergences are related closely
to the UV divergences that appear in the LDMEs. In order to obtain the MS-renormalized
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LDMEs, the wavefunctions at the origin must also be renormalized in the same scheme.
The problem is that this requires dimensionally regulated calculations, which are difficult
to be done outside of perturbation theory. This is because calculations in DR are most con-
veniently done in momentum space, while nonperturbative determinations of the potentials
are done in position space. For this reason, computations of quarkonium wavefunctions
at the origin to two-loop accuracy have only been done within perturbative QCD [25–35],
where the nonperturbative, long-distance behavior of the potentials are ignored. However,
many charmonium and bottomonium states are non Coulombic, so that their wavefunc-
tions are sensitive to the nonperturbative long-distance behavior of the potentials. In such
cases, the nonperturbative behavior of the potentials cannot be neglected.

While a direct momentum-space calculation of the wavefunctions at the origin in DR
with nonperturbative potentials may be difficult, position-space calculations are possible if
we regulate the divergences in position space. Then, we only need to convert the position-
space regularization to the MS scheme in order to obtain the MS-renormalized wavefunc-
tions at the origin. The conversion from position-space regularization to the MS scheme
may be computed in perturbative QCD, because this depends only on the divergent short-
distance behavior of the potentials, which are determined completely by perturbative QCD.
This makes possible the nonperturbative calculations of MS-renormalized wavefunctions at
the origin based on first principles.

In this paper, we compute the MS-renormalized quarkonium wavefunctions at the ori-
gin for S-wave charmonium and bottomonium states. We compute the wavefunctions at
the origin in two steps. First, we compute the quarkonium wavefunctions in position space,
by using potentials that have nonperturbative long-distance behaviors that are determined
in lattice QCD, while the potentials are given by perturbative QCD at short distances. We
use quantum-mechanical perturbation theory to first order in the expansion in powers of
1/m to compute the wavefunctions at the origin. Then, we convert the position-space regu-
larization to the MS scheme. Using the MS-renormalized quarkonium wavefunctions at the
origin that we obtain, we determine the NRQCD LDMEs in the strongly coupled pNRQCD
formalism, which is valid for non Coulombic quarkonia. Based on the determinations of the
LDMEs, we make model-independent predictions of decay constants and electromagnetic
decay rates of S-wave charmonium and bottomonium states. In the NRQCD factorization
formulas, we include loop corrections at leading order in v to two-loop accuracy, as well as
corrections of order α0

sv
2, and, when available, we also include corrections of order αsv2.

We restrict the calculation of wavefunctions to S-wave states, because the two-loop correc-
tions to the SDCs are generally not available for the production or decay rates of quarkonia
with higher orbital angular momentum.

This paper is organized as follows. In section 2, we review the definitions of NRQCD
LDMEs and the relations with wavefunctions at the origin. We outline the calculation of
quarkonium wavefunctions in position space in section 3, which allow nonperturbative cal-
culations of the wavefunctions at the origin with a position-space regulator. We compute
the scheme conversion from position-space regularization to the MS scheme in section 4. In
section 5, we compute the MS-renormalized wavefunctions at the origin, as well as electro-
magnetic decay rates and decay constants of S-wave charmonium and bottomonium states,
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which we compare with experimental measurements and lattice QCD determinations. We
conclude in section 6.

2 NRQCD long-distance matrix elements

In this section, we review the definitions of NRQCD LDMEs involving S-wave quarkonia
and their relations to quarkonium wavefunctions that appear in pNRQCD.

In NRQCD factorization formulas for electromagnetic decay rates and exclusive elec-
tromagnetic production rates of vector quarkonium V = J/ψ or Υ, the following LDME
appears at leading order in v:

〈0|χ†ε · σψ|V 〉, (2.1)

where ψ and χ are Pauli spinor fields that annihilate and create a heavy quark and a heavy
antiquark, respectively, |0〉 is the QCD vacuum, and ε is the polarization vector of the
quarkonium. We take nonrelativistic normalization for the state |V 〉. At relative order v2,
the following LDME appears:

〈0|χ†ε · σ(− i
2
←→
D )2ψ|V 〉, (2.2)

where D = ∇− igsA, and χ†←→Dψ = χ†Dψ − (Dχ)†ψ. The leading-order LDME depends
on the factorization scale Λ from its renormalization. This factorization scale dependence
is given by the following evolution equation [4, 10, 11, 13]

d log〈0|χ†ε · σψ|V 〉
d log Λ =α2

sCF

(
CF
3 + CA

2

)

− 4αsCF
3π

〈0|χ†ε · σ(− i
2
←→
D )2ψ|V 〉

m2〈0|χ†ε · σψ|V 〉 +O(α3
s, α

2
sv

2), (2.3)

where m is the heavy quark pole mass, CF = (N2
c − 1)/(2Nc), CA = Nc, and Nc = 3 is

the number of colors. We reproduce the anomalous dimensions on the right-hand side of
eq. (2.3) from NRQCD loop calculations in appendix A.

Analogously, in electromagnetic decay rates and exclusive electromagnetic production
rates of pseudoscalar quarkonium P = ηc or ηb, the following LDME appears in factoriza-
tion formulas at leading order in v:

〈0|χ†ψ|P 〉, (2.4)

and at relative order v2, the LDME 〈0|χ†(− i
2
←→
D )2ψ|P 〉 appears. The factorization scale

dependence of the leading-order LDME is given by [4, 12, 13]

d log〈0|χ†ψ|P 〉
d log Λ = α2

sCF

(
CF + CA

2

)
− 4αsCF

3π
〈0|χ†(− i

2
←→
D )2ψ|P 〉

m2〈0|χ†ψ|P 〉 +O(α3
s, α

2
sv

2). (2.5)

We reproduce the anomalous dimensions on the right-hand side of eq. (2.5) from NRQCD
loop calculations in appendix A.

In this paper, we aim to compute the LDMEs 〈0|χ†ε ·σψ|V 〉, 〈0|χ†ε ·σ(− i
2
←→
D )2ψ|V 〉,

〈0|χ†ψ|P 〉, and 〈0|χ†(− i
2
←→
D )2ψ|P 〉 in pNRQCD. The pNRQCD effective field theory is
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obtained from NRQCD by integrating out modes associated with energy scales larger than
mv2 (see ref. [22] for a review). The pNRQCD formalism provides relations between decay
LDMEs in NRQCD, which are given by expectation values of four-quark operators on heavy
quarkonium states, and quarkonium wavefunctions at the origin and their derivatives. Since
we are interested in computing the LDMEs for non Coulombic quarkonia, for which the
nonperturbative long-distance behavior of the quarkonium wavefunctions are important,
we work in the strongly coupled regime, where we assume mv & ΛQCD � mv2. The only
degree of freedom of strongly coupled pNRQCD is the singlet field S(x1,x2), which describe
the heavy quark at position x1 and heavy antiquark at position x2 in a color-singlet state.
The pNRQCD Lagrangian is given by

LpNRQCD = S†[i∂0 − hS(x1,x2,∇x1 ,∇x2)]S, (2.6)

where hS is the pNRQCD Hamiltonian, which is obtained by matching NRQCD and pN-
RQCD. In the case of strongly coupled pNRQCD, this matching is done nonperturba-
tively [23]. The Hamiltonian hS has the general form

hS = −
∇2
x1

2m −
∇2
x2

2m + V (r,∇), (2.7)

where r = x1−x2 is the relative coordinate between the quark and antiquark, and ∇ = ∇r

is the derivative with respect to r. Here, V (r,∇) is the potential, which is the matching
coefficient of pNRQCD. The potential is obtained as a formal expansion in powers of 1/m.1

A heavy quarkonium state can be identified as an eigenstate of hS . Due to translation
symmetry in the potential, the wavefunction Ψn(r) associated with the quarkonium state
n with binding energy En can be defined as a function of the relative coordinate r through
separation of variables. This wavefunction is an eigensolution of the Schrödinger equation[

− ∇2

m
+ V (r,∇)

]
Ψn(r) = EnΨn(r), (2.8)

where the potential V (r,∇) is the one that appears in hS , and we take the wavefunction
to be unit normalized (

∫
d3r |Ψn(r)|2 = 1).

The NRQCD LDMEs can be computed in pNRQCD by matching the four-quark
operators in the NRQCD Lagrangian to the pNRQCD Hamiltonian hS [39] (alterna-
tively, the same result can be obtained by directly matching the NRQCD LDMEs to pN-
RQCD [39, 40]). The pNRQCD expression for a decay LDME from a four-quark operator
O on a heavy quarkonium state H is given by

〈H|O|H〉 =
∫
d3r

∫
d3r′

∫
d3Rψ∗H(r)

× [−VO(x1,x2; ∇x1 ,∇x2)δ(3)(x1 − x′1)δ(3)(x1 − x′1)]ψH(r), (2.9)
1Since the matching calculations correspond to integrating out high energy degrees of freedom, the

matching coefficients are independent on the low-energy dynamics of the effective field theory [21, 36–38].
Hence, the potential in pNRQCD, when organized as an expansion in powers of 1/m, is obtained through
matching independently on the specific power counting in pNRQCD [23].
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where ψH(r) is the wavefunction associated with the state H, and VO(x1,x2; ∇x1 ,∇x2) is
the matching coefficient. This matching coefficient is a contact term, which is proportional
to the delta function δ(3)(r) due to the fact that O is a local operator. As a result, the
LDME 〈H|O|H〉 is given in terms of the wavefunction at the origin ΨH(0) and its deriva-
tives. The contact term is obtained as a formal expansion in powers of 1/m, and this can
be considered as an expansion in powers of v and ΛQCD/m, which are the scales appearing
in NRQCD divided by m. For electromagnetic decays or exclusive electromagnetic pro-
duction processes, the four-quark operators have the form O = ψ†κχ|0〉〈0|χ†κ′ψ, where κ
and κ′ are polynomials of Pauli matrices and covariant derivatives. Hence, in this case, the
LDMEs 〈H|O|H〉 have the form of squares of quarkonium-to-vacuum matrix elements.

The leading-order LDME for a vector quarkonium V is given in strongly coupled
pNRQCD to relative order v2 and Λ2

QCD/m
2 accuracy by [39, 40]

∣∣∣〈0|χ†ε · σψ|V 〉∣∣∣2 = 2Nc|ΨV (0)|2
[
1− EV

m

2E3
9 −

2E1E3
9m2 + 2E(2,em)

3
3m2 + c2

FB1
3m2 +O(v3)

]
, (2.10)

while the order-v2 LDME is given at leading order in v and ΛQCD/m by

1
2〈V |ψ

†ε∗ ·σχ|0〉〈0|χ†ε ·σ
(
− i

2
←→
D

)2
ψ|V 〉+ c.c. = 2Ncm

2|ΨV (0)|2
[
EV
m

+O(v3)
]
. (2.11)

Here, ΨV (r) is the quarkonium wavefunction for the V state, which is a normalized eigen-
function of the Schrödinger equation in eq. (2.8), and EV is the corresponding eigenenergy,
which scales like mv2. The constant cF is the short-distance coefficient associated with the
spin-dependent operator in the NRQCD Lagrangian [41], and c.c. stands for complex con-
jugated contribution of the preceding terms. The E1, E(2,em)

3 , and B1 are nonperturbative
gluonic correlators of mass dimension two, which scale like Λ2

QCD. The quantity E3 is a
dimensionless gluonic correlator, which in general can be order one. The field-theoretical
definitions of the gluonic correlators can be found in refs. [39, 42]. If we compute the
order-v2 LDME 〈0|χ†ε · σ(− i

2
←→
D )2ψ|V 〉 at leading order in v, as we do in eq. (2.11), we

can neglect the imaginary part which occurs from subleading orders in v.2 Hence, at the
current level of accuracy, we can write

〈0|χ†ε · σ
(
− i

2
←→
D

)2
ψ|V 〉 =

√
2Ncm

2|ΨV (0)|
[
EV
m

+O(v3)
]
, (2.12)

which is valid at leading order in v and ΛQCD/m. Here, we utilize the freedom to choose
the overall phase of the |V 〉 state to make 〈0|χ†ε · σψ|V 〉 real and positive, so that at
leading order in v and ΛQCD/m, 〈0|χ†ε · σψ|V 〉 =

√
2Nc|ΨV (0)|. We can now compare

the expressions in eqs. (2.10) and (2.12) with the evolution equation in eq. (2.3). Equa-
tion (2.10) implies that the factorization scale dependence in the leading-order LDME must

2The quarkonium-to-vacuum LDMEs can develop imaginary parts when there is a contribution from a
cut diagram. Such contributions can arise at lowest orders in v from insertions of the dimension-5 operators
in the NRQCD Lagrangian, which can induce transitions between quarkonium states. In the standard
power counting of NRQCD, such contributions are suppressed by at least v2 [4]. Hence, when we compute
the quarkonium-to-vacuum LDMEs at leading orders in v, imaginary parts arising from cut diagrams can
be neglected.
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come from E3 and |ΨV (0)|, because the gluonic correlators of mass dimension two are scale-
less power divergent in perturbative QCD, and EV is finite. The order-αsv2 contribution
to the anomalous dimension in eq. (2.3) is consistent with the known scale dependence
of E3 [40, 42]. As a result, the two-loop anomalous dimension in the first term on the
right-hand side of eq. (2.3) must come from the scale dependence of the wavefunction at
the origin |ΨV (0)|.

The leading-order LDME for a pseudoscalar quarkonium P is given in strongly coupled
pNRQCD to relative order v2 and Λ2

QCD/m
2 accuracy by [39, 40]

∣∣∣〈0|χ†ψ|P 〉∣∣∣2 = 2Nc|ΨP (0)|2
[
1− EP

m

2E3
9 −

2E1E3
9m2 + 2E(2,em)

3
3m2 + c2

FB1
m2 +O(v3)

]
, (2.13)

and the order-v2 LDME is given at leading order in v and ΛQCD/m by

1
2〈P |ψ

†χ|0〉〈0|χ†
(
− i

2
←→
D

)2
ψ|P 〉+ c.c. = 2Ncm

2|ΨP (0)|2
[
EP
m

+O(v3)
]
, (2.14)

where ΨP (r) is the quarkonium wavefunction for the P state, and EP is the corresponding
binding energy. Similarly to eq. (2.12), we can write the order-v2 LDME at leading order
in v as

〈0|χ†
(
− i

2
←→
D

)2
ψ|P 〉 =

√
2Ncm

2|ΨP (0)|
[
EP
m

+O(v3)
]
, (2.15)

which is valid at leading order in v and ΛQCD/m, with a suitable choice of the overall phase
of the |P 〉 state. Similarly to the case of vector quarkonia, by comparing the expressions in
eqs. (2.13) and (2.15) with the evolution equation in eq. (2.5), we see that the known scale
dependence of E3 coincides with the second term on the right-hand side of eq. (2.5), and
so, the two-loop anomalous dimension in the first term on the right-hand side of eq. (2.5)
must come from the scale dependence of the wavefunction at the origin |ΨP (0)|.

In order to obtain the wavefunctions at the origin |ΨV (0)| and |ΨP (0)| in the MS
scheme with the correct dependence on the scale, it is necessary to compute the quarko-
nium wavefunctions from the Schrödinger equation with the potential that has the correct
short-distance behavior that is expected from perturbative QCD. For many charmonium
and bottomonium states, it is also necessary to include the nonperturbative long-distance
behavior of the potential that is not captured in perturbative QCD calculations. As we
have discussed previously, in order to include the long-distance behavior of the potential,
it is most convenient to work in position space, where the divergences are regulated by a
position-space regulator. In the following sections, we discuss our strategy to compute the
wavefunctions at the origin with a position-space regulator, and compute the conversion
from the position-space regularization to the MS scheme.

3 S-wave quarkonium wavefunctions in position space

In this section, we compute S-wave quarkonium wavefunctions at the origin in position
space by solving the Schrödinger equation given in eq. (2.8). To do so, we need to obtain
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the potential V (r,∇) to a sufficient accuracy in the expansion in powers of 1/m. At
leading order in 1/m, the potential V (r,∇) is given by the static potential V (0)(r), which
has a nonperturbative definition in terms of a Wilson loop [21, 43–45]. For r � 1/ΛQCD,
the static potential is completely determined by perturbative QCD, which gives V (0)(r) =
−αsCF /r at leading order in αs [46, 47]. As we will see later, if we keep only the static
potential and neglect the terms of higher powers in 1/m, the potential diverges like 1/r at
r = 0, and as a result, the S-wave wavefunctions are finite at the origin. Hence, in order to
reproduce the dependence on the renormalization scale in the wavefunctions at the origin
that we expect from perturbative QCD, it is necessary to include terms of higher orders in
1/m to the potential. The potential including the correction terms of order 1/m and 1/m2

can be written generically as

V (r,∇) =V (0)(r) + V (1)(r)
m

+ 1
m2

[
V (2)
r (r) + 1

2{V
(2)
p2 (r),−∇2}+ V

(2)
S2 (r)S2

]
− ∇4

4m3 + · · · , (3.1)

where we include only the contributions relevant for S-wave states up to order 1/m2, and
the ellipsis represent terms of higher orders in 1/m. Here, S is the QQ̄ spin, S2 = 2 for the
spin-triplet state, and S2 = 0 for the spin-singlet state. The effect of the V (1)(r)/m term to
the wavefunction at the origin arises from insertions of the spin-independent dimension-5
operators in the NRQCD Lagrangian, and in the standard NRQCD power counting, such
effects are suppressed by v2 [4, 8]. Hence, in order to compute the wavefunctions at the
origin to relative order v2 accuracy, it is necessary to include the V (1)(r)/m term in the
potential.3 When computing the correction from the V (1)(r)/m term to the wavefunction,
it is necessary to also include terms of order 1/m2 to the potential, because unitary trans-
formations can reshuffle the 1/m terms with the 1/m2 terms in the potential, and so, the
V (1)(r)/m term can be determined unambiguously only when the 1/m2 terms are included.
Even though the last term in eq. (3.1), which originates from the relativistic correction to
the kinetic energy, is suppressed by 1/m3, this term must be regarded as a 1/m contribu-
tion, because a power of −∇2/m can be traded with a power of En− V (0)(r) by using the
Schrödinger equation. In the same way, higher order corrections to the kinetic energy of
the form ∇2n/m2n−1 for n ≥ 3 are suppressed by at least 1/m2. If we assume that En and
V (0)(r) are of order mv2, these higher order corrections are suppressed by higher powers
of v compared to the order 1/m and 1/m2 terms included in eq. (3.1). Hence, we neglect
the higher order corrections to the kinetic energy of the form ∇2n/m2n−1 for n ≥ 3.

3In the more conservative power counting in refs. [23, 24], the V (1)(r)/m term can be of the same order as
the static potential, and in such case, both the static potential and the V (1)(r)/m term should be included
at leading order. This power counting is based on the assumption that V (1)(r) is of order (mv)2, which
follows from dimensional analysis. However, it is possible that this power counting overestimates the effect
of the V (1)(r)/m term on the wavefunctions at the origin, because the wavefunctions are sensitive only to
the shape of the potential. It can be seen from lattice measurements of the V (1)(r)/m term that inclusion
of the V (1)(r)/m term does not significantly change the slope of the potential at long distances [48, 49].
Hence, in this paper, we adopt the standard NRQCD power counting in refs. [4, 8] and assume that the
effect of the V (1)(r)/m term in the potential to the wavefunctions at the origin is suppressed by v2.
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The form of the potential beyond the static one depends on the scheme in which the
matching between NRQCD and pNRQCD is done. Nonperturbative definitions of the
potentials that appear in eq. (3.1) are found from Wilson loop matching [23, 24]. On
the other hand, it is necessary to employ the results from on-shell matching [50, 51] in
order to obtain dimensionally regulated wavefunctions at the origin that is consistent with
the SDCs, because dimensionally regulated calculations of the SDCs are also done by
matching on-shell amplitudes in QCD and NRQCD. We note that the potentials are gauge
invariant in both cases. The different forms of the potentials can be related by unitary
transformations [23, 39, 52].

The order-1/m and 1/m2 potentials in eq. (3.1) are to be considered perturbations
in the quantum-mechanical perturbation theory (QMPT), where the wavefunctions and
binding energies are first computed at leading order from the Schrödinger equation without
including the corrections to the potential that are suppressed by powers of 1/m. Then,
the corrections of higher orders in 1/m are included by using the Rayleigh-Schrödinger
perturbation theory.

If we ignore the terms suppressed by powers of 1/m and keep only the static potential
in eq. (3.1), then S-wave wavefunctions are finite at the origin r = 0; this is because the
behavior of the wavefunctions near r = 0 is determined by the short-distance behavior of
the static potential, which diverges like 1/r at r = 0. Therefore, the corrections to the
wavefunctions at the origin are finite if the corrections come from potentials that diverge
at most like 1/r. On the other hand, the 1/m and 1/m2 terms in eq. (3.1) can produce
divergences in the wavefunctions at the origin if they diverge faster than the static potential
at r = 0. We list the short-distance behavior of the potentials from on-shell matching and
Wilson loop matching in appendix B. The divergent behavior of the wavefunctions at r = 0
can be inferred from nonrelativistic quantum mechanics. Since the 1/m potential V (1)(r)
diverges like 1/r2 at r = 0, the first order correction to the wavefunctions from the 1/m
potential produces a logarithmic divergence that is proportional to α2

s log r at r = 0. As
we will see later, the velocity-dependent potential V (2)

p2 (r) and the relativistic correction to
the kinetic energy −∇4/(4m3) also produce logarithmic divergences that are similar to the
correction from the 1/m potential. The 1/m2 potential includes the delta function δ(3)(r),
and this produces at first order in the QMPT a power divergence proportional to 1/(mr)
to the wavefunctions at r = 0.

We compute the wavefunctions and the corrections of higher orders in 1/m in the
following way. We define the leading-order (LO) potential VLO(r) from the static potential
V (0)(r) by subtracting the perturbative corrections of order α2

s and beyond, but keeping
the long-distance nonperturbative behavior. The specific form of the LO potential that we
use will be given in section 5. This makes VLO(r) behave like −αsCF /r at short distances,
while it coincides with the static potential at long distances. The perturbative corrections
of higher orders in αs will be included as perturbations in the QMPT. The LO wavefunction
ΨLO
n (r) and the binding energy ELO

n satisfy the LO Schrödinger equation

hLO(r,∇)ΨLO
n (r) = ELO

n ΨLO
n (r), (3.2)

where
hLO(r,∇) = −∇2

m
+ VLO(r). (3.3)
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To first order in the QMPT, the wavefunction Ψn(r) for an S-wave state n is given in terms
of the LO wavefunction ΨLO

n (r) by

Ψn(r′) = ΨLO
n (r′) + δΨn(r′) = ΨLO

n (r′)−
∫
d3r Ĝn(r′, r)δV (r,∇)ΨLO

n (r), (3.4)

where δV (r,∇) = V (r,∇) − VLO(r). Ĝn(r′, r) is the reduced Green’s function for the
eigenstate n, which is defined by

Ĝn(r′, r) =
∑
k 6=n

ΨLO
k (r′)ΨLO∗

k (r)
ELO
k − ELO

n

, (3.5)

where the sum runs over all eigenstates of the LO Schrödinger equation except for the state
n. Although the sum includes states with nonzero orbital angular momentum, only S-wave
states contribute to the integral in eq. (3.4) due to the rotational symmetry of δV (r,∇).
The reduced Green’s function is related to the Green’s function G(r′, r;E) by

Ĝn(r′, r) = lim
E→ELO

n

[
G(r′, r;E)− ΨLO

n (r′)ΨLO∗
n (r)

ELO
n − E

]
, (3.6)

while G(r′, r;E) is defined for arbitrary complex E by

G(r′, r;E) =
∑
k

ΨLO
k (r′)ΨLO∗

k (r)
ELO
k − E

. (3.7)

The Green’s function satisfies the equation[
hLO(r,∇)− E

]
G(r′, r;E) =

[
hLO(r′,∇′)− E

]
G(r′, r;E) = δ(3)(r − r′), (3.8)

which implies(
− ∇2

m
+ VLO(r)− ELO

n

)
Ĝn(r′, r) = δ(3)(r − r′)−ΨLO

n (r′)ΨLO∗
n (r). (3.9)

The Green’s function in position space can be computed by using the formal definition in
eq. (3.7), or by solving the differential equation in eq. (3.8). Note that the reduced Green’s
function can be computed from G(r′, r;E) by using

Ĝn(r′, r) = lim
η→0

1
2
[
G(r′, r;ELO

n + η) +G(r′, r;ELO
n − η)

]
. (3.10)

We note that the reduced Green’s function satisfies∫
d3r Ĝn(r′, r)ΨLO

n (r) = 0, (3.11)

which follows from the orthogonality of wavefunctions. The vanishing of eq. (3.11) also
follows from the fact that adding or subtracting a constant to the potential V (r,∇) have
no effect on the wavefunctions Ψn(r).

The corrections to the wavefunction δΨn(r′) can be computed from eq. (3.4). The
corrections from the velocity-dependent potential and the relativistic correction to the
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kinetic energy contain ∇2, which can be reduced by using the Schrödinger equation and
eq. (3.9). The correction from the velocity-dependent potential reads

−
∫
d3r Ĝn(r′, r) 1

2m2 {V
(2)
p2 (r),−∇2}ΨLO

n (r)

= 1
m

∫
d3r Ĝn(r′, r)

[
V

(2)
p2 (r)VLO(r)− ELO

n V
(2)
p2 (r)

]
ΨLO
n (r)

+ 1
2mΨLO

n (r′)
∫
d3r V

(2)
p2 (r)

∣∣∣ΨLO
n (r)

∣∣∣2 − 1
2mV

(2)
p2 (r′)ΨLO

n (r′) . (3.12)

It is clear that the first term in the last line is finite at r′ = 0, since ΨLO
n (r) is regu-

lar at r = 0, and V
(2)
p2 (r) diverges like 1/r at r = 0. At r′ = 0, the last term in the

last line of eq. (3.12) requires knowledge of V (2)
p2 (0). While in dimensionally regulated

perturbative QCD, the quantity V (2)
p2 (0), when computed as the Fourier transform of the

momentum-space expression, is scaleless power divergent, V (2)
p2 (0) may still not vanish non-

perturbatively. In order to investigate the quantity V (2)
p2 (0) nonperturbatively, we use the

nonperturbative expression for V (2)
p2 (r) in Wilson loop matching given in ref. [24] in terms

of a rectangular Wilson loopWr×T with spatial size r and time extension T , with insertions
of the chromoelectric field Ei = Gi0, where Gµν is the gluon field-strength tensor. We show
the explicit nonperturbative expression for V (2)

p2 (r) in Wilson loop matching in appendix B.
By setting r = 0 in the nonperturbative expression for V (2)

p2 (r) in ref. [24], we find

V
(2)
p2 (0)

∣∣WL = 2ir̂ir̂j TF
Nc

∫ ∞
0

dt t2〈0|gsEi,a(t,0)Φab(t, 0)gsEj,b(0,0)|0〉, (3.13)

where r̂ = r/|r|, TF = 1/2 and Φab(t, 0) is an adjoint Wilson line connecting the points
(0,0) and (t,0). The right-hand side of eq. (3.13) is proportional to the gluonic correlator
iE2 defined in refs. [39, 40], which scales like ΛQCD. Hence, in Wilson loop matching,
V

(2)
p2 (0) is a nonperturbative quantity that scales like ΛQCD, and may be nonvanishing.

Similarly, the correction from the −∇4/(4m3) term is given by

−
∫
d3r Ĝn(r′, r)

(
− ∇4

4m3

)
ΨLO
n (r)

= 1
4m

∫
d3r Ĝn(r′, r)

[
(VLO(r))2 − 2ELO

n VLO(r)
]

ΨLO
n (r)

+ 1
4mΨLO

n (r′)
∫
d3r VLO(r)

∣∣∣ΨLO
n (r)

∣∣∣2 − 1
4mVLO(r′)ΨLO

n (r′) . (3.14)

Again, it is clear that the first term in the last line is finite at r′ = 0. The LO potential at
zero distance VLO(0) vanishes in dimensionally regulated perturbative QCD, because it is
a scaleless power divergence. This quantity also vanishes nonperturbatively, which follows
from the exact vanishing of the static potential at zero distance [39]. This can be seen from
the expression for the static potential in terms of a Wilson loop, which reads [21, 43–45]

V (0)(r) = lim
T→∞

i

T
log〈Wr×T 〉, (3.15)
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where 〈· · · 〉 stand for the average of the Yang-Mills action. If we set r = 0, the right-hand
side vanishes because 〈Wr×T 〉|r=0 = 1, and therefore, V (0)(0) = 0. The same conclusion
can be obtained from the fact that the static potential is purely perturbative at short
distances [46, 47], and so, the Fourier transform of the momentum-space expression vanishes
in dimensional regularization because it is scaleless power divergent. Since the LO potential
differs from the static potential only by the loop corrections in perturbative QCD, the LO
potential also vanishes at r = 0, because the loop corrections are also scaleless power
divergent at r = 0.

By using the expressions in eqs. (3.12) and (3.14), we can write the first order correction
to the wavefunction as

δΨn(r′) = −
∫
d3r Ĝn(r′, r)δV(r)ΨLO

n (r)

−
∫
d3r Ĝn(r′, r)

{
δVC(r) + ELO

n

m

[
V

(2)
p2 (r) + 1

2VLO(r)
]}

ΨLO
n (r)

+ 1
2mΨLO

n (r′)
∫
d3r

[
V

(2)
p2 (r) + 1

2VLO(r)
] ∣∣∣ΨLO

n (r)
∣∣∣2

− 1
2mV

(2)
p2 (r′)ΨLO

n (r′)− 1
4mVLO(r′)ΨLO

n (r′), (3.16)

where δVC(r) = V (0)(r)− VLO(r), and

δV(r) = V (1)(r)
m

−
V

(2)
p2 (r)VLO(r)

m
− (VLO(r))2

4m + V
(2)
r (r)
m2 +

V
(2)
S2 (r)S2

m2 . (3.17)

We note that for an S-wave state n, each term in eq. (3.16) is a function of r′ = |r′|,
and does not depend on the angles of r′. Because of the explicit rotational symmetry
of δV (r,∇) and δV(r), eq. (3.16) is unchanged if we only include S-wave states in the
definition of the reduced Green’s function in eq. (3.5).

In eq. (3.16), the divergences at r′ = 0 are contained in the first integral. The second
integral in eq. (3.16) is finite at r′ = 0, because the terms in the curly brackets diverge at
most like 1/r at r = 0. The UV divergence in the first integral can be cut off by setting
r′ = r0 with r0 > 0, instead of setting r′ = 0. This defines the finite-r regularization [53],
which is the position-space regularization that we use in this paper. We note that a similar
version of position-space regularization has been used in refs. [26, 28, 29, 31]. We define
the correction to the S-wave wavefunctions at the origin in the finite-r regularization by

δΨn(0)
∣∣
r0

= −
∫
d3r Ĝn(r′, r)δV(r)ΨLO

n (r)
∣∣∣
|r′|=r0

−
∫
d3r Ĝn(0, r)

{
δVC(r) + ELO

n

m

[
V

(2)
p2 (r) + 1

2VLO(r)
]}

ΨLO
n (r)

+ΨLO
n (0)
2m

∫
d3r

[
V

(2)
p2 (r) + 1

2VLO(r)
] ∣∣∣ΨLO

n (r)
∣∣∣2 − V

(2)
p2 (0)
2m ΨLO

n (0), (3.18)

where the subscript r0 implies that the divergences are regulated by a finite distance r0
between the Q and Q̄. Here, Ψn(0)|r0 = ΨLO

n (0) + δΨn(0)|r0 , and we used VLO(0) = 0
following the exact vanishing of the static potential at r = 0 [39].
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In order to obtain the wavefunctions at the origin in the MS scheme, we need to com-
pute the scheme conversion from finite-r regularization to DR. This is given by the differ-
ence between the two different schemes in the divergent integral

∫
d3r Ĝn(0, r)δV(r)ΨLO

n (r).
We define the scheme conversion coefficient δZ through the relation

Ψn(0)|MS = Ψn(0)|r0 − δZ ×ΨLO
n (0), (3.19)

so that

δZ = 1
ΨLO
n (0)

[ ∫
d3r Ĝn(0, r)δV(r)ΨLO

n (r)
∣∣∣
MS

−
∫
d3r Ĝn(r′, r)δV(r)ΨLO

n (r)
∣∣∣
|r′|=r0

]
, (3.20)

where the divergent integral in the MS scheme is first computed in momentum space in
d = 4 − 2ε spacetime dimensions, and then the UV poles are subtracted according to the
prescription for renormalization in the MS scheme. The prescription that we use for the
MS scheme is defined by associating a factor of (Λ2 eγE

4π )ε with each loop integration, and
subtracting the 1/ε poles after evaluating the loop integrals in DR and expanding in powers
of ε. Here, γE is the Euler-Mascheroni constant. Then, Λ is the renormalization scale in
the MS scheme. We note that in the calculation of the scheme conversion, we employ the
potentials determined from on-shell matching in order to ensure the consistency with the
SDCs computed in DR. Since ΨLO

n (r) is regular at r = 0, we can replace ΨLO
n (r) in the

integrand by ΨLO
n (0) without affecting the right-hand side of eq. (3.20), because this affects

only the finite parts of the divergent integrals, which cancel in δZ. Therefore, we can write
δZ as

δZ =
∫
d3r Ĝn(0, r)δV(r)

∣∣∣
MS
−
∫
d3r Ĝn(r′, r)δV(r)

∣∣∣
|r′|=r0

. (3.21)

Since in δZ we are only interested in the divergences and the finite contributions in the
limit r0 → 0, we neglect any contributions to the right-hand side of eq. (3.21) that vanish
as r0 → 0, such as positive powers of r0. We compute δZ in the next section.

As we have argued based on the divergent behavior of the wavefunctions at the origin
from nonrelativistic quantum mechanics, the corrections to the wavefunctions at the origin
that are divergent at r0 = 0 in the finite-r regularization can contain contributions that are
not suppressed by powers of 1/m, even though the corrections come from 1/m and 1/m2

potentials. For example, the logarithmically divergent correction from the 1/m potential
is proportional to α2

s log r0, which is not suppressed by any power of 1/m. This behavior
will be confirmed in the calculation of δZ in the next section. The appearance of such
large corrections is in accordance with the fact that, unless r � m−1, the 1/m and 1/m2

potentials can overpower the static potential at short distances, so that the expansion
in powers of 1/m is no longer valid. These corrections can potentially jeopardize the
nonrelativistic power counting, unless they are subtracted through renormalization. Since
δZ reproduces the divergent small r0 dependence of the wavefunctions at the origin in the
finite-r regularization, the divergences in Ψn(0)|r0 at small r0 are subtracted completely
by the scheme conversion δZ × ΨLO

n (0), and hence, the nonrelativistic power counting is
restored in the MS-renormalized wavefunctions at the origin.
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In the calculation of the wavefunctions at the origin, we have assumed that the effect
of the 1/m potential to the wavefunctions are suppressed by v2, based on the standard
NRQCD power counting in refs. [4, 8]. We have found that the first order correction to
the wavefunctions at the origin involves a correction that scales like ΛQCD/m, which comes
from the velocity-dependent potential at order 1/m2. Since corrections of similar form may
arise at second order in the Rayleigh-Schrödinger perturbation theory, which can scale like
Λ2

QCD/m
2, we assume that the wavefunctions at the origin that we compute in this section

are accurate up to corrections of relative order v3 and Λ2
QCD/m

2.

4 S-wave quarkonium wavefunctions at the origin in the MS scheme

In this section, we compute the scheme conversion coefficient δZ defined in eq. (3.21),
which converts finite-r regularization to the MS scheme. We note that, since the reduced
Green’s function can be written as a linear combination of the Green’s function G(r′, r;E)
for different E by using eq. (3.10), it is sufficient to compute

δZE =
∫
d3r G(0, r;E)δV(r)

∣∣∣
MS
−
∫
d3r G(r′, r;E)δV(r)

∣∣∣
|r′|=r0

. (4.1)

Analogously to the definition of δZ in eq. (3.21), we neglect in eq. (4.1) any contributions
that vanish as r0 → 0, such as positive powers of r0, because we are only interested in the
divergences and finite contributions that appear in the limit r0 → 0. We will later show
that δZE is independent of E, and therefore, coincides with δZ for all S-wave states n.
We first compute eq. (4.1) in perturbative QCD, and then show that the nonperturbative
long-distance behaviors of the potentials do not affect the result.

4.1 Green’s function in dimensional regularization

In order to compute the divergent integral in eq. (4.1) in the MS scheme, we work in
momentum space in d = 4 − 2ε spacetime dimensions. For this purpose, we need an
expression for the d-dimensional Green’s function in momentum space G̃(p′,p;E), which
is related to the position-space counterpart by

G(r′, r;E) =
∫
p

∫
p′
eip

′·r′
e−ip·rG̃(p′,p;E), (4.2)

where we use the shorthand ∫
p
≡
∫

dd−1p

(2π)d−1 . (4.3)

Then, the divergent integral
∫
d3r G(0, r;E)δV(r) in DR can be written as∫

d3r G(0, r;E)δV(r)
∣∣∣
DR

=
∫
p

∫
p′
G̃(p′,p;E)δṼ(p), (4.4)

where δṼ(p) is the momentum-space counterpart of δV(r) in d dimensions. Explicit ex-
pressions for δṼ(p) in DR will be given in the next section. The finite-r regularized integral
can also be expressed in terms of the momentum-space Green’s function as∫

d3r G(r′, r;E)δV(r)
∣∣∣
|r′|=r0

=
∫
p

∫
p′
eip

′·n̂r0G̃(p′,p;E)δṼ(p), (4.5)
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where n̂ is an arbitrary unit vector. Invariance of δṼ(p) under rotations ensures that the
right-hand side of eq. (4.5) is independent of n̂. The integrals in the finite-r regularization
can be computed at d = 4 because the UV divergence is regulated by r0 > 0.

We note that the UV divergences in eqs. (4.4) and (4.5) come from the behavior of
G̃(p′,p;E) and δṼ(p) at large p and p′. We compute the Green’s function in momentum
space in order to determine its large-momentum behavior. The momentum-space Green’s
function satisfies the Lippmann-Schwinger equation(

p′2

m
− E

)
G̃(p′,p;E) +

∫
k
ṼLO(k)G̃(p′ − k,p;E) = (2π)d−1δ(d−1)(p− p′), (4.6)

where ṼLO(k) is the LO potential in momentum space. A formal solution of eq. (4.6) can
be found iteratively, which reads

G̃(p′,p;E) = −(2π)d−1δ(d−1)(p− p′)
E − p2/m

− 1
E − p′2/m

ṼLO(p′ − p) 1
E − p2/m

− 1
E − p′2/m

T (p′,p, E) 1
E − p2/m

, (4.7)

where the first term comes from the free propagation of the QQ̄, and the second term
corresponds to a single exchange of the LO potential between the Q and the Q̄. The
quantity T encodes two or more exchanges of the LO potential to all orders:

T (p′,p, E) =
∞∑
n=1

∫
k1

∫
k2
· · ·
∫
kn
ṼLO(k1)

n∏
i=1

ṼLO(ki+1 − ki)[
E − (p′+ki)2

2m

] , (4.8)

where kn+1 = p − p′ for each n. The formal solution in eq. (4.7) is organized so that the
large p and p′ behavior in each term becomes less divergent as the number of exchanges
of the LO potential increases [54]. This greatly simplifies the calculation of δZ, since
the divergent contributions in eqs. (4.4) and (4.5) come only from the first few terms in
eq. (4.7), and the non-divergent contributions coming from higher numbers of exchanges
of the LO potential cancel in eq. (4.1). Hence, for the purpose of computing δZ, it suffices
to consider only the first few terms in eq. (4.7).

4.2 Potentials in dimensional regularization

A necessary ingredient in computing δZ is the potentials in momentum space in d spacetime
dimensions. In order to obtain the correct d-dimensional expressions, it is necessary to
compute the potentials in the on-shell matching scheme in momentum space, which is
done in perturbative QCD. The momentum-space potential Ṽ (p′,p) appears in the d-
dimensional momentum-space Schrödinger equation in the form(

p′2

m
− En

)
Ψ̃n(p′) +

∫
p
Ṽ (p′,p)Ψ̃n(p) = 0, (4.9)

where Ψ̃n(p) is the momentum-space wavefunction. In d = 4 dimensions, the momentum-
space potential is related to the position-space counterpart V (r,∇) by

Ṽ (p′,p) =
∫
d3r eip

′·rV (r,∇)e−ip·r. (4.10)
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The d-dimensional expression for Ṽ (p′,p) to two-loop accuracy has been obtained in
refs. [30, 54], which we display here:

Ṽ (p′,p) = −4παsCF
q2

[
1 + δṼC(q2)− αs

4π
π2|q|
m

(
Λ2

q2

)ε (
CF
2 (1− 2ε)− CA(1− ε)

)
cε

−sε + 2
4

q2

m2 + p′2 + p2

2m2

]
− (2π)d−1δ(d−1)(q) p

4

4m3 , (4.11)

where q = p′ − p, and the scale Λ comes from associating a factor of
(
Λ2 eγE

4π

)ε
with each

loop integration. The expression in eq. (4.11) corresponds to the calculation of the potential
in weakly coupled pNRQCD, where αs ∼ v (see ref. [55] for a review). The constant cε is
defined by

cε =
eγEεΓ(1

2 − ε)
2Γ(1

2 + ε)
π3/2Γ(1− 2ε)

= 1 + 2ε log 2 +O(ε2), (4.12)

where in the last equality, we expanded in powers of ε up to order ε. The constant sε
depends on S; for spin triplet (S2 = 2),

sε
∣∣
spin triplet = 10− 7d+ d2

1− d = 2
3 + 10

9 ε+O(ε2), (4.13)

and for spin singlet (S2 = 0),

sε
∣∣
spin singlet = 50− 15d+ d2

1− d = −2− 6ε+O(ε2). (4.14)

The constant sε for the spin singlet case can be obtained by using the results in ref. [54]
to compute the d-dimensional spin projection according to the treatment of Pauli matrices
in DR in ref. [56]. Equation (4.14) agrees through order ε with refs. [12, 53]. To order-ε
accuracy, sε + 2 can be written in terms of S2 as

sε + 2 = 4
3

[
S2 − ε

(9
2 −

8
3S

2
)]

+O(ε2). (4.15)

Equation (4.11) implies that the LO potential in momentum space is given by

ṼLO(q) = −4παsCF
q2 , (4.16)

which is valid in d = 4 − 2ε dimensions. The term δṼC(q2) corresponds to the loop
corrections to the static potential, for which the explicit expressions can be found in
refs. [30, 54, 57, 58]. Since the corrections from δṼC(q2) to the wavefunctions at the
origin are finite, we do not need to consider this term in the calculation of δZ. We note
that eq. (4.11) reproduces the position-space expressions in eq. (B.3).

Now we obtain the d-dimensional expression for δṼ(p) from eq. (4.11) by repeating the
calculations in eqs. (3.12), (3.14), and (3.16) in momentum space in d spacetime dimensions.
After a straightforward calculation, we obtain

δṼ(q) = π2α2
sCF

m|q|

(Λ2

q2

)ε (CF
2 (1− 2ε)− CA(1− ε)

)
cε + παsCF

m2 (sε + 2)

+ 1
m

∫
k

4παsCF
k2 ṼLO(k − q)− 1

4m

∫
k
ṼLO(k)ṼLO(k − q). (4.17)
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The first term corresponds to the 1/m potential, while the second term comes from the
spin-dependent potential. The third and the fourth terms correspond to the corrections
from the velocity-dependent potential and the relativistic correction to the kinetic energy,
respectively. We see that at d = 4, the Fourier transform of δṼ(q) is exactly the position-
space counterpart δV(r) in eq. (3.17) at short distances.

4.3 Scheme conversion

Now we compute δZ using the d-dimensional momentum-space expressions of the Green’s
function in eq. (4.7) and δṼ(q) in eq. (4.17). We first compute the contribution to δZE
from the 1/m potential, which comes from the first term in eq. (4.17). The free propagation
term in the formal solution for the Green’s function gives the following contribution in DR:

−α
2
sCFπ

2

m

(
CF
2 (1− 2ε)− CA(1− ε)

)
cε

∫
p

∫
p′

(2π)d−1δ(d−1)(p− p′)
E − p2/m

Λ2ε

|p|1+2ε

= −α2
sCFπ

2
(
CF
2 (1− 2ε)− CA(1− ε)

)
cε

∫
p

1
mE − p2

Λ2ε

|p|1+2ε

= α2
sCF
8

(
CF
2 (1− 2ε)− CA(1− ε)

)
cε

[1
ε

+ 2 + 2 log
( −Λ2

2mE

)
+O(ε)

]
, (4.18)

where we used
∫
p′(2π)d−1δ(d−1)(p − p′) = 1 and associated a factor of

(
Λ2 eγE

4π

)ε
with the

integral over p. Since the integral in eq. (4.18) is logarithmically divergent, the contribu-
tions from one or more exchanges of the LO potential in the Green’s function are finite
and do not contribute to δZ. The same quantity in finite-r regularization can be computed
using the momentum-space expression in eq. (4.5), which gives

−α
2
sCFπ

2

m

(
CF
2 − CA

)∫
p

∫
p′
eip

′·n̂r0 (2π)3δ(3)(p− p′)
E − p2/m

1
|p|

= −α2
sCFπ

2
(
CF
2 − CA

) 2π3/2

Γ(3/2)(2π)3

∫ ∞
0

dp
p2

mE − p2
1
p

sin(pr0)
pr0

= −α
2
sCF
8

(
CF
2 − CA

)
[−4 + 4γE + 2 log(−mEr2

0) +O(r0)]. (4.19)

The contribution to δZE from the 1/m potential can be found by subtracting eq. (4.19) from
eq. (4.18), and then subtracting the 1/ε pole. Since the dependence on E cancels between
the dimensionally regulated integral and the finite-r regularized integral, we obtain

δZ|V (1) = 1
2α

2
sCF

[(
CF
2 − CA

)
log(Λr0e

γE) + 3CA
4 − CF

2

]
. (4.20)

Here, Λ is now the MS scale associated with the renormalization of the wavefunction at
the origin.

We now compute the contribution to δZ coming from the velocity-dependent poten-
tial, which comes from the third term in eq. (4.17). Since ṼLO(k) = −4παsCF /k2 in
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perturbative QCD, the first term in the last line in eq. (4.17) can be evaluated as

1
m

∫
k

4παsCF
k2 ṼLO(k − p) = − 1

m
(4παsCF )2

∫
k

1
k2(k − p)2

= − 1
m

(4παsCF )2 cε
8

Λ2ε

|p|1+2ε , (4.21)

where again we associated a factor of
(
Λ2 eγE

4π

)ε
with the integral over k. Apart from an

ε-dependent factor, eq. (4.21) is the same as the 1/m potential in perturbative QCD. Hence,

δZ|
V

(2)
p2

= −α2
sC

2
F

[
−1

2 + log(Λr0e
γE)
]
. (4.22)

Again, Λ is now the MS scale associated with the renormalization of the wavefunction at
the origin.

The computation of the contribution from the relativistic correction to the kinetic
energy is similar to the case of the velocity-dependent potential. The last term in eq. (4.17)
can be computed in perturbative QCD as

− 1
4m

∫
k
ṼLO(k)ṼLO(k − q) = − 1

4m(4παsCF )2
∫
k

1
k2(k − q)2

= − 1
4m(4παsCF )2 cε

8
Λ2ε

|q|1+2ε . (4.23)

This is just 1/4 times the result of the velocity-dependent potential in eq. (4.21). Hence,
we obtain

δZ|− ∇4
4m3

= −α
2
sC

2
F

4

[
−1

2 + log(Λr0e
γE)
]
. (4.24)

Finally, we consider the contribution from the spin-dependent potential in eq. (4.17).
The free propagation term in the Green’s function gives, in DR,

−παsCF (sε + 2)
m2

∫
p

∫
p′

(2π)d−1δ(d−1)(p− p′)
E − p2/m

= −παsCF (sε + 2)
m2

∫
p

1
E − p2/m

= −αsCFS
2

3

√
−E
m

+O(ε). (4.25)

This integral is power UV divergent; while this is not apparent in the last line of eq. (4.25)
because power divergences are subtracted automatically in DR, the divergence can still be
identified in the integrand. This implies that the contribution from the second term in
eq. (4.7) is also divergent. This contribution reads, in DR,

−παsCF (sε + 2)
m2

∫
p

∫
p′

ṼLO(p′ − p)
(E − p′2/m)(E − p2/m)

= 4π2α2
sC

2
F (sε + 2)
m2

∫
p

1
E − p2/m

∫
p′

1
(p′ − p)2

1
E − p′2/m

= α2
sC

2
F (sε + 2)

4

[ 1
4ε + 1

2 −
1
2 log

(
−4mE

Λ2

)
+O(ε)

]
, (4.26)
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where we associated a factor of
(
Λ2 eγE

4π

)ε
with each loop integration. This integral is

logarithmically divergent, and hence, the contributions from two or more exchanges of the
LO potential are finite. Now we compute the divergent integrals in finite-r regularization,
where the free propagating contribution gives

−4παsCFS2

3m2

∫
p

∫
p′

(2π)3δ(3)(p− p′)
E − p2/m

eip
′·n̂r0

= −4παsCFS2

3m2

∫
p

1
E − p2/m

eip·n̂r0

= −4παsCFS2

3m2

∫ ∞
0

dp p2

(2π)3
1

E − p2/m

4π sin(pr0)
pr0

= αsCFS
2

3mr0
− αsCFS

2

3

√
−E
m

+O(r0). (4.27)

The contribution from one exchange of the LO potential is

−4παsCFS2

3m2

∫
p

∫
p′

ṼLO(p′ − p)
(E − p′2/m)(E − p2/m)e

ip′·n̂r0

= 16π2α2
sC

2
FS

2

3m2

∫
p′

1
E − p′2/m

∫
p

1
(p′ − p)2

1
E − p2/m

eip
′·n̂r0

= πα2
sC

2
FS

2

3

∫ 1

0
dx

∫ 1

0
dy

∫ ∞
0

dp p2

(2π)3
4π sin(pr0)

pr0

[xy(1− x)]−1/2

[p2 − (1− y + y/x)mE]3/2

= α2
sC

2
FS

2

3

[
1− γE −

1
2 log

(
−4mEr2

0

)
+O(r0)

]
. (4.28)

The spin-dependent contribution to δZ can then be obtained from eqs. (4.25), (4.26), (4.27),
and (4.28). We see again that the dependences on E cancel between the dimensionally
regulated integrals and the finite-r regularized integrals. After subtracting the 1/ε pole,
we obtain

δZ|
V

(2)
S2

= −αsCF3mr0
S2 + (αsCF )2

3

{
−9

8 + S2
[1

6 + log(Λr0e
γE)
]}

. (4.29)

We note that calculation of the spin-dependent contribution has been done in ref. [53].
Equation (45) of ref. [53] can be obtained by subtracting eq. (4.28) from eq. (4.26), dividing
by a factor of παsCF (sε + 2)/m2, subtracting the 1/ε pole, and setting Λ = e−γE/r0.

The complete result for δZ, which can be obtained by combining
eqs. (4.20), (4.22), (4.24), and (4.29), reads

δZ = −αsCF3mr0
S2 + α2

sCF

{
CF

[
−LΛ + S2

3

(1
6 + LΛ

)]
− CA

2

(
−3

4 + LΛ

)}
, (4.30)

where we use the shorthand LΛ = log(Λr0e
γE). The scale Λ is the MS scale associated with

the renormalization of the wavefunction at the origin. While the contribution from the
spin-dependent potential has been obtained in ref. [53], the contributions from the 1/m
potential, the velocity-dependent potential, and the relativistic correction to the kinetic
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energy are new. This result is accurate up to order α2
s, and is also sufficiently accurate to

reproduce the divergent small-r0 behavior of the finite-r regularized wavefunctions at the
origin Ψn(0)|r0 computed to first order in the QMPT using eq. (3.18).

We note that in the calculation of δZE , the E dependences cancel between the MS-
renormalized integrals and the finite-r regularized integrals. This cancellation also occurs
in the individual contributions in eqs. (4.20), (4.22), (4.24), and (4.29). We argue that
this cancellation is not accidental; since a shift in E modifies only the finite piece of the
divergent integral

∫
d3r G(0, r;E)δV(r), changes in E do not affect the difference between

DR and finite-r regularization. Therefore, the scheme conversion coefficient δZ is given by
eq. (4.30) for all S-wave states n.

The cancellation of the E dependence in δZE follows from the fact that δZE depends
only on the behavior of the integrand G̃(p′,p;E)δṼ(p) at large p and p′. This implies
that δZ is also unaffected by any modifications to the integrand that preserve the large-
momentum behavior. We note that in position space, inclusion of the nonperturbative
long-distance contribution to the potential can be done by adding functions of r that are
regular at r = 0. In momentum space, this is equivalent to modifying ṼLO(q) and δṼ(q) by
adding functions of q that decrease faster than 1/q2 at large q. Since such modifications
do not affect the large-momentum behavior of the integrand G̃(p′,p;E)δṼ(p), they do
not affect δZ. As a result, eq. (4.30) is still valid, through order-α2

s accuracy, even when
the nonperturbative long-distance contributions are included in the potential.4 The same
argument can be made in position space: the short-distance divergence of the integral∫
d3r G(0, r;E)δV(r) is determined completely in perturbative QCD, because the short-

distance behavior of δV(r) is unaffected by nonperturbative effects, and the divergent
short-distance behavior of the position-space Green’s function G(r′, r;E) is determined
only by the short-distance behavior of VLO(r).

From the relation Ψn(0)|MS = Ψn(0)|r0−δZ×ΨLO
n (0) we see that the scale dependence

of Ψn(0)|MS is determined by δZ, because Ψn(0)|r0 and ΨLO
n (0) do not depend on Λ. This

allows us to compute the anomalous dimension of S-wave quarkonium wavefunctions at
the origin. For spin triplet, we obtain

d log Ψn(0)|MS
d log Λ

∣∣∣∣
S2=2

= − dδZ

d log Λ

∣∣∣∣
S2=2

= α2
sCF

(
CF
3 + CA

2

)
, (4.31)

and for spin singlet,

d log Ψn(0)|MS
d log Λ

∣∣∣∣
S2=0

= − dδZ

d log Λ

∣∣∣∣
S2=0

= α2
sCF

(
CF + CA

2

)
. (4.32)

The anomalous dimensions of the S-wave wavefunctions at the origin in eqs. (4.31)
and (4.32) reproduce the order-α2

s contributions of the anomalous dimensions of the
NRQCD LDMEs in eqs. (2.3) and (2.5) for spin triplet and spin singlet, respectively.

4There is still a possibility that the scheme conversion may depend on nonperturbative effects, if correc-
tions of even higher orders in 1/m and αs are included. For example, corrections to the wavefunctions at the
origin at second order in the QMPT may contain subleading divergences that depend on the nonperturbative
contributions in the potentials.
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4.4 Unitary transformation

As we have discussed previously, different forms of the potential can be obtained by using
unitary transformations. While the static potential is independent of the matching scheme,
the forms of the 1/m and 1/m2 potentials depend on the matching scheme used to compute
the potentials, as can be seen in appendix B. Since a different form of the potential can
lead to a different behavior of the finite-r regularized wavefunctions at the origin Ψn(0)|r0 ,
the expression for δZ in eq. (4.30) is valid only when potentials from on-shell matching
are used. On the other hand, if we want to include corrections from the nonperturbative
long-distance behaviors of the potentials beyond leading order in 1/m, it is necessary to
employ the nonperturbative definitions of the 1/m and 1/m2 potentials from Wilson-loop
matching. The wavefunctions computed in Wilson-loop matching must then be converted
to wavefunctions in on-shell matching in order to compute the MS-renormalized wavefunc-
tions at the origin using the relation in eq. (3.19).5

In perturbative QCD, the explicit form of the unitary transformation that is necessary
to obtain the potentials in Wilson-loop matching [eq. (B.5)] from the potentials in on-shell
matching [eq. (B.3)] has been derived in refs. [23, 52]. If we define

U(r) = exp
(
− i

m
{W (r),p}

)
, (4.33)

with

W (r) = −1
2
(
V (1)(r)|OS − V (1)(r)|WL

)
× ∇V (0)(r)

(∇V (0)(r))2 , (4.34)

then

U−1(r)
(
−∇2

m
+ V (r,∇)|OS

)
U(r) =

(
−∇2

m
+ V (r,∇)|WL

)
+O(1/m3, α3

s/m
2), (4.35)

where the superscripts OS and WL imply that the potentials are obtained from on-shell
matching and Wilson-loop matching, respectively.

Since the differences in the 1/m and 1/m2 potentials between on-shell matching and
Wilson loop matching are known only at short distances, the precise form of W (r) can be
obtained only near r = 0. Since the wavefunctions at the origin in finite-r regularization
depend only on the wavefunctions at short distances, it suffices to determine U(r) for small
r. We obtain

W (r) = −αsCF8 r̂ +O(r), (4.36)

where r̂ = r/|r|. Here, we neglect the correction from δVC(r); since we consider δVC(r) as
perturbations in the QMPT, the correction toW (r) from δVC(r) corresponds to a piece of

5In principle, unitary transformations can be avoided if we compute the NRQCD SDCs that are compat-
ible with Wilson-loop matching by using the direct matching procedure in ref. [59]. The SDCs in this case
will differ from the usual SDCs that are determined from on-shell matching. Since the differences between
the SDCs from Wilson-loop matching and the SDCs from on-shell matching are determined in perturba-
tive QCD, this approach is equivalent to computing the unitary transformation of the wavefunctions in
perturbative QCD.
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the second order correction in QMPT from insertions of δVC(r) and V (1)(r)/m. Since we
work at first order in the QMPT, we neglect this correction. Hence, to relative order 1/m,

U(r) = 1 + αsCF
4m

(1
r

+ ∂

∂r

)
+O(1/m2). (4.37)

If ΨOS
n (r) is a solution of the Schrödinger equation with the potentials from on-shell match-

ing, the wavefunction ΨWL
n (r) that satisfies the Schrödinger equation from Wilson loop

matching is given by
ΨWL
n (r) = U−1(r)ΨOS

n (r). (4.38)

We note that near r = 0 this relation also holds for the finite-r regularized wavefunctions at
the origin, because the finite-r regularized wavefunction at the origin reproduces the diver-
gent small r0 behavior of the wavefunction Ψn(r) at |r| = r0. While the finite-r regularized
wavefunction at the origin and Ψn(r) at |r| = r0 differ by a contribution proportional to
1/r0, this difference does not affect the unitary transformation, because

(
1
r + ∂

∂r

)
1
r = 0. By

using the relation in eq. (3.19), we can compute the unitary transformation of ΨOS
n (0)|r0 as

ΨWL
n (0)|r0 = U−1(r0)ΨOS

n (0)|r0 = U−1(r0)
[
Ψn(0)|MS + δZ ×ΨLO

n (0)
]

= Ψn(0)|MS +
[
δZ − αsCF

4mr0

]
×ΨLO

n (0) +O(1/m2), (4.39)

where the last equality follows from the fact that the difference between Ψn(0)|MS and
ΨLO
n (0) is suppressed by at least 1/m, because the divergent corrections in ΨOS

n (0)|r0 that
are not suppressed by powers of 1/m are subtracted by the scheme conversion. Equa-
tion (4.39) implies that

ΨOS
n (0)|r0 = ΨWL

n (0)|r0 + ΨLO
n (0)×

[
αsCF
4mr0

+O(1/m2)
]
. (4.40)

We note that the difference between ΨOS
n (0)|r0 and ΨWL

n (0)|r0 does not depend on the long-
distance behavior of the 1/m potential, up to corrections that are suppressed by 1/m2. This
gives rise to the following approximate relation∫

d3r Ĝn(r′, r)
[
παsCF δ

(3)(r)
m2 − α2

sC
2
F

4mr2

]
ΨLO
n (r)

ΨLO
n (0)

∣∣∣∣
|r′|=r0

= αsCF
4mr0

+O(1/m2), (4.41)

which is obtained by dividing eq. (4.40) by ΨLO
n (0) and taking the 1/m and 1/m2 potentials

given in perturbative QCD. We see from eqs. (4.40) and (4.41) that the difference between
ΨOS
n (0)|r0 and ΨWL

n (0)|r0 comes only from the difference in the potential at short distances
that is determined in perturbative QCD. This implies that, for the purpose of computing
ΨOS
n (0)|r0 including the nonperturbative long-distance behavior of the 1/m potential, it

suffices to use the following prescription

δV(r)|OS = δV(r)|WL + α2
sC

2
F

4mr2 −
παsCF δ

(3)(r)
m2 , (4.42)

so that while the potential at short distances is given by the expressions from on-shell
matching [eq. (B.3)], the long-distance behavior is given by Wilson loop matching. We use
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eq. (4.42) to include the nonperturbative long-distance behavior of the 1/m potential in
computing ΨOS

n (0)|r0 .
If we also wanted to include the long-distance nonperturbative behavior of the po-

tentials of order 1/m2, we would have needed to include order 1/m2 contributions in the
unitary transformation that we neglected in eq. (4.37). This contribution, on the other
hand, includes divergences at r = 0 that come from second order corrections to the wave-
functions at the origin. In turn, the second order corrections to the wavefunctions at the
origin produce divergences at relative order α3

s, which is beyond the accuracy of this pa-
per. Hence, we neglect the long-distance nonperturbative behavior of the potentials of
order 1/m2.

5 Numerical results

We now compute wavefunctions at the origin in the MS scheme for S-wave charmonia
and bottomonia. We first compute the wavefunctions at the origin in the finite-r regu-
larization from eq. (3.18), including the nonperturbative long-distance contribution to the
static potential. We also consider the nonperturbative long-distance contribution to the
1/m potential by using the prescription given in eq. (4.42). Then, the MS-renormalized
wavefunctions at the origin can be obtained from the relation in eq. (3.19), where δZ is
given by eq. (4.30). The validity of this numerical procedure is verified by comparing with
the known analytical results from perturbative QCD calculations in appendix D.

We compute decay constants and electromagnetic decay rates of S-wave charmonia
and bottomonia based on the values of the wavefunctions at the origin that we obtain.
The decay constants that we consider are defined in QCD by

〈0|Q̄γQ|V 〉 = fVmV ε, (5.1)

for a vector quarkonium V , where the Dirac spinor Q is a heavy quark field in QCD, mV

is the mass of the quarkonium V , and ε is the polarization vector for the state |V 〉. In
the QCD definition of fV , the state |V 〉 is normalized relativistically. We also consider the
decay constants of pseudoscalar quarkonium P , which are defined by

〈0|Q̄γµγ5Q|P 〉 = fP pµ, (5.2)

where pµ is the 4-momentum of the quarkonium P , and the state |P 〉 is normalized relativis-
tically. The decay constants fV and fP are renormalization scheme and scale independent.
We list the NRQCD factorization formulas and the SDCs for the decay constants in ap-
pendix C. We note that the decay constants are given at leading order in αs and v by

fLO
V =

√
4Nc

mV
ΨLO
V (0), (5.3a)

fLO
P =

√
4Nc

mP
ΨLO
P (0), (5.3b)

where mP is the mass of the quarkonium P . The decay constant fV is related to the
leptonic decay rate of V by

Γ(V → e+e−) = 4π
3 α2e2

Q

f2
V

mV
, (5.4)
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where α is the QED coupling constant, and eQ is the fractional charge of the heavy quark
Q. For pseudoscalar quarkonium, fP cannot be compared directly with an experimentally
measurable quantity, although it appears in hard exclusive production rates of pseudoscalar
quarkonium P [60–63], and also have been studied in lattice QCD [64, 65]. We also com-
pute the two-photon decay rates of pseudoscalar quarkonia, which can be compared with
measurements. We list the NRQCD factorization formula and the SDCs for the two-photon
decay rate in appendix C.

Because the decay constants are quarkonium-to-vacuum matrix elements, they can
develop imaginary parts when there are contributions from cut diagrams. In the NRQCD
factorization formulas, the cut diagrams that involve momentum transfers of the scale m
manifest as imaginary parts in the SDCs, as can be seen in the SDC for the decay constant
fP in eq. (C.5a) and also in the SDC for the two-photon decay amplitude in eq. (C.8a).
The cut diagrams that involve momentum transfers of scales that are much less than
m, such as transitions between quarkonium states, can affect the quarkonium-to-vacuum
LDMEs such as 〈0|χ†ε ·σψ|V 〉 and 〈0|χ†ψ|P 〉. The sizes of these contributions are at most
of order v2, because they are induced by insertions of the dimension-5 operators in the
NRQCD Lagrangian. In practice, we are only interested in the size of the decay constants,
and imaginary parts in the SDCs are tiny, so we assume that the quarkonium-to-vacuum
LDMEs at leading order in v are real and positive, by utilizing the freedom to choose the
phase of the quarkonium states, and neglect the small imaginary parts of the SDCs in
computing the decay constants.

5.1 Numerical inputs

We list the numerical inputs that we use in the numerical calculations in this section.

5.1.1 Heavy quark mass and the strong coupling

The heavy quark mass m that appears in the Schrödinger equation, as well as the scheme
conversion coefficient in eq. (4.30) is the heavy quark pole mass, which suffers from renor-
malon ambiguity [66]. In order to avoid this issue, we use the modified renormalon sub-
tracted (RS′) mass mRS′ , which is related to the pole mass m by [67]

m = mRS′(νf ) + δmRS′(νf ), (5.5)

where νf is the scale associated with the renormalon subtraction, and δmRS′(νf ) is given
as a series in αs. At leading order in αs (order α2

s), δmRS′(νf ) is given by

δmRS′(νf ) = α2
s

2πNmνfβ0

∞∑
k=0

ck(b− k + 1) +O(α3
s). (5.6)

Here, the constant Nm is known numerically as Nm = 0.5626(260) [68], and the constants
b and ck are determined by the QCD β function. Explicit formulas for b and ck are given
in ref. [67]. We truncate the series in eq. (5.6) by including terms up to k = 2, which
is equivalent to considering the running of αs at 4-loop accuracy. In principle, the QCD
renormalization scale at which αs is computed in eq. (5.6) can be different from νf , and
the scale dependence is compensated by corrections of higher orders in αs.
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Because the leading renormalon ambiguity of order ΛQCD in the pole mass is not
present in the RS′ mass, accurate values of the RS′ masses have been obtained for charm
and bottom. In order to use the RS′ masses in calculation of the wavefunctions, we replace
the heavy quark pole mass m by mRS′ + δmRS′ , and expand perturbatively in powers of
δmRS′ . Since δmRS′ begins at order α2

s, it suffices to consider only the correction coming
from the kinetic energy in the Schrödinger equation.6 The correction to the wavefunctions
at the origin from the RS′ subtraction term is given by

δmRS′

mRS′

∫
d3r Ĝn(0, r)

(
− ∇2

mRS′

)
ΨLO
n (r) = −δmRS′

mRS′

∫
d3r Ĝn(0, r)VLO(r)ΨLO

n (r), (5.7)

which is finite. The corrections associated with the 1/m and 1/m2 potentials can be
neglected, because they are suppressed by higher powers of αs. Hence, in computing
the wavefunctions at the origin, it suffices to replace m by mRS′(νf ) everywhere, and then
compensate for the difference by adding the correction term in eq. (5.7) to the wavefunctions
at the origin, where δmRS′ is truncated at order α2

s. We adopt the values for the RS′ charm
and bottom masses determined in ref. [68] for νf = 2GeV, which are given by

mc,RS′(2 GeV) = 1316(41) MeV, (5.8a)
mb,RS′(2 GeV) = 4743(41) MeV. (5.8b)

We compute αs in the MS scheme at a fixed QCD renormalization scale µR, except
when we consider resummation of logarithms in the loop corrections to the potentials.
This is in order to facilitate exact order by order cancellation of the dependence on the
factorization scale Λ in NRQCD factorization formulas, which requires the same αs to be
used in the SDCs and in the calculations of the wavefunctions at the origin. Reference [68]
gives ranges of µR in which the theoretical determinations of ηc and ηb masses have mild
dependences on the scale; these are given by µR = 2.5+1.5

−1.0 GeV for charm, and µR =
5+3
−3 GeV for bottom. We compute the numerical values of αs in the MS scheme at these

scales using RunDec at 4-loop accuracy [71, 72].

5.1.2 Static potential from lattice QCD

Precise nonperturbative determinations of the static potential V (0)(r) have been done in
unquenched lattice QCD. We take the following parameterization of the static potential
in ref. [73] given by

V (0)(r)
∣∣
lattice = V0 + σr − e

r
+ g

(1
r
−
[1
r

])
, (5.9)

where V0, σ, e, and g are determined in fits to lattice measurements. The term proportional
to g is included to quantify short distance lattice artifacts, where

[
1
r

]
is the tree level lattice

6The advantage of the use of the RS′ mass, compared to other renormalon subtraction schemes [67,
69, 70], is that the renormalon subtraction term δmRS′ (νf ) begins at order α2

s, rather than order αs. This
makes it easier to organize the corrections from δmRS′ (νf ) in powers of αs. For example, in the RS′ scheme,
the corrections to the binding energies from δmRS′ (νf ) contribute to decay constants and decay rates from
order α2

sv
2, which we ignore at the current level of accuracy.
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propagator in position space [73, 74]. We take the results in the physical limit given in
table V of ref. [73], where the central values read V0 = 0.760/a, σ = (0.171/a)2, e = 0.368,
with a−1 = 2.68GeV. We ignore the term proportional to g in eq. (5.9), because we only
need the lattice QCD result at long distances in the continuum limit. We note that only
the slope in r is physically meaningful in the lattice QCD result for the static potential,
because in eq. (5.9) an overall constant has been subtracted to make V (0)(r)

∣∣
lattice vanish

at ar−1 = 0.1485 [73].
We match eq. (5.9) with the perturbative QCD expression in eq. (B.1) at r = rmatch,

where the r dependences of the two expressions agree well. While the renormalization
scale dependence in V (0)(r)

∣∣
pert cancels order by order in perturbative QCD, it is known

that the convergence of the r dependence of V (0)(r)
∣∣
pert is poor when the renormalization

scale is fixed [53]. The convergence can be improved if we resum the logarithms that are
associated with the running of αs, which can be done by choosing the renormalization scale
to be proportional to 1/r at short distances. In order to avoid the renormalization scale
being too small, we set the r-dependent renormalization scale to be µr = (r−2 +µ2

R)1/2, so
that µr > µR, while µr ≈ 1/r at short distances. That is, we write

V (0)(r)
∣∣
pert, resum = −αs(µr)CF

r

[
1 +

2∑
n=1

(
αs(µr)

4π

)n
an(r;µr)

]
, (5.10)

where the an are given in eqs. (B.2). This is just the perturbative QCD expression for the
static potential in eq. (B.1), computed at the renormalization scale µr. This choice of the
renormalization scale may also help smoothen the matching between the perturbative QCD
expression at short distances and the nonperturbative long-distance determination from
lattice QCD. We compare the resummed expression for the static potential in eq. (5.10)
with expressions at fixed renormalization scale at LO, NLO, NNLO, and NNNLO accuracies
in figure 1.

We define the nonperturbative long-distance contribution to the static potential as

V (0)(r)
∣∣
long = θ(r − rmatch)×

[
V (0)(r)

∣∣
lattice − V

(0)(r)
∣∣
pert, resum −∆V (0)

]
, (5.11)

where V (0)(r)
∣∣
pert, resum is given by eq. (5.10), and ∆V (0) is chosen so that the right-hand

side vanishes at r = rmatch, which removes the unphysical constant shift in the lattice QCD
parametrization V (0)(r)

∣∣
lattice. We choose r−1

match = 1.5GeV, which is where the slopes of
V (0)(r)

∣∣
lattice and V (0)(r)

∣∣
pert, resum are approximately same. Since V (0)(r)

∣∣
long vanishes for

r < rmatch, we obtain the following expression for the static potential that is valid for both
short and long distances:

V (0)(r) = V (0)(r)
∣∣
pert, resum + V (0)(r)

∣∣
long, (5.12)

so that V (0)(r) coincides with the perturbative QCD expression for r < rmatch, while
it reproduces the lattice QCD determination for r > rmatch. Again, the perturbative
QCD expression V (0)(r)

∣∣
pert, resum is computed at the renormalization scale µr, so that

logarithms associated with the running of αs are resummed. In figure 2 we compare the
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Figure 1. Left panel: perturbative QCD results for the static potential at a fixed renormalization
scale µR = 2.5GeV with nf = 3 at LO (dot-dashed line), NLO (dotted line), NNLO (dashed
line), and NNNLO (red solid line) accuracies, compared with the resummed expression at NNLO
accuracy (black solid line) given in eq. (5.10). The gray band shows the effect of varying the
fixed renormalization scale µR between 1.5GeV and 4GeV on the NNLO expression. Right panel:
resummed perturbative QCD results for the static potential at the r-dependent renormalization
scale µr = (r−2 + µ2

R)1/2 with nf = 3 at LO (dot-dashed line), NLO (dotted line), NNLO (black
solid line), and NNNLO (red solid line) accuracies. The position-space expression at NNNLO
accuracy has been taken from ref. [55].

unquenched lattice QCD results in ref. [73] with the expression for V (0)(r) in eq. (5.12).
The perturbative QCD expressions of the static potential depends on the number of light
quark flavors nf , which we take to be nf = 3 for charm, and nf = 4 for bottom. We note
that the matching of perturbative QCD and lattice QCD for the pNRQCD potentials have
been done in a similar way in refs. [75, 76] for heavy quarkonium spectroscopy.

Eq. (5.12) implies that the leading-order potential is given by

VLO(r) = −αs(µR)CF
r

+ V (0)(r)
∣∣
long, (5.13)

where in the first term on the right-hand side, αs is evaluated at a fixed renormalization
scale µR. The Coulombic correction term δVC(r) = V (0)(r) − VLO(r) that appears in the
second line of eq. (3.18) is given by

δVC(r) = V (0)(r)
∣∣
pert, resum + αs(µR)CF

r
, (5.14)

where in the first term, αs is evaluated at the scale µr, while in the last term, αs is evaluated
at a fixed renormalization scale µR, so that VLO(r) + δVC(r) reproduces the expression for
V (0)(r) in eq. (5.12). The dependence on µR in VLO(r) is cancelled explicitly by the order-
αs piece in δVC(r), which is given by −[αs(µr) − αs(µR)]CF /r. We note that δVC(r)
contain contributions whose net effect is to shift the Coulomb strength of the LO potential
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Figure 2. The static potential V (0)(r) including the nonperturbative long-distance contribution
[eq. (5.12)] for nf = 3 (black solid line) and for nf = 4 (red dot-dashed line), shown with unquenched
lattice QCD results from ref. [73], shifted vertically to match eq. (5.12). The renormalization scale
for αs has been chosen to be µr = (r−2 + µ2

R)1/2, as described in text, with µR = 2.5GeV for
nf = 3, and µR = 5GeV for nf = 4.

at relative order αs, and so, the correction to the wavefunctions at the origin from δVC(r)
begins at relative order αs. Although we work through first order in the QMPT, second
order corrections from δVC(r) might be important, because this is of order α2

s. Computing
the second order Coulombic correction can also be useful in testing the convergence of the
Coulombic corrections. The second order Coulombic correction to the wavefunction at the
origin Ψn(0) can be computed by using the usual formula for the second order correction
in the Rayleigh-Schrödinger perturbation theory, which reads

∑
k 6=n

∑
` 6=n

ΨLO
k (0)

∫
d3r1d

3r2ΨLO
k
∗(r2)δVC(r2)ΨLO

` (r2)ΨLO
`
∗(r1)δVC(r1)ΨLO

n (r1)
(ELO

n − ELO
k )(ELO

n − ELO
` )

−
(∫

d3rΨLO
n
∗(r)δVC(r)ΨLO

n (r)
)
×
∑
k 6=n

ΨLO
k (0)

∫
d3r1ΨLO

k
∗(r1)δVC(r1)ΨLO

n (r1)
(ELO

n − ELO
k )2

−ΨLO
n (0)

2
∑
k 6=n

∣∣∣∫ d3rΨLO
k
∗(r)δVC(r)ΨLO

n (r)
∣∣∣2

(ELO
n − ELO

k )2 . (5.15)

This expression can be rewritten in terms of the reduced Green’s functions as∫
d3r1d

3r2 Ĝn(0, r2)δVC(r2)Ĝn(r2, r1)δVC(r1)ΨLO
n (r1) (5.16)

−
(∫

d3r|ΨLO
n (r)|2δVC(r)

)
×
∫
d3r1d

3r2 Ĝn(0, r2)Ĝn(r2, r1)δVC(r1)ΨLO
n (r1)

−ΨLO
n (0)

2

∫
d3r1d

3r2d
3r3 ΨLO

n (r3)δVC(r3)Ĝn(r3, r2)Ĝn(r2, r1)δVC(r1)ΨLO
n (r1).
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The equivalence between the two expressions can be verified by using the identity∫
d3r Ĝn(r2, r)Ĝn(r, r1) =

∑
k 6=n

ΨLO
k (r2)ΨLO

k
∗(r1)

(En − Ek)2 . (5.17)

In computing the second order Coulombic corrections, we neglect the a2 term in the static
potential [eq. (B.1)], because at second order in the QMPT, this term contributes at relative
order α3

s.

5.1.3 1/m potential from lattice QCD

We use a similar strategy as the previous section to determine the nonperturbative long-
distance contribution to the 1/m potential. Unlike the static potential, nonperturbative
determinations of the 1/m potential are available only from quenched lattice QCD. We
use the parametrization in ref. [49] given by

V (1)(r)
∣∣WL
lattice = −9A2

8r2 + σ(1) log r, (5.18)

where A = 0.297 and σ(1) = 0.142GeV2. This parametrization, which is based on the long-
distance behavior expected from effective string theory in ref. [77], is obtained in ref. [49]
from quenched lattice QCD results at lattice coupling β = 6.0. Similarly to the lattice
QCD determination of the static potential in eq. (5.9), only the slope in r is meaningful in
the lattice QCD result in eq. (5.18).

We match eq. (5.18) with the perturbative QCD expression at r = rmatch. Since we do
not include loop corrections to the 1/m potential in our calculations of the wavefunctions at
the origin, the expression for the 1/m potential V (1)(r)

∣∣WL
pert at leading order in αs depends

on the choice of the renormalization scale. Similarly to our treatment of the static potential,
we choose the renormalization scale to be µr = (r−2 + µ2

R)1/2, so that the logarithms
associated with the running of αs are resummed, which may help smoothen the matching
between the short-distance perturbative QCD expression and the nonperturbative lattice
QCD parametrization at long distances. That is, we write

V (1)(r)
∣∣WL
pert, resum = −α

2
s(µr)CFCA

2r2 . (5.19)

We compare this resummed expression with expressions at a fixed renormalization scale at
LO and NLO accuracies in figure 3.

We define the nonperturbative long-distance contribution to the 1/m potential by

V (1)(r)
∣∣WL
long = θ(r − rmatch)×

[
V (1)(r)

∣∣WL
lattice − V

(1)(r)
∣∣WL
pert, resum −∆V (1)

]
, (5.20)

where ∆V (1) is chosen so that the right-hand side vanishes at r = rmatch, which removes
the unphysical constant shift in the lattice QCD parametrization V (1)(r)

∣∣WL
lattice. We choose

r−1
match = 1.5GeV. Since V (1)(r)

∣∣WL
long vanishes for r < rmatch, we obtain an expression for

the 1/m potential that is valid for both short and long distances given by

V (1)(r)
∣∣WL = V (1)(r)

∣∣WL
pert, resum + V (1)(r)

∣∣WL
long. (5.21)
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Figure 3. Left panel: perturbative QCD results for the 1/m potential in Wilson loop matching at
a fixed renormalization scale µR = 2.5GeV at LO (dashed line) and NLO (red solid line) accuracies,
compared with the resummed expression at LO accuracy (black solid line) given in eq. (5.19). The
gray band shows the effect of varying the fixed renormalization scale µR between 1.5GeV and 4GeV
on the LO expression. Right panel: resummed perturbative QCD results for the 1/m potential in
Wilson loop matching at the r-dependent renormalization scale µr = (r−2 + µ2

R)1/2 at LO (black
solid line) and NLO (red solid line) accuracies. The position-space expression at NLO accuracy has
been taken from ref. [52], which is renormalized in the MS scheme at scale 1GeV.
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Figure 4. The 1/m potential V (1)(r) in Wilson loop matching, for nf = 3 and µR = 2.5GeV
(black solid line), and for nf = 4 and µR = 5GeV (red dot-dashed line), shown with quenched
lattice QCD results with lattice coupling β = 6.0 in ref. [49], shifted vertically to match eq. (5.21).

We compare the lattice QCD determination in eq. (5.18) with the expression for V (1)(r)
∣∣WL

in eq. (5.21) in figure 4.
Based on the argument given in section 4.4, we obtain the expression for the 1/m

potential in on-shell matching that is valid for computation of wavefunctions at the origin,
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given by

V (1)(r)
∣∣OS =

α2
s(µR)CF (1

2CF − CA)
2r2 + V (1)(r)

∣∣WL
long, (5.22)

where in the first term on the right-hand side, αs is computed at a fixed renormalization
scale µR. We use this form of the 1/m potential in the calculation of the wavefunctions at
the origin.

5.1.4 Reduced Green’s function

We compute the reduced Green’s function Ĝn(r′, r) numerically by using two different
methods, which are valid in different regimes of r and r′. In the first method, which is valid
for small r and r′, we compute the Green’s function in position space numerically by using
the method given in ref. [78]. We only need to compute the S-wave contribution, which is
defined by including only the S-wave states in the sum in eq. (3.7). This contribution can
be written as

GS(r′, r;E) = m

4π
u<(r<)
r<

u>(r>)
r>

, (5.23)

where r< = min(|r|, |r′|), r> = max(|r|, |r′|), and the superscript S denotes the S-wave
contribution. The functions u< and u> are two independent solutions of the differential
equation [

d2

dr2 +m(E − VLO(r))
]
u(r) = 0, (5.24)

with the following boundary condition

u<(0) = 0, u′<(0) = 1, (5.25a)

u>(∞) = 0, u>(0) = 1, (5.25b)

so that u<(r)/r is regular at r = 0, while u>(r) is square integrable. We determine the
functions u< and u> by numerically solving the differential equation for a given E. The
reduced Green’s function can then be obtained by using the relation in eq. (3.10), where
we take the limit numerically. We note that, if E coincides with an eigenenergy of the LO
Schrödinger equation ELO

n , then the corresponding wavefunction ΨLO
n (r) is proportional

to u<(r)/r. This means that u<(r) is square integrable if E = ELO
n , and in such case,

the square-integrable solution u>(r) does not exist. Hence, the limit in eq. (3.10) must be
taken with care, because the numerical solution for u>(r) becomes unstable if E is too close
to ELO

n . When we compute the reduced Green’s functions numerically using eq. (3.10), we
set η = 10−3 GeV.

Since the first method involves computing u<(r<) by solving a differential equation
with initial conditions at r< = 0, the method becomes unreliable when r and r′ are both
large. For large r and r′, we compute the reduced Green’s function by using the formal
solution in eq. (3.5), where we truncate the series by including only a limited number of
the lowest eigensolutions of the LO Schrödinger equation. In the numerical calculations,
we include the 9 lowest S-wave states in the calculation of the reduced Green’s function.
This method in turn becomes unreliable at small r and r′. For example, if the LO potential
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VLO(r) is linear in r at long distances, the eigenenergies of highly excited S-wave states
increase linearly with increasing principal quantum number, and the LO wavefunctions at
the origin are constant in the principal quantum number. Hence, the series in eq. (3.5)
diverges like

∑∞
n 1/n at r = r′ = 0. This implies that the truncated series becomes

unreliable at small r and r′.
We combine the reduced Green’s function at long and short distances by

Ĝn(r′, r) = b(r<)× Ĝn(r′, r)|short + [1− b(r<)]× Ĝn(r′, r)|long, (5.26)

where Ĝn(r′, r)|short is computed by using eqs. (5.23) and (3.10), Ĝn(r′, r)|long is computed
by truncating the series in eq. (3.5), and b(r) is a smooth function that satisfies b(0) = 1
and b(∞) = 0, so that eq. (5.26) is reliable for all r and r′. We define b(r) by

b(r) = 1
π

[
tan−1(4m(rb − r))− tan−1(4mrb)

]
+ 1, (5.27)

with rb = 1GeV−1. The validity of the reduced Green’s function obtained in eq. (5.26) can
be tested by numerically checking the relations(

ELO
k − ELO

n

) ∫
d3r Ĝn(r′, r)ΨLO

k (r) = ΨLO
k (r′), (5.28a)∫

d3r Ĝn(r′, r)ΨLO
n (r) = 0, (5.28b)

for k 6= n.
We note that, due to the boundary condition u>(0) = 1, it is evident that GS(0, r;E)

develops a power divergence given by m/(4πr) near r = 0. It has been shown in ref. [53]
that if the LO potential is given by VLO(r) = −αsCF /r at short distances, u>(r)/r also
contains a logarithmic divergence given by −αsCFm log r. Therefore, near r = 0, the
Green’s function behaves like

GS(0, r;E) = m

4πr −
αsCFm

2

4π log r + · · · , (5.29)

where the ellipsis represent contributions that are finite at r = 0. This shows that the
divergent small r behavior of GS(0, r;E) depends only on the short-distance behavior of
the LO potential, which is determined in perturbative QCD.

5.1.5 Gluonic correlators

The pNRQCD expressions of the NRQCD LDMEs in eqs. (2.10) and (2.13) depend on
gluonic correlators that scale with powers of ΛQCD. Also, corrections to the wavefunc-
tions at the origin from the velocity-dependent potential involve V (2)

p2 (0), which in DR, is
proportional to the correlator iE2. While the gluonic correlators of mass dimension two
contribute to the NRQCD LDMEs at relative order Λ2

QCD/m
2, the dimensionless correlator

E3 contributes to 〈0|χ†ε · σψ|V 〉 and 〈0|χ†ψ|P 〉 at relative order v2, and the correlator iE2
contributes to the wavefunctions at the origin at relative order ΛQCD/m.
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The dimensionless correlator E3 in the MS scheme has been determined in ref. [40]
from measured decay rates of P -wave charmonia. At the MS scale Λ = 1GeV,

E3(1 GeV) = 2.05+0.94
−0.65. (5.30)

The correlator E3 depends logarithmically on the scale. We compute E3 at other scales by
using the one-loop renormalization group improved expression [40, 42]

E3(Λ) = E3(Λ′) + 24CF
β0

log αs(Λ
′)

αs(Λ) . (5.31)

Reference [40] also provides a determination of iE2 from measured electromagnetic
decay and production rates of P -wave charmonia. However, the determination in ref. [40]
has uncertainties that are larger than the typical size of the correlator that is expected
from its power counting. For this reason, instead of taking the determination in ref. [40],
we consider the effect of V (2)

p2 (0) to the wavefunctions at the origin in the uncertainties by
assuming |V (2)

p2 | . 500MeV, which corresponds to the typical size of ΛQCD.
Since the gluonic correlators of mass dimension two contribute to the NRQCD LDMEs

at relative order Λ2
QCD/m

2, we neglect them in calculations of the LDMEs compared to
corrections of relative order ΛQCD/m and v2.

5.2 Numerical results for S-wave charmonia

In this section, we compute the MS-renormalized wavefunctions at the origin for the 1S
and 2S charmonium states. We identify the J/ψ and ηc as the 1S charmonium states in
spin-triplet and spin-singlet states, respectively, while the ψ(2S) and ηc(2S) states are the
2S charmonium states in spin-triplet and spin-singlet states, respectively.

As we discussed in previous sections, we solve the Schrödinger equation numerically
with the LO potential in eq. (5.13) and the charm quark mass in eq. (5.8a) to determine
ΨLO
n (r), ELO

n , and Ĝn(r′, r). For this purpose, it suffices to solve the differential equation
in eq. (5.24) and obtain the solutions u<(r) and u>(r) for a range of E, because u<(r)
becomes square integrable when E = ELO

n , and the corresponding eigenfunction ΨLO
n (r)

is then proportional to u<(r)/r. We obtain the solution u<(r) by solving the differential
equation in eq. (5.24) numerically in Mathematica using the NDSolve command with
the initial conditions u<(0) = 0 and u′<(0) = 1. Instead of obtaining directly the u>(r)
with the boundary conditions u>(0) = 1 and u>(∞) = 0, we find a linearly independent
second solution v(r) which is in general a linear combination of u<(r) and u>(r). Similarly
to what has been done in ref. [53], we find a solution v(r) that satisfies v(0) = 1, and
let v′(r) be nonzero at small r (in general v′(r) is singular at r = 0 [53, 78]). Then, the
solution u>(r) that satisfies the boundary conditions u>(0) = 1 and u>(∞) = 0 is given
by u>(r) = v(r)− v(∞)

u<(∞)u<(r).
Then, we compute the corrections to the wavefunctions at the origin in the finite-r

regularization using eq. (3.18). In order to compensate for the use of the RS′ mass, we
add to eq. (3.18) the finite correction from the RS′ subtraction term in eq. (5.7). We also
add to eq. (3.18) the Coulombic correction at second order in QMPT in eq. (5.16). In the
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calculation of the corrections to the wavefunctions at the origin, we use the 1/m potential
given by eq. (5.22), while we take the perturbative QCD expressions of the 1/m2 potentials
given by eq. (B.3). When we compute the central values of the wavefunctions at the origin,
we set V (2)

p2 (0) = 0 in eq. (3.18), and consider the effect of the correction from V
(2)
p2 (0) in

the uncertainties. We then use eq. (3.19) to obtain the MS-renormalized wavefunctions at
the origin.

In computing the finite-r regularized wavefunctions at the origin, the regulator r0
must be chosen to be as small as possible, as long as the numerical calculation is stable.
We determine an optimal choice of r0 by numerically testing the approximate relation
in eq. (4.41). We find that the relation is well reproduced numerically at 1% level for
r0 & 0.1GeV−1. Hence, we choose r0 = 0.2GeV−1, and vary r0 between 0.1GeV−1 and
0.3GeV−1. We set the MS scale Λ to be the charm quark mass m, and choose the central
value of the QCD renormalization scale µR to be 2.5GeV, as discussed in section 5.1.1.

We list the central values of the LO wavefunctions at the origin and the LO binding
energies in table 1. We also list the corrections to the wavefunctions at the origin relative
to ΨLO

n (0) in table 1. We classify the corrections by their origins in the following way:
the non-Coulombic correction δNC

Ψ comes from the 1/m and 1/m2 potentials, the Coulom-
bic corrections δC1

Ψ and δC2
Ψ come from δVC(r) at first and second order in the QMPT,

respectively, and the correction δRS′
Ψ comes from the RS′ subtraction term. The explicit

expressions for δNC
Ψ and δC1

Ψ are given by

δNC
Ψ = −δZ − 1

ΨLO
n (0)

∫
d3r Ĝn(r′, r)δV(r)ΨLO

n (r)
∣∣∣
|r′|=r0

− 1
ΨLO
n (0)

ELO
n

m

∫
d3r Ĝn(0, r)

[
V

(2)
p2 (r) + 1

2VLO(r)
]

ΨLO
n (r)

+ 1
2m

∫
d3r

[
V

(2)
p2 (r) + 1

2VLO(r)
] ∣∣∣ΨLO

n (r)
∣∣∣2 − V

(2)
p2 (0)
2m , (5.32a)

δC1
Ψ = − 1

ΨLO
n (0)

∫
d3r Ĝn(0, r)δVC(r)ΨLO

n (r), (5.32b)

while δC2
Ψ is given by dividing eq. (5.16) by ΨLO

n (0), and δRS′
Ψ is given by dividing eq. (5.7)

by ΨLO
n (0). The MS-renormalized wavefunctions at the origin are then given by

Ψn(0)|MS = ΨLO
n (0)×

(
1 + δNC

Ψ + δC1
Ψ + δC2

Ψ + δRS′
Ψ

)
. (5.33)

We note that the r0 dependence cancels in δNC
Ψ between δZ and the finite-r regularized

integral for small r0. We demonstrate this cancellation of the r0 dependence in figure 5.
The results for the LO binding energies for the 1S and 2S states in table 1 are

roughly compatible with the mass difference between J/ψ and ψ(2S). We see that the
non-Coulombic corrections from 1/m and 1/m2 potentials, given by δNC

Ψ in table 1, are
large and positive for both 1S and 2S states. This is in contrast with the order-α2

s cor-
rections to the NRQCD SDCs in appendix C, which are large and negative at Λ = m.
This implies that if we combine the pNRQCD expressions of the LDMEs with the NRQCD
SDCs, large cancellations will occur between the order-α2

s corrections to the SDCs and the
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Figure 5. The non-Coulombic corrections δNC
Ψ at finite r0 for the charmonium 1S (solid lines)

and 2S (dashed lines) states, for spin triplet (black) and spin singlet (red). The r0 dependences are
mild for the range 0.1GeV−1 < r0 < 0.3GeV−1 that we consider.

State ΨLO(0) (GeV3/2) ELO (GeV) δNC
Ψ |S2=2 δNC

Ψ |S2=0 δC1
Ψ δC2

Ψ δRS′

Ψ

1S 0.183 0.233 0.495 0.564 0.173 −0.010 0.080

2S 0.177 0.769 0.638 0.661 0.079 −0.004 0.072

Table 1. LO wavefunctions at the origin, LO binding energies and relative corrections to the
wavefunctions at the origin in the MS scheme at scale Λ = m for 1S and 2S charmonium states.
δNC
Ψ is the correction from the 1/m and 1/m2 potentials, δC1

Ψ and δC2
Ψ are Coulombic corrections at

first and second order in QMPT, respectively, and δRS′

Ψ is the correction from the RS′ subtraction
term. The δNC

Ψ , δC1
Ψ , δC2

Ψ , and δRS′

Ψ are dimensionless.

corrections to the wavefunctions at the origin. The contribution from the long-distance
part of the 1/m potential, which is given by the second term in eq. (5.22), amounts to
about +10% of the LO wavefunction at the origin for the 1S state, and about +6% of
the LO wavefunction at the origin for the 2S state. We note that while the Coulombic
corrections at first order are positive, the Coulombic corrections at second order are small
and negative, signaling good convergence of the Coulombic corrections. The corrections
from the renormalon subtraction term δRS′

Ψ are mild for both 1S and 2S states.
The LO wavefunctions at the origin in table 1 are much larger than what we would

obtain if we neglect the long-distance nonperturbative part of the static potential, for
example, by using the analytical solution of the Schrödinger equation in perturbative QCD
(see appendix D). For the 1S state, neglecting the long-distance nonperturbative part of the
static potential reduces the wavefunction at the origin by more than a factor of 2, and for the
2S state, the wavefunction at the origin reduces by more than a factor of 7. At the squared
amplitude level, neglecting the long-distance part of the static potential can reduce the
1S charmonium decay rates by almost an order of magnitude, and 2S charmonium decay
rates by more than an order of magnitude. Hence, the long-distance nonperturbative part
of the static potential has a significant effect on charmonium wavefunctions at the origin
and charmonium decay rates.
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We use the results for the MS wavefunctions at the origin in table 1 to compute decay
constants and electromagnetic decay rates of S-wave charmonium states. We first compute
the decay constants fV of V = J/ψ and ψ(2S). By using the pNRQCD expressions of
the LDMEs in eqs. (2.10) and (2.12) and the SDCs in appendix C, and expanding the
corrections to the SDCs and to the wavefunctions at the origin, we obtain

fV =
√

4Nc

mV
ΨLO
V (0)

[
1 + αsc

(1)
v + δC1

Ψ + δC2
Ψ + δRS′

Ψ + δNC
Ψ |S2=2 + α2

sc
(2)
v

+αsc(1)
v δC1

Ψ + 2ELO
V

mV

(
dv −

E3
9

)
+O(α3

s, v
3,Λ2

QCD/m
2)
]
, (5.34)

where cv = 1 + αsc
(1)
v + α2

sc
(2)
v + O(α3

s), and αs = αs(µR). This expression is valid up to
corrections of relative order α3

s, v3, and Λ2
QCD/m

2. We set nf = 3 in the SDCs. Since
we assume δC1

Ψ to be of order αs, we keep the cross term αsc
(1)
v δC1

Ψ . The dependence on
the MS scale Λ in δNC

Ψ |S2=2 cancels completely with the Λ dependence in α2
sc

(2)
v , while the

Λ dependence in the order-αs correction to dv cancels with the scale dependence of the
correlator E3. Hence, variation of the factorization scale Λ has almost no effect in eq. (5.34).
We set the scale Λ = m in the one-loop correction to dv, and compute the correlator E3 at
the same scale using the renormalization group improved expression in eq. (5.31). We take
the measured quarkonium masses from ref. [79].

The numerical result for the J/ψ decay constant is

fJ/ψ = 0.363+0.015
−0.003

+0.003
−0.000 ± 0.069± 0.054 GeV = 0.363+0.089

−0.088 GeV, (5.35)

where the first uncertainty comes from varying µR between 1.5GeV and 4GeV, and the
second uncertainty comes from varying r0 between 0.1GeV−1 and 0.3GeV−1. The third
uncertainty comes from the neglect of the correction −V (2)

p2 (0)/(2m) to the wavefunction
at the origin, which we take to be ±500 MeV/(2m) times the central value. The last
uncertainty comes from the uncalculated corrections of order v3, which we take to be 15%
of the central value, based on the typical estimate v2 ≈ 0.3 for charmonium states. In the
last equality, we add the uncertainties in quadrature.

We note that the central value for fJ/ψ that we obtain is very close to the leading-order
value fLO

J/ψ = 0.360GeV. The order-αs terms in eq. (5.34) from αsc
(1)
v and δC1

Ψ amount to
about −6% of the central value, and the corrections proportional to ELO

V is about −7%
of the central value. The remaining corrections from α2

sc
(2)
v , δNC

Ψ , δC2
Ψ , δRS′

Ψ , and the cross
term αsc

(1)
v δC1

Ψ add up to about +14% of the central value, so that the numerical result for
fJ/ψ in eq. (5.35) is only about 1% larger than the leading-order value. If we had ignored
the corrections to the wavefunctions at the origin, the one-loop correction would have been
−23% of the leading order result, while the two-loop correction would have been −39% of
the leading order value, so that the loop corrections add up to −62% at two-loop accuracy.
The inclusion of the corrections to the wavefunction at the origin in the calculation of the
decay constant fJ/ψ has substantially improved the convergence of the expansion in αs
and v.

The result for fJ/ψ agrees within uncertainties with the lattice QCD determination
using relativistic charm quarks in ref. [65], which gives fJ/ψ = 0.4104(17)GeV. In order
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to compare with measurements, we compute the leptonic decay rate of J/ψ from fJ/ψ by
using eq. (5.4). We obtain

Γ(J/ψ → e+e−) = 4.5+2.5
−1.9 keV, (5.36)

where we used α = 1/133, which is computed at the scale of the J/ψ mass. This result
agrees with the experimental value Γ(J/ψ → e+e−) = 5.53 ± 0.10 keV in ref. [79] within
uncertainties.

The leptonic decay rate can also be computed by using the NRQCD factorization for-
mula at the decay rate level, which is obtained by squaring the amplitude-level factorization
formula (C.1), and expanding in powers of αs and v. In order to facilitate exact order-
by-order cancellation of the NRQCD factorization scale dependence, we also expand the
pNRQCD expressions for the NRQCD LDMEs at the squared amplitude level, as well as
the square of the wavefunction at the origin in powers of αs, v, and ΛQCD/m. That is, we
square the expression for the decay constant in eq. (5.34) and then expand the corrections
in powers of αs, v, and ΛQCD/m. In this case, we obtain Γ(J/ψ → e+e−) = 4.5+1.9

−1.8 keV,
which agrees well with the result in eq. (5.36) within uncertainties. This agreement is due
to the fact that the convergence of the expansion in powers of αs, v, and ΛQCD/m have
improved significantly in both the decay constant and the leptonic decay rate, thanks to
the corrections to the wavefunctions at the origin that we have included.

The numerical result for the ψ(2S) decay constant is

fψ(2S) = 0.309+0.011
−0.010

+0.004
−0.002 ± 0.059± 0.046 GeV = 0.309+0.076

−0.076 GeV, (5.37)

where the uncertainties are as in eq. (5.35). Again, the central value for fψ(2S) that we
obtain is very close to the leading-order value fLO

ψ(2S) = 0.318GeV. This follows from the
improvement of the convergence of the corrections of higher orders in αs and v by the
inclusion of the corrections to the wavefunction at the origin. We compute the leptonic
decay rate of ψ(2S) by using eq. (5.4). We obtain

Γ(ψ(2S)→ e+e−) = 2.7+1.5
−1.2 keV, (5.38)

where we used α = 1/133, which is computed at the scale of the ψ(2S) mass. This result
agrees with the experimental value Γ(ψ(2S)→ e+e−) = 2.33± 0.04 keV in ref. [79] within
uncertainties. If we use the expression for the decay rate expanded in powers of αs, v,
and ΛQCD/m at the squared amplitude level, we obtain Γ(ψ(2S)→ e+e−) = 2.7± 1.1 keV,
which agrees well within uncertainties with eq. (5.38).

Now we compute the decay constants fP of P = ηc and ηc(2S). Although fP cannot be
obtained directly from experimental measurements, this decay constant appears in exclusive
production cross sections of pseudoscalar quarkonia at high energies [62, 63]. We obtain the
following expression for fP by expanding the corrections to the SDCs and the corrections
to the wavefunctions at the origin:

fP =
√

4Nc

mP
ΨLO
P (0)

[
1 + αsc

(1)
p + δC1

Ψ + δC2
Ψ + δRS′

Ψ + δNC
Ψ |S2=0 + α2

sc
(2)
p

+αsc(1)
p δC1

Ψ + 2ELO
P

mP

(
dp −

E3
9

)
+O(α3

s, v
3,Λ2

QCD/m
2)
]
, (5.39)
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where cp = 1 + αsc
(1)
p + α2

sc
(2)
p +O(α3

s), and αs = αs(µR). We neglect the small imaginary
part in c

(2)
p , which amounts to less than 0.02. This expression is valid up to corrections

of relative order α3
s, v3, and Λ2

QCD/m
2. We set nf = 3 in the SDCs. We note that the Λ

dependence in δNC
Ψ |S2=0 cancels exactly with α2

sc
(2)
p . Since the order-αs correction to dp is

not available, our expression for fP in eq. (5.39) depends mildly on Λ through the scale
dependence of E3.7 Nevertheless, variation of the factorization scale Λ has a very small
effect in eq. (5.39). We compute E3 at the scale Λ = m. We take the measured quarkonium
masses from ref. [79].

The numerical result for fηc is

fηc = 0.385+0.013
−0.000

+0.006
−0.003 ± 0.073± 0.057 GeV = 0.385+0.094

−0.093 GeV, (5.40)

where the uncertainties are as in eq. (5.35). We add the uncertainties in quadrature.
We neglect the uncertainty from the scale dependence of E3, which is small compared to
other uncertainties. This result for fηc agrees with the lattice QCD determination using
relativistic charm quarks in refs. [65], which gives fηc = 0.3981(10)MeV.

Similarly to the case of fJ/ψ, the central value for fηc that we obtain is very close
to the leading-order value fLO

ηc = 0.367GeV. The order-αs corrections in eq. (5.39) from
αsc

(1)
p and δC1

Ψ amount to about 1% of the central value, and the corrections proportional to
ELO
P is about −13% of the central value. The remaining corrections from α2

sc
(2)
v , δNC

Ψ , δC2
Ψ ,

δRS′
Ψ , and the cross term αsc

(1)
v δC1

Ψ add up to about +17% of the central value, so that the
central value for fηc in eq. (5.40) is only about 4% larger than the leading-order value. In
contrast, if we had ignored the corrections to the wavefunctions at the origin, the one-loop
correction would have been −16% of the leading order result, while the two-loop correction
would have been −44% of the leading order value, so that the loop corrections add up to
−60% at two-loop accuracy. Just like the case of the J/ψ and ψ(2S) decay constants, the
inclusion of the corrections to the wavefunction at the origin in the calculation of the decay
constant fηc greatly improves the convergence of the expansion in αs and v.

The numerical result for fηc(2S) is

fηc(2S) = 0.275+0.010
−0.019

+0.003
−0.000 ± 0.052± 0.041 GeV = 0.271+0.068

−0.069 GeV, (5.41)

where the uncertainties are as in eq. (5.40). For the case of ηc(2S), the central value
for fηc(2S) that we obtain is about 18% smaller than the leading-order value fLO

ηc(2S) =
0.321GeV. The difference is larger than the case of ηc, because the binding energy of
the 2S state is larger than the binding energy of the 1S state, and so, the correction
proportional to ELO

ηc(2S) is larger compared to the ηc case.
Finally, we compute the two-photon decay rate of P = ηc and ηc(2S). The NRQCD

factorization formula for the decay rate is given in appendix C. The following expression
for the decay rate is obtained by expanding the corrections to the SDCs and the corrections

7It is expected from NRQCD factorization that dp will have the same logarithmic dependence on Λ at
order αs as dγγ in eq. (C.8b), so that the dependence on Λ cancels between dp and E3 in eq. (5.39).
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to the wavefunctions at the origin at the amplitude level:

Γ(P → γγ) =
16Ncπα

2e4
Q

m2
P

|ΨLO
P (0)|2

∣∣∣∣[1 + αsc
(1)
γγ + δC1

Ψ + δC2
Ψ + δRS′

Ψ + δNC
Ψ |S2=0

+α2
sc

(2)
γγ + αsc

(1)
γγ δ

C1
Ψ + 2ELO

P

mP

(
dγγ −

E3
9

)
+O(α3

s, v
3,Λ2

QCD/m
2)
]∣∣∣∣2, (5.42)

where cγγ = 1 + αsc
(1)
γγ + α2

sc
(2)
γγ + O(α3

s), and αs = αs(µR). This expression is valid up
to corrections of relative order α3

s, v3, and Λ2
QCD/m

2. We set nf = 3 in the SDCs, and
use eQ = 2/3 for charm. We choose α = 1/137, because the QED coupling constant in
eq. (5.42) is associated with on-shell photons in the final state. The dependence on the
MS scale Λ in δNC

Ψ |S2=0 cancels completely with the Λ dependence in α2
sc

(2)
γγ , while the

Λ dependence in the order-αs correction to dγγ cancels with the scale dependence of the
correlator E3. Similarly to the case of decay constants, variation of the factorization scale
Λ has almost no effect in eq. (5.42). We set the scale Λ = m in the one-loop correction to
dγγ , and compute the correlator E3 at scale m using the renormalization group improved
expression in eq. (5.31).

The numerical result for the two-photon decay rate of ηc is

Γ(ηc → γγ) = 6.8+0.4
−0.0

+0.2
−0.1

+2.8
−2.3 ± 1.0 keV = 6.8+3.0

−2.5 keV, (5.43)

where the uncertainties are as in eq. (5.35). This result is compatible within uncertainties
with the PDG value of the two-photon decay rate Γ(ηc → γγ) = 5.06±0.34 keV in ref. [79].
The central value for the decay rate that we obtain is not very different from the leading-
order value Γ(ηc → γγ)|LO = 16Ncπα

2e4
Q|ΨLO

ηc (0)|2/m2
ηc = 6.0 keV. If we had ignored the

corrections to the wavefunctions at the origin, the one-loop correction would have been
−15% of the leading order result at the amplitude level, while the two-loop correction
would have been −46% of the leading order amplitude, so that the effect of the loop
corrections would add up to −61% at two-loop accuracy at the amplitude level. In contrast,
the order-αs corrections in eq. (5.42) from αsc

(1)
γγ and δC1

Ψ amount to about 3%, and the
corrections proportional to ELO

ηc is about −10% compared to the leading-order amplitude.
The remaining corrections from α2

sc
(2)
v , δNC

Ψ , δC2
Ψ , δRS′

Ψ , and the cross term αsc
(1)
v δC1

Ψ add
up to about +14% of the leading-order amplitude, so that the central value for the decay
rate that we obtain is about 7% larger than the leading-order value at the amplitude level,
or about 13% larger at the squared amplitude level. Inclusion of the corrections to the
wavefunctions at the origin in eq. (5.42) has improved the convergence of the corrections
of higher orders in αs and v. If we compute the decay rate by expanding the expression
in eq. (5.42) at the squared amplitude level, as we have done for the leptonic decay rates
of J/ψ and ψ(2S), we obtain Γ(ηc → γγ) = 6.7+3.0

−2.5 keV, which agrees well with eq. (5.43)
within uncertainties.

The numerical result for the two-photon decay rate of ηc(2S) is

Γ(ηc(2S)→ γγ) = 3.0+0.4
−0.7

+0.1
−0.0

+1.3
−1.0 ± 0.6 keV = 3.0+1.4

−1.3 keV, (5.44)

where the uncertainties are as in eq. (5.35). The central value of the decay
rate is about 19% smaller than the leading-order value Γ(ηc(2S) → γγ)|LO =
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Figure 6. The non-Coulombic corrections δNC
Ψ at finite r0 for the bottomonium 1S (solid lines),

2S (dashed lines), and 3S (dot-dashed lines) states, for spin triplet (black) and spin singlet (red).
The r0 dependences are mild for the range 0.05GeV−1 < r0 < 0.2GeV−1 that we consider.

16Ncπα
2e4
Q|ΨLO

ηc(2S)(0)|2/m2
ηc(2S) = 3.7 keV. If we use the expression for the decay rate

obtained by expanding eq. (5.43) at the squared amplitude level, we obtain Γ(ηc(2S) →
γγ) = 3.0+1.4

−1.5 keV, which agrees well with eq. (5.44) within uncertainties. We note that the
result for the decay rate in eq. (5.44) disagrees with existing experimental values of the
decay rate in refs. [80, 81], which disagree with each other.

5.3 Numerical results for S-wave bottomonia

Now we compute the MS-renormalized wavefunctions at the origin for the 1S, 2S, and 3S
bottomonium states. We identify the spin-triplet states as Υ(nS), while the spin-singlet
states correspond to ηb(nS), where n = 1, 2, and 3. The calculations for bottomonia are
done similarly as the calculations for charmonium states, except that we use the bottom
quark RS′ mass for m, set nf = 4, and choose the central value of the QCD renormalization
scale to be µR = 5GeV. The range for r0 is again determined from numerically checking the
approximate relation in eq. (4.41). We choose the central value for r0 to be r0 = 0.1GeV−1,
and vary r0 between 0.05GeV−1 and 0.2GeV−1. We set the MS scale Λ to be the bottom
quark mass m. We use the measured masses of the Υ(nS) and ηb(nS) states from ref. [79].
Because the mass of the ηb(3S) state has not been measured, we estimate mηb(3S) by
mΥ(3S) − (mΥ(2S) −mηb(2S)), assuming that the hyperfine splitting is same for the 2S and
3S states.

We list the numerical results for the LO wavefunctions at the origin, the LO binding
energies, and the corrections to the wavefunctions at the origin relative to the LO wavefunc-
tions at the origin in table 2. The relative corrections δNC

Ψ , δC1
Ψ , δC2

Ψ , and δRS′
Ψ are defined

in the previous section. We show the r0 dependence of the non-Coulombic correction δNC
Ψ

in figure 6.
The results for the LO binding energies for the 1S, 2S and 3S states in table 2 are

roughly compatible with the mass differences between Υ(1S), Υ(2S), and Υ(3S) states.
We see that the non-Coulombic corrections from 1/m and 1/m2 potentials, given by δNC

Ψ
in table 2, are large and positive for the 1S, 2S, and 3S states, although the relative
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State ΨLO(0) (GeV3/2) ELO (GeV) δNC
Ψ |S2=2 δNC

Ψ |S2=0 δC1
Ψ δC2

Ψ δRS′

Ψ

1S 0.496 0.023 0.305 0.405 0.241 −0.018 0.016

2S 0.423 0.417 0.311 0.376 0.108 −0.009 0.013

3S 0.400 0.723 0.332 0.384 0.068 −0.003 0.012

Table 2. LO wavefunctions at the origin, LO binding energies and the relative corrections to the
wavefunctions at the origin in the MS scheme at scale Λ = m for 1S, 2S, and 3S bottomonium
states. δNC

Ψ is the correction from the 1/m and 1/m2 potentials, δC1
Ψ and δC2

Ψ are Coulombic
corrections at first and second order in QMPT, respectively, and δRS′

Ψ is the correction from the
RS′ subtraction term. The δNC

Ψ , δC1
Ψ , δC2

Ψ , and δRS′

Ψ are dimensionless.

sizes of the corrections are smaller than the case of charmonium 1S and 2S states. As
it was in the case of charmonia, the order-α2

s corrections to the SDCs in appendix C are
large and negative at Λ = m, so that if we combine the pNRQCD expressions of the
LDMEs with the SDCs, large cancellations will occur between the order-α2

s corrections
to the SDCs and the corrections to the wavefunctions at the origin. The contribution
from the long-distance part of the 1/m potential, originating from the second term in the
expression for the 1/m potential in eq. (5.22), amounts to about +4%, +2%, and +2%
of the LO wavefunction at the origin for the 1S, 2S, and 3S states, respectively, which
are less than half of the corresponding corrections to the charmonium wavefunctions at
the origin. We note that while the Coulombic corrections at first order are positive, the
Coulombic corrections at second order are small and negative, signaling good convergence
of the Coulombic corrections. The corrections from the renormalon subtraction term δRS′

Ψ
are small.

As it was in the case of charmonium, the LO wavefunctions at the origin in table 2
are larger than what we obtain if we neglect the long-distance nonperturbative part of
the static potential. Neglecting the long-distance part of the static potential reduces the
wavefunctions at the origin for the 2S and 3S states by more than factors of 3 and 6,
respectively, while for the 1S state, the wavefunction at the origin reduces by a factor of
about 1.5. At the squared amplitude level, neglecting the long-distance part of the static
potential can reduce the 2S bottomonium decay rates by almost an order of magnitude,
and the 3S bottomonium decay rates by more than an order of magnitude. Hence, even
for the bottomonium states, the nonperturbative long-distance part of the static potential
is important, especially for the 2S and 3S states.

Now we compute the decay constants fΥ(nS), fηb(nS), and the electromagnetic decay
rates of Υ(nS) and ηb(nS) based on the bottomonium wavefunctions at the origin that we
obtained. We use the same pNRQCD expressions for these quantities in eqs. (5.34), (5.39),
and (5.42) that we used in the previous section for the charmonium states, except that we
set nf = 4 in the SDCs, and use eQ = −1/3 for bottom. We note that the correction terms
in the pNRQCD expressions of the LDMEs in eqs. (2.10) and (2.13) that come from the
gluonic correlators may not be valid for 1S bottomonium states, because the assumption
mv & ΛQCD � mv2 may not hold for these states. Hence, when we make predictions for
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the bottomonium 1S states, we assume that eqs. (5.34), (5.39), and (5.42) are valid up to
corrections of order v2.

The numerical results for the decay constants fΥ(nS) are

fΥ(1S) = 0.621+0.045
−0.000

+0.008
−0.006 ± 0.033± 0.062 GeV = 0.621+0.084

−0.070 GeV, (5.45a)
fΥ(2S) = 0.447+0.002

−0.000
+0.003
−0.003 ± 0.024± 0.013 GeV = 0.447+0.028

−0.027 GeV, (5.45b)
fΥ(3S) = 0.395+0.001

−0.000
+0.006
−0.000 ± 0.021± 0.012 GeV = 0.395+0.025

−0.024 GeV, (5.45c)

where the first uncertainties come from varying µR between 2GeV and 8GeV, and the
second uncertainties come from varying r0 between 0.05GeV−1 and 0.2GeV−1. The third
uncertainties take into account the neglect of the correction −V (2)

p2 (0)/(2m) to the wave-
functions at the origin, which we take to be ±500 MeV/(2m) times the central value.
For fΥ(1S), the final uncertainty comes from the uncalculated order-v2 corrections to the
LDME, which we take to be 10% of the central value. This is based on the typical estimate
v2 ≈ 0.1 for bottomonium states. For fΥ(2S) and fΥ(3S), the final uncertainties come from
the uncalculated corrections of order v3, which we take to be 3% of the central value, based
on the typical estimate v2 ≈ 0.1. We add the uncertainties in quadrature.

Compared to the LO values fLO
Υ(nS), the central values in eq. (5.45) are 12% larger for

Υ(1S), 3% smaller for Υ(2S), and 8% smaller for Υ(3S). If we had ignored the corrections
to the wavefunctions at the origin, the order-αs correction would have been −18% of the
central value, while the order-α2

s correction would have been −20% of the central value, so
that the perturbative corrections to two-loop accuracy would add up to −38% of the central
value. Similarly to the case of charmonia, inclusion of the corrections to the wavefunctions
at the origin reduces the sizes of the corrections considerably, significantly improving the
convergence of the corrections.

The results for fΥ(1S) and fΥ(2S) that we obtain agree well within uncertainties with
the lattice NRQCD determinations fΥ(1S) = 0.639(31)GeV and fΥ(2S) = 0.481(39)GeV
from ref. [82], where the SDCs and the LDMEs are both obtained in lattice regularization,
avoiding the use of the MS scheme. In order to compare with experimental measurements,
we compute the leptonic decay rates of Υ(nS) from fΥ(nS) by using eq. (5.4). We obtain

Γ(Υ(1S)→ e+e−) = 1.11+0.32
−0.24 keV, (5.46a)

Γ(Υ(2S)→ e+e−) = 0.54+0.07
−0.06 keV, (5.46b)

Γ(Υ(3S)→ e+e−) = 0.41+0.05
−0.05 keV, (5.46c)

where we used α = 1/131, which is computed at the scale of the Υ(nS) mass. These results
agree within uncertainties with the experimental values Γ(Υ(1S) → e+e−) = 1.340 ±
0.018 keV, Γ(Υ(2S) → e+e−) = 0.612 ± 0.011 keV, and Γ(Υ(3S) → e+e−) = 0.443 ±
0.008 keV in ref. [79]. If we use the expressions for the decay rates expanded at the squared
amplitude level, we obtain Γ(Υ(1S)→ e+e−) = 1.10+0.23

−0.16 keV, Γ(Υ(2S)→ e+e−) = 0.54±
0.06 keV, and Γ(Υ(3S) → e+e−) = 0.41 ± 0.05 keV, which agree well with the results in
eq. (5.46) within uncertainties.

We note that the result for Γ(Υ(1S) → e+e−) that we obtain also agrees well with
the perturbative QCD prediction at third order in ref. [83]. However, the convergence
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of the perturbative expansion in the perturbative QCD calculation is poor; according to
ref. [83], the size of the corrections at first and second order, when combined, exceeds
the leading-order result, while the third order correction is moderate. In contrast, in the
calculation of the decay rate Γ(Υ(1S) → e+e−) in this work, the loop corrections to the
SDCs and the corrections to the wavefunction at the origin combine to be 25% of the
leading order result at the squared amplitude level. It seems that the improvement of the
convergence has mostly to do with the Coulombic corrections, because the non-Coulombic
correction δNC

Ψ does not change much from the result in table 2 when we neglect the long-
distance, nonperturbative part of the LO potential given by the second term in eq. (5.13).
Hence, the convergence of the perturbative QCD calculation may improve if the logarithms
associated with the loop corrections to the static potential are resummed, as we have done
in computing the Coulombic corrections.

The numerical results for the decay constants fηb(nS) are

fηb(1S) = 0.691+0.117
−0.015

+0.010
−0.010 ± 0.037± 0.069 GeV = 0.691+0.141

−0.080 GeV, (5.47a)

fηb(2S) = 0.471+0.006
−0.004

+0.005
−0.002 ± 0.025± 0.014 GeV = 0.471+0.030

−0.029 GeV, (5.47b)

fηb(3S) = 0.403+0.000
−0.002

+0.004
−0.000 ± 0.021± 0.012 GeV = 0.403+0.026

−0.025 GeV, (5.47c)

where the uncertainties are as in eq. (5.45). We neglect the small uncertainty from the
scale dependence of the correlator E3. We add the uncertainties in quadrature. Compared
to the LO results fLO

ηb(nS), the central values in eq. (5.47) are 23% larger for ηb(1S), 1%
larger for ηb(2S), and 7% smaller for ηb(3S). If we had ignored the corrections to the
wavefunctions at the origin, the order-αs correction would have been −14% of the central
value, while the order-α2

s correction would have been −24% of the central value, so that
the perturbative corrections to two-loop accuracy would add up to −38% of the central
value. Inclusion of the corrections to the wavefunctions at the origin reduces the sizes
of the corrections considerably, especially for ηb(2S) and ηb(3S), greatly improving the
convergence of the corrections.

The numerical results for the decay rates Γ(ηb(nS)→ γγ) are

Γ(ηb(1S)→ γγ) = 0.433+0.142
−0.016

+0.013
−0.012

+0.047
−0.045 ± 0.043 keV = 0.433+0.165

−0.065 keV, (5.48a)

Γ(ηb(2S)→ γγ) = 0.194+0.003
−0.002

+0.004
−0.001

+0.021
−0.020 ± 0.006 keV = 0.194+0.022

−0.021 keV, (5.48b)

Γ(ηb(3S)→ γγ) = 0.141+0.000
−0.005

+0.003
−0.001

+0.015
−0.014 ± 0.004 keV = 0.141+0.016

−0.015 keV, (5.48c)

where the uncertainties are as in fΥ(nS). We add the uncertainties in quadrature. Compared
to the LO calculation of the decay rates, the corrections from loop corrections to the SDCs
and the corrections to the wavefunctions at the origin combine to be about 58%, 15%,
and 3% for the ηb(1S), ηb(2S), and ηb(3S) states, respectively. At the amplitude level, the
corrections amount to about 26%, 7%, and 2% for the ηb(1S), ηb(2S), and ηb(3S) states,
respectively. If we had ignored the corrections to the wavefunctions at the origin, the order-
αs correction would have been −11%, and the order-α2

s correction would have been −26%
of the central value at the amplitude level, so that the loop corrections to two-loop accuracy
would add up to −38% of the leading-order amplitude. By the inclusion of the corrections
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to the wavefunctions at the origin, the sizes of the corrections are reduced considerably
for the ηb(2S) and ηb(3S) states, while the improvement is moderate for the ηb(1S) state.
If we use the expressions for the decay rates expanded at the squared amplitude level,
we obtain Γ(ηb(1S) → γγ) = 0.422+0.155

−0.064 keV, Γ(ηb(2S) → γγ) = 0.196 ± 0.022 keV, and
Γ(ηb(3S)→ γγ) = 0.142± 0.016 keV, which agree well with the results in eq. (5.48).

6 Summary and discussion

In this paper, we have computed the wavefunctions at the origin of S-wave heavy quarkonia
in the MS renormalization scheme. We include the nonperturbative long-distance contribu-
tions to the potential, which are neglected in perturbative QCD calculations. We compute
corrections to the wavefunctions at the origin at subleading orders in 1/m in position
space, where the ultraviolet divergences are regulated by using finite-r regularization. The
position-space expressions for the corrections to the wavefunctions at the origin are given
in section 3. The wavefunctions at the origin in finite-r regularization is then converted to
the MS scheme by computing the scheme conversion in perturbative QCD. The result for
the scheme conversion coefficient is given in section 4. We use the results for the wavefunc-
tions at the origin to make first-principles based, model-independent predictions of decay
constants and electromagnetic decay rates of S-wave charmonium and bottomonium states
in section 5.

The predictions for the electromagnetic decay rates of J/ψ, ψ(2S), ηc, and Υ(nS) states
in this work agree with experimental measurements within uncertainties. The predictions
for the J/ψ and ηc decay constants agree within uncertainties with lattice QCD calculations
in ref. [65], which make use of relativistic charm quarks. The predictions for the Υ(1S)
and Υ(2S) decay constants agree with the lattice NRQCD determinations in ref. [82],
where lattice regularization is used to compute both the short-distance coefficients and the
NRQCD matrix elements.

The calculation of the wavefunctions at the origin in this work contains several im-
provements compared to existing model dependent methods. First of all, in this work, we
include potentials at leading and subleading orders in 1/m, which are determined by per-
turbative QCD at short distances, while their nonperturbative behaviors at long distances
are fixed by lattice QCD. Secondly, the ultraviolet divergences that appear in corrections
to the wavefunctions at the origin are properly renormalized in the MS scheme, so that
the wavefunctions at the origin that we obtain have the correct scale dependences that are
expected from perturbative QCD. Finally, the ambiguity in the heavy quark pole mass is
removed by the use of the modified renormalon subtracted mass, whose numerical values
are accurately known. These improvements are generally not possible in potential-model
calculations.

Because the wavefunctions at the origin that we have computed have the correct scale
dependence that reproduce the anomalous dimensions of NRQCD LDMEs, the depen-
dences on the NRQCD factorization scale cancel completely through two-loop order in the
pNRQCD expressions for the decay constants and electromagnetic decay rates. Together
with the order-by-order cancellation of the dependence on the QCD renormalization scale,
this greatly reduces the uncertainty associated with scale dependences.
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A novel feature of the calculation of the decay constants and decay rates in this work
is that large cancellations occur between the corrections to the wavefunctions at the ori-
gin and the perturbative corrections to the short-distance coefficients. These cancellations
substantially improve the convergence of the expansion in αs and v. This may have im-
portant implications in understanding the appearance of large perturbative corrections in
calculations of short-distance coefficients in the MS scheme. A possible explanation of the
cancellations is that, due to the confining nature of the nonperturbative potentials, includ-
ing the long-distance contributions to the potentials in calculating the wavefunctions at
the origin may have the effect of introducing an infrared cutoff, so that the renormalon
ambiguities associated with the infrared contributions of loop corrections in perturbative
QCD are resolved.

The pNRQCD expressions of the wavefunctions at the origin, as well as the decay con-
stants and decay rates, depend on gluonic correlators, whose values are in general not well
known. Especially, the correction from the velocity-dependent potential at zero distance,
which is given by a gluonic correlator whose size is of order ΛQCD, is the largest source of
uncertainties, with the exception of the bottomonium 1S states. Improved determinations
of the gluonic correlators, which can in principle be done in lattice QCD, will be necessary
in further reducing the uncertainties.

The calculation of the renormalization of the wavefunctions at the origin in this work
is accurate to two-loop accuracy. In principle, the calculation in this work can be extended
to three-loop accuracy, by computing the divergent corrections to the wavefunctions at
the origin to second order in the quantum-mechanical perturbation theory, and computing
the scheme conversion from finite-r regularization to the MS scheme to order-α3

s accuracy.
Such a calculation will make possible the inclusion of the long-distance nonperturbative
contributions to the potentials of order 1/m2, because the second-order correction in the
quantum-mechanical perturbation theory is necessary in extending the calculation of the
unitary transformation between on-shell matching and Wilson-loop matching in section 4
to order-1/m2 accuracy.

Finally, we note that the calculation in this paper may be extended to states with
nonzero orbital angular momentum. This necessarily involves considering the orbital an-
gular momentum dependent terms in the potential, as well as the angular dependence of
the wavefunctions in dimensional regularization, which were not present in this work thanks
to the rotational symmetry of the S-wave states. Such calculations will allow us to make
accurate predictions of production and decay rates of P -wave heavy quarkonium states.
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Figure 7. Feynman diagrams for one-loop corrections to the NRQCD LDMEs. Solid lines
are heavy quarks and antiquarks, dashed lines are temporal gluons, and curly lines are transverse
gluons. Open circles represent insertions of the p·A vertex, and filled squares represent the operator
χ†ε · σψ for spin triplet, and χ†ψ for spin singlet.

A Anomalous dimensions

In this appendix, we compute the anomalous dimensions of the NRQCD LDMEs that are
given in eqs. (2.3) and (2.5). Although the results are available in refs. [4, 10–13], it can be
useful to compute them through loop calculations in NRQCD, because such calculations
can reveal the origins of the anomalous dimensions which are obscure in perturbative QCD
calculations of SDCs.

The anomalous dimensions can be computed as perturbation series in αs by replacing
the quarkonium states in the definitions of the LDMEs by perturbative QQ̄ states, and
computing loop corrections to the LDMEs, with the vertices coming from the operators
in the NRQCD Lagrangian. The Q and Q̄ in the QQ̄ states are on shell, which have
nonrelativistic 4-momenta (E, q) and (E,−q), respectively, where E = q2/(2m). We work
in Coulomb gauge, and use the NRQCD Feynman rules given in ref. [84]. We use DR in
d = 4− 2ε spacetime dimensions, where the anomalous dimensions are simply given by the
coefficients of the 1/ε poles that are associated with UV divergences.

The NRQCD loop integrals are evaluated in the following way. First, we integrate
over the temporal components of the loop momenta, using contour integration. Then, we
expand the integrand in powers of 1/m, which is necessary in preserving the nonrelativistic
power counting in DR. Finally, we integrate over the spatial components of the loop mo-
menta, regulating the resulting divergences in DR. The anomalous dimension is given by
the coefficients of the single UV poles, after differentiating and multiplying by gs =

√
4παs.

A.1 One-loop anomalous dimension at relative order v2

We first consider the one-loop corrections to the NRQCD LDMEs 〈0|χ†ε · σψ|QQ̄〉 and
〈0|χ†ψ|QQ̄〉, which come from the Feynman diagrams in figure 7. Because the one-loop
integrals that we compute only involve single poles in ε, we may set ε = 0 in the loop
integrands without affecting the 1/ε poles.

The one-loop heavy quark self energy from the first two diagrams in figure 7 reads

Σ(E, q) = 2παsCF
∫
k

1
k2 + 4παsCF

m2

∫
k

q2 − (q · k̂)2

(2|k| − iε)[E − |k| − (q + k)2/(2m) + iε] , (A.1)

where the first and second terms come from exchange of temporal and spatial gluons,
respectively. The first term is scaleless power divergent, and therefore can be discarded.
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Since the second term already has a factor of q2/m2, we can expand in powers of 1/m
and keep only the leading contribution. To find the one-loop correction to the quark
field renormalization factor ZNRQCD

Q , we differentiate Σ(E, q) by E and set E = q2/(2m)
to obtain

ZNRQCD
Q = 1− 2παsCF

m2

∫
k

q2 − (q · k̂)2

|k|3
= 1− αsCF

3π
q2

m2
1
εUV

+ · · · , (A.2)

where we only keep the UV pole in the last equality. We use the subscript UV to make
clear that the pole is associated with a UV divergence.

The vertex correction diagram from exchange of a temporal gluon gives

4παsCFm
∫
k

1
k2(k2 + 2q · k − iε) , (A.3)

which does not have a UV divergence, and hence does not contribute to the anomalous
dimension. The transverse-gluon exchange diagram gives

2παsCF
m2

∫
k

q2 − (q · k̂)2

A(k2 −A2 − iε) −
2παsCF
m2

∫
k

q2 − (q · k̂)2

(|k| − iε)(|k|+A− iε)(|k| −A− iε) , (A.4)

where A = (k + q)2/(2m) − q2/(2m) − iε. Here, the first term comes from the residue of
the pole from the quark propagator, and the second term comes from the residue of the
pole from the gluon propagator. Since eq. (A.4) already has a factor of q2/m2, we can keep
only the leading contribution in the 1/m expansion, which gives

2παsCF
m2

∫
k

q2 − (q · k̂)2

A(k2 − iε) −
2παsCF
m2

∫
k

q2 − (q · k̂)2

|k|3
= −αsCF3π

q2

m2
1
εUV

+ · · · , (A.5)

where we only keep the UV pole. We note that the first term on the left-hand side does not
have a UV divergence, and the UV pole comes only from the second term. It can be shown
that if we replace the p · A vertices with σ · B vertices, the transverse-gluon exchange
diagram does not produces logarithmic UV divergences.

Since the diagrams in figure 7 give rise to logarithmic UV divergences at relative order
αsv

2 already at leading power in the 1/m expansion, it is not necessary to consider vertices
from higher dimensional operators in the NRQCD Lagrangian. We combine eqs. (A.2)
and (A.5) to find the UV pole in the one-loop correction to the NRQCD LDME 〈0|χ†ε ·
σψ|QQ̄〉, which reads

〈0|χ†ε · σψ|QQ̄〉|one loop = −2αsCF
3π

q2

m2
1
εUV
〈0|χ†ε · σψ|QQ̄〉|tree + · · ·

= −4αsCF
3πm2

1
2εUV

〈0|χ†ε · σ
(
− i

2
←→
D

)2
ψ|QQ̄〉|tree + · · · ,(A.6)

where we used 〈0|χ†ε · σ(− i
2
←→
D )2ψ|QQ̄〉 = q2〈0|χ†ε · σψ|QQ̄〉 at tree level. This confirms

the order-αsv2 term of the anomalous dimension in eq. (2.3). Similarly, the UV pole in the
one-loop correction to the LDME 〈0|χ†ψ|QQ̄〉 is

〈0|χ†ψ|QQ̄〉|one loop = −4αsCF
3πm2

1
2εUV

〈0|χ†
(
− i

2
←→
D

)2
ψ|QQ̄〉|tree + · · · , (A.7)

which confirms the order-αsv2 term of the anomalous dimension in eq. (2.5).
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Figure 8. Feynman diagrams for two-loop corrections to the NRQCD LDMEs that produce log-
arithmic UV divergences. There are additional diagrams that can be obtained from charge conju-
gation, which we do not show here. Solid lines are heavy quarks and antiquarks, dashed lines are
temporal gluons, and curly lines are transverse gluons. Open and filled circles represent insertions
of the p ·A vertex and the spin-dependent σ ·B vertex, respectively. Filled squares represent the
operator χ†ε · σψ for spin triplet, and χ†ψ for spin singlet.

Since the logarithmic UV divergences in the vertex correction diagrams come from the
contribution from the gluon pole, there are no contributions to the anomalous dimension at
relative order αsv2 that comes from gluon exchanges between the quark and the antiquark
when the virtual quark or the virtual antiquark is on shell. Hence, at one loop level, there
is no contribution to the anomalous dimension that comes from exchanges of potentials
between the Q and Q̄. This is consistent with the pNRQCD expressions of the LDMEs in
eqs. (2.10) and (2.13), where the one-loop anomalous dimension comes from the gluonic
correlator E3, and not from corrections to the wavefunctions at the origin.

A.2 Two-loop anomalous dimension at leading order in v

Now let us consider the UV divergences in the two-loop corrections to the NRQCD LDMEs.
Since we work at leading order in v, we can set the relative momentum q between the quark
and antiquark to zero. The two-loop diagrams that contain logarithmic UV divergences are
shown in figure 8. We neglect diagrams that do not contain logarithmic UV divergences,
most of which are scaleless power divergent, and hence vanish in DR. As we will see later, in
the Coulomb gauge the diagrams only involve single poles in ε, and hence, we can set ε = 0
in the numerators of loop integrands without affecting the 1/ε poles. The non-Abelian
diagrams yield

16π2α2
sCACF

∫
k

∫
`

k2 − (k · ˆ̀)2

`2k2(k + `)4 = α2
sCACF

8
1
εUV

+ · · · , (A.8)

where we only keep the UV pole. The spin-independent ladder diagrams yield

16π2α2
sC

2
F

∫
k

∫
`

k2 − (k · ˆ̀)2

k4`2(k + `)2 = α2
sC

2
F

8
1
εUV

+ · · · , (A.9)

where again we only keep the UV pole. The spin-dependent ladder diagrams give

4π2α2
sC

2
F

∫
k

∫
`

(
δil − ˆ̀i ˆ̀l

k4`2(k + `)2 + δil − ˆ̀i ˆ̀l

k2`4(k + `)2

)
εijk`jσk ⊗ σnεlmn`m, (A.10)

where we use the notation ⊗ to make clear that the Pauli matrix on the left acts on the
quark line, while the one on the right acts on the antiquark line. We first integrate over
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k, and average over the angles of ` to obtain the following UV-divergent contribution from
the spin-dependent ladder diagrams:

π2α2
sC

2
F

∫
`

1
|`|3+2ε

σi ⊗ σi
3 = α2

sC
2
F

8
1
εUV

σi ⊗ σi
3 + · · · , (A.11)

where again we keep only the UV pole. The spin-dependent factor σi ⊗ σi yields, for
spin triplet,

1
3σiε · σσi = −1

3ε · σ, (A.12)

and for spin singlet,
1
3σiσi = 1. (A.13)

We collect the results in eqs. (A.8), (A.9), and (A.11) to obtain the logarithmic UV diver-
gence in the two-loop correction to the LDME 〈0|χ†ε · σψ|QQ̄〉, which reads

〈0|χ†ε · σψ|QQ̄〉|two loop = α2
sCF

(
CF
3 + CA

2

) 1
4εUV

〈0|χ†ε · σψ|QQ̄〉|tree + · · · . (A.14)

This reproduces the order-α2
s term of the anomalous dimension in eq. (2.3). Similarly, the

logarithmic UV divergence in the two-loop correction to the LDME 〈0|χ†ψ|QQ̄〉 is

〈0|χ†ψ|QQ̄〉|two loop = α2
sCF

(
CF + CA

2

) 1
4εUV

〈0|χ†ψ|QQ̄〉|tree + · · · , (A.15)

which agrees with the order-α2
s term of the anomalous dimension in eq. (2.5).

We note that in the calculation of the two-loop diagrams in figure 8, at least one of
the integrations over the temporal components of the loop momenta must involve residues
of the poles from the quark or antiquark propagators in order to produce logarithmic UV
divergences. This is clear in the ladder diagrams, because the temporal-gluon propagator
does not have a pole in the temporal components of loop momenta. For the non-Abelian
diagrams, it can be shown that if we neglect the pole that comes from the transverse gluon
propagator in the integration over `0, we obtain the same UV pole as in eq. (A.8). This
shows that the two-loop anomalous dimensions come solely from exchanges of potentials
between the Q and Q̄. This is consistent with the pNRQCD expressions of the NRQCD
LDMEs in eqs. (2.10) and (2.13), which imply that the two-loop anomalous dimension can
only come from the wavefunctions at the origin.

B Potentials in perturbative QCD

In this appendix, we list the short-distance behaviors of the potentials, which are obtained
from perturbative QCD. In perturbative QCD, the static potential is given through relative
order α2

s by [57, 58]

V (0)(r)
∣∣
pert = −αs(µ)CF

r

[
1 +

2∑
n=1

(
αs(µ)

4π

)n
an(r;µ)

]
+O(α3

s), (B.1)
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where αs = αs(µ) is the MS-renormalized QCD coupling constant at scale µ, and the
functions an(r;µ) are defined by

a1(r;µ) = 31CA − 20TFnf
9 + 2β0 log(µeγEr), (B.2a)

a2(r;µ) =
400n2

fT
2
F

81 − CFTFnf
(55

3 − 16 ξ(3)
)

+C2
A

(
4343
162 + 16π2 − π4

4 + 22 ξ(3)
3

)
− CATFnf

(1798
81 + 56 ξ(3)

3

)

+π2

3 β
2
0 + (4ā1β0 + 2β1) log(µeγEr) + 4β2

0 log2(µeγEr), (B.2b)

with β0 = 11
3 CA −

4
3TFnf , β1 = 34

3 C
2
A − 20

3 CATFnf − 4CFTFnf , TF = 1
2 , γE is the Euler-

Mascheroni constant, nf is the number of light quark flavors, and ā1 = a1(r = e−γE/µ;µ).
We note that the dependence on µ cancels order by order in eq. (B.1). The corrections at
relative order α3

s have been computed in refs. [38, 85–88], and the position-space expression
can be found in ref. [55].

The forms of the 1/m and 1/m2 potentials generally depend on the matching scheme
in which the potentials are determined. In on-shell matching, where we match on-shell
S-matrix elements in NRQCD and pNRQCD in momentum space, we obtain [30, 50, 51,
54, 89–92]

V (1)(r)
∣∣OS
pert =

α2
sCF (1

2CF − CA)
2r2 +O(α3

s), (B.3a)

V (2)
r (r)

∣∣OS
pert = 0 +O(α2

s), (B.3b)

V
(2)
p2 (r)

∣∣OS
pert = −αsCF

r
+O(α2

s), (B.3c)

V
(2)
S2 (r)

∣∣OS
pert = 4παsCF

3 δ(3)(r) +O(α2
s). (B.3d)

We use the superscript OS to denote the on-shell matching scheme.
In Wilson-loop matching, the potentials are given in terms of the rectangular Wilson

loopWr×T with spatial size r and time extension T , with insertions of the gluon fields. The
nonperturbative expressions for the 1/m potential and the velocity-dependent potential in
Wilson loop matching are given by [23, 24]

V (1)(r)
∣∣WL = − lim

T→∞

∫ T

0
dt t

(
〈〈gsEi

1(t)gsEj
1(0)〉〉 − 〈〈gsEi

1(t)〉〉〈〈gsEj
1(0)〉〉

)
, (B.4a)

V
(2)
p2 (r)

∣∣WL = ir̂ir̂j lim
T→∞

∫ T

0
dt t2

(
〈〈gsEi

1(t)gsEj
1(0)〉〉 − 〈〈gsEi

1(t)〉〉〈〈gsEj
1(0)〉〉

)
+ir̂ir̂j lim

T→∞

∫ T

0
dt t2

(
〈〈gsEi

1(t)gsEj
2(0)〉〉 − 〈〈gsEi

1(t)〉〉〈〈gsEj
2(0)〉〉

)
, (B.4b)

where 〈〈· · · 〉〉 ≡ 〈· · ·Wr×T 〉/〈Wr×T 〉, r̂ = r/|r|, the angular brackets 〈· · · 〉 stand for the
average over the Yang-Mills action, and gsE1(t) (gsE2(t)) are insertions of the chromo-
electric field Ei = Gi0 at time t on the quark (antiquark) line of the Wilson loop, with
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Gµν being the gluon field-strength tensor. The superscript WL denotes that the potential
is obtained in Wilson loop matching. The complicated expressions for V (2)

r (r) and V (2)
S2 (r)

can be found in ref. [24]. The short-distance behavior of the potentials in Wilson loop
matching can be obtained by computing the nonperturbative definitions in perturbative
QCD [52]. We list the results at leading nonvanishing orders in αs:

V (1)(r)
∣∣WL
pert = −α

2
sCFCA
2r2 +O(α3

s), (B.5a)

V (2)
r (r)

∣∣WL
pert = παsCF δ

(3)(r) +O(α2
s), (B.5b)

V
(2)
p2 (r)

∣∣WL
pert = −αsCF

r
+O(α2

s), (B.5c)

V
(2)
S2 (r)

∣∣WL
pert = 4παsCF

3 δ(3)(r) +O(α2
s). (B.5d)

The potentials from on-shell matching in eq. (B.3) and the potentials from Wilson loop
matching in eq. (B.5) are related by unitary transformations, as described in section 4.4.

C Short-distance coefficients

In this appendix, we list the NRQCD factorization formulas and SDCs for the decay con-
stants and decay rates that we consider in section 5. The NRQCD factorization formula
for the decay constant fV of a vector quarkonium V reads

fV =
√

2mV

mV

(
cv〈0|χ†ε · σψ|V 〉+ dv

m2 〈0|χ
†ε · σ

(
− i

2
←→
D

)2
ψ|V 〉+O(v3)

)
, (C.1)

where mV is the mass of the quarkonium V , and the SDCs cv and dv are given in the MS
scheme by [10, 11, 93–97]

cv = 1− 2αs(m)CF
π

+
(
αs(m)
π

)2 [
C2
F cv,A + CFCAcv,NA

+CFTFnfcv,L + CFTF cv,H
]

+O(α3
s), (C.2a)

dv = −1
6 + 2αsCF

9π

(
1− 3 log m

2

Λ2

)
+O(α2

s), (C.2b)

and

cv,A = 23
8 −

ζ(3)
2 + π2 log 2− 76π2

36 + π2

6 log m
2

Λ2 , (C.3a)

cv,NA = −151
72 −

13
4 ζ(3)− 5π2

6 log 2 + 89π2

144 + π2

4 log m
2

Λ2 , (C.3b)

cv,L = 11
18 , (C.3c)

cv,H = −2π2

9 + 22
9 . (C.3d)

Here, Λ is the scale at which the NRQCD LDMEs are renormalized. The expression for cv
in eq. (C.2a) is valid when αs is evaluated in the MS scheme at the scale m. Since the QCD
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renormalization scale dependence cancels order by order in cv, eq. (C.2a) is still valid if we
replace αs(m) by αs(µR) and add −2αsCF

π × αsβ0
4π log(µ2

R/m
2), which compensates for the

running of αs. We note that the order-α3
s correction to cv have been obtained in ref. [98].

The NRQCD factorization formula for the decay constant fP of a pseudoscalar quarko-
nium P reads

fP =
√

2mP

mP

(
cp〈0|χ†ψ|P 〉+ dp

m2 〈0|χ
†
(
− i

2
←→
D

)2
ψ|P 〉+O(v3)

)
, (C.4)

where mP is the mass of the quarkonium P , and cp and dp read, in the MS
scheme [13, 99, 100],

cp = 1− 3αs(m)CF
2π +

(
αs(m)
π

)2 [
C2
F cp,A + CFCAcp,NA + CFTFnfcp,L

+CFTF cp,H + CFTFX
(p)
sing

]
+O(α3

s), (C.5a)

dp = −1
2 +O(αs), (C.5b)

and

cp,A = 29
16 −

79
8 ζ(2) + 6ζ(2) log 2 + 9

2ζ(3) + 3ζ(2) log m
2

Λ2 , (C.6a)

cp,NA = −17
48 + 17

8 ζ(2)− 6ζ(2) log 2− 3ζ(3) + 3
2ζ(2) log m

2

Λ2 , (C.6b)

cp,L = 1
12 , (C.6c)

cp,H = 43
12 − 2ζ(2), (C.6d)

X
(p)
sing = 5

4ζ(2) + 3ζ(2) log 2− 21
8 ζ(3) + 3

4 iπζ(2). (C.6e)

Again, Λ is the scale at which the NRQCD LDMEs are renormalized. The imaginary part
in X(p)

sing arises from the process QQ̄→ gg → QQ̄, where the gluons are on shell [13].
To the best of the author’s knowledge, the order-αs correction to dp has not been

computed yet. Since the QCD renormalization scale dependence cancels order by order in
cp, eq. (C.5a) is still valid if we replace αs(m) by αs(µR) and add −3αsCF

2π ×
αsβ0
4π log(µ2

R/m
2),

which compensates for the running of αs.
Finally, the two-photon decay rate of a pseudoscalar quarkonium P is given by

Γ(P → γγ) =
8πα2e4

Q

m2
P

∣∣∣∣∣cγγ〈0|χ†ψ|P 〉+ dγγ
m2 〈0|χ

†
(
− i

2
←→
D

)2
ψ|P 〉+O(v3)

∣∣∣∣∣
2

, (C.7)

where the SDCs cγγ and dγγ are given in the MS scheme by [4, 12, 95, 101–106]

cγγ = 1− αs(m)CF
π

(
π2

8 −
5
2

)

+
(
αs(m)
π

)2[π2

2 CF
(
CF + CA

2

)
log

(
m2

Λ2

)
+ f (2)

reg + f
(2)
lbl

]
+O(α3

s), (C.8a)

dγγ = −1
6 + αsCF

π

(
− 7

36 −
4
3 log 2− π2

16 −
2
3 log m

2

Λ2

)
+O(α2

s). (C.8b)
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Here, Λ is the scale at which the NRQCD LDMEs are renormalized. The constants f (2)
reg

and f (2)
lbl have been determined numerically in ref. [104], which read

f (2)
reg = −21.10789797(4)C2

F − 4.79298000(3)CFCA + 0.223672013(2)CFTFnH

−
( 13

144π
2 + 2

3 log(2) + 7
24ζ(3)− 41

36

)
CFTFnf , (C.9a)

f
(2)
lbl =

[
0.73128459 + iπ

(
π2

9 −
5
3

)]
CFTF

∑
q

(
eq
eQ

)2

+
(
0.64696557 + 2.07357556 i

)
CFTFnH , (C.9b)

where nH = 1, eq is the fractional charge of the light quark with flavor q, and the sum runs
over nf light quark flavors. The term f

(2)
lbl in cγγ originates from the process where the QQ̄

decays into gg, which then decays into γγ via a quark loop [104]. The imaginary parts in
f

(2)
lbl arise from the region of loop momenta where the intermediate particles are on shell.
Since the QCD renormalization scale dependence cancels order by order in cγγ , eq. (C.8a)
is still valid if we replace αs(m) by αs(µR) and add −αsCF

π

(
π2

8 −
5
2

)
× αsβ0

4π log(µ2
R/m

2).

D Wavefunctions at the origin in perturbative QCD

If we ignore the nonperturbative long-distance behavior of the static potential, so that
VLO(r) = −αsCF /r, the Schrödinger equation can be solved exactly, and the S-wave
contribution to the Green’s function in position space is known analytically:

GS(r′, r;E) = −αsCFm
2

4π Γ(−λ) exp
(
− 1

2λαsCFm(r< + r>)
)

×1F1(1− λ; 2;αsCFmr</λ)U(1− λ; 2;αsCFmr>/λ), (D.1)

where r< = min(|r|, |r′|), r> = max(|r|, |r′|), λ = αsCF /
√
−4E/m, and

1F1(a; b; z) =
∞∑
k=0

(a)k
(b)k

zk

k! , (D.2a)

U(a; b; z) = 1
Γ(a)

∫ ∞
0

dt e−ztta−1(1 + t)b−a−1. (D.2b)

This result can be obtained by solving the differential equation in eq. (5.24) analytically.
The bound states can be identified from the poles of Γ(−λ), which are located at λ = n

with principal quantum numbers n = 1, 2, 3, . . .. The reduced Green’s functions can also
be obtained analytically from eq. (D.1). This makes possible analytical calculations of
the corrections to the S-wave wavefunctions at the origin. Such a calculation has been
done in the context of heavy quark pair production near threshold in perturbative QCD
in refs. [25–33, 35]. We use the known results in perturbative QCD to check the numerical
procedure used in this paper for computing the divergent corrections to the wavefunctions
at the origin that originate from the 1/m and 1/m2 potentials.

The explicit analytical expressions for the two-loop non-Coulombic corrections to the
wavefunctions at the origin from the 1/m and 1/m2 potentials can be found in ref. [28]
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for the spin-triplet state. Rather than comparing the wavefunctions at the origin, which
depends on the renormalization scheme, it is simpler to compare the corrections to the
decay constant fV , which is scale and scheme independent. At leading order in αs and v,
fV for the spin-triplet nS state is given in perturbative QCD by

fLO
V

∣∣
pert =

√
2Nc

m
|ΨLO

n (0)|, (D.3)

where |ΨLO
n (0)|2 = (αsCFm)3/(8πn3). The corrections to the wavefunctions at the origin

coming from the 1/m and 1/m2 potentials are given in ref. [28] by

|Ψn(0)| = |ΨLO
n (0)| ×

{
1− 1

2α
2
sCF

[15CF
8n2 +

(2
3CF + CA

)
(D.4)

×
(
Hn−1 −

1
n
− log

( 2µfn
αsCFm

))]
+ · · ·

}
,

where µf is a factorization scale, and the ellipsis represent the Coulombic corrections that
we neglect. The wavefunctions at the origin in ref. [28] are renormalized in a scheme that
is different from the MS scheme that we use in this paper, so it is not possible to compare
eq. (D.4) directly with the results in this paper. This scheme dependence cancels in the
decay constant against the scheme dependence in the hard matching coefficient given by
eq. (2) in ref. [28], which is obtained from the direct matching procedure [59]. Since the
non-Coulombic corrections are proportional to α2

sC
2
F and α2

sCFCA, we only need to keep
the contributions that are proportional to C2

F and CFCA in the loop corrections to the hard
matching coefficient. By combining the corrections to the wavefunctions at the origin and
the hard matching coefficient, we obtain the two-loop non-Coulombic correction given by

δNC
f = −1

2α
2
sCF

[15CF
8n2 +

(2
3CF + CA

)(
Hn−1 −

1
n
− log

( 2µfn
αsCFm

))]
+
(
αs
π

)2 [(23
8 −

ζ(3)
2 + 2π2

3 log 2− 35π2

36 + π2

6 log m
2

µ2
f

)
C2
F (D.5)

+
(
− 151

72 −
13
4 ζ(3)− 4π2

3 log 2 + 179π2

144 + π2

4 log m
2

µ2
f

)
CFCA

]
,

where the last two lines correspond to the C2
F and the CFCA terms of the two-loop cor-

rections to the hard matching coefficients in ref. [28]. The µf dependence cancels exactly
between the non-Coulombic corrections to the wavefunctions at the origin and the two-loop
corrections to the hard matching coefficient. Note that the last two lines of eq. (D.5) differ
from the C2

F and the CFCA terms of the two-loop corrections to the SDC cv in eq. (C.2a).
This reflects the difference between the renormalization scheme used in ref. [28] and the
MS scheme used in this work. This analytical result can be compared with the numerical
calculation in this paper, which is given by

δNC
f = δNC

Ψ
∣∣
pert +

(
αs
π

)2 (
C2
F cv,A + CFCAcv,NA

)
, (D.6)
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Figure 9. Comparison of numerical calculations and analytical results for the non-Coulombic
corrections δNC

f to the decay constant of vector quarkonium in perturbative QCD for various values
of αs. Numerical results are shown as filled circles (1S), open circles (2S), and open squares (3S).
The analytical results are shown as solid line (1S), dashed line (2S), and dot-dashed line (3S).

where δNC
Ψ
∣∣
pert is equal to eq. (5.32a), except that we set VLO(r) = −αsCF /r, V (2)

p2 (0) = 0,
and we take the perturbative 1/m and 1/m2 potentials in eq. (B.3). The dependence on
Λ cancels exactly in eq. (D.6) between δNC

Ψ
∣∣
pert and the SDCs cv,A and cv,NA.

We compare the numerical calculation in eq. (D.6) with the analytical result in eq. (D.5)
for n = 1, 2, and 3 in figure 9. We set m = 4.743GeV, r0 = 10−4 GeV−1, and vary αs
between 0.15 and 0.3. The agreement between the numerical calculations and the analytical
results is better than 1%. This agreement demonstrates the validity of the numerical
calculation in this work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] N. Brambilla et al., Heavy quarkonium: progress, puzzles, and opportunities, Eur. Phys. J.
C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].

[2] N. Brambilla et al., QCD and strongly coupled gauge theories: challenges and perspectives,
Eur. Phys. J. C 74 (2014) 2981 [arXiv:1404.3723] [INSPIRE].

[3] W.E. Caswell and G.P. Lepage, Effective Lagrangians for bound state problems in QED,
QCD, and other field theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].

[4] G.T. Bodwin, E. Braaten and G. Lepage, Rigorous QCD analysis of inclusive annihilation
and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. 55 (1997)
5853] [hep-ph/9407339] [INSPIRE].

[5] E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane and T.-M. Yan, Charmonium: the model,
Phys. Rev. D 17 (1978) 3090 [Erratum ibid. 21 (1980) 313] [INSPIRE].

– 55 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1140/epjc/s10052-010-1534-9
https://doi.org/10.1140/epjc/s10052-010-1534-9
https://arxiv.org/abs/1010.5827
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1010.5827
https://doi.org/10.1140/epjc/s10052-014-2981-5
https://arxiv.org/abs/1404.3723
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.3723
https://doi.org/10.1016/0370-2693(86)91297-9
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2C167B%2C437%22
https://doi.org/10.1103/PhysRevD.55.5853
https://arxiv.org/abs/hep-ph/9407339
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9407339
https://doi.org/10.1103/PhysRevD.17.3090
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD17%2C3090%22


J
H
E
P
1
2
(
2
0
2
0
)
0
6
5

[6] W. Buchmüller and S.H.H. Tye, Quarkonia and quantum chromodynamics, Phys. Rev. D
24 (1981) 132 [INSPIRE].

[7] E.J. Eichten and C. Quigg, Quarkonium wave functions at the origin, Phys. Rev. D 52
(1995) 1726 [hep-ph/9503356] [INSPIRE].

[8] G.T. Bodwin, H.S. Chung, D. Kang, J. Lee and C. Yu, Improved determination of
color-singlet nonrelativistic QCD matrix elements for S-wave charmonium, Phys. Rev. D 77
(2008) 094017 [arXiv:0710.0994] [INSPIRE].

[9] H.S. Chung, J. Lee and C. Yu, NRQCD matrix elements for S-wave bottomonia and
Γ[ηb(nS)→ γγ] with relativistic corrections, Phys. Lett. B 697 (2011) 48
[arXiv:1011.1554] [INSPIRE].

[10] A. Czarnecki and K. Melnikov, Two loop QCD corrections to the heavy quark pair
production cross-section in e+e− annihilation near the threshold, Phys. Rev. Lett. 80 (1998)
2531 [hep-ph/9712222] [INSPIRE].

[11] M. Beneke, A. Signer and V.A. Smirnov, Two loop correction to the leptonic decay of
quarkonium, Phys. Rev. Lett. 80 (1998) 2535 [hep-ph/9712302] [INSPIRE].

[12] A. Czarnecki and K. Melnikov, Charmonium decays: J/ψ → e+e− and ηc → γγ, Phys. Lett.
B 519 (2001) 212 [hep-ph/0109054] [INSPIRE].

[13] B.A. Kniehl, A. Onishchenko, J.H. Piclum and M. Steinhauser, Two-loop matching
coefficients for heavy quark currents, Phys. Lett. B 638 (2006) 209 [hep-ph/0604072]
[INSPIRE].

[14] G.T. Bodwin, S. Kim and D. Sinclair, Matrix elements for the decays of S and P wave
quarkonium: An exploratory study, Nucl. Phys. B Proc. Suppl. 34 (1994) 434.

[15] G.T. Bodwin, D.K. Sinclair and S. Kim, Quarkonium decay matrix elements from quenched
lattice QCD, Phys. Rev. Lett. 77 (1996) 2376 [hep-lat/9605023] [INSPIRE].

[16] G.T. Bodwin, D.K. Sinclair and S. Kim, Lattice calculation of quarkonium decay matrix
elements, Int. J. Mod. Phys. A 12 (1997) 4019 [hep-ph/9609371] [INSPIRE].

[17] G.T. Bodwin, D.K. Sinclair and S. Kim, Bottomonium decay matrix elements from lattice
QCD with two light quarks, Phys. Rev. D 65 (2002) 054504 [hep-lat/0107011] [INSPIRE].

[18] G.T. Bodwin, J. Lee and D.K. Sinclair, Spin correlations and velocity-scaling in NRQCD
matrix elements, AIP Conf. Proc. 756 (2005) 384 [hep-lat/0412006] [INSPIRE].

[19] G.T. Bodwin, J. Lee and D.K. Sinclair, Spin correlations and velocity-scaling in color-octet
NRQCD matrix elements, Phys. Rev. D 72 (2005) 014009 [hep-lat/0503032] [INSPIRE].

[20] A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and
NRQED, Nucl. Phys. B Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].

[21] N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: an effective theory for
heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].

[22] N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy
quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].

[23] N. Brambilla, A. Pineda, J. Soto and A. Vairo, The QCD potential at O(1/m), Phys. Rev.
D 63 (2001) 014023 [hep-ph/0002250] [INSPIRE].

– 56 –

https://doi.org/10.1103/PhysRevD.24.132
https://doi.org/10.1103/PhysRevD.24.132
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD24%2C132%22
https://doi.org/10.1103/PhysRevD.52.1726
https://doi.org/10.1103/PhysRevD.52.1726
https://arxiv.org/abs/hep-ph/9503356
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9503356
https://doi.org/10.1103/PhysRevD.77.094017
https://doi.org/10.1103/PhysRevD.77.094017
https://arxiv.org/abs/0710.0994
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.0994
https://doi.org/10.1016/j.physletb.2011.01.033
https://arxiv.org/abs/1011.1554
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.1554
https://doi.org/10.1103/PhysRevLett.80.2531
https://doi.org/10.1103/PhysRevLett.80.2531
https://arxiv.org/abs/hep-ph/9712222
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9712222
https://doi.org/10.1103/PhysRevLett.80.2535
https://arxiv.org/abs/hep-ph/9712302
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9712302
https://doi.org/10.1016/S0370-2693(01)01129-7
https://doi.org/10.1016/S0370-2693(01)01129-7
https://arxiv.org/abs/hep-ph/0109054
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0109054
https://doi.org/10.1016/j.physletb.2006.05.023
https://arxiv.org/abs/hep-ph/0604072
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0604072
https://doi.org/10.1016/0920-5632(94)90410-3
https://doi.org/10.1103/PhysRevLett.77.2376
https://arxiv.org/abs/hep-lat/9605023
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9605023
https://doi.org/10.1142/S0217751X97002176
https://arxiv.org/abs/hep-ph/9609371
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9609371
https://doi.org/10.1103/PhysRevD.65.054504
https://arxiv.org/abs/hep-lat/0107011
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0107011
https://doi.org/10.1063/1.1921001
https://arxiv.org/abs/hep-lat/0412006
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0412006
https://doi.org/10.1103/PhysRevD.72.014009
https://arxiv.org/abs/hep-lat/0503032
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0503032
https://doi.org/10.1016/S0920-5632(97)01102-X
https://arxiv.org/abs/hep-ph/9707481
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9707481
https://doi.org/10.1016/S0550-3213(99)00693-8
https://arxiv.org/abs/hep-ph/9907240
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9907240
https://doi.org/10.1103/RevModPhys.77.1423
https://arxiv.org/abs/hep-ph/0410047
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0410047
https://doi.org/10.1103/PhysRevD.63.014023
https://doi.org/10.1103/PhysRevD.63.014023
https://arxiv.org/abs/hep-ph/0002250
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0002250


J
H
E
P
1
2
(
2
0
2
0
)
0
6
5

[24] A. Pineda and A. Vairo, The QCD potential at O(1/m2): complete spin dependent and spin
independent result, Phys. Rev. D 63 (2001) 054007 [Erratum ibid. 64 (2001) 039902]
[hep-ph/0009145] [INSPIRE].

[25] A.H. Hoang and T. Teubner, Top quark pair production at threshold: Complete
next-to-next-to-leading order relativistic corrections, Phys. Rev. D 58 (1998) 114023
[hep-ph/9801397] [INSPIRE].

[26] K. Melnikov and A. Yelkhovsky, Top quark production at threshold with O(α2
S) accuracy,

Nucl. Phys. B 528 (1998) 59 [hep-ph/9802379] [INSPIRE].

[27] K. Melnikov and A. Yelkhovsky, The b quark low scale running mass from Υ sum rules,
Phys. Rev. D 59 (1999) 114009 [hep-ph/9805270] [INSPIRE].

[28] A.A. Penin and A.A. Pivovarov, Bottom quark pole mass and |Vcb| matrix element from
R(e+e− → bb̄) and Γ(s1)(b→ clνl) in the next to next-to-leading order, Nucl. Phys. B 549
(1999) 217 [hep-ph/9807421] [INSPIRE].

[29] O.I. Yakovlev, Top quark production near threshold: NNLO QCD correction, Phys. Lett. B
457 (1999) 170 [hep-ph/9808463] [INSPIRE].

[30] M. Beneke, A. Signer and V.A. Smirnov, Top quark production near threshold and the top
quark mass, Phys. Lett. B 454 (1999) 137 [hep-ph/9903260] [INSPIRE].

[31] T. Nagano, A. Ota and Y. Sumino, O(α2
s) corrections to e+e− → tt̄ total and differential

cross-sections near threshold, Phys. Rev. D 60 (1999) 114014 [hep-ph/9903498] [INSPIRE].

[32] A.H. Hoang and T. Teubner, Top quark pair production close to threshold: top mass, width
and momentum distribution, Phys. Rev. D 60 (1999) 114027 [hep-ph/9904468] [INSPIRE].

[33] A.A. Penin and A.A. Pivovarov, Analytical results for e+e− → tt̄ and γγ → tt̄ observables
near the threshold up to the next-to-next-to leading order of NRQCD, Phys. Atom. Nucl. 64
(2001) 275 [Yad. Fiz. 64 (2001) 323] [hep-ph/9904278] [INSPIRE].

[34] A.H. Hoang et al., Top-anti-top pair production close to threshold: synopsis of recent NNLO
results, Eur. Phys. J. direct 2 (2000) 3 [hep-ph/0001286] [INSPIRE].

[35] A.A. Penin, A. Pineda, V.A. Smirnov and M. Steinhauser, Spin dependence of heavy
quarkonium production and annihilation rates: complete next-to-next-to-leading logarithmic
result, Nucl. Phys. B 699 (2004) 183 [Erratum ibid. 829 (2010) 398] [hep-ph/0406175]
[INSPIRE].

[36] A. Pineda and J. Soto, Matching at one loop for the four quark operators in NRQCD, Phys.
Rev. D 58 (1998) 114011 [hep-ph/9802365] [INSPIRE].

[37] A. Pineda and J. Soto, Potential NRQED: the positronium case, Phys. Rev. D 59 (1999)
016005 [hep-ph/9805424] [INSPIRE].

[38] N. Brambilla, A. Pineda, J. Soto and A. Vairo, The infrared behavior of the static potential
in perturbative QCD, Phys. Rev. D 60 (1999) 091502 [hep-ph/9903355] [INSPIRE].

[39] N. Brambilla, D. Eiras, A. Pineda, J. Soto and A. Vairo, Inclusive decays of heavy
quarkonium to light particles, Phys. Rev. D 67 (2003) 034018 [hep-ph/0208019] [INSPIRE].

[40] N. Brambilla, H.S. Chung, D. Müller and A. Vairo, Decay and electromagnetic production of
strongly coupled quarkonia in pNRQCD, JHEP 04 (2020) 095 [arXiv:2002.07462]
[INSPIRE].

– 57 –

https://doi.org/10.1103/PhysRevD.64.039902
https://arxiv.org/abs/hep-ph/0009145
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0009145
https://doi.org/10.1103/PhysRevD.58.114023
https://arxiv.org/abs/hep-ph/9801397
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9801397
https://doi.org/10.1016/S0550-3213(98)00348-4
https://arxiv.org/abs/hep-ph/9802379
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9802379
https://doi.org/10.1103/PhysRevD.59.114009
https://arxiv.org/abs/hep-ph/9805270
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9805270
https://doi.org/10.1016/S0550-3213(99)00182-0
https://doi.org/10.1016/S0550-3213(99)00182-0
https://arxiv.org/abs/hep-ph/9807421
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9807421
https://doi.org/10.1016/S0370-2693(99)00507-9
https://doi.org/10.1016/S0370-2693(99)00507-9
https://arxiv.org/abs/hep-ph/9808463
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9808463
https://doi.org/10.1016/S0370-2693(99)00343-3
https://arxiv.org/abs/hep-ph/9903260
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9903260
https://doi.org/10.1103/PhysRevD.60.114014
https://arxiv.org/abs/hep-ph/9903498
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9903498
https://doi.org/10.1103/PhysRevD.60.114027
https://arxiv.org/abs/hep-ph/9904468
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9904468
https://doi.org/10.1134/1.1349450
https://doi.org/10.1134/1.1349450
https://arxiv.org/abs/hep-ph/9904278
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9904278
https://doi.org/10.1007/s1010500c0003
https://arxiv.org/abs/hep-ph/0001286
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0001286
https://doi.org/10.1016/j.nuclphysb.2009.12.009
https://arxiv.org/abs/hep-ph/0406175
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0406175
https://doi.org/10.1103/PhysRevD.58.114011
https://doi.org/10.1103/PhysRevD.58.114011
https://arxiv.org/abs/hep-ph/9802365
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9802365
https://doi.org/10.1103/PhysRevD.59.016005
https://doi.org/10.1103/PhysRevD.59.016005
https://arxiv.org/abs/hep-ph/9805424
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9805424
https://doi.org/10.1103/PhysRevD.60.091502
https://arxiv.org/abs/hep-ph/9903355
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9903355
https://doi.org/10.1103/PhysRevD.67.034018
https://arxiv.org/abs/hep-ph/0208019
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0208019
https://doi.org/10.1007/JHEP04(2020)095
https://arxiv.org/abs/2002.07462
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.07462


J
H
E
P
1
2
(
2
0
2
0
)
0
6
5

[41] A.V. Manohar, The HQET/NRQCD Lagrangian to order α/m3, Phys. Rev. D 56 (1997)
230 [hep-ph/9701294] [INSPIRE].

[42] N. Brambilla, D. Eiras, A. Pineda, J. Soto and A. Vairo, New predictions for inclusive heavy
quarkonium P wave decays, Phys. Rev. Lett. 88 (2002) 012003 [hep-ph/0109130] [INSPIRE].

[43] K.G. Wilson, Confinement of quarks, [INSPIRE].

[44] L. Susskind, Coarse grained quantum chromodynamics, talk given at the Ecole d’Ete de
Physique Theorique - Weak and Electromagnetic Interactions at High Energy, July
5–August 14, Les Houches, France (1976).

[45] L.S. Brown and W.I. Weisberger, Remarks on the static potential in quantum
chromodynamics, Phys. Rev. D 20 (1979) 3239 [INSPIRE].

[46] A. Pineda, Is there a linear potential at short distances?, Nucl. Phys. B Proc. Suppl. 133
(2004) 190 [hep-ph/0310135] [INSPIRE].

[47] A. Bazavov et al., Determination of αs from the QCD static energy: An update, Phys. Rev.
D 90 (2014) 074038 [Erratum ibid. 101 (2020) 119902] [arXiv:1407.8437] [INSPIRE].

[48] Y. Koma, M. Koma and H. Wittig, Relativistic corrections to the static potential at O(1/m)
and O(1/m**2), PoS(LATTICE2007)111 [arXiv:0711.2322] [INSPIRE].

[49] Y. Koma and M. Koma, Heavy quarkonium spectroscopy in pNRQCD with lattice QCD
input, PoS(LATTICE2012)140 [arXiv:1211.6795] [INSPIRE].

[50] B.A. Kniehl, A.A. Penin, M. Steinhauser and V.A. Smirnov, Non-Abelian α3(s)/(m(q)R2)
heavy quark anti-quark potential, Phys. Rev. D 65 (2002) 091503 [hep-ph/0106135]
[INSPIRE].

[51] B.A. Kniehl, A.A. Penin, V.A. Smirnov and M. Steinhauser, Potential NRQCD and heavy
quarkonium spectrum at next-to-next-to-next-to-leading order, Nucl. Phys. B 635 (2002)
357 [hep-ph/0203166] [INSPIRE].

[52] C. Peset, A. Pineda and M. Stahlhofen, Potential NRQCD for unequal masses and the Bc
spectrum at N3LO, JHEP 05 (2016) 017 [arXiv:1511.08210] [INSPIRE].

[53] Y. Kiyo, A. Pineda and A. Signer, New determination of inclusive electromagnetic decay
ratios of heavy quarkonium from QCD, Nucl. Phys. B 841 (2010) 231 [arXiv:1006.2685]
[INSPIRE].

[54] M. Beneke, Y. Kiyo and K. Schuller, Third-order correction to top-quark pair production
near threshold I. Effective theory set-up and matching coefficients, arXiv:1312.4791
[INSPIRE].

[55] A. Pineda, Review of heavy quarkonium at weak coupling, Prog. Part. Nucl. Phys. 67 (2012)
735 [arXiv:1111.0165] [INSPIRE].

[56] E. Braaten and Y.-Q. Chen, Dimensional regularization in quarkonium calculations, Phys.
Rev. D 55 (1997) 2693 [hep-ph/9610401] [INSPIRE].

[57] W. Fischler, Quark-anti-quark potential in QCD, Nucl. Phys. B 129 (1977) 157 [INSPIRE].

[58] Y. Schröder, The static potential in QCD to two loops, Phys. Lett. B 447 (1999) 321
[hep-ph/9812205] [INSPIRE].

[59] A.H. Hoang, Perturbative O(α2
S) corrections to the hadronic cross-section near heavy

quark-anti-quark thresholds in e+e− annihilation, Phys. Rev. D 56 (1997) 5851
[hep-ph/9704325] [INSPIRE].

– 58 –

https://doi.org/10.1103/PhysRevD.56.230
https://doi.org/10.1103/PhysRevD.56.230
https://arxiv.org/abs/hep-ph/9701294
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9701294
https://doi.org/10.1103/PhysRevLett.88.012003
https://arxiv.org/abs/hep-ph/0109130
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0109130
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD10%2C2445%22
https://doi.org/10.1103/PhysRevD.20.3239
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD20%2C3239%22
https://doi.org/10.1016/j.nuclphysBPS.2004.04.163
https://doi.org/10.1016/j.nuclphysBPS.2004.04.163
https://arxiv.org/abs/hep-ph/0310135
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0310135
https://doi.org/10.1103/PhysRevD.90.074038
https://doi.org/10.1103/PhysRevD.90.074038
https://arxiv.org/abs/1407.8437
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.8437
https://doi.org/10.22323/1.042.0111
https://arxiv.org/abs/0711.2322
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0711.2322
https://doi.org/10.22323/1.164.0140
https://arxiv.org/abs/1211.6795
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.6795
https://doi.org/10.1103/PhysRevD.65.091503
https://arxiv.org/abs/hep-ph/0106135
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0106135
https://doi.org/10.1016/S0550-3213(02)00403-0
https://doi.org/10.1016/S0550-3213(02)00403-0
https://arxiv.org/abs/hep-ph/0203166
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0203166
https://doi.org/10.1007/JHEP05(2016)017
https://arxiv.org/abs/1511.08210
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.08210
https://doi.org/10.1016/j.nuclphysb.2010.08.007
https://arxiv.org/abs/1006.2685
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.2685
https://arxiv.org/abs/1312.4791
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.4791
https://doi.org/10.1016/j.ppnp.2012.01.038
https://doi.org/10.1016/j.ppnp.2012.01.038
https://arxiv.org/abs/1111.0165
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.0165
https://doi.org/10.1103/PhysRevD.55.2693
https://doi.org/10.1103/PhysRevD.55.2693
https://arxiv.org/abs/hep-ph/9610401
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9610401
https://doi.org/10.1016/0550-3213(77)90026-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB129%2C157%22
https://doi.org/10.1016/S0370-2693(99)00010-6
https://arxiv.org/abs/hep-ph/9812205
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9812205
https://doi.org/10.1103/PhysRevD.56.5851
https://arxiv.org/abs/hep-ph/9704325
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9704325


J
H
E
P
1
2
(
2
0
2
0
)
0
6
5

[60] S.J. Brodsky and G. Lepage, Exclusive processes in quantum chromodynamics, Adv. Ser.
Direct. High Energy Phys. 5 (1989) 93 [INSPIRE].

[61] V.L. Chernyak and A.R. Zhitnitsky, Asymptotic behavior of exclusive processes in QCD,
Phys. Rept. 112 (1984) 173 [INSPIRE].

[62] Y. Jia and D. Yang, Refactorizing NRQCD short-distance coefficients in exclusive
quarkonium production, Nucl. Phys. B 814 (2009) 217 [arXiv:0812.1965] [INSPIRE].

[63] H.S. Chung, J.-H. Ee, D. Kang, U.-R. Kim, J. Lee and X.-P. Wang, Pseudoscalar
quarkonium+gamma production at NLL+NLO accuracy, JHEP 10 (2019) 162
[arXiv:1906.03275] [INSPIRE].

[64] C.T.H. Davies, C. McNeile, E. Follana, G.P. Lepage, H. Na and J. Shigemitsu, Update:
precision Ds decay constant from full lattice QCD using very fine lattices, Phys. Rev. D 82
(2010) 114504 [arXiv:1008.4018] [INSPIRE].

[65] HPQCD collaboration, Charmonium properties from lattice QCD+QED: hyperfine
splitting, J/ψ leptonic width, charm quark mass, and acµ, Phys. Rev. D 102 (2020) 054511
[arXiv:2005.01845] [INSPIRE].

[66] M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].

[67] A. Pineda, Determination of the bottom quark mass from the Upsilon(1S) system, JHEP 06
(2001) 022 [hep-ph/0105008] [INSPIRE].

[68] C. Peset, A. Pineda and J. Segovia, The charm/bottom quark mass from heavy quarkonium
at N3LO, JHEP 09 (2018) 167 [arXiv:1806.05197] [INSPIRE].

[69] M. Beneke, A quark mass definition adequate for threshold problems, Phys. Lett. B 434
(1998) 115 [hep-ph/9804241] [INSPIRE].

[70] TUMQCD collaboration, Relations between heavy-light meson and quark masses, Phys.
Rev. D 97 (2018) 034503 [arXiv:1712.04983] [INSPIRE].

[71] K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, RunDec: a Mathematica package for
running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun.
133 (2000) 43 [hep-ph/0004189] [INSPIRE].

[72] F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys.
Commun. 224 (2018) 333 [arXiv:1703.03751] [INSPIRE].

[73] TXL, T(X)L collaboration, Static potentials and glueball masses from QCD simulations
with Wilson sea quarks, Phys. Rev. D 62 (2000) 054503 [hep-lat/0003012] [INSPIRE].

[74] G.S. Bali, QCD forces and heavy quark bound states, Phys. Rept. 343 (2001) 1
[hep-ph/0001312] [INSPIRE].

[75] A. Laschka, N. Kaiser and W. Weise, Quark-antiquark potential to order 1/m and heavy
quark masses, Phys. Rev. D 83 (2011) 094002 [arXiv:1102.0945] [INSPIRE].

[76] A. Laschka, N. Kaiser and W. Weise, Charmonium potentials: matching perturbative and
lattice QCD, Phys. Lett. B 715 (2012) 190 [arXiv:1205.3390] [INSPIRE].

[77] G. Perez-Nadal and J. Soto, Effective string theory constraints on the long distance behavior
of the subleading potentials, Phys. Rev. D 79 (2009) 114002 [arXiv:0811.2762] [INSPIRE].

[78] M.J. Strassler and M.E. Peskin, The heavy top quark threshold: QCD and the Higgs, Phys.
Rev. D 43 (1991) 1500 [INSPIRE].

– 59 –

https://doi.org/10.1142/9789814503266_0002
https://doi.org/10.1142/9789814503266_0002
https://inspirehep.net/search?p=find+J%20%22Adv.Ser.Direct.High%20Energy%20Phys.%2C5%2C93%22
https://doi.org/10.1016/0370-1573(84)90126-1
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C112%2C173%22
https://doi.org/10.1016/j.nuclphysb.2009.01.025
https://arxiv.org/abs/0812.1965
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0812.1965
https://doi.org/10.1007/JHEP10(2019)162
https://arxiv.org/abs/1906.03275
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.03275
https://doi.org/10.1103/PhysRevD.82.114504
https://doi.org/10.1103/PhysRevD.82.114504
https://arxiv.org/abs/1008.4018
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.4018
https://doi.org/10.1103/PhysRevD.102.054511
https://arxiv.org/abs/2005.01845
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.01845
https://doi.org/10.1016/S0370-1573(98)00130-6
https://arxiv.org/abs/hep-ph/9807443
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9807443
https://doi.org/10.1088/1126-6708/2001/06/022
https://doi.org/10.1088/1126-6708/2001/06/022
https://arxiv.org/abs/hep-ph/0105008
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0105008
https://doi.org/10.1007/JHEP09(2018)167
https://arxiv.org/abs/1806.05197
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.05197
https://doi.org/10.1016/S0370-2693(98)00741-2
https://doi.org/10.1016/S0370-2693(98)00741-2
https://arxiv.org/abs/hep-ph/9804241
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9804241
https://doi.org/10.1103/PhysRevD.97.034503
https://doi.org/10.1103/PhysRevD.97.034503
https://arxiv.org/abs/1712.04983
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.04983
https://doi.org/10.1016/S0010-4655(00)00155-7
https://doi.org/10.1016/S0010-4655(00)00155-7
https://arxiv.org/abs/hep-ph/0004189
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0004189
https://doi.org/10.1016/j.cpc.2017.11.014
https://doi.org/10.1016/j.cpc.2017.11.014
https://arxiv.org/abs/1703.03751
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.03751
https://doi.org/10.1103/PhysRevD.62.054503
https://arxiv.org/abs/hep-lat/0003012
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0003012
https://doi.org/10.1016/S0370-1573(00)00079-X
https://arxiv.org/abs/hep-ph/0001312
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0001312
https://doi.org/10.1103/PhysRevD.83.094002
https://arxiv.org/abs/1102.0945
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.0945
https://doi.org/10.1016/j.physletb.2012.07.049
https://arxiv.org/abs/1205.3390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.3390
https://doi.org/10.1103/PhysRevD.79.114002
https://arxiv.org/abs/0811.2762
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.2762
https://doi.org/10.1103/PhysRevD.43.1500
https://doi.org/10.1103/PhysRevD.43.1500
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD43%2C1500%22


J
H
E
P
1
2
(
2
0
2
0
)
0
6
5

[79] Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018)
030001 [INSPIRE].

[80] CLEO collaboration, Observation of η′c production in γγ fusion at CLEO, Phys. Rev. Lett.
92 (2004) 142001 [hep-ex/0312058] [INSPIRE].

[81] Belle collaboration, Measurement of ηc(1S), ηc(2S) and non-resonant η′π+pi− production
via two-photon collisions, Phys. Rev. D 98 (2018) 072001 [arXiv:1805.03044] [INSPIRE].

[82] B. Colquhoun, R.J. Dowdall, C.T.H. Davies, K. Hornbostel and G.P. Lepage, Υ and Υ′
leptonic widths, abµ and mb from full lattice QCD, Phys. Rev. D 91 (2015) 074514
[arXiv:1408.5768] [INSPIRE].

[83] M. Beneke et al., Leptonic decay of the Υ(1S) meson at third order in QCD, Phys. Rev.
Lett. 112 (2014) 151801 [arXiv:1401.3005] [INSPIRE].

[84] G.T. Bodwin and Y.-Q. Chen, Renormalon ambiguities in NRQCD operator matrix
elements, Phys. Rev. D 60 (1999) 054008 [hep-ph/9807492] [INSPIRE].

[85] B.A. Kniehl and A.A. Penin, Ultrasoft effects in heavy quarkonium physics, Nucl. Phys. B
563 (1999) 200 [hep-ph/9907489] [INSPIRE].

[86] A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Fermionic contributions to the three-loop
static potential, Phys. Lett. B 668 (2008) 293 [arXiv:0809.1927] [INSPIRE].

[87] C. Anzai, Y. Kiyo and Y. Sumino, Static QCD potential at three-loop order, Phys. Rev.
Lett. 104 (2010) 112003 [arXiv:0911.4335] [INSPIRE].

[88] A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Three-loop static potential, Phys. Rev.
Lett. 104 (2010) 112002 [arXiv:0911.4742] [INSPIRE].

[89] S.N. Gupta, S.F. Radford and W.W. Repko, Quarkonium spectra and quantum
chromodynamics, Phys. Rev. D 26 (1982) 3305 [INSPIRE].

[90] J.T. Pantaleone and S.H. Tye, The hyperfine splitting of P states in heavy quarkonia, Phys.
Rev. D 37 (1988) 3337 [INSPIRE].

[91] S. Titard and F.J. Yndurain, Rigorous QCD evaluation of spectrum and ground state
properties of heavy qq̄ systems: with a precision determination of mbM(ηb), Phys. Rev. D
49 (1994) 6007 [hep-ph/9310236] [INSPIRE].

[92] A.V. Manohar and I.W. Stewart, The QCD heavy quark potential to order v2: One loop
matching conditions, Phys. Rev. D 62 (2000) 074015 [hep-ph/0003032] [INSPIRE].

[93] R. Barbieri, R. Gatto, R. Kogerler and Z. Kunszt, Meson hyperfine splittings and leptonic
decays, Phys. Lett. B 57 (1975) 455 [INSPIRE].

[94] W. Celmaster, Lepton width suppression in vector mesons, Phys. Rev. D 19 (1979) 1517
[INSPIRE].

[95] W.-Y. Keung and I.J. Muzinich, Beyond the static limit for quarkonium decays, Phys. Rev.
D 27 (1983) 1518 [INSPIRE].

[96] M.E. Luke and M.J. Savage, Power counting in dimensionally regularized NRQCD, Phys.
Rev. D 57 (1998) 413 [hep-ph/9707313] [INSPIRE].

[97] G.T. Bodwin, H.S. Chung, J. Lee and C. Yu, Order-αs corrections to the quarkonium
electromagnetic current at all orders in the heavy-quark velocity, Phys. Rev. D 79 (2009)
014007 [arXiv:0807.2634] [INSPIRE].

– 60 –

https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD98%2C030001%22
https://doi.org/10.1103/PhysRevLett.92.142001
https://doi.org/10.1103/PhysRevLett.92.142001
https://arxiv.org/abs/hep-ex/0312058
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F0312058
https://doi.org/10.1103/PhysRevD.98.072001
https://arxiv.org/abs/1805.03044
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.03044
https://doi.org/10.1103/PhysRevD.91.074514
https://arxiv.org/abs/1408.5768
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.5768
https://doi.org/10.1103/PhysRevLett.112.151801
https://doi.org/10.1103/PhysRevLett.112.151801
https://arxiv.org/abs/1401.3005
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.3005
https://doi.org/10.1103/PhysRevD.60.054008
https://arxiv.org/abs/hep-ph/9807492
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9807492
https://doi.org/10.1016/S0550-3213(99)00564-7
https://doi.org/10.1016/S0550-3213(99)00564-7
https://arxiv.org/abs/hep-ph/9907489
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9907489
https://doi.org/10.1016/j.physletb.2008.08.070
https://arxiv.org/abs/0809.1927
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0809.1927
https://doi.org/10.1103/PhysRevLett.104.112003
https://doi.org/10.1103/PhysRevLett.104.112003
https://arxiv.org/abs/0911.4335
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.4335
https://doi.org/10.1103/PhysRevLett.104.112002
https://doi.org/10.1103/PhysRevLett.104.112002
https://arxiv.org/abs/0911.4742
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.4742
https://doi.org/10.1103/PhysRevD.26.3305
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD26%2C3305%22
https://doi.org/10.1103/PhysRevD.37.3337
https://doi.org/10.1103/PhysRevD.37.3337
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD37%2C3337%22
https://doi.org/10.1103/PhysRevD.49.6007
https://doi.org/10.1103/PhysRevD.49.6007
https://arxiv.org/abs/hep-ph/9310236
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9310236
https://doi.org/10.1103/PhysRevD.62.074015
https://arxiv.org/abs/hep-ph/0003032
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0003032
https://doi.org/10.1016/0370-2693(75)90267-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB57%2C455%22
https://doi.org/10.1103/PhysRevD.19.1517
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD19%2C1517%22
https://doi.org/10.1103/PhysRevD.27.1518
https://doi.org/10.1103/PhysRevD.27.1518
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD27%2C1518%22
https://doi.org/10.1103/PhysRevD.57.413
https://doi.org/10.1103/PhysRevD.57.413
https://arxiv.org/abs/hep-ph/9707313
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9707313
https://doi.org/10.1103/PhysRevD.79.014007
https://doi.org/10.1103/PhysRevD.79.014007
https://arxiv.org/abs/0807.2634
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.2634


J
H
E
P
1
2
(
2
0
2
0
)
0
6
5

[98] P. Marquard, J.H. Piclum, D. Seidel and M. Steinhauser, Three-loop matching of the vector
current, Phys. Rev. D 89 (2014) 034027 [arXiv:1401.3004] [INSPIRE].

[99] E. Braaten and S. Fleming, QCD radiative corrections to the leptonic decay rate of the Bc
meson, Phys. Rev. D 52 (1995) 181 [hep-ph/9501296] [INSPIRE].

[100] W. Wang, J. Xu, D. Yang and S. Zhao, Relativistic corrections to light-cone distribution
amplitudes of S-wave Bc mesons and heavy quarkonia, JHEP 12 (2017) 012
[arXiv:1706.06241] [INSPIRE].

[101] I. Harris and L.M. Brown, Radiative corrections to pair annihilation, Phys. Rev. 105 (1957)
1656 [INSPIRE].

[102] R. Barbieri, E. d’Emilio, G. Curci and E. Remiddi, Strong radiative corrections to
annihilations of quarkonia in QCD, Nucl. Phys. B 154 (1979) 535 [INSPIRE].

[103] K. Hagiwara, C.B. Kim and T. Yoshino, Hadronic decay rate of ground state paraquarkonia
in quantum chromodynamics, Nucl. Phys. B 177 (1981) 461 [INSPIRE].

[104] F. Feng, Y. Jia and W.-L. Sang, Can nonrelativistic QCD explain the γγ∗ → ηc transition
form factor data?, Phys. Rev. Lett. 115 (2015) 222001 [arXiv:1505.02665] [INSPIRE].

[105] Y. Jia, X.-T. Yang, W.-L. Sang and J. Xu, O(αsv2) correction to pseudoscalar quarkonium
decay to two photons, JHEP 06 (2011) 097 [arXiv:1104.1418] [INSPIRE].

[106] H.-K. Guo, Y.-Q. Ma and K.-T. Chao, O(αsv2) corrections to hadronic and electromagnetic
decays of 1S0 heavy quarkonium, Phys. Rev. D 83 (2011) 114038 [arXiv:1104.3138]
[INSPIRE].

– 61 –

https://doi.org/10.1103/PhysRevD.89.034027
https://arxiv.org/abs/1401.3004
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.3004
https://doi.org/10.1103/PhysRevD.52.181
https://arxiv.org/abs/hep-ph/9501296
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9501296
https://doi.org/10.1007/JHEP12(2017)012
https://arxiv.org/abs/1706.06241
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.06241
https://doi.org/10.1103/PhysRev.105.1656
https://doi.org/10.1103/PhysRev.105.1656
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C105%2C1656%22
https://doi.org/10.1016/0550-3213(79)90047-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB154%2C535%22
https://doi.org/10.1016/0550-3213(81)90181-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB177%2C461%22
https://doi.org/10.1103/PhysRevLett.115.222001
https://arxiv.org/abs/1505.02665
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.02665
https://doi.org/10.1007/JHEP06(2011)097
https://arxiv.org/abs/1104.1418
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.1418
https://doi.org/10.1103/PhysRevD.83.114038
https://arxiv.org/abs/1104.3138
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.3138

	Introduction
	NRQCD long-distance matrix elements
	S-wave quarkonium wavefunctions in position space
	S-wave quarkonium wavefunctions at the origin in the bar-MS scheme
	Green's function in dimensional regularization
	Potentials in dimensional regularization
	Scheme conversion
	Unitary transformation

	Numerical results
	Numerical inputs
	Heavy quark mass and the strong coupling
	Static potential from lattice QCD
	1/m potential from lattice QCD
	Reduced Green's function
	Gluonic correlators

	Numerical results for S-wave charmonia
	Numerical results for S-wave bottomonia

	Summary and discussion
	Anomalous dimensions
	One-loop anomalous dimension at relative order v**2
	Two-loop anomalous dimension at leading order in v

	Potentials in perturbative QCD
	Short-distance coefficients
	Wavefunctions at the origin in perturbative QCD

