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ABSTRACT

Cardiovascular diseases are the leading cause of death worldwide, causing about 1 in 3

deaths. Cardiovascular Magnetic Resonance Imaging (MRI) is a valuable tool for non-

invasive assessment of the function and structure of the cardiovascular system, with

comprehensive tissue characterization and viability tests for the cardiac muscle. How-

ever, cardiac MRI is challenged by its inherent slow acquisition process, leading to long

scan time, elevated scan cost, uncomfortable examination experience, and therefore

limits its clinical utility. Several image reconstruction techniques were developed to ac-

celerate MRI acquisition, however, most of these techniques (i.e. compressed-sensing

and dictionary learning) are not yet fully adopted in the clinical workflow, as they re-

quire expensive processing time and resources. Recently, machine learning has emerged

as an automatic method for many image processing tasks. In this thesis, we present

novel techniques based on machine learning for fast reconstruction of the highly accel-

erated MRI acquisitions in different cardiac imaging protocols, such as late gadolinium

enhancement (LGE), dynamic cine imaging, and myocardial T1 mapping. To acceler-

ate cardiac 3D LGE imaging, a complex-valued convolutional neural network (CNN) was

utilized, in the first study, to preserve the complex nature of acquired MRI data through-

out the entire reconstruction process and improve the reconstructed image quality. In

the second study, to achieve high acceleration rates in dynamic cardiac imaging, a multi-

domain CNN that processes the radial dynamic MRI data in the spatial-frequency, time,

and image domains was developed. This network exploits the spatio-temporal correla-

tions and k-space information sharing among neighboring time frames to enable high

acceleration rates. In the third study, a rapid cardiac T1 mapping technique based on

neural networks was developed to allow accurate quantification of myocardial T1 maps

in a shorter breath-holding and scanning duration. The methods presented in this thesis

demonstrate the ability of machine learning to accelerate cardiac MRI acquisition with

minimal processing time and ultimately increase the clinical utility of cardiac MRI.
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ZUSAMMENFASSUNG

Herz-Kreislauf-Erkrankungen sind weltweit die häufigste Todesursache und verursachen

etwa 1 von 3 Todesfällen. Kardiale-Magnetresonanztomographie (MRT) ist ein wert-

volles Werkzeug zur nicht-invasiven Beurteilung der Funktion und Struktur des Herz-

Kreislauf-Systems, welche umfangreicher Gewebecharakterisierung und Viabilitättestung

des Herzmuskel ermöglicht. Das kardiale MRT wird jedoch durch seinen inhärenten

langsamen Prozess der Bilderzeugung eingeschränkt, welche eine langsame Bilderfas-

sung, erhöhte Bildgebungskosten, sowie eine unangenehme Untersuchungserfahrun-

gen für Patienten bedingt und dadurch zu einer Einschränkung der klinischen Anwen-

dung führt. Mehrere Bildrekonstruktionstechniken wurden entwickelt, um die MRT-

Erfassung zu beschleunigen. Die meisten dieser Techniken (z.B."Compressed-Sensing"

und Wörterbuchlernen) sind momentan jedoch nicht vollständig in den klinischen Ab-

lauf integriert, da sie kostspielige Verarbeitungszeit und Ressourcen beanspruchen. Vor

Kurzem wurde eine automatischen Datenverabeitungsmethode, das sogenannte “De-

ep Learning”, entwickelt, welches in vielen Bildverarbeitungsaufgaben eingesetzt wer-

den kann. In dieser Arbeit stellen wir mehrere neuartige Techniken vor, die auf dem

besagten Deep Learning basieren und hochbeschleunigte MRT-Erfassung in verschie-

denen kardialen Bildgebungsprotokollen, insbesondere in der verzögerten Gadolinium-

Anreicherung (LGE), in der dynamischer Cine Bildgebung und in der Myokardialen T1-

Kartierung, ermöglichen. Zum Zwecke der kardiale 3D-LGE-Bildgebung wurde in der

ersten Studie ein komplexes konvolutionales neuronales Netzwerk (CNN) genutzt, wel-

ches ermoeglichte die komplexe Natur der erfassten MRT-Daten während des gesam-

ten Rekonstruktionsprozesses zu erhalten und die rekonstruierte Bildqualität zu verbes-

sern. In der zweiten Studie wurde ein Multi-Domain-CNN entwickelt, das die radial-

dynamischen MRT-Daten in den Raum-Frequenz-, Zeit- und Bilddomänen verarbei-

tet, um hohe Beschleunigungsraten in der dynamischen MRT-Bildgebung zu erreichen.

Dieses Netzwerk nutzt die räumlich-zeitlichen Korrelationen und den Informationsaus-

tausch zwischen benachbarten Zeitrahmen, um hohe Beschleunigungsraten zu erzie-

len. In der dritten Studie wurde eine schnelle kardiale T1-Kartierungstechnik auf Ba-

sis neuronaler Netzwerke entwickelt, um eine genaue Quantifizierung von Myokard-T1-

Karten mit kürzerem Anhalten des Atems und einer verkürzten Scandauer zu ermögli-

chen. Die drei in dieser Arbeit vorgestellten Methoden demonstrieren insofern die Fä-

higkeit des Deep Learnings, die kardiale MRT-Erfassung durch Reduzierung der Daten-
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verarbeitungszeit zu beschleunigen und letztlich so den klinischen Nutzen des kardialen

MRT zu erhöhen.
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1
INTRODUCTION

1.1. PROBLEM STATEMENT

C ARDIOVASCULAR diseases are the leading cause of mortality worldwide with 17.9

million deaths (32.1%) in 2015 [1]. Cardiovascular Magnetic Resonance Imaging

(MRI) is a valuable non-invasive tool for assessing the cardiac morphology, function,

viability, and tissue characterization with a major clinical rule in the diagnosis of sev-

eral cardiac diseases [2, 3]. However, Cardiac MRI is challenged by its slow acquisition

process which causes long scan time, elevated scan cost, uncomfortable examination

experience, and less availability to more patients in need. Several techniques were de-

veloped to reconstruct cardiac images from undersampled MRI acquisitions such as

partial Fourier, parallel imaging, compressed sensing, and dictionary learning. Partial

Fourier and parallel imaging techniques are widely adopted in current clinical proto-

cols, although they can achieve limited acceleration rates. On the other hand, current

compressed-sensing and dictionary learning techniques can enable higher acceleration

rates but require expensive processing times and resources. Recently, machine learning

and artificial intelligence-based techniques were developed to allow the reconstruction

of MR images from highly accelerated acquisitions in minimal processing time.
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2 1. INTRODUCTION

1.2. THESIS CONTRIBUTION

The main goal of this thesis is to present novel deep learning-based techniques for fast

reconstruction of highly accelerated MR acquisitions of the heart. This thesis presents

and investigates multiple deep neural network-based architectures to accelerate differ-

ent cardiac MRI modalities such as 3D late gadolinium enhancement, dynamic cine car-

diac imaging, and myocardial T1 mapping, with comprehensive quantitative and quali-

tative validations to evaluate the performance of these methods by the clinical standards.

In the first study, a deep complex-valued convolutional neural network (CNN) was

developed to reconstruct 3D late gadolinium enhancement cardiac MR image from un-

dersampled acquisitions of up to an acceleration rate of 8 with a substantial reduction in

processing time compared to compressed-sensing methods. This complex-valued net-

work preserves the complex nature and optimal combination of real and imaginary com-

ponents of MRI data throughout the entire reconstruction process. It utilizes complex-

valued convolutional layers, novel radial batch normalization, and complex activation

function layers to learn rich representations of the MR data. This study investigates this

family of networks in comparison to the conventional real-valued networks to improve

the reconstructed image quality and myocardial scar quantification as assessed by expe-

rienced cardiologists.

The second study extends the complex-valued CNN-based framework to build a multi-

domain network that allows processing the MR data in the spatial-frequency, time, and

image domains to achieve high acceleration rates (i.e. 14-folds) in radial dynamic car-

diac imaging. This multi-domain network allows advanced data sharing strategies to

learn spatio-temporal correlations among neighboring time frames and multi-coil data

in both frequency and image domains. This study helps to understand the benefits of

multi-domain processing in suppressing image-domain artifacts compared to image-

domain-only networks and improving image quality compared to compressed-sensing

techniques.

The last study presents a rapid myocardial T1 mapping approach that uses neu-

ral networks (NN) to estimate voxel-wise myocardial T1 and extracellular volume maps

from T1-weighted images collected after a single inversion pulse over 4-5 heartbeats.

This framework enables myocardial T1 quantification in 4-5 heartbeats (i.e. compared to

11-12 heartbeats in standard techniques) with near-instantaneous map estimation time

with similar accuracy and precision of standard modified look-locker inversion recovery

myocardial T1 mapping technique.

1.3. THESIS OUTLINES

This thesis is organized as follows:
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Chapter 2 contains further introduction of the clinical and technical background rel-

evant to the topics covered by this thesis.

Chapter 3 presents a deep complex convolutional neural network for fast reconstruc-

tion of 3D late gadolinium enhancement cardiac MRI.

Chapter 4 presents a multi-domain convolutional neural network (MD-CNN) for the

radial reconstruction of dynamic cardiac MRI.

Chapter 5 presents a rapid myocardial T1 mapping approach that uses neural net-

works (NN) to estimate voxel-wise myocardial T1 and extracellular (ECV) from a reduced

number of T1-weighted images (4-5 images) collected after a single inversion pulse.

Chapter 6 provides a summary and discussion of the studies presented in this thesis.

In Chapter 7, conclusions and future work will be discussed.





2
BACKGROUND

2.1. HEART: STRUCTURE AND FUNCTION

T HE heart is the main organ in the circulatory system with a muscular structure that

is responsible for circulating the blood to the whole body [4]. The human heart has

four chambers: right and left atria located at the upper part of the heart and are respon-

sible for receiving blood into the heart, and right and left ventricles toward the bottom

of the heart to pump blood back to the whole body (Figure 2.1). Among the different

cardiac chambers, various cardiac conditions are manifested by alteration of left ven-

tricular (LV) function, morphology, or pathophysiology [5]. LV walls are much thicker

than that of the right ventricle with a more conical shape, and near oval cavity outline

in the transverse section. The LV posterior wall is formed by the ventricular septum and

LV free wall otherwise. Three distinct layers can be identified in the LV wall (Figure 2.2).

The outermost layer is called epicardium (or visceral pericardium) and acts as a protec-

tive layer. Deeper to it is the myocardium, a muscular wall that contains blood vessles

and nerves and is responsible for LV contraction. The myocardium consists of cardiac

muscle cells (or cardiomyocytes) surrounded by the extracellular matrix. The innermost

layer is called endocardium.

Cardiac function is the ability of the heart to fulfill the body demands of oxygenated

blood and it can be assessed by measuring several cardiac parameters, such as ejection

fraction, stroke volume . . . etc. Assessing most of these parameters depends on measur-

ing the LV myocardium and cavity sizes at the end-diastolic and end-systolic phases of

5
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Figure 2.1: Heart structures [6].

the cardiac contraction. Different imaging modalities, such as Echocardiography, Com-

puted Tomography, and Magnetic Resonance Imaging (MRI), . . . etc, are currently used

for scanning the heart and measuring its different functional and morphological param-

eters. Cardiac MRI is the golden standard method for non-invasively measuring different

cardiac parameters due to its excellent spatial and temporal resolutions and high repro-

ducibility. The most important MRI protocols used to scan the heart are summarized in

section 2.2.
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Figure 2.2: The heart wall [7].

2.1.1. CARDIAC DISEASES

Several types of heart diseases can alter the function, structure, or pathophysiology of

the cardiac muscle [5]. Here are the details of a few diseases that are addressed in the

coming chapters:

DILATED CARDIOMYOPATHY (DCM)

DCM is a common type of cardiac disease that affects the lower and upper chambers of

the heart and occurs mostly in adults [8]. DCM is characterized by structural and func-

tional abnormalities of the heart which can be manifested in enlargement and weak-

ening of the LV muscle, limiting the heart’s ability to pump blood to the body and can

progressively affect the other heart chambers over time [8, 9]. Clinically, DCM patients

are identified by a reduced ejection fraction of the LV (<45%) and an increase in LV diam-

eter (>117%) [10, 11] . LV function and dimensions in DCM patients can be accurately

assessed by cardiac MRI which is considered the gold standard method for left ventric-

ular function and structure quantifications. In addition, other cardiac MRI modalities

such as late gadolinium enhancement (LGE) [12–14] and interstitial diffuse fibrosis as-
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sessment using myocardial T1 mapping [15] play an important role in the prognosis of

DCM-related adverse cardiac events.

HYPERTROPHIC CARDIOMYOPATHY (HCM)

HCM is the most common genetic disorder of the heart that affects the general popula-

tion with an estimated prevalence of 0.16% to 0.29% [16] and is considered the leading

cause of heart-related sudden death in the young generation. HCM is characterized by

LV hypertrophy (i.e. increase in LV wall thickness unexplained by secondary causes such

as systematic hypertension, valvular aortic stenosis, and infiltrative cardiomyopathies )

and a non-dilated LV with preserved or increased ejection fraction [17, 18]. The cardiac

MR cine imaging enables reproducible HCM diagnosis by identifying one or more hyper-

trophied segments (i.e. maximum LV wall thickness >15 mm) [19, 20]. Late gadolinium

enhancement (LGE) also exists in 60% of HCM patients and is typically seen as a mid-

wall pattern at hypertrophic areas of the LV myocardium, as well as right ventricular

septal insertion point scars [21]. The LGE presence is suggestive of replacement fibrosis

and is strongly correlated to the amount of collagen measured histologically [22]. Recent

studies demonstrated an important rule for myocardial T1 mapping imaging in quanti-

fying and characterizing diffuse fibrosis content in HCM [23]. Results showed elevated

T1 values for HCM patients and a high correlation with the histological degree of fibrosis

in HCM hearts [24].

HYPERTENSIVE HEART DISEASE (HHD)

HHD refers to a set of changes in the left ventricle, left atrium, and coronary arteries

as a consequence of hypertension. Hypertension is a chronic blood pressure elevation

that increases the workload of the heart causing functional and structural alterations in

the myocardium such as LV hypertrophy. HHD patients can progress to heart failure

and sudden cardiac death. HHD is defined as increased LV wall thickness (≥12 mm)

[25] associated with the diagnosis of arterial hypertension [26] in the absence of severe

chronic kidney disease, LV cavity dilatation, and cardiac disease that could result in a

similar magnitude of hypertrophy (i.e. moderate-to-severe valvular heart disease, inher-

ited/acquired cardiomyopathies). Cardiac MRI can provide a comprehensive evaluation

of HHD, with an accurate and reproducible assessment of biventricular function, valvu-

lar disease, and stress myocardial perfusion [27].

2.2. MAGNETIC RESONANCE IMAGING PRINCIPLES
The human body is made of 80% water with two hydrogen atoms in each water molecule.

MRI uses these hydrogen atoms to create contrast among different tissues based on their

water content. Here is a detailed description of the MRI process:
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Figure 2.3: MRI Magnetization [28].

2.2.1. MAGNETIZATION

The nucleus of each hydrogen atom contains one positively charged proton that spins

around its axis and produces a small magnetic field. Outside a magnetic field, these

nuclei are randomly oriented with a net magnetization of zero. The MRI machine applies

a strong magnetic field (B0) to align these nuclei in the same direction as B0, producing a

net magnetization of M0 in the z-direction (parallel to the scanner bore) (Figure 2.3). This

magnetization can be manipulated through physical and mathematical formulations to

generate images [29].

Figure 2.4: MRI Excitation [28].

2.2.2. RESONANCE AND EXCITATION

Due to gravitational forces and angular momentums, the spins forming the net magne-

tization vector precesses at an angular frequency called Larmor frequency ( 63.9 MHz

in 1.5T magnet). To achieve magnetic resonance, MRI machines utilize radiofrequency

(RF) pulses that match the Larmor frequency. Applying these RF pulses with specific
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Figure 2.5: T1 Relaxation [30].

amplitude and duration can precisely manipulate the net magnetization to be rotated

in the transverse plane (in the x or y directions) with a specific flip angle (from 0 to 180

degrees). This process is called excitation (Figure 2.4).

2.2.3. RELAXATION

During the excitation process, the stimulated spins acquire energy from the applied RF

pulse. Once the applied RF pulse is stopped, the spins start to return gradually to the

equilibrium where the net magnetization is aligned again to the B0 direction in a process

called relaxation. Two independent types of relaxation are simultaneously taking place:

T1 relaxation: refers to the recovering of the net magnetization in the direction of B0

(z-direction). This type is called Spin-Lattice relaxation or Longitudinal relaxation. In

this process, the energy gained from the RF pulse is dissipated in the lattice in form of

increased rotation and heat. The T1 relaxation follows an exponential growth process in

the z-direction given by:

M(t ) = M 0(1−e−t/T 1 ), (2.1)

where M(t) is the magnetization at time t, and M0 is the maximum magnetization in

the z-direction at a full recovery. T1 is the time at which the signal is recovered to 63%
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Figure 2.6: T2 Relaxation [30].

of its maximum value M0 (Figure 2.5). Different tissues have different T1 times depend-

ing on their molecular structure, and therefore T1 relaxation can be used to produce a

contrast between different tissues in T1-weighted imaging.

T2 relaxation: refers to the decay of the magnetization in the transverse direction

and is called ‘spin-spin relaxation’. It takes place simultaneously but independent of

the T1 relaxation process. After applying the RF pulse, the simulated spins rotate to the

transverse plane and spins in phase. Soon after RF transmission ends, the spins start

to rotate at different rates due to direct interaction between the spins (Figure 2.6). Due

to this effect, the signal in the transverse direction decays exponentially as a function of

the T2 time constant. The T2 time also differs for different tissues and is used to create a

contrast between different tissues in T2-weighted imaging.

2.2.4. IMAGE ACQUISITION

During relaxation, protons release their excess energy in the form of RF waves, which

can be captured at each location of the x-y plane to create an image. In this process, the

RF signal is spatially encoded using three gradient coils: Gx, Gy, and Gz. These gradients

apply a variable magnetic field as a function of the position along the three directions x,

y, and z, respectively. First, to determine a slice location in the z-direction, the slice gra-

dient Gz is turned on during the excitation step, such that an RF pulse with a frequency
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Figure 2.7: Image Acquisition [28].

corresponding to the slice location is applied. Similarly, the magnetization at each loca-

tion in the x-y plane can be spatially encoded using the Gx and Gy gradients (Figure 2.7).

The Gy gradient is turned on for short time to induce phase differences for each location

in the y-direction (i.e. phase encoding). Subsequently, the Gx gradient is turned on to

add frequency differences at each location in the x-direction (i.e. frequency encoding)

while recording the signal at each location. This process is repeated for each line in the

x-y plane to create a unique combination of phase and frequency at each voxel.

Figure 2.8: Image Reconstruction.

2.2.5. IMAGE FORMATION

The MRI raw data is acquired in a spatial frequency domain, called k-space, and typically

requires multiple processing steps to be transformed into clinically useful images, in a

process called image reconstruction (Figure 2.8).
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2.3. MAGNETIC RESONANCE IMAGING RECONSTRUCTION
The image reconstruction is an important step that can critically impact the clinical use

of MRI besides its significant role in accelerating the slow MRI acquisition process. This

process involves a selection of sampling strategy and applying post-processing recon-

struction techniques.

2.3.1. SAMPLING TRAJECTORIES

Reconstruction of MRI images starts with the selection of a sampling strategy for collect-

ing the raw data. Cartesian and non-cartesian sampling trajectories were used for MR

data acquisition (Figure 2.9) as follows:

CARTESIAN SAMPLING

The cartesian trajectory is the most widely adopted sampling method in the clinical

imaging protocols due to its easy acquisition and reconstruction [29]. In cartesian sam-

pling, the MR data are uniformly sampled line-by-line on the rectangular grid (k-space)

which can be easily and quickly transformed into images using the inverse Fast Fourier

Transform (FFT) [29, 31]. A typical Cartesian trajectory has equal space among lines on

the k-space grid (Figure 2.9). A possible way to accelerate acquisition using cartesian

sampling, variable-density cartesian trajectory with higher density at k-space center in

the phase encoding direction. This acceleration results in aliasing artifacts in the phase

encoding direction in the image domain. The degree of this aliasing is proportional to

the acceleration rate of the undersampled k-space.

NON-CARTESIAN SAMPLING

Non-cartesian sampling allows a higher acceleration of MRI acquisition [29, 31]. Several

non-cartesian sampling trajectories were used in MRI acquisition such as radial, spiral,

. . . etc. The radial trajectory consists of spokes that radiate out through the center of

the k-space. Unlike cartesian sampling, radial sampling produces data points that do

not fall into a rectangular matrix and requires further processing steps to estimate the

k-space values on a rectangular matrix in a process called Gridding [33, 34]. In the grid-

ding process, the non-uniform radially acquired data are interpolated at each location of

the cartesian grid using a convolutional kernel [33, 35]. Reconstruction of radial acquisi-

tions also involves some form of data weighting that accounts for the variable sampling

density in the k-space [34–36]. The density compensation can be performed in the fre-

quency domain directly by multiplying the acquired MR measurements with a weighting

function [34, 35].

Radial sampling has several advantages such as rapid coverage of k-space, allow im-

age contrast to be updated throughout data acquisition, and relative insensitivity to
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Figure 2.9: Examples of different cartesian and non-cartesian k-space trajectories. Solid and dotted trajectory
arrows indicate the location of acquired and skipped k-space lines, respectively (a) Fully-sampled Cartesian
trajectory and its corresponding artifact-free image (b) Uniformly undersampled Cartesian trajectory with an
acceleration factor of R=3 produce coherent aliasing artifacts in the image domain. (c) Variable-density Carte-
sian sampling and the corresponding incoherent imaging artifacts. (d) Radial data can be undersampled by
skipping radial spokes with streaking artifacts in the reconstructed image. (e) Spiral k-space undersampled by
skipping spiral arms, which produces incoherent swirling artifacts [32].

motion artifacts [29, 37–39]. Unlike the fixed direction of phase-encoding in cartesian

sampling, radial sampling has distributed phase-encoding directions across the whole

images thus moving structures induced artifacts does not propagate as discrete ghosts

along one phase-encoding direction [40]. Besides, the overlapping radial spokes at the

k-space center contributes to the increased immunity of radial trajectories to motion

artifacts due to the exploited redundancy of the signal at the center of the k-space. Addi-

tionally, radial sampling allows a higher acceleration of MR acquisition due to the equal

contribution of each radial spoke to the image reconstruction, unlike cartesian sampling

where the few lines across the center largely determine the image contrast and noise

level. Finally, the image acquired using radial sampling was shown to have superior

signal-to-noise ratios. For these reasons, radial acquisitions are fastly gaining ground

in many applications that require highly accelerated acquisitions.

In dynamic cardiac MRI, each time frame can be acquired with a 2D radial trajectory

(i.e. stack-of-stars) [41, 42]. Considering the periodic nature of dynamic cardiac imag-

ing and similar structural information among successive time frames, radial views from

neighbor frames can be utilized to provide a better estimation of k-space values at more

locations on the Cartesian grid, and hence reduce the resulting streaking artifacts. To ex-

ploit information from different frames, the radial trajectory in each frame is rotated with

some angle that maintains a uniform angular spacing among neighbor frames [43, 44].
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Figure 2.10: Partial Fourier.

Radial acquisition with rotating angles also produces incoherent artifact patterns across

time frames. To enable higher acceleration rates for real-time applications, these inco-

herent signal variations can be exploited by reconstruction methods (e.g. compressed

sensing) to remove residual undersampling artifacts from radial acquisition by minimiz-

ing the total variation across the time dimension [42].

2.3.2. RECONSTRUCTION METHODS

PARTIAL FOURIER

The partial Fourier imaging technique is one of the earliest methods to reconstruct MR

images from accelerated acquisitions, which is based on the fact that the k-space con-

tains redundant information when the imaged object is real [45, 46]. These techniques

exploit the conjugate symmetry property of the k-space, in which, only one-half of the

k-space is sufficient to reconstruct the whole MR image (Figure 2.10), assuming that no

phase errors occur during data collection [47]. Although MR images are complex in na-

ture, magnitude images are often displayed. Spatially dependent phase-shifts are usually

produced in the k-space due to different spatial-domain effects such as radio-frequency

phase shifts, flow, magnetic field (B0) inhomogeneity [45]. Several methods were pro-

posed to correct for phase-shifts in partial Fourier imaging in either of the image or spa-

tial frequency domains, or both [45, 46].

PARALLEL IMAGING

In parallel imaging, MR data is acquired from multiple phased-array coil elements where

each coil covers only a part of the field of view. Parallel imaging reconstruction meth-

ods utilize the redundancies in the multi-coil data to accelerate acquisition in k-space
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Figure 2.11: Parallel Imaging: SENSE reconstruction.

[48–51] or image domain [52] to reconstruct undersampled MR data. Two approaches

are widely used in clinical protocols to reconstruct multi-coil data: sensitivity encoding

(SENSE) and generalized autocalibrating partially parallel acquisition (GRAPPA) [48, 50].

In SENSE methods, the reconstruction is performed in the image domain by solving

a linear inverse problem using the receiver coils sensitivities as recorded before the MRI

scan (Figure 2.11) [50]. The coil sensitivity maps vary for different scans based on the

relative position of the coil array to the heart and represent a determinant factor for the

reconstructed image quality [32, 50, 53]. On the other hand, GRAPPA-based reconstruc-

tion methods operate in the k-space by utilizing shift-invariant convolutional kernels to

estimate the missing k-space lines from the acquired ones [48]. In GRAPPA algorithms,

the weights of these convolutional kernels are estimated from a small amount of fully-

sampled reference data, commonly acquired at the center of the k-space and referred to

as autocalibration lines (ACS) [48, 53].

While the parallel imaging reconstruction methods such as SENSE and GRAPPA were

originally proposed for Cartesian sampling schemes, several modifications were devel-

oped to adapt these techniques for non-cartesian sampling trajectories [51, 52, 54, 55].

Although, non-cartesian parallel imaging utilizes the same concepts as Cartesian parallel

imaging by taking advantage of redundant information from multiple coils to accelerate

the image acquisition, applying such algorithms to non-cartesian undersampled data is

more challenging [40]. For instance, non-cartesian sampling generates more complex

aliasing artifacts that can complicate SENSE-type processing.

Other methods that combine features from SENSE and GRAPPA approaches were
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Figure 2.12: Compressed Sensing [58].

also proposed to accelerate parallel imaging acquisitions [49, 56, 57]. The iterative self-

consistent parallel imaging (SPIRiT), like GRAPPA, recovers the missing k-space infor-

mation using k-space kernels to exploit correlations between acquired k-space lines while

framing the reconstruction process as an inverse problem in the image domain like

SENSE. Additional constraints can be included in the iterative reconstruction process

to improve the resulting image quality, commonly using spatial regularizations such as

wavelets in l1-SPIRiT method [56].

COMPRESSED SENSING

Compressed (or compressive) sensing (CS) is a mathematical framework that allows re-

constructing MR images from highly accelerated acquisition beyond the Nyquist crite-

rion. CS exploits the sparsity (or compressibility) of the MR images in a transform do-

main (e.g. wavelet transform) to enable a high acceleration rate [59–61]. The full utility

of the CS has three requirements: incoherent undersampling patterns, sparsifying trans-

form, and non-linear optimization (Figure 2.12) [61]. The image-domain artifacts due to

the k-space undersampling should be incoherent (noise-like) in a transform domain to

allow easy separation from the true image data. Random k-space sampling schemes

are often used in CS frameworks to generate incoherent image-domain artifacts. Al-

though fully-random k-space sampling is impractical in MRI acquisition due to undesir-

able eddy current-induced artifacts, variable density pseudo-random sampling patterns

are used in practice to allow better CS performance [61]. The MR images are also re-

quired to have sparse (or compressible) representation on a known transform domain to

enable noise cancellation. The discrete wavelet transform is commonly used as a spar-

sifying domain in CS for many MR reconstruction applications. Finally, the MR images

are iteratively reconstructed using a non-linear optimization framework that enforces

the sparsity of image representations subject to data consistency constraints that main-

tain the fidelity of the acquired k-space data. Enforcing the sparsity is typically done by

minimizing the convex l1 norm of the transform domain coefficients.

CS-based reconstruction was applied in numerous cardiac MRI applications to re-

duce scan time, which can be traded off for improved spatial or temporal resolutions

[62–65]. For instance, in dynamic cardiac imaging (i.e. 2D+t), the sparsity of MR data can
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Figure 2.13: Deep neural networks for accelerating MRI acquisition.

be exploited in x-y space and time domain, which allows substantially higher accelerated

acquisitions [61, 63, 64]. In addition, several methods were developed to combine paral-

lel imaging and CS [66–68], via sparsity-regularized iterative GRAPPA-type approaches,

or utilizing the coil sensitivity to enforce data consistency and sparsity constraints in a

concurrent or series combination of CS and SENSE [67].

DICTIONARY LEARNING

The dictionary learning-based reconstruction methods extend the sparsifying transform

concept employed in CS to adaptive transforms (or dictionaries) of learned represen-

tations from the data [69–72]. While the regular sparsifying transforms used in CS try

to utilize the global sparsity of the MR data, dictionary learning methods utilize a lo-

cal batch-based sparsity to capture local image features more effectively and potentially

remove noise and aliasing artifacts without degrading resolution [70]. Most dictionary

learning methods start with training adaptive dictionaries from image patches. In this

step, a set of atoms (i.e. dictionary columns) are formed of image patches which can be

then approximated by a sparse linear combination of these atoms. The K-Singular Value

Decomposition (K-SVD) algorithm is commonly used to train adaptive dictionaries [73].

Similar to CS, several methods were developed to combine dictionary learning with a

different parallel imaging method such as SPIRiT and l1SPIRiT [74, 75].
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DEEP LEARNING

Deep artificial neural networks are a class of machine learning algorithms that have been

successfully applied for MR image reconstruction tasks [76–81]. In deep learning frame-

works, the MR data are processed via a series of cascaded layers of connected nodes

that utilize thousands of trainable parameters to map the artifact-contaminated under-

sampled input data to artifact-free output (Figure 2.13). Deep learning models takes

the advantages of current increasing processing power, data availability, and advanced

training approaches to automatically learn complex data representations and artifact

patterns for fast reconstruction of MR data. During training, the learnable parameters

in these models are automatically adjusted in an iterative fashion using an optimization

algorithm (e.g. stochastic gradient descent, ADAM, . . . etc.) to minimize a loss error for

a given set of training data samples. These parameters approximate a mapping function

between undersampled input and fully sampled output data which can be generalized

to reconstruct new undersampled acquisitions and provide artifact-free MR data.

Several deep learning models have been investigated for image reconstruction tasks,

such as Convolutional Neural Networks (CNN) [80, 82] ,Recurrent Neural Networks (RNN)

[79], Generative Adversarial Networks (GAN) [83–85], . . . etc. Deep CNN models utilize

several layers of trainable parameters in form of convolutional kernels applied to the MR

data in each layer. These kernels are automatically adjusted during training using shift-

invariant convolution operations of the input data. To enable CNN to learn higher-order

representations of the data, non-linearities are applied after each convolutional layer in

form of activation functions. The rectified linear unit (ReLU) is the most common acti-

vation function which outputs zeros for negative inputs and is linear otherwise. Other

architectures like RNN were used to unfold the reconstruction network into iterative-

like states, in which the output of each state is fed as an input into the next state of the

network [79]. RNNs also were used to reconstruct sequences of input, such as dynamic

cardiac MRI, to share information among neighboring timeframes.

Both supervised and unsupervised neural networks were used to formulate MR im-

age reconstruction problems. In supervised learning, the network is given a pair of im-

ages: artifact-contaminated data due to undersampled acquisition as input, and fully

sampled versions as ground-truth for training [78, 85, 86]. In each iteration of supervised

training, a loss function is calculated to minimize the error between the network output

and the ground-truth data. The residual errors are used using the back-propagation al-

gorithm to modify the network trainable parameters to minimize the overall errors over

the entire training dataset. Two loss functions are commonly used in reconstruction

problems: mean-squared error (l2 loss) and mean absolute error (ll loss). On the other

side, in unsupervised frameworks, neural networks are designed to infer structures of

the input data without the need for ground-truth. The majority of proposed networks
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Figure 2.14: Cine imaging: (a) Axial plane. (b) Vertical long-axis plane. (c) Horizontal long-axis plane. (d)
Short-axis plane. (e) Four-chamber plane [90].

for MR image reconstruction were framed as supervised networks. In addition, super-

vised and unsupervised deep learning methods were utilized to operate in the image

space only, in k-space only, multiple domains as a direct mapping between k-space to

image space, or unrolled optimization methods.

2.4. CARDIOVASCULAR MAGNETIC RESONANCE IMAGING
Cardiovascular Magnetic Resonance Imaging (or Cardiac MRI) is a powerful non-invasive

imaging modality with a major clinical role in identifying cardiac diseases. Cardiac MRI

is the gold standard for the practice of cardiology due to its high reproducibility and ac-

curacy, wide field-of-view, and excellent soft-tissue contrast with high spatial resolution,

which is superior to any other individual imaging modality [87]. Furthermore, cardiac

MRI can provide a comprehensive cardiovascular assessment of a patient in a single sit-

ting as it comprises several imaging protocols for assessment of cardiovascular morphol-

ogy, ventricular function, tissue characterization, myocardial perfusion, flow quantifica-

tion, and coronary artery disease [88, 89]. We will focus on cardiac MRI as the main

imaging modality in this thesis.

Here is a summary of some modalities that are being used frequently in clinical prac-

tice and will be the focus of the next chapters:

2.4.1. CINE IMAGING

Cine imaging is the most common cardiac MRI technique to assess the cardiac mor-

phology and quantifying global and regional left and right ventricular functional param-

eters (e.g. stroke volume, ejection fraction, end-diastolic and end-systolic volumes, and

masses, ...etc) [91, 92]. In cine imaging, a full stack of cardiac images is acquired at dif-

ferent phases throughout the cardiac cycle and different cross-sections and positions of

the heart, such as short-axial (SAX), 2, 3, and 4-chamber long-axial (LAX) views (Figure

2.14) [91].

The cardiac cine imaging is mainly challenged by the slow acquisition process of MRI

which causes prolonged scan times. MRI is therefore limited when imaging a moving
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Figure 2.15: Myocardial Late Gadolinium Enhancement (LGE) sequence.

object like the heart, where the cardiac motion constitutes the major source of degra-

dation and undesired effects in the reconstructed cine images, such as image blurring,

ghosting, and misregistration due to alteration in the k-space data [93]. The overall car-

diac motion is a combination of three sources: heart beating, respiratory-induced, and

bulk patient motion. To minimize the motion effects due to heart beating, the cardiac

cycle is split into small segments to represent different cardiac phases [94]. The ECG

signal is then used to synchronize the acquisition of different segments in the k-space

corresponding to each cardiac phase. To deal with respiratory motion, cardiac imaging

is performed with a breath-holding procedure or using navigator-gated, or self-gated

acquisitions [94–97]. However, a considerable number of patients suffer from multiple

breath-holding difficulties, diaphragmatic drifts, or irreproducible breath-holding.

Advances in reconstruction techniques allow the acquisition of the whole cine imag-

ing in a single breath-hold without compromising its spatial or temporal resolutions

[41, 42, 63, 64, 98, 99]. In addition, free-breathing real-time cardiac cine imaging is em-

ployed to overcome breathing and gating problems. However, the existing real-time se-

quences have limited spatial and temporal resolution of the images with a lower signal-

to-noise ratio (SNR). There is an unmet need for advanced techniques to address these

limitations.
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2.4.2. LATE GADOLINIUM ENHANCEMENT IMAGING

LGE is a valuable tool for the assessment of] cardiac tissue viability. LGE has become the

standard non-invasive imaging technique for determining ischemic and non-ischemic

focal fibrosis of the myocardium [100]. LGE was shown to be very accurate in the de-

tection of acute myocardial infarction and can provide valuable prognostic information

regarding the LV remodeling improvement in this cohort [101]. In addition, the pres-

ence and extent of LGE is a strong indicator of improvement in contractility in chronic

ischemic heart disease [100]. While LGE was originally developed for scar detection, it

has also demonstrated an important diagnostic role in non-ischemic cardiac diseases,

where different cardiomyopathies exhibit different LGE patterns [102].

The LGE concept is based on the delayed washing of gadolinium-based contrast in

and out of the myocardium with an increased proportion of extracellular space. The in-

creased volume distribution of gadolinium in scar regions than normal tissue is demon-

strated as brighter regions in T1-weighted imaging within 10-30 minutes after contrast

administration 2.15. LGE is commonly acquired in multi-slice 2D imaging with slice-

thickness of 8-10 mm [103]. However, certain applications of LGE require further im-

provement in spatial resolution, such as the assessment of fibrosis in the right ventricle

and left atrium of the heart [104]. As an alternative, 3D LGE was developed to offer a

higher isotropic resolution. However, the 3D LGE is challenged by its long scan time

which imposes acquisition difficulties due to temporal changes in contrast agent con-

centration, as well as patient discomfort. Several parallel imaging and compressed sens-

ing reconstruction techniques were developed to address its long acquisition time [105].

2.4.3. MYOCARDIAL T1 MAPPING

Myocardial T1 mapping is an emerging imaging technique for spatially-resolved quanti-

tation of the myocardial tissue composition and assessment of myocardial diffuse fibro-

sis [2]. The T1 mapping technique aims to estimate the time required by the protons to

re-calibrate their spins along with the longitudinal magnetization after being excited by

a radiofrequency pulse [106]. The T1 times vary at different locations of the myocardium

reflecting the underlying tissue composition and content of diffuse fibrosis. There is in-

creasing evidence that the deviation of myocardial T1 values from the normal range is a

potential indicator for a variety of non-ischemic cardiomyopathies [107].

Typically, T1 maps are being reconstructed by voxel-wise curve fitting of a number

of T1-weighted images acquired at different inversion times 2.16. Several techniques

have been developed over the last decade for accurate and reproducible measurement

of the myocardial T1 mapping. The modified look-locker inversion recovery (MOLLI) se-

quence and its different variants are being frequently used in clinical protocols for native
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Figure 2.16: Myocardial T1 Mapping.

myocardial T1 mapping or post-contrast administration [108]. T1 mapping techniques

are challenged by the length of the breath-holding period required during acquisition

and its dependency on heart rate variations and magnetization transfer. New T1 map-

ping techniques are being proposed to address these challenges, such as the shortened

MOLLI (ShMOLLI) technique [109] that improves the scan duration and heart rate de-

pendency, the saturation recovery single-shot acquisition sequence (SASHA) that utilize

saturation pulses to reduce the sensitivity of T1 measurements to heart rate and T2 ef-

fects [110], and more recently the slice-interleaved T1 (STONE) sequence which enables

free-breathing acquisition and more volumetric coverage of the myocardium with im-

proved accuracy and precision of the T1 measurements [111].

The reconstruction of an accurate T1 map for the myocardium is also challenged by

the motion artifacts induced in different T1-weighted images due to failure of breath-

holding or diaphragmatic drifts [112, 113]. Most of the previous T1 mapping techniques

require some form of motion correction such that myocardial voxels across all acquired

T1-weighted images are co-aligned. The T1 maps are typically analyzed by a manual or

automatic delineation of the myocardium and calculate the global T1 values over the

whole heart or at each segment of the AHA 16-segment model of the heart.
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Several deep-learning models have been proposed to shorten MRI scan time. Prior deep-

learning models that utilize real-valued kernels have limited capability to learn rich rep-
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3. DEEP COMPLEX CONVOLUTIONAL NETWORK FOR FAST RECONSTRUCTION OF 3D LATE

GADOLINIUM ENHANCEMENT CARDIAC MRI

CNet preserves the complex nature and optimal combination of real and imaginary com-

ponents of MRI data throughout the reconstruction process by utilizing complex-valued

convolution, novel radial batch normalization, and complex activation function layers

in a U-Net architecture. CNet enables fast reconstruction of highly accelerated 3D MRI

with superior performance to real-valued networks, and achieve faster reconstruction

than compressed-sensing.
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Several deep-learning models have been proposed to shorten MRI scan time. Prior

deep-learning models that utilize real-valued kernels have limited capability to learn

rich representations of complex MRI data. In this work, we utilize a complex-valued

convolutional network (CNet) for fast reconstruction of highly under-sampled MRI

data and evaluate its ability to rapidly reconstruct 3D late gadolinium enhancement

(LGE) data. CNet preserves the complex nature and optimal combination of real and

imaginary components of MRI data throughout the reconstruction process by utiliz-

ing complex-valued convolution, novel radial batch normalization, and complex acti-

vation function layers in a U-Net architecture. A prospectively under-sampled 3D LGE

cardiac MRI dataset of 219 patients (17 003 images) at acceleration rates R = 3

through R = 5 was used to evaluate CNet. The dataset was further retrospectively

under-sampled to a maximum of R = 8 to simulate higher acceleration rates. We cre-

ated three reconstructions of the 3D LGE dataset using (1) CNet, (2) a compressed-

sensing-based low-dimensional-structure self-learning and thresholding algorithm

(LOST), and (3) a real-valued U-Net (realNet) with the same number of parameters as

CNet. LOST-reconstructed data were considered the reference for training and eval-

uation of all models. The reconstructed images were quantitatively evaluated using

mean-squared error (MSE) and the structural similarity index measure (SSIM), and

subjectively evaluated by three independent readers. Quantitatively, CNet-

reconstructed images had significantly improved MSE and SSIM values compared

with realNet (MSE, 0.077 versus 0.091; SSIM, 0.876 versus 0.733, respectively;

p < 0.01). Subjective quality assessment showed that CNet-reconstructed image

quality was similar to that of compressed sensing and significantly better than that of

realNet. CNet reconstruction was also more than 300 times faster than compressed

sensing. Retrospective under-sampled images demonstrate the potential of CNet at

higher acceleration rates. CNet enables fast reconstruction of highly accelerated 3D

MRI with superior performance to real-valued networks, and achieves faster recon-

struction than compressed sensing.

Abbreviations: BN, batch normalization; CReLU, complex rectified linear unit; LGE, late gadolinium enhancement; LOST, low-dimensional-structure self-learning and thresholding algorithm; MSE,

mean-squared error; realNet, real-valued network; SSIM, structural similarity index measure.
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K E YWORD S

complex convolutional network, deep learning, image reconstruction, late gadolinium

enhancement, MRI

1 | INTRODUCTION

Long MRI scan time remains a challenge, impacting patient throughput and limiting spatial and temporal resolution. Over the past two decades,

numerous acceleration techniques such as parallel imaging,1–4 constrained reconstruction,5–7 dictionary-based reconstruction,8–10 compressed

sensing,7,11 and magnetic resonance fingerprinting12–14 have been developed to reduce scan time. Data-driven techniques such as deep learning

are being explored to accelerate image acquisition without explicit assumptions on data.15–24 Recent deep learning reconstruction techniques are

based on multiple convolution operations using pre-trained kernels with additional non-linearity in the form of activation functions. Different con-

volutional neural network schemes are utilized to reconstruct MR images from under-sampled acquisitions. The iterative optimization process of

compressed sensing formulated as a variational model was recently unfolded in the form of a variational network,22 in which each layer acts as

one gradient descent iteration. Similarly, the iterative reconstruction scheme was represented as deep-cascaded convolutional networks with

interleaved data consistency layers that maintain acquired data fidelity after each convolutional network.18 Instead of cascading networks, Qin

et al. developed a convolutional recurrent neural network that shares reconstruction information across different network iterations to simulate

the iterative optimization process.19 Deep generative networks have also been utilized to remove aliasing artifacts from magnitude MR images

where the generator is trained to produce artifact-free images.16,21

Both magnitude and complex imaging data are used in deep learning-based MR image reconstruction.17–22 Readily available magnitude

images are appealing for developing and testing new deep-learning-based techniques. However, the phase also carries important information in

MR reconstruction that cannot be ignored. While several recent studies have used complex image/k-space information as network input,17,18,22,25

these approaches process real and imaginary components of data separately, concatenated to each other, or fed into a deep convolutional net-

work as different input channels, analogous to RGB information of a color image. However, these approaches only use a kernel in which compo-

nents of the kernel are real values, which have limited capability to learn naturally acquired complex MRI data representations. Thus, there is an

unmet need for deep-learning reconstruction models that process MRI data in the complex domain to enable learning richer representations of

the complex data.

A convolutional network framework that utilizes complex-valued convolutional kernels to learn complex representations from data was

recently proposed.26 These kernels have complex weights of real and imaginary components that are adjusted with a convolutional operation

incorporating both real and imaginary components of the input data and output feature maps. This family of neural networks exhibits specific

characteristics in its learning, self-organization, and processing dynamics.27–29 The complex manifolds learned by complex networks are easier to

optimize and faster to learn,30 have longer noise-immunity memory, and exhibit better generalization characteristics.27–29 Considering the com-

plex nature of MRI signals and the necessity for an optimal combination of real and imaginary parts of the k-space data, a complex neural network

may be beneficial in MRI reconstruction. Complex neural networks were previously utilized to estimate tissue parametric maps in MRI fingerprint-

ing31 and MR image reconstruction.32,33

In this work, we utilize and evaluate a complex convolutional neural network (CNet) for fast reconstruction of highly under-sampled 3D late

gadolinium enhancement (LGE) MRI data. Novel batch normalization (BN) is proposed to normalize complex-valued feature maps and MR data

without magnitude or phase distortions. CNet performance is qualitatively and quantitatively evaluated using a prospectively under-sampled car-

diac MRI dataset of 3D LGE images. In this study, we used a compressed-sensing based low-dimensional-structure self-learning and thresholding

algorithm (LOST) as a reference for training and evaluating our model.

2 | METHODS

We consider a 3D complex-valued zero-filled MR image, Y ∈ CN, such that

Y= SF−1ΓX+ ε, ð1Þ

where X∈CNNc represents fully sampled k-space data from Nc coils, N = NxNyNz, where Nx,Ny,and Nz are the numbers of acquired k-space samples

in the x, y, and z directions, respectively; F−1 is the inverse Fourier coefficient matrix (defined as the Kronecker product between an N × N DFT

matrix and an Nc × Nc identity matrix), ε is modeled as an additive white Gaussian noise, Γ is an under-sampling mask that controls the accelera-

tion rate during MR acquisition, and S is a matrix contains the complex conjugate of coil sensitivity maps from Nc coils of size N × NNc. In the case

2 of 15 EL-REWAIDY ET AL.



of accelerated acquisition (ie beyond the Nyquist criterion), Equation 1 results in aliased image data Y, where the characteristics of artifacts in Y

are largely dependent on the acceleration rate and the under-sampling pattern.

A priori knowledge of image and artifact characteristics can be employed to regularize an optimization function to produce an acceptable

solution for the reconstruction problem. In deep learning, image and artifact characteristics can be exploited as trainable parameters from the

same domain as the under-sampled images. Training these parameters can be achieved by solving the following optimization problem:

min
Θ

X̂−Ψ YjΘð Þ
���

���
2

2
, ð2Þ

where X̂ represents the single-channel LOST-reconstructed data in the image domain, and Ψ is a domain transform that maps the corrupted

under-sampled image manifold to an artifact-free image manifold using learnable parameters Θ. Each of the trained parameters Θ acts as an oper-

ator in a nonlinear system that can be generalized to reconstruct new artifact-free images from under-sampled MR acquisitions.

In this work, we aim to exploit both image and artifact characteristics in their original complex form by learning the complex domain trans-

form, Ψ, and parameters, Θ. Each step of the proposed reconstruction algorithm is described below.

3 | NETWORK ARCHITECTURE

CNet is a fully convolutional network with a U-net architecture (Figure 1) that propagates complex image data in contractive and expansive paths

for multi-scale artifact removal and multi-resolution de-noising.17,20,24,34 In the contractive path, complex image input data are fed into two com-

plex convolutional layers each with 64 kernels to extract basic features and noise patterns. The resulting feature maps are down-sampled using a

complex convolution layer of 64 kernels and a stride of 2. This process is repeated through three down-sampling stages; at each stage, higher-

scale features are extracted using complex convolutional layers with twice the previous number of kernels (ie 64, 128, and 256 over the three

down-sampling stages). The resulting feature maps pass through two convolution layers of 512 and 256 complex kernels. The expansive path then

maps the feature maps at each down-sampling stage onto an analogous stage of similar map size and kernel number (Figure 1B). The up-sampling

layers are utilized to increase the size of feature maps by a factor of 2 at each up-sampling stage to provide a clean version of the artifact-

contaminated images at different resolution levels. Corresponding feature maps in the up-sampling and down-sampling stages are concatenated.

At all previous steps, each convolutional layer is followed by radial BN and complex activation layers, where all kernels are 2D complex valued

consisting of real and imaginary components of size 3 × 3 (ie, the equivalent tensor size is 3 × 3 × 2). The last feature maps are combined using a

complex convolutional layer with kernel size 1 × 1 to reconstruct the final output image. The following sections describe various components of

the proposed network.

For a 2D complex image, the corresponding CNet data point is represented by a real-valued tensor of size (Nx, Ny, 2) that includes both real

and imaginary components of the complex image. This tensor flows through multiple complex operational points in the network as follows.

3.1 | Complex convolutional layer

In the proposed network, the complex input image, I = x+iy, is convolved with a complex filter, k = a+ib,26 such that

I�� k = a�� x−b�� yð Þ+ i b�� x+ a�� yð Þ ð3Þ

where �� represents a convolution operation. This operation can be accomplished in the real-valued arithmetic by convolving the same kernels, a

(or b), with each of the real and imaginary parts of the image, x and y, separately (Figure 2). The gradients of a (or b) should be calculated in the

backwards direction considering both operations on x and y.

3.2 | Radial BN layer

BN is important for accelerating and stabilizing the convergence of neural networks.35 Although the original BN was proposed for real-valued net-

works, a generalization to the complex data was proposed by Trabelsi et al.26 In their complex version, the distribution of both real and imaginary

components was independently shifted to have zero mean, then scaled by the covariance matrix of the real and imaginary components to ensure

equal variance for the two components. However, separately shifting the distribution of each component towards zero mean induces distortion in

the phase and magnitude (Figure 3).

EL-REWAIDY ET AL. 3 of 15



To address this challenge, we propose radial BN in which phase information is maintained and magnitude is scaled such that relative

differences are preserved between complex quantities. In radial BN, the input complex data are transformed to polar coordinates, Z =Reiθ .

Standard BN is applied to the magnitude data, R, to have a mean of τ and standard deviation of 1; thus, the normalized magnitude can be calcu-

lated as

Rbn =
R−μRffiffiffiffiffiffiffiffiffiffiffiffi
σ2R + ϵ

q
0
B@

1
CAγ + β + τ, ð4Þ

F IGURE 1 CNet pipeline. A,
3D MR data from 32 coils
acquired in the k-space, K(kx, ky,
kz, 32), with a pseudorandom
under-sampling pattern. Multi-
coil data is transformed to the
image domain by 3D inverse fast
Fourier transform (IFFT), then
combined using B1-weighted

reconstruction and coil sensitivity
information to produce a single
3D complex data volume in the
image domain, I(Ix, Iy, Iz). B, Each
slice is fed into cascaded complex
convolutional layers with kernel
size 3 × 3 with contractive and
expansive paths. The contractive
path includes convolutional
layers with different sizes of
kernel (ie 64, 128, and 256)
interleaved with three under-
sampling stages using complex
convolutional layers with a stride
of 2 to extract high-level features
at multi-resolution levels. The
feature maps pass through a
bottleneck convolutional layer of
512. The expansive path
gradually restores the original
resolution of the data through
three up-sampling stages; in
each, the analogous feature maps
from the two paths
(ie contractive and expansive) at
each level are concatenated. A
complex convolutional layer with
a similar number of kernels to the
contractive path was applied at
each level. This network results
in a complex-valued 2D image at
the last layer. The magnitude of
the complex-valued output is
compared with the LOST-

reconstructed reference
magnitude image to calculate the
MSE loss. All convolutional layers
are followed by radial BN and
complex ReLU, with the
exception of the last
convolutional layer
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where μR and σ2R are the respective mean and variance of R, ϵ is a constant added to the variance for numerical stability, and β and γ are trainable

parameters for shifting and scaling data distribution.35 We introduce a new constant, τ, to ensure a positive value for the normalized R (τ = 1 was

empirically used in our experiments). The normalized complex data are transformed back to Cartesian coordinates using the normalized magnitude

and the same phase, Z =Rbn eiθ .

3.3 | Down-sampling and up-sampling layers

To collect artifact patterns on multiple scales and allow multi-resolution artifact removal, complex feature maps generated by the convolutional

layers were down-sampled in some parts of the network then up-sampled again to retain the original resolution of the output images. To down-

sample the feature maps, a complex convolutional layer with stride greater than 1 was utilized. The up-sampling layer generates complex feature

maps with a larger size than the input feature maps by bilinear interpolation of the real and imaginary components.

3.4 | Complex activation function

Real-valued activation functions can be extended in the complex domain to separately activate real and imaginary parts,36 eg a complex rectified

linear unit (CReLU):

CReLU=ReLU R Zð Þð Þ+ iReLU I Zð Þð Þ, ð5Þ

where R Zð Þ and I Zð Þ are the real and imaginary components of the complex-valued image Z. CReLU is holomorphic (ie complex differentiable in

neighborhood points) when both real and imaginary components are strictly positive or negative.26

4 | IMAGE ACQUISITION AND PRE-PROCESSING

To assess the performance of the proposed reconstruction techniques, we utilized a dataset of 219 patients (145 males, mean 55 years) referred

for a clinical cardiac MRI examination for viability assessment. These patients were recruited prospectively as part of our previous study.37

F IGURE 2 Numerical examples of
real-valued (A) and complex-valued
(B) convolution operations. The complex-
valued convolution operation is
calculated using four real-valued
convolution operations. In complex
convolution, the input image (I), kernel (k),
and output feature maps (f) are complex
values with real and imaginary

components. The real component of the
output maps is described as
R fð Þ¼R kð Þ�� R Ið Þ− I kð Þ�� I Ið Þ and the
imaginary component as
I fð Þ¼R kð Þ�� I Ið Þþ I kð Þ�� R Ið Þ, where ��
represents the convolution operation
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Informed consent was obtained from each subject and the imaging protocol was approved by the institutional review board and institutional

human subjects committee. 3D LGE images were acquired using a 1.5 T Philips Achieva system (Philips Healthcare, Best, The Netherlands) with a

32-channel cardiac coil. Images were acquired in the axial direction to cover the whole heart using a gradient echo imaging sequence with the fol-

lowing parameters: repetition time/echo time = 5.2/2.6 ms, field of view = 320 × 320 × 100-120 mm3, flip angle = 25�, and spatial resolu-

tion = 1.0-1.5 mm3. A free-breathing ECG-triggered navigator-gated with inversion-recovery gradient echo imaging sequence was used. The 3D

k-space was prospectively under-sampled in all patients using a pseudorandom mask, where the k-space was fully sampled within 15-20% in the

ky direction and 25% in the kz direction around the center of k-space, and randomly sampled elsewhere37,38 (Figure 1). The acceleration rate was

randomly prospectively chosen by the operator between R = 3 and R = 5 (130 patients at Rp = 3, 25 patients at Rp = 4, and 64 patients at Rp = 5).

k-space data from all 32 coil channels were exported and used for evaluation. All images were previously reconstructed using the LOST algo-

rithm39 for training and evaluation.

F IGURE 3 A-I, Effect of
complex and radial data/BN
methods on complex data
samples. Probability distribution
function (PDF) of the real and
imaginary parts and magnitude of
the original complex image (A, D,
and G, respectively), the result of
complex BN on the original data

sample (B, E, and H, respectively),
and the result of the proposed
radial BN on the original data
sample (C, F, and I, respectively).
The magnitude PDF resulting
from complex BN has
substantially altered shape from
that of the original data or radial
BN result PDFs (third row), due
to shifting the real and imaginary
distributions of the data
separately to have zero mean,
where pixels with small values
change its polarity (orange curve
in H). J-L, The corresponding 2D
magnitude images of another
original data sample and its
corresponding complex and radial
BNed data (J, K, and L,
respectively). M, Random
complex data sample points
represented by magnitude and
phase in the polar coordinates. N,
Performing the complex BN on
this data sample resulted in
distorted phase information
(magenta ellipses) due to shifting
the real and imaginary
distributions independently to
zero mean. O, Radial BN
maintained the phase
information and the relative
differences in magnitude
between the data points similar

to those of the original data

6 of 15 EL-REWAIDY ET AL.



5 | NETWORK TRAINING

The 3D k-space data from 32 coils were zero-filled and transformed into the complex image domain by 3D inverse Fourier transformation. Coil

sensitivity information was then utilized to combine data from different coils into single complex-valued 3D volume data per patient in the image

domain using B1-weighted reconstruction.39 The corresponding LOST-reconstructed image data were used as a reference for loss calculations

during network training and evaluation of results during testing. All images were normalized using the same radial BN process.

We divided the data into training (153 patients; 11 726 slices) and testing datasets (66 patients; 5277 slices). The network was trained until

convergence with a fixed number of epochs (ie 50) via an Adam optimizer with a learning rate function,0.1bepoch/20c+1, where the learning rate

exponentially decreased with the number of epochs. The batch number was 100 complex images of size 256 × 256. The mean-squared error

(MSE) loss (ℓ) function was applied to minimize the error between LOST and network prediction images, such that ℓ= xLOST− xURUSj jk k22 , where

xLOST represents LOST-reconstructed magnitude images and |xURUS| is the magnitude of CNet complex predictions.

This model was implemented using the open-source Python-based PyTorch library Version 0.41 (code available at https://github.com/

hossam-elrewaidy/urus-mri-recon).40 The B1-weighted reconstruction was performed on MATLAB (MathWorks, Natick, Massachusetts). All

models in this work were trained and tested on an NVIDIA DGX-1 system equipped with eight Tesla V100 GPUs (each of 32 GB memory and

5120 cores), and a CPU of 88 cores: Intel Xeon 2.20 GHz each, and 504 GB RAM memory. CNet takes an average of 4 h to train on this machine.

CPU-based LOST reconstruction was performed on a computing cluster of 20 cores and 100 GB of RAM.

6 | EXPERIMENTAL EVALUATION

CNet was evaluated by two means: initially, the prospectively under-sampled data (Rp = 3-5) were reconstructed, then we retrospectively

under-sampled the original data to simulate higher accelerations beyond the prospective under-sampling rates in separate experiments. Three

new datasets (D1, D2, and D3) were generated from the originally acquired dataset (D0) by increasing the acceleration rate by 1 in each new

dataset. Since D0 includes patient data acquired at different acceleration rates, Rp = {3, 4, and 5}, D1 includes retrospective acceleration rates,

Rr = {4, 5, and 6}, D2 includes rates Rr = {5, 6, and 7}, and D3 includes rates Rr = {6, 7, and 8}. A pseudorandom mask was used to retrospec-

tively under-sample the acquired k-space, where 16-21% of the k-space lines at the center were fully sampled and the rest randomly under-

sampled.37

For comparison, a real-valued network (realNet) of the same U-net architecture was built using the standard real-valued ReLU, BN, and con-

volutional layers. RealNet has the same number of convolutional layers as CNet but has an increased number of kernels at each layer as illustrated

in Figure S1. The total number of trainable parameters in realNet is 12 475 073, versus 12 472 578 in CNet. RealNet has two input channels con-

taining real and imaginary components of zero-filled complex images and an output of a magnitude reconstructed image. The optimal hyper-

parameters were experimentally determined for both CNet and realNet.

Deep residual networks (ResNet) were also investigated in this work. Complex ResNet was built with five standard residual blocks of 64, 128,

256, 128, and 64 3 × 3 complex kernels, respectively (Figure S2). Two convolutional layers were added at the network input and output with

64 and one 7 × 7 complex kernels, respectively. The total number of trainable parameters in this network was 13 089 × 103. Similar to CNet,

ResNet has complex-valued 2D images at the input and output layers.

7 | DATA ANALYSIS

For quantitative assessment of CNet reconstruction performance, the MSE and structural similarity index measure (SSIM)41 of the magnitude

of CNet-reconstructed and LOST-reconstructed images were calculated. While MSE calculates the unobserved mean intensity difference

between the predicted and reference images, SSIM quantifies human visual perception qualities by combining luminance, contrast, and struc-

tural differences between predicted and reference images. Per-slice and per-patient LGE scar percentages were calculated using a conven-

tional semi-automatic thresholding-based scar quantification method with three standard deviations of signal from the remote normal

myocardium.42 For this purpose, the left ventricular myocardium was manually segmented from the entire heart in all patients with a scar in

the testing dataset.

For qualitative assessment, three independent readers (with 10, 6, and 6 years of experience in cardiac MRI, respectively) graded the

reconstructed images using LOST, CNet, and realNet on a five-point score to evaluate overall quality per patient (1—poor quality with large arti-

facts, 2—fair quality with moderate artifacts, 3—good quality with small artifacts, 4–excellent quality with no artifacts, and 5—spectacular quality

as fully sampled images). Readers were blinded to the method of reconstruction. In addition, each reader identified patients with a left ventricular

scar. Finally, all three reconstructed images from each patient were shown to the readers simultaneously, and each reader selected the best imag-

ing dataset for best overall image quality.
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A two-tailed Student t-test was performed for comparison of continuous variables between reconstruction methods. To compare categorical

data, the Chi-squared test was used. Significance was declared at two-sided p-values less than 0.05. For pairwise comparisons following a three-

group inferential test that was significant, a Bonferroni correction was used.

8 | RESULTS

Sample LGE images reconstructed using realNet, CNet, and LOST from different patients acquired at prospective acceleration rates Rp = 3 and

5 are shown in Figure 4. CNet-reconstructed images maintain scar-blood contrast and are visually comparable to those of LOST. Figure 5 shows

two different patient LGE images with scar reconstructed by LOST, CNet, and realNet. In both images, CNet preserves better fine details of the

scar than realNet with respect to the reference images, as indicated by the error maps.

Figure 6 shows CNet-reconstructed images scanned at prospective acceleration rate Rp = 3 and corresponding retrospectively under-sampled

versions at Rr = 4, 5, and 6 from D1, D2, and D3 datasets, respectively, compared with realNet images. Noisy, blurry zero-padded images were

restored by CNet reconstruction at all acceleration rates. In addition, CNet reconstruction recovered scar-blood contrast and scar shape com-

pared with zero-padded images with respect to reference images at different acceleration rates. CNet was also able to perform at higher accelera-

tion rates (up to Rr = 8) and maintain image details (Figure 7).

The performance of CNet was compared with realNet and zero-filled images (Table 1). CNet images showed significantly higher SSIM than

zero-filled images and significantly lower MSE for all datasets (ie D0, D1, D2, and D3) (p < 0.01 for all). The visual perceptual-based SSIM values of

CNet images were significantly higher than those of realNet for all datasets (p < 0.01). However, CNet-based MSE values were significantly lower

than those of realNet in D0 and D1 only (p < 0.01).

CNet showed faster convergence during training and more stable testing results at different training epochs when radial BN layers were

included (Figure S3). CNet reported an MSE of 0.083 and SSIM of 0.862 without radial BN, compared with 0.077 and 0.876 when radial BN was

utilized. The U-net-based CNet showed slightly better performance compared with the complex ResNet. The MSE and SSIM of ResNet-

reconstructed images were 0.079 and 0.869 when radial BN was utilized, and 0.087 and 0.858 without BN, respectively.

CNet performance at different epochs throughout network training is shown in Figure 8. SSIM increased and MSE decreased as the number

of epochs increased in the prospectively (ie D0) and retrospectively (ie D1, D2, and D3) under-sampled datasets. The consistent evolution of SSIM

F IGURE 4 Four LGE images
from different patients
reconstructed using realNet,
CNet and LOST with different
acceleration rates, Rp = 3 and
Rp = 5. Arrows indicate areas
of scar
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and MSE between training and testing for all datasets indicates minimal overfitting of the model. Sample magnitude and phase parts of feature

maps captured after the first complex convolutional layer showed a variety of image-specific features and noise patterns within the layer

(Figure S4).

There was no difference between CNet and LOST (3.54 ± 0.92 and 3.51 ± 1.05, respectively, p = 0.54) in the overall assessment of image

quality by three independent readers (Table 2). CNet-reconstructed images had better image quality than those using realNet (3.54 ± 0.92 versus

3.06 ± 0.99; p < 0.01) (Table 2). In the testing dataset, readers identified on average 20 patients with a scar in LGE images reconstructed by LOST

and CNet, but only 19 patients with a scar on LGE images reconstructed by realNet. CNet, LOST, and realNet 3D LGE were ranked as the best

method for image quality in 24, 24, and 17 patients, respectively (Table 2).

There was an excellent correlation in scar extent between CNet and LOST (R2 > 0.97 and R2 > 0.99 for per-slice and per-patient scar percent-

ages, respectively) (Figure 9). A Bland-Altman plot showed a small bias (0.29%) and narrow limits of agreements (6.86%) for per-slice scar percent-

age error by CNet with respect to LOST reference images. The per-patient scar percentage error was 0.17 ± 1.49% by CNet with respect to

LOST and increased consistently with increasing acceleration rates (Figure 9D).

For a typical 3D LGE dataset of size 256 pixels × 256 pixels, 100 slices, and 32 channel coils, the reconstruction time was about 15 s for CNet

and 89 min for LOST, which constitutes a 310-fold decrease in reconstruction time.

9 | DISCUSSION

In this work, we utilize a deep complex convolutional network to improve MR image reconstruction from under-sampled acquisitions. This net-

work exploits a priori knowledge of MR image and artifact characteristics in the reconstruction process by learning complex image representations

in the form of complex-valued kernels. The efficient utilization of phase information via dual complex components (ie real and imaginary) of the

MRI data throughout the reconstruction pipeline allows efficient artifact removal. To stabilize the convergence of CNet, a novel radial BN method

that maintains relative differences between data points without magnitude or phase distortions was proposed.

F IGURE 5 LOST-, CNet−,
and realNet-reconstructed
images of two patients (first and
third rows). The corresponding
error maps of CNet- and realNet-
reconstructed images w.r.t. the
LOST reference are shown
(second and fourth rows)
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The U-net architecture used in our study allows multi-scale artifact removal. The network receptive field increases after each down-sampling

layer such that MR images are filtered at different resolution levels and up-sampled to provide clean versions of the artifact-contaminated images

at each level. Unlike conventional U-net networks, the down-sampling was performed using complex convolution layers with a stride of 2 instead

of the traditional pooling schemes. Although the convolution-based down-sampling adds more trainable parameters to the network, it was utilized

in this work because pooling schemes are not well investigated for complex networks. In addition, the bypass connections at each down-sampling

stage create shortcuts for the gradient flow in shallow layers and offer better convergence characteristics.24,43 Further studies are warranted to

investigate the performance of other complex network architectures.

The large prospectively under-sampled dataset considered for the training and evaluation of our models covers the whole heart in the axial

direction and provides a wide range of heart structures, slice locations, and scar shapes. This heterogeneous dataset allowed efficient training of

our model with minimal overfitting without the need for data augmentation. The large testing dataset also enabled a comprehensive evaluation of

our model performance and generalizability in a clinical setting.

F IGURE 6 Representative LGE images at prospective acceleration rate Rp = 3 and retrospective acceleration rates Rr = 4, 5, and
6 reconstructed by CNet compared with LOST reference, realNet, and zero-filled images at each acceleration rate. Image quality is restored with
minimal noise and blurring artifacts in CNet-reconstructed images, similar to that of the reference images. Scar-blood contrast is also maintained
at higher acceleration rates
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We demonstrate the importance of incorporating phase information in the reconstruction process by comparing the complex-valued CNet

with the real-valued realNet. CNet shows superior image quality compared with realNet in both quantitative and qualitative evaluations, despite

their similar architectures and an equal number of trainable parameters. However, CNet performs twice the number of convolutional operations

compared with realNet, since each complex-valued convolution operation was implemented by four real-valued convolution operations. Although

our LGE dataset was acquired with relatively short echo time (2.6 ms), which reduces phase errors (mainly caused by field inhomogeneity), the

F IGURE 7 Representative LGE image at prospective acceleration rate Rp = 5 and retrospective acceleration rates Rr = 6, 7, and
8 reconstructed by CNet compared with LOST reference, realNet and zero-filled images at each acceleration rate. Image quality is restored with
minimal noise and blurring artifacts in CNet-reconstructed images similar to that of the reference images. Scar-blood contrast is also maintained
at higher acceleration rates
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phases in our input complex data carry valuable information related to the k-space under-sampling pattern (ie pseudorandom trajectory) and

hence can help remove under-sampling artifacts.

Image quality using CNet was very similar to that of LOST in both subjective and objective assessments. However, CNet reconstruction time

was over 300 times shorter, which is important when considering its adoption in a clinical setting. CNet yielded 3D LGE images without artifact

and showed potential for acceleration beyond what compressed sensing can achieve. Additional efforts to increase the acceleration rate in a pro-

spectively under-sampled imaging sequence are needed to evaluate the performance of CNet at high acceleration rates.

In many MRI applications, collecting a fully sampled 3D dataset that can be used as a reference dataset is not possible. A fully sampled

high-resolution dataset typically requires a very long scan time, and image quality is impacted by factors such as respiratory or cardiac motion.

For post-contrast MRI sequences such as LGE, a change in the underlying signal such as contrast washout adds additional complexity. There-

fore, calculating the loss function in such sequences is challenging. In our study, we relied on LOST-reconstructed images for learning and

evaluation of CNet. While not ideal, this is the only solution that allowed us to evaluate the potential of CNet in high-resolution 3D LGE

imaging.

TABLE 1 MSE and SSIM for zero-filled, CNet, and realNet images, in the prospective and retrospective under-sampled datasets

Dataset

MSE SSIM

Input CNet realNet Input CNet realNet

D0 0.246 0.077 0.089 0.638 0.876 0.750

D1 0.263 0.098 0.102 0.595 0.804 0.703

D2 0.278 0.117 0.125 0.562 0.753 0.641

D3 0.290 0.131 0.138 0.535 0.707 0.612

F IGURE 8 Analysis of CNet network performance: SSIM (A) and
MSE (B) at all epochs of the training and testing phases in the
prospective and retrospective under-sampled datasets

TABLE 2 Qualitative assessment (per patient) of overall image quality, presence of LGE scars, and the preferred method for diagnosis of LGE
images reconstructed using LOST, CNet, and realNet methods from three readers

Measure

Overall image quality Presence of LGE Method preference

LOST CNet realNet LOST CNet realNet LOST CNet realNet

Reader 1 3.0 ± 0.9 3.14 ± 0.7 2.89 ± 0.8 17 18 17 29 22 15

Reader 2 3.29 ± 1.0 3.21 ± 0.9 2.5 ± 0.9 20 19 18 20 27 19

Reader 3 4.24 ± 0.84 4.26 ± 0.71 3.77 ± 0.87 23 22 23 24 24 18
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During CNet training, the loss function was calculated between the magnitude of CNet-derived complex images and reference LOST

magnitude images. While mapping the complex input image to a magnitude reference forces the network to produce an optimal result for

magnitude images without consideration of errors in the phase, complex-to-complex mapping of both input and output images was not inves-

tigated in this work due to unavailability of complex-valued reference images, since the complex output of LOST is not normally saved in our

clinical workflow.

In this study, we used a complex neural network in a U-net type architecture. The concept of complex neural networks can potentially be

adopted in other architectures such as cascaded networks.18 In LGE imaging, the magnitude of reconstructed images is used to assess the pres-

ence of the scar, and phase images are often discarded. However, in several other imaging sequences such as phase-contrast MRI, recovering the

phase information is important. Future studies should assess both magnitude and phase recovery to determine if a complex network can provide

better image phase reconstruction.

For scar quantification, we used a three-standard-deviation thresholding method that utilizes the distribution of pixel intensities within the

myocardium to assess the scar volume. Although the distribution of the myocardial intensities could be altered due to the non-linear processing

performed by convolutional networks, an excellent correlation (R2 > 0.97) was reported between the quantified scar volumes from CNet-

reconstructed data and the reference images. An optimal threshold for scar quantification may depend on the reconstruction algorithm and war-

rants further studies.

Our study has several limitations. We did not have a fully sampled 3D k-space dataset as a reference for comparison, and images were com-

pared with a compressed-sensing reconstruction as the reference standard. While our imaging datasets are relatively large, there was only a small

subset of patients with a scar in our training datasets. The performance of the complex convolutional network was assessed only by 3D LGE. In

this work, we investigated a complex network solely with 2D convolutional layers. However, 3D convolutional networks have the potential to

learn spatial correlations in 3D and further studies are warranted to assess the performance of 3D networks. We compared the performance of

CNet with a real-valued network that takes real and imaginary channels as input and produces single-channel magnitude image as output; how-

ever, a better comparison would be with a real-valued network that has real and imaginary channels in both input and output. We tested the per-

formance of a complex convolutional network using the widely used U-net architecture only without intermediate data-consistency steps.

Including data-consistency steps that reconstruct coil-combined 3D acquired k-space data in our 2D network was challenging, and future studies

are warranted to utilize more advanced models that incorporate data-consistency steps.

10 | CONCLUSION

CNet enables fast reconstruction of large 3D MRI datasets with superior performance compared with real-valued kernel networks. Our results

demonstrate that CNet can reconstruct 3D LGE images with acceleration rates up to 8 with a more than 300-fold speed-up in reconstruction time

compared with compressed sensing.

F IGURE 9 Quantitative analysis of
scar percentage: correlation of per-slice
scar percentage between CNet and LOST
(A), Bland-Altman plot of differences in
per-slice scar percentage between CNet
and LOST w.r.t the average scar
percentage of the two methods (B),
correlation of the per-patient scar
percentage between CNet and LOST (C),

and error of per-patient scar percentage
calculated from CNet-reconstructed
images w.r.t. LOST in the prospective and
retrospective under-sampled datasets (D)
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3.6. SUPPORTING INFORMATION

Figure 3.10: (Figure S1) RealNet architecture. Real and imaginary components of complex image data are
fed as 2-channel input into real-valued convolutional layers with kernel size 3×3 with contractive and expan-
sive paths. The contractive path includes convolutional layers of different kernel amounts (i.e. 128, 256, and
320) interleaved with 3 under-sampling stages using a convolutional layers with a stride =2 to extract high-
level features at multi-resolution levels. The feature maps passed through a bottleneck convolutional layer of
640 kernels. The expansive path gradually restores the original resolution of the data through three upsam-
pling stages; in each, the analogous feature maps from both contractive and expansive paths at each level are
concatenated. Real-valued convolutional layers with a similar number of kernels in the contractive path are
applied at each level. The network output is a single channel magnitude image. All convolutional layers are
followed by batch normalization and ReLU, with the exception of the last convolutional layer.

Figure 3.11: (Figure S2) ResNet architecture. The complex-valued input image is fed into an input complex
convolutional layer of 64 7×7 features. Five residual blocks are deployed with 64, 128, 256, 128, and 64 3×3 ker-
nels, respectively. The processed feature maps are combined at output layer of 1 7×7 complex convolutional
kernels to generate complex artifact-free image at the network output. Radial batch normalization and com-
plex ReLU are applied after each convolutional layer.
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Figure 3.12: (Figure S3) Mean squared error (MSE) for CNet in (a) training and (b) testing datasets with and
without radial batch normalization layers. Radial BN accelerates and stabilizes CNet convergence.

Figure 3.13: (Figure S4) Representative feature maps for the same image after applying the kernels of the first
complex convolutional layer: (a) magnitude, and (b) the corresponding phase part of each feature map.
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ABSTRACT
Cardiac MR cine imaging allows accurate and reproducible assessment of cardiac func-

tion. However, its long scan time not only limits spatial and temporal resolutions but is

challenging in patients with breath-holding difficulty or non-sinus rhythms. To reduce

scan time, in this chapter, we introduce a multi-domain convolutional neural network

(MD-CNN) for fast reconstruction of highly undersampled radial cine images. MD-CNN

is a complex-valued network that processes MR data in k-space and image domains via

k-space interpolation and image-domain subnetworks for residual artifact suppression.

MD-CNN exploits spatio-temporal correlations across timeframes and multi-coil redun-
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dancies to enable high acceleration. MD-CNN reduces the scan time of cine imaging by

a factor of 23.3 and provides superior image quality compared to compressed-sensing.
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Purpose: Cardiac MR cine imaging allows accurate and reproducible assessment of 
cardiac function. However, its long scan time not only limits the spatial and temporal 
resolutions but is challenging in patients with breath-holding difficulty or non-sinus 
rhythms. To reduce scan time, we propose a multi-domain convolutional neural net-
work (MD-CNN) for fast reconstruction of highly undersampled radial cine images.
Methods: MD-CNN is a complex-valued network that processes MR data in k-space 
and image domains via k-space interpolation and image-domain subnetworks for 
residual artifact suppression. MD-CNN exploits spatio-temporal correlations across 
timeframes and multi-coil redundancies to enable high acceleration. Radial cine data 
were prospectively collected in 108 subjects (50 ± 17 y, 72 males) using retrospective-
gated acquisition with 80%:20% split for training/testing. Images were reconstructed 
by MD-CNN and k-t Radial Sparse-Sense(kt-RASPS) using an undersampled dataset 
(14 of 196 acquired views; relative acceleration rate = 14). MD-CNN images were 
evaluated quantitatively using mean-squared-error (MSE) and structural similarity 
index (SSIM) relative to reference images, and qualitatively by three independent 
readers for left ventricular (LV) border sharpness and temporal fidelity using 5-point 
Likert-scale (1-non-diagnostic, 2-poor, 3-fair, 4-good, and 5-excellent).
Results: MD-CNN showed improved MSE and SSIM compared to kt-RASPS (0.11 ±  
0.10 vs. 0.61 ± 0.51, and 0.87 ± 0.07 vs. 0.72 ± 0.07, respectively; P < .01). 
Qualitatively, MD-CCN significantly outperformed kt-RASPS in LV border sharp-
ness (3.87 ± 0.66 vs. 2.71 ± 0.58 at end-diastole, and 3.57 ± 0.6 vs. 2.56 ± 0.6 at 
end-systole, respectively; P < .01) and temporal fidelity (3.27 ± 0.65 vs. 2.59 ± 0.59; 
P < .01).
Conclusion: MD-CNN reduces the scan time of cine imaging by a factor of 23.3 and 
provides superior image quality compared to kt-RASPS.
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1  |   INTRODUCTION

Cardiac MR cine imaging with balanced steady-state free 
precession (bSSFP) allows accurate and reproducible mea-
surement of cardiac function.1 Cine images are frequently 
collected using electrocardiograph (ECG)-gated segmented 
acquisition during multiple breath-holds. For patients with 
breathing difficulties or non-sinus rhythms, real-time cine 
imaging at lower temporal and spatial resolutions is com-
monly acquired. A single-shot acquisition scheme is fre-
quently used but the spatial and temporal resolution are often 
limited. Accelerated acquisition and advanced reconstruction 
can be used to increase temporal and spatial resolutions for 
both segmented and real-time single-shot cine imaging. Over 
the past two decades, there have been continuous innovations 
in image acceleration techniques for cardiac cine imaging, 
such as view-sharing,2,3 partial-Fourier imaging,4 parallel 
imaging,5,6 and compressed sensing (CS).7-12 Parallel imag-
ing with rate 2 accelerated cine imaging is commonly ad-
opted in clinical routines. Recently, CS imaging has become 
available by vendors to reduce scan time. However, the ac-
celeration has been limited and the reconstruction remains 
to be time-consuming, which hinders the clinical workflow. 
In addition, CS reconstruction generally requires additional 
state-of-the-art hardware to accommodate the higher demand 
for reconstruction engines.12

Recent advances in deep learning-based image recon-
struction techniques provided yet another opportunity to 
achieve higher acceleration rates and improve spatial and 
temporal resolution in cardiac MRI.13-18 For cine imaging, 
both convolutional and recurrent neural networks have been 
used to suppress image domain aliasing artifacts in carte-
sian13-15 and radial16,19 sampling schemes. To enable high ac-
celeration rates, temporal correlations were exploited using 
3D convolutional kernels to learn spatio-temporal features in 
the image domain.13,16 In cartesian acquisitions, shared infor-
mation among neighboring time frames was exploited to fill 
in missing k-space lines.13,15 Schlemper et al. used a simple 
k-space data-sharing strategy before applying their cascaded 
network by filling the missing k-space lines directly from the 
nearest acquired line in the neighboring frames.13 Although 
aggregating k-space lines from different time frames reduces 
image domain aliasing, it may increase temporal blurring at 
higher acceleration rates. Convolutional networks have also 
been used to share information across time in a multi-super-
vised network on cartesian k-space acquisition.15 However, 
the additional hyperparameters associated with the multiple 

loss functions led to challenges in training, and the perfor-
mance of this network degrades at high acceleration rates 
of ≥8. To achieve higher acceleration rates, radial sampling 
can be used to allow more efficient coverage of k-space and 
offer an enhanced view-sharing strategy among time frames. 
However, view sharing in k-space using convolutional neu-
ral networks (CNN) has not been investigated for radial 
acquisitions.

In this work, we propose a multi-domain convolutional 
neural network (MD-CNN) for cine imaging with ra-
dial k-space sampling that processes the radial MR data in 
k-space, image, and time domains from multiple coils by end-
to-end training. MD-CNN performance is evaluated on a ret-
rospective gated cine imaging dataset for image quality using 
both quantitative and qualitative assessments.

2  |   METHODS

2.1  |  Network architecture

MD-CNN is a fully complex-valued CNN with two main com-
ponents: k-space and image-domain subnetworks (Figure 1). 
Both subnetworks are trained end-to-end from scratch. The 
input to MD-CNN is a 4D complex-valued matrix of size Nc × 
Ntw × Nx × Ny, representing the gridded k-space of a 2D cross-
sectional image from multiple coils and across multiple con-
secutive time frames. Ntw denotes the number of time frames, 
and Nc denotes the number of coils.

2.1.1  |  k-space subnetwork

The function of this subnetwork is to refine estimations of the 
2D gridded k-space data using convolutional kernels. Missing 
k-space data are estimated by interpolation of the acquired 
MR data using multiple convolutional kernels. Correlations 
across time frames are also exploited in the form of view-
sharing via 3D convolutional kernels applied on the 2D grid-
ded k-space and a window of neighboring time frames (Ntw). 
The k-space subnetwork consists of two identical residual 
blocks of cascaded convolutional layers. Each k-space block 
consists of three 3D complex-valued convolutional layers 
(XConv)20 with 2Nc, 2Nc, and Nc kernels each of size 3 × 5 × 
5; where Nc is the number of coils. A complex rectified linear 
unit (XReLU) follows each convolutional layer. A residual 
connection is added after each k-space block to reduce the 

K E Y W O R D S

Cardiac MRI, deep learning, image reconstruction, non-cartesian acquisition, radial acquisition, 
real-time imaging



      |  1197EL-REWAIDY et al.

large dynamic range of k-space values. The resulting k-space 
data are then transformed into the image domain using in-
verse fast Fourier transform (FFT).

2.1.2  |  Image domain subnetwork

In the image domain, shared structural information among 
neighboring time frames is exploited by two 3D XConv lay-
ers consisting of 2Nc and Nc kernels each of size 3 × 3 × 3 
with radial batch normalization (RBN) and XReLU.20 The 
resulting 3D maps (ie, 2D+time; size of Nc × Ntw × Nx × Ny) 
are projected in the 2D space, where time frames are flattened 
into channels to produce 2D feature maps.

A 2D U-Net architecture is then used to remove residual 
artifacts and combine data from different time frames and 
coils into a coil-combined output image. The U-Net sub-
network consists of contracting and expanding paths that 
can remove image artifacts at multiple resolutions. In the 
contracting path, three stages of spatial down-sampling are 

applied consisting of two 2D XConv, RBN, and XReLU lay-
ers at each stage. The number of kernels doubles after each 
down-sampling stage (32, 64, and 128, respectively). The re-
sulting feature maps pass through two XConv layers of 256 
and 128 kernels of size 3 × 3, respectively. The expansive 
path maps the output at each down-sampling stage to an anal-
ogous stage of similar map size and kernel number using skip 
connections. Up-sampling layers are used to increase the size 
of feature maps by a factor of 2 at each up-sampling stage to 
provide a clean version of the artifact-contaminated images 
at different resolution levels. The final feature maps are com-
bined using the XConv layer of one 1 × 1 kernel to generate a 
coil-combined complex-valued reconstructed image.

2.2  |  Data acquisition

The study was approved by the Beth Israel Deaconess 
Medical Center Institutional Review Board (IRB num-
ber 2001P000793). All imaging was performed on a 3T 

F I G U R E  1   Proposed multi-domain convolutional neural network (MD-CNN) pipeline. The k-space data from Nc coils acquired with 
radial trajectories are gridded onto the cartesian grid using NUFFT. To reconstruct the frame (red), multi-coil 2D k-space data from Ntw adjacent 
time frames (yellow) are fed into the MD-CNN. The output of the MD-CNN is a coil-combined reconstructed image for the target frame. MD-
CNN consists of two subnetworks: k-space and image-domain. The k-space subnetwork takes complex-valued 2D k-space input data of size 
(Nc, Ntw, Nx, Ny) to be processed by two identical residual blocks. Each block consists of three complex convolutional layers with 3D kernels of 
size (3 × 5 × 5). Each convolutional layer is followed by a complex rectified linear unit (XReLU) for activation. The resulting k-space data is 
transformed into the image domain by inverse fast Fourier transform (IFFT). In the image subnetwork, data are fed into two convolutional layers 
with 3D kernels of size (3 × 3 × 3) to exploit spatio-temporal correlations. The time dimension in the resulting 3D feature maps are flattened into 
channels to produce 2D feature maps of size (NcNtw, Nx, Ny). A 2D U-net is then used to process the 2D feature maps from NC coils and Ntw frames 
to reconstruct a coil-combined reconstructed image



1198  |      EL-REWAIDY et al.

system (MAGNETOM Vida, Siemens Healthcare, Erlangen, 
Germany) using body and spine phased-array coils. Radial 
bSSFP cine data were acquired in 101 patients and 7 healthy 
subjects (108 total subjects; age 50 ± 17 y, 72 males, 
heartbeats 72 ± 15 beats/min, and weight 80.6 ± 18 kg). 
Participants provided written informed consent to use car-
diac MRI studies for research purposes. The indications for 
clinical CMR scans for our cohort are reported in Supporting 
Information Table S1, which is available online. A mid-ven-
tricular slice was imaged during breath-holding with the fol-
lowing imaging parameters: repetition time/echo time (TR/
TE) = 3.06/1.4 ms, field of view = 380 × 380 mm2, matrix 
size = 208 × 208, in-plane resolution = 1.8 × 1.8 mm2, slice 
thickness = 8 mm, flip angle = 48°, number of channels = 16 
± 1, and retrospective ECG-triggering with 25 cardiac phases 
calculated. In each patient, 196 radial views were acquired on 
average per cardiac phase with a breath-hold duration of ~14 
heartbeats.

2.3  |  Data preparation

The dataset was randomly divided into training (87 subjects) 
and testing (21 subjects) subsets. The complex-valued ref-
erence images at each time frame were reconstructed with 
all acquired 196 radial views per frame using non-uniform 
fast Fourier transform (NUFFT) implemented on the scan-
ner,21 where the complex-valued images were saved before 
writing the DICOM images. An undersampled dataset was 
synthesized by selecting a small set (eg, Nv =14 views) from 
the acquired 196 radial views at each time frame; such that 
an equivalent acquisition duration of one heartbeat per slice 

is achieved. The effective acceleration rate is 23.3 based on 
the Nyquist sampling requirement (208×

�

2
 = 327 views).22 

To create an undersampled dataset, radial views across a 
14-spokes radial trajectory (T14) were selected from the 
acquired highly sampled radial data (ie, 196 spokes). First, 
the uniform angles of T14 are calculated and matched to the 
nearest 14 angles of the 196-spokes trajectory (Figure 2). 
The selected 14 angles are considered as the undersampled 
trajectory.

To create rotated angles trajectory among different frames, 
T14 was rotated in each frame, p, with an angle θp =

p �

Nv Ntw

, 
where p is the frame index (p = 0, 1, … 24), Ntw is a window 
of neighboring time frames (eg, Ntw = 7), and Nv is the total 
number of acquired views (eg, 196) (Figure 2). To enable op-
timized k-space coverage for data sharing among consecu-
tive Ntw frames, the rotating angle θp also maintains uniform 
angular distance among all views from the Ntw neighboring 
frames. Gradient delay induced errors in the radial trajec-
tory were automatically corrected using the RING method23 
implemented from the Berkeley Advanced Reconstruction 
Toolbox (BART).24 Gradient delays were corrected in each 
time frame using only the selected 14 radial views.

The radial k-space of each frame and each coil was re-
constructed using inverse NUFFT. Coil compression was ap-
plied to obtain a fixed number of coils (Nc = 8) per frame 
using BART.25 Complex-valued gridded data from consec-
utive time frames of window size, Ntw = 7, with eight coils 
per frame were normalized in the image domain using RBN. 
Considering the periodic nature of the dynamic cardiac im-
aging, information can be shared from the last frames of the 
dynamic cine imaging to reconstruct the first frames and vice 
versa. For example, to reconstruct the first frame, a window 

F I G U R E  2   Radial undersampling using uniform-angle rotating radial trajectories. An undersampled uniform radial trajectory of 14 spokes is 
selected from the acquired highly sampled radial data (196 spokes). The radial trajectory in a frame p is rotated with an angle �p =

p�

NvN
��

, where Nv is 
the number of views per frame (eg, 14 spokes), and Ntw is the number of neighboring time frames (eg, seven frames). The undersampled radial lines 
from Ntw consecutive time frames have a uniform angular-spacing trajectory that allow optimal k-space coverage for data sharing
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of neighboring frames at indices {23, 24, 25, 1, 2, 3, and 
4} is included at the network input. Next, FFT was applied 
to obtain 2D k-spaces fed into MD-CNN to reconstruct the 
coil-combined image at a single time frame (ie, correspond-
ing to the middle frame of the input window 

⌈
Ntw

2

⌉
).

2.4  |  Network training

MD-CNN was trained with 250 epochs via a stochastic gra-
dient descent SGD optimizer with a momentum of 0.9 and 
learning rate function 0.01⌊epoch∕50⌋+1, where the learning 
rate exponentially decreases with the number of epochs. The 
batch number was 15 complex-valued data points of size 8 ×  
7 × 208 × 208. The mean-squared error loss function was 
applied to minimize reconstruction error between MD-CNN 
predictions and reference images at any time frame, t, such 
that:

where Mxy (t) is a complex-valued, coil-combined refer-
ence image at a single time point, t, reconstructed using 
all 196 acquired radial views, t∈[0, 1,…24]; Kxyw (t) is a 
complex-valued, multi-coil 2D spatial k-space gridded 
from undersampled radial acquisitions at Ntw time frames 
(ie, 2D k-space + time); A is the Fourier encoding matrix of 
the 2D FFT; Φ (. ) is a nonlinear interpolation function con-
trolled by trainable parameters, Θk; and Ψ (. ) is a non-linear 
mapping function controlled by trainable parameters, Θm, 
which take Ntw time frames as input to reconstruct a single 
frame at the output. The same network parameters, Θk and 
Θm, were trained using all time frames. During MD-CNN 
training, time frames from all patients in the training data-
set were randomized and 15 (ie, batch size) frames from 
different patients were selected to be reconstructed in each 
training iteration.

MD-CNN was implemented in Python using the PyTorch 
library version 0.41.26 All models in this work were trained 
and tested on an NVIDIA DGX-1 system equipped with 8T 
V100 graphics processing units (GPUs; each of 32 GB mem-
ory and 5120 cores), central processing unite (CPU) of 88 
core: Intel Xeon 2.20 GHz each, and 504 GB RAM. Only 
four GPUs were used to train MD-CNN. The total MD-CNN 
training time was 24 h.

2.5  |  Performance evaluation

To investigate the impact of the window size Ntw of input 
time frames, MD-CNN performance was evaluated on test-
ing dataset reconstructed at three different window sizes (Ntw 

= 5, 7, and 9 frames), where MD-CNN was trained from 
scratch at each window size. The performance of MD-CNN 
was compared with a compressed-sensing based k-t Radial 
Sparse-Sense (kt-RASPS) reconstruction method, which 
exploits the temporal sparsity of the data.11,27 The same 
undersampled dataset prepared for MD-CNN was used for 
kt-RASPS reconstruction where 14 views, corresponding to 
a temporal resolution of 42.8 ms, were selected per frame 
with a uniform-angle rotating among different frames. The 
kt-RASPS algorithm was implemented using the parallel 
imaging and compressed sensing tools in BART with GPUs 
and parallel processing. Coil sensitivities were calculated 
using the ESPIRiT method.25 kt-RASPS parameters were op-
timized on 10 randomly selected subjects from the training 
dataset, where images were evaluated to determine the opti-
mal value of the regularization level and number of iterations. 
kt-RASPS performance was evaluated over a range of regu-
larization levels (λ) from 0.01-0.1 with a step of 0.005 and 
number of iterations ranging from 25 to 100, with 25 steps. 
MD-CNN performance was also compared to the CS-based 
method proposed by Miao et al,28 in which a combination of 
locally low rank (LLR) and temporal finite differences (FD) 
were used as regularization terms. This method was used to 
reconstruct the same undersampled dataset of 14 views/frame 
with regularization parameters λLLR = 0.06 and λFD = 0.006.

To evaluate MD-CNN performance compared to other 
deep learning frameworks, a 3D U-net network16 was used to 
reconstruct the same undersampled data (ie, 14 spokes). This 
network consisted of contracting and expanding paths with 
two stages of spatio-temporal down-sampling and up-sam-
pling in each path, respectively. The radial cine data from all 
time frames was gridded using NUFFT, coil-combined, and 
fed into the U-net as a 3D volume in the image domain of 
size 208 × 208 × 24 (ie, 2D + time) with real and imaginary 
components as different channels. To allow down-sampling 
and up-sampling of the temporal dimension inside the net-
work, the temporal dimension of the input and reference data 
was reduced to 24 frames (compared to the original data of 
25 frames) using linear interpolation of all time frames. The 
mean-squared error loss function was used to train this net-
work using the stochastic gradient descent optimizer with a 
learning rate of 0.01 and 350 epochs.

MD-CNN and kt-RASPS performance was evaluated by 
quantitative and qualitative measures. Mean squared error 
(MSE) and structural similarity index measure (SSIM) were 
calculated for MD-CNN, U-net and kt-RASPS with respect 
to the reference images. The magnitude values of all images 
are normalized by the 90th percentile before assessment. Edge 
sharpness of left ventricular (LV) borders was quantitatively 
evaluated across six LV myocardial segments (based on the 
AHA 16-segment model) in all time frames. In each segment, 
edge sharpness was calculated as the maximum gradient of 
the normalized intensity profile (between 0 and 1) across this 

min
Θk,Θm

‖‖‖Mxy (t)−Ψ
(
AΦ

(
Kxyw (t) |Θk

)
|Θm

)
xy

‖‖‖
2

2
,
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segment. To avoid misleading gradients produced by noise, 
each intensity profile was fit to a high-order polynomial func-
tion of order 10.

For qualitative assessment, three readers (U.N., S.K., 
and I.C. with > 5 y of experience in cardiovascular imag-
ing) blinded to the reconstruction methods independently as-
sessed images reconstructed by MD-CNN, kt-RASPS, and 
the reference based on four different metrics: (a-b) the sharp-
ness of LV borders at end-diastolic (ED) and end-systolic 
(ES) phases, (c) temporal fidelity of LV wall motion using a 
5-point Likert scale (1-non-diagnostic, 2-poor, 3-fair, 4-good, 
and 5-excellent), and (d) residual image artifacts in the entire 
field-of-view on a 5-point scale (1-minimal, 2-mild, 3-mod-
erate, 4-severe, and 5-non-diagnostic).

Endocardial and epicardial LV myocardial borders from 
MD-CNN, kt-RASPS, and reference images in ED and ES 
frames were manually delineated by all readers. LV myocar-
dium (ie, areas between endocardial and epicardial contours) 
and LV blood pool cavity were calculated from the extracted 
contours for the three datasets (ie, reference, kt-RASPS, and 
MD-CNN). To further investigate the effect of LV border 
sharpness on manual delineation, we calculated the DICE 
index between kt-RASPS vs. reference and MD-CNN vs. ref-
erence for the LV myocardium and LV blood cavity at the ED 
and ES phases.

2.6  |  Data analysis

Normal data distributions were expressed in the form of mean 
± SD. The two-sided Student’s t-test compared continuous 
variables between different reconstruction methods. Analysis 
of variance or Kruskal-Wallis tests were used as appropriate 
for comparison of multiple groups. For comparison of cate-
gorical data, the Chi-squared test was used. Significance was 
declared at two-sided P-values < .05. For pairwise compari-
sons following a three-group inferential test, a Bonferroni 
correction was used. Bland-Altman plots assessed agree-
ment between different readers. Statistical analyses were 
conducted using MATLAB (2017a, The MathWorks Inc., 
Natick, Massachusetts, United States).

3  |   RESULTS

MD-CNN performance increased as window size increased, 
as indicated by the decreasing MSE (0.125 ± 0.09, 0.11 ± 
0.1, and 0.106 ± 0.1) and increasing SSIM (0.85 ± 0.072, 
0.87 ± 0.067, and 0.87 ± 0.062) for Ntw = 5, 7, and 9, re-
spectively. MD-CNN reconstructed data also showed similar 
temporal fidelity for the three window sizes with increased 
flickering artifacts at Ntw = 5 compared to seven and nine 
frames (Supporting Information Video S1). A window size 

of seven frames was, therefore, used in the rest of our experi-
ments due to its similar performance to Ntw = 9 with lower 
reconstruction time and memory requirements, and improved 
performance compared to Ntw = 5. Supporting Information 
Figure S1 shows the MSE for MD-CNN images in the train-
ing and testing datasets at each of the 250 training epochs. 
Both training and testing MSE consistently decreased as 
the number of training epochs increased, indicating a ro-
bust performance and minimal overfitting of the MD-CNN. 
Parameters tuning for kt-RASPS yielded minimal streaking 
artifacts and maximal temporal fidelity at λ = 0.025 and #it-
erations = 50 (Supporting Information Videos S2 and S3).

Figure 3 shows examples from two subjects and compares 
the images (and their corresponding k-space) after different 
stages of the MD-CNN reconstructions. Comparing the input 
and output of the 1st and 2nd blocks of the k-space subnet-
work (columns 1–3), the k-space convolutional subnetwork 
gradually estimated the missing data at more k-space loca-
tions by interpolating values near the acquired k-space data 
and neighboring time frames. K-space interpolation reduced 
streaking artifacts in the corresponding images while main-
taining image sharpness. The image subnetwork further re-
duced streaking artifacts and improved image sharpness and 
contrast (column 4). The final MD-CNN-reconstructed im-
ages demonstrated a similar contrast as the reference images 
(column 5).

Cine images from undersampled radial data were recon-
structed by NUFFT, kt-RASPS, U-net, and MD-CNN com-
pared to the reference images (Figure 4). MD-CNN, U-net, 
and kt-RASPS reconstructions showed less pronounced 
streaking artifacts than NUFFT images. Similar to reference 
images, MD-CNN images preserved anatomical sharpness 
and contrast of the myocardium compared to kt-RASPS, 
and less residual artifacts compared to U-net. Cine imaging 
movies for two additional cases reconstructed by LLR+FD, 
kt-RASPS, MD-CNN, and reference showed improved tem-
poral fidelity of MD-CNN network compared to CS methods 
(Supporting Information Videos S4 and S5) and reduced re-
sidual streaking artifacts compared to the 3D U-net. Figure 
5 shows MD-CNN reconstructions from one subject at dif-
ferent undersampling rates: 14, 16, and 20 spokes per frame 
compared to the corresponding reference image. X-t plots 
and Supporting Information Video S6 showed increased tem-
poral fidelity as undersampling rate decreases indicated by 
less blurring in the LV wall at 20 spokes compared to recon-
structions with 14 spokes per frame.

MD-CNN showed lower MSE and improved SSIM com-
pared to kt-RASPS and U-net (P < .01 for both) (Table 1). 
The intensity profiles of MD-CNN reconstructed images 
also showed higher sharpness across the blood-myocar-
dium at different segments than kt-RASPS at ED and ES 
frames (Figure 6, and Supporting Information Figure S2, 
respectively). MD-CNN maintained the blood-myocardium 
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contrast of small anatomic structures such as papillary mus-
cles, as indicated by the intensity profiles in segment 4 of 
Figure 6. Per-segment LV sharpness is illustrated in the 
bull’s-eye plot with mean ± SD for each segment calculated 
over all time frames in the testing dataset. MD-CNN im-
ages had better LV sharpness in all segments compared to 
kt-RASPS (P < .01) (Table 1).

Qualitative assessments of LV border sharpness, temporal 
fidelity, and residual artifacts are reported in Table 2. The 
sharpness of the LV myocardium at end-diastole and end-sys-
tole was significantly improved in MD-CNN reconstruction 
compared to kt-RASPS reconstruction (3.87 ± 0.66 vs. 2.71 
± 0.58, and 3.57 ± 0.58 vs. 2.56 ± 0.60 for end-diastole 
and end-systole, respectively; P-value < .01). LV myocar-
dium sharpness was higher in ED frames compared to ES 

MD-CNN and kt-RASPS, potentially due to less cardiac mo-
tion at end-diastole. MD-CNN reconstructed images exhib-
ited less temporal LV wall blurring compared to kt-RASPS 
(P-value < .01). Residual artifacts were reduced in MD-CNN 
images indicating the network’s ability to recover image 
sharpness while suppressing artifacts.

The percentage error of the extracted LV myocardial area 
in MD-CNN images was lower than in kt-RASPS images, 
with a 9% and 4% decrease at ED and ES frames relative 
to reference images, respectively (P-value < .01) (Table 3). 
The LV cavity area extracted from MD-CNN also showed 
improved DICE index and reduced percentage error com-
pared to that of the kt-RASPS images at both ED and ES 
frames with respect to the reference images. Figure 7 and 
Supporting Information Figure S3 shows agreement between 

F I G U R E  3   Performance of the k-space subnetwork in two subjects. The k-space data are shown at different stages of the network: the 
gridded input k-space, after the 1st and 2nd residual blocks of the k-space subnetwork, the k-space of MD-CNN reconstruction, and the k-space 
of the reference image (rows 1 and 3). The corresponding images are also shown (rows 2 and 4). The k-space gaps are gradually filled and the 
corresponding streaking artifacts of input images are suppressed after k-space interpolation in 1st and 2nd k-space blocks (columns 2 and 3). The 
final MD-CNN reconstructed images have further reduced artifacts and improved image quality similar to the reference images. The k-space of the 
input, k-space block-1, and kspace block-2 are taken from a single coil. All k-space data are presented on a logarithmic scale
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readers segmenting the LV myocardial area from kt-RASPS, 
MD-CNN, and reference images. MD-CNN showed higher 
agreement between readers (ie, smaller limits of agreement) 

similar to that of reference images (Supporting Information 
Table S2). MD-CNN takes 1.6 ± 0.35 s to reconstruct a set of 
25 frames of one slice compared to 5.4 ± 1.1 s for kt-RASPS.

F I G U R E  4   Representative reconstructions by NUFFT, kt-RASPS, U-net, and MD-CNN compared to the reference images for two subjects at 
end-diastolic and end-systolic phases, as well as x-t plots across all time frames

F I G U R E  5   Representative reconstruction by MD-CNN at different undersampling rates: 14, 16, and 20 spokes per frame compared to 
reference image. X-t plots of the reconstructed images at each undersampling rate (bottom row) shows the temporal fidelity across all time frames. 
Temporal fidelity increases as undersampling decreases (magenta arrows)
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4  |   DISCUSSION

In this study, we developed a multi-domain network that pro-
cesses MR data in both k-space and image domains with an 
end-to-end training process. In general, all k-space operations 
can be performed in the image domain and vice versa; for ex-
ample, convolving a kernel to an image is equivalent to mul-
tiplying this kernel’s response to the k-space of that image. 
However, in the context of CNN, all operations are based 
on convolutional kernels only; hence, certain operations are 

feasible to be performed in the k-space and others in the image 
domain using CNN. The k-space subnetwork performs an in-
terpolation of the input 2D k-space using shared information 
among adjacent frames to provide an enhanced estimation of 
missing k-space data, particularly at locations far from the ac-
quired radial lines (ie, gaps among radial lines). Filling such 
k-space gaps is crucial for suppressing image domain's streak-
ing artifacts. Although conventional gridding techniques use 
single hand-crafted kernel to interpolate MR signals at all 
k-space locations, the performance of such kernels degrades 

T A B L E  1   Quantitative assessment of image quality by mean-squared error (MSE), structural-similarity index measure (SSIM), and LV 
myocardial sharpness for kt-RASPS, 3D U-net, and MD-CNN reconstructed images with respect to the reference

Method kt-RASPS U-net MD-CNN Reference P-value

MSE 0.61 ± 0.51* 0.13 ± 0.16 0.11 ± 0.10 – <.01

SSIM 0.72 ± 0.07* 0.84 ± 0.08* 0.87 ± 0.067 – <.01

Quantitative LV myocardial sharpness 0.12 ± 0.04*§  0.16 ± 0.06§  0.17 ± 0.06§  0.21 ± 0.07 <.01

All values are reported as mean ± SD.
§P-value < .01 compared to Reference; *P-value < .01 compared to MD-CNN. 

F I G U R E  6   Quantification of the left ventricular (LV) edge sharpness at six myocardial segments in GRAS, MD-CNN, and reference images. 
A, Sample reconstructed images at end-systole by the three methods (kt-RASPS, MD-CNN, and Reference) showing the six segments at which LV 
sharpness was quantified and the intensity profiles corresponding to each segment of the sample images. B, The bull’s eye plot shows the value of 
the quantified LV edge sharpness at the six different segments of the myocardium with mean ± SD calculated over all time frames of the testing 
dataset
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rapidly at higher acceleration rates, leaving large k-space gaps 
and hence more streaking artifacts. The amount and shape of 
such artifacts are largely determined by the design of the grid-
ding kernel and the undersampling rate. CNN, on the other 
hand, offers an efficient k-space interpolation strategy that op-
timizes multiple convolutional kernels on many training sam-
ples to determine the proper interpolation weights specific to 
the undersampling scheme used. Additionally, the non-linear 
activation functions used after each convolutional layer in 
CNN may allow a spatially variant interpolation process, in 
which the high- and low-frequency k-space content can be in-
terpolated differently.

Considering that successive time frames have simi-
lar structural information, k-space interpolation across the 
time dimension (using 3D convolution kernels) also allows 
spoke sharing among neighboring frames with similar image 
content. Data sharing in turn allows for better estimation of 
k-space values at more locations on k-space gaps, thereby 
reducing streaking artifacts. To exploit shared information 
across the time dimension in the form of spokes sharing, 
the radial trajectory was rotated from frame to frame at a 
small angle (1.8°) that maintained a uniform angular spacing 
among neighboring frames.29,30 The importance of k-space 
processing in our network was demonstrated by assessing 
the resulting k-space of each residual block in the k-space 
subnetwork. The blocks of the k-space subnetwork gradually 
filled the missing values in k-space and led to significantly 
reduced streaking artifacts in the reconstructed images while 
maintaining fine image details and sharpness.

The refined k-space data are transformed into the image 
domain using inverse FFT for further processing via the im-
age-subnetwork. To guarantee a proper flow of gradients 
between the two subnetworks for the back-propagation al-
gorithm during training, a differentiable FFT operation was 
implemented using native PyTorch functions. Maintaining 
complex-valued MR data throughout the MD-CCN interme-
diate layers was also necessary to allow a proper transfor-
mation of data between the k-space and image domain. To 
process complex-valued data, a complex convolutional net-
work was used to maintain the proper combination of real 
and imaginary components of complex MR data throughout 
all network layers.

In the image-subnetwork, the improved myocardi-
um-blood contrast, artifact suppression, and sharp edges in 
the MD-CNN output images are likely associated with the 
ability of the image-subnetwork to compensate for vari-
able k-space density and suppress more residual artifacts. 
Considering the incoherent residual (streaking) artifact pat-
terns among different frames, the 3D convolution layers in 
this subnetwork enable further removal of residual artifacts 
by sharing spatio-temporal correlations among neighboring 
frames, similar to compressed sensing.12,16

MD-CNN images had superior image quality than kt-
RASPS and U-net on all quantitative measures. MD-CNN 
was trained to produce images that minimally differ from ref-
erence images in pixel value, such that quantitative measures 
are implicitly biased toward the MD-CNN-reconstructed 
images compared to kt-RASPS images. To alleviate this 

Method kt-RASPS MD-CNN Reference

Sharpness of LV borders at 
end-diastole

2.71 ± 0.58*§  3.87 ± 0.66§  4.71 ± 0.52

Sharpness of LV borders at 
end-systole

2.56 ± 0.60*§  3.57 ± 0.58§  4.60 ± 0.58

Temporal fidelity of wall 
motion

2.59 ± 0.59*§  3.27 ± 0.65§  4.65 ± 0.51

Residual artifacts 2.63 ± 1.09§  2.38 ± 0.81§  1.81 ± 0.82
§P-value < .01 compared to Reference; 
*P-value < .01 compared to MD-CNN. 

T A B L E  2   Qualitative assessment 
of LV border sharpness at end-diastolic 
and end-systolic cardiac phases, temporal 
fidelity of myocardial wall motion, and 
residual artifacts in kt-RASPS, MD-CNN, 
and reference images

Method Phase kt-RASPS MD-CNN P-value

DICE index of LV 
myocardium

Diastole 0.77 ± 0.12 0.84 ± 0.05 <.01

Systole 0.83 ± 0.06 0.88 ± 0.07 <.01

DICE index of LV 
endocardium

Diastole 0.97 ± 0.01 0.98 ± 0.03 .011

Systole 0.96 ± 0.01 0.97 ± 0.01 <.01

Percentage error of LV 
myocardial area (%)

Diastole 21.4 ± 19.1 12.0 ± 13.1 <.01

Systole 13.8 ± 13.3 9.4 ± 8.0 <.01

Percentage error of LV 
endocardial area (%)

Diastole 4.5 ± 4.0 3.6 ± 3.3 .15

Systole 7.3 ± 6.2 5.2 ± 4.3 <.01

T A B L E  3   DICE index and percentage 
error of LV myocardial and endocardial 
areas at end-diastolic and end-systolic 
phases extracted from kt-RASPS and 
MD-CNN images with respect to reference 
images
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bias, kt-RASPS, MDC-CNN, and reference images were 
normalized by the 90th percentile before MSE and SSIM 
calculations. In addition, to alleviate the impact of myocar-
dium-blood contrast differences on LV sharpness quantifica-
tions, each intensity profile across the LV myocardium was 
standardized separately from 0 to 1 before the sharpness cal-
culations. In addition, MD-CNN allows further suppression 
of the residual streaking artifacts compared to the 3D U-net. 
This is mainly due to the ability of the k-space interpolation 
subnetwork to provide cleaner images to the image-domain 
subnetwork, unlike the U-net that processes cine data in the 
image domain only.

In the qualitative assessment, MD-CNN images also 
demonstrated improved LV edge sharpness at ED and ES 
phases and reduced temporal blurring compared to kt-
RASPS images. This was also indicated by greater agree-
ment among readers assessing the extracted LV areas from 
MD-CNN vs. kt-RASPS reconstruction. These results also 
reflect higher confidence among readers to accurately 
segment the sharp LV borders from MD-CNN images. 
Although the temporal fidelity of MD-CNN reconstruc-
tion at 14 views was assessed as fair by the readers, higher 
temporal fidelity can be obtained by including more views 
(optimally observed at 20 views per frame). Both methods 

F I G U R E  7   Bland-Altman plots showing inter-observer agreement of three comparisons: Reader 1 vs. Reader 2, Reader 2 vs. Reader 3, and 
Reader 1 vs. Reader 3 of the extracted LV myocardial areas in kt-RASPS, MD-CNN, and reference images. Biases and limits of agreement for each 
comparison are reported in Supporting Information Table S2



1206  |      EL-REWAIDY et al.

showed similar residual artifact content, but the artifacts 
were different in nature. Kt-RASPS endorsed streak-
ing artifacts, while flickering artifacts were observed in 
MD-CNN.

A few considerations may have contributed to inferior 
reconstruction by kt-RASPS in this study. The kt-RASPS 
method is more suitable for real-time imaging applications 
where a large number of frames are available (>>25), 
so that sufficient sparsity along the time dimension is 
achieved. However, in our reconstruction problem, only 
25 phases were available for reconstruction, which may 
have led to additional blurring in kt-RASPS images. The 
limited number of frames in our data also led to faster kt-
RASPS reconstruction times compared to the real-time 
applications.12 On the other hand, the proposed MD-CNN 
method is able to exploit redundancy in a small number 
of adjacent frames (seven in the experiments) and thereby 
efficiently reduce undersampling artifacts. In addition, the 
rotation angle in this study is uniform, as opposed to the 
golden-angle rotation that is widely used in real-time appli-
cations.12,22 However, the uniform trajectories exhibit bet-
ter characteristics that allow equidistant spacing between 
views when compared to golden-angle trajectories.

Our study has some limitations. Only one slice at mid-LV 
was acquired per patient, which was not sufficient to calcu-
late LV functional parameters (eg, LV volumes and ejection 
fraction). All patients studied were in sinus rhythm, and gen-
eralization of the reconstruction techniques in patients with 
irregular rhythms was not studied.

5  |   CONCLUSION

The proposed multi-domain network uses k-space and 
image domain processing units to efficiently reconstruct 
highly undersampled radial cine MR data. MD-CNN ex-
ploits the spatio-temporal correlations among neighboring 
time frames and multiple coils to enable higher accelera-
tion rates.
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the Supporting Information section.

VIDEO S1 MD-CNN sample reconstruction of all time 
frames at three different neighboring window sizes (Ntw = 
5, 7, and 9 frames) from the left side to the right side, re-
spectively. The flickering artifacts are suppressed at larger 
window sizes (eg, 7 (middle) and 9 (right)) while the tempo-
ral fidelity did not degrade at these large window sizes when 
compared to a window size of 5
VIDEO S2 K-t radial sparse-sense (kt-RASPS) sample re-
construction of all time frames at three different values of 
regularization weights (λ = 0.01, 0.025, and 0.1) from the 
left side to the right side, respectively. The reconstructed 
data with low regularization values (λ = 0.01) showed a high 
level of streaking artifacts, and increased temporal blurring 
at higher regularization levels (λ = 0.1), while data at λ = 
0.025 showed minimal streaking artifacts with relatively high 
temporal fidelity
VIDEO S3 K-t radial sparse-sense (kt-RASPS) sample recon-
struction of all time frames at 3 different values of regulariza-
tion weights (#iterations = 25, 50, and 100) from the left side 
to the right side, respectively. The image quality increases at 
#iterations = 50 compared to that at #iterations = 25, while 
image quality was maintained at #iterations = 50 and 100
VIDEO S4 Representative reconstruction at 14 spokes/frame 
of undersampled data from one subject at all cardiac phases 
by different reconstruction methods: the locally low rank 
and temporal finite differences compressed sensing method 
(LLR+FD), k-t radial sparse-sense (kt-RASPS), 3D U-net, 
the proposed MD-CNN network, and reference data, from 
left to right, respectively
VIDEO S5 Representative reconstruction at 14 spokes/
frame of undersampled data from another subject at all car-
diac phases by different reconstruction methods: the locally 
low rank and temporal finite differences compressed sensing 
method (LLR+FD), k-t radial sparse-sense (kt-RASPS), 3D 
U-net, the proposed MD-CNN network, and reference data, 
from left to right, respectively
VIDEO S6 Representative reconstruction at 14, 16, and 20 
spokes/frame of undersampled data from one subject at all 
cardiac phases by the proposed MD-CNN network. Temporal 
fidelity increases as number of spokes increase
FIGURE S1 Mean squared error (MSE) for MD-CNN im-
ages in the training and testing datasets at each of the 250 
training epochs
FIGURE S2 Sample reconstructed images at end-systole by 
the three methods (kt-RASPS, MD-CNN, and Reference) 
showing the six segments at which LV sharpness was quanti-
fied and the intensity profiles corresponding to each segment 
of the sample images
FIGURE S3 Bland-Altman plots showing inter-observer 
agreement of each comparison: Reader#1 vs. Reader#2, 
Reader#2 vs. Reader#3, and Reader#1 vs. Reader#3 of the 
extracted LV myocardial areas in kt-RASPS, MD-CNN, and 
reference images, separately
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TABLE S1 Clinical indications for clinical cardiac MR scans 
of our patient cohort
TABLE S2 Biases and limits of agreement of the Bland-
Altman plots for inter-observer agreement of 3 compari-
sons: Reader#1 vs. Reader#2, Reader#2 vs. Reader#3, and 
Reader#1 vs. Reader#3 of the extracted LV myocardial areas 
in kt-RASPS, MD-CNN, and reference images

How to cite this article: El-Rewaidy H, Fahmy AS, 
Pashakhanloo F, et al. Multi-domain convolutional 
neural network (MD-CNN) for radial reconstruction of 
dynamic cardiac MRI. Magn Reson Med. 
2021;85:1195–1208. https://doi.org/10.1002/mrm.28485
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Figure 4.8: (Figure S1) Mean squared error (MSE) for MD-CNN images in the training and testing datasets at
each of the 250 training epochs.

Table 4.4: (Table S2) Biases and limits of agreement of the Bland-Altman plots for inter-observer agreement of
3 comparisons: Reader#1 vs. Reader#2, Reader#2 vs. Reader#3, and Reader#1 vs. Reader#3 of the extracted LV
myocardial areas in kt-RASPS, MD-CNN, and reference images.
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R1 vs. R2 -0.37 -0.27 -0.26 10.2 6.2 6.4 -10.9 -6.7 -6.9

R1 vs. R3 2* 1.1 0.7 9.7 7 6.2 -5.7 -4.9 -4.8

R2 vs. R3 1.6* 0.8 0.4 8.3 4.6 4.9 -5 -3 -4.1

1 *p-value <0.05 LV myocardial area between Readers



4

62
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RECONSTRUCTION OF DYNAMIC CARDIAC MRI

Figure 4.9: (Figure S2) Sample reconstructed images at end-systole by the three methods (kt-RASPS, MD-CNN,
and Reference) showing the six segments at which LV sharpness was quantified and the intensity profiles cor-
responding to each segment of the sample images.



5
NEURAL NETWORKS FOR

ACCELERATING MYOCARDIAL T1

MAPPING

In this chapter, we develop and evaluate MyoMapNet, a rapid myocardial T1 mapping

approach that uses neural networks (NN) to estimate voxel-wise myocardial T1 and ex-

tracellular (ECV) from T1-weighted images collected after a single inversion pulse over

4-5 heartbeats. MyoMapNet utilizes a simple fully-connected NN to estimate T1 values

from 5 (native) or 4 (post-contrast) T1-weighted images. MyoMapNet T1 mapping enables

myocardial T1 quantification in 4-5 heartbeats with near-instantaneous map estimation

time with similar accuracy and precision as MOLLI.
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5.1. INTRODUCTION

C ARDIOVASCULAR magnetic resonance (CMR) myocardial T1 and extracellular vol-

ume (ECV) mapping allow for non-invasive quantification of interstitial diffuse fi-

brosis [2]. Over the past decade, there have been significant advances in CMR pulse se-

quences for myocardial T1 mapping [109–111, 116–121]. These sequences are based on

the application of magnetization preparation pulses (such as inversion [109, 111, 119],

saturation [110, 116], or a combination of both [121]) for the collection of a series of

T1 weighted images. Subsequently, tissue relaxation times are estimated using a two or

three-parameter fitting model [109–111, 116–122]. For each of these sequences, there

are different trade-offs in accuracy, precision, coverage (2D vs. 3D), and respiratory mo-

tion (free breathing vs breath-holding) [120, 123–133]. Alternatively, recent approaches,

such as combined T1 and T2 mapping [125, 129, 134–136], MR fingerprinting [137, 138],

or multitasking [139], have been introduced to simultaneously measure different tissue

parameters.

Among different myocardial T1 mapping sequences, Modified Look-Locker (LL) in-

version recovery (MOLLI) [119], acquired within a single breath-hold, is the most widely

used sequence for myocardial T1 mapping. This sequence consists of three sets of LL ex-

periments with 3 heartbeats (or 3 seconds) in between for magnetization recovery. This

acquisition is commonly referred to as the 3(3)3(3)5 MOLLI scheme, which indicates that

3, 3, and 5 images are acquired in three LL experiments with 3 rest heartbeats (i.e., 3RR

interval) between each LL experiment. MOLLI-5(3)3 and MOLLI-4(1)3(1)2 were imple-

mented to improve acquisition efficiency and precision [124]. A variation of these se-

quences in which the rest period between acquisition utilizes a fixed time (1-3 second)

instead of heartbeats was also implemented [140]. These modifications reduce the du-

ration of the original MOLLI from approximately 17 heartbeats to 11 heartbeats [124]. In

this approach, T1-weighted images are acquired at multiple points throughout the recov-

ery curve, and a pixel-wise curve fitting algorithm using a 3-parameter model is applied

to estimate the T1 values at each pixel. Recently, the inversion group (IG) fitting has also

been proposed for MOLLI with shorter waiting periods between LL experiments, albeit

with a penalty on precision [141–143]. For shortened MOLLI (ShMOLLI) with a 5(1)1(1)1

scheme [109], a conditional fitting algorithm is utilized to discard the latter measure-

ments for long T1 at high heart-rates.

Alternatives to standard curve-fitting techniques in parametric mapping include dic-

tionary based reconstruction, simulated signal recovery, or machine learning [144–146].

Shao et al. used a deep learning model for rapid and accurate calculation of myocar-

dial T1 and T2 in Bloch equation simulation with slice profile correction [146]. Simi-

larly, Hamilton et. al. used deep learning to rapidly reconstruct T1 and T2 maps from
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CMR fingerprinting images [144]. To reduce motion artifacts and minimize the acqui-

sition window in T1 mapping during the cardiac cycle, a convolutional neural network

(CNN) model was used to reconstruct highly accelerated T1 weighted images in slice-

interleaved T1 mapping sequences with radial sampling (38). Deep learning neural net-

works were also recently used to combine saturation recovery and inversion data to im-

prove T1 mapping precision [147]. These studies have demonstrated the potential for

machine learning to improve myocardial tissue characterization by increasing precision

and reconstruction speed, or decreasing motion sensitivity or other confounders of T1

mapping.

In this study, we sought to develop and evaluate a fully connected neural network

(MyoMapNet)-based rapid myocardial T1 mapping approach using a single LL experi-

ment with a scan duration of 4-5 heartbeats and near-instantaneous ( 2ms) reconstruc-

tion time. The proposed MyoMapNet was trained and validated using numerically simu-

lated data and in-vivo images; MyoMapNet’s performance was compared to MOLLI with

a 3-parameter fitting model.

5.2. METHODS

5.2.1. MYOMAPNET T1 MAPPING

The data acquisition for MyoMapNet is very similar to MOLLI sequence and is based

on the collection of 5 (native) or 4 (post-contrast) T1 weighted images after a single

inversion pulse. Figure 5.1 shows the pulse sequence and magnetization evolution of

MOLLI-5(3)3 for native T1 mapping, composed of two LL experiments to acquire eight

T1 weighted images over 11 heartbeats. In MyoMapNet, we use the five images sampled

after the first inversion pulse for native MOLLI-5(3)3 T1 measurement. For post-contrast

T1 mapping, we will use only the first four images collected using MOLLI-4(1)3(1)2 T1

(Figure 5.2). In contrast to MOLLI, where a 3-parameter fit model is used to estimate na-

tive or post-contrast T1 mapping, in MyoMapNet, we propose to use a neural network to

estimate T1 values from only 5 (native) or 4 (post-contrast) T1 images, thereby reducing

the scan time to only 5 heartbeats for native and 4 heartbeats for post-contrast scans.

5.2.2. NUMERICAL SIMULATION

MOLLI-5(3)3 simulations were performed to generate the training and testing signal-

intensity time courses. A single-shot readout for two sequences was simulated using

Bloch equation with the following parameters: balanced Steady-State Free Precession

(bSSFP) acquisition with 5 ramp-up pulses, TR/flip angle =2.5 ms/35◦, 80 phase-encode

lines, acquisition window = 200 ms, and linear phase ordering. The time between the

inversion and the center of k-space was 120 ms and 200 ms for two LL experiments of
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Figure 5.1: MOLLI-5(3)3 sequence (a) and associated signal recovery (b): two look-locker inversion pulses are
performed to acquire eight T1-weighted images with a recovery period of 3 heartbeats between look-lockers.
In MyoMapNet, images collected after the first inversion pulse are used for estimating the T1 values.

MOLLI-5(3)3. Simulated T1 ranged from 400 ms to 1800 ms with an increment of 0.1 ms,

T2 of 42 ms, and a fixed heart rate of 60 bpm. Subsequently, different Gaussian noise

levels were added to the simulated signals for SNRs of 20, 40, and 100. This process was

repeated 5 times for each SNR to generate a total of 80,000 signal time-courses, each with

8 time-points, to serve as data augmentation. A 3-parameter fitting model was used to

calculate T1 of each signal time course:

s(T I ) = A−Be(−T I /T 1
∗) (5.1)

where TI represents the inversion time, and A, B, and T1
∗ were three unknowns.

T1 was determined from the resulting A, B, and T1
∗ by applying the equation: T1 =
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Figure 5.2: MOLLI-4(1)3(1)2 sequence (a) and associated signal recovery (b): three look-locker inversion pulses
are performed to acquire nine T1-weighted images with a recovery period of one heartbeat between look-
lockers. In MyoMapNet, images collected after the first look-locker are used for estimating the T1 values.

T1
∗(B/A−1).

5.2.3. IN-VIVO DATA

The study protocol was approved by the Institutional Review Board and written consent

was waived. T1 mapping data was collected as part of the clinical exam in all partici-

pants, and we retrospectively extracted T1 mapping data. Patient data were handled in

compliance with the Health Insurance Portability and Accountability Act. Imaging was
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Figure 5.3: MyoMapNet architecture: MyoMapNet uses a fully-connected neural network for estimating pixel-
wise T1 values from T1-weighted images collected after a single look-locker inversion pulse (i.e. the first 5
images of MOLLI-5(3)3 or first 4 images of MOLLI-4(1)3(1)2). For each voxel, the signal values from 5 T1-
weighted images are concatenated with their corresponding look-locker times and used as the network input
(i.e. 10×1) for native T1 mapping. The input values are fed to a fully-connected network with 5 hidden layers
with 400, 400, 200, 200, and 100 nodes each layer, respectively. The output is the estimated T1 value at each
voxel.

performed using a 3T scanner (MAGNETOM Vida, Siemens Healthineers, Erlangen, Ger-

many) equipped with body and spine phased-array coils.

T1 mapping using MOLLI was collected in 717 subjects (386 males, 55±16.5 years)

with a subset of 535 subjects (232 males, 56.5±15 years) having both native and post-

contrast T1 maps. All data were extracted retrospectively from patients who were re-

ferred for a clinical CMR exam for various cardiovascular indications from October 2018

to March 2020.

MOLLI-5(3)3 and MOLLI-4(1)3(1)2 were performed using the following parameters:

bSSFP with 5 ramp-up excitations, FOV = 360×320 mm2, voxel size = 1.7×1.7×8 mm3,

TR/TE = 2.5 ms/1.03 ms, flip angle = 35°, linear phase-encoding ordering, partial Fourier

factor = 7/8, GRAPPA acceleration factor of 2 with 24 reference lines, acquisition window

218 ms during diastole, slice gap 12 mm. Three slices in the short-axis view (SAX) were

collected in three separate breath-holds with 10 second rest periods between breath-

holds. Adiabatic tan/tanh inversion pulse was used. Both MOLLI-5(3)3 and MOLLI-

4(1)3(1)2 used a minimum inversion time (TI) of 100 ms with a TI increment of 80 ms.

For post-contrast measurement, MOLLI-4(1)3(1)2 data was collected 15-20 min after

injection of Gd-DTPA at 0.1 mmol/kg (Gadavist, Bayer Pharma AG, Berlin, Germany).

MOLLI-5(3)3 and MOLLI-4(1)3(1)2 T1 were calculated using a 3-parameter curve fitting

model (Equation 1).
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5.2.4. T1 ESTIMATION IN MYOMAPNET

MyoMapNet is a fully-connected neural network that estimates T1 maps from input T1-

weighted images. MyoMapNet input layer has 2Nt nodes for Nt T1 weighted signals and

their corresponding inversion times, where Nt =5 in the native T1 network, and Nt =4

in the post-contrast T1 network. MyoMapNet is consisted of Ml layers each of (200×S)

nodes followed by Ml layers of (100×S) nodes each, and one layer of (50×S) nodes; where

Ml controls the depth (total number of layers) of MyoMapNet, and S is a scaling factor

to control the number of trainable parameters in each layer. For example, Figure 5.3

shows the MyoMapNet architecture at Ml =2 and S=2, where five hidden layers of 400,

400, 200, 200, 100 nodes in each layer were utilized. A leaky rectified linear unit activation

function was applied after each hidden layer. MyoMapNet parameters were empirically

optimized to balance between accurate T1 mapping estimation and avoiding the risk of

overfitting. To determine the optimal network depth and size, MyoMapNet performance

was validated at Ml =1,2,and 3 and S=1,2,and 3. The number of parameters at different

depths and scales of MyoMapNet is reported in Table 5.1.

MyoMapNet was implemented in Python using the PyTorch library version 0.41. Train-

ing and validation were performed on an NVIDIA DGX-1 system equipped with 8T V100

graphics processing units (GPUs; each with 32 GB memory and 5120 cores), central pro-

cessing unit (CPU) of 88 core: Intel Xeon 2.20 GHz each, and 504 GB RAM. Only 2 GPUs

were considered for training and testing the proposed MyoMapNet.

Table 5.1: Number of parameters at different MyoMapNet depth (3, 5, and 7 layers) and network size (S=1, 2,
and 3).

3 layers 5 layers 7 layers

S=1 27401 77701 128001

S=2 104801 305401 506001

S=3 232201 683101 1134001

5.2.5. MYOMAPNET TRAINING

For simulation experiments, a set of 64,000 simulated signals (80% of the whole dataset)

was randomly selected at each noise level (i.e. SNR of 100, 40, and 20). Each of these

datasets was used to train the MyoMapNet separately. For in-vivo studies, training datasets

of 573 patients (1719 native T1 maps) and 428 patients (1281 post-contrast T1 maps) were

randomly selected for the native and post-contrast map reconstructions, respectively. A

detailed description of data splitting is included in Figure 5.4. Corrupted native T1 maps
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(249 maps) due to image artifacts were excluded from the training dataset. MOLLI-5(3)3

and MOLLI-4(1)3(1)2 T1 maps were estimated using 8 (native) or 9 (post-contrast) T1-

weighted images. We performed all the map reconstruction offline without motion cor-

rection. Two loss functions were studied to minimize the error between the estimated

and reference MOLLI T1 values:

The mean-absolute error loss function (MAE) = 1
n

∑n
i=1 |est i mated_T1i −MOLLI _T1i |

The mean-squared error loss (MSE) = 1
n

∑n
i=1(est i mated_T1i −MOLLI _T1i )2

where n is the number of T1 samples in a minibatch of the training dataset (batch size

=80 T1 maps). To select the optimal loss function and network size, the training dataset

was further split into subsets of 80% training and 20% validation of the network for the

optimization experiments only. The stochastic gradient descent optimizer with an initial

learning rate of 1E-8 and momentum of 0.8 was used to train the network for 2000 epochs

with a batch size of 80 maps. The same hyperparameters were used to train all models on

native and post-contrast datasets, except for networks with S=3 or Ml =3, where a batch

size of 60 T1 maps was used. MyoMapNet took 8.3±2.5 hours to be trained using the

native T1 dataset.

5.2.6. MYOMAPNET EVALUATION

The performance of MyoMapNet was evaluated using the independent testing dataset.

The simulated testing dataset contained 16,000 samples, containing T1 ranging from 400

to 1800ms. For in-vivo studies, we used native T1 maps from 144 patients (432 MOLLI-

5(3)3 T1 maps) and post-contrast T1 maps from 107 patients (324 MOLLI-4(1)3(1)2 T1

maps). For each T1 map, we calculated 3 sets of T1 estimates: (a) standard MOLLI T1

mapping using 3-parameter curve fitting from all collected images (8, or 9 images in na-

tive or post-contrast T1 mapping, respectively), (b) abbreviated MOLLI using only 5 na-

tive (MOLLI-5) or 4 post-contrast MOLLI (MOLLI-4) images using standard 3-parameter

curve fitting, and (c) MyoMapNet using only 5 native or 4 post-contrast T1 weighted im-

ages, retrospectively extracted from the standard MOLLI dataset. The ECV values were

calculated for patients who had both native and post-contrast T1 mapping available in

the testing dataset (75 patients).

5.2.7. DATA ANALYSIS

Endocardial and epicardial contours were drawn to measure global T1 values. Figure 5.5

shows example contours for 4 different subjects. The mean and standard deviation of

T1 or ECV from the LV myocardium were calculated. The global T1 was measured by

averaging the myocardial T1 from three different slices. Native, post-contrast T1, and
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Figure 5.4: Flowchart for MyoMapNet training, testing, and parameter-tuning validation splits in the native,
post-contrast, and simulated T1 datasets. ECV values were evaluated in 75 subjects who had both native and
post-contrast T1 data available in the testing dataset.

Figure 5.5: Example native T1 maps with left ventricular myocardial segmentation used for analyzing T1 esti-
mations by MyoMapNet, MOLLI-5, and standard MOLLI-5(3)3.

ECV values were reported as mean ± standard deviation. The 95% confidence interval

(95% CI) of the mean was reported to represent a range of values that contains the true

mean of the population with 95% certainty. The precision of T1 maps was assessed using

the standard deviation of T1 values within the myocardium. Bland-Altman analysis was
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Figure 5.6: Bland-Altman plots showing the mean difference and 95% limits of agreement between the simu-
lated T1 values by the MOLLI-5 vs. MOLLI-5(3)3 (left column) and MyoMapNet vs. MOLLI-5(3)3 (right column)
for SNR of 100, 40, and 20. MOLLI-5 yields a systematic error in T1 estimations, which is corrected in MyoMap-
Net.

used to characterize per slice and per patient T1 estimated by two different methods

(abbreviated MOLLI vs. standard MOLLI, and MyoMapNet vs. standard MOLLI) and

reported as the mean difference of T1 estimations and 95% limits of agreements.

Group differences in per-slice T1 measurements were assessed using linear mixed-

effects models with compound symmetry covariance structure [148]. In these models,

the pair-wise group difference was fitted as the outcome, and the subject was included as

a random intercept. The average and standard deviation of T1 were compared between

two methods using the paired Student’s t-test. Bonferroni correction was utilized to ac-

count for three pair-wise group comparisons. All tests were two-sided and the nominal

level of statistical significance was 0.0167.
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Figure 5.7: Native T1 maps from four patients, reconstructed using MOLLI-5 (using only 5 T1 weighted images
with 3-parameter fitting), MyoMapNet, and MOLLI-5(3)3 with a 3-parameter fitting model. MoyMapNet yield
maps with more homogenous signal compared to MOLLI-5.

5.3. RESULTS

5.3.1. NETWORK OPTIMIZATION

The native T1 estimation errors between MyoMapNet and standard MOLLI-5(3)3 in the

validation dataset at different loss functions, number of layers, and number of nodes per

layer (18 networks in total) are summarized in Table 5.2. In general, MAE loss showed

consistently lower errors than MSE at different network sizes and was therefore used

to train all MyoMapNet models. For MAE, small changes in T1 estimation errors were

reported between MyoMapNet and MOLLI-5(3)3 at different network sizes with slightly
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lower STD for bigger networks. MyoMapNet of 5 hidden layers (Ml = 2) and 400, 400, 200,

200, and 100 nodes (S=2) at each layer with a total of 305,401 trainable parameters, was

therefore used for all T1 estimation models to balance between small estimation errors

and lower chances of overfitting due to increased number of parameters.

Table 5.2: Mean difference (±STD) in T1 values between MyoMapNet and MOLLI-5(3)3 at different loss func-
tions (MSE, and MAE), network depth (3, 5, and 7 layers) and network size (S=1, 2, and 3).

MSE Loss MAE Loss

3 layers 5 layers 7 layers 3 layers 5 layers 7 layers

S=1 0±25 12±30 9±24 3±27 5±24 5±24

S=2 12±23 5±24 5±22 6±24 3±24 4±22

S=3 11±23 18±21 -2±24 3±24 3±23 3±22

5.3.2. NUMERICAL SIMULATIONS

Figure 5.6 shows the differences in estimated T1 between the MOLLI-5 (left) and My-

oMapNet (right) vs MOLLI-5(3)3, simulated at SNR levels of 100, 40, and 20. For higher

SNR, the estimated T1 values using MOLLI-5 exhibit a systematic error as a function of

T1 values. For the same SNR, MyoMapNet shows no systematic error for different T1 val-

ues. As SNR decreases, there is an increase in the error of estimated T1 values using both

techniques, but with lower error in MyoMapNet (0±15 ms, 95% CI [-0.3, 0.1]) compared

to MOLLI-5 (-3±32 ms, and 95% CI [-4, -3]; P <0.001) relative to MOLLI-5(3)3 at SNR=40.

At SNR=20, the mean difference between MyoMapNet and MOLLI-5(3)3 was (0±31ms,

95% CI [-1, 1]) compared to MOLLI-5 (-3±54 ms, 95% CI [-4, -3]; P <0.001).

5.3.3. IN-VIVO STUDIES

Figure 5.7 shows example native T1 maps reconstructed with the MOLLI-5(3)3, MOLLI-

5, and MyoMapNet in four subjects. The T1 maps using MyoMapNet showed sharp

myocardial T1 boundaries with more homogeneous T1 estimations similar to that of

MOLLI-5(3)3 maps when compared to the MOLLI-5 method. This inhomogeneity in

MOLLI-5 T1 estimations is more apparent in the blood pool, affecting the accuracy and

precisions of the estimated T1 values.

The mean T1 values and precision for myocardial native and post-contrast T1, and

ECV maps are summarized in Table 5.3. MyoMapNet yields T1 and ECV values similar to

those of the standard MOLLI methods with lower estimation errors compared to abbre-

viated MOLLI methods (1230±63, 1200±45, and 1199±46 ms for native T1 values; 548±63,
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Figure 5.8: Bland-Altman plots showing the mean difference and 95% limits of agreement for global native,
post-contrast T1, and ECV for the abbreviated MOLLI-5/MOLLI-4 vs. standard MOLLI-5(3)3/MOLLI-4(1)3(1)2
(left column) and MyoMapNet vs. standard MOLLI-5(3)3/MOLLI-4(1)3(1)2 (right column). Each dot repre-
sents the values calculated from one patient.

563±45, and 565±47 ms for post-contrast T1, and 29.3±5.6, 27.3±3.5, and 27.1±4% for ECV

values using abbreviated MOLLI, MyoMapNet, and standard MOLLI methods, respec-

tively). For native T1 precision, the average precision of MyoMapNet T1 estimations (120

ms, 95% CI [117, 122]) was superior to MOLLI-5 (148 ms, 95% CI [144, 151]; P <0.01) and

inferior to standard MOLLI-5(3)3 (112 ms, 95% CI [109, 114]; P <0.01). In post-contrast

T1, the average precision of MyoMapNet T1 estimations (44 ms, 95% CI [42, 45]) was sim-

ilar to the standard MOLLI-4(1)3(1)2 (43 ms, 95% CI [41, 44]; P=0.05) and significantly

higher than MOLLI-4 (52 ms, 95% CI [50, 54]; P <0.01).

Bland-Altman plots for T1, post-contrast T1, and ECV for three different approaches

(Figure 5.8) show similar measurements for MyoMapNet when compared to MOLLI,
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Figure 5.9: Bland-Altman plots showing per slice analysis of the mean difference and 95% limits of agree-
ment for native, post-contrast T1, and ECV for the abbreviated MOLLI-5/MOLLI-4 vs. standard MOLLI-
5(3)3/MOLLI-4(1)3(1)2 (left column) and MyoMapNet vs. standard MOLLI-5(3)3/MOLLI-4(1)3(1)2 (right col-
umn). Each dot represents the values calculated from one slice.

with increased measurement error for abbreviated MOLLI. Similar results were observed

for per slice analysis of the three methods (Figure 5.9).

5.3.4. T1 MAP RECONSTRUCTION TIME

The duration for estimating T1 maps was 24.2±0.5 sec by a 3-parameter fitting model

without motion correction using Matlab on CPU, and 2±0.01 ms by MyoMapNet using

Python on GPU.
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Figure 5.10: Myocardial T1 maps calculated using MOLLI-5 with a 3-parameter fitting model, MyoMapNet, and
MOLLI-5(3)3, demonstrating the impact of respiratory motion (black arrows) in two subjects. The epicardial
delineation of image #1 was copied to all other T1-weighted images to show the degree of motion between
images. Both subjects were instructed to hold their breath during the scan.

5.4. DISCUSSION

In this study, we evaluated the potential of a fully connected neural network for native

and post-contrast myocardial T1 and ECV mapping from 4-5 T1 weighted images, reduc-

ing the scan time of myocardial T1 mapping by 50% without compromising accuracy or
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precision.

Respiratory motion in myocardial tissue mapping causes artifacts that adversely im-

pact the quantification of tissue relaxation times. To minimize respiratory motion arti-

facts, imaging during breath-holding or use of respiratory slice tracking have been used

[111–113, 128, 149–152]. For MOLLI, images for each slice are collected in a single breath-

hold. However, even with breath-holding, patients often have respiratory motion-induced

drift, which creates artifacts in maps. Therefore, respiratory motion correction is still be-

ing recommended [2]. Similarly, for free-breathing tissue characterization, while slice

tracking reduced through-plane motion, motion correction is necessary to align images

[112, 113]. Furthermore, motion correction will improve the reproducibility and robust-

ness of tissue mapping [113]. One of the advantages of MyoMapNet is reducing the sensi-

tivity to respiratory motion. Figure 5.10 shows example images demonstrating the pres-

ence of motion in standard MOLLI data, despite breath-holding. In this study, we used

retrospectively collected data and were not able to perform a head-to-head comparison

of the impact of shorter scan time on the motion. Further studies are warranted to fur-

ther investigate the potential advantages of MyoMapNet in reducing motion sensitivity.

Table 5.3: Mean difference (±STD) in T1 values between MyoMapNet and MOLLI-5(3)3 at different loss func-
tions (MSE, and MAE), network depth (3, 5, and 7 layers) and network size (S=1, 2, and 3).

Myocardial T1 and ECV Precision
Abrv. M

OLLI

MyoMapNet

Std. M
OLLI

Abrv. M
OLLI

MyoMapNet

Std. M
OLLI

Native T1

(ms)
1230±63∗§ 1200±45 1199±46 148±34∗§ 120±27∗ 112±27

Post-contrast
T1 (ms)

548±63∗§ 563±45 565±47 52±11∗§ 44±11 43±10

ECV (%) 29±6∗§ 27±4 27±4 - - -

1Abrv. MOLLI: MOLLI-5 for Native T1 or MOLLI-4 for Post-contrast T1; Std. MOLLI:
MOLLI-5(3)3 for Native T1 or MOLLI-4(1)3(1)2 for Post-contrast T1; *p-value < 0.01
when compared to Std. MOLLI; §p-value < 0.01 when compared to MyoMapNet.

The numerical simulations of native T1 MOLLI with SNR=100 showed systematic er-

rors as a function of the T1 value increments associated with MOLLI-5 relative to the

standard MOLLI-5(3)3 estimations. The MyoMapNet learns a correction function to

minimize such systematic errors and create unbiased T1 estimations at different ranges

of T1 values. As more noise was added to the T1-weighted signals, the MOLLI-5 exhib-

ited higher T1 estimation errors. MyoMapNet significantly reduces the errors associated
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with noise, while correcting for systematic errors. Similar observations were seen in the

in-vivo data for native and post-contrast T1 mapping, where MyoMapNet showed signif-

icantly lower T1 and ECV estimation errors compared to the abbreviated MOLLI meth-

ods.

Machine learning is rapidly improving the workflow of myocardial tissue characteri-

zation in CMR [153]. Recent studies have demonstrated the potential for deep learning

in automating analysis workflow and quality control [154, 155]. These methods could

automatically perform motion correction, segmentation, and parameter quantification,

thereby reducing the burden and observer-related variability of manual analysis. The

MyoMapNet could be easily integrated with an automated analysis and quality control

method to simplify the workflow.

In this study, we reduced the number of T1-weighted images to 4-5 images for esti-

mating T1 values without rigorously studying the impact of the number of T1-weighted

images. Further studies are warranted to investigate the optimal number of T1-weighted

images for myocardial T1 mapping. For MOLLI, after LL, samplings along the relaxation

curve are separated by cardiac cycle. The choice of inversion time can potentially im-

pact the accuracy and precision of tissue mapping [122]. Hence, the effective LL times

are determined by the RR interval length. In a single LL experiment, only the first T1-

weighted image has a short LL time (<RR interval length), while the rest of the images

have a long LL time and hence are less sensitive to T1. This is more prominent in post-

contrast T1 mapping where T1 times range from 100 to 600 ms, which will impact the

quality of the T1 map. Other acquisition schemes, such as 4(1)1 for native T1, or 3(1)1

or 2(1)2 for post-contrast T1, could add another LL anchor at the beginning of the relax-

ation curve to increase the susceptibility of T1, without increasing the scan time more,

which necessitates further investigation.

The fully-connected neural network architecture adopted in MyoMapNet was more

convenient for the pixel-wise, short, fixed-length input data (10 in native or 8 in post-

contrast T1 MOLLI) than convolutional-based neural networks to learn features from all

combinations of the input data with a maximum receptive field. Similar fully-connected

based architectures were utilized for simultaneous calculation of T1 and T2 maps from

MR fingerprinting acquisitions in cardiac and brain imaging [144, 156]. On the other

hand, a one-dimensional convolutional neural network was used to estimate T1 and

T2 maps from a relatively longer input of 220 signal intensity values and inversion time

stamps of BLESSPC acquisitions [146]. Other architectures for MyoMapNet can be inves-

tigated for T1 estimations in future studies. MyoMapNet was also successful in estimat-

ing T1 values in two MOLLI sequences, MOLLI-5(3)3, and MOLLI-4(1)3(1)2, which indi-

cates its flexibility and potential generalizability to other T1 and T2 sequences. Future

studies are warranted to investigate the generalizability of MyoMapNet to alternative T1
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and T2 sequences.

Our study has several limitations. MyoMapNet was validated using retrospectively

acquired data derived from standard MOLLI-5(3)3 and MOLLI-4(1)3(1)2, instead of col-

lecting dedicated data with 4-5 T1-weighted images. We only evaluated MyoMapNet us-

ing MOLLI data, a similar concept can be investigated for other T1 mapping sequences.

We did not perform any motion correction in T1 mapping. We used MOLLI sequence

for training, and it is widely known that MOLLI has intrinsic under-estimation. Further

studies should be pursued to investigate the potential of MyoMapNet to improve mea-

surement accuracy. We used a large dataset of patients with different clinical indications,

therefore the clinical utility of MyoMapNet was not studied. Finally, data from a single

vendor and field strength was used for training and the generalizability of the trained

network for other field strengths or MR vendor should be studied.

5.5. CONCLUSION
The MyoMapNet enables fast and precise myocardial T1 mapping quantification from

only 4-5 T1-weighted images acquired after a single look-locker sequence, leading to

shorter scan time and rapid map reconstruction.
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The methods presented in this thesis demonstrate that deep learning (DL) can be ap-

plied to accelerate the acquisition of different cardiac MRI sequences, such as dynamic

cine imaging for assessing the cardiac function parameters, 3D LGE imaging for my-

ocardial viability assessment, and cardiac T1 mapping for myocardial tissue characteri-

zation. DL models exploit a priori knowledge of MR images and undersampling artifact

characteristics by learning complex image representations in form of trainable parame-

ters. These learnable paramters can be then utilized to recover the original image quality

during the reconstruction process. Generally in all presented methods, a deep learn-

ing model was built to learn a mapping function between an accelerated version of the

cardiac MRI data and a reference version of high quality by utilizing a large number of

trainable parameters in the training phase. These parameters are then used to rapidly

reconstruct new accelerated datasets. However, in each study, a different architecture

was built and optimized for each imaging sequence separately to exploit its properties

and efficiently reconstruct its data, such that:

In the first study, a deep complex convolutional network of U-net architecture was

utilized to improve 3D LGE MR image reconstruction from undersampled acquisitions.

Although the readily available large datasets of magnitude images are appealing for de-

veloping and testing new DL-based techniques, the phase component of MR images also

carries important information in the reconstruction process that cannot be ignored. The

efficient utilization of phase information in this study via a complex-valued network that

preserves the complex nature of the MRI data throughout the reconstruction pipeline al-

lows efficient artifact removal, faster convergence, and better generalization characteris-

tics. This network has therefore enabled superior performance compared to real-valued

networks and faster reconstruction of accelerated 3D MRI datasets than compressed-

sensing reconstruction methods (i.e. more than 300 fold of acceleration in reconstruc-

tion time).

In the second study, a multi-domain network that processes the highly accelerated

multi-coil dynamic cardiac MRI data in the spatio-frequency, time, and image domains

to recover image quality. This network was designed for efficient radial-view sharing in

the k-space via 3D convolutional kernels performed in the k-space, as well as exploiting

the spatio-temporal correlations among neighboring time frames. It also builds over the

complex-valued network presented in the first study where the complex-valued dynamic

data were processed the complex domain throughout the entire reconstruction pipeline.

To enable further acceleration, MD-CNN also exploits the redundant information in the

multi-coil acquisitions. This architecture enables the efficient reconstruction of highly

undersampled radial dynamic imaging with 14 radial views only (i.e. equivalent to 23-

folds of acceleration). Using MD-CNN, the entire cardiac cycle, covered by 25 frames,

can be captured in a single heartbeat, allowing a substantial reduction in scan time.
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In the third study, a fully-connected neural network was utilized to construct accu-

rate T1 maps for the myocardium with more than 50% reduction in breath-holding and

scan times. The reduction in breath-holding time is important for patients with breath-

ing difficulties to avoid motion artifacts in the reconstructed maps. This network sub-

stantially reduces the reconstruction time to only a few milliseconds compared to con-

ventional curve-fitting methods. This is another example of how DL can reduce the scan

and processing times compared to conventional methods.

These studies demonstrate the important role played by DL in accelerating the acqui-

sition of different cardiac MRI sequences with minimal processing times. They also show

the potential of DL and neural networks to be easily adapted for accelerating other imag-

ing sequences and modalities. The availability of large training datasets, advanced hard-

ware processing units, and deep learning software packages can also allow fast adoption

of these methods in the cardiac MRI workflow to minimize scan time and improve the

utility of cardiac MRI.
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In this thesis, we have presented different applications in which DL was successfully

able to produce good image quality from accelerated cardiac MRI acquisitions. These

studies also highlighted the potential of the DL approach in accelerating different car-

diac MRI sequences and paved the way for future studies to successfully transfer these

methods into clinical workflow.

A DL approach mainly relies on the availability of large training datasets that ade-

quately represent the possible variations in a specific imaging sequence. A represneta-

tive dataset includes cases with anatomical variations of the heart due to different dis-

eases, image acquisition variations due to different MRI field strengths, manufacturers,

or different pulse sequence optimizations at different clinical centers, . . . etc. In our stud-

ies, the DL models were trained and validated using relatively large datasets with dif-

ferent cardiac diseases, which included: (a) 3D LGE datasest from 219 patients (17,003

images) with and without myocardial scar in the first study, (b) dynamic cardiac MRI

images in 108 patients with various heart conditions and healthy volunteers to train the

multi-domain network in the second study, and (c) Myocardial T1 mapping images in

717 patients with various cardiac diseases in the third study. However, for each study,

the utilized dataset was acquired at the same center using MRI scanner of the same field

strength and manufacturer. To ensure a robust performance independently on the used

scanner, pulse sequence optimizations, or anatomical variations among patients, future

studies are warranted to train and validate these models on larger datasets that com-

prehensively include patients with all possible cardiac diseases, different field strengths,

multiple manufacturers and clinical centers.

In image reconstruction tasks, DL-based approaches require a dataset with pairs of

undersampled and fully-sampled images during the training process. In the first study,

acquiring fully-sampled 3D LGE datasets was challenging due to imaging and physiolog-

ical limitations, and hence the training was performed using a reconstructed datasest by

compressed-sensing from undersampled acquisition. The lack of fully-sampled data in

this study resulted in suboptimal image quality produced by the presented DL model.

A possible way to circumvent the lack of fully-sampled data can be accomplished by

using an unsupervised or self-supervised training scheme where the conventional re-

construction approaches can be integrated into a training-based framework to improve

the produced image quality. On the other hand, to ensure realistic undersampling arti-

facts in the accelerated data, prospectively undersampled datasests are often required.

In the second and third study, only fully-sampled datasests were acquired and the un-

dersampled version was created by including only a few samples from the fully-sampled

acquisitions. Although this approach can produce realistic undersampling artifacts sim-

ilar to prospective undersampling, future studies that include prospectively accelerated

data in the training are warranted.
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Current DL models are mainly trained and validated using dedicated graphical pro-

cessing units (GPUs) to minimize the processing time. However, most of the MRI scan-

ners are not equipped with GPUs in their reconstruction hardware units which can limit

the performance of these methods. Several available software packages allow the inte-

gration of MRI scanners with external processing units with dedicated GPUs to perform

the reconstruction. To utilize the presented methods in the clinical workflow, future ef-

forts can be made towards this goal.
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tively). (m) Random complex data sample points represented by magni-
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3.6 Representative LGE image at prospective acceleration rate Rp=3 and ret-

rospective acceleration rates Rr=4, 5, and 6 reconstructed by CNet com-

pared to LOST reference, realNet and zero-filled images at each accelera-

tion rate. Image quality is restored with minimal noise and blurring arti-
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3.7 Representative LGE image at prospective acceleration rate Rp=5 and ret-
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110 LIST OF FIGURES
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