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Abstract

Cancer accounts for one in six deaths and is the second leading cause of death

in the world. A thorough understanding of the mechanisms that control car-

cinogenesis will provide valuable insights for targeted studies, with applications

in cancer therapy.

To achieve this, scientists have focused on single-level omics studies for a long

time. However, investigating single-level omics only explains a certain extent of

the molecular process of carcinogenesis. To comprehend the molecular changes

on a system level, the scientific community requires multilevel omics studies.

Thus, we set up to design and develop studies on models that integrate multi-

level omics. Our models revealed patterns that enabled us to comprehensively

infer molecular mechanisms ranging from fundamental functions to disease-

underlying events.

Motivated by a previous study that identified a genomic copy number gain of

chromosome 16q24.3 in head and neck squamous cell carcinoma (HNSCC) pa-

tients treated with radiochemotherapy only, we set up to validate the Fanconi

anemia group A protein (FANCA) at multiple levels in an independent cohort.

This starting point led to a benchmarking study of copy number calling al-

gorithms in the presence of cancer-specific confounding variables. Our results

indicated that tumor purity and copy number aberration burden strongly influ-

enced the performance of all the analyzed algorithms. Overall, we discovered

that CGHcall* - our adjusted version of CGHcall, and OncoSNP showed rea-

sonable performance, particularly in samples with high purity.

Next, we expanded our integrative models to non-coding genes: microRNA and

long non-coding RNAs (lncRNAs).

To assign functionality to microRNAs in HNSCC and lung cancer, we used a

penalized elastic net model that inferred microRNA - protein-coding gene in-

teractions using transcriptomic data as well as prior knowledge. Furthermore,

our pipeline exploited the local structure of the inferred network providing func-

tional annotation of the targets. We identified two functional clusters predicted

to mediate HPV-associated dysregulation in HNSCC. Our findings in lung can-

cer confirmed the involvement of miR-509 in cell cycle, and p53 signaling. Fi-

nally, we inferred microRNAs that were involved in cell adhesion, cell migration,
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and epithelial-to-mesenchymal transition, suggesting their involvement in lung

tumor migration and metastasis.

At last, we constructed a "guilt-by-association"-based multilevel framework to

interrogate the lncRNA functionality. Specifically, for each lncRNA, we pre-

dicted associated protein-coding genes. This enabled us to find a tissue-specific

lncRNA cluster including LINC01123 - part of a plasma lncRNA signature that

distinguished malignant intraductal mucinous neoplasms. Moreover, model-

based gene set analysis confirmed lncRNA involvement in translation regula-

tion and revealed association with cellular maintenance and immune system

signaling pathways.

To summarize, we proved that multi-level omics integrative models are essential

in finding interactions between mutations, copy number changes, protein inter-

actions, coding, and non-coding gene expression across multiple cancer types.

Not only did they confirmed known cancer-specific molecular changes but our

models also revealed knowledge that aided us in proposing new oncogenic tar-

gets.
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Abstract

Krebs ist die Ursache für einen von sechs Todesfällen jährlich und damit die

zweithäufigste Todesursache weltweit. Ein umfassendes Verständnis der Mecha-

nismen, die die Karzinogenese steuern ist Voraussetzung für die Entwicklung

effektiver Krebstherapien.

Bisherige Studien befassen sich lediglich mit einzelnen „-omics”-Levels als Da-

tengrundlage und erklären daher nur ein beschränktes Ausmaß des molekularen

Prozesses der Karzinogenese. Um die molekularen Veränderungen auf Systeme-

bene zu verstehen, benötigt die wissenschaftliche Gemeinschaft Studien, welche

die multiplen Omics-Level gemeinsam, anstatt voneinander isoliert, betrachtet.

Daher werden in dieser Arbeit Studien und Modelle entwickelt, welche mehre-

re Omics-Level integrieren und damit eine umfassendere Charakterisierung der

Tumorentwicklung auf molekularer Ebene ermöglichen.

Motiviert durch eine frühere Studie von Copy Number Variations des Chromo-

soms 16q24.3 bei Kopf-Hals Krebs Patienten, haben wir uns vorgenommen, das

Fanconi-Aämie-Gruppe-A-Protein (FANCA) auf mehreren Ebenen zu validie-

ren in einer unabhängigen Kohorte. Dies führte zu einer Benchmarking-Studie

von Algorithmen zum „copy number calling” unter Berücksichtigung Krebs-

spezifischer Störgrößen. Unsere Ergebnisse zeigten, dass die Tumorreinheit und

die Belastung durch veränderte Kopienzahl die Leistung aller analysierten Algo-

rithmen stark beeinflussten. Insgesamt stellten wir fest, dass CGHcall* - unsere

angepasste Version von CGHcall, und OncoSNP - eine angemessene Leistung

zeigten, insbesondere bei Proben mit hoher Reinheit.

Des Weiteren analysierten wir zunächst nicht-kodierende Gene: microRNA und

lange nicht-kodierende RNAs (lncRNAs). Um die Funktion von microRNAs

im Kopf-Hals- und Lungenkrebs zu finden, wurde ein Regressionsmodell mit

Elastic-Net Penalisierung entwickelt, dass mögliche microRNA-targets identifi-

ziert. Hierzu wurde eine Kombination von microRNA- und Genexpressionsda-

ten, Vorkenntnisse und zudem, nutze unsere Methode die lokale Struktur des

regulatorischen Netzwerks zur Annotation der Targets. Wir haben zwei funktio-

nelle microRNA Cluster identifiziert, welche die Veränderungen in Kopf-Hals-

Krebs Patienten mit Papillomvirus erklären. Unsere Ergebnisse bestätigten die

Rolle von miR-509 in Zellzyklus und p53 Signaling im Lungenkrebs. Weiterhin
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wurden microRNAs die an der Zelladhäsion, Zellmigration und Epithelialen-

Mesenchymale Transition beteiligt waren, identifiziert. Diese Ergebnisse lassen

den Schluss zu, dass die identifizierten microRNAs die Migration und Metasta-

sierung von Lungentumoren regulieren.

Schließlich, haben wir ein auf „Schuld durch Assoziation“ Modell basierend auf

multiplen molekularen Ebenen konstruiert, um die Funktion von lncRNA in

der Zelle aufzuklären. Für jede untersuchte lncRNA wurden zugehörige Gene

vorhergesagt, was uns ermöglicht gewebsspezifische lncRNA Cluster zu finden.

Modell-basierte Gene-set Analyse bestätigte die Beteiligung von lncRNAs in

der Regulierung der Translation und zeigt deren Assoziation mit Immunsystem

Pathways und Prozessen zur „cellular maintainance“ auf.

Insgesamt konnten wir zeigen, dass integrative multi-level omics Modelle essen-

ziell sind um die Interaktion von Mutationen, copy number changes, Protein-

Interaktion und Geneexpression in verschieden Tumoren zu identifizieren und

analysieren. Zum einen konnten schon bekannte Krebs-spezifische molekulare

Veränderungen verifiziert werden, aber auch neue Erkenntnisse gewonnen wer-

den, die uns erlauben neue Targets für die Behandlung von Krebs vorzuschlagen.
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Chapter 1

Introduction

With the second-highest worldwide mortality rate and an incidence rate of 33%

between 2005 and 2015 [1], cancer remains one of the main unsolved health

problems of the present.

Cancer is a complex disease in which cells in a specific tissue respond faultily to

cell cycle control signals. As a result, these cells present uncontrolled growth,

impairment, and inflammation within the tissue, and, in advanced stages, they

invade other tissues [2]. Cancer develops due to an excessive stepwise accu-

mulation of changes reflected on multiple omics levels caused by hereditary or

environmental factors – mutagens, chemicals that damage DNA, hormonal fac-

tors, and deficient diets, genetic predisposition, aging, or viral infections [3].

The complexity of this stepwise process results in over 200 different types of

cancer [4].

Besides being a highly heterogeneous and complex disease, cancer evolves. Specif-

ically, as cancer grows, cells accumulate mutations and chromosomal aberrations

promoting proliferation and immune escape [5]. After this process, cancer cells

adapt and emerge [6]. This makes it difficult to find efficient treatments to cure

cancer: if a small population of cancer cells escapes the treatment, the remain-

ing cancerous cells adapt to new conditions, develop resistance, and expand [6].

Initially, cancer studies focused on single omics levels: Bignell et al. analyzed

DNA copy number changes and identified 2,428 somatic homozygous deletions

in 746 cancer cell lines [7], Ma et al. identified gene expression alterations en-

1
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abling invasive growth present already in the preinvasive stages of breast cancer

[8], while Calin et al. identified a microRNA signature associating with prognos-

tic markers and progression in chronic lymphocytic leukemia [9]. These studies

showed that cancer manifested itself on different omics levels. Hence, in order

to get a comprehensive picture of the underlying mechanisms, multilevel omics

studies are required.

1.1 Cancer impacts different molecular levels

Studies on multilevel omics of tumor genomes use whole-genome sequencing

technologies and various profiling techniques of DNA copy number changes,

epigenome, transcriptome, proteome and microbiome [10]. These studies aim to

identify the changes that occur during tumorigenesis in different omics levels.

Ultimately, cancer research aspires at identifying genes and pathways that can

be used in molecular-guided diagnosis and management of cancer.

To exploit the multilevel omics data, one first needs to understand how different

omics function and how disrupting their function can potentially induce cancer.

The following sections introduce the different omics levels together with exam-

ples of cancer impact on each level.

Changes at the DNA level

Direct changes at the genome level can be caused by errors occurring during

DNA replication (e.g. double strand breaks, mismatch pairing, replication slip-

page, tautomeric shifts) or by environmental factors known as mutagens. Ex-

amples of mutagens include chemical mutagens and radiation, both of which

result in DNA damage [3].

DNA repair mechanisms are among the most important and remarkable molecu-

lar processes. During DNA repair, cells engage numerous genome editing mech-

anisms to correct DNA sequence errors [11]. Dysregulation of the DNA repair

mechanisms can result in DNA changes escaping the editing mechanisms. Next,

the new generation of cells inherits these DNA changes. The repeated process
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Figure 1.1: Changes at the DNA level. A. Genomic variations: CNVs and
SNVs are shown in blue, while CNAs and pathogenic mutations are shown in
red. CNVs and CNAs, here represented as stacked copies of the same region,
are concatenated in the DNA strand. B. Copy number changes: gains and
losses. In the upper panel of the figure the blue highlighted region represents
the gained region when compared to the normal chromosome. The lower panel
of the figure highlights the region in the normal chromosome that is then lost.
C. Starting from the DNA sequence GCT, the figure exemplifies what kind of
mutations are possible and what are the changes at mRNA level and further at
aminoacid(AA) level.

leads to cells accumulating the wrong type or the wrong number of nucleotides

introduced by DNA replication or mutagens. Depending on the type of intro-

duced errors, the DNA changes arise at different scales. Wide-scale variations

represent genomic regions of length > 1 kilobase pair (kbp), that show a different

number of copies (gains or losses – Figure 1.1 B.) in comparison to a reference

genome, while small-scale variations represent mutations that can cover from

one to several base pairs (bps) in length.
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Large-scale DNA changes

Several studies showed that large-scale copy number changes commonly take

place at multiple locations in the human genome. For example, Iafrate et al.

identified 255 loci across the human genome with genomic imbalances [12], while

Conrad et al. identified an average of 1,098 validated altered genomic regions

[13]. Throughout this thesis we will refer to the large-scale copy number changes

that occur naturally and are not associated with human disease as copy number

variation (CNVs) (Figure 1.1 A. upper row). Since their discovery, CNVs have

been thoroughly studied in humans and have been shown to influence gene ex-

pression through gene regulatory molecular mechanisms – such as gene dosage

[14, 15] or gene disruption [16]. This way, CNVs can cause random or Mendelian

genetic traits leading to genetic diversity [16, 17].

Large-scale copy number changes that occur somatically, emerge after many se-

lection events, and are specific to human disease development and progression,

particularly to cancer, will be referred to as copy number aberrations (CNAs)

(Figure 1.1 A. second row).

Due to their negative impact on human health, CNAs have acquired a grow-

ing interest in research and over time have been shown to play major roles

in diverse human diseases: Pérez Jurado et al. showed that Williams syn-

drome (a neurodevelopmental disease) was associated with the partial deletion

of the chromosomal band 7q11.23 [18]. The 20 kilobase deletion upstream the

immunity-related GTPase family M protein (IRGM) was associated with both

altered expression of the protein and Chron’s disease [19]. Walters et al. discov-

ered a frequent heterozygous deletion on chromosome 16p11.2 in patients with

congenital malformations and/or developmental delay in addition to obesity

[20]. The 15q11-q13 duplication acquired its own disease name – 15q Duplica-

tion Syndrome, and has also been associated with other disorders: Prader-Willi

syndrome – patients present specific facial features, infantile hypotonia (abnor-

mal limpness), excessive eating, hypogonadism (diminished functional activity

of the testes or ovaries), mild intellectual disability, and obsessive-compulsive

behavior [21, 22], Angelman syndrome – characterized by distinctive facial fea-

tures, severe intellectual disability, severe language impairment, seizures, ataxia

(lack of voluntary coordination of muscle movements), and an unusually happy
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or excitable disposition [23, 24], autism spectrum disorder – children present

impairment in motor, social and communication skills [25].

CNAs have been associated with a high diversity of cancers [26, 27] and are

known to be present in all cancer genomes [28]: Bardeesy et al. showed that

the deletion of the tumor suppressor gene SMAD4 plays a critical role in the

progression and tumor biology of pancreatic cancer [29], while Witkiewicz et

al. showed that amplification of the proto-oncogene MYC is uniquely associ-

ated with poor outcome in pancreatic ductal adenocarcinoma [30]. Leucci et

al. showed that the survival-associated mitochondrial long non-coding RNA

(lncRNA) – SAMMSON, is consistently co-gained with the melanocyte induc-

ing transcription factor (MITF) in more than 90% of human melanomas [31].

In head and neck cancer, smoking-related carcinomas presented inactivation of

the Cyclin-Dependent Kinase Inhibitor 2A – CDKN2A, with frequent amplifi-

cations of regions 3q26-q28 and 11q13-q22 [32]. A previous study on head and

neck cancer patients treated with radiotherapy alone identified a genomic copy

number gain of chromosome 16q24.3. This region overlaps the DNA repair gene

Fanconi anemia complementation group A (FANCA). The 16q24.3 gain was

associated with unfavourable outcome in radiation-treated patients [33]. The

results of Bauer et al. motivated us to validate the FANCA gain in an indepen-

dent cohort (analysis included in Hess et al. [34]).

The accumulation of DNA copy number changes affects the transcriptional pro-

cess and can lead to activation [35], repression [36] or complete inactivation of a

protein-coding gene [37]. When the affected protein-coding genes are oncogenes

or tumor suppressor genes, CNAs become partly responsible for tumorigenesis

[38, 39].

Furthermore, when DNA changes affect genes involved in the DNA repair mech-

anisms, the errors in the DNA sequence accumulate at higher rates, eventually

leading to cancer [40].

Finding CNAs specific to oncogenes and tumor suppressor genes can pinpoint

their impact on oncogenic pathways and ultimately can aid the development

of personalized cancer therapies. It is thus particularly important to provide

accurate estimates of DNA changes in tumor genomes (Chapter 4).
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Small-scale DNA changes

Another class of genetic variants consists of small-scale sequence mutations –

changes in the DNA sequence that affect only one or a small number of nu-

cleotides. Small-scale mutations can be classified based on several aspects.

Based on the type of sequence change, small-scale mutations are classified as

deletions, substitutions and insertions. Substitutions of a single nucleotide are

also known as single nucleotide variations (SNVs).

Furthermore, depending on their effect on the functionality of a gene, mutations

are classified as silent mutations – they do not affect the function of a protein,

missense mutations – they cause a change that results in different amino acids,

and thus can affect the protein biosynthesis, and nonsense mutations – they do

not code for any amino acid and thus no protein is produced (Figure 1.1 C.).

Another criterion for classifying mutations is considering the genomic region

type they affect: splicing site, flanking site (5′− and 3′− untranslated regions

(UTRs), 5′− and 3′− flanks), start and stop codons, translational termination

codons (’nonstop’ mutations), in-frame mutations (changes that affect an inte-

ger number of codons – the genetic code can still be read in sequence), frameshift

mutations (changes that affect only part of a codon and end the reading beyond

the mutation) and noncoding mutations (mutations that are overlapping non-

coding elements such as promoters, enhancers, microRNAs, lncRNAs).

Mutations contribute to human disease by inactivating or activating protein

function: D'Souza et al. showed that missense, silent, and intronic tau mu-

tations can increase or decrease splicing of tau exon 10 (E10) by acting on

three different cis-acting regulatory elements [41], while Fedele et al. analyzed

missense mutations in GRIN2B - the gene encoding the N-methyl-D-aspartate

(NMDA) receptor GluN2B subunit, and revealed activation of the mutated NM-

DAs receptors known to control synaptic plasticity and memory function [42].

Mutations related to human disease will be further referred to as pathogenic

mutations.

Environmental factors like viral infections together with gene regulation are fre-

quently causing pathogenic mutations and inducing multifactorial diseases [43].

To be specific, viruses take control over the cellular machinery and promote

forced cell division through pathogenic mutations that change the host protein
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expression [43]. Consequently, viruses like Hepatitis C can initiate and pro-

mote hepatocellular carcinomas [44]. Therefore, knowing how human and viral

proteins interact can aid in understanding how cancer progresses and how to

disrupt it. With this in mind, we designed a study where we inquired whether

and how viral infections impact protein-protein interactions through mutations

in liver cancer (Chapter 5).

Epigenomics

The epigenome consists of all the genome-wide modifications that determine

which genes are activated, for which cell type, and when [45]. Two mechanisms

induce these modifications: DNA methylation takes and histone modifications.

While DNA methylation enables specific proteins to attach methyl groups to

the DNA strand in specific locations, histone modifications decide if a specific

DNA region will be used in a specific cell type or not [45]..

Factors such as an unhealthy diet, lack of physical activity, smoking, stress, alco-

hol consumption and environmental pollutants, lead to changes in the epigenome.

Changes in the epigenome can control the expression of genes that are involved

in the immune response of a cell, apoptosis, or cell proliferation. Such changes

can determine cells to become resistant to apoptosis and immune response.

Some of these epigenetic modifications were shown to be involved in diseases as

Alzheimer’s disease [46] and autoimmune diseases [47]. Recently, studies have

shown that epigenetic changes are prevalent in cancer: Fleischer et al. deter-

mined that DNA methylation in enhancers regions is distinct between breast

cancer lineages [48], while Ju et al. found that one of the most common protein

covalent modification in eukaryotes – NatD, promotes lung cancer migration

and invasion by preventing the phosphorylation of histone H4 serine - known to

be involved in cell proliferation [49]. Thus, mechanisms at the epigenome level

play an important role in tissue-specific gene expression.

Transcriptomics

During transcription, the information contained in single DNA strands sequences

from the genome of a cell is copied to RNA molecules. Approximately 30,000

of these RNA molecules encode the information required for protein synthesis
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[50]. These RNA molecules are known as messenger RNAs (mRNAs) and repre-

sent the most extensively studied transcriptomics data level. Since mRNAs are

single-stranded copies of a gene and represent the templates that form proteins,

they influence protein synthesis. The overexpression of genes that host driver

mutations and the repression of genes that repress cell growth are examples of

transcriptomics alterations that can initiate cancer [51].

The remaining transcribed DNA sequences do not code for proteins, and are

known as non-coding RNAs. The non-coding RNAs cover 95% of the tran-

scriptional output [52]. Despite the fact that the human genome can now be

sequenced with a reasonable degree of accuracy, we still cannot fully understand

the mechanisms of non-coding RNAs. Based on their length, non-coding RNAs

can be significantly short – 20-24 nucleotides (nts), for example microRNAs

(miRNAs), or they can span over 200 nts – long non-coding RNAs (lncRNAs).

MiRNAs target specific mRNAs and play an important role in the control of

gene expression after transcription [53, 54].

Unlike miRNA, lncRNAs remain elusive due to their low conservation, low ex-

pression levels and their tissue specificity [55]. Until now, lncRNAs have been

associated with gene expression regulation both during transcription and post-

transcription [56, 57].Additionally, lncRNAs have been shown to regulate pro-

cesses ranging from coordinating ribosomal RNAs (rRNAs) transcription and

methylation, to mediation of epigenetic changes [57]. Recently, lncRNAs, just

like miRNAs, have been associated with the regulation of oncogenic pathways

across many cancer types [58, 59, 60]. Nonetheless, the functional mechanisms

of lncRNAs and how miRNAs choose their mRNA targets remain yet poorly

understood [53]. For this reason, this thesis includes a chapter that analyses

miRNA-target networks in head and neck cancer and liver cancer (Chapter 6),

and an overall functional characterization of lncRNAs (Chapter 7).

Proteomics and metabolomics

Following transcription, mRNAs are translated into proteins via the joint trans-

fer of rRNA and transfer RNA (tRNA) [61]. Since they perform most of the

biological activities, proteins are considered vital elements of a living organism.

The correct synthesis and functioning of proteins are essential for the normal
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development and maintenance of healthy cells, tissues, organs, and organisms.

Dysregulation of protein co-regulation affects cellular fitness, and thus cellular

signaling and homeostasis [62]. Ultimately, alterations in protein-protein inter-

actions affect the phenotype of biological systems and can give rise to disease

[62, 63]. For example, Eckhardt et al. showed that the human papillomavirus-

host protein network promotes multiple routes to oncogenesis in head and neck

and cervical cancers [64]. Within this thesis, we performed a similar analysis

where we aim to understand the interactions between hepatitis B and C viral

infections and human proteins in liver cancer (Chapter 5).

Protein activity regulates the metabolome of an organism. However, the reg-

ulation is mutual – protein activity is influenced by metabolites. Since the

metabolome contains all the biochemical reactions that occur in living organ-

isms, it provides an overview of the fundamental molecular interactions. Deviant

cell metabolism is common across many cancer types [65]. Cancer-associated

changes across the previously described omics levels can change the levels of and

can initiate and promote tumorigenesis [66]. For example, Chiarugi et al. dis-

cussed the role of a key determinant of cancer biology – the NAD metabolome,

known to be involved in both energy and signal transduction, and thus a puta-

tive target for new cancer therapeutic concepts [67].

Microbiomics

One distinct layer of omics that comprises all the genomes of the microorgan-

isms living in an environmental niche within the human body is the microbiome.

The human microbiome together with lifestyle and environmental factors shapes

the human body phenotype [68]. Following, specific changes of the microbiome

have been associated with diseases: Zhang et al. demonstrated that the expres-

sion of human proteins related to oxidative antimicrobial activities increased in

pediatric inflammatory bowel disease cases and correlated with the alteration

of microbial functions [69], while Jangi et. al uncovered associations between

changes in the human gut microbiome and multiple sclerosis [70].

Since the microbiome affects a multitude of host functions as metabolic, im-

mune and cellular response functions [71], recent studies focused on the role of

microbiome in cancer. Matson et al. showed association between commensal mi-
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crobiome and response to immunotherapy in metastatic melanoma patients [72],

while Gopalakrishnan et al. showed that gut microbiome modulates response

to the same immunotherapy in melanoma patients [73]. Another study discov-

ered that the microbiome can affect anticancer immunosurveillance in multiple

way [74]. Therefore, the microbiome can be targeted and used as an adjuvant

treatment to improve the anticancer immune responses, and thus, the efficiency

of standard cancer treatments.

Changes at every omics level contribute to multiple pathways and can reveal

significant biomarkers. Nonetheless, findings at single omics levels are not suffi-

cient to explain the underlying cellular mechanisms. Thus, to fully understand

the biology of cancer, one needs to comprehend how cancer impacts multilevel

omics.

1.2 Technology and multilevel omics

The technological progress that emerged after the human genome sequencing,

enabled the profiling of multilevel omics. In addition to providing a vari-

ety of multilevel omics data, the advances in high-throughput measurement

techniques together with the decrease in costs, enabled the development of

large-scale sequencing projects like The Cancer Genome Atlas (TCGA), the

Roadmap Epigenomics project and the Genotype-Tissue Expression (GTEx).

The Roadmap Epigenomics project obtained comprehensive data for 111 consol-

idated epigenomes so far [75], while the GTEx project collected tissue and blood

biospecimens from over 900 deceased donors [76]. While the Roadmap Epige-

nomics project focuses on providing a public collection of normal epigenomes

to define changes in DNA activity and to predict function independent of any

change of DNA sequence, GTEx is a resource that studies the relationship be-

tween genetic variation and gene expression across multiple human tissues.

TCGA began in 2005 intending to characterize a multitude of different cancer

types at multiple levels of omics and, based on this, to reveal cancer-causing

genome alterations in large cohorts of human tumors [77]. TCGA covers over

11,000 patient-derived samples across 33 different cancer types. Starting with
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the availability of the resources provided by TCGA, numerous studies have ded-

icated considerable effort to use multiple omics profiles for predicting survival

across a multitude of cancers: Verhaak et al. used gene expression to clas-

sify glioblastoma tumors into Proneural, Neural, Classical, and Mesenchymal

subtypes and showed that response to aggressive therapy differs by subtype

[78]. Noushmehr et al. analyzed DNA methylation in glioblastoma tumors and

found of a CpG island methylator phenotype defining a distinct subgroup of

glioma [79]. The following studies used genomics, DNA methylation, exome

data, transcriptomics and proteomics to comprehensively characterize molecu-

lar landscapes of human breast tumors, colon and rectal cancer, and head and

neck tumours [80, 81, 82].

1.3 Integrative approaches

Nonetheless, the amount of data produced by projects as TCGA is too complex

to analyze manually. Thus, there is a need for methods that can explain the

molecular mechanisms underlying the information contained in the data.

Formulating models that integrate multilevel omics is nevertheless a complex

task. This is largely due to a lack of comprehensive understanding of the in-

terplay between the different omics levels. Additionally, due to complexity and

evolution, tumorigenesis and the underlying causes are still only poorly charac-

terized.

As a result, common approaches focus on unifying results on single omics levels:

finding differentially expressed genes that overlap regions with frequent somatic

mutations and copy number changes, or finding DNA regions with both altered

methylation and copy number changes, or finding genes with altered expression

and strong association to microRNAs that also show altered expression. For

example, Koboldt et al. first analyzed DNA copy number arrays and identified

somatic mutations in only three genes (the tumour repressor TP53, the onco-

gene PIK3CA and the GATA3 transcription factor) that occurred at > 10%

incidence across all breast cancer; next they defined two novel subgroups based

on protein expression and performed pathway enrichment for each subtype [80].
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Other studies used integrative approaches with underlying supervised or unsu-

pervised models: Kirk et al. designed a Bayesian method for the unsupervised

integrative modeling of gene expression, chromatin immunoprecipitationchip,

and protein-protein interactions data, to identify a set of protein complexes for

which genes are co-regulated during the cell cycle [83]. Cho et al. developed a

meta-model that summarizes the results of a large number of alternative models

that use a given measure of phenotypic similarity between patients and a list of

potential explanatory features, such as mutations, CNVs, microRNA levels, to

return phenotypic similarities [84]. Hofree et al. introduced the network-based

stratification (NBS) method that integrated somatic tumor genomes with gene

networks to cluster patients with mutations in similar network regions [85].

Despite the diverse methods currently used for integrating multilevel of omics,

the underlying models can only characterize specific aspects of tumorigenesis.

Designing approaches that use patterns derived from multilevel omics allows us

to comprehensively infer molecular mechanisms ranging from fundamental bio-

logical functions to disease-underlying events. Understanding cellular processes

in an exhaustive manner can provide valuable knowledge for characterizing can-

cer, but also for other complex diseases that are still a global compelling public

health burden.

In this thesis, I focused on uncovering and understanding distinct underlying

processes of head and neck, liver, lung, and ovarian cancer by using approaches

tailored to specific molecular aspects addressed in the next section. The results

presented in this thesis contribute to understanding what models work and why

do they work when integrating different levels of omics from cancer data for

answering the following research questions.

1.4 Research questions

The main goal of this thesis is to better understand distinct mechanisms un-

derlying tumorigenesis in head and neck, lung and liver cancer by exploiting

the abundance of data made available by technological advances. For this pur-

pose, I performed integrative analyses of multilevel omics and phenotypic data

to reliably identify underlying molecular mechanisms that can improve our un-
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derstanding of cancer biology.

Following, within this thesis I addressed the next main research questions:

A. How accurate are the commonly used CNA calling algorithms from

SNP 6.0 array genotyping?

The accurate identification of CNAs from cancer tumor facilitates finding onco-

genes or tumor suppressor genes. Hence, given the importance of reliably finding

CNAs in cancer research, it is essential to assess the accuracy of CNA calling

algorithms and which are the factors that affect it. To address this question,

I performed a comparative study of CNA calling algorithms from single nu-

cleotide polymorphism (SNP) array data in the presence of three cancer-specific

confounding variables – tumor purity, CNA region length, and the amount of

CNAs present in a tumor genome, both on synthetic data and real data com-

prising of TCGA head and neck cancer samples and HapMap samples.

B. How can the impact of viral infections on the protein-protein in-

teractions network in cancer be confidently estimated?

OViruses are one of the main environmental factors that are known to cause

cancer. Viral infections disrupt the cell replication mechanisms, affecting the

normal cellular proteins such as cell cycle regulators of DNA repair proteins.

The dysregulation of DNA repair proteins is followed by an increased rate of

DNA changes. This mechanism coupled with the cell proliferation stimulated

by viral replication can cause cancer [86, 32]. Consequently, it is essential to

determine the impact of viral infections on the host protein-protein interactions

in cancer. To address this question, I performed an integrative analysis that

estimates the viral effect based on the mutational landscape of infected tumors

– represented here by a TCGA liver cancer data set, and on the strength of

physical interactions between viral and host proteins – in-house data.

C. How do non-coding RNAs contribute to disease, in particular to

cancer?

Non-coding RNAs have been associated with many cancer types, independent

of their length. However, the question of how do non-coding RNAs contribute

to cancer remains to be answered. For this reason, part of this thesis focuses on

understanding how do non-coding RNAs function and what conditions regulate

their function. Specifically, I examine the functional roles of miRNAs (Chapter
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6) and lncRNAs (Chapter 7). For this purpose, I assessed which are the genes

and pathways affected by miRNAs in cancer. To address this question, I used

miRlastic, introduced in Sass*, Pitea* et al., a method that identifies miRNA

– mRNA interactions and functionally annotates target gene sets of miRNAs.

With miRLastic, I was able to predict miRNA – mRNA regulatory networks in

head and neck cancer and lung cancer TGGA data. Next, I analyzed the rela-

tionship between lncRNAs and mRNAs and how does tissue specificity affects

this relationship when using data from GTEx, Roadmap, and TCGA. In the

end, we provided a functional pipeline for a comprehensive and fully integra-

tive study for inferring lncRNA functions while exploiting the wealth of newly

available studies of larger sample sizes.

1.5 Overview

In this thesis, I addressed the research questions presented in the previous sec-

tion. Figure 1.2 provides a brief overview of this thesis.

The first part of this thesis contains the introduction (Chapter 1), the biological

and methodological background (Chapter 2) together with the materials used

in the subsequent analyses (Chapter 3). Specifically, Chapter 2 introduces the

technologies and the methods necessary for understanding the biological and

technical background, which is relevant throughout the thesis. This includes

a description of genomics and transcriptomics profiling and omics analysis to-

gether with an overview of the statistical theory used for model identification

and inference techniques. Chapter 3 introduces the reader to the data sets that

are used to investigate the molecular mechanisms of liver, lung, and head and

neck cancer. This chapter includes results of statistical analyses for revealing

differential expression of miRNAs and mRNAs induced by viral infections in

liver and head and neck cancer, as well as differentially expressed miRNAs be-

tween different stages of lung cancer. Additionally, the chapter introduces the

data measuring the strength of physical interactions between viral and human

proteins in two liver cancer cell lines. Finally, this chapter introduces the Hap-

lotype Map data set that was used for benchmarking CNA calling algorithms.
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Figure 1.2: Multilevel omics from various data sources are combined in four
main research studies: a benchmarking study on copy number calling algorithms
(Chapter 4), a multi-level integrative analysis with the aim to identify the viral
effect on human protein in liver cancer (Chapter 5), the application of miRlastic
– an integrative framework for inference of miRNA-mRNA regulatory networks
and functional characterization of specific miRNAs, on two TCGA cancer data
sets: head and neck cancer and in lung cancer (Chapter 6) and an integrative
framework at multiple molecular levels which aims to identify lncRNA functions
(Chapter 7).

The next four chapters present the projects upon which this thesis was built.

Chapter 4 presents a benchmarking study aiming at finding the most suitable

method for predicting DNA changes specific to cancer, given specific cancer

confounding variables. Explicitly, Chapter 4 introduces and benchmarks sev-

eral commonly used CNA calling algorithms on synthetic data given distinct

tumor purities, CNA burdens, and altered DNA region lengths. Based on the

results, I proposed and assessed an adjusted version of one of the algorithms.

Next, I evaluated the performance of the algorithms on real data. Finally, I as-

sessed the algorithms on a publicly available TCGA head and neck cancer data
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set and I performed an explorative analysis of the results based on consensus

results.

Chapter 5 is based on a collaboration project with the Ideker Lab (Univer-

sity of California San Diego) and the Krogan Lab (University of California San

Francisco) that aimed to characterize viral-host protein-protein interactions in

liver cancer patients infected with Hepatitis B. Subsequently, I present an in-

tegrative framework for confidently identifying the impact of viral infections

on human protein interactions in cancer. The framework consists of a network

propagation-based approach that integrates genomic and physical interaction

measurements between viral and human proteins. The approach assessed the

significance of interactions between human and viral proteins in liver cancer.

Chapter 6 aims to characterize miRNA – mRNA regulatory networks specific

for specific conditions in head and neck cancer and lung cancer. In particular,

Chapter 6 describes the application and the results of an inference tool that

integrates protein coding expression and microRNA expression – miRlastic, on

head and neck cancer and lung cancer data.

Chapter 7 introduces an integrative analysis of large scale multilevel data

that aims to infer functions of long non-coding RNAs by investigating various

omics levels in both normal and diseased tissues: LISA. LISA systematically ex-

plores lncRNA molecular mechanisms by exploiting genomics, transcriptomics

and epigenomics together with functional and tissue annotations from four large

sample size projects: Encyclopedia of DNA Elements - ENCODE [87], Roadmap

Epigenomics Project [75], TCGA and GTEx [88].

The thesis concludes with the future perspective and the scientific contributions

in the context of cancer genomics in Chapter 8.



Chapter 2

Background

This chapter introduces the theoretical concepts and the experimental tech-

niques used in the projects presented in this thesis. These projects primarily

derive from using statistics and machine learning concepts to formulate mod-

els that provide a plausible fit for experimental cancer data. Thus, we initially

present the experimental techniques exploited for generating profiles from which

scientists can estimate DNA copy number changes, transcriptomics levels, and

protein-protein interaction strength. Next, several statistical concepts, like cor-

relation, logistic, Bayesian, and elastic net regression, are briefly introduced for

understanding the assumptions behind the underlying inference models. Lastly,

we present the network propagation concept so the reader can grasp an idea of

how we can combine and amplify signals from individual genes within a biolog-

ical network.

2.1 Technologies that generate biological data

Several experimental techniques exist for generating data at multiple omics lev-

els like DNA, RNA, proteins, and metabolites. The next section introduces

the protocols used for generating profiles from which we can infer DNA copy

number changes, transcriptomics expression, and the strength of protein-protein

interactions.

17
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Copy number profiling technologies - SNP arrays

High-throughput microarray-based assays and next-generation sequencing (NGS)

have been used broadly to find disease-associated single SNP and CNV markers.

NGS technologies include whole-exome and whole-genome sequencing (WES,

WGS).

WGS provides a general view of the genome, thus improving the detection of

shorter and novel CNAs. While slow and expensive initially, the current NGS

techniques have improved by using parallelization and template generation via

genome fragmentation [89, 90]. Parallelization allowed the scientific community

to sequence up to billions of nucleotides concurrently, providing substantially

more throughput. However, one resulting drawback of WGS is the size of the

generated data - which requires intense computational power and large storage

capacity. Moreover, scientists need to design appropriate pipelines for deter-

mining what is biological or medical relevant in the generated sequence.

Microarray-based assays include comparative genomic hybridization (CGH) ar-

rays and SNP arrays. CGH arrays compare copy numbers between differentially

labeled target and reference DNA by measuring the fluorescence ratio along each

chromosome [91].

SNP arrays also enable finding CNVs, but unlike CGH arrays, they can deter-

mine the genotype of the SNP probes embedded in the chip [92]. Although SNP

arrays provide less profiling information than WGS, they have the advantage

of having been used already for over two decades in the lab [93]. SNP arrays

are also considered more accessible, given that they require easier and milder

sample preparation than NGS [94]. Despite the rapid NGS price decrease, SNP

arrays are still cost-effective and can be used for genotype and copy number

analysis [95]. SNP arrays also enabled the scientific community to characterize

copy number changes and allelic imbalances of a sample [96, 97].

The first part of this thesis focused on benchmarking algorithms that predict

CNAs from SNP arrays, specifically – Affymetrix SNP 6.0 arrays.

The current design of Affymetrix SNP arrays typically comprises approximately

1.8 million probes – of which 906,600 SNP probes and 946,000 CNV probes. The

output consists of allele-specific signals at each marker of genetic variation [97].

These positions are known to vary within the population and allow us to explore
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Figure 2.1: Overview of the Genome-Wide Human SNP Assay 5.0/6.0 pipeline.
Figure taken from [98].

the variation in targeted genomic regions.

For genome-wide genotyping, the Affymetrix pipeline starts with two restric-

tion enzymes (Nsp I and Sty I) digesting a total of 500 ng of genomic DNA [98].

After the two enzymes finish the digestion, all the resulting DNA fragments

ligate to adaptors that recognize the cohesive four bp overhangs (Figure 2.1)

[98]. Next, the technology includes generic primers that recognize the adap-

tor sequences and amplify the resulting adaptor-ligated DNA fragments with a

preference for fragments of 200 to 1,100 bp length [98]. The products resulting

after PCR amplification for each restriction enzyme digest are then combined

and purified using polystyrene beads (Figure 2.1) [98]. The resulting amplified

DNA is fragmented, labeled, and hybridized to the array [99, 98]. As described,

Affymetrix SNP 6.0 array function based on the chemical attraction between

DNA molecules: cytosine (C) attaches to guanine (G) and adenine (A) attaches

to thymine (T). Each SNP probe set contains multiple oligonucleotide features

that are identical copies of one of the two probes targeting the two possible
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alleles (indicated as A and B in Figure 2.1). After hybridization, washing, and

scanning, the technology produces a .CEL file for each sample. The .CEL file

contains information regarding probe locations and signal intensities that are

further used in downstream analyses like finding CNVs and SNPs associated

with a specific condition.

This study focused on using the Affymetrix SNP 6.0 signals for benchmarking

CNA calling algorithms (see Chapter 4).

Transcriptional profiling using NGS technologies

The transcriptomics field uses large-scale measurements of RNAmolecules abun-

dance to find changes at the molecular level associated with specific physiologi-

cal or pathological conditions. Although in the beginning, microarrays remained

the preferred choice for transcriptome profiling, with the improvement of NGS

technologies, NGS-based RNA-Seq became the most used technology for tran-

scriptional profiling.

RNA-seq allows scientists to carefully study the RNA abundance and sequences

from a sample, enabling the analysis of varying RNA molecules.

By now, NGS has provided significant progress in terms of speed and resolution

for transcriptome studies. More than that, NGS enabled finding and quantify-

ing low-expressed genes that could not be revealed with microarrays [100].

NGS also enabled the analysis of known splice junctions together with the dis-

covery of unknown splicing events [101]. Finally, NGS enabled analyzing allele-

specific expression and finding fusion transcripts, which contribute to diseases

like cancer [100, 102].

Modeling the transfer of information from DNA to protein depends on compre-

hending the transcription process. The reason for is that RNA-seq measure-

ments indicate which genes are activated in a cell, what their abundance is, and

what conditions influence their activation [103].

Although groundbreaking, the first sequencing RNA-seq technology – Sanger,

was expensive, low-throughput, and imprecise [104]. However, recent advances

provide highly parallel and high-throughput NGS sequencing methods.

As shown in Figure 2.2A, NGS RNA-seq methods start with extracting total
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Figure 2.2: Next generation sequencing workflow.

RNA from collected samples. Next, RNA species are isolated and converted

into complementary DNA fragments – cDNA libraries [105]. Adapters attach

to each end of the fragments and enable sequencing (Figure 2.2A Sequencing

libraries) [106].

With high-throughput sequencing technologies, scientists obtain from each cDNA,

short RNAs that correspond to either one or both ends of the fragment [106].

One essential aspect of this step is the depth to which the library is sequenced,

as detecting rare transcripts and variants requires more sequencing depth [106].

The sequencing returns millions of reads that are aligned to a reference genome

and assembled in RNA sequences that span the transcriptome or form the tran-

scriptome of a novel genome with no reference genome (Figure 2.2B) [107]. Once

the sequence alignment is complete, we can count how many sequences map to

each gene – this way, obtaining gene expression levels. However, raw read counts

are affected by sequence length and the total number of reads. To make the

gene expression levels comparable across a cohort, we need to normalize the

read counts. Next, the normalized gene expression can be used for downstream

analyses as differential gene expression (Figure 2.2B).

Dynamic measurements of protein-protein interactions

While SNP arrays and transcriptomics profiling techniques reveal omics rela-

tionships, affinity purification-mass spectrometry techniques (further referred
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to as AP-MS) provide a dynamic view of the protein-protein interactions in

healthy, diseased, and infected cells.

AP-MS emerged as a result of pairing methods that enrich biological material

and perform chromatography (a technique that separates components of a mix-

ture based on their differential interactions with two chemical or physical phases:

a mobile phase and a stationary phase) with improved mass spectrometry [108].

Pairing affinity purification with mass spectrometry enables studying protein-

protein interactions in protein complexes across different conditions, providing a

more comprehensive and dynamic view of the physical interactome level. Specif-

ically, AP-MS techniques use epitope tags on a single “bait” protein or molecule

of interest, while probes of the interacting “prey” proteins are affinity captured

for identification. Proteins that do not interact are separated and discarded.

After purification, proteins are processed by MS.

Although AP-MS may reveal interacting proteins, it is constrained when dis-

tinguishing direct from indirect interactions and when proteins are highly co-

participating in complex molecular processes [108].

2.2 Statistical methods

To comprehensively understand how biological systems function given a specific

set of preexistent conditions, scientists use statistics regularly: from data mining

to hypothesis testing, modeling, and prediction. We used statistics to identify

patterns characterizing multiple molecular levels across different cancer types

in the projects presented here. Ultimately, we aimed to enhance our knowledge

about the initiation and molecular mechanisms of oncogenic processes.

To achieve our aim, we use both methods that predict outcomes (responses),

based on several input variables – features (predictors) and methods that do

not require an output measure. These methods are known as supervised and

unsupervised learning, respectively.

An example of supervised learning included in this thesis is predicting DNA

copy number states (the output) based on SNP array signal intensities, tumor

purity levels, and tissues type (input variables) – see Chapter 4. Examples

of unsupervised learning included in this thesis are hierarchical clustering of
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miRNA – gene associations for intuitive analysis of miRNA function and the

hierarchical clustering of lncRNA – pathway associations for intuitive analysis

of lncRNA function.

This section introduces the statistical methods we used to learn about cancer-

specific mechanisms based on multiple omics levels. In particular, we performed

hypothesis testing to e.g., test for differential gene expression between healthy

and cancer samples. We calculated correlations for finding associations between

miRNAs and mRNAs in head and neck cancer samples. We designed, built, as-

sessed, and selected prediction models - e.g., for robustly estimating DNA copy

number changes in cancer. Finally, since cancer does not activate a single unit

level, but rather a complex of molecules and interactions, we analyzed a molec-

ular interaction network in the context of cancer. In detail, we used network

propagation to identify how viral infections affect the human protein-protein in-

teraction network in liver cancer patients. The following subsections intuitively

describe the statistical concepts so that the reader can easily understand and

follow why and how we used them.

Types of variables and data distributions

Given a sample space, scientists can already learn from the data using descrip-

tive statistics (exploratory analysis). Summary statistics provide a numerical

overview as a table or as data frequency distribution [109]. The frequency dis-

tribution is a parametrized mathematical function that indicates how frequently

each sample value occurs [109]. The form of the distribution depends on the

nature of the variables [109].

The first two classes of variables that one can distinguish are numerical and cat-

egorical. The numerical variables represent a quantitative measurement, while

the categorical variables represent a qualitative measurement, a characteristic

[109]. Numerical variables are either continuous — e.g., the gene expression

levels, or discrete — e.g. survival days. Categorical variables can be nominal —

e.g., indicating the ethnicity of a patient, or ordinal — indicating the grading

of a tumor. A special type of categorical variables are the binary variables. An

example of a binary variable is the infection status of a patient and it indicates
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whether the patient is infected or not.

The nature of variables used in statistics and machine learning determines cor-

responding distributions types and influences the appropriate choice for model

usage. For example, for normally distributed continuous data, it is meaningful

is to calculate the mean and standard deviation, while for skewed continuous

and categorical ordinal data, an informed choice is to calculate the median and

the interquartile range [109].

Knowing the variable and distribution enables scientists to identify outliers and

skewness in the sample space. Following, variable and distribution types aid in

deciding what is the most appropriate statistical method to apply and how to

interpret the results correctly.

Next, we will present what kind of tests and models we can use for data analysis.

Hypothesis testing

In research, we often aim at interpreting data for answering a specific scientific

question. For example, we aim to identify if there are differences in gene expres-

sion between healthy and cancer samples. For this purpose, researchers often

use inference methods such as hypothesis testing. A statistical hypothesis is a

statement about the parameters of a population [110].

Generally, we state a hypothesis based on a scientific question we aim to answer

based on sample data of a population. One example of a scientific question ad-

dressed in this thesis is: does the Hepatitis B viral infection affect the mutation

rate of a given protein-coding gene in liver cancer patients?

To test whether a hypothesis is statistically significant, we need to perform the

following steps:

• Formulate the null (H0) and the alternative (H1) hypotheses: H0 states

that the observations are the result of chance, while H1 states that the

observations are the result of a real effect. For our example, H0 states

that the mutation rate of a specific protein-coding gene is unaffected by

the viral infection status in our liver cancer data, while H1 states the

opposite.
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Figure 2.3: Statistical tests: A. One-tailed test - here a left-tailed test example:
the shaded area represents the critical region limited by the test statistic of the
sample data mean. The vertical line x = 0 represents the population mean,
while the vertical line x = −1 represents the threshold for achieving statistical
significance. B. Two-tailed test: the shaded regions represent the critical regions.
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Figure 2.4: An overview of statistical tests used in the next chapters.

• Select the most appropriate method and calculate the test statistic under

the assumption that the null hypothesis is true.

• Determine if the test result is statistically significant.

• Interpret the statistical test results.

To establish if the result is statistically significant, one needs to calculate a p-

value. A p-value represents the probability that a test statistic is at least as

extreme as the one observed in the given data [109]. The null hypothesis will

be rejected if the p-value is below the significance level α, commonly set to 5%

or 0.05.

Depending on the research question, we can apply statistical tests such as one-
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tailed or two-tailed tests.

For a left-tailed test, we reject H0 if the test statistic is lower than the sig-

nificance level. For a right-tailed test, the test statistic must be higher than

the significance level (Figure 2.3A). In a two-tailed test, we reject H0 for either

lower or higher values of the test statistic (Figure 2.3B).

Depending on the variable type and data distribution, we distinguish between

parametric and non-parametric tests.

While parametric tests require a specific distribution of the data, nonparametric

tests can be applied for parameter-free distributions or when the parameters are

unknown[111]. Furthermore, parametric tests use the mean as a measure of the

shift, while nonparametric tests use the median [109].

Moreover, parametric tests apply to variables only, while nonparametric tests

apply to both variables (dependent measurements) and attributes (independent

measurements) [109].

As we can see in the overview of statistical tests presented in Table 2.4, we

further distinguish between one-sample and two-sample tests.

A one-sample test determines if the mean of a sample x̄ from a normal distri-

bution is significantly different from a standard specific value c. To determine if

the mean difference between two groups is zero, we use a two-sample test [109].

Parametric tests

To test if a sample mean is statistically different from a known population mean

µ, we can use a z-test or t-test. Both z-tests and t-tests assume the sample

follows a normal distribution. Given the sample size is sufficiently large or the

population variance is known, we conduct a z-test and calculate the observed

z-statistic as follow:

zobs =
x̄− µ
σ√
n

∼ N(0, 1),

where x̄ is the sample mean, µ is the population mean, σ is the population

standard deviation, n is the sample size, N(0,1) is a normal distribution with

µ = 0 and σ = 1, and zobs is the z-statistic. Next, given the symmetry of the

normal distribution, we calculate the p-value by solving:

P (|z| ≥ |zobs|) = 2 · φ(−zobs),
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where φ is the cumulative distribution function of a standard normal N(0, 1).

If we want to test if the p-value is lower than a predefined rejection threshold

α, we reject the null hypothesis when P (|z| > |zobs|) < α.

For small sample sizes and unknown population variance, we use the t-test [109].

Since σ is unknown, the t-test approximates sigma by the sample standard

deviation s [109]. We then calculate the t-statistic as it follows:

tobs =
x̄− µ̄√

s2

n

,

where x̄ is the sample mean, µ is the proposed value for the population mean,

s is the sample standard deviation and n is the sample size. Therefore, for

t−tests the population standard deviation is replaced with the sample standard

deviation.

However, this quantity does no longer follow a normal distribution, but a t-

distribution [109]. The shape of the t distribution, also known as Student’s t

distribution, is defined by the sample size n and covers a group of curves ordered

by the degrees of freedom [109]. The degrees of freedom represent the amount of

independent values used for an estimate, for a specific number of samples [109].

We can calculate the p-value by solving:

P (|tdf | ≥ |tobs|) = 2 · P (|tdf | ≤ |tobs|).

To determine if the average difference between two groups significantly differs

from 0, one can use a two-sample t-test or a z-test. The independent two-

samples t-test can be used only when the distribution of the sample in the two

groups is normal and the variances within the two groups are equal. In this

case the null hypothesis states that µ1 = µ2. The test statistic is calculated as

follow:

t =
(x̄1 − x̄2)− (µ1 − µ2)√

s1
n1

+ s2
n2

,

where n1, n2 are the sample sizes, x̄1, x̄2 are the sample means, µ1, µ2 are the

population means, and s1, s2 are the sample standard deviations.

We conduct the z-test to assess if the average difference between two groups

significantly differs from 0, when n is large and the population variance is known
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[112, 109]. The formula for calculating the z test statistic becomes:

z =
x̄1 − x̄2 − (µ1 − µ2)√

σ1
2

n1
+ σ2

2

n2

,

where σ1, σ2 represent the standard deviations of the two populations [112].

To compare the means of two groups with one-to-one relationship between their

samples, we use the paired two-samples t-test. To perform a paired t-test, we

first calculate the difference d between each pair of samples. Next, we calculate

the mean d̄, and the standard deviation of the differences d and compare the

mean to 0. A mean that is far from 0, indicates a significant difference between

the two pairs of samples. The t-test statistic value is calculated using as follow:

t =
d̄

s/
√
n
,

where d̄ is the mean difference, s is the standard deviation of the distances and

n is the sample size. If the p-value corresponding to the |t| for the degrees of

freedom df = n − 1 is smaller or equal to 0.05, the two paired samples are

statistically significant.

Nonparametric tests

When no or few information about the distribution of the given data, we use

nonparametric tests. For cases when the data is not assumed to be normally

distributed, the alternative to the one-sample t-test is the Wilcoxon signed-rank

test.

The Wilcoxon signed-rank test relies on ranks and, as a result, uses the median

instead of the mean.

Given the set of observations {x1, ..., xi, ..., xn} and m a given value, we want

to evaluate if the sample median is equal to m. For this, we assume that xi is

continuous and the probability function for xi is symmetric around the median.

Next, we calculate the differences between each observation and the given value:

di = xi −m. We assign to each rank ri the sign of each di: si = sign(di)ri and

calculate:
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W =
∑

si > 0.

The Wilcoxon signed-rank sum statistic is defined as:

z =
W − n(n+1)

4√
n(n+1)(2n+1)

24

,

where n is the number of samples. Finally, the probability of the test statistic

z under the null hypothesis is indicated by the p-value.

The corresponding version of the Wilcoxon rank-sum test for comparing two

independent samples with non-normal distribution, thus the substitute for the

independent two-sample t-test, is also known as the Mann-Whitney U test [113].

Given two independent samples x = {x1, ..., xn1
} and y = {y1, ..., yn2

}, the

Mann-Whitney test compares every observation xi with every observation yj .

The U statistic is defined as:

Ux = n1n2 +
n1(n1 + 1)

2
−

n2∑
i=n1+1

Rxi

and

Uy = n1n2 +
n2(n2 + 1)

2
−

n2∑
i=n2+1

Ryj ,

where n1 and n2 are the sample sizes and Ri, Rj are the ranks. Ux indicates

how many times the observations in x outrank the observations in y, while Uy

indicates how many times the observations in y outrank the observations in x.

To determine if the null hypothesis is rejected, we have to compare the U statis-

tics to the statistical table corresponding to the Mann-Whitney U test for a

significance level α. For large samples, U is asymptotically normally distributed

and z is defined as:

z =
U − n1n2

2√
n1n2(n1+n2+1)

12

with z ≈ N(0, 1).

A significant p-value indicates a significant difference between the medians of

two groups. For paired samples, we use the Wilcoxon paired test.

To determine if two random variables X1 and X2 are drawn from the same
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continuous distribution given two samples x1 of length n and x2 of length m,

we use the Kolmogorov-Smirnov (KS) test.

Given the null hypothesisH0 : F1(x) = F2(x), where F1 and F2 are the empirical

distribution functions of x1 and x2, the KS statistic D is calculated using the

following formula:

D = sup
z
|F1(x)− F2(x)|.

The null hypothesis is rejected at significance level α if

c(α) > Dn,m

√
nm

n+m
,

where

c(α) =

√
−1

2
ln(α)

for large sample sizes. For small sample sizes the significance level α is drawn

from the table of critical values.

To test if there is a non-random association between two nominal variables that

result from classifying objects in two different ways, we use Fisher's exact test.

Fisher's exact test is a distribution-free test.

Let c1 and c2 be the two nominal variables and n the number of observations in

the sample population. The number of observations within class c1 and c2 can

be arranged in a 2× 2 contingency table (Table 2.1):

c1 c̄1
∑

c2 n11 n12 n1·
c̄2 n21 n22 n2·∑

n·1 n·2 n

Table 2.1: A 2× 2 contingency table.

The null hypothesis states that the observations of class c1 and class c2 are

indepedent H0 : n11/n·1 = n12/n·2, where x is number of observations with

property A and B, yielding n11 = x. As seen in Table 2.1, the test takes row

sums and column sums as given. We can then calculate P (n11 = x) using the

hypergeometric distribution [114]:

P (n11 = x) =

(
n1·
x

)(
n2·
n21

)(
n
n·1

)
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For a one-sided test, we can obtain a p-value for rejecting the null hypothesis by

summing up the probabilities of observation frequencies and the probabilities of

all other configurations that reflect a greater difference between conditions, i.e.

higher values of n11: p =
∑min(n1·,n·1)
i=x P (n11 = i)

Multiple testing correction

In the field of computational biology, we frequently deal with massive-scale

data. Testing a broad set of hypotheses simultaneously increases the probabil-

ity of falsely estimating random events as significant.

For example, in our research on the hepatitis B impact in liver carcinomas,

we needed to determine which proteins were significantly affected by the virus.

Therefore, we evaluated the cost associated with a false positive target and the

advantage of revealing an unknown oncogenic molecular player.

Generally, this translates into associating a statistical confidence measure to

each discovery. These measures may be p-values, false discovery rates, or q-

values.

Bonferroni correction

A simple and conventional method to correct for multiple testing error is to ap-

ply the Bonferroni correction to the probability of a particular result occurring

by chance: given a set of n hypotheses to be tested, with pi, i ∈ 1, ..., n as the

corresponding p-values yielded by each test, and a significance threshold α, the

Bonferroni correction considers a score significant only if pi ≤ α
n [115].

By applying a threshold α to a set of n significance scores, the Bonferroni correc-

tion controls the family-wise error rate. For example, for n = 100 and α = 0.01,

there is only a ∼ 0.01 chance of observing at least one significant result, given

all the test are not significant. Therefore, for most multiple testing corrections,

minimizing the family-wise error rate is too strict and leads to not rejecting the

null hypothesis when true effects exist.

Benjamini-Hochberg False Discovery Rate

When dealing with large-scale multiple testing, controlling the Benjamini and

Hochberg (BH) false discovery rate (FDR) can be more relevant. The FDR is
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defined as the percentage of false positives among all significant results.

For a significance level α, the BH procedure estimates a rejection region so that,

on average, FDR < α [116]. The procedure follows the next steps:

• orders the unadjusted pi, i ∈ 1, ..., n values

• assign ranks to the p-values

• finds the test with the highest rank, pr with pr ≤ α rn , where r is the rank

of the p-value, n is the total number of tests and alpha is the proposed

FDR [116].

The results with pi, i ∈ 1, ..., r and p1 ≤ p2 ≤ ... ≤ pr are significant.

Storey's Empirical P-value based False Discovery Rate

Storey's correction, also known as the positive false discovery rate, adjusts the

p-values by estimating the fraction of truly null tests π0. Given that there are

enough tests, we can robustly estimate π0.

Furthermore, Storey defined the q-value as the minimum FDR attained at or

above the significance level α. The q-value is then the expected percentage of

false positives among all of the significant scores above α.

Choosing the appropriate multiple testing correction method depends on the

number of tests and the threshold for false positives.

Hypothesis testing for multiple measurement variables.

Correlation analysis

One way to determine if and how strongly two random variables are associated

is correlation analysis. The Pearson correlation coefficient is used for data that

show a normal distribution, while the Spearman's rank correlation is used for

data that follow a non-normal distribution or that have relevant outliers.

The Pearson coefficient is defined as:

ρx,y =
Cov(X,Y )

σXσY
,

where X and Y represent the two random variables, Cov(X,Y ) is the covariance

between X and Y and σXσY are the standard deviations of X and Y .
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Given the paired data {(x1, y1), (x2, y2), ..., (xn, yn)} and

Cov(X,Y ) = E [(X − E [X])(Y − E [Y ])]

and

σX =
√
E(X2)− (E(X))2 (2.1)

σY =
√
E(Y 2)− (E(Y ))2, (2.2)

The Pearson correlation coefficient can be calculated as:

rx,y =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
,

where n is the sample size of x and y.

The correlation coefficient ρX,Y ranges from −1 to 1, where −1 indicates a

perfect inverse relationship between X and Y , 1 indicates a perfect correlation,

and 0 indicates no correlation between the two variables.

A high correlation means that two or more variables show a strong association

with each other, while a correlation close to 0 indicates that the variables are

hardly related.

To test whether the correlation between two variables is statistically significant,

we use a statistical test that builds on the Fisher transformation [117] of the

correlation coefficient r as follows:

F (r) =
1

2
ln

(
1 + r

1− r

)
.

Given that X and Y are normally distributed, F (r) is also normally distributed

with mean µ = F (ρ) and standard error σ = 1√
n−3 . To determine, if the two

variables are significantly correlated, we want to test the null hypothesis that

ρ = 0. Hence, we can calculate a z-score as:

z =
F (r)− µ

σ
= F (r)

√
n− 3.
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We then use the cumulative distribution function of the standard normal dis-

tribution φ to obtain a two-sided p-value indicating if the null hypothesis is

rejected:

p = (1− φ(F (|r|)
√
n− 3)) ∗ 2.

Spearman's rank correlation coefficient is used to determine non-linear relation-

ships and is robust to outliers.

Given x and y two samples of size n drawn out from the random variables X

and Y , and R(x), R(y) the ranks of x and y, the Spearman's rank correlation

coefficient can then be calculated as:

rx,y = 1−
6
∑N
i=1(R(x)i −R(y)i)

2

N(N2 − 1)
.

Since ordinal data can also be ranked, the Spearman's rank correlation is not

limited to continuous variables. Through ranking, Spearman transforms a non-

linear strictly monotonic relationship to a linear relationship and returns a co-

efficient that is also relatively robust against outliers.

To assess the statistical significance of Spearman's rank correlation coefficient,

we can apply the Fisher transformation to rx,y similarly to Pearson's correlation.

The standard error should be chosen as σ =
√

1.06/(n− 3) [118].

Linear regression analysis

Another way to analyze the relationship between two or more variables is re-

gression. Regression comprises a set of statistical methods that estimate the

relationship between a dependent variable – outcome yi and m independent

variables – predictors xi.

If the relationship between yi and xi is linear, we refer to the model as linear

regression. If m > 1, we refer to the model as multiple linear regression.

A simple linear regression for modeling n data points has the following form:

y ∼ β0 + x1β1 + ε,

where ε ∼ N (0, σ) represents the error term, β1 represents the unknown param-

eter and β0 represents the intercept. The equation describes a straight line.
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For multiple linear regression, the model equation describes a hyperplane and

has the following form:

y ∼ β0 + x1β1 + x2β2 + . . .+ ε,

To find a model optimal for predicting an outcome ŷ, we estimate the corre-

sponding coefficients β̂ = {β̂0, . . . , β̂m}. For this purpose, we need to calculate

the residuals ei = yi − ŷi, i.e. the difference between the predicted and the

actual value of the output.

One of the most common methods to find the optimal model is to find the op-

timal coefficient set that minimizes the residual sum of squares – also known as

the least squares approach:

S(β) =

N∑
i=1

(yi − β0 −
m∑
j=1

xijβj)
2 = ‖y −Xβ‖2.

Given that all m predictors are linearly independent, the minimization problem

has one unique solution:

β̂ = (XTX)−1XTy.

Although this is a suitable solution for calculating the accuracy of β̂, linear re-

gression is sensitive to variance (the spread between the β̂ parameters). Partic-

ularly, the accuracy of the model prediction is sensitive to correlated predictive

features or a high number of predictive parameters.

Subsetting and regularization

Subsetting and regularization reduce the total error of prediction by scaling

down the variance. However, this introduces a small bias. Regularization

shrinks or removes the coefficients of the variables with weak effect on the re-

sponse, thus, providing a subset of predicting variables with the strongest effects

on the response.

One intuitive way to select a subset of k ∈ {1, . . . ,m} variables for linear re-

gression is to test all possible combinations and select the subset that minimizes

the residual sum of squares – also known as best subset regression [119].

However, the residuals are smaller the more variables we introduce in the model.
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Thus, the sum of squares cannot be used as a criterion for determining k. More-

over, this approach is not informative about the effect of the excluded variables

on the response variable, becomes infeasible for large m, and is likely to lead to

underfitting or overfitting.

Shrinkage methods are alternatives to variable selection for an optimal model.

These methods regularize the β̂ coefficients toward 0 by introducing a penalty

on their size, and thus reducing the variance. The most commonly used shrink-

ing methods are Ridge regression [120] and Lasso regression.

Ridge regression adds a penalty term – λ to the linear regression minimization

problem:

β̂
ridge

= arg min
β


N∑
i=1

(yi − β0 −
m∑
j=1

xijβj)
2 + λ

m∑
j=1

β2
j

 .

Note that when λ = 0 this is equivalent to the unpenalized regression. λ controls

the magnitudes of β̂, and thus, the degree of shrinkage in the regression model.

For large values of λ the β̂ coefficients are severely constrained and the degrees

of freedom will descend, tending to 0 as λ→∞ [121]. The solution of the Ridge

regression minimization problem can be solved in closed form as follows [122]:

β̂ = (XTX + λI)−1XTy,

where I is the identity matrix.

Although it exploits the trade-off between variance and bias, Ridge regression

includes all m predictors in the model regardless of the value of their β̂ coef-

ficients. This becomes challenging for a model with an extensive number of

predictors. This loss is overcome by another shrinkage method - the least abso-

lute shrinkage and selection operator (lasso) [123].

The lasso estimator is defined as:

β̂
lasso

= arg min
β


N∑
i=1

(yi − β0 −
m∑
j=1

xijβj)
2 + λ

m∑
j=1

|βj |

 .

Unlike Ridge regression, lasso regression uses the absolute value of the coeffi-

cients: λ
∑m
j=1 |βj |. This penalty can be also expressed as ||β||1 and is referred
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to as the L1 penalty. In contrast to the L2 = ||β||2 penalty of ridge regression,

the L1 penalty forces some of the β̂ values to be exactly 0. Thus, lasso regres-

sion returns a sparse solution by removing variables that do not fit the model

well.

Another important difference between Ridge and Lasso is how they handle the

problem of multicollinearity between the predictors. Ridge regression returns

similar values for the β̂ coefficients of correlated predictors, while LASSO selects

and assigns the entire impact to one of them and removes the other ones.

As a result, Ridge regression is expected to perform better when most predic-

tors have a true effect on the response, while lasso is expected to perform better

when only a few predictors affect the response.

Ideally. we would like to be able to perform both feature selection and handle

the correlated predictors. To account for the loss of information from lasso when

there is a combined effect of the predictors, one needs to keep the correlated

variables in the model. For this purpose, Zou et al. proposed the elastic net

approach [124]:

β̂
EN

= arg min
β

 1

2N

N∑
i=1

(yi − β0 −
m∑
j=1

xijβj)
2 + λPα(β)

 ,

where the elastic net penalty is represented by Pα(β) and is defined as:

Pα(β) = (1− α)
1

2
||β||22 + α||β||1

=

p∑
j=1

1

2
(1− α)β2

j + α|βj |.

Note that Pα includes both, the lasso penalty (L1) and the ridge penalty (L2),

and represents a trade-off between the two penalties. The trade-off is controlled

by the α parameter: α = 0 is equivalent to ridge regression, while α = 1 is

equivalent to lasso regression. When 0 < α < 1, both feature selection and

appropriate handling of correlated variables are performed.

The elastic net is a good approach to achieve reduced model complexity, im-

proved model prediction, but also to achieve model interpretability: with a sub-

set of most powerful predictors, we can grasp relationships between the model

variables.
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The methods described so far are appropriate for continuous response variables.

We now focus on regression models appropriate for binary response data.

Given a response variable that is binary and is e.g. defined as:

yi =

{
1, if y is mutated (2.3)

0, if y is wild type, (2.4)

yi represents a realization of a random variable Yi, and pi and 1 − pi are the

probabilities of yi being mutated and wild type, respectively. Then, Yi follows

a Bernoulli distribution defined as:

Pr{Yi = yi} = pi
y
i (1− pi)1−yi .

Given that under Bernoulli distribution, for yi = 1, Pr{Yi = yi} = pi, while

for yi = 0, we obtain Pr{Yi = yi} = 1 − pi, the mean and variance of the

distribution depend on pi. This means that any feature that affects the proba-

bility affects both the mean but the variance of the response variables. Thus, a

linear regression model under which the features influence the mean but not the

variance is not suitable for binary data. Moreover, the predicted probabilities

are not restricted to the [0, 1], while probabilities must take values between 0

and 1. For binary response variables, we next introduce the concept of binary

logistic regression.

Binary Logistic Regression

Applying a logit transformation to the model, helps us overcome the issues of

using linear regression with binary data. Given the initial setup and supposing

the logit is a linear function of the features, we can write:

logit(pi) = xTi β,

where xTi is the feature vector and β is the regression coefficients vector. Note

that this model is a generalized linear regression model with a binomial output,

where the βi coefficient represents the variation of logit(pi). pi is the probability

associated with a unit change in the i-th feature while all the other features
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are constant. When applying an exponential transformation to the previous

equation, we obtain:
pi

1− pi
= ex

T
i β.

Note that if we now change the i-th feature by one unit while all the other

features remain constant, we are simply multiplying the odds by expβi. To

solve the equation, we can write:

pi =
ex

T
i β

1 + ex
T
i β

Worth noting that while pi represents a probability, the right side of the equation

is a non-linear function of the features, thus it is difficult to estimate the change

in probability introduced by a unit change of one of the features.

Following, we can calculate the logarithm of the odds ratio as follows:

log
Pr(y = 1|X,β)

Pr(y = 0|X,β)
= Xβ

Under the assumption that the y outputs are generated independently given

β, thePr(y|X,β) becomes:

Pr(y|X,β) =

n∏
i=1

σ(xi
Tβ)yi (1− σ(xi

Tβ))1−yi

Note that the equation form will enforce that yi is either 0 or 1, thus either

yi 6= 0, either 1− yi 6= 0, allowing for the correct input to the likelihood.

The common method to solve a logistic regression problem is to maximize the

likelihood as a function of the regression parameters β:

β̂ = arg max
β

Pr(y|X,β).

Even though logistic regression does not have a closed-form solution for the

maximum likelihood estimator, the negative log-likelihood function is convex.

Thus, logistic regression has a unique solution given by the global minimum of

the maximum likelihood estimator.
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2.3 Network-based biological models

Network-based biological models are powerful resources for discovering genetic

associations. Fundamental to network models is the concept that genes under-

lying the same phenotype tend to interact.

Given the overlap of phenotypic characteristics between a gene and its direct

interactors, initial network models were built upon the “guilt-by-association”

principle [125]. Subsequent methods used the concept of local network neigh-

borhoods to find modules (Figure 2.5A). However, the “guilt-by-association” net-

work models were proven to be cost-effective for gene functional annotation[126,

127].

A new class of network models relies on the concept of network propagation

to prioritize phenotype-associated genes. Network propagation amplifies a bi-

ological signal by projecting prior gene-phenotype association knowledge (e.g.

presence of disease-associated mutations) over the network nodes [127]. The

method propagates the prior knowledge repetitively through the neighboring

nodes of the biological network, until convergence is reached or for a given num-

ber of iterations (Figure 2.5B). Consequently, each node score is altered not

only by the scores of its direct neighbors but also by the scores of the indirect

neighbors.

Thus, the method assigns an association score for nodes with no prior knowl-

edge, where their assigned score indicates the proximity to nodes with prior

knowledge.

The straightforward approach of predicting all direct interactors of phenotype-

associated genes can result in both high positive and negative rates. An alter-

native that corrects for this effect is to prioritize genes based on their distance

to the initial gene list. However, since most distances are relatively small (bio-

logical networks are highly connected), this approach could also return a high

false positive rate [127].



2.3. NETWORK-BASED BIOLOGICAL MODELS 41

0.5

Network propagationShortest pathDirect neighbors

B.

A.

D

D
D

D
D

... k=∞k=2k=1k=0

D

D

D

D

0 1

D

D
D

D

D

D
D

Figure 2.5: Network-based biological models. Nodes are colour-coded according
to the scoring that they receive. A. Difference in node ranking between direct
interactors, shortest path and network propagation. B. Example of a network
propagation process process at different iterations. The process stops when
convergence is reached. D indicates association with disease. Square node
indicates prior knowledge, while circular node indicates predicted association.

Network propagation enables prioritizing genes associated with a specific phe-

notype, and that are more likely to interact with each other than with other

genes by analyzing all possible paths concurrently. Explicitly, the method in-

hibits predicted node scores supported by only one interaction (path) and boosts

predicted scores for nodes with no prior knowledge, but well connected to prior

phenotype-associated nodes [127].

The propagation can be performed based on different formulations: from ran-

dom walks on a graph to heat diffusion and computing minimum energy states

in electric circuits. Given p0 representing the prior knowledge, pk the ranking

vector at iteration k, and W the normalized version of the adjacency matrix A

of the reference biological network, the propagation process can be described as

follows:

pk = Wpk−1, which yields

pk = W kp0

When W is stochastic, the propagation is based on random walks, i.e. a transi-

tion from a current node is made to a random adjacent node with a probability

given by W .
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Using a random walk with a restart propagation process enables controlling the

ratio between prior knowledge and network smoothing. The process can be

described as follows:

pk = αp0 + (1− α)Wpk−1,

where α indicates the impact of prior knowledge and network smoothing.

As long as the convergence condition is satisfied,W can be defined in alternative

ways based on A and the diagonal matrix D. Here, W = AD−1.

The final ranking scores pf - obtained when convergence is reached, can be

written as function of the prior knowledge vector – pf = Sp0, where S can be

viewed as a similarity matrix.

Biological network-based models continue to be successfully applied to rank

disease-associated genes, find gene-gene similarities, and integrate multiple omics

levels. They remain an effective resource for interpreting how diseases alter

molecular processes.



Chapter 3

Materials

Throughout this thesis, we analyzed molecular mechanisms of head and neck

squamous cell carcinoma (HNSCC) and lung adenocarcinoma (LUAD), together

with the interactomes of hepatitis C and hepatitis B in liver hepatocellular carci-

noma (LIHC) and functions of non-coding RNAs by integrating multilevel omics

data. For this purpose, we used data provided by The Cancer Genome Atlas

portal1 (TCGA). Starting with 2005, TCGA has provided means for studying

different aspects across a wide range of cancer types. Concerning the cancer

types studied in this thesis, the TCGA consortium published a genomic charac-

terization of HNSCC [32], a molecular profiling of LUAD [128], and an integra-

tive genomic characterization of hepatocellular carcinomas [129]. Unlike TCGA,

we used the HNSCC Affymetrix SNP 6.0 array data to perform a benchmark

analysis for copy number calling methods including the standard method used

by TCGA. Additionally, we used HNSCC miRNA and mRNA measurements to

estimate miRNA-target networks in HNSCC. While TCGA focused on reporting

a general molecular profiling of LUAD, we focused on finding miRNAs involved

in metastasis of LUAD. Finally, we applied an integrative network approach on

a LIHC subse to find viral-host protein-protein interactions in liver cancer.

In addition to the publicly available LIHC TCGA data, we analyzed experimen-

tal data that measure the interactions between hepatitis B proteins and human

host proteins in two hepatocellular carcinomas cell lines. The experimental

data was provided by Manon Eckhard, Ph.D., and John Gordan, MD Ph.D.,
1https://cancergenome.nih.gov

43
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our collaboration partners from the Krogan Lab, University of California San

Francisco.

Furthermore, we used a subset of the publicly available Haplotype map data

(HapMap2) for benchmarking several commonly used copy number calling al-

gorithms. Lastly, we used TCGA data on lung adenocarcinoma to investigate

miRNA regulatory networks involved in metastasis.

3.1 HNSCC TCGA data

We used TCGA publicly available data sets comprising of mRNA and miRNA

expression, DNA copy number data, as well as clinical data. The complete data

sets consisted of 522 samples.

For our analyses, we obtained Level 1 Affymetrix Genome-Wide SNP 6.0 ar-

ray data. We preprocessed the matched tumor and normal raw HNSCC .CEL

files with the Aroma Affymetrix Power Tools (APT) package [130] and the

PennCNV-Affy pipeline [131]. In this step, we performed quantile normaliza-

tion and generated genotype calls from the .CEL files using the Birdseed algo-

rithm [132]. Afterward, we extracted allele-specific signals, and calculated the

canonical clustering parameters for each single nucleotide polymorphism (SNP)

or copy number marker. We then calculated probe-wise logR ratios (LRR) and

B allele frequencies (BAF) for each patient sample. For further downstream

analysis, we split the signal file into individual files for each patient.

We used Level 3 IlluminaHiSeq RNASeqV2 mRNA and Illumina HiSeq 2000

miRNA data consisting of expression measurements that were generated follow-

ing the protocol previously described by the TCGA consortium [81]. We used

the R framework for statistical computing [133] to select mRNAs with non-zero

count values in more than 80% of the patients, non-zero standard deviation and

we applied a log2 transformation.

We selected miRNA precursors that accomplished the same expression criteria

as the mRNAs. We overlapped the precursor entries with associated entries in

TargetScan (version 6.2). By doing so, we considered only those miRNAs that

2https://www.broadinstitute.org/international-haplotype-map-project/haplotype-map
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Figure 3.1: Heatmap of 44 miRNAs that show differential expression between
HPV+ (blue) and HPV- (green) patients. The miRNA expression values were
standardized row-wise. Low values are indicated in blue whereas high values
are colored red.

are incorporated into the RNA-induced silencing complex (RISC) complex and,

thus, not subject to degradation. Next, we merged the two sets of putative

miRNA targets predicted by TargetScan on both forward and reverse strands

for each miRNA precursor [134].

We selected a subcohort of 244 patients for which the human papillomavirus

(HPV) status clinical parameter was provided [32] and tested for deregulated

miRNAs between HPV+ and HPV- patients (Figure 3.1). When using the

edgeR package [135], we additionally included age and gender as confounding

variables. We controlled for a 5% false discovery rate (FDR) using Benjamini

and Hochberg algorithm [116].
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3.2 Haplotype Map (HapMap) data

We downloaded 98 Affymetrix 6.0 SNP array profiles of healthy patients from

the publicly available HapMap repository 3[136, 97]. We preprocessed the

HapMap .CEL files with the APT package [130] and the PennCNV-Affy pipeline

[131] as described in the previous section. Next, we split the signal file into in-

dividual files for each patient. We then selected 81 patients that were further

experimentally profiled by [136, 97].

3.3 LIHC TCGA data

For analyzing the hepatitis B interactomes in hepatocellular carcinomas (HCC),

we used a liver hepatocellular carcinoma (LIHC) TCGA data subset consisting

of 366 samples – for which both mutational and CNA data were available. We

used the TCGA LIHC mutation data file and copy number calls on gene level

provided by the Broad Institute TCGA Government Data Analytics Center

(GDAC) on the Firehose portal.

We next used the Level 3 RNA-seq data to exclude genes with low expression

from further analysis. We first normalized the expression levels: we divided

the RNA-seq by Expectation Maximization values (RSEM [137]) by the 75th

percentile of all genes RSEM values in the tumour samples and then we mul-

tiplied the resulting values 1000 times, as done by TCGA 4. We selected genes

with normalized RSEM values > 0.125 in over 50% of the samples, resulting

in 16,895 expressed genes. These coverage criteria allowed us to remove genes

with low-quality reads expressed in only a minority of the samples.

We obtained CNA regions from GISTIC2 on gene-level. This indicated the copy

number state of the genomic region covering each gene, normalized to the aver-

age copy number state of the chromosome arm(+1 = increased relative to the

chromosome arm; 0 = same as the chromosome arm; −1 = decreased relative

to the chromosome arm).

We downloaded the clinical data available on the Firehose portal. Based on the

3ftp://ftp.ncbi.nlm.nih.gov/hapmap/
4https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2
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Figure 3.2: Distribution of hepatitis B and hepatitis C viral infection across
366 TCGA LIHC patients. Rows represent the sets of patients infected with
Hepatitis C, Hepatitis B or non-infected, while and the columns represent the
intersections of these sets.

viral status, the 366 selected samples were classified as follows: 213 patients

were non-infected, 98 patients were infected with hepatitis B only, 48 patients

were infected with hepatitis C only and 7 patients were infected with both hep-

atitis B and hepatitis C (Figure 3.2).

For a broader understanding of the hepatitis B interactomes in HCC, we used

the Reactome Functional Interaction network, further referred as the Reac-

tomeFI reference network 5. ReactomeFI consisted of 229,300 experimentally

validated and manually curated pathway relationships among 60 % of human

proteins and included protein-protein interactions – interaction between protein

A and protein B (low or high throughput experiments – e.g. yeast two-hybrid

(Y2H), affinity purification coupled to mass spectrometry (AP-MS)), transcrip-

tional interactions – e.g. protein A (encoded by gene A) is a transcription factor

which regulates the expression of gene B, metabolic interactions – the product

of enzyme A is the input of enzyme B, and many other types.
5https://reactome.org/
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3.4 LIHC – HBV and LIHC – HCV PPI data

Our approach for learning how hepatitis B interacts with human proteins in

HCC relied on combining differentially mutated protein data in HBV-associated

LIHC with physical protein-protein interactions (PPIs) between viral infections

and host in liver cancer cell lines.

The HBV-human protein-protein interaction network data were produced at

the Krogan Lab, University of California San Francisco (UCSF). The strength

of physical viral-host interactions in HCC was measured in two hepatocellular

carcinoma cell lines through affinity purification - used to enhance the human

proteins associated with viral proteins, followed by mass spectrometry - used to

find interacting proteins (Figure ??, joint work with Manon Eckhard, Ph.D.).

To quantitatively measure each PPI, the MiST software was used [138, 139].

Hence, to every viral-host PPI, we assigned a confidence score which considered

how abundant, how likely to reproduce and how specific it is the interaction

between two co-purified proteins. In total 3,863 physical PPI strengths were

measured. Each HBV protein physically interacted with host proteins (Figure

3.3c). The host interacting proteins enriched for several Reactome pathways

and suggested disruption of essential molecular processes like transcription, en-

doplasmic reticulum-associated degradation (ERAD), and translation initiation

(Figure 3.3)e.

We illustrated the resulting HBV-host interactome in Figure 3.3e and we could

show that The AP-MS experiments were conducted by Manon Eckhard, Ph.D.,

and John Gordan, MD Ph.D., our collaboration partners from the Krogan Lab,

UCSF.

3.5 LUAD TCGA data

For identifying miRNA–mRNA regulatory networks in LUAD, we used the

TCGA publicly available data sets comprising of mRNA and miRNA expres-

sion levels. The complete data sets consist of Level 3 IlluminaHiSeq RNASeqV2

mRNA and Illumina HiSeq 2000 miRNA data across 181 samples.

We selected mRNAs with non-zero count values in more than 80% of the pa-
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tients, non-zero standard deviation and we applied a log2 transformation to

normalize the data. The miRNA precursor expression levels were preprocessed

in the same manner. Following, 16,241 mRNAs were selected.

Since our collaboration partners – Margarita Gonzalez, Ph.D., and Kai Breuhahn,

Prof. Ph. D, from the Heidelberg University were interested in distinguishing

miRNAs that affect the metastasis process in lung cancer, they provided a set of

preselected 24 miRNAs. The 24 miRNAs showed differential expression between

NSCLC patients with and without lymph node metastasis (N1, N2 and N3 vs.

N0) in a TCGA LUAD sub-cohort of n = 449 samples [140]. For each one of the

24 miRNAs, we applied the preprocessing pipeline used for the HNSCC TCGA

miRNA set.
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Figure 3.3: HBV-human protein-protein interaction map. (a) Representation of
the HBV genome, as well as the individual viral proteins used in this study (to
scale), colored accordingly to their canonical function during the viral replication
cycle. (b) Summary of the experimental approach used to build the PPI map.
(c) Distribution of human interactors (host proteins) for each individual HBV
protein. (d) Reactome pathway enrichment of the host proteins interacting with
HBV. (e) Network representation of the HBV-human PPI map in the HUH7 cell
line. Diamond shaped nodes represent the seven individually expressed HBV
proteins, while the circle shaped nodes represent the 140 high-confidence human
interactors. The colors indicate the specific HBV proteins.



Chapter 4

Copy number aberrations

detection - a benchmarking

study

Predicting and characterizing oncogenic molecular phenotypes is decisive for

personalized cancer medicine. A robust model for tackling these tasks requires

the accurate identification of DNA copy number changes. A rigorous identifica-

tion of changes in the tumor DNA enables distinguishing those CNAs that affect

oncogenes or tumor suppressor genes. Following, one can provide the knowledge

required for developing new targeted cancer therapies or patient stratification.

Hence, CNAs play an essential role in cancer research and it is essential to assess

the accuracy of CNA calling from tumor genomes.

To measure changes at the genomic level, technologies such as single nucleotide

polymorphism (SNP) arrays, whole-genome sequencing (WGS), and array com-

parative genomic hybridization (aCGH) can be used. Of these technologies,

SNP arrays come with the advantage that they can be used for both genotype

and copy number analysis. Furthermore, this technology allows scientists to

characterize both copy number changes and allelic imbalances of a sample. Es-

timating copy number changes and allelic imbalances require tailored methods

that process and model the array signals [97].

51



52 CHAPTER 4. COPY NUMBER ABERRATIONS DETECTION

Affymetrix SNP 6.0
alike synthetic data

(400 samples)

OncoSNP

ASCAT

GISTIC

CGHcall

CGHcall*

GenoCNA

JointSeg R

   HapMap
  (81 samples)

Performance evaluation

Exploratory analysis
on TCGA HNSCC data

(522 samples)

CNA calling algorithms

0 1000 2000 3000 4000 5000

-1
.5

-0
.5

0.
5

1.
5

Genomic position
0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BA
F

LR
R

Affymetrix SNP 6.0 genotyping

Figure 4.1: Copy number aberrations detection in cancer – a benchmarking
study. The benchmarking pipeline first generates Affymetrix SNP 6.0 alike data
(JointSeg R package). The performance of the algorithms was tested on both
synthetic and real data (HapMap data). The benchmarking study concludes
with an exploratory analysis on CNA calling from TCGA HNSCC data.

Despite the vast number of present methods, revealing cancer-related CNAs

from SNP array data precisely is difficult to achieve [27, 37, 141]. One partic-

ular challenge in accurately estimating cancer-related CNAs is the presence of

biological confounding variables specific to cancer, like tumor purity and length

of an aberrated chromosomal segment [97].

This chapter introduces a comparative study designed to find the most suitable

CNA calling algorithm from SNP array data, given the effect of cancer-specific

biological confounding variables. Particularly, we test the performance of five

algorithms commonly used for identifying CNAs from Affymetrix SNP 6.0 array

data in the presence of three biological confounding variables.

Since the true copy number states for real cancer data are unknown and experi-

mental validation on genome-wide level is not feasible (the human genome size is

about 3.0×109bp and is affected by CNVs), a benchmarking study requires syn-

thetic data mimicking Affymetrix SNP 6.0 array experiments. Synthetic data

also allow us to tune confounding variables and observe how the algorithms are

affected by them.
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However, synthetic data are not sufficiently realistic due to simplifications of

the molecular model. Realistic rendering of molecular phenotypes is challeng-

ing, as we have yet to completely uncover all the functions, connections, and

interdependencies of the multiple molecular subsystems.

Since the real copy number state in tumor samples measurement is unknown,

for evaluating the algorithms on real data, we used a HapMap cohort with sub-

sequently experimentally validated CNAs genome regions.

To test the plausibility of CNA calling results in tumor samples, we examined

the consistency between raw LRR signals from TCGA HNSCC samples and the

predicted CNA calls overlapping the HNSCC consensus regions defined in [142].

The pipeline shows how the performance of commonly used CNA calling al-

gorithms is altering in the presence of biological confounding variables and is

available at https://github.com/adspit/PASCAL (PASCAL – Performance As-

sessment of CNA calling Algorithms, Figure 4.1).

This chapter is included in the following publication:

• Adriana Pitea, Ivan Kondofersky, Steffen Sass, Fabian J. Theis, Nikola S.

Mueller and Kristian Unger. Copy number aberrations from Affymetrix

SNP 6.0 genotyping data - how accurate are the commonly used prediction

approaches? Briefings in Bioinformatics, 2018.

The study, text, and figures included in this publication represent entirely my

work, with minor corrections from co-authors. The figures included in this

chapter served as basis for the figures included in Pitea et al.

4.1 Biological confounding variables in CNA find-

ing

A major difficulty in accurately identifying cancer-related CNAs is the effect of

cancer-specific biological confounding variables [143, 144]. Among the variables

specific to tumor samples, tumor purity, and the length of an aberrated chro-

mosomal segmented are known to affect the prediction of copy number states.

The tumor purity represents the ratio between cancerous cells and all the cells

present in a tumor sample – consisting of both cancerous and non-cancerous
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Figure 4.2: Effect of tumour purity on Affymetrix SNP 6.0 LRR and BAF
signals. The left and middle panels depict the effect of contamination with 70
% and 50% non-cancerous cells on the LRR and BAF signals in regions with
the same copy number states as in the right panel. The first row represents the
LRR siganls, while the second represents the BAF. The x-axis represents the
SNP probe position.

cells. The mixture of cancerous and non-cancerous cells affects the expected

allelic fraction between germline and somatic variants: the intensity of the bulk

measured signals is reduced by signals of the non-cancerous cells present in the

sample (Figure 4.2). We demonstrate this behavior on three synthetic samples

with the same copy number states and the same breakpoint positions. In panel

B and C from figure 4.2 we observe that as the contamination of the sample

increases, the LRR signals shrink towards 0. LRR values of 0 correspond to

non-cancerous cells. In the 100% pure tumor sample, The BAF signals are scat-

tered between 0 and 1 in aberrated regions indicating loss of heterozygosity.

With 50% and 70% contamination in the sample, the BAF signals shift towards

0.5 – which indicates the heterozygous state.

If the algorithms require a certain signal intensity for classifying a genomic re-

gion as aberrated, the presence of non-cancerous cells can lead to missed CNA

regions. In simple terms, the higher the non-tumor cell content within the

assessed tissue sample, the lower the sensitivity of the copy number calling al-

gorithm gets.

Another confounding variable shown to affect the sensitivity of CNA calling

algorithms is the length of a CNA region, where a CNA region is a chromosomal

segment for which the genetic markers present the same copy number state [97].

Longer CNA regions are easier to find [145, 146].
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Finally, we observed another variable that influenced the performance of the

CNA calling algorithms: the CNA burden, which represents the percentage of

aberrated regions in a tumor sample. The CNA burden affects the number of

genes mutated and thus the molecular phenotype of tumors.

4.2 Synthetic data

As the true states of genomic copy number data in cancer are unknown and ex-

perimental validation on genome-wide level is not feasible (the human genome

is approximately 3.0× 109bp and is affected by SNVs and CNVs), we generated

synthetic data mimicking Affymetrix SNP 6.0 biological data.

We generated Affymetrix SNP 6.0 array-like synthetic tumor signals for 400

samples by using the jointseg R package [147, 97]. To make the samples as

similar as possible to the Affymetrix SNP 6.0 array samples, we simulated data

for 1.844.399 markers of genetic variation, comparable to the number of probes

included in an Affymetrix SNP 6.0 array.

Jointseg was built to generate realistic synthetic DNA copy number profiles.

The framework resamples signals corresponding to genomic regions with man-

ually annotated copy number states from the publicly available lung cancer

NCI-H1395 SNP microarray data [147, 148]. For analyzing the effect of tumor

purity on the performance of the CNA calling algorithms, we generated 100

samples with each of the following tumor purity levels: 30%, 50%, 70%, and

100%. The tumor purity levels corresponded to the experimental settings of the

Rasmussen et al study [148].

For each sample, the number of breakpoints ranged from 1 to 8, where a break-

point represents a locus where one of the two parental copy number changes.

The breakpoints were randomly placed in the simulated profiles. This setting

allowed us to simulate samples with different ranges of CNA region lengths.

For the resulting regions we sampled the copy number states from a pre-defined

set: (0,1), (0,2), (1,1), (1,2), (1,3), (2,2), (3,2), where (0,1) represented the loss
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of a single copy, (0,2) and (1,1) represented normal, and (1,2), (1,3), (2,2) and

(3,2) represented the gain of one, two or three copies.

4.3 Genomic copy number calling algorithms

We selected five commonly used copy number calling algorithms for compari-

son: CGHCall, OncoSNP (version 2.1), ASCAT (version 2.4), GenoCNA, and

GISTIC (version 2.0). Additionally, we developed and included CGHcall* – an

adjusted version of CGHcall that prevents the shift of profiles

OncoSNP

OncoSNP labels SNP array signals from cancer genomes based on 21 states dic-

tionary that includes multiple arrangements of allele losses and amplifications

[97]. The model accounts for the effects of tumor purity, polyploidy, and in-

tratumor heterogeneity [149]. We applied OncoSNP on the synthetic data with

the arguments specific for Affymetrix SNP array, together with the predefined

number of training states and tumor states. We used the intratumor mode and

set the tumor purity parameter to 30%, 50%, 70%, and 100% .

ASCAT

ASCAT was designed to analyze allele-specific copy number in tumor samples.

The algorithm corrects for the effects of tumor purity and tumor aneuploidy

and infers copy number classes, loss of heterozygosity, and homozygous dele-

tions. However, the algorithm requires a threshold for the segmenting of the

SNP profile into regions that have the same copy number states. ASCAT esti-

mates the number of copies for both alleles at all SNP marker positions [150].

For our study, we preprocessed the synthetic data and generated the ASCAT–

format input tumor LRR and BAF files. Next, we used the ascat.predictGermlineGenotypes

R function with the platform parameters set to "AffySNP6" to generate germline

genotype profiles [97]. Finally, we segmented the data with the ASPCF segmen-

tation algorithm (default parameters) and applied the ASCAT copy number

calling function [97].
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GenoCNA

GenoCN performs simultaneous searches for CNAs and CNVs while correcting

for tumor purity [97]. However, the framework does not account for a chromo-

somal background that is non-diploid [151].

For our benchmark, we performed a GenoCNA search given the synthetic data

sample files and the human genome assembly hg18 genetic marker information

[97]. We chose the output format 2 that included the most probable copy num-

ber and genotype state for all the genetic markers.

GISTIC

GISTIC represents the standard CNA calling algorithm used to estimate copy

number changes from Affymetrix SNP 6.0 arrays in TCGA studies [152]. GIS-

TIC was designed to find genomic regions that are significantly amplified or

deleted across a set of samples, and not on a single patient level. Following,

GISTIC eliminates common chromosome arm-level events that are unspecific

to cancer and retains the focal events based on a significance measure. The

significance measure relies on the amplitude of the CNA, on how frequently the

CNA occurs across samples, and a user-defined threshold for the discovery rate.

GISTIC required as input a segmentation file and a reference genome file.

One disadvantage of GISTIC is the fact that the algorithm does not correct for

the effect of the biological confounding variables.

In our study, we first segmented the samples by using the segment function of

the CGHcall R package, and then we applied the GISTIC algorithm.

CGHcall

Just like GISTIC, CGHcall uses breakpoint information from circular binary

segmentation [153]. However, CGHcall processes raw log2-ratios between refer-

ence and tumor DNA and estimates their belonging to one of the next five copy

number states: double loss – homozygous (biallelic) deletion, loss – hemizygous

deletion (loss of one of the alleles), normal – two copies, gain – three to four

copies, and amplification – more than four copies [154, 97].

For analyzing the synthetic data, we log-transformed the total copy numbers

and we applied the CGHcall pipeline on the resulting signals with adjustment
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for the corresponding tumor purity. The HNSCC TCGA data set comprised of

normal-tumor matched patient samples. We calculated the log2-ratios between

the tumor and the normal matched patient samples by using a Python script

[97]. As the HapMap data consist of samples collected from healthy patients,

we calculated log2-ratios between each LRR signal and the mean LRR signals

of the 81 selected samples [97].

4.4 Performance analysis of genomic copy num-

ber calling algorithms

In addition to realistic synthetic data, benchmarking studies require a suitable

performance metric for copy number calling algorithms. In general, to show how

prediction algorithms perform, receiver operating characteristics (ROC) curves

are used [155]. However, when the distribution of the classes is imbalanced, as

in our case (Figure 4.3), ROC curves can present an over-optimistic view on

how an algorithm performs, while the recall and the precision have been shown

to give a more informative view [156, 157]. Since the F-score represents the

balance between the precision and the recall of an algorithm, we selected it as a

suitable metric to evaluate the performance of the copy number algorithms for

each class.

We were interested whether the algorithms can classify correctly the log R

ratio (LRR) and the B allele frequency (BAF) signals into three states: loss,

normal, and gain. Therefore, we split the multiclass classification problem into

three binary classification problems and we collapsed the resulting calls of each

of the algorithms to loss, normal and gain. For CGHcall and GISTIC, we unified

losses and double losses into one loss class and the gains and amplifications into

one gain class [97]. For OncoSNP, the homozygous and the hemizygous deletion

states were collapsed to loss, and all the states that were defined by more than

two copies were considered gain [97]. For ASCAT and GenoCNA, probes with a

number of copies lower represented a loss, while the probes a number of copies

higher than two copies represented a gain [97].

We calculated the sample-wise confusion matrix, precision, recall and balanced
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Figure 4.3: Example of the class imbalance present in one sample. On the y
axis we observe the number of probes from a simulated Affymetrix SNP 6.0
array-alike sample covered by each of the three CN states: -1 (loss), 0 (normal)
and 1 (gain).

F-score [158] as follows:

precisionc =
TP

TP + FP
(4.1)

recallc =
TP

TP + FN
(4.2)

Fc = 2 · precisionc · recallc
precisionc + recallc

, (4.3)

where c represented the class: loss, normal, or gain. True positives (TP) repre-

sent the number of probes that were classified correctly for each class c, while

false positives (FP) are the probes classified incorrectly as class c. The false

negatives (FN) comprised of the total of probes that initially were classified

as belonging to group c but were classified as belonging to another group. To

test for statistically significant shifts between F-score distributions of the algo-

rithms, we performed non-parametric pairwise comparison Wilcoxon tests [159].

We adjusted the resulting p-values for multiple testing error through Bonferroni

correction [160].
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4.5 An improved algorithm for CNA calling from

Affymetrix SNP 6.0 data: CGHcall*

During a manual inspection of the CGHcall pipeline, we observed that all the

normalized log2 signals before and after segmentation in the synthetic samples

with more 50% non-normal states covering the profiles, were incorrectly shifted

(either to -1, either to 1). The high ratio of aberrated regions caused the al-

gorithm to assign a faulty baseline level. In consequence, CGHcall returned

inaccurate estimates for copy numbers states [97]. Since cases in which more

than half of the genotyped probes are in a non-normal state have been reported

in a pan-cancer study on somatic genomic CNAs [37], we developed a model to

adjust for the CNA burden effect [97].

The problem arose from the LRR levels being normalized to the median level

over a sample. If more than half of the genomic profiles were lost or gained,

CGHcall was unable to correctly estimate the baseline level and assigned the 0

level to loss or gain. We observed the same behavior when we applied the post-

segmentation normalization – which assigns the baseline segment to a segment

that is either lost or gained.

To correct for this effect, we selected three different intervals as constrains for
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the LRR signals: [-0.1, 0.1], [-0.05, 0.05], and [-0.2, 0.2] and analyzed how the

performance of the algorithms changed. To eliminate the effect of tumor purity,

we performed this analysis on samples with 100% tumor purity. The resulting

F-scores suggested that the LRR signals within the [-0.1, 0.1] interval provided

the optimal mean for normalization and post-segmentation normalization (Fig-

ure 4.4). Accordingly, we developed a model that normalized the LRR signals

using as mean the LRR signals included in the [-0.1, 0.1] interval. We applied

the same strategy for the post-segmentation normalization step.

4.6 Tumor purity strongly influenced the perfor-

mance of CNA calling algorithms

loss normal gain

30 50 70 100

0.00

0.25

0.50

0.75

1.00

F−
sc
or
e

OncoSNP
ASCAT
GISTIC

CGHcall
CGHcall*
GenoCNA

30 50 70 100 30 50 70 100
Tumour purity [%]

A. B. C.

Figure 4.5: Performance of calling algorithms on synthetic data across
different tumor purities. We assessed the performance of the following algo-
rithms: OncoSNP - coral red, ASCAT - light green, GISTIC - yellow, CGHcall
- purple, CGHcall* - cyan and GenoCNA - pale pink. The y-axis indicated
the F-score, while the x-axis indicated the tumor purity level in %. The three
different classes were depicted in the three different panels: A. loss, B. normal
and C. gain. Each boxplot comprised of the F-scores corresponding to the 100
synthetic samples. This figure served as component for Figure 1. in the Pitea
et al. publication [97].

During the first phase of our benchmarking, we evaluated how the algorithms

performed on synthetic data based on their F-score distributions (Figure 4.5).

Figure 4.5A. depicted how accurately the six algorithms estimated losses at tu-

mor purity levels (depicted on the x-axis) varying from 30% to 100%. OncoSNP
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could not predict losses in impure tumor samples (mean F-score = 0.03). Simi-

larly, ASCAT, GISTIC, and CGHcall performed poorly when predicting losses

regardless of the tumor purity level (mean ASCAT F-score = 0.26, mean GISTIC

F-score = 0.34, mean CGHcall F-score = 0.39). Figure 4.5)A. also suggested

that CGHcall* and GenoCNA performed competently in samples with 100%

tumor purity. GenoCNA returned admissible predictions for losses in samples

with tumor purities > 50% (mean F-score = 0.68).

OncoSNP showed increasing performance for calling normal states as the tumor

purity level increased (Figure 4.5B). We hypothesized the presence of normal

DNA drove the log2 ratios towards the 0 baseline and influenced the perfor-

mance of OncoSNP. Besides, the normal state represented the majority class.

Thus, the results indicated that OncoSNP can not handle the class imbalance

problem. Except for CGHcall*, the algorithms performed rather poorly when

predicting normal states (mean GISTIC F-score = 0.28, mean CGHcall F-score

= 0.29, mean GenoCNA F-score = 0.35, mean ASCAT F-score = 0.36). CGH-

Call* performed well overall but especially in samples with tumor purity 100%

(mean F-score = 0.70, 4.5B).

Finally, we examined how well the algorithms predicted gains. We observed

that OncoSNP performed well for samples tumor purity was > 50% (4.2C),

while ASCAT correctly predicted gains in samples with tumor purities > 30%

(mean F-score = 0.76). All algorithms improved their performance for calling

gains as tumor purity increased.

Our aggregated results showed that CGHcall* strengthened the prediction of all

copy number states for all tumor purities relative to CGHcall [97]. Moreover,

our results also indicated that GISTIC and CGHcall performed similarly [97].

One aspect that can explain the similarity in performance is that both methods

use CBS segmentation results and do not exploit the information contained by

the B allele frequency [97]. The benchmark hinted that CGHcall* and OncoSNP

are the better performing algorithms in samples with high tumor purities re-

gardless of the class of the DNA change [97]. The key message of this analysis is

that tumor purity strongly influences the results of the CNA calling algorithms

[97]. Our finding provides valuable information for the scientific community, es-

pecially for cohort including samples with tumor purities markedly below 50%
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[97].

loss normal gain
long
medium
short
long
medium
short
long
medium
short
long
medium
short
long
medium
short
long
medium
short

1 0.308 0.668
0.999 0.453 0.759
0.987 0.375 0.74

1 0.999 0.842
0.946 0.853 0.9
0.913 0.761 0.885

0 1 0.138
0.785 0.27 0.565
0.371 0.234 0.544

0 1 0.153
0.8 0.27 0.562

0.357 0.234 0.542
1 0.75 0.932

0.752 0.188 0.861
0.257 0.162 0.867

1 1 0.962
1 0.993 0.983

0.923 0.967 0.983

Mean F-Score
0 0.2 0.4 0.6 0.8 1

OncoSNP
ASCAT
GISTIC
CGHcall
CGHcall*
GenoCNA

Figure 4.6: Performance of benchmarked copy number calling algo-
rithms in synthetic data across different lengths of genomic regions.
The columns indicated the three copy number states: loss, normal and gain,
while the rows indicated the different ranges of genomic region lengths.

4.7 The effect of copy number region length

Next, we aimed to comprehend how the algorithm performed relative to the ef-

fect of the length of a copy number region. Therefore, we assessed the predictions

of the algorithms for different region lengths: ≤ 105probes (short), between 105

and 106 probes (medium), and > 106 (long) (Figure 4.6). To remove a combined

effect with tumor purity, we examined only samples with 100% tumor purity.

We defined the region length was as the number of genetic markers with the

same copy number state overlapping a chromosomal segment. A chromosomal

segment overlapped between 3 kilobase pairs (kbp) and 1.8 million base pairs

(Mbp).

The results shown in Figure 4.6 indicated that OncoSNP, GenoCNA, and CGH-
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loss normal gain
CNAratio > 0.5

CNAratio < 0.5

CNAratio > 0.5

CNAratio < 0.5

CNAratio > 0.5

CNAratio < 0.5

CNAratio > 0.5

CNAratio < 0.5

CNAratio > 0.5

CNAratio < 0.5

CNAratio > 0.5

CNAratio < 0.5

0.584 0.378 0.737

0.383 0.371 0.692

0.537 0.594 0.858

0.385 1 0.923

0.35 0.138 0.477

0.385 1 0.923

0.401 0.149 0.486

0.923 0.923 0.923

0.363 0.099 0.853

0.259 0.666 0.905

0.563 0.758 0.97

0.385 1 0.923

Mean F-Score
0 0.2 0.4 0.6 0.8 1
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Figure 4.7: Performance of the benchmarked copy number calling
algorithms for samples with a CNA burden smaller or higher than
0.5. The columns indicated the three copy number states: loss, normal and
gain, while the rows indicated the CNA burden ratio.

call* were barely sensitive to region length. The heat map in Figure 4.6 showed

that CGHcall* and OncoSNP performed well regardless of the class, while

GenoCNA floundered when predicting normal genomic regions. For ASCAT,

we experienced a decline in performance for short and medium-length CNA re-

gions. GISTIC missed predicting losses or gains, regardless of the length of the

region. CGHcall displayed a comparable behavior. Once again, the aspect that

may be affecting CGHcall and GISTIC is the CBS algorithm.

CGHcall* and OncoSNP were again our top performers regardless of the region

length and the copy number state.
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4.8 The effect of CNA burden

Given that the CNA burden influenced the CGHcall normalization of the log2

ratios, we tested whether it also affected the prediction of the other copy number

calling algorithms.

Accordingly, we examined the mean F-scores for samples with a CNA burden >

50% and samples with CNA burden < 50% for each copy number class (Figure

4.7). CGHcall and GISTIC performed poorly for samples with a CNA burden

> 50%. However, GISTIC improved its performance in samples with a CNA

burden < 50%. ASCAT returned low performance for the normal state and

samples with a high CNA burden.CGHcall* outperformed CGHcall in samples

with CNA burden > 50% and verified our revision of the initial pipeline, notably

for normal and gain classes.

Generally, OncoSNP and CGHcall* remained the best performing algorithms

assessed in this study, independent of the CNA burden.

4.9 Performance of the copy number calling algo-

rithms on SNP 6.0 array profiles of healthy

patients (HapMap)

Assessing how OncoSNP, ASCAT, CGHcall, CGHcall*, GenoCNA, and GIS-

TIC perform on real data required knowing the true copy number states of the

genome positions – i.e., having a gold standard. Due to the human genome size

– 3.0× 109 bp, the scientific community has yet to provide an Affymetrix SNP

6.0 array gold standard. The HapMap project comprehensively experimentally

validated DNA copy number changes estimated from Affymetrix SNP 6.0 arrays

in a cohort of healthy patients. Based on that, we designed a benchmarking ap-

proach in which we used the copy number profiles annotated by Redon et al. as

our golden standard [136]. In total, Redon et al. provided experimental valida-

tion for 14,500 genomic regions.

The distribution of F-scores from Figure 4.8 showed that OncoSNP, ASCAT,

CGHcall, CGHcall*, and GenoCNA performed a fairly accurate prediction for

the normal class (mean OncoSNP F-score = 0.91, mean ASCAT F-score = 0.85,
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Figure 4.8: Distribution of F-scores for OncoSNP, ASCAT, CGHcall, CGHcall*,
GenoCNA and GISTIC in 81 healthy HapMap subjects.

mean CGHcall F-score = 0.92, mean CGHcall* F-score = 0.92, mean GenoCNA

F-score = 0.94 ). However, GISTIC only made poor predictions for 381 regions

overlapping our ground truth (mean F-score = 0.10).

None of the algorithms returned reasonable predictions for the gain class. How-

ever, CGHcall, GenoCNA, and CGHcall* performed reasonably well for the loss

class (mean F-score ≈ 0.69).

Although our results seem pessimistic, one should consider that ASCAT, On-

coSNP, and GISTIC aim to find somatic CNAs in tumor data, and HapMap

provides profiles of healthy human blood samples. However, we theorized that

germline DNA changes would be easier to identify.

In conclusion, the HapMap project allowed us to assess the CNA calling algo-

rithm performance on real data and determine how applying them on non-tumor

data affects them.
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4.10 CNAs in HNSCC patients

Lastly, we investigated two other aspects: the agreement between raw LRR

signals and predictions and the consistency of predictions for consensus CNA

regions of HNSCC samples. We used the consensus CNA regions characterized

by Gollin et al. and selected the overlapping genes, SNPs, and CNVs [142].

Next, we examined the raw LRR signals together with the CNA predictions

in two genes known to be involved in HNSCC: CCND1 and CDKN2A (Fig.

4.9, Fig. 4.10). Both Figure 4.9 and 4.10 showed a consensus between high

raw LRRs and the predicted gains. Analogously, the benchmarked algorithms

estimated that the genomic regions with low raw LRR values overlapping the

two genes represented losses.

Additionally, the frequencies of CCND1 gains predicted by the algorithms were

comparable to the frequencies of CCND1 gains reported by Golin et al. from

CGH data – 32%: CGHcall - 26.5%, CGHcall* - 24.9%, OncoSNP - 44%, and

GISTIC - 43% [142]. CGHcall, CGHcall*, OncoSNP, and GISTIC predicted

similar frequencies of CDKN2A losses: CGHcall - 39.8%, CGHcall* - 35.4%,

and GISTIC - 59%. Generally, tumor purity was > 60%, but the data set also

included samples with tumor purity as low as 27.9%.

Our results suggested that given realistic tumor purity levels, CGHcall* and

OncoSNP remained consistent and performed similarly in the TCGA HNSCC

data.

4.11 Conclusions

This chapter described a benchmarking study on five CNA calling algorithms

from Affymetrix SNP 6.0 array data: OncoSNP, ASCAT, GISTIC, CGHcall

and GenoCNA. We chose to benchmark these algorithms because the scientific

community often uses them to estimate copy number states in tumor sam-

ples. Except for GISTIC, all the algorithms employed adjustment for tumor

purity, intra-tumor heterogeneity, and even tumor cell ploidy (ASCAT and On-

coSNP).(ASCAT and OncoSNP).

Another reason for conducting this study was the lack of cancer-specificity in
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Figure 4.9: Consensus of raw data and algorithm predictions in TCGA
HNSCC CCND1. The columns indicated the patients clustered by raw LRR
signals in the probes overlapping the CCND1 genomic region. The rows indi-
cated the Affymetrix SNP 6.0 probes that overlapped the CCND1 region. The
heat map bar indicated the tumor purity of each sample.

previous studies [146, 161], or the complexity and feasibility of the model that

generated synthetic data [162, 147].

Our benchmark introduced a pipeline for CNA calling algorithms that used real-

istic synthetic data, which accounted for cancer-specific confounding variables.

Our overall benchmark results indicated that tumor purity and CNA burden

significantly influence CNA calling algorithm results. Furthermore, our study

allowed us to recognize a weakness of CGHcall and provide an adjusted version

– CGHcall*, that corrects for the CNA burden effect.and to validate the con-

sensus between predicted CNA regions in the TCGA HNSCC cohort and the

previous finding of Redon et al.
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Figure 4.10: Consensus of raw data and algorithm predictions in TCGA
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Chapter 5

Hepatitis B alters host

protein-protein interaction

networks of liver cancer

Although some human diseases, such as Huntington’s disease, cystic fibrosis,

and fragile X syndrome, are caused by mutations in a single gene, the majority

of disorders, including cancer, result from interactions between multiple gene

products and environmental factors. Viruses are one of the leading environ-

mental factors that contribute to cancer. Specifically, more than 15% of human

cancers are attributed to viral infections [163].

Viruses are small infectious entities that consist of a core of DNA or RNA

surrounded by a protein coat [164]. Viruses can lead to cancer directly – the

cell machinery is disrupted by viral protein expression, or indirectly – when

the virus integrates itself in the DNA of the host cell [165]. They target host

genes involved in immunocompetence pathways, triggering chronic infection and

inflammation [165]. Subsequently, viruses induce carcinogenic mutations and

transform the host cells [165]. We addressed this aspect by using a network

propagation approach that allowed us to estimate the strength of the viral hit

within neighborhoods of the human protein-protein interaction network.

Here, we developed a network-based integrative strategy combining viral-human

71
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physical interactions with genomic alterations of tumors to characterize the

oncogenic viral impact on host proteins. The computational framework consists

of two integrative analyses:

• an integrative analysis of transcriptomics, genomics, and clinical data for

determining the effect of a viral infection on the mutational landscape of

tumors

• a network propagation-based approach using genomic and physical inter-

actions between viral and human proteins to assess the significance of

oncogenic interactions between virus and host.

Our approach made use of the network propagation concept (Chapter 2) that

allowed us to discover not only the direct interactions between virus and host

but also the interactions that were not experimentally assessed or observed in

the mutation rates. Finding these high-confidence interactions allowed us to

discover relevant players involved in viral-mediated oncogenic pathways.

This project aimed to reveal how hepatitis B (HBV) proteins interact with host

proteins in hepatocellular carcinomas (HCC). The integrative analysis of tran-

scriptomics, genomics, and clinical data provided an estimated effect of viral

infections on the HCC mutational landscape. Explicitly, we determined genes

in which genetic alterations are dependent on the HBV status in HCC tumors.

The integrative analysis of genomic and physical interactions between viral and

human proteins revealed genes differentially mutated in viral cancers. Follow-

ing, we identified both known and novel oncogenic interactions associated with

the viral infections.

The project aim was defined together with Wei Zhang, PhD. from the Ideker

Lab (UCSD) and John Gordan, MD PhD., and Manon Eckhardt, PhD., from

the Krogan Lab (UCSF).

The analysis and modeling of the data represent my work entirely. The design

of the approach represents joint work with Dr. Wei Zhang, Ideker Lab. My con-

tribution also comprised implementing the method, conducting the statistical

analysis, and visualizing the data and the results of the computational analysis.

The figures included in this chapter represent my work optimized after receiv-

ing feedback from my collaborators and my UCSD visit supervisor, Trey Ideker,
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Ph.D.

The interpretation of the computational results represents my work, while the

interpretation of the biological results represents join work with John Gordan.

The analyses and the materials presented in this chapter will be fundamental

for the manuscript in preparation.

5.1 Viral mutational landscapes in HCC

Hepatocellular carcinoma represents the second leading cause of cancer death

worldwide [166], with increasing incidence [167]. Despite the comprehensive ge-

nomic profiling of HCC in the LIHC data set, few actionable molecular targets

have emerged [168]. HCC typically arises in the context of co-morbid hepati-

tis due to HBV or Hepatitis C (HCV) infections or non-alcoholic fatty liver

disease. HBV and HCV represent the primary causes of HCC worldwide [86].

Given all these reasons, we investigated the oncogenic effects of HBV in HCC

by integrating transcriptomics, genomics, and clinical data from the liver hepa-

tocellular carcinoma TCGA data set (further referred to as LIHC).

5.1.1 Mutated genes in the TCGA liver cancer data

To determine altered protein-coding genes from the LIHC data set, we used the

corresponding mutation files, and copy number calls on gene-level as provided

by the Broad Institute TCGA GDAC (Chapter 2). The mutation annotation

file comprised 53,777 missense mutations in 14,901 RNAs and 373 patients, as

determined by Mutation Assessor [169]. We classified genes as altered (Mut) or

wild type (WT) as follows. Since we are interested in non-silent mutations, we

removed silent mutations, i.e., we removed variants classified as ’Silent’, ’IGR’,

’5’UTR’, ’3’UTR’, ’5’Flank’, ’3’Flank’, ’RNA’, ’Intron’}. Following, we selected

41,263 non-silent mutations across 13,675 RNAs. Additionally, we considered

mutated genes overlapping amplifications or deletions as determined by GIS-

TIC.

The interactions between viral and human proteins can lead to cancer. Thus,

we further focused on DNA changes that affect protein-coding genes: we inter-
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sected the RNAs impacted either by somatic mutations either by CNAs with

the protein-coding genes included in the ReactomeFI PPI reference network

(https://reactome.org/).

As a result, we determined m = 8, 765 protein-coding genes altered by muta-

tions, amplifications, or deletions, in a set of n = 366 patients. For the following

analysis, we binarized this information for each gene: {0=WT, 1=Mut}.

5.1.2 Differential mutation analysis revealed significant HBV

impact on 46 genes

To determine the effect of the viral infections on the mutational status of each

gene in cancer, we assessed the differential mutation rates at gene-level between:

A. HCV(+) and HCV(-) HCC cases.

B. HBV(+) and HBV(-) HCC cases.

For this purpose, we set up to map the inputs xghepC
, xghepB

to the output yg,

where g ∈ {g1, ..., gm}. The output yg is a one dimensional (1d) vector of length

n representing the mutational status across the n HCC patients for each mu-

tated gene g (0 = wild type; 1 = altered). The features xghepC
and xghepB

are

1d binary vectors of length n representing the viral infection status for HCV (1

= HCV(+); 0 = HCV(-)) – xghepC
, and the viral infection status for HBV (1 =

HBV(+); 0 = HBV(-)) – xghepB
.

Given the binary nature of the response variable yg and our aim to learn the

dependence between mutation status and viral infections, the first choice to for-

malize the problem was logistic regression. However, logistic regression returned

perfect separation of the response, which is a common problem in imbalanced

small sample size studies. Unstable regression coefficients accompany perfect

separation. Since we aimed to estimate the risk of a mutation happening due

to viral infection and not solve a binary classification problem, we used the so-

lution proposed by Gelman et al. [170] to obtain stable regression coefficients.

Following, we formally defined three Bayesian logistic regression models condi-

tioned by independent Student-t prior distributions on the coefficients for each



5.1. VIRAL MUTATIONAL LANDSCAPES IN HCC 75

g out of the m mutated protein-coding genes:

πgcomplete
: p(yg|xghepC

, xghepB
) (5.1)

πgnull1
: p(yg|xghepC

) (5.2)

πgnull2
: p(yg|xghepB

), (5.3)

where πgcomplete
is defined by the probability mass function of the output yg

given xghepC
and xghepB

, πgnull1
is defined by the probability mass function of

the output yg given xghepC
, and πgnull2

is defined by the probability mass func-

tion of the output yg given xghepB
only. We used the default Cauchy distribution

with mean 0 and prior scale 2.5 – in the simplest scenario, “a longer-tailed ver-

sion of the distribution attained by assuming one-half additional success and

one-half additional failure in logistic regression” [170].

To examine the effect of a specific viral infection on the mutational status of

HCC tumors, we compared the likelihood of the πgcomplete
model to the likeli-

hood of each of the two alternative models. Hence, we calculated the deviances

between the complete model and each of the two alternative models:

DghepB
= −2 ln

( Lgnull1

Lgcomplete

)
(5.4)

DghepC
= −2 ln

( Lgnull2

Lgcomplete

)
(5.5)

with L being the maximum likelihood, i.e., the probability of the data given the

inputs xg and the parameter vector θ that maximizes p(yg|θ, xg) =
∏n
i=1 p(ygi |θ, xgi),

with n representing the number of samples.

We selected protein-coding genes that accomplished a mutation threshold of 10

samples and corrected their p-values resulting from the likelihood test for multi-

ple testing (FDR< 20%). We identified 46 protein-coding genes with mutational

status dependent on the viral infection status (Figure 5.1). Of these, BAP1,

MAP2K4, and TP53 are previously established tumor suppressors and GNAQ

is an oncogene. Alterations of these genes have been shown to impact DNA re-

pair, p53-apoptosis [171], signal transduction or transcription (MAP2K4), and

oncogenesis through the G-protein signaling pathway [172].

The results revealed a negative effect on the mutation rate driven by the HBV in-
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Figure 5.1: Differences in mutation rates between HBV, HCV and non-infected
patients. The left panel of the heat map represents the mutation rates in the
different patient groups. The right panel represents the effect size of the viral
infection on the mutation status in the LIHC data set.

fection (Figure 5.1, right panel) for the following genes: CPS1, BAP1, SPTA1,

ASPM, COL6A3, EPHA4, CELSR1, and SRCAP. The role of CPS1 in cell

growth, metabolism, and prognosis in LKB1-Inactivated lung adenocarcinoma

[173], together with its annotation as a prognosis marker in chronic HBV infec-

tion [174], suggested involvement in viral-host pathways activation. The differ-
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ential mutation rate observed for BAP1 confirmed its involvement in hepatic-

induced tumors [175].

Motivated by these findings, we aimed to increase the confidence of the results

by using another data level: physical viral-host interactions.

5.2 Viral-host interactions with oncogenic effect

5.2.1 Network propagation estimated genomic and physi-

cal HBV impact on human PPI interactions

Our next research goal was to find viral-host interactions with a strong in-

volvement in the underlying development of tumors. The oncogenic effect of

viral-host interactions may be reflected in proteins that serve as both viral tar-

gets and cancer drivers. Hence, we combined the physical HCV-human and

HBV-human interactomes with the mutational landscapes of HCV and HBV in

HCC.

Given the two different means of measuring the strength of viral-host interac-

tions in HCC – the deviances resulting from the differential mutation analysis

and the strength of physical host-viral interactions, we aimed to understand the

broad viral effect on human pathways in HCC. For this purpose, we used the

ReactomeFI network (further referred to as the reference network), consisting of

229,300 manually curated pathway-based protein functional interaction network

and the network propagation framework [85]. By applying network propagation

within the reference network, we spread the influence of each differential mu-

tation and the influence of each viral physical interaction over their network

neighborhoods.

We first propagated the HBV deviances – DghepB
, through the reference net-

work. We retained the propagated deviance scores in Sdg . Conceptually, Sdg
indicated how likely it is that gene g is affected by proteins with differential

viral-associated mutations. We obtained estimates of the viral effect on human

proteins within the reference network by scoring the proximity of protein in the

reference network to the HBV-interacting proteins at the genomic level. Next,

we propagated the HBV MiST scores through the reference network. Spg de-

noted the propagated MiST scores. Spg
represented the likelihood of gene g
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Figure 5.2: Network propagation identified Reactome Fi neighborhoods enriched
in both HBV interactors and genes with a decreased mutation rate in HBV(+)
HCC tumors. The initial and predicted scores for each gene are indicated by
color intensity: purple for HBV physical interaction scores (MiST), turquoise for
differential mutation scores, and green for combined significance (FDR value).

being affected by proteins that were physically interacting with viral proteins.

Thus, we estimated the viral effect on proteins within the reference network by

scoring their proximity to the HBV-interacting proteins at the physical level.

An overview of the network propagation can be seen in Figure 5.2A. The change

introduced by network propagation is indicated by color intensity.

We used the human protein-coding genes present in the reference network for

network propagation, that were also expressed in the LIHC data set (p = 9,803

proteins). Given the topology of the reference network, certain nodes (e.g.,

hubs) will be ’hot’ regardless of the initial scores represented by either deviances

or MiST scores. To estimate the expected background of Sp scores given the

network topology, we performed 10,000 permutations in which we randomly

reassigned the deviances DghepB
and the HBV MiST scores. To calculate the

significance of the propagation score of a specific gene, we ran the network prop-

agation algorithm separately with the permutated deviances and MiST scores

as input scores. Next, we calculated empirical p-values. The p-values indicated

how many times the propagated scores after permutation are greater than the
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real scores.

For each of the 9,803 proteins, we obtained two confidence scores. The two

scores indicated the likelihood of a given protein being altered at the genomic

level due to HBV infection and the likelihood of the same protein physically

interacting with HBV proteins.

Both times, network propagation allowed us to learn from different data modal-

ities and revealed:

• neighborhoods within the reference network enriched with genes with a

decreased mutation rate in HBV(+) HCC tumors

• neighborhoods within the reference network enriched with genes physically

interacting with the virus.

5.2.2 Measure of joint significance reveals

We used the gene-wise propagated MiST and deviances scores to calculate a

measure of joint significance for each protein-coding gene (5.2B). Given that

normalization brought the two types of measurement, we defined the joint sig-

nificance score as:

Scg = Sdg
· Spg

(5.6)

To obtain the null hypothesis distribution of the joint score given the network

topology, we performed 10,000 permutations through which we randomly re-

assigned MiST scores and deviances. We applied the network propagation al-

gorithm and calculated the product of the two propagated scores. We then

calculated empirical p-values corresponding to the joint score. The p-values in-

dicated which genes had network neighborhoods significantly enriched for both

viral interactors and genes with a decreased mutation rate in HBV(+) HCC

tumors. We calculated the false discovery rate using the Benjamini-Hochberg

method [116]. The values represented the probabilities of incorrectly finding

genes with neighborhoods significantly enriched for both viral interactors and

genes with differential mutation rates.

We identified 54 proteins that showed significant proximity to both proteins with
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a decreased mutation rate in HBV(+) HCC tumors and proteins with strong

physical binding to HBV proteins (Figure 5.3, FDR < 10%).

Next, we superimposed the interactions in the reference network between pro-

teins with joint significance with the viral-host physical interactions to build an

integrated interactome of HBV in HCC (Figure 5.4).
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Finally, we identified neighborhoods enriched for both physical viral-host inter-

actors and genes with differential mutation rates in infected patients.

5.3 Ubiquitylation and phosphorylation affected

by both HBV-related mutation and viral phys-

ical interaction

The results of our approach confirmed known viral-host interactions but also re-

vealed previously unknown interactions. In particular, we observed that CUL4A,

CUL4B [176], CDKN2A [177], and TP53 [178, 179] – known cancer drivers in

HCC, showed differential mutation status in HBV infected HCC patients and

were bound physically to the HBV proteins in the HCC cell lines data (Figure

5.4).



82 CHAPTER 5. IMPACT OF HEPATITIS B IN LIVER CANCER

Additionally, the integrative analysis of HBV data revealed strong effects in

several previously unknown protein genes, among which COPS3 and PPP2CA.

COPS3 is part of the COP9 signalosome complex (CSN) – an essential regula-

tor of ubiquitination, while PPP2CA is the main phosphatase for microtubule-

associated proteins (MAPs) – a negative regulator of cell growth and division.

The identified interactions indicated ubiquitination and phosphorylation include

both physical and genetic interactions with HBV. Given these findings, we fur-

ther focused on examining their involvement in viral two pathways in particular.

The experiments examining the remodeling of the COP9 and PP2A complexes

upon binding of HBx (the core HBV protein) confirmed the involvement of

HBV infection on global ubiquitylation and phosphorylation. These results are

included in the manuscript describing this study (to be submitted).

5.4 Conclusions and outlook

This chapter introduced a multilevel omics data integration approach for identi-

fying protein interactions involved in viral oncogenesis. To determine the impact

of viral infections on oncogenesis, we combined two layers of information. The

first layer included multilevel omics data – gene expression, somatic mutations,

and CNA copy number aberrations from tumor samples. The second layer con-

sisted of experimental data measuring physical interactions between viral and

human proteins observed in cancer cell lines.

We showed that integrating different data levels constitutes a powerful learning

approach for finding viral interactors that are also involved in cancer. Addi-

tionally, we showed that the results of our integrative approach enable us to

broaden findings from the level of proteins to pathways. Our analysis revealed

knowledge related to HBV remodeling the PP2A and COP9 protein complex

and altering their function in ubiquitination and phosphorylation.

The approach described in this chapter can be used for any viral infection and

cancer, considering the availability of the required data. We focused on HBV

infection in 366 TCGA LIHC samples and physical interactions between HBV

and human proteins in HCC cell lines. The first part of this study revealed hu-
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man protein genes with mutational status dependent on viral infections. In the

second part, we used network propagation to identify human pathways affected

by both viral-host physical interactions and tumor mutation status.

One can easily adjust the model estimating the effect of viral infection at the

genomic level to correct for confounder variables of interest. For example, since

it is known that HBV infection is more frequent in males [180], the Bayesian

logistic model can be broadened to correct for gender. Furthermore, considering

the highly variant liver cancer incidence rates across world regions [177], eth-

nicity can be included in the model as a covariate.

Another way to adjust the method is to measure the viral expression in the

tumor samples and replace the binary infection status with continuous viral ex-

pression values. Although computational intensive (due to the mapping of the

viral sequences to the whole genome sequencing of the liver cancer samples),

this additional analysis may enable the accuracy of the viral status provided by

the clinicians. Furthermore, we can test whether there is an effect of the viral

expression abundance on the mutation rate.

Lastly, although our study focused on the known link between HBV and liver

cancer, the method can also be applied to tumors that have not yet been as-

sociated with viral infections - to discover whether the viral infection is a risk

factor.

Altogether, this work shows that integrating physical protein-protein interac-

tions with multilevel omics data represents a suitable framework that will assist

the progress of many other cancers with viral risk factors.
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Chapter 6

Regulatory network inference

in head and neck and lung

cancers reveal miRNAs

involved in oncogenic

pathways

Dysregulation of miRNAs that act as oncogenes or tumor suppressor genes was

associated with many cancer types [181]: Medina et al. were the first to show

in an in vivo model that overexpression of miR-21 initiated a pre-B malignant

lymphoid-like phenotype and proved that miR-21 acted as an oncogene [182].

Later, Ma et al. showed that miR-21 enhanced cellular necrosis by negatively

regulating tumor suppressor genes associated with the death-receptor-mediated

intrinsic apoptosis pathway [183]. In mouse models, miRNA dysregulation was

sufficient for driving oncogenesis, while, in humans, changes on the genetic and

epigenetic levels of the miRNA biogenesis were associated with cancer initia-

tion [184]. We explored the potential role of miRNAs as prognostic markers

in HNSCC tumors treated with radiotherapy and showed that changes in the

85
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abundance of circulating miRNAs during radiochemotherapy affect the therapy

response of primary HNSCC cells after an in vitro treatment [185, 186]. Given

the miRNA involvement in cancer, it is essential to understand how miRNAs

act in a multilevel omics framework.

For this purpose, we developed a novel method, miRlastic, consisting of two

successive steps: identification of miRNA–mRNA interactions and functional

annotation of miRNA target gene sets (Sass & Pitea et al.). Our method infers

miRNA–mRNA interactions using transcriptomic data and prior knowledge and

performs functional annotation of target genes by exploiting the local structure

of the inferred network [134]. Moreover, miRlastic comes with the advantage

that it can be used for any specific biological condition.

As discussed in Sass & Pitea et al., inferring miRNA–mRNA interactions to

further reveal miRNA functions can uncover how miRNAs impact molecular

pathways. In particular, inferring miRNA–mRNA interactions and functionally

annotating miRNA target in cancer can show how miRNAs regulate underlying

cellular mechanisms and contribute to oncogenic pathways.

One of the main parts of this chapter introduces our application of miRlastic

to infer miRNA–mRNA regulatory networks linked to human papillomavirus

(HPV)-associated miRNAs in HNSCC. We also investigated the miRNA im-

pact of HPV-associated dysregulation. Another central part of this chapter

includes the application of miRlastic to study how dysregulated miRNAs affect

NSCLC metastasis.

The approach and the applications described in this chapter are part of the

following publications:

• Steffen Sass*, Adriana Pitea*, Kristian Unger, Julia Hess, Nikola S.

Mueller and Fabian J. Theis.

MicroRNA-Target Network Inference and local Network Enrichment Anal-

ysis Identify Two microRNA Clusters with Distinct Functions in Head and

Neck Squamous Cell Carcinoma. Int J Mol Sci, 16(12): 30204-30222,

2015.

• Margarita Gonzalez-Vallinas, Manuel Rodriguez-Paredes, Marco Albrecht,
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Carsten Sticht, Damian Stichel, Julian Gutekunst, Adriana Pitea, Stef-

fen Sass et al.

Epigenetically Regulated Chromosome 14q32 miRNA Cluster Induces

Metastasis and Predicts Poor Prognosis in Lung Adenocarcinoma Pa-

tients. Mol Cancer Res., 10.1158/1541-7786.MCR-17-0334, 2018.

The previous analyses on the potential role of miRNAs as prognostic mark-

ers in HNSCC tumors treated with radiotherapy are included in the following

publications:

• Isolde Summerer, Julia Hess, Adriana Pitea, Kristian Unger, Ludwig

Hieber, Martin Selmansberger, Kirsten Lauber and Horst Zitzelsberger

Integrative analysis of the microRNA-mRNA response to radiochemother-

apy in primary head and neck squamous cell carcinoma cells. BMC Ge-

nomics, 16:654, 2015.

• Isolde Summerer, Maximilian Niyazi, Kristian Unger, Adriana Pitea,

Verena Zangen, Julia Hess, Michael J Atkinson, Claus Belka, Simone

Moertl, Horst Zitzelsberger.

Changes in circulating microRNAs after radiochemotherapy in head and

neck cancer patients. Radiat Oncol., 8:296, 2013.

The work presented in this chapter focuses on an integrative approach to study

the role of miRNAs in miRNA–mRNA–pathway interactions specific to cancer.

The data analyses and figures presented here represent my work entirely. The

miRlastic R package, Figure 6.3, together with the new scoring procedure for

the local enrichment analysis, represents joint work with my former colleague,

Steffen Sass, Ph.D. My contribution to the lung cancer collaboration project

consisted of inferring the miRNA–mRNA regulatory network for 23 candidate

pre-miRNAs. The 23 candidate pre-miRNAs were selected and provided by my

collaboration partner, Margarita Gonzalez, Ph.D.

6.1 miRNA–mRNA–pathway interactions

MiRNAs can bind to the complementary 3’-untranslated region (3’ UTR) of

messenger RNA (mRNA) sequences to post-transcriptionally fine-tune target
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Figure 6.1: Joint effect of co-expressed miRNAs with a common pre-
dicted target. Pairwise correlation of predicted expressed miRNA regulators
together with their corresponding target genes predicted by TargetScan [187]
C9orf85 and C11orf42 (obtained from the HNSCC dataset). The miRNAs are
themselves clustered into several co-expressed groups.

mRNA expression [188]. MiRNA biogenesis was proven to be under tight spatio-

temporal control, and targeting relationships were shown to be cell type or

tissue-specific [189]. Additionally, the scientific community theorized that miR-

NAs act in a combinatorial manner [190, 191]. To obtain condition-specific

miRNA–mRNA interactions, we developed a statistical inference method that:

• used matched miRNA and mRNA expression data of the underlying con-

ditions

• integrated prior knowledge of sequence-based predictions

• integrated the joint regulation of miRNAs that target the same mRNA.

Group correlation of miRNAs with a common target

Since our method relied on the concept of joint regulation of miRNAs that

target the same mRNA, we evaluated the correlation between miRNAs with a

common target. In particular, we calculated the pairwise Pearson correlation

coefficients among all miRNA expression profiles from the HNSCC data that

TargetScan predicted to have a common target. Figure 6.1 showed the correla-

tion for two genes predicted to be targeted by multiple miRNAs: C9orf85 and
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C11orf42 (Figure 6.1). We observed subgroups of high correlation, which con-

firmed the predicted co-expression of miRNAs that were functionally related or

resided nearby the chromosome.

To systematically analyze whether miRNA expression profiles typically corre-

Targetscan

Random

correlation strength

D
en

si
ty

0.1 0.2 0.3 0.4

0
5

10
15

20
25

30

***

Figure 6.2: The distribution of correlation strengths c(X) of miRNA sets, which
are predicted to target a common gene, (red curve and histogram) is higher than
for randomly re-sampled miRNA-mRNA associations (blue, Wilcoxon rank sum
test has p < 1× 10−80) in the HNSCC miRNA expression dataset.

lated when predicted to target the same mRNA, we assessed the Pearson (anti-

)correlation strength across all expressed miRNAs in the HNSCC data with a

common target. Our analysis revealed a stronger correlation between such miR-

NAs relative to correlation in randomly sampled sets of miRNAs (p < 1×10−80

Wilcoxon rank sum test, Figure 6.2).

Following, we applied a multiple linear regression model with an elastic net

penalty, which represented a tradeoff between the lasso and ridge regression

and accounted for both joint effects of several miRNAs on a common target

and co-expression between miRNAs [124]. We imposed a negativity-constraint

on the regression coefficients to choose only down-regulation effects. To func-

tionally annotate miRNAs based on the inferred miRNA–mRNA network, we

introduced a local enrichment analysis that scored miRNAs based on the un-

derlying network structure and the functional annotations of their target genes.
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miRNA–pathway scoring

We evaluated whether node arrangements were assigned to a specific term, de-

scribing, e.g., a molecular function or biological process, occurred by chance or

not. To characterize the importance of miRNAs in the inferred network, we

define the following score:

SmiR(vi) =

 1

|Vi|
∑
vj∈Vi

S(vj)

 ·√|Vi|, (6.1)

where vi ∈ V miR represented every miRNA node in the inferred network, Vi
indicated the set of predicted targets, |Vi| indicated the number of inferred tar-

gets and S(vj) represented the enrichment of a term for a given functional group

around gene j. |
√
Vi| represented a weight that corrected for the number of the

corresponding targets – |Vi|, for each miRNA. Specifically, |
√
Vi| ascertained

that miRNA nodes with a significantly reduced number of predicted targets

were not highly ranked. The resulting score indicated how strongly miRNA

disrupted a particular pathway.

We extensively evaluated the miRlastic network inference module and further

applied miRlastic on an HNSCC TCGA subset (Chapter 3).

6.2 miRNA–mRNA regulatory networks in HN-

SCC

6.2.1 Human papilloma viral impact on HNSCC

HPV infection presents specific molecular characteristics that include gene mu-

tations, CNAs, changes in DNA methylation, mRNA, and miRNA expression

patterns [32, 192]. Lajer et al. identified a set of core miRNAs implicated in

HPV pathogenesis [193, 192] related to viral-human pathways of HPV induced

malignant pathogenesis. As studies showed, HPV disrupted cellular differenti-

ation in HNSCC [32, 194]. We then chose to focus on the 244 patient samples

with reported HPV status. The involvement of miRNAs in HPV-related in-

duced malignant pathogenesis motivated us to further explore miRNAs in this
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Figure 6.3: miRNA–mRNA regulatory network generated by miRlastic. The
network consists of 766 interactions between 44 miRNAs (light blue) and 16,617
genes (light yellow). The edges represent miRNA–mRNA relationships within
the TCGA HNSCC sub-cohort.

sub-cohort.

For this, we performed a differential analysis between miRNA expression of

HPV+ and HPV- HNSCC samples and identified 44 deregulated miRNAs be-

tween HPV+ and HPV- patients (Figure 3.1).

The set of differentially expressed miRNAs included the miR-9 family, miR-

363, miR-20b, confirming the reported association between the HPV status and

miRNA expression in several independent studies [195, 196, 193].

6.2.2 miRNA–mRNA interactions in HNSCC

To understand the HPV-associated miRNA-mediated gene regulation of HN-

SCC tumors, we performed a miRlastic inference using 135,391 targets predicted

by TargetScan in combination with the respective miRNA and mRNA expres-

sion values. Our method inferred 766 miRNA–mRNA interactions (Fig. 6.3).

The underlying miRNA–mRNA predictions were extracted from the TargetScan

database (version 6.2) [197] and included only conserved target sites for con-

served miRNAs families. Figure 6.3 depicts the HPV-associated miRNA nodes
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Figure 6.4: Performance evaluation of the miRlastic on HNSCC data. Panel
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and their inferred targets. The network itself already provided insights into the

functional roles of miRNAs. We presented an interactive representation of this

network at: http://icb.helmholtz-muenchen.de/mirlastic/hnscc.

Next, we evaluated miRlastic on the HNSCC sub-cohort. Specifically, we tested

whether the regulatory network predicted by miRlastic included significantly

more experimentally validated miRNA–mRNA interactions relative to com-

monly used methods - TargetScan, Spearman and Pearson correlation, lasso

regression. Following, we collect experimentally validated interactions from star-

Base v2.0 obtained using HITS-CLIP or PAR-CLIP (high stringency) [198]. Of

766 interactions predicted by miRlastic, 87 miRNA–mRNA were experimen-

tally validated. To determine whether the fraction of inferred and validated

interactions was higher than expected from the prior target network (Tar-

getScan) relative to the number of inferred interactions, we applied Fisher’s

exact test. For miRlastic, the test yielded a highly significant p-value of p =

http://icb.helmholtz-muenchen.de/mirlastic/hnscc
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8.736821× 10−4(Figure 6.4B).

To compare miRlastic to other methods, we applied three further commonly

used miRNA-mRNA network inference methods [186, 185] on the same data:

Pearson correlation, Spearman correlation, and lasso. We obtained a p-value

of p = 1.059271 × 10−2 for lasso, p = 1.228527 × 10−1 for Pearson correlation

and p = 9.978787× 10−1 for Spearman (Figure 6.4). The results indicated that

miRlastic identified a higher fraction of validated target predictions than the

other methods. Lasso also performed well predicting a significant fraction of

experimentally determined interactions, but lower relative to miRlastic (Figure

6.4). Pearson and Spearman correlations did not show any significant differ-

ence.

In conclusion„ miRlastic inference outperformed the other three methods in

over-representing experimentally validated miRNA–mRNA interactions.

6.2.3 LEA identifies two miRNA clusters associated with

tumorigenesis regulating processes: apoptosis, im-

mune response and proliferation

In the previous section, we provided a network characterizing miRNA–mRNA

interactions in TCGA HNSCC samples with known HPV status. To finally

reveal how miRNAs impact the underlying cellular mechanisms in HNSCC con-

cerning HPV infection, we assessed the local enrichment in the miRNA–mRNA

genes, given the HNSCC network.

For this purpose, we downloaded 108 pathways from KEGG for gene annotations

[199]. To identify closely-connected functions within the previously inferred net-

work, we used LEA to evaluate whether node arrangements assigned to a specific

term, describing, e.g., a molecular function or a biological process, occurred by

chance or not. We obtained nine significantly locally enriched pathways (Fig.

6.5).

Next, we clustered the miRNAs according to their functional score. Our analysis

revealed two clusters with a similar pattern of miRNA scores across pathways

(Figure 6.5).

The clusters associated with the MAPK- and Neurotrophin-signaling pathways.

MAPK- and Neurotrophin-signaling pathways comprised common elements re-
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lated to tumorigenesis-regulating processes such as immune response, apoptosis,

proliferation, and angiogenesis [200, 201]. Among the clustered miRNAs, we dis-

tinguished hsa-miR-193b, which was shown to affect the the MAPK signaling

pathway and enhance tumor progression in HNSCC [202, 203].

In a more detailed analysis, we observed that one of the miRNA clusters com-

prised links between hsa-miR-106a, -125b, -548b-3p/5p, -15b, -9-2, -9-1, -20b,

-155, and -582-3p and the Endocytosis pathway – prone to deregulation in can-

cer cells [134, 204].

The other miRNA cluster comprised a broader range of pathways and included

links between hsa-miR-2355-5p/3p, -193b, -1910, and 3166 with pathways in-

volved in apoptosis, regulation of stem cell pluripotency and metastasis [5, 205,

134].

The scientific community linked cancer stem cells (CSC) to therapy resistance

of HNSCC and HPV infection: HPV+ HNSCCs presented smaller CSC propor-

tions relative to HPV- HNSCCs [206]. Our functional analysis provided a reason

for HPV+ HNSCC patients presenting a better prognosis relative to HPV-, and

linked the "Signaling pathways regulating pluripotency of stem cells" to HPV-

infection [134].

Overall, our results suggested that only specific miRNAs mediate gene dysreg-

ulation primarily through pathways regulating stem cell pluripotency [134].

6.3 miRNA–mRNA–pathway interactions in NSLSC

In the previous section, we investigated the role of HPV-associated miRNAs in

HNSCC by using miRlastic. Within this section, we continued to explore the

impact of dysregulated miRNAs on cancer pathways. Specifically, we applied

miRlastic to distinguish the relevant miRNA–mRNA network driving non-small

cell lung cancer metastasis (further referred to as lung cancer). For performing

the miRlastic inference, we used 135,391 targets predicted by TargetScan com-

bined with expression levels of 23 pre-miRNAs and 16,241 mRNAs from lung

cancer. The 23 pre-miRNAs showed differential expression between lung cancer

samples from patients with and without lymph node metastasis (N1, N2, and

N3 vs. N0) in a TCGA sub-cohort (n=449).
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Figure 6.6: Functional characterization of the metastasis-associated
miRNA–mRNA network in TCGA lung cancer samples. Heatmap of
miRNA scores for each miRNA in the network indicating the functional role in
the significantly locally enriched KEGG pathways.

Our method inferred 8310 miRNA–mRNA interactions. Next, we applied LEA

on the resulting network with the aim of finding functional groups enriched in

a specific neighborhood of the network. Out of the 226 KEGG pathway an-

notations used when running LEA, 126 showed significant enrichment in local

communities of our network (Figure 6.6).

Notably, the results suggested that miR-509 had a significant impact on cell cycle

(hsa04110), cytokine-cytokine receptor interaction (hsa04060), homologous re-

combination (hsa03440), p53 signaling pathway (hsa04115). Our finding agreed

with previous results showing that miR-509 regulated cancer cell growth by af-

fecting the p53 signaling pathway and, subsequently, cell cycle [207]. Another

relevant pathway that was locally enriched in our network and was involved in

metastasis was the regulation of actin cytoskeleton (hsa04810) [208, 209, 210].
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Since we were interested in metastasis, we explored whether the inferred net-

work locally enriched for genes involved in the pathways related to this process:

cell migration and cell invasion. Thus, we extracted the terms related to these

two molecular processes from the Gene Ontology (GO) database together with

their child nodes: cell adhesion, cell migration, epithelial to mesenchymal tran-

sition, negative and positive regulation of cell migration, negative and positive

regulation of cell adhesion, and negative and positive regulation of epithelial to

mesenchymal transition. Based on these terms, we built a metastasis-specific set

of genes involved in invasion and migration pathways. We tested whether these

two molecular processes were locally enriched in our inferred miRNA–mRNA

regulatory network. Out of the selected pathways, only three were significantly

locally enriched (Figure 6.7).

We observed comparable scores for miR-514, miR-323b, miR-489, and miR-

509 for local enrichment for targets involved in cell adhesion, cell migration,

and epithelial to mesenchymal transition. Our results confirmed the association

between these miRNAs and metastasis across different cancer types [211, 212].

6.4 Discussion and Conclusion

In this chapter, we described two studies on miRNA regulatory networks within

cancer. In particular, we aimed to:

• distinguish miRNA–mRNA regulatory networks associated with HPV in-

fection in HNSCC

• distinguish miRNA–mRNA regulatory networks specific for metastasis in

lung cancer.

For this purpose, we used miRlastic – a multiple regression approach with an

elastic net penalty that accounted for the joint effect of miRNAs with a common

target. By using miRlastic, we identified all miRNA–mRNA interactions that

were specific to their expression levels. Thus, we removed those miRNA–mRNA

predicted interactions from TargetScan that were not related to the investigated

biological condition.

Since a gene can be regulated by multiple miRNAs and miRlastic was designed
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Figure 6.7: Specific functional characterization of the metastasis-
associated miRNA–mRNA network in TCGA lung cancer samples.
Heatmap of significance scores for each miRNA in the network indicating the
functional role in the significantly locally enriched metastasis-related KEGG
pathways.

to consider the putative joint effect of miRNAs targeting a common gene, we

first explored this effect in HNSCC expression data. Following, we inferred the

HPV-associated miRNA-target in HNSCC by applying miRlastic. For the HPV-

associated miRNAs, the network consisted of 766 miRNA–mRNA interactions.
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The subsequent step of miRlastic identified two functionally distinct miRNA

clusters predicted to mediate HPV-associated dysregulation in HNSCC.

Overall, miRlastic revealed dysregulation of pathways known to be associated

with HNSCC tumorigenesis and HPV infection in HNSCC. Our analysis also

showed that miRlastic provided a miRNA–mRNA network significantly enriched

for experimentally validated miRNA-target interactions compared to networks

resulting from Pearson’s correlation, Spearman’s correlation, and lasso regres-

sion.

Our study on dysregulated miRNAs involved in tumor migration or tumor in-

vasion in non-small cell lung cancer revealed a cluster of miRNAs with signifi-

cant impact on pathways related to metastasis: cell cycle regulation, regulation

of actin cytoskeleton, cytokine-cytokine receptor interaction and p53 signalling

pathways. These results provided our collaboration partners a subset of miRNAs

with potential involvement in metastasis for further experimental validation.

Lastly, although we focused on only two specific types of cancer, we showed

that we could successfully use miRlastic to identify miRNA–mRNA relation-

ships playing essential roles in the context of cancer.
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Chapter 7

Functional characterization of

long non-coding RNAs

through multi-level data

integration

Although several studies have annotated and investigated long non coding RNAs

(further referred to as lncRNAs) [213, 214, 215], the understanding of lncRNA

functional mechanisms is still limited. So far lncRNAs were shown to impact a

largely heterogenous class of biological processes like: the guidance of protein

complexes to their correct genomic locations [216], the activation of contigu-

ous genes [217], chromatin changes [216, 218] and gene regulation [219, 216].

Recently, lncRNAs overlapping trait-associated SNPs were shown to be highly

expressed in cell types relevant to the traits, and thus suggested involvement of

lncRNAs in multiple diseases [213]. Additionally, lncRNAs were shown to be

involved in diverse cancer types. For example lncRNAs DNM3OS, MEG3 and

MIAT were overexpressed in ovarian cancer epithelial-to-mesenchymal transi-

tion, a pathway related to tumour migration [220], while the long intergenic

non-coding RNA 152 (LINC00152) was shown to promote cell proliferation,

metastasis and resistance to treatment in colorectal cancer [221].

101
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To better understand lncRNAs, several resources were developed. However,

each is limited by small sample size or by individual functional levels. The

catalog of human lncRNAs GENCODE represents the most complete lncRNA

annotation resource, including a database of 9,277 manually curated genes [222].

GENCODE quantified the co-expression between lncRNAs and protein coding

RNAs (pcRNAs) to identify subclasses and analyze lncRNA biogenesis [222].

However, GENCODE did not provide further functional annotation of individ-

ual lncRNAs. LncRNA2function performed enrichment analysis with correlated

pcRNAs using only 19 human tissue samples [223]. The lncRNAtor portal,

which aimed to offer a comprehensive resource for functional investigation of

lncRNAs, was also limited by small sample sizes [224]. Cabili et al focused only

on tissue-specificity of intergenic lncRNAs [225], while Gong et al constrained

their study to the relationships between lncRNA functions and SNPs [226].

So far, a comprehensive and fully integrative study to infer lncRNA functions

exploiting the wealth of newly available studies of larger sample sizes remains

non-existent. Given the next-generation sequencing technology and the current

availability of numerous public data sets, we now have the possibility to study

the heterogeneous, yet poorly characterized, pool of lncRNAs.

Hence, in Pitea & Krause et al, we introduced an integrative analysis of broad

scale multilevel data that aimed to explore the molecular functions of lncRNAs:

LncRNA Integrative and Systematic Analysis – LISA. To meet the drawbacks

of present methods, LISA systematically explored lncRNA molecular mecha-

nisms by integrating genomics, transcriptomics and epigenomics together with

functional and tissue annotations from four large sample size projects: Encyclo-

pedia of DNA Elements - ENCODE [87], Roadmap Epigenomics Project [75],

the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx)

data portal [88]. With LISA we analyzed lncRNA-to-protein coding RNAs (pcR-

NAs) and lncRNA-to-epigenetic marks associations. Furthermore, we performed

functional annotation and tissue-specificity analysis of lncRNAs. Ultimately, we

used LISA to identify lncRNA-to-human disease associations.

LISA was discussed in the following publication (in review):

• Adriana Pitea*, Linda Krause*, Gökcen Eraslan, Steffen Sass, Janine

Arloth, Martin Presse, Christoph Ogris and Nikola S. Mueller. Holistic
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multilevel analysis of long non-coding RNAs using flexible graph database

Nucleic Acids Research, (in review).

The lncRNA anotation, the lncRNA expression data analysis and the lncRNA –

pcRNA association analysis together with the genomic proximity analysis rep-

resent entirely my own work. The tissue specificity analysis and the functional

analysis are joint work with my colleagues Dr. Steffen Sass and Gökcen Eraslan.

Figure 7.2 represents joint work with Dr. Steffen Sass. The joint work sections

and figures were included in this chapter for completeness.

lncRNA annotation

Throughout the LISA approach we used the high quality human reference

lncRNA annotation produced by the GENCODE Release 23 [227]. The list

consisted of 15,931 common lncRNA IDs annotated within the Ensembl project

[228] and experimental validated by the HAVANA group. According to GEN-

CODE, we categorized the lncRNAs into eight distinct biotypes: 3prime over-

lapping ncRNA (n = 6, 621), antisense (n = 323, 370), long intervening noncod-

ing RNA (lincRNA,n = 159, 679), processed transcript (n=497), asense intronic

(n = 917), sense overlapping (n = 194), to be experimentally confirmed (TEC,

n = 1, 050) and macro lncRNA (n = 1).

7.1 Distinct correlation patterns between lncRNA

and pcRNA expression across different tis-

sues

One natural way to investigate functions of lncRNAs is to evaluate the co-

expression of lncRNAs and pcRNAs based on their corresponding pairwise cor-

relations. To test for lncRNA – pcRNA interactions, we used expression mea-

surements from three projects: Roadmap, GTEx and TCGA.
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Figure 7.1: Distribution of the log2-normalized expression levels of pcRNAs
and lncRNAs within the GTEx, Roadmap and TCGA OV data sets. To avoid
non-defined values we added 104 to the initial values.
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7.1.1 LncRNAs expressed in GTEx and Roadmap data

We exploited the RNA-seq expression data from 53 human reference epigenomes

available on the Roadmap Epigenomics Project portal, 8,555 samples from the

GTEx portal and 407 samples from ovarian cancer patients (OV TCGA).

Both, lncRNAs and pcRNAs were considered expressed if their normalized ex-

pression values are > 0.1 reads per kilo-base per million mapped (RPKM >

0.1) in at least 80% of the samples. The chosen coverage criteria was shown

to correspond to about 5 reads in most genes [229] and it was used in several

previous studies [229, 88].

We identified 964 expressed lncRNAs and 12,263 pcRNAs across the 53 samples

from the Roadmap data. The analysis further identified 2,863 lncRNAs and

12,865 pcRNAs expressed in GTEx data, and 511 lncRNAs and 12,279 pcRNAs

expressed in the OV TCGA data set (Figure 7.1). All three data sets were

complete, e.g. there were no missing values.

7.1.2 lncRNA - pcRNA correlation

Given the filtered expression profiles, we next calculated pairwise Pearson corre-

lation coefficients for all lncRNA – pcRNA expression profiles. To test whether

the association between a lncRNA and a pcRNA was significant, we applied the

Fisher transformation on the previously calculated correlation coefficients. Note

that p-values depended on the sample number. Thus, due to the large sample

size, lncRNA – pcRNA associations tested as significant already for moderate

absolute correlation coefficients. Accordingly, we additionally constrained as-

sociations to absolute values above Pearson correlation of 0.4. If a lncRNA –

pcRNA correlation meat the criteria, the pair was further considered and re-

ferred to as associated.

Among the associated lncRNA – pcRNA pairs, we distinguished significant cor-

relation between HOTAIRM1 and the HOX genes – HOXA4, HOXB2, HOXB3

and HOXB4. The identified correlation agreed with the previously established

correlation between HOTAIRM1 and HOX genes [230, 231].
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Figure 7.2: Relationships between lncRNA – pcRNA correlation
strength (y-axis) and distances between the lncRNA and the pcRNA
(x-axis) across GTEx, Roadmap and TCGA OV. Trans region indicated
associations between lncRNAs and pcRNAs situated at a distance >1Mb or on
different chromosomes. The violin plots summarized the distribution of cor-
relation of lncRNA – pcRNA pairs located within cis (regions on the same
chromosome) or trans (regions on different chromosomes).
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7.1.3 Genomic proximities

Since lncRNAs were shown to be co-expressed with cis neighboring genes [225]

and to interact with genes located on the same chromosome [232], we analyzed

the interdependence between lncRNA – pcRNA correlations and their corre-

sponding genomic proximities. For this purpose, we merged the lncRNA and

the pcRNA comprehensive genome annotation lists available in the GENCODE

Release 23, by chromosome. Next, we calculated the absolute distance between

the transcription start site of lncRNA and pcRNAs (genome assembly hg19 and

ENSEMBL Gene identifier).

We observed a trend towards positive correlations between lncRNA and pcR-

NAs across all data sets, irrespective of their genomic proximity (Figure 7.2).

The orientation of the pairs did not influence the correlation direction (sense

and antisense). Notably, in Roadmap and GTEx samples, lncRNAs and pcR-

NAs showed strong positive correlation 0.99, while in the TCGA OV data we

observed a decrease in correlation. This suggested changes in the interactions

between lncRNAs and pcRNAs in ovarian tumour tissue.

7.1.4 Similarity of lncRNA – pcRNA correlation across

different data sets

To determine whether lncRNAs were associated with the same pcRNAs across

different data sets, we compared sets of correlated pcRNA sets for each ex-

pressed lncRNA across Roadmap, GTEx and TCGA OV (Figure 7.3). To test

for similarity across all three data sets, we selected only lncRNAs and pcR-

NAs expressed across all data sets and we computed the corresponding Jaccard

coefficients (Figure 7.3B). The Jaccard coefficient has been established as a

statistic used for comparing the similarity of two data sets [233]. Figure 7.3

suggested a higher overlap between lncRNA – pcRNA correlated pairs in GTEx

and Roadmap (the highest Jaccard coefficient is 0.3 for Roadmap – TCGA OV

and Roadmap – GTEx, and 0.5 in GTEx – TCGA OV). To test if the overlap

between the GTEx and Roadmap data was significantly higher than the overlap

between GTEx and TCGA OV and Roadmap and TCGA OV, we applied a
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Figure 7.3: Similarity between lncRNA-correlated pcRNA sets across
Roadmap, GTEx and TCGA OV A. Distribution of Jaccard coefficients for
lncRNA-correlated pcRNA sets across the three data sets for each combination
of two data sets. B. Overlap of lncRNA-correlated pcRNA sets expressed in all
data sets. The columns represented the commonly expressed lncRNAs.

Wilcoxon Signed-Rank test. We found that indeed the distribution of Jaccard

coefficient in Roadmap - GTEx was significantly shifted when compared to the

other two distributions (p.value < 10−6).

The differential correlation between lncRNAs and pcRNAs in the TCGA OV

data and the correlation between lncRNAs and pcRNAs in the other data sets

suggested tissue-specific expression regulation.

7.2 Tissue enrichment analysis revealed lncRNAs

specific to blood-related and liver tissues

To assess whether the lncRNA expression was tissue specific, we explored data

from the EBI Expression Atlas, Roadmap and GTEx. Since TCGA OV rep-

resented data from one tissue, it was not used in the analysis. We used the

EBI Expression Atlas resource to map pcRNAs expression to human tissue
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Figure 7.4: Tissue specificity of lncRNAs across Roadmap data. High-
lighted cluster of lncRNAs (red) indicated high association with blood-related
tissues. The color coding of the heat map denoted FDR-adjusted p-values.
Significant associations (FDR < 1%) were color-coded in blue, whereas non-
significant ones were represented in white.

[234]. The expression profiles of pcRNAs from the EBI portal were obtained

from eight projects: ENCODE, GENETECH, FANTOM5, GTEX, ILLUMINA

BODY MAP, NCI60 CANCER, MAMALIAN KAESSMANN and UHKENS

LAB.Within the EBI data, we considered pcRNAs as being expressed if the frag-

ments of transcript per million mapped reads was higher than 0.5 (FPKM> 0.5

) – the default threshold used by EBI.

To determine the significance of the tissue specificity, we applied a Fischer’s

exact test. In particular, for each lncRNA expressed in the Roadmap/GTEx

data set, we tested whether the set of correlated genes was over-represented in

the tissue-specific genes within each EBI project. We defined as background set

the overlap between all the pcRNAs expressed in Roadmap/GTEx and pcRNAs
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Figure 7.5: Tissue specificity of lncRNAs across GTEx data. Highlighted
clusters of lncRNAs (red) showed high association with blood-related tissues.
The color coding of the heat map denotes FDR-adjusted p-values. Significant
associations (FDR < 1%) were indicated with blue, whereas non-significant ones
were indicated with white.

expressed within each EBI project. To correct for multiple testing, we then ap-

plied an FDR-based correction to the resulting p-values [116].

The Roadmap results revealed a cluster of lncRNAs that significantly associated

with EBV transformed lymphocyte, whole blood and leukemia cell line tissues

(Figure 7.4). Specifically, the cluster included 13 lncRNAs: RP4-639F20.1,

LINC01123, LINC01106, LINC00883, CTD-2015H6.3, LINC00472, BAALC-

AS1, RP11-475I24.3, RP11-111F5.4, RP11-211N8.2, LINC01503, RP11-539I5.1

and RP1-122P22.2. Of these, LINC01123 was shown to be part of a plasma

lncRNA signature that distinguished aggressive/malignant intraductal papil-

lary mucinous neoplasms [235]. The published results confirmed the specificity

of the clustered lncRNAs to blood-related tissue.
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The lncRNA specificity pattern to whole blood, leukemia cell line and liver tis-

sues remained consistent in the GTEx samples (Figure 7.5). Additionally, we

distinguished several lncRNA clusters specific to brain, heart, liver and skin tis-

sues. The remaining tissue expression data sets form the EBI Expression Atlas

also showed comparable results.

In summary, blood-related and liver tissues showed a reproducible and charac-

teristic expression profile for lncRNA-associated genes.

7.3 LncRNA functional analysis suggested involve-

ment in translational regulation

In order to identify the functional roles of lncRNAs, we examined the associa-

tion between the pcRNAs associated with lncRNA expression, and the biolog-

ical pathways from WikiPathways. For this purpose, we used the model-based

ontology analysis (MGSA) [236], which was built to cope effectively with redun-

dancies in ontologies.

For each lncRNA, we applied MGSA on the set of associated pcRNAs and cal-

culated term posterior probabilities of gene sets retrieved from WikiPathways.

The term probabilities denoted the enrichment of lncRNA-correlated genes in

each pathway, e.g. the strength of the association between a lncRNA and a bi-

ological pathway. Given the underlying pcRNAs set, pathways were considered

active if the pathway probability was above 50%.

Functional annotation of lncRNAs in Roadmap identified three pathways,

which were associated with clusters of lncRNAs, namely proteasome degrada-

tion, T-cell receptor (TCR) receptor singling and mRNA processing (Figure

7.6). These results suggested involvement of lncRNAs in translational regula-

tion. Figure 7.7 revealed clusters of functionally highly similar lncRNAs in the

GTEx data set. In accordance with the blood tissue-specific expression results,

we distinguished a cluster of lncRNAs which were also functionally associated

with immune system related signaling pathways. Involvement of lncRNA in gene

regulation was again supported by association with active DNA replication and

energy active pathways. Additionally, we identified a group of lncRNAs that

were associated with metabolism-related pathways.
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Figure 7.6: Guilty-by-association: MGSA functional annotation of
pcRNAs that were significantly correlated with lncRNAs within the
Roadmap data. WikiPathways with probabilities ranging from 0(white) to
1(dark blue). All pathways with a probability > 0.5 were considered active.

To validate the functional associations across Roadmap, we further analyzed

the GTEx data. Since GTEx included 7,049,286 associated lncRNA – pcRNA

pairs (while Roadmap includes only 919,121 associated lncRNA – pcRNA pairs),

we expected finding a higher variety of functional pathways active. Indeed, we

distinguished a higher number of active pathways, among which we again iden-

tified the replication-related pathways, the immune system signaling, metabolic

and energy-related pathways. Additionally, we identified clusters of lncRNAs

associated with early development, hormone-response and breast cancer path-

ways.
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7.4 Discussion and Conclusion

In this chapter, we introduced a multilevel data analysis framework for explor-

ing lncRNA molecular functions – LISA. With this approach we aimed to iden-

tify lncRNA function in cellular processes through integrating multilevel data

across multiple large-scale next-generation projects. The different modules of

LISA consisted of lncRNA and protein coding gene expression analysis, similar-

ity analysis across different data sets, tissue-specificity analysis and functional

analysis of lncRNAs. The essential idea of LISA was to use guilt-by-association

assumptions, which linked lncRNAs to pcRNAs. As a result, for each lncRNA

expressed in a data set, one could define a set of pcRNAs that were associated

with the respective lncRNA. The defined sets could then be used to find asso-

ciations with functional pathways or to test for tissue-specificity.

This study focused on evaluating the tissue-specificity in two data sets: Roadmap

and GTEx. The results revealed groups of lncRNAs with specific expression in

blood, liver, brain, heart and skin related tissues. Specifically, our tissue en-

richment analysis distinguised a lncRNA cluster including LINC01123 – which

was shown to be part of a plasma lncRNA signature that distinguished aggres-

sive/malignant intraductal papillary mucinous neoplasms [235]. Furthermore,

the MGSA functional analysis within the same data sets confirmed the role that

lncRNAs play in translation regulation, but also revealed associations between

groups of lncRNAs and cellular maintenance and immune system signaling path-

ways.

Even though the results of the individual analysis provided valuable knowledge

for a better understanding of the molecular mechanisms of lncRNAs, the most

comprehensive and consistent results could only be obtained by the integrative

approach of multiple molecular levels.
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Conclusion

The molecular mechanisms underlying cancer are highly complex and, as seen

throughout this thesis, involve molecules from multilevel omics: DNA, RNA,

proteins. Genomics, transcriptomics and proteomics profiles are frequently used

for both oncotarget discovery and precision medicine, but also to decode cancer-

specific mechanisms for fundamental research. Understanding the functional

relationships between different omics levels in tumorigenesis, remains however

a challenging task.

While technological innovations have enabled tumor omics profiling at unprece-

dented scale, depth, and speed, most studies are still assessing and learning

from single-level omics. For example, while projects as TCGA made available

large-scale manifold cancer data, multiple studies still focused on knowledge

learnt from transcriptomics only: Wu et. al used transcription levels to find

breast cancer risk genes [237], while Uhlen et. al predicted a pathology atlas for

human cancer transcriptome [238].

It is critical to acknowledge that different omics levels are not isolated and need

to be analyzed and interpreted in the context of complex and dynamic molec-

ular processes through effective integrative models. However, formulating such

models to mimic the initiation and evolution of tumorigenesis remains one of

the most complex unsolved tasks in the scientific research field.

In this thesis we examined multiple cancer data and provided integrative models

of different data modalities. We aimed to distinguish cancer-specific regulatory
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interactions between different molecular levels, so that we can better understand

the interplay between multilevel omics that characterizes malignant cell prolif-

eration.

Another essential aspect of integrative methods often overlooked is the feasibil-

ity of integrative approaches on multiple levels and how it affects the method

demand. We discussed and addressed this aspect together with the level-wise

variety of data types across four main studies that analyzed and integrated

DNA measurements, mRNA, miRNA and lncRNA expression, as well as mea-

surements of physical interactions between human and viral proteins. We par-

ticularly examined data from either one of the next four cancer types: head and

neck, liver, lung or ovarian tumours.

The following section summarizes the scientific contributions developed in this

thesis, and present possible extensions and future directions.

Scientific contributions

Benchmarking study of commonly used CNA calling algorithms re-

veals significant effect of tumour purity and CNA burden on perfor-

mance

One important aspect of cancer cells is the presence of DNA changes. Accurately

predicting DNA changes that are involved in tumor development represents a

challenging task. We showed tumor purity significantly influenced the perfor-

mance of commonly used CNA calling algorithms (Chapter 4). Additionally,

our study revealed another variable that influenced the performance of the al-

gorithms: the CNA burden. Considering the identified CNA burden effect on

CGHcall, we developed an adjusted version of the algorithm that corrects for

the confounding effect. Next, we showed how integrating data as DNA changes

with several other data levels can reveal putative biomarkers in viral liver cancer.
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Joint significance of genomic and physical viral-human interactions in

liver cancer

In our next study, we introduced a multilevel integrative analysis to examine

the impact of ongoing Hepatitis B viral infection in HCC cases (Chapter 5). We

estimated the viral impact on mutation status with a Bayesian logistic regres-

sion model. In the next step, we examined another data layer that reflected

the strength of viral-human physical interactions at the protein level. We esti-

mated the impact at both genomic and physical levels within the ReactomeFi

PPI network by using network propagation. Since we were interested in protein

genes that were affected at both genomic and physical level, we proposed and

calculated a joint significance representing a confidence score for the given in-

teraction.

Our approach allowed us to identify those viral-human interacting protein genes

that were underrepresented in individual data analysis. Based on the confidence

scores, we were able to formulate, test, and validate new hypotheses related to

the impact of Hepatitis B on phosphorylation and ubiquitylation.

Most importantly, we showed that our multilevel integrative approach revealed

relevant pathways for oncogenesis in liver cancer with ongoing Hepatitis B in-

fection.

Multilevel integrative approaches for distinguishing functional roles

of non-coding RNAs in cancer: miRNAs and lncRNAs

While the importance of protein-coding RNAs has been thoroughly investigated,

the functional roles of non-coding RNAs are yet to be fully characterized.

In the projects introduced in Chapters 6 and 7, we aimed to reveal properties

of miRNA and lncRNA in regulation.

We used an elastic-net based multiple regression model to infer a miRNA-mRNA

regulatory network for HPV-associated miRNAs in HNSCC. Subsequently, we

performed a local enrichment analysis that identified two functional clusters of

miRNAs that were predicted to mediate HPV-associated dysregulation in HN-

SCC (Chapter 6).

Using miRlastic, we were able to include prior information together with condition-



118 CHAPTER 8. CONCLUSION

based transcriptomics for inferring the miRNA-mRNA interactions specific to

HNSCC and LUAD. Furthermore, miRlastic allowed us to infer how miRNAs

contribute to the disruption of molecular pathways in HNSCC and LUAD. Thus,

our approach allows scientists to comprehend the changes in expressions related

to a specific condition, and to reveal miRNA functions that are activated by

such a specific condition.

Given the lack of a comprehensive study on lncRNA functional roles and the

availability of large public data sets, we next introduced an integrative analysis

of broad-scale multilevel data that aimed to explore the molecular functions

of lncRNAs. We first explored the correlation patterns between lncRNAs and

protein-coding genes across different data sets. Next, we performed a tissue

enrichment analysis of lncRNAs in multiple data sets. The results revealed

a consistent specificity of a plasma lncRNA signature to blood-related tissues

both in GTEx and Roadmap. Ultimately, our pipeline used MGSA to exam-

ine the association between protein-coding genes correlated with lncRNAs and

the molecular pathways defined in WikiPathways. We distinguished clusters of

lncRNAs that correlated with pathways involved in metabolism, immune sys-

tem, and DNA replication.

The resulting pipeline offers scientists an approach that addresses multiple as-

pects of lncRNA involvement in molecular processes. Using LISA, scientists can

assimilate the advancement offered by public repositories like GTEx, Encode,

and TCGA, and use it to predict lncRNA functions in epigenetics and tran-

scriptomics across various tissues and genomic regions.

Our methods for examining the roles of non-coding RNAs served as a funda-

ment for biomedical researchers to formulate and evaluate alternative hypothesis

– e.g. our collaboration with the Breuhahn group [140].

Extensions and future directions

The success of developing and optimizing integrative models that learn from

multiple biological data modalities heavily relies not only the mathematical

prerequisites and understanding of the given data, but also on the biological

interpretation of the input, output, and performance of a model.
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Following, every model and pipeline presented within this thesis can be extended

as follows when considering these two aspects:

• From a methodological point of view, our benchmarking study can be

extended to evaluate the performance of more algorithms, different data

technologies (whole genome sequencing) and different data resolution (single-

cell sequencing).

Going beyond that, an interdisciplinary analysis can reveal elements in-

volved in generating DNA copy number changes in carcinogenesis. For

example, the extent of DNA damage in cancer may depend on clinical

parameters such as tumour stage or tumour tissue type [239]. Subsequent

extensions of our pipeline can include evaluating the effect of such parame-

ters. Gathering experimental validation data sets that cover an increasing

area of the DNA could also contribute to an improved evaluation.

• Our integrative pipeline that aims to identify more compelling evidence for

interactions between human and viral proteins relies on a Bayesian logistic

model and network propagation. Although, our approach provides a joint

significance for protein interactions from two data modalities, there are

options for a simultaneously learning model. For example, we can consider

using the mutation status and physical interactions scores as attributes for

protein nodes and develop a graphical neural network model for estimating

the joint effect of these attributes on the reference network.

Another way to improve the sensitivity of the model is to use the viral

expression instead of a binary vector. This would indicate how active is

the virus in the sample and how strong is the association between viral

expression and mutation status.

Given the modular aspect of our design, researchers can easily adapt our

approach to other biological conditions.

• When examining the functional roles of non-coding RNAs we could also

integrate additional molecular levels that can describe their activity: over-

lapping SNPs, CNAs, or point mutations. Adding imaging data of protein

localization (available on TCGA) could also pinpoint which are the cellular

elements involving mechanisms of action of non-coding RNAs.
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Final statement

Complex diseases like cancer function on multiple molecular levels that can

be quantitatively measured with different high-throughput omics experimental

technologies. In this thesis, we addressed the challenge of formulating befitting

models to explain the interactions between the different omics layers in can-

cer. Our approaches revealed known cancer-specific molecular interactions, but

also provided novel insights for further experimental validation. Moreover, our

methods and pipelines allowed us to develop collaborations that catalyzed the

progress of translational biology and to demonstrate unknown cancer-specific

interactions at various data levels, elucidating key concepts in cancer biology.

We thereby provided integrative approaches that can provide valuable insights

on cancer-specific multilevel omics interactions.
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