
J
H
E
P
0
6
(
2
0
2
0
)
0
0
3

Published for SISSA by Springer

Received: January 8, 2020

Revised: March 31, 2020

Accepted: May 14, 2020

Published: June 1, 2020

String scale interacting dark matter from π1

Andreas Mütter and Patrick K.S. Vaudrevange

Physics Department T75, Technical University of Munich,

James-Franck-Str. 1, 85748 Garching, Germany

E-mail: andreas.muetter@tum.de, patrick.vaudrevange@tum.de

Abstract: We show that in a wide class of string derived models of particle physics,

heavy string modes with masses around the GUT scale can serve as a viable dark matter

candidate. These heavy string modes wind around specific cycles in the extra-dimensional

space, closely related to the fundamental group π1. As a consequence of a non-trivial

π1, there is an exact discrete symmetry that stabilizes such winding strings. The dark

matter candidate couples to the Standard Model via gravity and via the exchange of heavy

string states. We find that, for reasonable values of the string coupling, our dark matter

candidate can be produced in sizable amounts via freeze-in. Our scheme applies to many

string constructions, including Calabi-Yau compactifications, and can be tested against

constraints from the CMB.

Keywords: Compactification and String Models, Discrete Symmetries, Superstring

Vacua, Superstrings and Heterotic Strings

ArXiv ePrint: 1912.09909

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP06(2020)003

mailto:andreas.muetter@tum.de
mailto:patrick.vaudrevange@tum.de
https://arxiv.org/abs/1912.09909
https://doi.org/10.1007/JHEP06(2020)003


J
H
E
P
0
6
(
2
0
2
0
)
0
0
3

Contents

1 Introduction 1

2 Interactions between dark matter and the Standard Model 2

2.1 Kähler potential terms 3

2.2 Superpotential terms 5

3 Dark matter production 6

4 Results 9

5 Conclusions 9

A An explicit realization in string theory 11

A.1 Strings on orbifolds 11

A.2 String interactions 12

A.3 Massive U(1) gauge bosons from string theory 13

1 Introduction

Successful models for particle dark matter consist of two main ingredients: the dark matter

candidate that interacts with the Standard Model (SM) only very weakly, and a mechanism

that ensures its relative longevity. In most instances, a Z2 symmetry is invoked to keep

the dark matter particle from decaying. Moreover, if the model is supposed to explain the

presently observed dark matter relic density, one needs to make sure that it is produced in

sufficient quantities in the early universe. The prime example for a dark matter candidate is

the weakly interacting massive particle (WIMP), which is in thermal equilibrium with the

thermal plasma and “freezes out” after dropping out of equilibrium [1, 2]. However, it has

been demonstrated that a dark matter species may also be produced thermally in sizable

quantities even if it never attains thermal equilibrium (“freeze-in”) [3]. More specifically,

it has become clear that freeze-in production can work with extremely heavy dark matter

candidates (with masses above the GUT scale) and couplings that are suppressed by 1/m2
Pl,

a framework that is known as Planckian interacting dark matter (PIDM) [4, 5]. This

observation is intriguing from the viewpoint of string model building, for a number of

reasons. On the one hand, it is expected that the lightest massive string states have

masses around the string scale, and that there are, apart from gravity, stringy interactions

between these states and the massless states of the Standard Model that are suppressed by

1/m2
s . Furthermore, there is a wide class of string models that have a stabilizing symmetry

built in [6], e.g. an abelian Z2 symmetry [7]. The goal of this paper is to show that this

– 1 –



J
H
E
P
0
6
(
2
0
2
0
)
0
0
3

class of string models can yield viable models of dark matter. As an explicit example, we

consider the framework of heterotic string theory with six extra dimensions compactified

on a special class of orbifolds but our scheme is valid more generally. In particular, our dark

matter candidate is given by a closed string state that winds around a certain cycle in the

extra-dimensional compact space. Then, its stability can be ensured via an exact discrete

symmetry that originates from the topological property of certain compactification spaces

to be non-simply connected. Consequently, the discrete symmetry is classically exact and

can potentially be broken only non-perturbatively due to a discrete anomaly [8, 9]. This

stable string state is generically very heavy (with a mass at the compactification or GUT

scale) and interacts with the massless states in the plasma not only via gravity, but also

via the exchange of other heavy winding modes.

2 Interactions between dark matter and the Standard Model

In this section, we will examine which couplings between the dark matter candidate and

the particles of the Standard Model can arise at the renormalizable level. To be specific,

we consider a string model compactified on the so-called Z2×Z2-5-1 orbifold in the classifi-

cation of ref. [10]. However, our findings easily carry over to other orbifold geometries and

also to other string compactifications, cf. appendix A for further details. In this model, the

dark matter candidate is stabilized by an exact Z4 symmetry that originates from string se-

lection rules [7], which in turn are related to topological properties of the compact orbifold

space. It should be noted that all massless strings, especially those for the Standard Model

particles, have even Z4 charges, while the DM particles carry odd charges. Hence, the

Z4 has a Z2 subgroup with precisely the charge assignment needed for dark matter parity

and the lightest string with odd Z2 charge is stable. Now, one has to examine the model

further, in order to identify all allowed stringy couplings of the DM particle to the Stan-

dard Model. Since we are dealing with a supersymmetric setup, one needs to distinguish

between couplings from the Kähler potential and those from the superpotential.

In most instances, the coupling of dark matter to the SM is dominated by 2 → 2

scattering. Hence, due to the constraining Z4 symmetry, the most general coupling looks

like the left diagram in figure 1. At tree level, one can boil that down to the exchange of

mediator fields M , cf. the right diagram in figure 1. What are possible mediator fields?

One example are gravitational interactions, where the exchanged particle is the graviton.

This case has been studied extensively in the PIDM program [4, 5] and, as we will see,

will give in our setup a contribution that is in general subdominant. However, it turns

out that once interactions from string theory are considered, there are additional stringy

mediators that can be exchanged and dominate the coupling between DM and the SM.

These mediators are also winding strings but with vanishing Z4 charges. Hence, at generic

points in string moduli space they are very massive. On the other hand, they have the

generic feature to couple to the winding dark matter candidate and to Standard Model

matter under the assumption that the SM matter is localized appropriately in the extra-

dimensional orbifold space, cf. appendix A. The exact realizations of winding dark matter,

winding mediators and localized SM matter fields depend on the specific string model.
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Figure 1. Dominant dark matter production by the exchange of a mediator field M . Note that

the dark matter particle is stabilized by an odd Z4 charge, while Standard Model fields carry even

Z4 charges and the mediator is uncharged. Importantly, the existence of such a stabilizing discrete

symmetry is a direct consequence from the extra dimensions of string theory.

superfield type of closed string Z4 charge

SM Φi = (fi, f̃i) localized 0 or 2

DM
ΦDM = (χ, ϕ) τ -winding 1

Φ′DM = (χ′, ϕ′) −τ -winding 3

mediator
ΦM = (χM,M) winding 0

V (M) = (Vµ, λ) winding 0

Table 1. Summary of the relevant fields for SM, DM and mediator and their corresponding types

of strings (i.e. localized strings, τ -winding strings or general winding strings). Φ′
DM denotes the

mass partner of the dark matter multiplet ΦDM.

However, instead of discussing a full string realization, we consider a very generic string

setting as presented in table 1. Consequently, our findings will be rather generic for a wide

class of string constructions.

2.1 Kähler potential terms

If (at least part of) the massless Standard Model matter is localized in the extra-dimensional

compact space, there is a set of mediators that can couple to both, the dark matter can-

didate and the Standard Model. In our concrete setting, there are three types of mediator

strings, where each of them potentially couples to a different subset of SM matter. In

what follows, we will make the simplifying assumption that all three have the same mass

and couplings,1 such that one can effectively work with one mediator V (M). As we show

in appendix A.3, the mediator field originates from a massive string state that necessarily

carries both Kaluza-Klein momentum and winding. Moreover, we shall see later on that

variations of the coupling strengths do not have a large impact on our results. Let us now

1This assumption stems from the fact that the couplings of the winding mediator to localized strings

is either of the same order (when both localized strings live at the same point in extra dimensions), or

suppressed exponentially with their distance in extra dimensions.
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examine the coupling of dark matter to a localized Standard Model particle Φi. Then,

the most general Kähler potential consistent with gauge invariance and the stringy Z4

symmetry for the coupling of the Standard Model to the mediator reads

KSM ⊃ Φ†i

[
e2g1V (M)

+
g′1
Λ

(
ΦM + Φ†M

)
+

ig′′1
Λ

(
ΦM − Φ†M

)]
Φi . (2.1)

Here, we observe that only the coupling to the vector field V (M) = (Vµ, λ) with coupling g1

is renormalizable, hence all other terms will be dropped. Therefore, we consider only the

coupling of the mediator vector superfield V (M) to the dark matter candidates ΦDM and

Φ′DM in the dark matter Kähler potential

KDM ⊃ Φ†DM e2g2V (M)
ΦDM + Φ′†DM e−2g2V (M)

Φ′DM , (2.2)

see appendix A.3 for the stringy origin of these couplings. Let us parameterize the SM

chiral multiplets as Φi = (fi, f̃i) and the dark matter multiplets as ΦDM = (χ, ϕ) and

Φ′DM = (χ′, ϕ′). The relevant Lagrangian for the 2 → 2 production of dark matter from

the D-terms of the Kähler potentials reads

L ⊃ KSM

∣∣∣∣
D

+KDM

∣∣∣∣
D

(2.3)

⊃ g1V
(M)
µ

[(
f iσ

µfi + 2if̃ †i ∂µf̃i

)
+ g2

(
χσµχ+ 2iϕ†∂µϕ

)]

+
√

2g1

(
f̃iλ f i + f̃ †i λfi

)
+
√

2g2

(
ϕλχ+ ϕ†λχ

)
+

 χ↔ χ′

ϕ↔ ϕ′

g2 ↔ −g2

 . (2.4)

Additionally, there is a four-scalar vertex coming from the kinetic term of the mediator

multiplet. The Lagrangian coming from the auxiliary field in V (M) reads

L(DM) =
1

2
D2

M + g1DM|f̃i|2 + g2DM|ϕ|2 − g2DM|ϕ′|2 + . . . , (2.5)

which, upon setting the auxiliary field DM on-shell, yields

L(DM) = −1

2

(
g1|f̃i|2 + g2|ϕ|2 − g2|ϕ′|2

)2
+ . . . , (2.6)

and, hence, we obtain a four-scalar vertex with a coupling g1g2. Then, we find that at tree

level the relevant channels for the non-gravitational interactions of dark matter with the

Standard Model are given by the processes shown in figures 2–7. There, we present the

production channels for the dark matter multiplet ΦDM, analogous diagrams exist also for

its partner multiplet Φ′DM.

Let us briefly discuss the conceivable range of values for the couplings g1 and g2. In

supersymmetric gauge theories, each gauge coupling is given by a gauge kinetic function

f . For example, in the case of the U(1) associated with the mediator field V
(M)
µ we have

fU(1) = S + ∆U(1)(Ti, Ui) , (2.7)

– 4 –



J
H
E
P
0
6
(
2
0
2
0
)
0
0
3

χ

f iχ

Vµ
fi

Figure 2. χχ↔ fif i

χ

f̃†iχ

Vµ
f̃i

Figure 3. χχ↔ f̃†i f̃i

ϕ

f̃†
iϕ†

Vµ
f̃i

Figure 4. ϕ†ϕ↔ f̃†i f̃i

ϕ

f̃†
i

ϕ†

f̃i

Figure 5. ϕ†ϕ↔ f̃†i f̃i

ϕ

f iϕ†

Vµ
fi

Figure 6. ϕ†ϕ↔ fif i

χ

f̃†iϕ†

λ
fi

Figure 7. ϕ†χ↔ f̃†i fi

where S is the heterotic axio-dilaton and the threshold correction ∆U(1) is a stringy one-

loop contribution that is in general a complicated function of the geometric moduli Ti and

Ui, see ref. [11]. However, for the non-factorizable orbifold we are considering, the precise

form of ∆U(1) is unknown. Still, we expect that by varying the geometric moduli, one can

generate wide ranges of effective couplings for the mediator U(1). The couplings of the

Standard Model gauge group follow a similar pattern. However, the threshold corrections

∆SM for the Standard Model have in general a different dependence on the geometric

moduli than ∆U(1). Hence, it is conceivable that the mediator couplings can be varied

without spoiling the unification of the Standard Model gauge couplings.

2.2 Superpotential terms

In addition to the Kähler terms, there can also arise couplings from the superpotential. In

particular, it is possible to couple a mediator, residing in a chiral multiplet, to the Standard

Model via Higgs portal and neutrino-portal-like terms. If we make the assumption that the

mediator ΦM couples to all three generations of lepton doublets L with the same coupling

constant λN , the terms containing the mediator in the corresponding superpotential read

W = WM +WDM +WHiggs−portal +Wneutrino−portal (2.8)

=
mM

2
Φ2

M +
λM

3
Φ3

M +
mDM

2
ΦDM Φ′DM + λDM ΦM ΦDM Φ′DM

+ λH ΦM Ĥu Ĥd + λN ΦM Ĥu L̂ , (2.9)

where we used the SM superfields Ĥu,d = (H̃u,d, Hu,d) for the Higgses and L̂ = (`, ˜̀) for the

lepton doublet(s). For processes involving the exchange of a mediator, we are interested

in the 3-point interactions that arise from this choice for W. Additionally, there is also a
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four-scalar interaction of two dark matter scalars and two SM scalars. However, in order

for the stringy couplings to exist, the Higgs field must be localized. For the neutrino portal,

the Higgs field has to live at the same fixed point as the lepton doublet it is supposed to

couple to; if these fields live at different fixed points in the same sector the couplings are

suppressed, and if they live in another twisted sector the couplings are completely absent.

Similar terms then exist for the coupling of the mediator to the dark matter candidate.

It turns out that if the couplings λH and λN are chosen to be of the same order as the

Kähler couplings g1,2, the contribution of the superpotential couplings to the dark matter

production rate is not qualitatively different from the contribution of the Kähler potential,

but numerically a little bit lower. Moreover, as discussed above, the existence of the

neutrino portal couplings requires an specific localization of the lepton and Higgs fields,

which is model dependent. For these reasons, and because models with localized Higgs

pairs have a less appealing phenomenology, we will not push any further in this direction

and consider Kähler terms only by assuming the Higgs field to originate from the bulk.

3 Dark matter production

Although the dark matter candidate is too heavy to be in thermal equilibrium, it can still

be produced thermally via freeze-in. The production of dark matter is then governed by

the Boltzmann equation

ṅ+ 3H(t)n = −〈σeffv〉
(
n2 − n2

eq

)
. (3.1)

Here, n is the number density of all states in the dark matter sector, in other words

n = nχ + nϕ + nχ + nϕ† + nχ′ + nϕ′ + nχ′ + nϕ′† . On the right hand side of equation (3.1),

〈σeffv〉 is the effective thermally averaged cross section for the various 2 → 2 dark matter

production channels, taking also coannihilations into account [12, 13]. Using mi = mχ

it reads

〈σeffv〉 =
T

n2
eq

1

8π4

∫ ∞
4m2

χ

ds
√
s p2

∑
i,j

gigjσij(s)

 K1

(√
s

T

)
. (3.2)

Here, gi counts the internal degrees of freedom of each species i (where gi = 2 for a Weyl

fermion and gi = 1 for a real scalar), and the summation indices i and j run over all fields

in the dark sector. Furthermore, p =
√
s/4−m2

χ, and K1 is the modified Bessel function

of the second kind of order 1. The equilibrium density neq is given by

neq =
∑
i

T

2π2
gim

2
iK2

(mi

T

)
=

4T

π2
m2
χK2

(mχ

T

)
, (3.3)

where K2 is the modified Bessel function of the second kind of order 2. The cross sections

σij correspond to the various possible scattering processes shown in figures 2–7, and are

given by

σij =
1

16πs
(
s− 4m2

χ

) ∫ t+

t−

dt |Mij(t)|2 . (3.4)
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e
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v
〉·
m

2 χ

Effective thermally averaged cross section

Figure 8. The effective thermally averaged cross section for a mediator mass mM = 1.8mχ and

all couplings set to unity. Observe how the cross section approaches a constant value for T � mχ.

Here, t± = −
(√

s/4∓
√
s/4−m2

χ

)2
and Mij(t) denote the matrix elements for the re-

spective process. In what follows, we focus on the case with bulk Higgs fields and, hence,

there are no contributions from the superpotential. Then, the non-vanishing cross sections

σij are given by

σχχ = σχχ→fif i
+ σ

χχ→f̃if̃†i
(3.5)

σϕϕ† = σϕϕ†→fif i
+ σ

ϕϕ†→f̃if̃†i
(3.6)

σχϕ† = σ
χϕ†→fif̃†i

(3.7)

σχϕ = σχϕ† , (3.8)

plus the corresponding terms for χ′, ϕ′. Moreover, it holds that σij = σji. With these

preparations in place, one can perform the thermal averaging eq. (3.2) numerically (cf. fig-

ure 8) and turn one’s attention to the Boltzmann equation. As the actual density in the

freeze-in case is always much smaller than the equilibrium one, the full Boltzmann equa-

tion (3.1) can be approximated to sufficient accuracy by neglecting n2 compared to n2
eq on

the right hand side of equation (3.1) and hence using

ṅ+ 3H(t)n = 〈σeffv〉 n2
eq . (3.9)

Proceeding like in ref. [4], one can now simplify the discussion by introducing the dimension-

less abundance X = na3/T 3
rh in terms of the scale factor a and the reheating temperature

Trh, such that equation (3.9) can be integrated to yield

Xf =
1

T 3
rh

∫ ∞
1

da
a2

H(a)
〈σeffv〉 n2

eq . (3.10)

Here, we used the fact that the scale factor at the end of inflation can be chosen to be 1,

and that the abundance of dark matter immediately after inflation vanishes. The maximal
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possible relic abundance is obtained if the reheating phase after inflation is as short as

possible, leading to the highest maximal temperature that is reached during reheating.

Scenarios with this instantaneous reheating require

Hi

Γ
∼ 1 , (3.11)

where Hi is the Hubble rate at the end of inflation and Γ the inflaton decay rate. Then,

the reheating temperature coincides with the highest temperature reached during reheating

and is given by

Trh ≈ 0.25
√
mPlHi . (3.12)

While non-perturbative reheating scenarios [14] provide a straightforward way to achieve

this, they also imply the non-thermal production of (heavy) particles, as opposed to per-

turbative scenarios of reheating. However, it has been shown that one can realize a near-

instantaneous reheating scenario also within the context of perturbative reheating [5], which

we will also assume throughout this work. By doing so, we obtain an upper limit on the

amount of thermally produced dark matter for a given Hubble rate Hi. Equivalently,

this can be seen as a lower bound on the Hubble rate Hi needed in order to explain the

observed relic density ΩXh
2 by our dark matter candidate only. On the other hand, the

non-observation of tensor modes in the cosmic microwave background (CMB) by the Planck

satellite combined with constraints from Bicep2 and Keck requires a tensor-to-scalar ratio

r < 0.056 [15]. This gives an upper limit on Hi and therefore on the reheating temperature

Trh < 5.8 · 10−4mPl ≈ 7 · 1015 GeV . (3.13)

Note that this bound is believed to become more stringent in the near future [16]. Upon

adopting the convention that the scale factor after inflation ai = 1, the dependence of the

temperature and the Hubble rate on the scale factor for the radiation dominated phase

after reheating is

T (a) =
Trh

a
, H(a) =

Hi

a2
. (3.14)

Thus, the abundance eq. (3.10) can be seen as a function Xf(Hi, g1g2,mχ,mM) of the

Hubble rate at the end of inflation Hi, the couplings g1g2, the dark matter mass mχ and

the mediator mass mM. In order to compare to the observed dark matter relic density

ΩXh
2 = 0.12 [17], one can use (cf. [5])

Xcrit.
f = 0.29 · 10−5 · GeV

mχ
· ΩXh

2 . (3.15)

Hence, for a GUT scale dark matter particle (mχ ∼ 1016 GeV), the critical abundance is

of order 10−23. It is interesting to notice that the Hubble rate Hi required to obtain this

abundance remains relatively stable even if vectorlike SM exotics are added, owing to the

nature of freeze-in production. To see this, note that if the couplings of all contributing

chiral multiplets are roughly equal, the Hubble rate needed to match the correct final

– 8 –



J
H
E
P
0
6
(
2
0
2
0
)
0
0
3

abundance is determined by the contribution xf = Xf/NΦ of a single multiplet to the final

abundance. Then, the critical contribution per chiral multiplet be written as

xcrit.
f =

g∗
NΦ

R , (3.16)

where g∗ counts the number of degrees of freedom in the thermal bath at Trh and NΦ is

the number of contributing chiral multiplets (for the case of the MSSM with three right

handed neutrinos, g∗ = 240 and NΦ = 48). Adding nV vectorlike pairs of exotics now

changes these figures according to

g∗ 7→ g∗ + 7.5nV and NΦ 7→ NΦ + 2nV . (3.17)

Hence, adding an arbitrary number of vectorlike exotics lowers xcrit.
f by at most 25%. This

change requires an even smaller adjustment in the Hubble rate Hi, and therefore our results

are largely insensitive to the full particle content of a given model.

4 Results

We have solved the integral (3.10) numerically. If we use the simplified reheating scenario

and a fixed value of the dark matter mass mχ, the resulting abundance Xf depends only on

the Hubble rate Hi after inflation (which sets the reheating temperature), and the product

of the two involved couplings. In principle, there is also a light dependence on the mediator

mass mM, however as one observes, varying the mediator mass shows only little effect on

the final abundance, especially for larger values of the couplings. Our results are displayed

in figure 9. There, we varied the couplings g1g2 over a broad range, and determined the

value of Hi needed to produce the critical dark matter relic abundance Xcrit.
f , eq. (3.15).

One observes that for very small couplings, values for the Hubble rate that exceed the

current CMB bounds [15] are needed in order to produce the right amount of dark matter.

The bounds are more strict for lower mediator masses. Likewise, the critical Hubble rate

changes for less than an order of magnitude for a wide range of coupling strengths, roughly

from g1g2 = 10−8 to g1g2 = 1.

Moreover, one observes that for values of g1g2 greater than 10−6, the production of

dark matter via the stringy operators largely dominates the graviton exchange presented

in refs. [4, 5] and therefore neglecting this gravitational channel is a good assumption. For

lighter dark matter masses it is impossible to get near the CMB bound, even the projected

ones, without encountering overproduction by graviton exchange first. However, starting

from mχ ∼ 3 · 1016GeV, our approach becomes sensitive to at least the projected CMB

bound in ranges for the stringy couplings for which graviton exchange can still be safely

neglected. We also observe that for any value of the couplings, our Hubble rate lies in

ranges where — given the DM mass — gravitational production [18] can be neglected.

5 Conclusions

We have shown that generic string constructions can accommodate a candidate for dark

matter. Opposed to other studies of dark matter in string theory (cf. [19–21]), we focused

– 9 –
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Figure 9. Plot of the critical Hubble rate at the end of inflation as a function of the product of

the couplings, for a dark matter mass of 1016GeV (left) and 3 · 1016GeV (right). The blue (orange)

curve indicates a mediator mass of 1.9mχ (1.0mχ). The red area at the top is excluded by the

currently observed bound for the tensor-to-scalar ratio in the CMB. Additionally, the projected

sensitivity of CMB experiments is shown as the dashed red line. Furthermore, the critical Hubble

rate of [4] is indicated by the blue dashed line.

on the dark matter candidate, as e.g. in [22, 23]. Specifically, the dark matter candidate

is a heavy string state with no charge under the Standard Model gauge group and a

mass at or above the GUT scale. It is stabilized against decay by stringy selection rules,

closely related to the topological property of a non-trivial fundamental group π1 of the

compactification space. Because of its high mass, the dark matter particle never attains

thermal equilibrium, and therefore it must be produced by freeze-in rather than freeze-out.

We find that generically, the dark matter candidate interacts with the thermal bath only

via gravity, and by the exchange of heavy mediators arising in the massive string spectrum.

For not too small string couplings the latter ones dominate over graviton exchange.

For definiteness, we considered an explicit model in heterotic orbifolds, but we believe

that our results carry over very well to many other string constructions, for example in

Calabi-Yau constructions with freely-acting Wilson lines [24–26]. In our setup, we chose a

small-radius limit, where winding strings are the lightest extra states, in order to identify

the stringy selection rules. There exists a T -dual large-radius picture where the winding

states are exchanged by Kaluza-Klein excitations. In our picture, the dark matter candidate

is a string with winding around a particular non-contractible cycle on the orbifold, thereby

ensuring its stability. An analysis on the level of the orbifold space group reveals that this

winding state can couple to the Standard Model — apart from gravity — via the exchange

of heavy winding strings that are SM singlets. Going to an N = 1 supersymmetric field

theory, we identified the relevant terms for 2 → 2 production of the heavy dark matter

candidate from the Kähler potential and the superpotential. We find that in order to

obtain the correct dark matter relic density, one needs values for the Hubble rate at the

end of inflation that range up to 1012 GeV, if the string coupling is perturbative. This
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way, one is able to constrain the allowed parameter space of the model by bounds on the

tensor-to-scalar ratio in the CMB.

We observe that our results generalize very well to generic string models: The most

prominent influence comes only from the mass of the dark matter candidate itself, which

is constrained to lie around the GUT scale. Other model-dependent parameters, such as

the mass of the mediator contribute only at subleading order. Furthermore, the required

Hubble rate after inflation remains within the same order of magnitude for the entire

sensible range of string couplings. Finally, we observe that adding vectorlike matter that is

charged under the SM and contributes to the production of dark matter, changes the critical

final abundance only by a small amount, and leaves the required Hubble rate invariant up

to the percent level.
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A An explicit realization in string theory

We consider the E8 × E8 heterotic string theory compactified on the Z2 × Z2-5-1 orbifold

geometry [27–29], see also refs. [10, 30, 31] and refs. [32, 33] for MSSM-like string models

based on this orbifold geometry. This orbifold geometry can be constructed in three steps.

First, one defines a factorized six-torus T6 = T2 × T2 × T2 via a six-dimensional lattice

that is spanned by six basis vectors ei, i = 1, . . . , 6. Then, this six-torus is orbifolded by

Z2 × Z2 rotations θ =̂ (0, 1/2,−1/2) and ω =̂ (1/2, 0,−1/2), indicating the rotation angles in

units of 2π in the three complex coordinates corresponding to the three two-tori T2. By

doing so, one obtains the Z2 × Z2-1-1 orbifold geometry. Finally, one defines the shift

τ =
1

2
(e2 + e4 + e6) . (A.1)

The resulting six-torus T6 spanned by e1, . . . , e5 and τ is non-factorizable. It turns out

that τ acts freely on the Z2 × Z2-1-1 orbifold, i.e. there is no point on the Z2 × Z2-1-1

orbifold that is invariant under a shift by τ . Hence, τ is called freely-acting. By modding

out the Z2 × Z2-1-1 orbifold by τ , one obtains the Z2 × Z2-5-1 orbifold geometry.

A.1 Strings on orbifolds

Closed strings on orbifolds are characterized by their boundary conditions that specify

which transformation is needed such that the string is closed. In more detail, for a string

(i.e. a worldsheet boson) X(σ0, σ1) as a function of worldsheet time and space coordinates

σ0 and σ1 ∈ [0, 1] the boundary condition reads

X(σ0, σ1 + 1) = θk ω`X(σ0, σ1) +ni ei +nτ τ ⇔ g = (θk ω`, ni ei +nτ τ) ∈ S , (A.2)

where k, ` ∈ {0, 1}, ni ∈ Z, nτ ∈ {0, 1} and summation over i = 1, . . . , 6 is implied. Strings

with k 6= 0 or ` 6= 0 are called twisted strings, in contrast to the case k = ` = 0 which
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gives rise to so-called untwisted strings. One can encode the boundary condition (A.2) into

group elements g ∈ S of the so-called space group S. Then, g is called the constructing

element of the string (A.2). In more detail, since X and hX are identified on the orbifold

for all h ∈ S, a string is actually characterized not only by the single constructing element

g ∈ S but by the conjugacy class [g] = {h g h−1 | h ∈ S}. If g ∈ [g] ⊂ S has a fixed

point, i.e. if there is a point xg such that θkω`xg + ni ei + nτ τ = xg, the string with

constructing element g is localized in the extra dimensions at xg. It is important to remark

that the freely-acting nature of τ becomes evident by noticing that constructing elements

with fixed points necessarily have nτ = 0. Furthermore, strings with boundary conditions

(1, ni ei +nτ τ) ∈ S live in the orbifold bulk. They are winding strings if ni 6= 0 or nτ 6= 0,

where the mass of a winding string is proportional to the radius and the winding number

of its winding direction, as we will discuss later in appendix A.3. Hence, in general only

bulk strings with constructing element (1, 0) are massless.

The Z2 × Z2-5-1 orbifold geometry has the important property of having a cycle that

generates a non-trivial fundamental group π1 [28] and, hence, renders the orbifold geometry

non-simply connected. In fact, this cycle is generated by the freely-acting shift τ . The

existence of the freely-acting shift has two important consequences for our discussion:

1. There are heavy string modes with constructing elements (1, nττ) ∈ S that wind

around the freely-acting τ -direction and

2. There is an exact Z4 symmetry [7], where a string with general constructing element

eq. (A.2) carries a discrete charge

Q = nτ + 2(n2 + n4 + n6) mod 4 such that Q ∈ [0, 1, 2, 3] , (A.3)

where nτ ∈ {0, 1} and n2, n4, n6 ∈ Z are the integer winding numbers. It turns out

that all massless strings (those from the bulk and those that are localized at orbifold

fixed points) have nτ = 0 and, therefore, carry even Z4 charges, while there exist

massive strings with odd Z4 charges.

Consequently, there exists a lightest winding string from the bulk with winding numbers

nτ = 1 and ni = 0, i.e. with constructing element (1, τ), that has odd Z4 charge. Hence, it

is stable and we can identify it as our dark matter candidate ΦDM. Its mass partner Φ′DM

has constructing element (1, −τ) and therefore Z4 charge 3.

A.2 String interactions

In order to find the three point couplings allowed by the space group selection rule [34, 35],

one needs to fulfill for each coupling that

(1, 0) ∈ [g1] · [g2] · [g3] , (A.4)

where [gi] denotes the conjugacy class of the constructing element gi. The calculation is the

same for the Kähler and the superpotential. In the Kähler potential, one looks for terms

of the form ΦΦ†V (M), where Φ† has inverted quantum numbers and hence has the inverse
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constructing element. In the superpotential, one looks for terms of the form Φ1Φ2ΦM,

where Φ2 is either the mass partner of Φ1 (for the dark matter particle and the Higgs

portal), or it is another field localized appropriately (for the neutrino portal).

In any case, we observe that there exist several winding states with trivial Z4 charge,

most prominently those with n2 + n4 + n6 = 0 mod 2. These states are particularly

interesting candidates for mediators:

1. On the level of space group elements, they couple to both, DM and twisted strings.

Let us work out for the coupling of dark matter to the θ-twisted sector (i.e. k = 1

and ` = 0 in eq. (A.2)).

• It is evident that
(
1, 1

2(e2 − e4 − e6)
)
∈ [(1, τ)] and

(
1, −1

2(e2 + e4 + e6)
)
∈

[(1, −τ)]. Hence, (1, 0) ∈ [(1, τ)] · [(1, −τ)] · (1, e4 + e6).

• Similarly, (1, −τ) (θ, 0) (1, τ) = (θ, −e4 − e6) ∈ [(θ, 0)]. Hence, (1, 0) ∈
(1, e4 + e6) · [(θ, 0)] · [(θ, 0)].

2. Their local shift is a lattice vector, cf. ref. [32]. Hence, these states have psh = 0 and

the corresponding couplings are not forbidden by gauge invariance.

It turns out that the construction shown above not only works for the θ-, but also for

the ω- and θω-twisted sector. In summary, we have the winding strings V (M) and ΦM that

mediate between the dark matter strings (ΦDM and Φ′DM) and the twisted sector

sector of SM θ ω θω

g ∈ S of mediator (1, e4 + e6) (1, e2 + e6) (1, e2 + e4)

In the next section, we will discuss the winding strings with constructing elements

(1, τ) and (1, e4 + e6) in more detail.

A.3 Massive U(1) gauge bosons from string theory

After the general discussion on the string origin of our dark matter candidate ΦDM and of

the massive mediators V (M) and ΦM, we now give more details on their existence and mass.

In heterotic string theory, a general string state is built out of independent right- and

left-movers

|pR; q〉R ⊗ |pL; psh〉L , (A.5)

possibly subject to string oscillator excitations. Furthermore, q is the bosonized right-

moving H-momentum, being

q ∈
{(
±1, 0, 0, 0

)
,
(
± 1/2,±1/2,±1/2,±1/2

)}
. (A.6)

Here, the underline denotes all permutations and the number of plus-signs must be even

for half-integer entries. In other words, q is either an 8v or an 8s weight vector of SO(8)

that fulfills q2 = 1. Its first entry reflects the four-dimensional space-time chirality of the

corresponding string state. In addition, the shifted left-moving momentum psh = p + An

in eq. (A.5) is given by the so-called discrete Wilson lines A [29] and the momentum p that
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belongs to the sixteen-dimensional E8×E8 root lattice. Most important for our discussion

are the right- and left-moving momenta, which are given by

pR :=
e−T

√
2

((
G−B +

1

2
ATA

)
n−m+ATp

)
, (A.7a)

pL :=
e−T

√
2

((
G+B − 1

2
ATA

)
n+m−ATp

)
, (A.7b)

using the convention α′ = 1, cf. ref. [36]. Here, similar to the discussion at the beginning

of section A, e denotes the geometrical vielbein that defines the D-dimensional torus TD

with metric G := eTe and B is the anti-symmetric B-field. Moreover, n ∈ Z
D are the

integer winding numbers defined in analogy to eq. (A.2) by the boundary condition of a

bulk string

X(σ0, σ1 + 1) = X(σ0, σ1) + e n , where e n =
1√
2

(pR + pL) , (A.8)

and m ∈ ZD denote the integer Kaluza-Klein (KK) numbers. Note that the (2D + 16)-

dimensional vectors (pR, pL, psh) span an even, integer and self-dual lattice with signature

(D,D + 16), called the Narain lattice. As such, a vector given by eqs. (A.7) satisfies

for example

− (pR)2 + (pL)2 + (psh)2 = 2mTn+ p2 = even , (A.9)

reflecting the fact that the Narain lattice is even.

A physical string state from eq. (A.5) is subject to the so-called level-matching condi-

tion on right- and left-moving masses, i.e.

M2
R = M2

L , (A.10)

where

1

2
M2

R = (pR)2 + q2 + 2

(
NR −

1

2

)
,

1

2
M2

L = (pL)2 + (psh)2 + 2 (NL − 1) . (A.11)

We are interested in winding strings in order to discuss the origin of both, our dark

matter candidate ΦDM with constructing element (1, τ) ∈ S and the mediators, for ex-

ample, V (M) and ΦM with constructing element (1, e4 + e6) ∈ S. To do so, we can con-

centrate on three compactified dimensions D = 3 and focus on the torus directions e2,

e4 and τ , see eq. (A.1). To keep the discussion short we assume trivial Wilson lines

A2 = A4 = Aτ = (016). Then, we can consider the Z2 ×Z2 orbifold of this T3 subsector in

order to analyze those winding strings we are mostly interested in.

For the D = 3 subsector of the Z2 × Z2-5-1 orbifold geometry, the Narain lattice

eq. (A.7) can be parameterized by three radii R2, R4 and R6 for the torus vielbein e and

three parameters b1, b2 and b3 for the anti-symmetric B-field, i.e.

e =

R2 0 R2/2

0 R4 R4/2

0 0 R6/2

 , B =

 0 b1 b2
−b1 0 b3
−b2 −b3 0

 . (A.12)

– 14 –



J
H
E
P
0
6
(
2
0
2
0
)
0
0
3

Thus, the columns of the geometrical vielbein e are given by e2, e4 and τ , cf. eq. (A.1).

Consequently, eq. (A.12) has six free parameters (which combine in the six-dimensional

Z2 × Z2 orbifold with six additional parameters to three Kähler moduli Ti and three

complex structure moduli Ui, i = 1, 2, 3).

Let us begin with the discussion on the mediator with constructing element (1, e4+e6).

In terms of the basis e2, e4 and τ , we use e6 = 2τ − e2 − e4 to write (1, e4 + e6) =

(1, 2τ − e2). Hence, the mediator has winding numbers n = (−1, 0, 2)T such that e n =

2τ − e2. It turns out that there exists a point in moduli space (i.e. with special values for

the radii Ri and B-field components bi), where the mediator (1, 2τ − e2) becomes massless.

Thus, we start our discussion at this point in moduli space and, afterwards, move in moduli

space to make the mediator massive.

Massless strings must have vanishing right- and left-moving masses eqs. (A.11), subject

to M2
R = M2

L. A vanishing right-moving mass implies pR = (03) and, hence,

m = (G−B)n , using A2 = A4 = Aτ = (016) (A.13)

and q2 = 1 andNR = 0 in eq. (A.11). In this case, pL is given by pL =
√

2 e n. Consequently,

a vanishing left-moving mass, eq. (A.11) with p = (016) and NL = 0, yields the constraint

nTGn = 1 ⇔ (R4)2 + (R6)2 = 1 , (A.14)

for our mediator string with winding numbers n = (−1, 0, 2)T. Note that one can check

that this mass condition is identical for all four winding strings in the conjugacy class

[(1, 2τ − e2)], as expected. In order to satisfy the mass condition (A.14), we choose

(R4)2 = (R6)2 = 1/2 . (A.15)

Next, we have to fix the remaining moduli parameters bi such that the KK numbers m in

eq. (A.13) become integer. In other words, a general winding string n 6= (03) necessarily

carries non-trivial KK numbers m 6= (03) in order to satisfy eq. (A.13) and, hence, level-

matching. We find a solution for

b1 = 0 , b2 = 1/2 and b3 = −1/4 , (A.16)

such that m = (−1, 1, 0)T satisfies eq. (A.13). Let us give two import remarks: First, at a

generic point in moduli space the total mass squared M2
R + M2

L of the mediator depends

on all six free parameters bi, i = 1, 2, 3, R2, R4 and R6. However, there are special points

in moduli space, where the mass is independent of, for example, the compactification

radius R2: this is the case at b = 1/2. Secondly, since mTn = 1 and p = (016), the even

Narain lattice ensures that −(pR)2 + (pL)2 = 2, see eq. (A.9). Hence, the level-matching

condition (A.10) is satisfied everywhere in moduli space for this string.

Next, we consider the dark matter candidate ΦDM with constructing element (1, τ) ∈
S. In this case, the corresponding winding numbers are given by n = (0, 0, 1)T such that

e n = τ . Since we are interested in the lightest string state with these winding numbers, we

set NR = NL = 0 and p = (016). Note that p defines the representation of ΦDM under the
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Figure 10. The mass squared M2 (in string units α′ = 1) of dark matter candidates with

constructing element (1, τ) ∈ S and various KK numbers −5 ≤ mi ≤ 5 for i = 1, 2 (and m3 = 1)

depending on the compactification radius r = (R2)2. The lightest τ -winding string state (in red) is

specified by n = (0, 0, 1)T and m = (0, 1, 1)T. In this figure, the other moduli parameters are set

according to eqs. (A.15) and (A.16), where the mediator is massless independently of r = (R2)2.

There are other points in moduli space, where the masses of the lightest dark matter candidate and

of the mediator are much smaller than 1.

four-dimensional gauge group, which originates from E8×E8 and is assumed to contain the

Standard Model gauge group. Hence, p = (016) renders ΦDM a Standard Model singlet.

Now, we have to find KK numbers m ∈ Z3 such that mTn = 1. Then, the Narain condition

−(pR)2 + (pL)2 = 2mTn = 2 ensures level-matching. Hence, m = (m1,m2, 1)T with m1,

m2 ∈ Z is the general solution. Now, let us find the lightest dark matter candidate ΦDM.

To do so, we assume eqs. (A.15) and (A.16), and compute the total mass squared of ΦDM

in terms of the free radius r = (R2)2 and KK numbers m1, m2 ∈ Z,

M2(r,m1,m2) ∝ (pR)2 + (pL)2 − 2 (A.17)

∝ 18 + 8m2
1 + 16m2(m2 − 2) + 4m1(4m2 − 7) +

(1 + 2m1)2

r
+ r .

Let us constrain the radius R2 to 0 < R2 < 1. In this range, the τ -winding string with

minimal mass has KK numbers m = (0, 1, 1)T: in figure 10 we plot the masses as functions

of r = (R2)2 for various τ -winding strings with KK numbers in the ranges −5 ≤ mi ≤ 5

for i = 1, 2 and identify the lightest string.

Consequently, we have identified the lightest τ -winding string state, specified by wind-

ing and KK numbers

n = (0, 0, 1)T and m = (0, 1, 1)T , (A.18)

respectively. This massive string is our dark matter candidate ΦDM. It is a Standard Model

singlet, i.e. p = (016), and stable since it carries an odd Z4 charge Q = 1, cf. eq. (A.3).

Furthermore, the lightest mediator corresponding to a winding string with constructing

element (1, e4 + e6) ∈ S is characterized by winding and KK numbers

n = (−1, 0, 2)T and m = (−1, 1, 0)T , (A.19)
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respectively. In contrast to the dark matter candidate, the mediator is uncharged under

Z4, cf. eq. (A.3). As we have shown, if we keep b2 = 1/2 fixed, we can independently

vary the masses of ΦDM and the mediator. Finally, it is important to comment that the

mediator corresponds to a U(1) gauge boson that becomes massless at a specific point in

moduli space, given in eqs. (A.15) and (A.16). Moreover, using the results of ref. [37], we

know that the massive τ -winding string state is charged under this U(1). Hence, a Kähler

potential of the form eq. (2.2) must originate from this string construction.

Open Access. This article is distributed under the terms of the Creative Commons
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