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Zusammenfassung  

(Hintergrund) Um den Energieverbrauch zu reduzieren, ist es notwendig, die 

Wärmedämmfähigkeit bestehender Gebäudefassaden zu verbessern. Zu diesem Zweck 

werden Schichten, die Isolierung, wasserdichte Verkleidung und sogar erneuerbare 

Energiequellen umfassen, an bestehenden Gebäudefassaden angebracht. Die manuelle 

Durchführung dieser Aufgaben an Gebäudefassaden ist oft eine mühsame, gefährliche und 

ineffiziente Tätigkeit. Um die manuellen Tätigkeiten vor Ort zu minimieren, werden extern 

vorgefertigte Module oder Wände auf die bestehenden Gebäudefassaden montiert. Um die 

Luft- und Wasserdichtheit der Module zu sicherzustellen, sind strenge Maßtoleranzvorgaben 

über den gesamten Prozess hinweg notwendig. Darüberhinaus muss die Sicherheit während 

aller Arbeitsschritte erhöht werden. (Ziel und Hypothese) Um das oben genannte Thema 

weiter zu untersuchen, ist es der Gegenstand dieser Dissertation, die Arbeitszeit zu reduzieren 

und gleichzeitig eine ausreichende Genauigkeit zu erzielen, indem neuartige automatisierte 

und robotische Lösungen in verschiedenen Phasen der Fassaden-Gebäudesanierung mit 

Modulen angewendet werden. (Methode) Die Komplexität und der Umfang des Themas 

erfordern eine Einteilung in mehrere Unterkategorien, basierend auf den verschiedenen 

Phasen des Gebäudesanierungsprozesses: 1) Erfassung der Maße der bestehenden 

Fassade; 2) genaue Fertigung der vorgefertigten Module oder Wände außerhalb der Baustelle; 

und 3) präzise Installation der Module. Um die Forschung zu strukturieren wurde ein 

konzeptioneller Rahmen festgelegt. Dieser konzeptionelle Rahmen, oder auch 

Arbeitsmethodik, wurde zu Grunde gelegt um jede der Unterkategorien zu organisieren, zu 

strukturieren und miteinander in Beziehung zu setzen. Auf diese Weise wurden die einzelnen 

Probleme und Lösungen in den Kontext des übergeordneten Themas eingebettet. Diese 

Arbeitsmethodik lieferte das Konzept für die Durchführung der Hauptforschungsphasen, die 

in dieser Dissertation vorgestellt werden, nämlich a) die Analyse und Definition von 

Forschungslücken (RG), b) die Entwicklung neuartiger Lösungen (DNS) und c) die Bewertung 

des zukünftigen Bedarfs (FN). Zwei Hauptparameter, nämlich Genauigkeit und Arbeitszeit, 

wurden für die Bewertung der verschiedenen Unterkategorien während der 

Forschungsphasen herangezogen. (Analyse) In der bisherigen Literatur zur 

Fassadensanierung mit vorgefertigten Modulen fehlt der Blickwinkel auf Genauigkeit und 

Arbeitszeitleistung. Daher wurde eine Analyse durchgeführt um Maßstäbe zu definieren und 

die Forschungslücken in jeder der Unterkategorien zu identifizieren. Zu diesem Zweck wurden 

Fallstudien der Modulvorfertigung und -installation analysiert und fünf RG entdeckt. 

(Entwicklungen) Diese fünf RG wurden durch die jeweiligen DNS behandelt. Die erste DNS 

konzentrierte sich auf die Erstellung eines neuen automatisierten Prozesses zur Bestimmung 

des primären Layouts der Module unter ausschließlicher Verwendung einer Punktwolke aus 

einem 3D Scan der bestehenden Gebäudefassade. Die zweite DNS bietet einen verbesserten 

Ansatz für die externe Montage von vorgefertigten Modulen, indem sie den Bearbeitungsgrad 

einiger Elemente anpasst und gleichzeitig eine ausgewogene Fertigungslinie erreicht. Die 

dritte Lösung korrigiert Abweichungsprobleme bei robotergestützten Montageprozessen in 

externen Produktionsstätten mit kalibrierten und maschinell bearbeiteten Holzelementen. Die 

vierte DNS befasst sich mit der Vor-Ort-Montage von Modulen durch ein System, das auf 

einem seilgetriebenen Parallelroboter (CDPR) basiert und in einer Situation umgesetzt wurde, 

die realen Bauumgebungen mit realen Ergebnissen sehr nahe kam. Und die fünfte DNS 

befasst sich mit einer Schnittstelle, die Abweichungen während der Vor-Ort-Installation der 
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Module korrigiert. Die Ergebnisse zeigen vielversprechende Resultate. Für jede DNS wurde 

eine FN benannt. (Schlussfolgerung) Im Abschlusskapitel wurden die FN zusammengefasst 

und ein Überblick über den entwickelten konzeptionellen Rahmen und die potenzielle 

Forschungslinie erstellt.  



viii 

Abstract 

(Background) To reduce energy consumption, there is a need to improve the existing building 

façade thermal insulation capabilities. For such purpose, layers that include insulation, 

waterproof cladding and even renewable energy sources are fixed onto existing building 

façades. Achieving these tasks manually on building façades is often a tedious, dangerous, 

and inefficient activity. To minimize manual activities on-site, prefabricated modules or walls 

have been installed on top of the existing building façades. To fulfil airtightness and waterproof 

conditions of the modules, strict dimensional tolerance constraints in all phases is necessary. 

Moreover, safety must be increased in all phases. (Objective and hypothesis) To further 

investigate the aforementioned topic, the objective of this dissertation is to reduce the working 

time while achieving sufficient accuracy by applying novel automated and robotic solutions in 

different phases of the façade-building renovation with modules. (Method) The complexity and 

broadness of the topic require the determination of several subcategories based on different 

phases of the building renovation process, which are 1) data acquisition of the existing façade; 

2) accurate off-site manufacturing of the prefabricated modules or walls; and 3) precise 

installation of the module. To structure the research, a conceptual framework was determined. 

This conceptual framework or working methodology was used as a tool for organizing, 

interrelating and decomposing each subcategory. With the conceptual framework, particular 

problems and solutions were encompassed within the perspective of the general topic. This 

working methodology provided the context for accomplishing the main research phases 

presented in this dissertation which were a) the analysis and definition of Research Gaps (RG), 

b) Development of Novel Solutions (DNS) and the c) assessment of Future Needs (FN). Two 

main parameters, namely accuracy and working time were used for assessing the different 

subcategories during the research phases. (Analysis) The previous literature on façade 

renovation with prefabricated modules lacked a focus on accuracy and working time output. 

Therefore, an analysis was carried out to define the benchmarks and to identify the research 

gaps in each of the subcategories. To achieve this, case studies of module prefabrication and 

installation were analyzed and five RGs were detected. (Developments) These five RGs were 

addressed by the respective DNSs. The first DNS was centered in creating a new automated 

process for determining the primary layout of the modules with the only input of 3D scanned 

Point Cloud of the existing building façade. The second DNS provides an improved approach 

for the off-site assembly of prefabricated modules by adjusting the machining level of some 

elements while reaching a balanced manufacturing line. The third solution corrects deviation 

issues with robotic assembly processes in off-site factories with calibrated and machined 

timber elements. The fourth DNS is about the on-site installation of modules by a system 

based on a cable-driven parallel robot (CDPR) which was achieved in a situation very close to 

real construction environments with real results. And the fifth DNS is centered in an interface 

that corrects deviations during the on-site installation of the modules. Results show promising 

achievements; however, FNs were appointed for each of the DNSs. (Conclusions) Finally, 

the conclusion chapter gathered the FNs and set up the overview of the evolved conceptual 

framework and the potential line of research. 
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Acronyms and Glossary  

Absolute and Relative Accuracy: Absolute Accuracy is the positioning accuracy of a module 

in regards with the origin (0,0,0) of a facade or a building, while relative can be the positioning 

accuracy in regards to an adjacent module or element. 

Anchor: A system, normally a plate or angle that are used for supporting a rain screen and 

other prefabricated modules. Anchors are fastened by bolts. 

Assembly: The process for putting together different elements and creating a prefabricated 

module. 

Automation: Refers to the minimization of human manual work for achieving a task 

Bracket: A CWM supporting plate that is fixed with bolts to a concrete slab. 

BIM: Building Information Modelling. A software tool that includes physical and management 

information of the built environment. 

Connector: Similar to an anchor, but it might include fluid or electricity transfer. 

CLT: Counter Laminated Timber panels. 

CNC: Computer Numerical Control machine. Accuracy is very good if the Cartesian is a stable 

system. Good for routing and manufacturing. 

Current manual methods for facade renovation: Refers to the set of techniques where 

materials are cut manually on-site in order to arrange them onto the existing façade. 

CWM: Curtain Wall Module, which is a type of prefabricated curtain wall. 

Number of Degrees of Freedom: when referring to a robotic system, the Number  Degrees 

of Freedom is the capability of moving the mechatronic tool in a three dimensional space. The 

Number of Degrees of Freedom varies depending on the capability to turn or move in three 

Cartesian axes. 

Design: The arrangement of the materials and elements to conform to a prefabricated module. 

ETICS: External Thermal Insulation Cladding System, that it is very used as a system for 

upgrading current buildings. 

Industrial Robot: An automatically controlled, reprogrammable, multipurpose manipulator 

programmable in three or more axes, which can be either fixed in place or mobile for use in 

industrial automation applications. Industrial robots can be classified according to mechanical 

structure: 

Cartesian robot: robot whose arm has three prismatic joints and whose axes are 

correlated with a Cartesian coordinate system 



xxi 

SCARA robot: a robot, which has two parallel rotary joints to provide compliance in a 

plane 

Articulated robot: a robot whose arm has at least three rotary joints 

Parallel/Delta robot: a robot whose arms have concurrent prismatic or rotary joints 

Cylindrical robot: a robot whose axes form a cylindrical coordinate system (taken from 

[1]) 

Installation: Refers to the placement and fixation of an element or module on the construction 

site. 

Finishing: The way a task is finished in façade renovation, corners, materials etc. Finishing is 

necessary to gain waterproof and airtight condition. 

Manufacturing: Refers to the production of elements, pieces that will be assembled in a 

module. 

Machining: Shaping and drilling an element with a high precision router and driller, normally 

with a CNC. 

Module: A façade module is a prefabricated wall. In the field of building refurbishment, the 

façade module is attached to an existing building, on top of the outer layer of the existing 

façade. It can contain Renewable Energy Services. 

Laboratory or controlled environment: An environment for testing prototypes where there 

are no real hazards as in a real construction site. 

Layout of the modules and Primary layout: The layout of the modules refers to the 

arrangement and design of the modules in existing buildings. Specifically, the primary layout 

is the separation line that the modules have between each other and other elements of the 

building. 

Rain-screen: A type of cladding system that works as a first water stopper and sometimes 

contains waterproof insulation. 

Real or close-to-real environment: An environment for testing prototypes where there are 

real hazards. In close to real environments, there the construction sites are specifically built 

for the tests. 

Rework: Refers to the task that needs to be achieved to guarantee airtightness and waterproof 

conditions after a module is installed. 

ROS: A package of different libraries for simulating and controlling several robot types.  

Robot Calibration: is a task so robots work in known paths in regards to one or several 

Cartesian axes. 
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Routing: Shaping an element with a high-precision router, normally with a CNC. 

On-site: Refers to the construction site, in this dissertation the existing building under 

renovation. 

Off-site: Refers to the place where activities are carried out for assisting the on-site 

construction. 

Point Cloud: It is a collection of points that represent a space. Normally, these are gathered 

by 3D Laser Scanners. Several thousands are necessary for representing the facades. 

Service robots: The International Organization for Standardization defines a ñservice robotò 

as a robot ñthat performs useful tasks for humans or equipment excluding industrial automation 

applicationsò. (ISO 8373). According to ISO 8373 robots require ña degree of autonomyò, which 

is the ñability to perform intended tasks based on current state and sensing, without human 

interventionò. For service robots, this ranges from partial autonomy - including human-robot 

interaction - to full autonomy - without active human-robot intervention. The IFR statistics for 

service robots therefore include systems based on some degree of human-robot interaction 

or even full teleoperation as well as fully autonomous systems (taken from [2]). 

Structured and unstructured environment in robotics and automation: A structured 

environment is when a robotic device and the elements that interact with are located in a 

known position while an unstructured environment is when the elements are not known and 

not located in a known position. 

Tolerance: In this dissertation, it refers to the positioning deviations that an element or module 

has in regards to the planned position. 

Total Station: It is an instrument that is used for surveying and acquiring point on the (built) 

environment. 

Working time: In this dissertation, it refers to the necessary time that operators must spend 

to refurbish a façade. It spans form data acquisition to final finishings and it is measured in 

hours per square meter (h/m²). 
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1 INTRODUCTION 

The remainder of the research presented in this dissertation focuses on developing 

automation and robotics in façade energy-renovation with prefabricated modules to improve 

efficiency and safety aspects. In this introduction chapter, two points are addressed: 1) 

overarching motivation; and 2) dissertation structure. At the end of the chapter, some notes 

explain the authorship of the research presented in this paper. 

Overarching motivation 

Organizations such as the European Commission are seeking [3] to minimize the buildingôs 

energy consumption to and [4] to improve the socio-economic and environmental aspects of 

the building stock. Envelope upgrading is necessary for the achievement of the Nearly Zero 

Energy Building (NZEB) [5]. To achieve this goal, it is a usual practice that existing buildings 

are insulated from the outer layer. Disturbances and obtrusion to the inhabitants should be 

minimized during the façade renovation process [6] and for that reason, a common strategy is 

adding a new insulating layer without tearing down the existing building façade. Adding a new 

layer onto an existing façade for insulation purposes is a technique with a rich historical 

background [7]. Moreover, multiple services can be added to the building envelope [8]. Lately, 

multiple renewable energy services are being added to the envelope which increases the 

complexity of the system [9]. 

Besides, data show that the maintenance, renovation and upgrading of existing buildings are 

gaining a bigger proportion of the construction sector in developed countries due to population 

growth stagnation [10]. In this situation, socioeconomic studies show that the refurbishment of 

existing buildings enhances the local economy [11]. According to the BPIE organization, there 

will be around 38 billion m² useful floor area in 2050 [12]. With this data, it can be estimated 

that there are 25 billion square meters of façade that need to be upgraded (during the lifetime 

of the building) in Europe to fulfil with NEZB requirements [13]. Therefore, there is a real need 

for upgrading building envelopes. Within that socio-economical context, the scope of this 

research is to find automated and robotic solutions for the façade upgrading with prefabricated 

modules while keeping the existing wall. 

With current marketed manual techniques, façade renovation needs to be accomplished 

mainly on-site. For this reason, upgrading a façade is a dangerous task, because it implies 

working at heights. According to a study by Haslam et al. [14], falls from heights account for 

up to 55% of all fatal accidents and 38% of major injuries in the construction industry, as 

explained in a study conducted in the United Kingdom. Besides, according to Eurostat data 

[15], in the year 2016, 716 fatal accidents and 371,732 non-fatal accidents occurred in the 

construction sector. On the other hand, construction is a sector where many tasks are 

performed outdoors and under significant physical effort, which increases fatigue, as Chang 

et al. argue [16], and subsequently increases the risk of accidents. Moreover, according to 

Fellini [17], construction is not an attractive sector where young people would like to work, thus 
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the workforce is getting older across Europe [18]. The decrease of active population or labor 

force in proportion to the rest of inhabitants can cause serious problems in the construction 

sector, where local nationals avoid to work [19], [20]. According to Jebens et al. [21], the elderly 

workers in construction are ñmore exposed to overload when performing heavy manual workò. 

To overcome these shortages, Leichsenring [22] suggests that new ñlife-long learningò and 

ñtechnological approachesò are needed to improve the issues in the construction sector. For 

all the aforementioned reasons, robotics and automation might be a solution to avoid 

dangerous activities for the envelope renovation of buildings as euRobotics association 

remarks [23]. 

Another key point nowadays is the low productivity per worker hour in construction. The 

productivity index in construction has had a very low development in comparison with other 

industries [24], [25]. Therefore, improvements in automation can find a niche in the market. 

Besides, there is growing complexity in the construction due to new requirements that 

buildings need to fulfil [26]. For achieving an optimal building performance according to the 

standards, the stakeholders and guilds that participate in construction, in general, and building 

renovation, in particular, have multiplied [27]. For this reason, improving the current 

productivity avoiding time-consuming steps is a goal to gain efficiency during any construction 

process in general and in the renovation process in particular. 

Automation and robotics can offer a solution to the lack of productivity. Actually, productivity 

is a key issue when marketing robotics for construction. The field of robotics in the construction 

industry was developed in the 1980s, mainly in Japan, during the assets price bubble [28]. 

Since then, some of the robotic systems are still in use, mainly in the prefabricated industry, 

and not so much in on-site construction [29]. There is an important economic implication when 

developing robotics for construction and Skibniewski [30] and Balaguer [31] already made 

approaches for quantifying that. The key, according to Warzawski [32], for adopting robotics 

and automation in the façade lifecycle depends on the economic feasibility of the developed 

techniques and, for that purpose, construction productivity must be higher when using robotics. 

Warzawski defined an equation for calculating the economic feasibility of robotics in 

construction. In that research, only 4 types of robots were considered. 

The general hypothesis of this dissertation is that automation and robotization of building 

façade renovation with prefabricated walls is a solution for improving productivity aspects, 

explained in the previous paragraphs, while enhancing sufficient quality. To evaluate such 

hypothesis, this study presents five experimental approaches explained in chapters 5 to 9, as 

remarked in the next section. The results of these experiments can be used as a basis or 

criteria for further development in the field. 

Dissertation structure 

Within the context explained in the previous section, it is necessary to structure the research 

process. The topic of this dissertation is ñautomated and robotic façade renovation with 

prefabricated modulesò. The first part of the dissertation (chapters 1-4) explains the 

overarching literature review and the general objectives and the conceptual framework. In this 

part, there is also an analysis of current technologies for façade renovation that considers 
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which are the technologies, phases and steps that need to be improved. And with that data, 

in the second part of the thesis, (chapters 5-9) the empirical and experimental part of the study 

is presented. This comprises developed new concepts, achieved tests and the comparison to 

the analyzed cases. Moreover, future needs are outlined. To address the aforementioned 

needs, the chapters are articulated as in the next points:  

¶ Chapter 2. Overarching Literature review. This chapter is an overview that shows the 

current techniques of façade renovation and the research carried out in the field of 

façade renovation with prefabricated modules. Besides, it explains the latest advances 

in automation and robotics in façade renovation and construction. The literature review 

outlines the general lack of the research of building façade renovation with 

prefabricated modules and remarks the need to define a novel research context or 

area. The overarching Literature Review is completed by the more specific and topic-

oriented State of the Art in Chapters 5 to 9, as it will be explained later. 

¶ Chapter 2. Objectives and Conceptual Framework. The overarching objective of the 

research presented in this dissertation is to gain efficiency during the renovation 

process of façades with prefabricated modules by using automation and robotics while 

achieving sufficient accuracy. Which parameters do the new solutions need to be 

solved and evaluated? Two of the main parameters considered for the analysis are 

accuracy and necessary working time. The field of robotized and automated façade 

renovation of existing building façades with modules requires a specific context and, 

for this reason, a novel conceptual framework and method is defined. It was considered 

necessary to define a conceptual framework that permits the analysis of the current 

steps of the façade renovation process and facilitates the development of automated 

and robotic solutions with prefabricated modules. Within this Conceptual Framework, 

concrete experiments must be carried out to improve productivity and enhance safety. 

This Conceptual Framework reflects and includes several research phases: Current 

Subcategories of the Façade Renovation Process, Research Gaps of the 

subcategories, Developed Novel Solutions by using automation and robotics, and 

Future Needs. 

¶ Chapter 3. Analysis of the current techniques and Research Gaps. To narrow down 

the objectives, it is necessary to analyze the current techniques and have a benchmark 

for assessing the automated and robotic solutions developed for this dissertation. 

Before defining novel concepts and solutions, comparable evidence is needed and, 

therefore, an analysis of different case studies are explained in this chapter. To narrow 

down the topic, two types of modules or walls are analyzed in this chapter: a) timber-

based modules; and b) aluminum-based curtain wall modules. Some cases refer only 

to manufacturing, some to complete building renovation processes and in the case of 

aluminum modules, to new buildings. At the end of the chapter, the selected Research 

Gaps that are covered within this dissertation are summarized. 

¶ Chapters 5 to 9. Development of Novel Solutions. The dissertation does not focus on 

developing only one solution within the renovation process with prefabricated modules, 

but rather developing several necessities that aroused at the analysis. Each of the 
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chapters covers a topic within the conceptual framework. There are several concepts 

(or hypotheses) that have been tested. It is necessary to remark that not all developed 

solutions have the same readiness level. At the beginning of each chapter, there is a 

brief finer state of the art and analysis to put some concepts, solutions and tests into 

context. At the end of each chapter, the Future Needs of the specific DNS are defined. 

In brief, these are the DNSs in each chapter: 

o Chapter 5. Semi-automated Primary Layout Definition with a ñPoint Cloudò. 

One of the main barriers for marketing the renovation of façades with 

prefabricated modules is the excessive time used for data processing and 

design of the modules. A novel concept is presented which achieves a semi-

automated definition of the layout of the modules and its synchronization with 

the CAM with the only input of the existing building façadesô Point Cloud and 

the coordinates of its points. 

o Chapter 6. Partial routing and novel assembly sequence. Currently, a robotic 

assembly accuracy is dependent on the precision-routing-machining and the 

calibration of the elements that comprise the module. The concept presented 

in this chapter provides a minor increase of the machining of the elements of 

the current timber frame module and a design that facilitates robotic assembly. 

o Chapter 7. Deviations and Adjustments during Robotic Assembly. Another 

problem in robotic assembly processes in the prefabricated module industry 

consists of the inaccuracies associated with picking and placing of objects. In 

the novel concept developed in this chapter, the deviated grasped objectôs 

location is measured and possible deviations detected. The location of the 

deviated object is then calculated and compared with the planned location so 

the robot could divert from its original path and adjusting the pose. 

o Chapter 8. Robotic Installation of Modules with a CDPR. This chapter presents 

the first achievements of a system based on a cable-driven parallel robot 

(CDPR) that host a set of tools on its platform named Modular End Effector 

(MEE) that is based on a robotic arm with different changeable end-effectors, 

a Stabilizer and a Vacuum Lifting System. This system was developed for the 

installation of unitized curtain wall modules (CWM) in new buildings, the 

prototype was not focused on building renovation. However, the issues and 

solutions presented in this chapter can be considered also for building 

renovation. The data gathered during prototyping were extrapolated to a real 

case of a building to study and evaluate the feasibility of the proposed system 

compared to the current traditional manual methods. 

o Chapter 9. Matching Kit Concept. The Matching Kit (MK) is a set of 

components that includes a bespoke interface to correct the deviations 

occurred during the placement of the connectors in the wall. Several tests are 

explained with special focus on a novel step-by-step process.  
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¶ Chapter 10. Compilation and Conclusions. In this final chapter, a compilation of the 

Future Needs, an analysis of the results, and conclusions are presented. 

In Figure 1, the aforementioned phases of the research and the synchronization with the 

chapters is visualized. 

 

Figure 1: Research scheme. 

Some notes need to be clarified. The dissertation is meant to be read in the linear sequence, 

as chapters are interrelated. However, chapters can be read independently, since the topics 

are linked but different. 

Notes 

The research explained in this dissertation, was fully developed and conducted by the author. 

However, this statement needs to be contextualized. The novel concepts and experimentation 

were carried out within the context of two European Horizon 2020 Research Projects: BERTIM 

(01.06.2015-30.05.2019) and HEPHAESTUS (01.01.2017-31.12.2020). On the other hand, 

the author of this dissertation has worked as a lecturing assistant since 15.10.2015 at TUM, 

Chair of Building Robotics and Realization. On his lectures, the topic of Automated and 

Robotic Renovation of Building Façades with Prefabricated Modules has been explained on 

the courses. The author of this dissertation has guided students on their coursework. Some 

definitions of authorships need to be highlighted: 

¶ Chapter 2. The majority of the analysis was gathered during the projects. There is a 

table that includes images developed by students under the guidance of the author of 

this dissertation. 

¶ Chapter 5 was developed aside the BERTIM project as work that was not foreseen in 

the Grant Agreement. Mr Taku Kinoshita assisted the author of this dissertation, 

especially with the coding in PythonÊ. 
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¶ Chapter 6 was developed aside the BERTIM project as work that was not foreseen on 

the initial description of the project. The personnel, facility and material and resources 

of the POBI Industrie company [33] were used and the research was conceived and 

directed by the author of this dissertation. 

¶ Chapter 7 was developed within the BERTIM project as work that was not foreseen on 

the initial description of the project. Mr Taku Kinoshita assisted the author of this 

dissertation especially with the coding in ROS. 

¶ Chapter 8 was developed within the HEPHAESTUS project. The author of this thesis 

participated actively in the proposal of the HEPHAESTUS Project and in the first 

development phases. Later, the author of this dissertation developed the stabilizer, 

controlled manually the CDPR during the tests, and was in charge of the time 

assessment and accuracy of the CWM installation. 

¶ Chapter 9 was developed within the BERTIM project as work that was not foreseen on 

the initial description of the project. For Test 4, the research was conceived and 

directed by the author of this dissertation and the personnel, facilities, material and 

resources of the EGOIN company [34] were used. 

Further detailed notes are marked on chapters 5 to 9. Moreover, the majority of the figures are 

from the author of this dissertation. The use of external figures was minimized in order not to 

create any conflict regarding intellectual property. Every time a figure was created fully or 

partially by an external author, this is explicitly remarked in the figure caption or footnotes. 

Apart from the Publication List provided, the research presented in this dissertation might be 

published as a Journal article before or after publishing this dissertation. Finally, it must be 

mentioned that the whole manuscript was language proofread by Oxbridge Editing. For the 

referencing, IEEE (version 20061) style was used.

                                                

1 ¢Ƙƛǎ ǾŜǊǎƛƻƴ ŘƻŜǎƴΩǘ ǇǳōƭƛǎƘ ǘƘŜ 5hL ƛƴ ǘƘŜ wŜŦŜǊŜƴŎŜ ƭƛǎǘΦ hǘƘŜǊ {ǘȅƭŜǎ ǘƘŀǘ ƛƴŎƭǳŘŜŘ ǘƘŜ 5hL ǿŜǊŜ ŎƻƴǎƛŘŜǊŜŘΣ ƘƻǿŜǾŜǊ 
these styles included the surnames and the year on the citation in the text, and in many cases led to confusion if the author 
had different citations from the same year. For this reason, IEEE (version 2006) was selected. 
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2 OVERARCHING LITERATURE REVIEW AND 
SUBCATEGORIES 

The Overarching Literature Review, the content of which is partially explained in [35] together 

with the deliverables of the BERTIM project [36], encompasses three different topics. First, the 

current manual and mainstream façade renovation strategies and their deficiencies are 

remarked. Second, the most recent strategies to achieve façade renovation with prefabricated 

modules are explained. Third, the current research, the main subcategories for achieving an 

automated and robotic façade renovation process are explained and the main lacks are 

outlined. 

2.1 Current manual methods for facade renovation 

How façades are upgraded and insulated nowadays? Currently, there are two manual, on-site 

techniques, for adding a layer onto an existing building. The most common is the External 

Thermal Insulation Composite System [37] (see Figure 2). This technique requires cutting the 

insulation on the site, fixing the insulation with special nails to the existing wall and applying 

several layers of glue and mortar on top. Some pathologies related to hygrothermal behavior 

have been appointed  [37], [38]. 

  

Figure 2: Manual techniques. Composition of EIFS. 
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Another common method is the rain-screen or ventilated façade [39], [40]. Connectors 

and rails are placed first and, in between, the insulation is fixed to the existing wall. To 

cover that, the outer layer is fixed to the rails. The outer layer normally requires precutting 

off-site (Figure 3). 

 

Figure 3: Manual techniques. Rain-screen. 

The elements described in Figure 2 and Figure 3 have some requirements for being 

installed. Every construction site is different when working in building renovation, but in 

Figure 4, current generic installation needs, logistics and handling devices are shown. Most 

of the time, scaffolding and/or platform-cranes are necessary. Usually, the storage of 

material, such as mortar, boards and insulation occur in the adjacent areas of the building, 

obstructing the sidewalks and roads. Moreover, the building users suffer from darkness due 

to covering the windows, noise and dust during the works and lack of privacy, which can 

extend to weeks or months [41]. 
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Figure 4: Manual techniques and logistics (Images courtesy of Artzamendi Eraikuntza S.L.). 

Both ETICS and rain-screen techniques require intensive work on-site. The productivity of 

such techniques was evaluated in a previous analysis [42], [43], where the working hours per 

installed square meter were reconsidered. On the other hand, databases have collected the 

working time per square meter of the necessary tasks to be achieved [41], [44]. In any case, 

the installation of ETICS and rain-screen is in the region of 3 working hours per square meter, 

without considering the time needed for the scaffolding, which takes around 0,20 h/m², and 

reception and disposal of materials (see Table 1). 
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Table 1: Worker time required for ETICS [41], [44]. 

Task h/m² 

Profile bottom 0,01 

Profile top 0,01 

Profile vertical perimeter 0,06 

Base mortar 0,65 

Rigid insulation  1,00 

Glassfyber net 0,12 

Mortar finishing 1,00 

Painting 0,30 

TOTAL 3,36 

To install ETICS and ventilated façades, there is a need for auxiliary devices which are also 

part of the final cost of the façade or envelope upgrading. Moreover, there are preliminary 

tasks that need to be achieved, such as the removal of old mortar and damaged windows (see 

Table 2) [45]. All these points have an impact on the efficiency of the façade upgrading 

process. 

Table 2: Costs of different points during renovation processes [41], [44]. 

Support devices Approx. cost Unit 

Self-standing scaffolding 6-8 euro Façade square meter per four 

weeks 

Tower crane 1200-2800 euro One unit per month 

Hoists   1592-3132 euro One unit, per four weeks 

Aerial work platform 50-210 euro  One unit per day  

Removal costs Approx. cost Unit 

Complete wall 34-360 euro Wall square meter 

Window removal 17-11 euro Window square meter 

Wall finishing removal 6,90-22 euro Finishing square meter 

Element costs Approx. cost Unit 

EIFS, complete external system, no support 57-94 euro Wall square meter 

Ceramic rain-screen  112-157 euro Wall square meter 

To avoid the inconveniences created by the on-site manual procedures with ETICS and rain-

screen, prefabricated solutions have been developed to install them onto existing buildingsô 

envelopes [46], [47] as explained in the next sub-chapter. 

2.2 Current façade renovation with prefabricated modules 

The idea behind prefabrication is to avoid on-site tasks as in Figure 4. The prefabrication 

degree depends on how finished a module is. In other words, the higher the prefabrication 

degree, the less rework or extra work is necessary on-site. Ideally, a fully finished façade 

should not require any further work after the module is placed in its location. The benefits of 
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prefabrication are widely explained by several authors [48], [49]. Studies were made to analyze 

the prefabricated timber manufacturing and installation processes and its management [50]. 

Unfortunately, fully prefabricated installation of modules is not a goal that has been achieved 

in renovation processes, as there is always a final task to finish after the modules are installed.  

The prefabricated module, manufactured off-site, consists of several items and elements, such 

as a frame that rigidizes the module, insulating material, waterproof and humidity barriers, 

windows, and even services such as renewable energy sources (RES) [51] and mechanical 

active climate actuators [52]. For this reason, the prefabricated modules need to reach low 

geometrical tolerances to fit not only all the water and air barriers but also service and ducts 

together [53]. Figure 5 and Figure 6 show the module type that was used for the BERTIM 

project, based on a timber frame [42], [54] which is anchored to an existing wall by connectors.  

 

Figure 5: Cross-section of the prefabricated of modules as in the BERTIM project2. 

The renovation process with modules has probably focused on external vertical envelopes 

because it is the simplest element in the building, compared, for instance, with building roofs 

or interiors [55]. Simple façades can be considered as 2-dimensional geometries and that 

facilitates and simplifies data acquisition, the definition of the standard object, manufacturing 

and installation. Previous studies focused on the renovation of timber structure of old buildings 

[53] but during the decision-making process (see decision-making process in APPENDIX 5: 

Stability of the cable robot platform), it was concluded that this issue was too convoluted due 

                                                

2 Window and roof details were not that developed. 
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to geometrical complexity. However, the installation of façade modules can also be more 

complicated due to obstacles such as trees, traffic signals and the variant floor types that 

impede a correct performance of the cranes and handling devices. Handling and logistics differ 

from manual procedures. Mobile cranes and storage spaces are necessary for short periods. 

Moreover, the off-site manufacturing and on-site installation processes require (re)adaptation 

to the existing buildingôs circumstances.  

 

Figure 6: Scheme of the prefabricated installation of modules as in the BERTIM project [42].  

In new building erection, Landin already warned that the more industrialized and prefabricated 

a building module is, the more serious the tolerances need to be minimized [56]. Façade 

installation, in general, requires accuracy if no rework is desired after installing the panels. 

Vastert analyzed several cases for concrete wall prefabrication [57] and concluded that the 

manufacturing tolerance is approximately a ñfew millimetersò, whereas the installed position of 

the walls might differ by approximately 11,5 mm. The analyzed project did not install fully 

finished walls, and they needed rework. In another study about concrete panels erected in 

Eastern Europe, it was concluded that the façade walls were not cladded and reworked and, 

for this reason, the inaccuracy of the panels allowed the penetration of water into the building 

interior [58]. So, the stigma of the prefabrication is not around the disposition of materials 

(design), but around the accuracy of the different materials on the wall. These issues are 

solved in the standardized Japanese prefabrication industry by following a strict 

modularization and size standardization [59]. Finally, half of the defects in module 

prefabrication happens in off-site prefabrication [60], therefore, it is necessary to consider the 

prefabrication process as a source of possible errors. 
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Besides, cranes need to be balanced horizontally to operate and avoid overturning (see Figure 

7). Moreover, the complex geometry of certain buildings is also inconvenient to adapt the 

modules to the existing geometry [36]. 

           

Figure 7: Issues while installing the modules in the BERTIM project [36]. 

Relevant façade upgrading projects 

Building external wall renovation with prefabricated modules dates back to the 1980s in Japan 

[61]. During this period, the most relevant building renovation project was carried out at the 

Osaka Merchandise Mart (OMM) building during 1987 and 1989 [62]. In this project, a second 

skin was added to the existing building, separated from the initial one at about 700 mm, and 

creating a Double Skin Façade [63]. To achieve this, during the first phase, a connector was 

fastened to the structural slab which penetrated the precast concrete wall. These connectors 

were accurately placed by using a laser alignment system; a Total Station was used to place 

the connectors onto the existing building (see Figure 8). Thereafter, the intermediate or in-

between secondary steel structure was placed. During the second phase, the unitized or 

prefabricated curtain wall modules were installed. According to data collected by the curtain 

wall company (YKK AP [64]), the daily installation rate per worker during the first phase was 

3.2 m2, and 2.6 m2 during the second phase. If the working days consisted of 8 hours, 2,5 to 

3,07 working hours were necessary for each square meter without considering the 

manufacturing process3. This project can be considered as a benchmark owing to the high 

prefabrication as well as the digital adjustment and placement of connectors onto the existing 

building. 

                                                

3 Compared to European systems, the curtain wall needs to be supported in 4 points to provide more stability and prevent 
damages caused by earthquakes. 
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Figure 8: OMM building renovation. Top left: the concept of the attached new envelope. Top 
right and bottom left: installation of the sub-structure onto the existing building with anchored 

connectors. Bottom right: placement of CWM. Images courtesy of YKK AP. 

Similar projects were carried out years later in Switzerland [65], the Netherlands in 2001 [66], 

Spain in 2005 [67] and France in 2011 [68]. The architects, Lacaton & Vasal, were awarded 

the Mies Van der Rohe prize in 2017 for a project in Bordeaux [69]. In this project, a complete 

new livable layer was added to an apartment block. 

The aforementioned projects were achieved mainly by using aluminum curtain walling 

techniques. However, there are some examples of timber modules for façade renovation. One 

example of using a timber-based curtain wall system with highly routed and machined 

elements was the renovation of the Basque-Navarrese Chambers of Architectsô headquarters 

in Bilbao [70]. 






























































































































































































































































































































































































