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1 Introduction

The Higgs production cross section in gluon-gluon fusion is presently the most precisely

computed observable in hadron-hadron collisions, as far as orders in perturbation theory

(N3LO [1–4] in the heavy-top approximation) and threshold resummation (N3LL [5–10])

are concerned. In [11] we developed the framework for threshold resummation at next-to-

leading power (NLP) using effective field theory, taking the first step beyond the leading-

power resummation formalism in perturbative QCD [12, 13]. We applied it to the summa-

tion of the leading logarithms (LL) in the classic Drell-Yan process qq̄ → γ∗ + X. Given

the interest in Higgs production both phenomenologically and for applying new methods

to high-order calculations, we discuss the similarities and differences of NLP threshold re-

summation for Higgs production in gluon fusion compared to the case of a virtual photon

in this paper.1 Although it is not the main focus of the work, we also provide a numerical

analysis of the next-to-leading power leading logarithms, which indicates that they are

numerically relevant.

The outline of this paper is as follows. In section 2 we derive the factorization for-

mula for single Higgs production at NLP in soft-collinear effective theory (SCET), identify

the sources of NLP LLs, and derive the hard, soft, and collinear functions needed for re-

summation with LL accuracy. The resummation of NLP LLs via renormalization-group

equations is contained in section 3. In the same section we also expand the resummed result

in αs, which provides both, a check of the resummed result by comparison with existing

fixed-order expressions, and so far unknown logarithmic terms at higher order. Finally, in

section 4 we perform a numerical study of the NLP-resummed cross section.

For the sake of avoiding repetition, we build on [11] for basic definitions related to

threshold resummation and SCET. We also recommend consulting that paper for the gen-

eral logic of deriving the NLP factorization and simplifications at the leading-logarithmic

order before continuing with this one.

1The result of [11] has been confirmed in [14] with the diagrammatic method [15–17] and extended to

related processes, including Higgs production. See also [18] for NLP resummation for event shapes.
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2 Threshold factorization at NLP

We consider the process

A(pA) +B(pB)→ H(q) +X, (2.1)

where A(pA), B(pB) represent the colliding protons, and X denotes an unobserved QCD

final state. The cross section for this process can be written as

σ =
α2
s

576πv2

∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb fa/A(xa)fb/B(xb) σ̂ab(z), (2.2)

where fi/I(xi) represent parton distribution functions and v is the Higgs vacuum expec-

tation value, v2 = 1/(
√

2GF ). GF is the Fermi constant, and αs without scale argument

refers to the strong coupling at the MS scale µ. In the following, we consider only the

gluon-gluon initial state and drop the indices a, b. Higgs production in gluon fusion occurs

through a top loop, which couples the gluons to the Higgs boson. In the heavy-top-quark

mass limit mt � mH , the Higgs boson couples to gluons via

Leff = Ct (mt, µ)
αs

12π

H

v
FAµνF

µνA, (2.3)

where

Ct (mt, µ) = 1 +
αs
4π

(5CA − 3CF ) +O(α2
s) . (2.4)

The partonic cross section σ̂ ≡ σ̂gg is a function of the dimensionless variable z =

m2
H/ŝ, where ŝ = xaxb s represents the partonic centre-of-mass energy squared, and xa,

xb the momentum fractions of the gluons in the corresponding hadrons, defined through

the parton momenta pµa = xa
√
snµ−/2, pµb = xb

√
snµ+/2. Our aim is to sum the leading

logarithms in the series
∑∞

n=1

∑2n−1
m=0 dnm lnm(1 − z) of next-to-leading power logarithms

as was done for qq̄ → γ∗ + X [11]. To this end, we start from the Higgs production cross

section formula

σ =
1

2s

∫
d3~q

(2π)32Eq

∑
X

|〈HX|AB〉|2(2π)4δ(4)(pA + pB − q − pX), (2.5)

where the matrix element squared reads

∑
X

|〈HX|AB〉|2 =
α2
s(µ)C2

t (mt, µ)

144π2v2

×
∑
X

〈AB|
[
FA

′
ρσF

ρσA′
]
(0)|X〉〈X|

[
FAµνF

µνA
]
(0)|AB〉. (2.6)

The QCD operator FAµνF
µνA is then matched to SCET operators. At leading power (LP)

this involves the single operator

FAµνF
µνA(0) =

∫
dt dt̄ C̃A0(t, t̄ ) JA0(t, t̄ ) , (2.7)

– 2 –
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where

JA0(t, t̄ ) = 2gµν n−∂AνAc̄⊥(t̄n−)n+∂AµAc⊥(tn+) , (2.8)

CA0(n+p, n−p̄ ) =

∫
dt dt̄ e−i(n+p)t−i(n−p̄)t̄ C̃A0(t, t̄ ) . (2.9)

Here Aµc⊥ denotes the collinear-gauge-invariant transverse collinear gluon field of SCET.

The operator generates a collinear and an anti-collinear field and is non-local along the

light-rays in the respective directions. The derivatives correspond to the large momentum

components of the fields. With the normalization (2.8), the hard coefficient function is

C̃A0(t, t̄ ) = δ(t)δ(t̄) +O(αs), or CA0(n+p, n−p̄) = 1 +O(αs) in momentum space. For LL

resummation, the tree approximation will suffice.

Beyond LP the hard gluon-gluon-Higgs vertex is matched to higher-power SCET op-

erators. The basis of such operators in the position-space SCET formalism is discussed

in [19–21].2 Following the same arguments as for qq̄ → γ∗ [11, 26], to first subleading power

in (1 − z), i.e. to order λ2, the LLs arise only from the time-ordered product of the LP

operator JA0 with the O(λ2) suppressed interactions from the SCET Lagrangian [27],

JT2
A0, j(t, t̄ ) = i

∫
d4zT

[
JA0(t, t̄ )L(2)

j (z)
]
, (2.10)

where the index j labels terms in the power-suppressed Lagrangian L(2)(z). Thus, to obtain

the NLP LL accurate amplitude, we simply add this operator to JA0(t, t̄ ) in (2.7).

To proceed, one removes the soft-collinear interactions from the LP Lagrangian by a

field redefinition [28], in which (anti-) collinear gluon fields are multiplied by adjoint soft

Wilson lines Y+ (Y−), defined as

YAB± (x) = P exp

{
gs

∫ 0

−∞
ds fABC n∓A

C
s (x+ sn∓)

}
. (2.11)

In terms of the decoupled collinear fields, which will be used below, the operator

in (2.8) reads

JA0(t, t̄ ) = 2gµν YAC− (0)n−∂AνCc̄⊥ (t̄n−)YAD+ (0)n+∂AµDc⊥ (tn+) . (2.12)

The interaction Lagrangian is then also expressed in terms of the decoupled collinear field

and the soft-gluon building block

Bµ± = Y †± [iDµ
s Y±] , (2.13)

evaluated at the appropriately multipole-expanded position, where Y±(x) represent soft

Wilson lines in the fundamental colour representation:

Y±(x) = P exp

{
igs

∫ 0

−∞
ds n∓As(x+ sn∓)

}
. (2.14)

2For an operator basis at NLP in the alternative momentum-space SCET formulation see [22–25].

– 3 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
4

An analysis of the interaction terms similar to [11], now for the Yang-Mills SCET La-

grangian, shows that only the two terms

L(2)
1YM = − 1

2g2
s

tr
([
n+∂Acν⊥

][
n−x in−∂ n+B+, Aν⊥c

])
,

L(2)
2YM = − 1

2g2
s

tr
([
n+∂Acν⊥

] [
xρ⊥x⊥ω

[
∂ω, in−∂ B+

ρ

]
, Aν⊥c

])
(2.15)

are relevant for the leading logarithms.

One of the main new features of the factorization theorem beyond LP is the appearance

of collinear functions [11, 26]. They are defined as the perturbative matching coefficients

of threshold-collinear fields with virtuality m2
H(1 − z) � Λ2 to PDF-collinear fields (the

modes contained in the parton distribution function) with virtuality Λ2, in the presence of

soft fields with virtuality m2
H(1− z)2. By using the equation-of-motion identity

n+B+ = −2
i∂µ⊥
in−∂

B+
⊥µ + two-parton terms, (2.16)

we observe that L(2)
1YM and L(2)

2YM above can be written in terms of the same soft building

block. Hence there is only a single collinear function, defined through the relation3

i

∫
d4zT

[
n+∂AYcµ⊥(tn+)

(
L(2)

1YM(z) + L(2)
2YM(z)

)]
= 2π

∫
du

∫
d(n+z)

2
J̃ YBCYMµρ

(
t, u;

n+z

2

)
ACρ⊥,PDF
c (un+)

∂ ω⊥
in−∂

B+B
ω⊥

(z−) . (2.17)

Below we express the amplitude in terms of the Fourier transforms

ÂC,PDF
cα⊥

(n+p) =

∫
du ei(n+p)uAC,PDF

cα⊥
(un+), (2.18)

and

J YBCYMµρ

(
n+p, n+p

′;ω
)

=

∫
dt ei(n+p)t

∫
du e−i(n+p′)u

×
∫
d(n+z)

2
eiω(n+z)/2 J̃ YBCYMµρ

(
t, u;

n+z

2

)
. (2.19)

With these definitions, the collinear function at the lowest order is easily calculated to be

JYBCYMµρ(n+p, n+p
′;ω) = −2i TR f

YBC g⊥µρ

[
2− 2n+p

′ ∂

∂n+p

]
δ(n+p− n+p

′) (2.20)

with TR = 1/2. The Lagrangian insertion L(2)
1YM contributes 1 − 2n+p

′ ∂
∂n+p

to this result,

while the remaining 1 is due to L(2)
2YM. For the LL resummation, the lowest order, tree-level

expression for the collinear function suffices.

3A similar definition applies to the anti-collinear gluon field with n+ and n− exchanged.
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At this point, we can put together previous expressions to write the NLP contribution

to the matrix element 〈X|
[
FAµνF

µνA
]
(0)|AB〉, which appears in (2.6), in the factorized form

〈X|
[
FAµνF

µνA
]

(0) |A(pA)B(pB)〉NLP

= −2i

∫
dn+p

2π

dn−p̄

2π
gµν CA0(n+p, n−p̄)

×
∫
dn−pb δ(n−p̄− n−pb)n−pb 〈Xc̄PDF |Â

X,PDF
c̄ν⊥ (n−pb)|B(pB)〉

×
∫
dn+pa 〈XcPDF |Â

Cρ⊥,PDF
c (n+pa)|A(pA)〉

∫
dω

4π
J YBCYMµρ(n+p, n+pa;ω)

×
∫
d(n+z) e−iω(n+z)/2 〈Xs|T

[
Y AX− (0)Y AY+ (0)

∂ ω⊥
in−∂

B+B
ω⊥

(z−)

]
|0〉+ c̄-term ,

(2.21)

where we used that the final state 〈X| contains threshold-soft and c-PDF states, 〈Xs| ⊗
〈Xc,PDF| ⊗ 〈Xc̄,PDF|. Integrating by parts the derivative in the collinear function (2.20), it

acts on the rest of the matrix element. In (2.21), the only term which depends on n+p is

the short-distance coefficient CA0(n+p, n−p̄). With the normalization adopted in (2.7) one

has CA0(n+p, n−p̄) = 1 +O(αs), and since we will need only the tree-level expression, the

derivative term in (2.20) does not contribute. We therefore extract the momentum, colour,

and Lorentz structure of JYBCµρ (n+p, n+p
′;ω) and substitute

JYBCYMµρ(n+p, n+pa;ω) → ifYBC g⊥µρ JYM(n+pa;ω) δ(n+p− n+pa), (2.22)

where, at the lowest order

J
(0)
YM(n+pa;ω) = −4TR = −2. (2.23)

Inserting (2.22) into (2.21) we get

〈X|
[
FAµνF

µνA
]

(0) |A(pA)B(pB)〉NLP

= 2

∫
dn+pa

2π

dn−pb
2π

g µν CA0(n+pa, n−pb)

×n−pb 〈Xc̄PDF |Â
X,PDF
c̄ν⊥ (n−pb)|B(pB)〉 〈XcPDF |Â

C,PDF
cµ⊥

(n+pa)|A(pA)〉

×
∫
dω

4π
JYM(n+pa;ω)

∫
d(n+z) e−iω(n+z)/2

×〈Xs|T
[
YAX− (0)YAY+ (0) fYBC

∂ ω⊥
in−∂

B+B
ω⊥

(z−)

]
|0〉+ c̄-term. (2.24)

Upon comparison with eq. (3.17) of [11], we see that the matrix element for Higgs pro-

duction at NLP is very similar to the one obtained for the production of a virtual pho-

ton, with obvious differences in the colour structure, related to the gluonic instead of

the quark-antiquark initial state. At leading logarithmic accuracy one can further set

CA0(n+pa, n−pb) → 1 at the hard scale, and JYM(n+pa;ω) → −2 at the collinear scale,

which further simplifies (2.24).

– 5 –
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In the next step, we square the matrix element to obtain the factorized form

of (2.5), (2.6). Summation of the PDF-(anti-)collinear final state introduces the gluon

parton distribution〈
A(pA)

∣∣AA′,PDF
cρ′⊥

(x+ u′n+)AA,PDF
cρ⊥

(un+)
∣∣A(pA)

〉
= −

g⊥ρρ′

2

δAA
′

N2
c − 1

∫ 1

0

dxa
xa

fg/A(xa) e
ixa(x+u′n+−un+)·pA , (2.25)

while the sum over the soft radiation yields the NLP soft function SYM(Ω, ω) defined below.

Performing the integrations over n+pa, n−pb and stripping off the convolution with the

gluon distribution functions, we obtain the partonic cross section (2.2) up to NLP in the

threshold expansion (including the LP term) in the form

σ̂(z) =
8C2

t (mt)

N2
c − 1

ŝH(ŝ)

∫
d3~q

(2π)3 2
√
m2
H + ~q 2

1

2π

∫
d4x ei(xapA+xbpB−q)·x

×
{
S̃0(x)− 2√

ŝ

∫
dω JYM(xan+pA;ω) S̃YM(x, ω) + c̄-term

}
. (2.26)

Here

H(ŝ, µh) = |CA0(−ŝ)|2 , (2.27)

represents the hard function, which is the same for the LP and NLP term. S̃0(x) denotes

the LP position-space soft function of adjoint Wilson lines for the gluon-gluon initial state

generalized to x0 → xµ = (x0, ~x ) in the position argument of the Wilson lines. Its Fourier

transform with respect to x0 will be denoted by S0(Ω, ~x), such that SH(Ω) = S0(Ω,~0 ).

Furthermore, S̃YM(x, ω) represents the NLP soft function, defined as the Fourier transform

S̃YM(x, ω) =

∫
d(n+z)

4π
e−iω(n+z)/2 1

N2
c − 1

〈0|S̃YM(x, z−)|0〉 , (2.28)

of the vacuum matrix element of the operator

S̃YM (x, z−) = T̄
[
Y A′C+ (x)Y A′X− (x)

]
T

[
Y AX− (0)Y AY+ (0) fYBC

∂ σ⊥
in−∂

B+B
σ⊥

(z−)

]
. (2.29)

We will denote the Fourier transform of S̃YM(x, ω)|~x=0 with respect to x0 by SYM(Ω, ω).

The factor of two multiplying JYM⊗S̃YM in (2.26) arises from the two identical NLP terms

in the square of the amplitude.

As discussed in [11], a number of “kinematic” power corrections arise from expanding

the first line of (2.26) and the generalized LP soft function S̃0(x). We shall also consider

the partonic cross section rescaled by a factor of 1/z,

∆(z) =
σ̂(z)

z
, (2.30)

as is conventionally done. The derivation of the kinematic correction is almost identical

to the qq̄ → γ∗ case, and we refer to [11] for further details. A difference arises from

– 6 –
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the factor ŝ = m2
H/z in (2.26), which is absent in γ∗ production, and which originated

from the derivatives in the Higgs production operator (2.8). Together with the 1/z factor

from (2.30) this implies that the kinematic correction denoted by SK3(Ω) in [11] is twice as

large, and hence the sum of all kinematic corrections does no longer cancel for the quantity

∆(z) at LL accuracy. Instead we obtain

∆(z) =
8C2

t (mt)

N2
c − 1

mH H(m2
H)

{
SH(mH(1− z)) +

1

mH
SK(mH(1− z))

− 2

mH

∫
dω JYM(xan+pA;ω)SYM(mH(1− z), ω) + c̄-term

}
, (2.31)

with

SK(Ω) =
αsCA

2π

(
−8 ln

µ

Ω
+ 4
)
θ(Ω) +O(α2

s) . (2.32)

Hence, in the case of Higgs production the kinematic corrections do produce NLP

LLs in ∆(z).

3 Resummation

The resummation of NLP logarithms is performed using renormalization group equations

(RGEs) to evolve the scale-dependent functions in the factorization formula (2.31) to a

common scale, for which we adopt the collinear scale µc ∼ mH

√
1− z. One difference with

respect to the classic DY process is due to the effective ggH vertex, which introduces the

additional short-distance coefficient Ct(mt), which multiplies both, the LP and NLP term.

The value of Ct at a generic scale µ is (see, for example [9])

Ct(mt, µ) =
β
(
αs(µ)

)
α2
s(µ)

α2
s(µt)

β
(
αs(µt)

) Ct(mt, µt), (3.1)

where Ct(mt, µt) gives the initial condition at the scale µt ∼ mt, and

β(αs) =
d

d lnµ
αs = −2

β0α
2
s

4π
+O(α3

s), β0 =
11

3
Nc −

2

3
nf . (3.2)

Next, we need to consider the evolution of the hard function H(m2
H) from the hard scale

µh ∼ mH to the collinear scale. This is identical to the qq̄ case [11], up to the colour-factor

substitution CF → CA. To LL accuracy one has

H(m2
H , µ) = exp

[
4SLL(µh, µ)

]
H(m2

H , µh) , (3.3)

where

SLL(ν, µ) =
CA
β2

0

4π

αs(ν)

(
1− αs(ν)

αs(µ)
+ ln

αs(ν)

αs(µ)

)
. (3.4)

Regarding the evolution of the NLP soft function (2.28), (2.29) from the soft scale

µs ∼ mH(1− z) to the collinear scale, we first note that this soft function has exactly the

same form as the one that appeared for qq̄ → γ∗ in [11] with the only difference that the

Wilson lines and colour operators are now in the adjoint rather than in the fundamental

– 7 –
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representation. The structure of the RGE relevant to LL resummation, as well as the

O(αs) result for the soft function follows from substituting CF → CA in the corresponding

expressions in [11]. In particular, the LLs are generated from mixing between S̃YM(x, ω) and

Sad
x0 (Ω) =

∫
dx0

4π
eix

0Ω/2 −2i

x0 − iε
1

N2
c − 1

〈0|T̄
[
YA′Y+ (x0)YA′X− (x0)

]
T
[
YAX− (0)YAY+ (0)

]
|0〉,

(3.5)

which is the adjoint-representation equivalent to Sx0(Ω) defined in [11]. We refer to [11]

for the renormalization of these soft functions, which implies the RGE system

d

d lnµ

(
SYM(Ω, ω)

Sad
x0 (Ω)

)
=
αs
π

 4CA ln
µ

µs
CAδ(ω)

0 4CA ln
µ

µs

(SYM(Ω, ω)

Sad
x0 (Ω)

)
, (3.6)

where µs denotes an arbitrary soft scale of order mH(1 − z). In case of Higgs production

the evolution of the kinematic soft function SK must also be considered, and we find

d

d lnµ

(
SK(Ω)

Sad
x0 (Ω)

)
=
αs
π

 4CA ln
µ

µs
−4CA

0 4CA ln
µ

µs

( SK(Ω)

Sad
x0 (Ω)

)
. (3.7)

Following appendix A of [11] we obtain the LL solution

SLL
K (Ω, µ) =

8CA
β0

ln
αs(µ)

αs(µs)
exp

[
−4SLL(µs, µ)

]
θ(Ω) ,

SLL
YM(Ω, ω, µ) = −2CA

β0
ln

αs(µ)

αs(µs)
exp

[
−4SLL(µs, µ)

]
θ(Ω)δ(ω) . (3.8)

Since the collinear function at the collinear scale does not contain large logarithms, we

can insert the tree-level expression (2.23) into (2.31) to obtain4

∆(z, µc) =
α2
s(µc)

α2
s(µ)

C2
t (mt, µc)H(m2

H , µc)

{
mH SH

(
mH(1− z), µc

)
+ SLL

K (Ω, µc)

+8

∫
dω SLL

YM

(
mH(1− z), ω, µc

)}
(3.9)

in terms of evolved hard and soft functions. The factor α2
s(µc)/α

2
s(µ) in front is included

to compensate for the fact that the hadronic cross section (2.2) contains the factor α2
s(µ)

not included into ∆(z, µc). Also, the c̄-term in (2.31) gives an identical NLP contribution

to the collinear one, thus we take it into account by multiplying the second line of (3.9) by

4The following equation is written under the assumption that we do not distinguish the scale of the

effective Higgs-gluon coupling and the SCET factorization scale. The SCET anomalous dimension that

governs the evolution of H(m2
H , µ) then inherits a contribution from the anomalous dimension of the HFF

operator, which compensates the evolution of C2
t (mt, µ) below the hard scale. For the conceptually cleaner

treatment of distinguishing the two scales, see the discussion of tensor quark currents in [29]. The final

result (3.10) is the same in both cases.
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two. Inserting now the resummed soft functions (3.8) into (3.9), and using H(m2
H , µh) =

1 +O(αs), we get

∆LL(z, µc) = ∆LL
LP(z, µc)−

α2
s(µc)

α2
s(µ)

[
β
(
αs(µc)

)
α2
s(µc)

α2
s(µt)

β
(
αs(µt)

)]2

C2
t (mt, µt)

× exp
[
4SLL(µh, µc)− 4SLL(µs, µc)

] 8CA
β0

ln
αs(µc)

αs(µs)
θ(1− z) . (3.10)

It is remarkable that the kinematic and NLP soft function contribution sum up to give

a NLP resummation formula which is identical to the qq̄ induced DY process, with the

color factor CF replaced by CA. Within the approach presented here the main differences

between the qq̄ and gg channel appear in a) a factor of two difference in the collinear

function due to the contribution of two Lagrangian terms (2.15) and b) the existence of

a kinematic correction. Both differences are related to the derivatives in the production

operator (2.8), but cancel to produce the above result.

In (3.10) the term ∆LL
LP(z) represents the LL-resummed LP partonic cross section, in the

present formalism given in [9]. We can set µh = mH , µs = mH(1−z) and µc = mH

√
1− z,

since the precise choice is irrelevant for the LLs. However, eq. (3.10) is not yet of the most

general form, since it implies that the factorization scale µ is set to µc = mH

√
1− z in the

parton distributions. We translate the result to arbitrary µ by using the scale invariance

of the hadronic cross section, as discussed in [11]. The result is that the functional form of

the resummed partonic cross section at a generic scale µ is identical to the functional form

at the scale µc:

∆LL
NLP(z, µ) =

[
β
(
αs(µ)

)
α2
s(µ)

α2
s(µt)

β
(
αs(µt)

)]2

C2
t (mt, µt)

× exp
[
4SLL(µh, µ)− 4SLL(µs, µ)

] −8CA
β0

ln
αs(µ)

αs(µs)
θ(1− z) , (3.11)

which implies that the collinear function cannot contain LLs when evaluated at a scale µ

different from µc. The scale of the parton luminosity that multiplies (3.11) is now manifestly

independent of z, and the logarithms of (1− z) are generated by setting µs ∼ mH(1− z).

Eq. (3.11) expresses the resummation of NLP LLs for Higgs production in gluon fu-

sion, which constitutes our main result. We can expand it to fixed order in perturbation

theory, to obtain the logarithms explicitly and to compare with existing results. Given that[
β
(
αs(µ)

)
/α2

s(µ)α2
s(µt)/β

(
αs(µt)

)]2
and C2

t (mt, µt) both equal unity at O(α0
s) and do not

contain LLs in higher orders, we can drop these two factors altogether. The expansion

of (3.11) to fixed order is therefore the same as in qq̄ → γ∗, with CF → CA. For arbitrary

µ, with µh = mH and µs = mH(1− z) we have

∆LL
NLP(z, µ) = −θ(1−z)

{
4CA

αs
π

[
ln(1−z)− Lµ

]
+ 8C2

A

(
αs
π

)2[
ln3(1−z)− 3Lµ ln2(1−z) + 2L2

µ ln(1−z)
]
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+ 8C3
A

(
αs
π

)3[
ln5(1−z)− 5Lµ ln4(1−z) + 8L2

µ ln3(1−z)− 4L3
µ ln2(1−z)

]
+

16

3
C4
A

(
αs
π

)4[
ln7(1−z)− 7Lµ ln6(1−z) + 18L2

µ ln5(1−z)

−20L3
µ ln4(1−z) + 8L4

µ ln3(1−z)
]

+
8

3
C5
A

(
αs
π

)5[
ln9(1−z)− 9Lµ ln8(1−z) + 32L2

µ ln7(1−z)

−56L3
µ ln6(1−z) + 48L4

µ ln5(1−z)− 16L5
µ ln4(1−z)

]}
+O(α6

s × (log)11) , (3.12)

where we have defined Lµ = ln(µ/mH), and (log)11 stands for some combination of the

two logarithms to the 11th power.

The N3LO term has been given by means of an exact calculation in [30], and also in [31],

based on the “physical evolution kernels” method, see in particular eq. (2.12) in [30] and

(B.2) in [31]. Our result at this order agrees with these references. Furthermore, eq. (B.3)

of [31] provides the result at N4LO, with which we also agree. The N5LO term is a

new result and the expansion to any order can be obtained without effort from (3.11). It

justifies the procedure [32, 33] of accounting for NLP leading logarithms by simply including

the NLP term in the Altarelli-Parisi splitting kernels in the standard LP resummation

formalism.

4 Numerical analysis of NLP LL resummation

In this section, we provide a numerical exploration of the NLP resummed Higgs production

cross section in the large top mass approximation, via gluon-gluon fusion at the LHC with√
s = 13 TeV, and using mH = 125 GeV. The cross section is given by

σ =
α2
s(µ)m2

H

576π v2s

∫ 1

τ

dz

z
L
(
τ

z
, µ

)
∆(z, µ), (4.1)

where ∆(z, µ) is related to the normalized partonic cross section as defined in (2.30), and

the luminosity function involving the parton distribution functions is given by

L(y, µ) =

∫ 1

y

dx

x
fg/A(x, µ)fg/B

(y
x
, µ
)
. (4.2)

We use the PDF sets PDF4LHC15nnlo30 [34–38]. For comparison, we also consider the

resummed leading power cross section at NNLL accuracy, as provided in (30), (31) of [9]

(note that we strictly include only leading power contributions to the latter). The LP

result involves hard and soft functions at one loop, the anomalous dimension Γcusp at three

loops, and all other anomalous dimensions at two loops, see e.g. table 1 of [39].

The resummation formula at NLP depends on the scales µt, µh, µc and µs, as well

as on the factorization scale µ. We choose µt = 173.1 GeV and µh = µ = mH . In what

– 10 –
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follows, we consider also the choice µ2
h = −m2

H − iε (we omit −iε below), which includes in

the resummation factors of π2 associated to logarithmic contributions evaluated with time-

like momentum transfer [9]. As discussed above, the NLP cross section does not depend

explicitly on the collinear scale µc at LL accuracy. In section 3 we used the parametric

choice µs = mH(1 − z) for the soft scale to obtain analytic fixed-order results. We find

that, as is known at LP, this choice is not admissible to evaluate the resummed result, see

table 1 and discussion below. Instead, we use a dynamical soft scale given by [40]

µdyn
s =

Q

s̄1(τ)
, s̄1(τ) ≡ −eγE d lnL(y, µ)

d ln y

∣∣∣∣
y=τ

. (4.3)

With the Higgs mass and centre of mass energy given above we find µdyn
s ' 38 GeV.

Alternatively, the resummation could be performed in Mellin space [41, 42], which may be

viewed as an implicit way to set an effective soft scale. Here we prefer to take advantage

of keeping the soft scale independent from the other scales in the problem, and consider

the effect of varying µs below.

In table 1, we consider the perturbative expansion of the resummed cross section

in order to investigate whether our choice for the soft scale is suitable. To obtain the

numerical values in table 1, we evaluate both the LP and NLP result at LL accuracy, set

the coefficient C2
t (mt, µt) together with its evolution factor (first line in (3.11)) to unity,

and consider the running coupling constant at one loop. When setting the soft scale to its

parametric value µs = mH(1− z) the series is numerically divergent both at LP and NLP,

as expected (second and fifth column in table 1). For µs = µdyn
s , the higher order terms

become suppressed (third and sixth column in table 1), indicating that the expansion of the

series is perturbatively convergent for both the LP and NLP result, as required. We also

show the expanded result obtained for µ2
h = −m2

H (fourth and seventh column in table 1).

As expected, the different choice of the hard scale does not alter the convergence of the LL

approximation.

To evaluate the LL resummed NLP cross section, we find it useful to consider a slight

generalization of our previous result (3.11), given by

∆LL
NLP(z, µ) =

[
β
(
αs(µ)

)
α2
s(µ)

α2
s(µt)

β
(
αs(µt)

)]2

C2
t (mt, µt) exp

[
4CA

(
SLL(µh, µ)− SLL(µs, µ)

)]
×
[
SNLP

(
mH(1− z), µs

)
− 8CA

β0
ln

αs(µ)

αs(µs)
Sad
x0

(
mH(1− z), µs

)]
, (4.4)

where SNLP

(
mH(1 − z), µs

)
denotes the initial condition of the evolution equations (3.6)

and (3.7) for the sum of NLP soft functions (3.9) evaluated at the soft scale,

SNLP

(
mH(1− z), µs

)
= SK

(
mH(1− z), µs

)
− 8

∫
dω SYM

(
mH(1− z), ω, µs

)
. (4.5)

We consider two initial conditions, which are equivalent at LL accuracy:

A) SNLP

(
mH(1− z), µs

)
= 0,

B) SNLP

(
mH(1− z), µs

)
= −4CA

αs(µs)

2π
ln
m2
H(1− z)2

µ2
s

,
(4.6)
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(pb) σLL
LP σLL

NLP

µs = mH(1 − z) µs = µdyn
s µs = µdyn

s µs = mH(1 − z) µs = µdyn
s µs = µdyn

s

µ2
h = m2

H µ2
h = m2

H µ2
h = −m2

H µ2
h = m2

H µ2
h = m2

H µ2
h = −m2

H

O
(
α0
s

)
12.94 12.94 12.94 — — —

O (αs) 4.70 1.95 8.82 4.35 3.57 3.57

O
(
α2
s

)
6.49 1.72 4.58 7.50 1.38 3.28

O
(
α3
s

)
15.35 1.03 2.49 18.67 0.35 1.58

O
(
α4
s

)
51.09 0.61 1.45 62.97 0.07 0.52

O
(
α5
s

)
217.53 0.36 0.87 269.10 0.01 0.13

O
(
α6
s

)
1111.56 0.22 0.52 1376.45 0.002 0.03

Table 1. Comparison of the LL contributions to the Higgs production cross section in gluon fusion

expanded in powers of αs for various choices of the soft and hard scales, and for LP and NLP,

respectively. For the naive choice µs = mH(1 − z) the series does not converge at LP and neither

at NLP, while higher-order contributions decrease rapidly when using the dynamical soft scale

µs = µdyn
s . Furthermore, we distinguish the case in which µ2

h = m2
H and µ2

h = −m2
H .

together with Sad
x0

(
mH(1 − z), µs

)
= 1. The first choice was used above and repro-

duces (3.11) while the second ensures that the logarithmic part of the NLP NLO con-

tribution is included for any value of µs.

To obtain the NLP resummed result, we take C2
t (mt, µt) in (4.4) at two loops, see (12)

of [9], and use the three-loop β-function for αs. This gives C2
t (mt, µ = mH) ' 1.22 for

Ct evolved to the factorization scale (given by the product of the first two factors on the

right-hand side of (4.4)). For the LP result, in the implementation of [9], Ct evaluated at

the soft scale is required, for which we find C2
t (mt, µ = µs) ' 1.80.

In table 2 we present our numerical results for the LL resummed NLP cross section

within the two schemes discussed above, and compare to the NNLL LP result as well as

to fixed order results at NNLO and N3LO, obtained using the iHixs code [43]. We find

that the NLP correction is sizeable, and constitutes up to 40% of the NNLL LP resummed

cross section. Furthermore, we find that the resummation of π2 enhanced terms, although

contributing formally beyond LL accuracy, is numerically important. Its inclusion leads to

a combined NNLL LP + LL NLP resummed cross section that is comparable to the N3LO

result [2, 3].

In figures 1 and 2 we study the dependence of the resummed result on the soft scale

µs. As expected, the sensitivity to µs is larger for the NLP correction, given that only the

LLs are available, compared to the LP cross section, which is resummed at NNLL accuracy.

Despite the sizeable sensitivity to µs, the NLP resummed cross sections obtained for the

two initial conditions A and B overlap in the region around µdyn
s . The sum of LP and NLP

shows a somewhat smaller sensitivity to the soft scale, at least for µ2
h = m2

H .
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σ (pb)
µs = µdyn

s

µ2
h = m2

H µ2
h = −m2

H

σNNLL
LP 24.12 28.04

σNNLO
LP 28.93

σN3LO
LP 29.24

σLL
NLP (A) 7.18 12.76

σLL
NLP (B) 8.82 15.68

σNNLO
nonLP 11.90

σN3LO
nonLP 16.27

σNNLL
LP + σLL

NLP (A) 31.30 40.80

σNNLL
LP + σLL

NLP (B) 32.94 43.72

σNNLO 40.82

σN3LO 45.52

Table 2. Resummed Higgs production cross section in gluon fusion at LP with NNLL, and at

NLP with LL accuracy. For NLP we present the result for the two cases defined in (4.6). For

comparison, we also show the fixed-order results for gluon fusion at NNLO and N3LO based on the

iHixs code [43]. In addition, we distinguish the LP contribution and the difference between the full

result and LP contribution (denoted by non LP) for the fixed-order results.

� �� �� �� �� ��� ���
μ�

��

��

��

��

��
σ(��)

������

�����(�)

�����(�)

������+�����(�)

������+�����(�)

Figure 1. Dependence of the NNLL LP and LL NLP resummed Higgs production cross section on

the soft scale µs, for µ2
h = m2

H . For NLP we present the result for the two cases defined in (4.6).

5 Summary

In this work, we resummed all leading logarithmic corrections to the Higgs production

cross section in gluon-gluon fusion, at next-to-leading power in the threshold expansion

employing position-space SCET. Our main analytic result is presented in (3.11), and its

expansion in powers of αs is provided in (3.12) up to the fifth order. Our result proves

that, to all orders in the strong coupling constant, the leading logarithmic terms at NLP

are identical to those obtained for the threshold expansion of the Drell-Yan process in the

qq̄ channel up to an exchange of the color factor, CF → CA.
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Figure 2. Same as figure 1, however using µ2
h = −m2

H for the hard scale.

In addition, we explore the relevance of the resummed NLP correction for the to-

tal hadronic Higgs production cross section in proton-proton collisions at
√
s = 13 TeV.

Similarly to what has been observed at LP, a direct naive summation of the fixed-order

contributions is not possible, as the sum would not converge in this case. A judicious choice

of the soft scale is necessary and to that end we employ the soft scale setting procedure

established in the literature for LP investigations. Even though this method may not be

considered as fully systematic, it is known to provide reasonable results at LP. We find that

this choice provides a series whose subsequent contributions decrease rapidly also at NLP.

We find that the LL NLP corrections are of the order of 30-40% of the NNLL LP

resummed cross section (when including only leading-power contributions to the latter).

We also observe that the sum of NNLL LP and LL NLP contributions yields a value that

is numerically close to the N3LO result, when including a resummation of π2 terms in

both the LP and NLP contributions. The difference between both is of similar size as the

contribution to the resummed result from orders larger than or equal to α4
s.

As expected, the dependence of the LL NLP result on the soft scale is sizable. We find

that the numerical results are comparable when using two different initial conditions for

the soft function that are formally equivalent at LL accuracy. In conclusion, our results

indicate that the NLP correction to the Higgs cross section is substantial, and it therefore

appears desirable to extend NLP resummation to NLL accuracy, and eventually combine

the resummed results with fixed-order computations.
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