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Properly understanding the urban traffic congestion evolution in network scale is cru-
cial to effectively mitigate congestion and its impact proactively. Even though many 
studies focus on this hotspot, it has not been fully and clearly revealed. This study is 
therefore to explore the network traffic congestion evolution patterns based on a large-
scale dataset of naturalistic vehicle trajectories collected by a swarm of drones. 

With advances in technology, a variety of methods for traffic surveillance and monitor-
ing are now available, including traffic cameras, loop detectors, ramp metering systems, 
and GPS data on probe vehicles (taxi fleets or mobile devices). Nevertheless, these 
methods above have their limitations on the network-scale research for traffic conges-
tion formation, propagation and impact on urban context with multi-modal, multi-lane 
environment. As a case study, the central district of the city of Athens, Greece was 
selected that can allow a variety of transportation phenomena to be examined. 

Utilizing a swarm of drones could overcome a significant number of limitations of the 
abovementioned methods, and pragmatizing an actual one for massive data collection 
in a busy, multimodal urban environment had not been conducted before. Recently, a 
field experiment called pNEUMA (New Era of Urban traffic Monitoring with Aerial foot-
age), has collected traffic streams data over an urban setting using the Unmanned 
Aerial Systems (UAS) and shown preliminary results of congestion characteristics. 
pNEUMA is a large-scale dataset of naturalistic trajectories of half a million vehicles 
that have been collected by a one-of-a-kind experiment by a swarm of drones in the 
congested downtown area of Athens, Greece.  
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Based on their big dataset, therefore, this study will propose a data-driven method 
based on machine learning to effectively analyze such tremendous amount of data, 
which is involved with data cleaning, data processing and machine learning to explore 
the formation and impact of traffic congestion in urban context. The potential models 
for this research include deep learning (e.g., Recurrent Neural Network), Supported 
Vector Machine and reinforcement learning. The traffic data will be used to train and 
validate the models and their capability will be compared in terms of computation du-
ration, accuracy and other possible factors. 

Traffic stream data contains continuous trajectory of vehicles, which is able to track the 
exact routes, origins and destinations in the scale of network. Besides, with high reso-
lution camera, the microscopic behaviors, such as car following and lane changing of 
vehicles are available for further investigation. Therefore, the sub-tasks will be derived 
as following: 

• Compare the factors of congestion for both scenarios, namely signalized intersec-
tions and non-signalized intersections. 

• Explore the relationship between the formation of congestion and the layout of dif-
ferent intersections (4-arm, 5-arm etc.) 

• Explore car-following behaviors of different vehicle types and their contribution to 
the traffic jam 

• Analyze the impact of congestion on some important factors, such as the O-D dis-
tributions, local route choices, headways of vehicles, and mean travel time. 

The completed methodology of this thesis could be applied to other traffic data analysis 
and shed a light on the following relevant research. The results of this thesis would 
also be able to give a clearer understanding of the nature of urban congestions with a 
series of traffic parameters and reveal its impact on normal traffic flow in micro- and 
macroscopic levels, ranging from behaviors of specific type of vehicle to the congestion 
propagation throughout the studied network. 

The master student will present intermediate results to the mentor Kui Yang, a PostDoc 
Research Associate (TUM) in the 6th, 12th, 18th, 24th weeks. In the meanwhile, there 
will be regular discussions and feedbacks every two or three weeks.  
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The student must hold a 20-minute presentation with a subsequent discussion at the 
most two months after the submission of the thesis. The presentation will be consid-
ered in the final grade in cases where the thesis itself cannot be clearly evaluated. 

____________________________  
Prof. Dr. Constantinos Antoniou 
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Abstract 

 

Abstract 

Nowadays, traffic congestion becomes a big concern in many metropolitan world-widely. Traf-

fic congestion causes numerous detrimental impacts, such as prolonged travel time, air pollu-

tion and emissions of green gas. Therefore, it is important to solve this issue so that reliability 

in road maintenance can be accomplished. However, the mechanism of evolution of traffic 

congestion in an urban area is somehow unclear. This is crucial to traffic operates and partic-

ipants since the congestion pattern can reveal the keys to alleviate the negative impacts on 

the society and environment. 

The main objective of the study is to explore the congestion patterns in an urban context with 

the help of trajectory dataset from a first-of-its-kind experiment pNEUMA. This field experiment 

provided a high-resolution GPS traces data which contains all vehicles attributes including type 

of vehicle, location, speed associated with timestamps and etc., in the populated zone of Ath-

ens City, Greece.  

The study adopts a series of methods to fulfill the goal. Firstly, the trajectory data is processed 

to discard the static records and prepared for map-matching. Next, a Hidden Markov Method 

algorithm is employed to link the traces of vehicles to the road network. Inspired by the concept 

of virtual detector loops, the traffic characteristics on every travelled link will be calculated and 

analyzed. The time series method will be applied to find out the temporal trend of traffic 

streams. Finally, a proposed algorithm will distinguish the traffic states and define the conges-

tion on every detector. 

The result reveals the spatio-temporal distribution of traffic congestion in Athens during 8:00 

to 9:30. Focusing on the representing street, the conclusions are: traffic congestion intend to 

form at the merging sections of a primary and secondary roads. And traffic congestion propa-

gates along the traffic travel direction in the very beginning. The longest duration of congestion 

state on the research corridor reached up to ten minutes. 

 

Keywords: Spatio-temporal analysis, Traffic congestion, Trajectory data, Urban network
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1 Introduction 

1.1 Background 

Congestion is not new. It existed before the industrial revolution, the motor vehicle, and the 

modern city. In general, traffic congestion stems from an imbalance between the availability of 

transport services and the need for them [FALCOCCHIO  ET AL., 2015]. Nowadays, traffic satu-

ration contributes to chronic congestion with many detrimental effects for in terms of aggrava-

tion, stress, lost time and environmental nuisance [DERBEL  ET AL., 2020, p. 23-36]. In Metro-

politan areas, urban traffic congestion is one of the most severe problems of everyday life, 

which affects all facets of the quality of life in cities adversely and dramatically. 

Concerning on abovementioned negative impacts by traffic congestion, it is essential to under-

stand the evolution of urban traffic congestion on a network scale correctly, so that the corre-

sponded counter measurements can be taken into action. It is believed that identification of 

congestion characteristics is the first step for such efforts since it is an essential guidance for 

selecting appropriate measures [MOHAN RAO  ET AL., 2012, p. 286-305]. Therefore, many ef-

forts were made in order to alleviate congestion. More relevant research will be discussed in 

Chapter 2 Literature Review. Even though there have been several studies concentrated on 

this hotspot, it has not been exposed thoroughly and explicitly. 

In the new era of Big Data, the enormous quantities of information are foreseen to be beneficial 

to the transportation profession and research community. With advances in technology, a va-

riety of methods for traffic surveillance and monitoring are now available, including traffic cam-

eras, loop detectors, ramp metering systems, and GPS data on probe vehicles (taxi fleets or 

mobile devices). Faced with such high quantity and complexity of data, the traditional ap-

proaches to model and predict traffic characteristics have reached their limits. In this research 

the trajectory data sourced from pNEUMA experiment [BARMPOUNAKIS  ET AL., 2020, p. 50-71] 

recorded a huge amount of vehicle trace with high sampling rate from the congested district of 

Athens, with over 100km-lanes of road network. More details about the data will be discussed 

in Chapter 3 Data Processing.  

1.2 Aim and research question 

The proposal was concerned about exploring the evolution mechanism of traffic congestions 

in the urban context based on the open dataset from the pNEUMA field experiment. With re-

spect to enormous information from traffic data, the data-driven methods are expected to be 

the promising way to carry out the analysis. Existing literature reveals that current data 
sources, such as on-board GPS trajectory [RAMEZANI  ET AL., 2015, p. 414-432] [BHASKAR, A.  
ET AL., 2015, p. 113-122], navigation applications via smartphones, loop detectors [BHASKAR, 



Introduction 

 2 

Ashish  ET AL., 2011, p. 433-450] or fixed surveillance camera in Next Generation Simulation 
[ET AL., 2006] may not capture important traffic phenomena properly due to the limited level of 
information. The main aim is to reveal the formation and development of traffic congestion. 
Moreover, the topic will be examined and studied in different scale of time and space. There-
fore, it is expected to choose and utilize appropriate algorithms and models to solve different 
sub-problems, then to evaluate and compare each algorithm performance.  

Main Research questions: 

Given the aforementioned need the following two main research questions are formulated: 

How the congestion developed and formed in an urban area temporally and spatially? 

To address the above research question, a wide spectrum of sub-problems will be derived as 
following: 

1. How to pre-process the trajectory dataset and extract of traffic characteristics? 
2. How to match the GPS points to the road network and extract traffic characteristics at 

a given location and time?  
3. What kind of traffic parameters should be considered to identify and measure conges-

tion?  
4. How to capture the spatial and temporal patterns of congestion? 

1.3 Contributions 

The main achievements, including contributions to the field can be summarised as follows: 

1. Proposed congestion identification methods based on virtual loop detectors network-

wide 

2. Provided road classification-related algorithm to distinguish traffic state 

3. Explore the congestion evolution spatially and temporally through network 

1.4 Thesis structure 

This thesis is organized as follows: 

Chapter 1 introduces the background of the traffic congestion, pNEUMA traffic data source 

and raise the objective of research questions and research framework. 

Chapter 2 conducts a wide spectrum of literature review on the most relevant subjects for this 

thesis, including the definition and causes of traffic congestion, common traffic characteristics 

and their usage, relevant big data algorithms and applications in traffic prediction. 
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Chapter 3 performs pre-processing of trajectory data and map-matching to the road network. 

The traffic characteristics are then extracted and processed according the need to next analy-

sis. 

Chapter 4 outlines the methods and the set of algorithms which are expected to be applied for 

congestion identification and conducts spatial-temporal analysis on the congestion evolution 

in the network. 

Chapter 5 summaries the results from previous chapters and concludes the limitations of the 

work and points out the research work in the future. 
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2 Literature Review 

In this chapter, related work is reviewed and analyzed in order to acquire a deeper understand-

ing of the problem in hand, and find the most appropriate methodologies to identify gaps in the 

literature and guide towards the development of methods that answer the research questions. 

The research topics are reviewed thematically as following. 

2.1 Traffic flow theory 

Traffic flow is an important metric for evaluating road congestion.  

For two states of traffic flow, EDIE  ET AL. [1965, p. 139-154] suggested his linear models: one 

is chosen to describe the relationship between density and the velocity logarithm above the 

optimum velocity within uncongested traffic flow; and the other is the relationship between 

velocity and the spacing logarithm, the opposite of density, under the condition of congestion. 

Discontinuities have always occurred in flow-concentration data at around maximum flow in 

other experiments, and some researchers have attempted to use several curves to model the 

"discontinuities" variable. Kerner defined traffic flows in three categories: free flow, coordinated 

flow, and stop-and-go flow. 

Relevant studies have focused on the interactions among various traffic participators, such as 

vehicles, drivers, pedestrians, and bicyclists and infrastructure, including highways, signal con-

trol devices, aiming to reveal the relationship between individual traffic participants and the 

resulting traffic flow phenomena [LI, Li  ET AL., 2020, p. 225-240]. As a result, traffic flow studies 

are empirical studies that heavily rely on high-quality measurements of real data. In the past 

50 years, the scientific community has proposed various traffic models in its attempt to under-

stand vehicular traffic flow. There are continuous fluid dynamical methods such as the Lighthill-

Whitham theory in the 1950s, and Navier-Stokes-like momentum equation; discrete models 

such as the follow-the-leader model; as well as stochastic discrete models such as the Nagel-

Schreckenberg Cellular automata models. Regardless continuous or discrete, deterministic or 

stochastic, the purpose of these models is to shed light on the physics of traffic flow and to 

provide predictions of various traffic phenomes [QUEK  ET AL., 2014, p. 289-298].  

2.2 Research on traffic congestion 

2.2.1 Causes of congestion 

Studies on the causes of congestion are well documented, it is also well acknowledged that 

the disparity in supply and demand for transportation infrastructure results in traffic congestion 

[FALCOCCHIO  ET AL., 2015, p. 35-37]. On one hand, supply is limited by history and geography, 

the administration and working procedures of transport, and the extent of expenditure in roads 

and highways. The demand, on the other hand, benefits from the concentration of travel in 
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both space and time. Practically, the causes of traffic congestion are more specifically con-

cluded as (1) concentrations of trips in time and space—including temporal surges in travel 

demand on roads of generally constant capacity physical, operational, and design deficiencies 

that create bottlenecks, (2) traffic demand that exceeds roadway capacity, and (3) physical 

and operational bottlenecks. 

If all travel demand were evenly distributed among the various sections of the urban area, the 

traffic congestion problem would be a rare event. Similarly, if all travel were evenly distributed 

to each hour of the day there would be little congestion. But travel demand patterns reflect the 

concentration in time and space of daily activities: where and when people work, shop, recre-

ate, move goods and provide services. It is the peaking of these spatial and temporal travel 

patterns that con- tributes to the recurring traffic congestion problem. As observed in many 

metropolitan cities, growth in population, employment, and car use vehicle kilometres of travel 

(VKT) increase congestion on urban roads and highways where capacity growth has not kept 

pace with growth in VKT. Furthermore, bottlenecks are perhaps the most common cause of 

congestion. They result from the convergence of a greater number of lanes in the upstream 

roadways than are available in the downstream roadways. Bottlenecks delay is typically found 

in hours of peak flow where the number of lanes converging on a roadway, bridge or a tunnel 

exceeds the number of lanes these facilities have. Bottlenecks are also created by roadway 

incidents that reduce block travel lanes and restrict traffic flow, or they are created by bad 

weather conditions a work zone, poorly timed traffic signals, or driver behaviour. Based on the 

causes of congestion, the analysis of these three points will be developed in the following 

sections 

Several researches have been proposed to classify congestion into recurrent congestion (RC) 

and non-recurring congestion (NRC). The interruption that travellers frequently encounter or 

anticipate at known travel hours, such as the morning and evening peaks, is chronic conges-

tion. One method employed by [AN S  ET AL., 2018] is mining historical taxi trajectory data to 

investigate recurrent congestion patterns, which is involved with grid-based congestion detec-

tion, a customized cluster algorithm and indicators to reflect RC evolution patterns. The non-

recurring delay in congestion is caused by unexpected or random incidents that impede the 

flow of traffic. This include incidents such as car breakdowns or crashes; road maintenance 

and poor weather; special events that cause unexpected market spikes, such as the conclu-

sion of a sporting event; and natural or man-made disasters. In the off-peak hours, non-recur-

ring congestion can either produce new congestion or can improve the pause encountered 

during periods of recurring congestion. [CHEN, Zhuo  ET AL., 2016, p. 19-31] employed a data-

driven method to dynamically determine the spatiotemporal extent of individual incidents, so 

that Incident-Induced Delay (IID) can be quantified  

2.2.2 Measuring traffic congestion 

Congestion in transportation occurs when the occupancy of spaces (roadways, sidewalks, 

transit lines and terminals) by vehicles or people reaches unacceptable levels of discomfort 
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and delay [FALCOCCHIO  ET AL., 2015, p. 93-110]. Over time, an extensive literature has devel-

oped on measuring traffic congestion. In 1925, Mc Clintock explains street traffic congestion 

as a condition resulting from a delay in movement below that required for contemporary street 

users [MCCLINTOCK  ET AL., 1925, p. xi, 233 p.]. Researchers [ALTSHULER  ET AL., 1979] indi-

cates that the term congestion denotes any condition in which demand for a facility exceeds 

free-flow capacity at maximum design speed. Hereby the measurement is quantified by speed 

and capacity. Concluded from several studies [SIGUA  ET AL., 2008], [MEYER  ET AL., 

1997],[LOMAX  ET AL., 1997], traffic congestion reflects the difference between the travel time 

at busy traffic periods and when the road is lightly traveled. It is also expressed as the ratio of 

actual travel time and uncongested travel time or the ratio of actual versus uncongested travel 

time rates. The three basic components of traffic congestion include intensity or amount), ex-

tent area or network coverage, and duration of the jam. 

Duration refers to the amount of time the road or the network is congested, which is usually 

represented by the hours when facility operates below acceptable speed. Extent means the 

number of people or vehicle affected or geographic distribution, quantified by VKT or kilome-

ters of congested road. Intensity reflects level or total amount of congestion. Travel rate, delay 

rate and average speed can be utilized to describe intensity. Reliability measures the variation 

in the amount or duration of congestion [LOMAX  ET AL., 1997]. 

2.3 Trajectory-based traffic estimation 

GPS-probe vehicle has recently become a promising technique for traffic states monitoring, 

with advantages of cost-effectiveness and dynamic traffic conditions surveillance. GPS-probe 

based traffic surveillance systems enable to obtain traffic states according to GPS data peri-

odically collected from GPS-probe vehicles on road sections. Over the last few decades, the 

estimation of traffic conditions has gained increasing attention in the academic community 

[STATHOPOULOS  ET AL., 2003, p. 121-135, ANTONIOU  ET AL., 2006, p. 103-111, BERTHELIN  ET 

AL., 2008, p. 185-220, D'ANDREA  ET AL., 2017, p. 43-56]. Early works on traffic estimation have 

studied traffic states on highways using on-site detectors and surveillance such as loop detec-

tors and video cameras. Previous methods are limited to road segments with lengths of a few 

kilometers. Recent years, increased emphasis has been compensated to the effective collect-

ing and retrieval of GPS trace data by data mining, intelligent transport networks, repositories, 

and smart cities communities. GPS data are usually collected by probe vehicles or specific 

fleets such as buses or taxies[TANG  ET AL., 2019, p. 137-174]. GPS traces and advanced 

models have been applied to traffic state estimation across a range of settings, such as traffic 

speed estimation [YU  ET AL., 2020, p. 136-152] [WANG  ET AL., 2016, p. 499-508], queue profile 

estimation [RAMEZANI  ET AL., 2015, p. 414-432], density (Papadopoulou et al., 2018), conges-

tion [KAN  ET AL., 2019, p. 229-243], and travel times [LI, W.  ET AL., 2017, p. 100-113].  

From the relevant works by [ZHENG  ET AL., 2008, D'ANDREA  ET AL., 2017, p. 43-56, YU  ET AL., 

2020, p. 136-152, LI, W.  ET AL., 2017, p. 100-113] , the general working flow can therefore be 

concluded as following, when conducting a traffic study based on trajectory data:  



Literature Review 

 7 

Firstly, GPS trajectories data is pre-processed to parse the inherent noise and extract the de-

sired attributes and parameters such as longitude, latitude, time stamps and etc. The second 

step is map-matching, which addresses the problem of mapping off-the-road GPS points onto 

a road network and identifies the true traversed path between consecutive GPS points. In other 

words, the results of map-matching consist of two components, linked traces on road and the 

ground-true travelled paths of road network. Normally, there are a wide spectrum of method-

ologies and algorithms for map-matching, including geometric, topological, probabilistic and 

advanced map-matching algorithm. In particular, Hidden Markov Model (HMM) - based algo-

rithms and their variants [GOH  ET AL., 2012, p. 776-781] have been adopted for their abilities 

to concurrently evaluate multiple hypotheses of the actual mapping in order to find the eventual 

maximum likelihood solution. These techniques[KAFFASH  ET AL., 2021].  have been shown to 

be tolerant of extremely noisy measurements.  

The rest of the map-matching procedure is varied from the final purpose of research objects. 

As for this study, the trajectory data is derived from aerial video images. The quality and sam-

pling rate are high enough for further traffic characteristic extraction. Thus, the data recovery 

or missing rate evaluation for the matching results is not necessary and will not be performed 

in this paper. 

2.4 Networkwide traffic congestion 

The scale of traffic congestion studies ranges from microscopic (vehicle level), to mesoscopic 

(link level) and to macroscopic (network level). These classifications regard to traffic represen-

tation and operating scales. Besides, different level of resolution of data source will result in 

different domain of traffic research.  

In this literature [AMELIA  ET AL., 2014, p. 1-5], the researchers attempted to investigate the 

association between road segments by using GPS trajectories of traffic congestion. To get the 

congestion connection in each of the road segments, they use a clustering algorithm and con-

ducted spatio-temporal analysis. But in this paper, the dataset only contains taxis as a mode 

of transport and the scope is limited within a link-level congestion. Cell- or grid-map [YU  ET AL., 

2020, p. 136-152, LIU  ET AL., 2017] are popular simplification methods to perform a network-

wide traffic estimation. By determining the cell congestion state, the traffic state of a specific 

zone can be estimated. Using large traffic data-sets obtained from traffic sensors, visualization 

is an efficient method for analyzing traffic congestion. The paper of [CHENG  ET AL., 2013, p. 

296-306] proposed three 3D exploratory visualization techniques to explore the evolution of 

traffic congestion on the entire road network, especially on dense urban networks. The identi-

fication of congestion is based on link travel time from local authorities. Another research 

[ZHANG  ET AL., 2020] raised a representation framework for traffic congestion data in urban 

road traffic networks. In comparison to other grip-map based research, they employed a pool-

ing operation to calculate the maximum value in each grid, which is cost efficient in terms of 

computational resources for traffic congestion prediction. Roads in networks are spatially and 
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temporally linked. The travel times of its neighbors are influenced by road volumes. An appar-

ent importance is bare upstream and remote roads are negligible. To boost the predictive per-

formance of the volume of traffic, a variety of models have been tested. In a study Zhang 

(2012) uses a method of traffic clustering to group road points that are spatially and time re-

lated. Scholars [XU  ET AL., 2013, p. 2421-2427] also monitored traffic states over large road 

networks, which has become a major service in the entire transportation system. As they stated, 

the stationary equipment, such as loop detectors and ultrasonic detectors, can collect various 

traffic data, but only limited to specific road sections, and require a large amount of expendi-

tures.  

Previous studies in the network scales are mainly focused on simplified the representation of 

road networks. Some of them use the data from probe cars of mobile devices with GPS func-

tion to instigate the whole performance of the traffic. In this thesis, with the help of full trajectory 

data in the observed network, such simplification should be conducted in a new way. Inspired 

by the work (source: https://pNEUMA_mastersproject.readthedocs.io/) from Joachim Landt-

meters, the traffic characteristics can be extracted on any location in the network by installing 

virtual loop detectors. Thus, the link-level congestion can be identified by designing a threshold 

for key parameters. In traffic congestion context, an area that has traffic congestion is an area 

where there are many links in the jam status.  

In summary, traffic needs to be analysed at a level of spatial and temporal detail in order to 

better understand the causes and impacts of congestion and to be able to find potential reme-

dies against it since it mostly affects particular links in the network at specific times of the day. 

2.5 Summary 

This literature review has reviewed the state-of-the-art, organized evidence around four key 

themes of relevance to the traffic flow theory, congestion identification, trajectory data pro-

cessing and popular used methods for network-scaled traffic state analysis. However, in this 

study, a brand-new dataset is available for exploring the congestion evolution, which contains 

high accuracy in position and high sampling rate trajectory data of all vehicles in a dense net-

work. Therefore, the study will employ and combine series of methodologies to investigate the 

dataset and mining the mechanism of congestion evolution. 
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3 Data Processing 

3.1 Source of data: pNEUMA experiment  

pNEUMA [BARMPOUNAKIS  ET AL., 2020, p. 50-71] is a first-of-its-kind experiment, which aims 

to create the most complete urban dataset to study congestion. In October 2018, it collected 

traffic streams data over an urban setting using the Unmanned Aerial Systems (UAS) to es-

tablish a large-scale video-image dataset during 2.5 hours in the morning peak (8:00 - 10:30 
or 8:30 - 11:30 ) for all weekdays in a week (24/10, 29/10, 20/10 and 01/11) for the city of 
Athens, Greece. 

The team employed a swarm of ten drones hovering over the central business district of Athens 

(see Figure 3.1) over multiple days to record traffic streams in a congested area of a 1.3 km2 

area with more than 100 km-lanes of road network, around 100 busy intersections, many bus 

stops and the dataset includes around half a million trajectories. In order to maximize both the 

area covered and the number of important points of interest, the number of drones were de-

termined as ten and the hovering point for each of the drone were selected. The flight plans 

were planned for each drone, including the path to and from the hovering point, ensuring that 

no intercepting routes between the drones were present. 

The action sequence of drone operating is illustrated in Figure 3.2. As dotted line shows, the 

swarm would take off and each drone would move to its specific hovering point. Then the 

recording of the traffic stream would begin simultaneously when all the drones were in place. 

The actual recording action is shown as green line, where starts from the confirmation of all 

drones being in position. Due to the battery life and extra time for routing, take-off and landing, 

the duration of each deployment is set to 30 minutes. After recording is accomplished, all 

drones return home and change batteries for the next session. This cycle was repeated five 

times and last for 2.5 hours until the end of the morning peak. 
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Figure 3.1 Researched area in Athens divided into 10 zones  
(source: pNEUMA – open-traffic.epfl.ch) 

 

Figure 3.2  Time phases of UAV data collection 
(source: pNEUMA – open-traffic.epfl.ch ) 

With a series of computer-vision techniques, the aerial video footages are converted into de-

tailed trajectories of the vehicles tracked, calibrated in the WGS-84 system. The featured pa-

rameters can therefore be produced using the position information, for example speed (first 

derivative of position), acceleration (second derivative of position), distance traveled etc. The 

type of each vehicle (car, taxi, motorcycle, bus, heavy vehicle) is also available thanks to the 

high resolution of image and vehicle identification methods. To make sure the accuracy of the 

data, real-world coordinates are assigned to the pixels of video image. An advanced Kalman 

filter is applied to filter out the noise in the measurements up to a level of 3.3 cm, which is 

equivalent to 2.97 km/h in terms of speed error. Re-identification process was conducted to 
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synchronize and align up the vehicles which are tracked throughout the period it remains in 

the study area. 

Such a unique experiment provides distinctive research opportunities, allowing the deep in-

vestigation of critical traffic phenomena. A complete trajectory dataset contains an enormous 
amount of information for the microscopic and macroscopic level since vehicles’ movements 
can accurately be analysed and less assumptions are needed to measure different character-
istics. Based on their big dataset, this study will utilize data-driven methods to handle tremen-

dous amount of data, which is involved with data cleaning, data processing and machine learn-

ing to explore the formation and impact of traffic congestion in urban context. The traffic data 

will be used to train and validate the models and their capability will be compared in terms of 

computation duration, accuracy and other possible factors. 

3.2 Application Tooling 

To address about problems, the application tools need to be chosen properly. In this work 

there are a number of aspects that needed to be considered. It involved with a lot of data 

preprocessing, map-matching algorithms, spatial data mining, visualization, time series analy-

sis. After a series of researching, it is concluded that Python provides many of the tools 

necessary for data and scientific processing. The main packages are introduced in Table 3.1. 

 

Table 3.1 Main Python Modules 

Package Description 

Pandas data analysis and manipulation tool 

Geopandas geospatial data operations on geometric types 

OSMnx retrieve spatial data from OpenStreetMap and construct road network 

LeuvenMap-

Matching 

align traces of coordinates to a map of road segments based on a Hid-

den Markov Model 

3.3 Pre-processing of Trajectory Data 

The collected dataset is distributed and stored in form of comma-separated values (CSV). For 

each CSV file the data are organized as following: each row representing the data of a single 

vehicle, the first ten columns in the first row containing the columns’ names, the first four col-

umns represent the track_ID, the type of vehicle, the distance traveled and the average speed 

of the vehicle, respectively. The later six columns repeating every six columns based on the 

sampling frequency. In the dataset, there are six types of vehicles, which are car, taxi, bus, 

medium vehicle, heavy vehicle and motorcycle. The columns can be categorized into two 

groups, fixed tags and variable tags, with respect to the relation with time. 
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Fixed Parameters Variable Parameters 

Track_id  Latitude  

Type  Longitude  

traveled_distance [m] Speed [km/h] 

average_speed [km/h] Lon_acceleration 

 Lat_acceleration 

 Time [s] 

Table 2 Columns of pNEUMA trajectory dataset 

 

It is worth pointing out that these track points are derived from video image recognition. The 

longitude and latitude of them are also calculated from them, which means that these vehicle 

points exist independently of the road network data. For the purpose of map-matching, the 

geometry column needs to create from the coordinate pairs. Then the new matrix with geom-

etry column will be converted to a GeoDataFrame object, which is 2-dimensional labeled data 

structure of the python package geopandas. The coordinate reference system of the geometry 

objects is set as WGS: 84 to keep consistence through the whole procedure of data processing. 

The main steps for preprocessing the metadata are shown in Figure 3.3. Firstly, read the csv 

files into pandas and extract every tracked vehicle into single files. Next, the travel direction is 

calculated for every vehicle using compass bearing. This information indicates the direction 

from the point at the first time step to the point at the next time step in degrees, clockwise from 

north to east. With bearing column, the static trajectories can be filtered out. Besides, travel 

direction will be used to align the trajectory to the edge of road segments in the map-matching 

step. Finally, all of the GeoDataFrames will be stored in a list and serialized in form of pickle 

files on the local disks. 
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Figure 3.3 Procedure of preprocessing of metadata 

 

In summary, the result of preprocessing is to obtain a list of geodataframes. Each geodata-

frame contains all information of a tracked vehicle with newly added bearing column and ge-

ometry column. The connection between road network and trajectories will be established on 

the basis of these two columns. Table 2 shows an example of one resulting trajectory. The 

column tracked vehicle contains the track id from the metadata. This vehicle is a car and trav-

eled 101.4 seconds with a distance of 299.73m during the recording phase of one drone in the 

same surveillance zone. The coordinates and instant speed are tracked at each time step. 

Geometry column gives this trajectory a geometric attribute. 
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Table 3 Example of one resulting trajectory matrix 

 

3.4 Establishing of road network 

In order to investigate the traffic characteristics of the trajectory data, it is necessary to obtain 

information about the road network in the study area. The trajectories of observed vehicles are 

matched to the road network and various traffic parameters are extracted with the help of virtual 

loops. 

In this study, the Open Street Map (OSM) was utilized as the source of the road network data. 

It is a well-known collaborative map, where users can easily access and retrieve streets data 

with customized configuration. With increasing quality of collected geospatial data, OSM be-

comes a reliable source of data for transportation research. By accessing keys and tags of the 

OSM, different types of roads can be extracted for further usage, e.g. drivable roads or arteri-

als, etc. Since the following map-matching will adopt Python package “Leuven Map-Matching”, 

the network data will therefore also be established in a Python environment. The OSMnx 

[BOEING  ET AL., 2017, p. 126-139] package offers the opportunities to collect data from the 

OSM and create and analyse street networks in a simple, consistent, automatable way. Even 

more valuable to this research is that it is also sound from the perspectives of graph theory, 

transportation, and urban design.  

3.4.1 Retrieving the network of research area 

The boundaries of research area are defined by the maximum and minimum latitudes and 

longitudes among all tracked records. The retrieved graph from OSMnx is in form of Multi-

digraph, a data structure storing directed graphs with self-loops and parallel edges. Parallel 

edges will occur when vehicles are travelling in bi-directions on the same street. In order to 

add customized functions, the multidigraph is transformed into two dataframes with geometry 

column, one storing the edges and another for the nodes. For edge matrix, it was assigned 

with new columns to include dedicated bus lanes and bearings of consecutive links. Then the 

edge matrix and nodes matrix can be merged and joint to generate the final road network 

matrix with needed attributes and columns. The working flow is illustrated in Figure 3.4. And  
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Figure 3.4 Working flow for network retrieving 

 

The resulting network graph of research area in city of Athens is shown as Figure 3.7, the 

matrix is structured as following: 

The positional columns include edges, nodes and geometries. The edge identity is recorded 

in osmid, indicating each directed segments of roads. Each edge consists of two nodes, N1 

and N2, associated with their own latitude and longitude respectively. The attribute columns 

contain the length of edges, number of lanes, the allowed travel direction (oneway or not), the 

bearings between two consecutive edges, classification of streets and customized tags to pre-

sent designated bus lanes. The bearings are calculated counter-clockwise with two pairs of 

coordinates of start and end nodes. Table 4 describes 

 

Table 4 Statistics overview on resulting road network matrix 

 

 

 

Number of Nodes 3986 

Number of Edges 1993 

Maximal edge length [m] 292.137 

Minimal edge length [m] 1.155 

Average edge length [m] 55.428 
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 Figure 3.5 Histogram for edge length with KDE 

 

The histogram ( Figure 3.5) about length of edges shows, that most of the links were between 

50 and 60 meters in the extracted road network. The maximal length of a single edge reached 

about 300 meters, which indicating that the network is widely dispersed. It is necessary to 

observe this attribute since the following section of map-matching will utilize the upper limit 

value as the searching radius in the HMM algorithms. Besides, with the knowledge of the length 

distribution will help to implement the map-matching process. Another important attribute in 

the network matrix is the hierarchy of the road system in this urban context.  

 

 
Figure 3.6 Counts of different types of roads 
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From Figure 3.6, it can be concluded that the residential streets take up the most counts among all kinds 
of roads, which confirms the research area is a dense and populated zone. The primary type represents 
the highest level of service in the resulting road network, usually found on the arterials in the city, as 
highlighted Figure 3.7. These trunk lines generally consist of more than three lanes, labeled with color 
codes. According to traffic flow theory discussed in Chapter 2, the lane-specific traffic characteristics 
are particularly important when investigating traffic flow state. To handle the traffic data on such a wide 
of variety of road classification, the metrics for congestion and traffic state should be cautiously chosen 
for such system with multi-modal traffic and hierarchical roads. More detailed parameters about traffic 
state estimation and congestion detection will be explored in the next chapter.  

 

Figure 3.7 Road network labeled with number of lanes  

3.4.2 Extract specified road for further research 

The complete road network matrix is available for network-wide map matching. However, in 

order to investigate the traffic characteristics on any designated roads, it is required to create 

indices for interested roads by their name. The Overpass turbo, a web-based data mining tool 

for OSM, is employed to acquire road identifications i.e. osmid, associated with name attrib-

utes. The osmid is the key, which shared by indices as well as the network matrix. In the road 
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network matrix, one specific road may consist of multiple edges with various osmid. By con-

structing such index, the selection of targeted streets will be conducted precisely and correctly 

by nominate the street name. In the road classification system of OSM, primary roads are those 

of secondary importance roads in a country's system, often linking larger towns. In the context 

of research area in Athens, the indices include both primary and secondary roads for further 

exploration. Another crucial information is the location of traffic signals. It is desired in the later 

study for queueing at intersections. The traffic signal data matrix consists of nodes with coor-

dinates and geometry columns. Figure 3.8 illustrated the results of query for primary and sec-

ondary roads and traffic signals, respectively. These data contain the key attribute which will 

be used to join with resulting network matrix. 

 

 

3.5 Map-matching of trajectory metadata 

The trajectory dataset is not linked with the road network. Although the quality and precise of 

the metadata is very high, it is also observed that there exits misalignment when plotting the 

trajectory straight on the road map. For instance, there is a noticeable lateral offset on road 

‘Sokratous’ as shown in Figure 3.9, where the line in dark black is the trajectory of one vehicle. 

In order to know more exactly which specific road each vehicle is driving on, we need match 

the trajectory to the resulting map. To conclude, map matching is required to deal with identi-

fying the most likely position of vehicle on the expected road links according to collected GPS 

data with errors. Without map matching, GPS data would be mismatched, thus influencing 

traffic states estimation.  

Figure 3.8 Primary and secondary roads (left) and Traffic signals (right) 
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Figure 3.9 Plot one trajectory on the road network without map-matching 

 

3.5.1 Map-matching theory and methodology 

It is possible to classify map-matching algorithms as global or incremental ones. While produc-

ing the solution, global algorithms batch process the whole input trajectory. Incremental algo-

rithms use localization techniques that partition and sequentially filter the input trajectory into 

smaller segments, often resulting in a suboptimal solution. Theories that have been applied in 

map-matching range from geometrical analysis [CHEN, Daniel  ET AL., p. 75-83], belief function 

theory [NASSREDDINE  ET AL., 2009, p. 494-499], Extended Kalman Filter [OBRADOVIC  ET AL., 

2006, p. 111-122] to Hidden Markov Model (HMM) [PINK  ET AL., 2008, p. 862-867]. In particular, 

HMM-based algorithms is robust to noise and sparseness. 

Researchers [MEERT  ET AL., 2018] proposed a new map matching approach using HMMs with 

non-emitting states, a smart pruning strategy such that only non-emitting states with the high-

est relevance are visited. Such properties are promising to apply on map-matching for GPS 

traces. In this part, an open-source algorithm based on python, Leuven Map-Matching [MEERT  

ET AL., 2018] algorithm will be adopted for linking the trajectories with existing road network. 

Basic flow of the HMM algorithm: 

The Hidden Markov Model (HMM) is a Markov mathematical model in which it is presumed 

that the system being modelled is a Markov process with intangible ("hidden") states. HMM 

implies that there is another element whose activity "depends" on a process of Markov. In this 

case, the candidate paths are generated and evaluated on the basis of their probabilities se-

quentially. Once a new point of trajectory occurs, older hypotheses are updated to cover the 

newly observed results. The surviving route with the greatest joint likelihood is then chosen as 

the final solution of all candidates in the last point. The optimal output for map-matching is a 

sequence of states that corresponds to a sequence of observations.  
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Basic components in a map-matching problem: 

a. Trajectory is a sequence of trace points which is already prepared as the resulting tra-

jectories from section 3.3. Each data point is associated with attributes of longitude, 

latitude in degree at every time step. The coordinate pairs of longitude and latitude are 

stored in the new column of ‘geometry’ as mentioned before. 

b. Edge is a polyline indicating a road segment, which defined by two nodes in the network 

matrix. These edges composed a sequence of states. Besides the coordinates of 
nodes, edges contain the other information of the representing road segment, such as 
bearings, permissibility of bi-directional travel, etc. 

c. Map is the umbrella collection of edges, representing the whole road network of the 
research area. 

3.5.2 Implementation and results 

Above introduced elements form the input data of the algorithms. Before proceeding the map-

matching program, two more parameters are remaining to define. For each trajectory point, 

the algorithm will find all candidate segments within a radius of a searching distance around it. 

The reasons for imposing this distance are two-fold: (1) to discard all candidates with very low 

emission probabilities, which indicates observing the GPS point conditional on the candidate 

segment is a false match. (2) to prevent penalty in execution speed as a consequence of ex-

cess candidates [GOH  ET AL., 2012, p. 776-781]. Another parameter is the maximum distance 

of a single observation, which restricts the allowable length on an observing candidate of edges. 

These two parameters perform the function in the theoretical model. 

 At the beginning of an observation, the set of potential states is built based on the searching 

radius and the initial probabilities for these states are progressively determined for all edges 

within the maximum permitted distance. Noticing the high sampling rate of the trajectory da-

taset and the compact network architecture, five metres seems to be a considerable distance. 

As depicted in Figure 3.5, the longest edge in the network is about three hundred meters. This 

value is chosen as the first parameters to limit the searching horizon.  

Figure 3.10 demonstrates the working flow of map-matching procedure. The input data are the 

resulting network graph and matrix as well as the trajectory files for all five time blocks. Thus, 

the implementation will produce five matched network and five matched trajectory files respec-

tively. 
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Figure 3.10 Implementation of map-matching algorithm 
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3.6 Extraction of traffic characteristics  

3.6.1 Virtual loop detector 

This part is inspired by the methods proposed by Mr. Joachim Landtmeters in his thesis “Ana-

lyzing mixed urban traffic by linking large scale trajectory dataset to underlying network” 

(source: https://pNEUMA_mastersproject.readthedocs.io/). By installing virtual loop detector 

on the road network, it is possible to extract traffic characteristics at any location in the network.  

Loop detector is commonly used for traffic management as a data base for a range of uses in 

organisational and planning analysis of traffic knowledge generation, validation of transport 

demand models. The dual-loop detector consists of two single loop detectors that are sepa-

rated at a fixed short distance, and this arrangement provides a possible real-time data source 

for speed and vehicle classifications for the dual-loop detector data.  

Based on the concept and function of loop detector, virtual loops are special edges installed 

on the digital road network map. They are pair of two lines orthogonally placed on a network 

edge. The configuration includes the following parameters: number of detectors per road edge, 

width and spacing of loop detectors. According to Joachim Landtmeters’s design, the distance 

from intersection is also required to prevent any misplacing due to the simplified geometry 

representation. Figure 3.11 shows the configuration of virtual loop detector on one segment of 

3rd Septemvriou Street. The three parallel lines in orange are the virtual detectors, with a 

spacing of 4 meters for each pair. The underlying blue line represents the edge of road network 

and white dots are a trajectory of vehicle which travelled through these three detectors. Table 

5 gives all geometric settings for all virtual loop detectors in the network. The resulting of im-

plementation is shown in Figure 3.12. 

 

                                                          
Figure 3.11 Configuration of virtual loop detector 
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Table 5 Parameters of the virtual loop 

 
 
 
 
 

 

 

 

Figure 3.12 Result of virtual detector installation 

 

3.6.2 Traffic parameters extraction 

Traffic states can be expressed with three basic characteristics, namely, flow (quantity per unit 

time), density (quantity per unit space) and speed (space per unit time) by assuming the traffic 

stream as a fluid continuum [EDIE  ET AL., 1965, p. 139-154]. The average flow and density are 

defined respectively as: 

Parameters Value 

Number of detectors 3 per edge 

Double loops True 

Distance from intersection 15 m 

Width of loops 15 m 

Spacing of loop pairs 4 m 



Data Processing 

 24 

!"#$ = 	
'#()"	*+,()-./	(0)1/""/*	23	.#4-(/*	1/ℎ+."/,

67)./ − (+9/	$+-*#$
	 (3.1) 

? = 	
∑ A!
"
!#$
|C|

(3.2) 

E/-,+(3 = 	
'#()"	(+9/	,7/-(	23	.#4-(/*	1/ℎ+."/,

67)./ − (+9/	$+-*#$
(3.3) 

F = 	
∑ (!
"
!#$
|C|

(3.4) 

And the average speed of traffic flow can therefore be deduced:  
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The space-time window is determined by the sampling interval of loop detectors and the spac-

ing of double loops. As shown in Figure 3.13, the vehicle trace is represented in blue dotted 

line. When it travels across the space-time window, the A! , (! will be counted by the virtual de-

tector. The width of the detector was set to 15 m to cover the whole width of the lane. 

 

 

Figure 3.13 Trajectory of the ith vehicle in the time-space window 
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3.6.3 Results analysis 

The input is the trajectory data which has been transformed into connected line segments in 

section 3.5.2 and the detector information generated in section 3.6.1. Considering of the dura-

tion of each single trajectory file is only fifteen minutes, the sampling interval is set as thirty 

seconds. Too long interval will consume considerable computing time and high missing rate. 

The output matrix includes all traffic parameters from installed detectors with timestamp. For 

instance, the traffic characteristics extracted by detector 188 (red line in) on road ‘Stadiou’ at 

intersection of ‘Karagiorgi Servias’. 

 

Table 6 Statistics of traffic parameters of detector 188 

 

 

Figure 3.14 Location of detector 188 (red line) 

 

On the left of Figure 3.15, the graphs demonstrate the traffic density, flow rate and average 

speed of the vehicles that passed through detector 188 of the period from 8:00 to 8:30 am on 

24/10/2018, repectively. On the right, the chart reflects the next time session from 8:30 to 9:00 

am at the same location. It is need to pointed out that the time axis is only an appoximation of 

 Flow [veh/h per lane] Density [veh/km per lane] Speed [km/h] 

Mean 183.993962 9.471069 13.139245 

Std. 232.143146 13.546938 20.393256 

Minimum 244.020000 0.000000 0.000000 

Maximum 735.840000 48.283333 100.000000 
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the metadata from pNEUMA experiment, since the metadata only provides a time intervel of 

sampling, without a starting time or end time. Comparing two flow charts, the mean flow rate 

increased by 223.9% as the rush hours reached. 

 

Figure 3.15 Flow, density and speed time series at detector 188 

 

 

 

 

 

 

 

Figure 3.16 Histogram of speed 
 Left: with outliers, Right: after filtering 
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It is noticable that the speed has outliers with a value of 100 km/h (see in Table 6), which needs 

to be filtered out. Those whose quantitle falls between 0.01 and 0.99 will be kept and others 

will be discarded as outliers.(shown in Figure 3.16) 

  

                    

Figure 3.17 demonstrated the density-flow relations at different time. On the left, it is clear that 

the flow and density of traffic on the road segment is under saturation and remains a medium 

speed during observing time. On the right chart, the highest flow once doubled the value from 

previous recording time phase, nearly reaching 1500 veh/hour/lane. This indicated that at this 

location, the traffic demand is increased significantly due to the morning rush. In addition, the 

speed remains at a relative high level which means the capacity is not fully exploited. It can be 

assumed that in the next time session, there might form congestion at this spot, as the demand 

will still be increasing for a while.  

3.7 Summary 

The main objective of this chapter is to extract the traffic parameters of the trajectory data in 

the road network. The traffic flow parameters are extracted for all matched road segments by 

map matching and placement of virtual loop detectors. The results include traffic flow, speed 

and density data of the placed detectors for each road section. In addition, the difference of 

the parameters of one of the loop detectors in two time periods is analysed and outliers are 

excluded.  

Figure 3.17 Relation between density and flow  
Left: 8:30 – 9:00 AM, Right: 9:00-9:30 AM 
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The traffic indexes corresponding to all the road sectors where vehicles have travelled have 

been acquired, and this data is the base stone for the subsequent spatial and temporal analysis 

of congestion in the network. 
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4 Congestion Evolution in spatial temporal spectrum 

4.1 Metrics for congestion identification 

4.1.1 Theory background 

Proper identification of various traffic flow states is one key task of the virtual loops. As stated 

in Chapter 2, it is difficult to describe distinct characteristics of various traffic flow states in only 

one parameter. In designing the algorithm to define traffic states, a heuristic approach with a 

mixture of two or three primary variables directly arising from detector data is implemented. 

And in such a dense urban area with hierarchical road system, thresholds should reflect the 

complexity of the network. 

The results from extracting traffic parameters contain the major variables representing the 

characteristics of traffic streams, which includes density, speed, flow rate and vehicle counts. 

The state distinguishing puts the congestion detection as priority and other states defined as 

free flow and intermediate states. 

4.1.2 Traffic state distinguished 

According to Adolf D.[MAY  ET AL., 1990] there are three types of traffic states: 

a. Free flow regime: high velocity with low traffic volume and density 

b. Intermediate regime: maximum traffic volume at critical density and velocity 

c. Congested-flow regime: high traffic density with low traffic volume and velocity 

For congestion measures, both vehicle density and average speed can be used. Congestion 

can occur when a certain critical level is exceeded by the density of vehicles on the lane. If the 

observed density is greater than this threshold, this virtual detector and the its road segment 

will then be labelled as congestion-related. Additionally, when comparing the measured aver-

age speed and lower speed limit based on the road classification, if the measured average 

speed is smaller than this minimum free flow speed, this loop detector will then similarly be 

defined as congestion. This study adopts the “Urban Road Traffic Management Evaluation 

Index Systems Manual” as reference, combing the proposed values by other relevant re-

searches [D'ANDREA  ET AL., 2017, p. 43-56, BELLOCCHI  ET AL., 2020, p. 4876] 
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4.1.3 Establishing of Thresholds 

According above empirical studies, the following values are chosen to define the state of con-

gestion in this research: 

a. Free flow criteria 

+L	L0//	L"#$	,7//* ≥ ,7//* > 60F9/ℎ	 (4.1) 

Then the traffic stream at this specific location in time interval is considered as free flow. The 

time interval has been introduced before, representing a time window of observing and is set 

to 15 seconds.  

b. Intermediate criteria 

+L	60	[F9/ℎ] > 	,7//* > 40[F9/ℎ]	)-*	L"#$ > 900[1/ℎ/ℎ/")-/] (4.2) 

the traffic stream at this specific location in time interval is considered intermediate state. The 

traffic speed of the such state of flow is relatively low compared with that of the free flow traffic. 

c. Congestion criteria 

To handle with different road types, the detector index can be used to retrieve the location and 

return the classification of the specific road segment.  

+L	[*/(/.(#0	+-*/A] ∈ [	70+9)03	0#)*	+-*/A] 

	)-*	+L	,7//* < 30[F9/ℎ]	)-*	1/ℎ+."/	.#4-(, > 0	)-*	*/-,+(3 > 65[1/ℎ/F9/")-/]		 (4.3) 

Then the segment is recognized as congested state. And for secondary roads and others are 

calculated by the formular (4.4) and (4.5), respectively: 

+L	[*/(/.(#0	+-*/A] ∈ [,/.#-*)03	0#)*	+-*/A] 

	)-*	+L	,7//* < 25[F9/ℎ]	)-*	1/ℎ+."/	.#4-(, > 0	)-*	*/-,+(3 > 60[1/ℎ/F9/")-/]			 (4.4) 

+L	[*/(/.(#0	+-*/A] ∈ [#(ℎ/0	+-*/A] 

	)-*	+L	,7//* < 20[F9/ℎ]	)-*	1/ℎ+."/	.#4-(, > 0	)-*	*/-,+(3 > 50[1/ℎ/F9/")-/]		 (4.5) 

The entire algorithm for the recognition of the above three distinct traffic states with dual-loop 

data represented by a graph based on the above rules. 
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4.2 Congestion identification 

4.2.1 A closer look at time session 8:00 – 8:30 am 

The Table 7Table 7 Eligible congestion spots shows that there are five locations collected as 

congested spots. The mean value is calculated during the whole observation with a series 

sampling with a time step of fifteen seconds. The criterial proposed in the previous section 

focus on the individual space-time window. Due to the impact of traffic signals, the fluctuation 

can vary in a wide range. This is one of limitations of the identification algorithm. 

 

Table 7 Eligible congestion spots 

Index of 

congested detectors 

Mean speed 

[km/h] 

Mean flow 

[veh/h/lane] 

Mean density 

[veh/km/lane] 

135 4.88 84.01 79.66 

186 21.79 415.32 41.34 

365 23.77 311.96 30.53 

82 16.28 379.22 50.42 

70 28.62 505.34 39.01 

 

Figure 4.1 shows the location of these detectors in the road network. Detector 135, 82 are on 

secondary roads and the rest of them are located at primary roads.  

 

To investigate the traffic situation, time series graph will demonstrate the trends and fluctuation 

of speed over time. Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7 

illustrated the speed-time changes during 8:00am to 8:30am on October 24th 2018 and histo-

gram with KDE of speed respectively. The distribution of speed shows that majority falls be-

tween 10km/h and 20 km/h. As for detector 135, the traffic nearly stopped moving from 8:12 

am and lasted for four minutes, which is an obvious jam on the link. Given the fact that detector 

Figure 4.1 Location of congested spots in road network (red line) 
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135 is located at a secondary link to a five-arm signalized intersection, the congestion might 

cause by the downstream from the connected primary roads. 

Figure 4.2 Detector 135: speed time plot (left) and histogram of speed (right) 

Figure 4.3 Detector 186: speed time plot (left) and histogram of speed (right) 

Figure 4.4 Detector 365: speed time plot (left) and histogram of speed (right) 
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Figure 4.5 Detector 82: speed time plot (left) and histogram of speed (right) 

Figure 4.6 Detector 70: speed time plot (left) and histogram of speed (right) 
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4.3 Congestion evolution 

4.3.1 Spatial distribution  

This part will investigate a road as example to explore the spatial pattern of traffic flows. In the 

meanwhile, potential spot of traffic congestion will be identified. 

The 3rd Septemvriou Street is chosen as the study object, a one-way road connecting to the 

Omonoia Square, which is an important shopping centre and transport hub in the study area 

of Athens. The Omonoia Square is located at the centre of the city at the intersection of six 

main streets; one of them is 3rd Septemvriou Street. Since the aim is to explore the spatial 

distribution of traffic jams, the time window is limited within a fifteen-minutes long observation. 

There are eleven virtual loop detectors installed along the street. Specifically, the classification 

of road changes from primary to secondary at from detector 32, which means a reduction of 

lanes from three to two. Consequentially, the threshold of congested state is varied along the 

entire street, as determined in section 4.1.3. As shown in Figure 4.4, only the travel from south 

to north is premittable. The city centre is located to eastsouth corner relatively (not shown in 

the figure). Table 8 lists a specturm of data, which provides an index of detectors involved and 

the mean values of traffic characteristics for three time sections, 8:00-8:30 am, 8:30-9:00 am 

and 9:00-9:30 am. The mean values are calculated within an effective obeservation phase, i.e. 

15 minutes. The orang-colored cells show all values higher than 400 vehh/h/lane; the blue 

ones indicate that the speed is under 25km/h on secondary links and under 30km/h on primary 

links; and the dashed line means there were no records during obvservation. 

 

Table 8 Traffic parameters from all eleven detectors on 3rd Septemvriou Street  

Index of De-

tector 

(North to 

South) 

Mean density 

[veh/km/lane] 

Mean flow 

[veh/h/lane] 

Mean speed 

[km/h] 

8:00-

8:30 

8:30-

9:00 

9:00-

9:30 

8:00-

8:30 

8:30-

9:00 

9:00-

9:30 

8:00-

8:30 

8:30-

9:00 

9:00-

9:30 

S
e
co

n
d
a
ry

 (
2
) 

1290 14.89 2.87 -- 204.24 76.26 -- 16.45 37.53 -- 

1033 40.11 27.84 22.52 384.92 643.92 534.39 20.06 25.55 26.28 

125 16.28 33.46 22.08 390.08 1061.48 506.04 27.42 33.05 27.08 

102 19.31 19.12 17.58 538.68 495.95 553.14 36.42 25.74 29.25 

40 19.31 17.80 16.95 444.17 542.77 542.72 26.02 29.42 31.18 

32 20.75 22.45 23.10 514.23 397.23 570.06 26.45 20.71 29.23 

P
ri
m

a
ry

 (
3
) 

 

58 17.05 13.61 13.16 393.26 348.93 355.86 24.23 35.46 27.49 

1540 9.77 15.57 14.03 122.12 353.41 300.72 18.96 28.58 23.77 

49 14.76 20.21 14.38 339.93 467.95 441.96 30.99 23.28 32.64 

51 13.47 11.51 17.78 279.85 188.89 275.23 37.39 19.17 18.79 

52 26.32 28.86 20.13 357.98 275.36 334.99 15.86 17.34 18.59 
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Figure 4.4 Layout of 3rd Septemvriou Street and the speed-time graph for  
detector 20, 8 and 105 (8:00 – 8:30) 

Interestingly, the mean density at detector 1033 (purple-coded cell in Table 8) is exceptionally 

high. After investigating the metadata, there existed an almost stationary car that has been on 

the detector for thirty seconds long. According to equation (3.4) , it is clear that the longer the 

time (! of a vehicle travelled, the greater the density of traffic, since the ‘space-time’ window is 

constant. As a result, the local density reached  255.57 veh/km/lane, leveling up mean value 

in the whole duration. 

From 8:00 to 8:30, the speed time series graphs in Figure 4.4 described the average traffic 

speed with sampling rate of fifteen seconds in duration of fifteen minutes. Specifically, the 

speed data of detector 1290 has a rather low-speed state of traffic stream for almost ten 

minutes. Their mean speeds during this period are all lower than 20km/h. To investigate these 

three spots which meet the critical threshold of congestion, the more information is plotted on 

a flow-density graph (Figure 4.5). On detector 1540, there are only eight records with ten ve-

hicles passed through this spot in the whole observation phase. One of the reasons can be the 
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low level of traffic demand on this segment with an outbound travel direction. As for detector 

52, the majority of speed records are below 20km/h. Particularly at around 8:15am, the speed 

nearly dropped to zero. By examining the other two detectors installed on the same edge, the 

speed is logged as 8.75km/h, 6.09km/h and eventually 0km/h. This is most likely a stop at 

signalized intersection. Focusing on detector 52, the relevant road segment is only one block 

away from the Omonoia transport hub. The travel speed values are all slower than 25km/h due 

to radiative and aggregate effect of the gathering urban node. 

Given the fact that relatively high flow rate occurred at detector 32, 40 and 102, it can be 

implied that the spatial distribution of traffic streams is affected by the neighboring conjunctions, 

namely the diagonally crossed road intersecting with 3rd Septemvriou at detector 32. As the 

downstream of both 3rd Septemvriou and another arterial, the volume on detector 32, 40 and 

102 ( highlighted in dotted circle in Figure 4.4) will be increased consequently, reflected by the 

mean traffic flow rate in Table 8. Another factor also contributes to such phenomena, which is 

the classification of road downgrades to secondary with two lanes per direction from three-lane 

class. 

By far, there is no clarified evidence of traffic congestion on this link road at this time duration 

except for detector 52. However, the spatial distribution of traffic flow reveals the potential 

bottleneck which prone to form an over-saturated traffic state, which is the road section of 

detector 32, 40 and 102. Here is only an assumption. And as time goes to 9:00, increasing 

traffic demand will push the capacity of road to its limit. As many studies and models proved 

previous, the bottleneck will be formed due to the road geometry or layout of network. As a 

result, the density will be rising synchronously until it reaches the maximum capacity of the 

road.  

Therefore, the analysis on evolution will proceed in the next section, taking time variable into 

account.  

Figure 4.5 Flow-density joint distribution (8:00– 8:30) 
Left:detector 1290   Middle:detector 1540  Right: detector 52 
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4.3.2 Temporal distribution 

As studied in empirical researches [SUN  ET AL., 2011, p. 86-93, AN S  ET AL., 2018], the evolu-

tion of congestion can be described as four or five phases by the status of traffic flow over time.  

(1) Congestion start phase: travelling speed starts to decrease lower than free flow; travel time 

becomes longer; and queue tends to form. The traffic parameters collected from detectors start 

showing values which meet the criteria of a congestion state, yet the quantity and duration is 

at a low level with a growing trend. 

(2) Congestion propagation phase: the congested state in one detector move to the surround-

ing ones within a certain time interval. Such propagation can be observed along a street, in a 

local area or in the whole network. The queue length increases steadily, but the length is still 

not very long. Vehicles barely have to stop twice within same intersection.  

(3) Congestion Peak phase: traffic flow spreads easily to the upstream period, and almost all 

vehicles have to stop at least two times within the same intersection. The number of congested 

states reported from all detectors reaches the maximum within the same given time interval. 

(4) Congestion Dissolution phase: it is accompanied by the decreasing traffic demand; queue 

length decreases and traffic flow is back to stabilize. The recurrent congestion commonly oc-

curs in the context of urban area, due to the rush hours on every weekday. And the patterns 

can be therefore summarized as above. 

In the case study, from the upcoming phases 9:00-9:30am and 9:30-10:00am, the congested 

detectors and their linkages can be identified as the rush hour comes. According to the thresh-

old defined in section 4.1.3, detector 125 meet condition with all three parameters with a higher 

value than the critical ones. Detector 102,1033 and 1290, on the other hand, partly fulfil the 

condition for jam determination.  

 

Figure 4.6 Spatial distribution of congested linkages at phase 8:30 to 9:00 (circled area) 
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Reviewing the traffic state of all detectors at phase one and phase two, it reveals a preliminary 

conclusion, that the formation of congestion along this specific road is from the intersection of 

3rd Septemvriou Street and the diagonally crossed primary road, i.e. Marni Street to the down-

stream on the rest segments of the road. By now, the congestion is starting to form and prop-

agate to the connected collector roads and the grided linkages. Figure 4.6 circled the con-

gested detectors. From the spatial perspectives, the congestion formed itself as the traffic de-

mand exceeds the service capacity of the infrastructure. 

The speed-time graph for detector 40 from 8:00 to 9:30 is shown in Figure 4.8. The fluctuation 

indicates that the traffic flow is becoming unstable. The part below threshold represent the 

duration of congested state, which has a decreased trend. The same situation also occurred 

to its upstream link, represented by speed-time of detector 32 (Figure 4.9), detector 58 (Figure 

4.10). The locations of these detector are situated at both downstream and upstream of the 

merging point of two streets. The congestion pattern of these three consecutive spots reveals 

that the rush hour is passing and saturation of the segment is gradually falling back to its 

capacity.  

Figure 4.7 Density, flow and speed on congested location 
 From up to bottom: detector 1033, 125, 102 and 40  

From left to right: density, flow, speed 
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Figure 4.8 Temporal distribution of speed on detector 40 (threshold: red dotted line) 

 

 

Figure 4.9 Temporal distribution of speed on detector 32 (threshold: red dotted line) 

 

 

Figure 4.10 Temporal distribution of speed on detector 58 (threshold: red dotted line) 
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4.4 Summary 

This chapter explored the evolution of congestion from the perspective of space and time. The 

case study focused on a south-north direction corridor, 3rd Septemvriou Street. The results 

reveal that, as the rush hour comes, the congestion stars to form initially at the segments of 

detector 32, 40 and 102 from 8:00 to 8:30am. The reason includes not only the increasing 

traffic demand but also the narrowing of road geometry, from a three-lane primary road to a 

two-lane secondary road. As for the temporal distribution of congestion, the duration of con-

gested state of detector 40, 32 and 58 showed a decreasing trend through the observation 

period. The longest congested time was up to almost ten minutes, which found on detector 

1290 at the first phase of surveillance.  
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5 Conclusion and future work 

5.1 Conclusion 

The thesis conducted a trajectory-based traffic state estimation and congestion identification. 

Results can be concluded as four aspects: 

1. Create a road network with geometry attributes and customized layers, e.g. tags for 

traffic signals, primary and secondary corridors. 

2. Adopt Hidden Markov Model-based algorithm to match the trajectory data onto the road 

network; align the GPS point to the identify the true traversed paths. 

3. Extract key traffic parameters, i.e. flow rate, density and average speed on each in-

stalled virtual detector 

4. Analyzed the spatial and temporal congestion distribution and evolution by a newly 

proposed traffic state distinguish methodology. 

These achievements will be benefit for the related academic research as well as the traffic 

management authorities. Negative effect of traffic congestion problem urges all of us to make 

breakthrough in every potential field of relevance. 

5.2 Limitations and future work 

In terms of data processing, the feed-back evaluation for results of the map-matching was not 

conducted yet. The mismatching of traces on the links may lower the precision when calculat-

ing the traffic flow characteristics, which is to be improved in the future. As for the conversion 

from point GPS data to lined-up traces, the microscopic attributes will be eliminated, including 

vehicular headways and maneuvering activities. After this transformation, the discrete state is 

invisible and unavailable from the processed dataset, which will limit the further research on 

queue profiling estimation and car following behaviors modeling and so on.  

The extraction of traffic flow parameters only considered three key components, omitting travel 

time and occupancy. A congestion metrics should be extended to a multidimensional index 

table, which will be count for as many factors as possible. This is the trend of big data, which 

means the transition from deterministic modeling to a data-driven based solution. As well, a 

clustering method is preferable for mining and distinguishing different traffic states and poten-

tial congestion  

In the part of congestion identification, the temporal analysis did not fully exploit the trajectory 

data, due to the gaps (about fifteen minutes) between every collection of datasets. The dura-

tion of non-surveillance is almost as long as the surveillance time. Consequently, the disconti-

nuity in time series graph cannot be neglected. On the other hand, the smoothen algorithm 

and resampling may fail the task when re-aggregating the time-related parameters.
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Appendix A: Retrieved road network matrix 

 

 

inde
x 

os
mid N1 Lat1 Long

1 N2 Lat2 Long
2 length lane

s 
onew
ay 

bearin
g 

highw
ay 

dbl_lef
t 

dbl_righ
t geometry 

0 
232
165
41 

242
134 

37.97
5138 

23.72
5447 

7274
2954

6 
37.97
5042 

23.72
5384 11.989 NaN FALSE 207.2 living_

street FALSE FALSE 

LINESTRIN
G (23.72545 
37.97514, 
23.72538 
37.97504) 

1 
193
421
328 

242
134 

37.97
5138 

23.72
5447 

2421
35 

37.97
5604 

23.72
5719 57.011 NaN FALSE 24.7 living_

street FALSE FALSE 

LINESTRIN
G (23.72545 
37.97514, 
23.72572 
37.97560) 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

1991 
896
087
076 

833
074
237

1 

37.97
8338 

23.74
1607 

2507
1228

1 
37.97
8422 

23.74
1560 10.178 NaN TRUE 336.1 reside

ntial FALSE FALSE 

LINESTRIN
G (23.74161 
37.97834, 
23.74156 
37.97842) 

1992 
231
841
95 

833
074
237

1 

37.97
8338 

23.74
1607 

2507
1226

2 
37.97
8652 

23.74
1038 61.259 NaN TRUE 305.0 reside

ntial FALSE FALSE 

LINESTRIN
G (23.74161 
37.97834, 
23.74153 
37.978... 
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Appendix B: Detector matrix on 3rd Septemvriou Street 

 

Table:  Detector matrix on 3rd Septemvriou Street 

index N1 N2 highway lanes length loop_distance 

800 262236447 95663423 primary 3 67.279 4.0 

102 95663631 95663394 secondary 2 74.219 4.0 

32 95663392 95663400 secondary 2 30.891 4.0 

40 95663400 95663631 secondary 2 74.195 4.0 

125 97788471 358465410 secondary 2 86.607 4.0 

1033 358465410 635122963 secondary 2 45.282 4.0 

1290 635122963 635122988 secondary 2 15.972 4.0 

58 95663454 95663467 primary 3 59.110 4.0 

1540 962356679 95663454 primary 3 62.364 4.0 

49 95663420 962356679 primary 3 58.782 4.0 

51 95663422 95663420 primary 3 65.230 4.0 

52 95663423 95663422 primary 3 61.694 4.0 
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Table: Detector matrix on 3rd Septemvriou Street (continued) 

det_edge_1 det_edge_1bis det_bearing_1 det_bearing_1bis 

LINESTRING 
(23.72809581607818 
37.9844766, 23.7... 

LINESTRING 
(23.72809581607818 
37.9844766, 23.7... 

270.000000 270.000000 

LINESTRING 
(23.72932095350776 
37.9896441544338... 

LINESTRING 
(23.72932984313156 
37.9896794869473... 

281.215768 281.215768 

LINESTRING 
(23.72908422601225 
37.9887034281759... 

LINESTRING 
(23.7290931228358 

37.98873875954592... 
281.225115 281.225115 

LINESTRING 
(23.72915625979005 
37.9889896553393... 

LINESTRING 
(23.72916515081267 
37.9890249876265... 

281.217655 281.217655 

LINESTRING 
(23.72980141293278 
37.9916533337178... 

LINESTRING 
(23.72981026828561 
37.9916886716393... 

281.171654 281.171654 

LINESTRING 
(23.72999304268926 
37.9924174381495... 

LINESTRING 
(23.73000190557651 
37.9924527748946... 

281.181169 281.181169 

LINESTRING 
(23.73007329208044 
37.9927373185528... 

LINESTRING 
(23.73007601018145 
37.9927481400229... 

281.196963 281.196963 

LINESTRING 
(23.72874853686437 
37.9873682371191... 

LINESTRING 
(23.72875739712687 
37.9874035742317... 

281.178578 281.178578 

LINESTRING 
(23.72861055692018 
37.9868180400698... 

LINESTRING 
(23.72861942201067 
37.9868533764190... 

281.184833 281.184833 

LINESTRING 
(23.72848045519132 
37.9862994397968... 

LINESTRING 
(23.72848931973282 
37.9863347762277... 

281.184209 281.184209 

LINESTRING 
(23.72833619261658 
37.9857239453133... 

LINESTRING 
(23.72834181634903 
37.9857463390799... 

281.195948 281.195948 

LINESTRING 
(23.728199644413 

37.98517963816457,... 

LINESTRING 
(23.72820850602772 
37.9852149750454... 

281.180637 281.180637 
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