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2 Abstract

2.1 English

Active learning has been extensively studied in both adults and children, using a wide
variety of tasks. Studies focusing primarily on how children’s learning strategies change
have shown substantial developmental improvements in search efficiency, particularly
between the ages of 5 and 10. However, studies focusing on children mostly employ be-
havioral paradigms, which provide little insight into the processes underlying children’s
search strategies and giving rise to these improvements. In adults, computational mod-
eling has proven to be a successful approach for addressing this question, showing that
adults’ search is guided by the learners’ hypothesis space, and that their strategies aim
to systematically reduce uncertainty about which hypotheses are correct. Several stud-
ies have also demonstrated learning advantages from active over passive learning, but
others contradict these results. This dissertation project aims to further our understand-
ing of these processes by combining computational and behavioral methods to study
the active learning strategies employed by 5- to -7-year-old children, and adults. The
results of this dissertation show for the first time that the hypothesis space can change
during a task, with developmental differences in its structure emerging between the ages
of 5 and 7, and that sampling strategies can be transferred between tasks to a certain ex-
tent, a fact which is unaffected by learning condition. These studies provide important
insights into how computational processes affect the implementation of active learning
strategies in different tasks, and how developmental changes in these processes may
impact children’s strategies. Together, these studies provide a deeper understanding of
how computational and cognitive processes may interact to give rise to documented de-
velopmental changes in strategy use, and help clarify existing debates about the benefits
of active learning. Insights from this line of research also have potential for building

up a scientific framework to guide instructors and educational app creators in designing



interventions.

2.2 Deutsch

Strategien des aktiven Lernens sind sowohl bei Erwachsenen als auch bei Kindern
unter Verwendung einer Vielzahl von Aufgaben eingehend untersucht worden. Stu-
dien, die sich mit der Verdnderung der Lernstrategien von Kindern befassen, haben
gezeigt, dass sich die Sucheffizienz besonders im Alter von 5 bis 10 Jahren erheblich
weiterentwickelt und verbessert. Studien mit Kindern verwenden jedoch meist Verhal-
tensparadigmen, die nur wenig Einblicke in die Prozesse geben, die den Suchstrategien
von Kindern zugrunde liegen oder zu entwicklungsbedingten Verbesserungen beitra-
gen. Bei Erwachsenen hat sich die Computermodellierung als erfolgreicher Ansatz zur
Beantwortung dieser Fragen erwiesen. Ergebnisse aus solchen Untersuchungen zeigen,
dass die Informationssuche vom Hypothesenraum der Lernenden geleitet wird und dass
ihre Strategien darauf abzielen, die Unsicherheit dariiber, welche Hypothesen korrekt
sind, systematisch zu verringern. Mehrere Studien haben auch Lernvorteile von ak-
tivem gegeniiber passivem Lernen gezeigt, wobei jedoch auch widerspriichliche Daten
existieren. Ziel dieses Dissertationsprojekt ist es, der den kindlichen Suchstrategien zu-
grundeliegenden Prozessen und der Urspriinge entwicklungsbedingter Veridnderungen
besser zu verstehen. Dafiir werden die aktiven Lernstrategien von 5- bis 7-jdhrigen
Kindern und Erwachsenen mit einer Kombination aus computergestiitzten und verhal-
tensbasierten Methoden untersucht. Diese Dissertation zeigt, zum ersten Mal, dass sich
der Hypothesenraum wihrend eine Aufgabe dndern kann, und dass seine Struktur zwis-
chen die Alter von 5 und 7 entwickelt. Ich zeige auch, dass aktive Stichprobenstrategien
zwischen verschiedenen Arten von Aufgaben iibertragt werden konnen. Diese Studien
liefern wichtige Erkenntnisse dariiber, wie kognitive Prozesse die Implementierung ak-
tiver Lernstrategien in verschiedenen Aufgaben beeinflussen und wie sich entwicklungs-

bedingte Veridnderungen in diesen Prozessen auf kindliche Suchstrategien auswirken.



Zusammen tragen die Ergebnisse dieser Dissertation dazu bei, ein tieferes Verstindnis
dafiir zu erlangen wie rechnerische und kognitive Prozesse zusammenwirken und doku-
mentierte entwicklungsbedingte Verdnderungen in der Strategieverwendung bedingen.
Die Erkenntnisse aus dieser Forschungsarbeit konnen dabei helfen, bestehende Debat-
ten liber die Vorteile aktiven Lernens zu informieren und besitzen Potential fiir die Er-
arbeitung eines wissenschaftlichen Rahmenwerks, welche Padagogen sowie Entwickler
von Bildungs-Apps in der Gestaltung neuer Bildungsangebote leiten und unterstiitzen

konnte.



3 Introduction

Active learning has been an enduring buzzword in both the mainstream media and
scientific communities for some time. Entering the keywords ‘active learning’ into
Google generates about 2.530.000.000 search results, and the same query entered into
Google Scholar returns approximately 5.480.000 scientific publications (approximately
7.070.000 results for the similar term ‘information search’), reflecting the fact that the
scientific community has been investigating active learning for over 50 years, and in a
huge variety of fields, from machine learning, to cognitive science, to educational sci-
ence. This is therefore an important research topic with extremely varied applications,
the relevance of which continues to increase with educators’ and parents’ growing in-
terest in optimizing the classroom learning experience.

Active learning is widely considered to be one of the best approaches to learning
in education. Several educational theories advocate a different idea of what it means
to be an active learner and the benefits of such learning relative to passive instructional
methods, such as discovery learning (Bruner, [1961), experiential learning (Kolb, 2014),
inquiry learning (Kuhn, Black, Keselman, & Kaplan, 2000), constructivism (Steffe &
Gale, [1995)), and self-regulated learning (Boekaerts, [ 1997)). These theories vary in their
focus but share the belief that active learning leads to improved learning outcomes. This
claim is often supported in comparisons with more traditional forms of passive learning
such as lecture-based teaching (Bonwell & Eison, [1991; Freeman et al., 2014). How-
ever, despite the popularity of active learning, it not always clear why it works, or does
not, in real world settings. This is because active instruction usually differs from pas-
sive learning in several respects, and it is often unclear which of these differences lead
to observed results. In fact, the concept of active learning now encompasses a large
variety of instructional techniques, which usually refer to a combination of physical
activity or interaction, the creation or explanation of learning materials, planning learn-

ing activities, question asking, metacognition, and social collaboration. Furthermore,



children’s active learning strategies have not always been characterized in detail, and
the relationship between strategy-specific factors such as sampling strategies (i.e., how
learners choose what information to target at each step of the search) and cognitive fac-
tors such as executive functions remains unclear. Together, the variable definitions of
active learning and the knowledge gaps regarding its development make it difficult to
identify what causes differences in performance during active learning, both across de-
velopment and between learning conditions, and to predict whether these effects can be
generalized to other kinds of activities or materials.

The present dissertation focuses on active learning in the domain of cognitive sci-
ence. Its aim is to deconstruct children and adults’ active learning strategies in order
to reach a deeper understanding of how these strategies are implemented in child- and
adulthood, and identify which factors potentially drive developmental changes. To this
end, I combine computational modeling with behavioral paradigms to study how two
crucial aspects of active learning strategies — the hypothesis space and active sampling
strategies — are implemented at the computational level in 5- to 7-year-old children
and adults. Note that active learning will be defined as self-led or self-regulated learn-
ing (wherein the learner controls what to learn, and when) in the present work, and used

interchangeably with the term ‘information search.’

3.1 The many faces of active learning: different definitions of active

learning influence research methods and findings

It is not only the ongoing debates over the merits of active learning versus guided in-
struction (Kirschner, Sweller, & Clark, [2006; Mayer, [2004; Prince, 2004) which add
to the difficulty of understanding which factors drive developmental changes in active
learning strategies, but also attempts to create precise taxonomies of active behaviors
and their predicted effects on learning (Chi, 2009; Chi & Wylie, [2014). For instance,

Chi/(2009) proposed several gradations of what is commonly considered “active” learn-

8



ing: active, constructive, and interactive. She defines active learning as the lowest level,
signifying merely doing something, for example highlighting and underlining relevant
sentences in written material, while constructive learning is a step above and purported
to require a secondary output such as summarizing material, drawing concept maps, and
self-explaining. Finally, interactive learning is the most engaged form of learning and
leads to the best learning outcomes, as it involves talking to another person, interacting
with a system like a virtual tutoring system, and physical interactions. This framework
is best suited to an educational context as Chi’s definitions of active behavior all involve
actions that are likely to take place in a classroom. This also highlights an additional
source of confusion when it comes to defining active learning: the context of the dis-
cussion. As Chi notes in her 2009 work, behavior such as repeating a set of words to be
memorized would be categorized as active in her framework, but passive in the memory
literature (p. 76).

The debate over whether instruction or active learning is better for learning outcomes
is also complicated by the varying definitions of “active learning”. A good example of
this is in |Klahr and Nigam! (2004). Students were either asked to “discover” on their
own, given a set of materials, the Control of Variables Strategy (CVS), an approach
to causal learning which involves isolating the effects of a single variable at a time on
a causal system (Kuhn & Brannock, 1977, discovery learning, or active condition), or
observed as an experimenter conducted different experiments using this strategy and
explained why this was an effective approach (direct instruction, or passive condition).
The authors found that students in the direct instruction condition outperformed those
in the discovery learning condition, suggesting that in this case, passive learning was
more effective than active learning. However, the instructions given to students in the
direct instruction condition included a prompt to think about how sure they could be
that a variable had an effect on an outcome as a result of each experiment. According

to Chi’s (2009) framework, this would therefore be considered a constructive learning



task, not a passive one. Therefore, as indicated by |Chi| (2009), Klahr and Nigam’s
(2004) finding that students in this condition displayed better learning outcomes than
those in the discovery learning condition is also consistent with her prediction that con-
structive learning leads to better learning outcomes than active learning. This example
illustrates that fact that studies purporting to contrast passive and active learning may
not necessarily be interpreted the same way, depending on the framework used.

Outside of the educational literature, active learning has been studied in a wide va-
riety of tasks which tend to capture skills which are important in ubiquitous, real-world
learning tasks, in both adults and children. Here, the focus has been more on learners’
search patterns themselves, with learning outcomes being a secondary concern, and lit-
tle consideration of the transfer of strategies between tasks. However, there are some
methodological differences between studies adopting a developmental perspective and
those focused primarily on adults. Studies investigating active learning in children em-
ploy mainly behavioral methods, although there has been growing interest in combining
these methods with computational modeling (e.g., Mata, von Helversen, & Rieskamp)
2011} Ruggeri, Sim, & Xu, 2017; von Helversen, Mata, & Olsson, |2010). Studies of
adult learning have, in contrast, been successfully using computational methods for
some time (e.g., Enkvist, Newell, Juslin, & Olsson, |[2006; Juslin, Jones, Olsson, & Win-
man), 2003}; Juslin, Olsson, & Olssonl 2003; Markant & Gureckis, [2014; Markant, Set-
tles, & Gureckis, 2016} [Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003), leading
to the elaboration and refinement of computational-level concepts such as the hypothe-
sis space (i.e., the mental structure of representations of task-relevant information) and
sampling strategies (i.e., what learners care about when selecting which information to
look at during their search).

For instance, Markant and Gureckis| (2014) modeled adults’ active learning strate-
gies in a category learning task. Participants were presented with “loop antennas” for

televisions, differing in size and the angle of a central diameter, and had to learn which
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of two fictional channels each antenna received based on these two cues, and could
change the values of these dimensions to see which channel was received as a result
of the changes. Examination of participants’ information search strategies showed that
they tended to focus their search on training items that were close to the category bound-
aries, where there was more uncertainty about how to classify each item, and preferen-
tial use of this strategy was associated with higher accuracy. Furthermore, adults tend
to break learning problems into smaller “chunks”, and use this approach to resolve un-
certainty between two hypotheses at a time in each chunk (Markant et al., 2016). Quan-
tifying the efficiency of adults’ strategies has shown that their choices are informative
and generally aim to reduce uncertainty at every step (i.e., they do not sample randomly
but choose to look at information based on how useful it is for differentiating between
competing hypotheses; e.g., |(Gureckis & Markant, 2009; Steyvers et al., 2003)), an effect
which is amplified by restricting how much information they can look at during a learn-
ing phase (Steyvers et al.,2003). These findings illustrate two important characteristics
of information search strategies: that they are guided by the hypotheses entertained by
each individual learner (i.e., the hypothesis space), and that they often aim to reduce un-
certainty about the solution to a learning problem. These examples also illustrate how
computational modeling of active learning strategies can provide important insights into

some of the processes underlying human learning behavior.

3.2 The development of active learning strategies

In line with these findings, a growing body of literature demonstrates that even infants
prefer to explore more uncertain options (L. Schulz, 2015} Stahl & Feigenson, [2015)),
and that this preference is present throughout development, with preschoolers also be-
ing more likely to explore when presented with confounded evidence, i.e., when they
are uncertain about the causal mechanism at work (Cook, Goodman, & Schulz, 2011}

L. E. Schulz & Bonawitz, 2007), and when they witness evidence which violates their
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beliefs (Bonawitz, van Schijndel, Friel, & Schulz, 2012; |Legare, Gelman, & Wellman,
2010). Moreover, using a task in which noisy rewards were spatially correlated on a
grid, E. Schulz, Wu, Ruggeri, and Meder| (2019) showed that 7- to 11-year-old children
learned more slowly than adults and generalized less, but explored more (although not
randomly) and that they preferentially explored areas with high uncertainty, suggesting
that they were even more strongly motivated than adults to reduce uncertainty.

The idea that children preferentially explore under conditions of uncertainty is fur-
ther supported by work on curiosity (e.g., see [Jirout & Klahr, 2012; Kidd & Hay-
den, 2015} Kidd, Piantadosi, & Aslin, [2012). For instance, Information Gap Theory
(Loewenstein, |1994) proposes that curiosity is internally motivated, in that it arises
when an individual becomes aware of a gap in their knowledge, i.e., when they are
uncertain about something. Awareness of this knowledge gap induces a desire to reduce
it, which is resolved by looking for the missing information. Jirout and Klahr (2012
further refined this idea by proposing that curiosity is a “threshold of desired environ-
mental uncertainty that leads to exploratory behavior” (p. 127), which is consistent with
evidence that human beings generally seek to resolve uncertainty, but does not account
for an upper bound of “desired uncertainty”. Even in infants, curiosity and attention are
focused on stimuli or information that are moderately unfamiliar, rather than completely
familiar or completely unfamiliar, leading to an inverted-U-shaped curve (e.g., Kang
et al., [2009; Kinney & Kagan, 1976). Kidd et al.| (2012) termed this the “Goldilocks
Effect”, in reference to the fact that there is a level of uncertainty that is “just right”—
neither too little or too much — which elicits curiosity, and therefore exploration. How-
ever, it is worth noting more recent work by van Schijndel, Jansen, and Raiymakers
(2018) which has shown that, at least in the context of scientific causal learning, curios-
ity is not related to the quality of information search strategies, but rather to knowledge
acquisition. Therefore, the relationship between curiosity and active learning is not as

straightforward as it might first appear. Interestingly, the authors posited that these re-
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sults suggested the existence of two parallel processes for inquiry-based learning: one
which deals with the planning of experiments, and the other with the later evaluation of
and reflection on those experiments. If true, this may complicate the interpretation of
results linking active learning strategies to learning outcomes. On the other hand, this
study focused on the kinds of causal learning that take place in the science classroom,
which are a special case of active learning, so it remains to be seen whether these results
might extend to other learning contexts.

However, despite this early sensitivity to uncertainty, studies specifically investigat-
ing how effective children’s active learning strategies are have shown that young chil-
dren search inefficiently; their search strategies develop from seemingly undirected and
exhaustive exploration to more adult-like levels of efficiency, with particularly large
improvements observed between the ages of 5 and 10 (e.g., Davidson, 1991a, [1991b|
1996}, Mosher & Hornsbyl, (1966} Ruggeri, Lombrozo, Griffiths, & Xu, |2016; Ruggeri
et al., [2017). In question-asking tasks, participants’ task is to find the correct answer
from a series of options, or hypotheses, using as few yes-or-no questions as possible.
Thus, two types of questions are possible: hypothesis-scanning, which target one option
at a time (e.g., is it the daisy?), and constraint-seeking, which target several options at
once (e.g., is it a plant?). When all options are equally likely, using constraint-seeking
questions is the most efficient approach, because it allows the question asker to narrow
down the hypotheses quickly to find the correct one, and this is adults’ default approach.
In contrast, children under the age of 7 almost exclusively rely on hypothesis-scanning
questions, and only begin to transition to constraint-seeking questions between the ages
of 7 and 10 (Herwig, |1982; Mosher & Hornsby, |1966; Ruggeri & Feufel, 2015; Ruggeri
et al., [2016).

Likewise, in information board procedures, where information about different al-
ternatives is uncovered sequentially before choosing one of the alternatives, younger

children (6- and 7-year-olds) search more of the available information than older chil-
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dren (9- to 13-year-olds; Betsch, Lang, Lehmann, & Axmann, 2014; |Davidson, 1991al
1991b), [1996) and seem to have difficulty identifying which pieces of information are
more relevant or important for the decision (e.g., Betsch et al., 2014; Davidson, 1996,
but see von Helversen et al., 2010) . However, the factors which drive these changes, as
well as the hypotheses that children use to guide their search at different ages and exactly
how they take uncertainty into account, remain unknown. Taking inspiration from the
adult literature and adopting computational methods to address these questions would
help deepen our understanding of documented changes in learning behaviors and shed
light on these questions.

In order to be truly efficient, active learning strategies must also be flexible, tailored
to one’s learning environment. Different strategies vary in informativeness depending
on the characteristics of the task at hand, as well as on the previous knowledge and ex-
pectations of the searcher (Todd & Gigerenzer, 2012). Being able to adapt one’s learn-
ing strategies to the current learning context, an ability referred to as ecological learning
(Rugger1 & Lombrozo, 2015} Ruggeri et al.,[2017)), is therefore crucial for maximizing
learning effectiveness. Adults are ecological learners, and adapt their learning strategies
according to sparsity (i.e., the number of hypotheses affecting an outcome) in a number
of non-causal hypothesis testing tasks (Hendrickson, Navarro, & Perfors, [2016; Langs-
ford, Hendrickson, Perfors, & Navarro, 2014} McKenzie, Chase, Todd, & Gigerenzer,
2012; |Navarro & Perfors, [2011}; Oaksford & Chater, [1994). For example, |Hendrickson
et al. (2016) showed that people switched from requesting positive to negative exam-
ples of a concept when the overall proportion of positive cases increased. This also
holds true for causal learning tasks, as Coenen et al. (2019) showed that adults also
adapt their learning strategies to causal sparsity.

However, perhaps surprisingly, adults do not seem to be better ecological learners
than children. For example, in question-asking games, 7-year-olds are equally able to

tailor their questions to the statistical structure of the environment (Ruggeri & Lom-
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brozo, 20135)), and even seem to do so more readily than adults when the most efficient
question-asking strategy is not the one that adults employ by default (Rugger1 & Lom-
brozol[2015)). This is consistent with evidence that sensitivity to environmental probabil-
ities emerges very early on in life. Infants as young as 10 to 12 months old are not only
sensitive to probabilities, but also use probabilistic information to make judgements
and predictions and revise them after observing new evidence (Denison & Xu, 2014;
Gweon, Tenenbaum, & Schulz, 2010; Kushnir & Gopnik, 2005). In fact, assessments
of probabilistic cognition in two Mayan indigenous groups with no formal education
suggests that this form of cognition may be a fundamental, and universal, human skill,
one which does not require any particular training to acquire (Fontanari, Gonzalez, Val-
lortigara, & Girotto, |2014). From the age of 5 or 6, children have also been shown to
integrate prior probabilities with feedback and subsequent evidence (Denison, Reed, &
Xu, 2013; |Girotto & Gonzalez, 2008;|Gonzalez & Girottol 2011|, but note that Gonzalez
and Girotto found that children need additional instruction to properly refine this skill)
and make inferences that are consistent with the general principles of Bayesian inference
(e.g., Eaves & Shafto, 2012; IL. E. Schulz, Bonawitz, & Griffiths, 2007)). Furthermore,
young children have been shown to correctly infer unusual causal relationships faster
than adults do, suggesting that they are capable of adapting their learning process to
uncommon environmental structures more readily than adults (Gopnik, Gritfiths, & Lu-
cas, 2015). In sum, sensitivity to probabilities and the statistical properties of a task
is a fundamental building block of ecological learning which appears to be in place
from infancy, making it likely that ecological learning is well within young children’s
capabilities.

Indeed, recent work with 3- to 5-year-olds has shown that children as young as 3
can adapt their exploratory actions to learning environments with different statistical
properties as long as the task does not require them to generate informative questions

(Ruggeri, Swaboda, Sim, & Gopnik, 2019). This body of work shows that even though
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very young children are inefficient learners, they already use probabilistic information
about their learning environment to decide whether, how, and how much to explore:

they are therefore not only active, but ecological learners.

3.3 Active versus passive learning

Another question which has been of great interest to the scientific community is whether
active learning is better than passive learning. Active learning has mostly been shown to
benefit performance in category and causal learning tasks (e.g., |Gureckis & Markant,
2012; Steyvers et al., [2003), as well as in memorization tasks (Ruggeri, Markant, et
al., 2019; |Voss, Gonsalves, Federmeier, Tranel, & Cohen, |2011). This advantage could
be explained by a hypothesis-dependent sampling bias, whereby each participant con-
siders different hypotheses at each step of the search, but only the active learners can
guide their search accordingly, enabling them to learn the category boundaries or un-
derlying causal relationship more successfully (Markant & Gureckis, 2012} Steyvers et
al., 2003). Indeed, even such small-scale forms of control as controlling the order and
pacing of study material lead to improvements in memory for the studied material (Har-
man, Humphrey, & Goodale, [1999; |Voss et al., 2011). Therefore, being able to control
one’s learning material can be a more effective learning strategy than simply observing
data.

Similar advantages of active over passive learning have also been demonstrated in
spatial exploration. In the spatial learning domain, active exploration involves planning
where to go next based on a certain goal. This kind of decision making has been shown
to be sufficient to enhance learning of the environment, even in the absence of physical
interaction or control of movement. For example, Plancher, Barra, Orriols, and Piolino
(2013) compared active drivers and yoked passengers in a virtual driving experiment.
Active participants were assigned to one of two conditions: an interaction condition, in

which they drove a car along a route dictated by the experimenter, and a planning condi-
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tion, in which they decided which direction to turn at each intersection and their choices
were carried out by the experimenter. Compared to passive observation, in which par-
ticipants simply watched a video of the driving experience generated by participants in
the interaction condition, both active conditions led to better memory for the layout of
the virtual environment and the route taken. Moreover, performance in the planning
condition was higher than in the interaction condition, suggesting that deciding where
to go enhanced memory independently of the physical act of exploring. This advantage
of active over passive learning in spatial navigation tasks also exists in children from
the age of 3 (Feldman & Acredolol [1979; McComas, Dulberg, & Latter, [1997; Poag,
Cohen, & Weatherford, [1983). However, the opposite pattern was found for recognition
memory of objects encountered along the route, with passive observers showing better
recognition relative to both active conditions (Plancher et al., 2013). This suggests that
the memory benefits of active exploration are specific to information that is relevant to
making exploratory decisions, whereas incidental memory for goal-irrelevant informa-
tion could be impaired or unchanged relative to passive observation.

Further research is needed to investigate whether this is also true of active learning
problems that do not involve spatial exploration. Indeed, while these findings raise the
possibility that memory benefits associated with active learning could be restricted to
information which falls strictly under the scope of the learner’s attention, it may also be
possible that some kinds of learning strategies which apply to different contexts could
trigger deeper processing of all the information available to the learner. For instance, in
question-asking tasks, asking constraint-seeking questions requires abstracting all the
option categories, in order to isolate one group of objects to ask about. In contrast,
hypothesis-scanning questions only target one option at a time, and therefore do not
necessarily require any deeper processing. It may be that such deeper processing can
enhance memory for all the options encountered in this kind of task, rather than only

the ones that were explicitly asked about. In this scenario, constraint-seeking questions
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would lead to improved memory for the objects encountered in question-asking tasks
than hypothesis-scanning questions, unless one was unlucky and had to ask about every
single option before finding out that the last one remaining was the correct answer. How-
ever, the relationship between different kinds of active learning strategies and learning
outcomes has yet to be explicitly investigated.

Many studies find support for the intuition that active learning is better than passive
learning, but this is not always the case. For instance, active learners performed better
than passive learners in some multiple-cue inference tasks, but worse in categorization
tasks (Enkvist et al., [2006; Juslin, Jones, et al., [2003; Juslin, Olsson, & Olsson, [2003)).
This was explained by active participants in the categorization tasks implementing a
learning process more suited for multiple-cue judgement tasks, which did not capture
the underlying task structure of the categorization task (Enkvist et al., 2006). Indeed,
more recent work has suggested that active learning in categorization and multiple-cue
judgement tasks promotes the use of this kind of learning process, called cue abstraction,
even when this is not the best approach, whereas observational, or passive, learning
does not (Henriksson & Enkvist, 2018)). These results suggest that the benefits of active
learning may also depend on the specific task, with some kinds of tasks promoting active
learning strategies that are less effective than passive observation. Since this work was
all carried out with adults, it also raises the question of whether adults may lose some
sensitivity to the task structure, perhaps because their prior expectations are strongly
ingrained, enough to occasionally override the sensitivity that is present from a young
age.

Furthermore, Ruggeri and colleagues (2019) found that the benefits of active learn-
ing for memory retention only emerged from age six, and continued to increase until
they reached adult-like levels (i.e., an improvement of approximately 5-10% over pas-
sive learning) around age ten. This indicates that the relative benefits of active over

passive learning can vary across age as well as tasks, and, together with the literature

18



examining the development of active learning strategies, points to the age range of 5 to
10 years as a period of interest when studying how active learning strategies develop.
Further examination of the limits of active learning using a broader range of tasks and
a developmental perspective would help clarify under which conditions active learning

can be truly beneficial.

3.4 Applied active learning: education and scientific reasoning

Research in education has also produced mixed evidence for the relative benefits of ac-
tive over passive learning. Comparing active and passive learning is a common approach
in studies evaluating educational interventions, especially in the context of scientific rea-
soning. An important focus of science education research has been to teach the basic
principles of how learners should approach such problems in general. Educators have
specifically focused on teaching students the principle of isolating or controlling vari-
ables, or CVS (i.e., the idea that variables should be tested individually while holding
everything else constant), which is a general strategy for approaching many types of
causal learning problems and often results in non-confounded evidence (for a review
of the control of variables principle, see [Zimmerman, 2007). Adults and adolescents,
although more likely than young children to use the strategy spontaneously, still show a
tendency to sometimes test multiple features at once instead of testing them individually
(Kuhn et al.| |1995). In contrast, in more complex tasks (with a vast hypothesis space)
adults often choose to test one causal relationship at a time by holding most variables
at a constant value, perhaps because of a need to reduce the cognitive load (Bramley,
Dayan, Griffiths, & Lagnado, 2016). As discussed briefly on p. 9-10, studies comparing
direct instruction with active learning (or, as it is usually called in this literature, dis-
covery or inquiry learning) have tended to yield contradictory or simply inconclusive
results, with some researchers consistently finding either no difference or an advantage

for direct instruction (e.g., (Chase & Klahr, 2017} Kirschner et al., 2006; Matlen &
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Klahr, 2013} [Strand-Cary & Klahr, 2008), while others disagree (e.g., [Dean & Kuhn,
2007; [Kuhn & Deanl 2005). Overall, the evidence on this question is still unclear.

In the education literature, teaching children the control of variables strategy has
been an important focus (e.g., [Chen & Klahr, 1999; Kuhn & Angelev, |1976; |Kuhn
& Brannock, [1977). In fact, mastery of CVS is considered so important for STEM
achievement that it features as one of the assessment criteria in national standards for
science education in the United States (e.g., see National Academy of Sciences, 2013,
p-52). A common finding from empirical studies is that children require extensive train-
ing to acquire this strategy and teaching them to transfer it to novel tasks is an even
bigger challenge (e.g., [Klahr, Fay, & Dunbar,|1993; Kuhn et al., 1995} | Kuhn & Phelps),
1982), despite the fact that children already display some precursor skills (Sodian, Za-
itchik, & Carey, 1991), and even preschoolers can use CVS somewhat successfully if
given careful guidance (van der Graaf, Segers, & Verhoeven, 2015)). These difficulties
may be partly explained by the fact that this strategy is not always the best possible
approach. Indeed, when there are few variables affecting an outcome, testing several
hypotheses at once can be a more efficient approach than testing them one by one (Co-
enen et al., 2019). Children may not readily transfer CVS to other learning problems
simply because they are aware, on some level, that this is not the only effective strategy
in their toolbox. In sum, studies of active learning in the science education literature
have produced interesting but complex and sometimes contradictory results, which are
difficult to reconcile without a better understanding of the learning processes involved
in different problem-solving approaches, and under different learning conditions. The
different possible definitions of active and passive learning within different frameworks
and different fields also complicate the interpretation of these studies, as illustrated on

p. 9-10.
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3.5 This dissertation: research goals

In this chapter, I have provided a high-level overview of the current state of the literature
on active learning. Several potential research directions arise from this body of work.
First, the active learning strategies employed by children and adults have been charac-
terized to different extents and in various tasks, and information search is known to be
guided by the hypothesis space of the learner. However, the exact structure of these rep-
resentations, as well as the processes and cognitive skills underlying search strategies
and driving developmental changes in their use, remain poorly understood. Moreover,
it is also unknown to what extent sampling strategies differ between tasks. Second, the
differential advantages of active over passive learning are still debated, and a satisfying
explanation for these discrepancies has yet to be found due to an incomplete understand-
ing of the cognitive processes that generate the observed behaviours. Third, despite sev-
eral indications that children are adaptive learners, and may be on par with adults in this
respect, the adaptiveness of children’s search strategies has seldom been explicitly in-
vestigated from a developmental perspective outside of question-asking tasks. As such,
it is still unclear to what extent children are adaptive learners and how much this skill
develops during childhood.

Thus, the literature reviewed in this chapter has shown that there are three crucial
elements of information search strategies that need to be considered when evaluating
the implementation of active learning strategies: the hypothesis space, sampling strate-
gies, and ecological learning or adaptiveness. Gaining a better understanding of how
these three factors are implemented by children and adults, and how they develop, is
very important for identifying potential sources of developmental change and, perhaps,
potential targets for interventions that seek to optimize active learning. This dissertation
focuses on the former two (the hypothesis space and sampling strategies), for which
there is currently the least amount of evidence. In other words, the studies included in

this dissertation aim to answer the following main questions:
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1. How do learners direct their information search? More specifically, how is their
hypothesis space represented at different ages and how closely do their learning

strategies map onto the hypothesis space?

2. Do key cognitive skills such as executive functions affect the development of the

hypothesis space?

3. What do learners care about when deciding what information to look at next?
In other words, how much do their sampling strategies change between different
tasks and what specific goals do they try to resolve at each step of the search (e.g.,

reducing uncertainty or maximising their reward, if the task is remunerated)?

Furthermore, the influence of cognitive skills — which naturally underpin learners’
abilities to plan, execute, and retain information — on the development of all aspects of
active learning strategies cannot be ignored. However, this question alone could form

the basis of an entire dissertation, and as such is too vast to address here.

3.6 Other potential research directions

For the sake of completeness, this section briefly outlines two other major research
directions arising from the current state of the literature on active learning, but which are
beyond the scope of this dissertation. First, although children engage in active learning
from a very young age, and are known to be prolific question askers and social learners,
little attention has been paid so far to how they evaluate other people’s active learning
skills and use this information to make social judgements. Although there is ample
evidence of how children interact with peers and adults to learn new information and
identify good informants, it remains poorly understood how children use evidence about
how competent other learners are at figuring things out on their own (i.e., engaging in
active learning) to infer what other skills or traits they might possess. |De Simone and

Ruggeri| (2020; [2019) found that children begin to selectively generalize an informant’s
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competence in searching for information effectively to traits or characteristics that are
related to this competence (e.g., being smart or good at solving puzzles) from around
age 7, with 7- to 10-year-olds exhibiting adult-like selectivity in these generalizations.
In contrast, 3- to 4-year-olds did not draw systematic generalizations, while 5- to 6-year-
olds tended to over-generalize the informant’s competence to unrelated traits (e.g., being
able to see further away). However, beyond this work, the development of this ability is
as yet unexplored. In addition, considering the ever-increasing presence of technology
accessible to children at home (e.g., robots and virtual assistants like Amazon’s Alexa),
it is becoming very important to understand more about how children of different ages
evaluate these entities as intelligent agents and sources of information. To do so, one
must also understand more about how children evaluate the cognitive (and other) traits
of other people.

Another avenue of investigation is to empirically evaluate the myriad educational
apps and learning robots targeting children (over 80 000 apps are categorized as “for
education” on the Apple App store; Apple, 2019), in order to identify training programs
that work and those that do not. These tools do not all involve active learning, but many
of them use their engaging, interactive and self-paced designs as a selling point and sev-
eral claim to improve skills such as executive functions, memory and logical reasoning.
However, these outcomes have usually not been assessed in peer-reviewed studies (for
a review on evidence-based educational apps, see Hirsh-Pasek et al., 2015). Therefore,
having a better understanding of the processes underlying children’s information search
strategies, which training designs are beneficial for enhancing these processes, and how
children learn from technological sources could also inform the design of future inter-
ventions, allowing them to be properly tailored to the age groups of interest by providing

a scientific framework for app creators.
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4 General Methodology

4.1 Samples

The child samples in the studies presented here focus on children between the ages of
5 and 7, as this age range is within that identified as a time in which active learning
strategies undergo significant transformations. In order to diversify the samples, all
children were recruited and tested in various museums in Berlin rather than at schools,
after parents gave informed consent (all children were asked for verbal consent as well,
and were aware they could withdraw at any time). All children were German or fluent
in German (except for one study, where data was collected in the USA so children
were all fluent in English; see section 5.1), and did not have any learning disabilities.
Adult samples were gathered online, on Amazon Mechanical Turk, and were all fluent

in English.

4.2 Interdisciplinary approach

In order to gain deeper insights into learners’ search behavior, I combine computational
modeling with a variety of behavioral paradigms. Work with adults has already proven
the value of this interdisciplinary approach and, as reviewed in the introduction, de-
velopmental researchers are also beginning to adopt this method to go beyond purely
behavioral data.

The behavioral methods I include in this dissertation are principally non-verbal tasks
(in the sense that participants only need enough verbal skills to understand the instruc-
tions) which only require limited domain-specific knowledge. These kinds of tasks are
well-suited for studying young children’s learning because they do not require advanced
verbal skills, yet capture learning in ubiquitous real world tasks like multiple-cue infer-
ence and causal learning, and are also advantageous because they can be gameified

to prevent boredom. The fact that very little domain-specific knowledge was required
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to complete them was also important because some learning strategies are known to be
affected by the amount of domain-specific knowledge required to implement them prop-
erly, particularly in causal learning tasks. For example, implementing CVS correctly in
science problems requires specific knowledge of the variables in question and their re-
lationships to each other and the outcome (Edelsbrunner, Schalk, Schumacher, & Stern,
2018)). Investigating how the efficiency of learners’ strategies changes with the amount
of domain-specific knowledge they have is beyond the scope of this dissertation, which
focuses on learners’ baseline active learning skills.

The design of the behavioral tasks was carefully developed to allow for the use
of computational modeling on the data. One cannot just combine any behavioral task
with computational modeling; a model needs to be tailored to the task as much as the
task needs to be structured around the necessity of obtaining data that is useful for a
model. The domain of active learning provides particularly fruitful ground for exactly
this marriage of disciplines, because such learning tasks usually involve a training phase
in which learners make specific learning decisions, the efficiency of which can be quan-
tified, and a performance or prediction phase in which they apply that knowledge, again,
usually in the form of specific choices or predictions. This kind of data can comfortably
be used by a properly tailored computational model, which can generate predictions
of both a learning pattern during the training phase, and subsequent performance deci-
sions in the latter phase. In this dissertation, I present two studies which employ this
interdisciplinary approach.

In the first paper, summarized in Chapter 5.1 (Supplement 1; Jones, Markant, Pachur,
Gopnik, & Ruggeri, 2021, 1n press), a multiple-cue inference task is combined with a
learning model to investigate how 5- to 7-year-olds’ hypothesis space is structured and
guides both search and prediction decisions. In this task, children decided which mon-
ster pairs to see running in a race, to learn how two cues (color and shape) predicted

their relative speed and later bet on the winning monsters. Computational modeling
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based on both their learning decisions and their subsequent predictions allowed us to
infer from children’s behavior how their hypothesis space was structured throughout the
entire task and therefore address the first research question. This task also included a
memory load manipulation, which allowed us to address the second research question.
The second paper (section 5.2 and Supplement 2; Jones, Schulz, Meder, & Ruggeri,
2018)) introduces a novel paradigm in the form of a card game to investigate adults’
information search in function learning scenarios and address the third research ques-
tion. Participants either actively selected or passively observed information to learn
about an underlying function connecting two sets of values on the cards, and then had to
make predictions about one set of values on some new cards. Here, the computational
models were developed to determine what kinds of expectations participants had about
the function they had to learn and how this impacted their learning choices, as well
as what sampling strategy they used, i.e., what they considered more important when
choosing new cards to look at in the active condition, thus addressing my second re-
search question. Building upon the well-established modeling work on human function
learning, my co-authors and I developed and compared different variants of rule-based
(i.e., models where learning decisions adhere to a strict assumption about the underly-
ing function type, e.g., that it is linear and positive) and non-parametric active learning
approaches (i.e., where learning decisions are based on prior assumptions that are less
strict than in rule-based models and which are updated according to Bayesian learning)
and paired each of them with different plausible sampling strategies to see how well
each one captured participants’ behavior. Each model was compared both with partici-
pants’ active learning behavior, and participants’ predictions in the prediction phase of
the task. This study focused on a linear function as this kind of function is the easiest
to learn. However, see Supplement 3 for a follow-up study which further explores how
task characteristics such as search horizon (i.e., the number of training choices allowed)

and function type influence learning and search.
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5 Summary of associated published manuscripts

This chapter summarizes the published manuscripts which cannot be included in their
entirety in this dissertation for copyright reasons. Each summary is adapted from the
papers’ abstracts. There are two such manuscripts: one has been accepted for publi-
cation in Developmental Psychology, and the other is published in the Proceedings of
the 40th Annual Meeting of the Cognitive Science Society. Note that this dissertation
includes three other manuscripts in the Appendix, two which which are currently under
review but not yet published, and one published book chapter. These manuscripts pro-
vide additional evidence to support the two papers at the core of this dissertation and
are referenced when appropriate in the General Discussion (Chapter 6). As the author
of this dissertation, I was the first author of all of these publications and therefore had
a leading role in the development, implementation, data collection, statistical analysis
and writing and submission of these publications.

The first publication was submitted to Developmental Psychology in March 2020
and was accepted for publication in February 2021. The full reference is the following:

Jones, A., Markant, D. B., Pachur, T., Gopnik, A., & Ruggeri, A. (2021). How is
the hypothesis space represented? Evidence from young children’s active search and
predictions in a multiple-cue inference task. Developmental Psychology.

As the first author, I was responsible for 70% of the work involved in this publica-
tion: task elaboration and data collection, statistical analyses, writing the manuscript,
responding to reviews, and implementing revisions. Prof. Dr. Douglas B. Markant
provided his expertise in computational modeling by building and testing the models
presented in the paper (15% of the work). Prof. Dr. Azzurra Ruggeri (10%) and Dr.
Thorsten Pachur (10%) took on supervisory roles and provided feedback to guide the
development of the paper, as did Prof. Dr. Alison Gopnik (5%).

The second publication was submitted to the conference organizers of the 40th An-

nual Meeting of the Cognitive Science Society in February 2018 and accepted for pub-
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lication in the peer-reviewed conference proceedings in April 2018. The full reference
is:

Jones, A., Schulz, E., Meder, B., & Ruggeri, A. (2018). Active function learning, In
Kalish, C., Rau, M., Zhu, J., & Rogers, T. (Eds.), Proceedings of the 40th Annual Meet-
ing of the Cognitive Science Society, (pp. 578-583), Madison, WI: Cognitive Science
Society.

As the first author, I was responsible for 65% of the work involved in this publica-
tion: task elaboration and data collection, statistical analyses, writing the manuscript,
responding to reviews, and implementing revisions. Dr. Eric Schulz contributed his ex-
pertise in computational modeling by building and testing the models presented in the
paper (20% of the work). Prof. Dr. Bjorn Meder (10%) and Prof. Dr. Azzurra Ruggeri

(5%) provided critical feedback to guide the development of the paper.

5.1 Paper 1: How is the hypothesis space represented? Evidence
from young children’s active search and predictions in a multiple-

cue inference task

To successfully navigate an uncertain world, one has to learn the relationship between
cues (e.g., wind speed and atmospheric pressure) and outcomes (e.g., rain). When learn-
ing, it is sometimes possible to actively manipulate the cue values, allowing one to test
hypotheses about this relationship directly. Across two studies, we investigated how
5- to 7-year-olds selected cue configurations when learning cue-outcome relationships,
and what their active search and learning performance revealed about the way they rep-
resented these relationships in the hypothesis space. In our task, children had to learn
how two cues (color and shape) predicted some monsters’ relative speed, by actively
selecting which monster pairs to see running in a race. Based on modeling work with

adults, we compared two computational models in their ability to capture children’s
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search patterns and learning performance: the cue-abstraction model relies on a hi-
erarchical representation that organizes the hypothesis space based on abstracted cue-
outcome relationships, and is an efficient way of representing task-relevant information
as it supports fast learning and generalization. The permutation-based model represents
the hypothesis space in terms of the relative speed of individual monsters (i.e., it in-
cludes all the possible monster rankings), and is therefore more information-intensive
and less efficient. The results of Study 1 (26 5-year-olds, 14 female and 25 6-year-olds,
15 female; predominantly white and fluent in English) provided the first evidence that 5-
and 6-year-olds can already use cue-abstraction hypothesis space representations when
provided with scaffolding, at a much younger age than previously assumed. However,
Study 2 (65 5-year-olds, 33 female, 67 6-year-olds, 33 female and 68 7-year-olds, 33
female; predominantly white and fluent in German) showed that young children were
best described by the permutation-based model, and that only 7-year-olds, when pro-
vided with memory aids, were best captured by the cue-abstraction model. Overall, our
results highlight the guiding role of hypothesis space representations for active search
and learning, suggesting that these two phases might trigger different representations,
and indicating for the first time a developmental shift in how children represent the hy-
pothesis space. This points to changes in the structure and stability of the hypothesis
space as potential sources of developmental change in active learning strategies, and
also highlights the role of executive functions such as working memory in constraining

the development of hypothesis space representations.

5.2 Paper 2: Active function learning

How do people actively explore to learn about functional relationships, that is, how
continuous inputs map onto continuous outputs? We introduce a novel paradigm in the
form of a card game to investigate information search in continuous, multi-feature func-

tion learning scenarios. In the card game, each card depicted a different monster, along
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with three feature values (friendly, cheeky and funny) and a criterion value, which were
related according to a linear function. In order to learn the underlying function, partic-
ipants (n = 98 adults, recruited from Amazon MTurk and tested online; n = 45 active
learners, n = 53 passive learners) either actively selected or passively observed informa-
tion in a set of training cards, before moving on to two prediction tasks which assessed
how well they had learned the function. In contrast to other active learning tasks, we
found no benefit of active learning over passive learning, with participants in both con-
ditions performing similarly well. Using computational modeling, we developed and
compared different variants of more traditional rule-based (linear regression), and non-
parametric (Gaussian process regression) learning models, paired with different active
sampling strategies, to model participants’ active learning behavior. Our results showed
that participants’ performance was best described by a rule-based model that attempts to
efficiently learn linear functions with a focus on high and uncertain outcomes (i.e., up-
per confidence bound [UCB] sampling). These results suggest that participants adapted
well to the linear study environment and adopted a similar approach to exploration-
exploitation tasks when choosing what information to look at during each step of their
search. This study advances our understanding of how people actively search for in-
formation to learn about functional relations in the environment and points to potential
transfers of sampling strategies between certain kinds of tasks. Changes in the extent
of this transfer, as well as in the active sampling strategies themselves, may potentially
contribute to developmental changes in active learning strategies.

Supplement 1 presents a follow-up study which investigates the effects of function
type and search horizon (i.e., the amount of information available to learners) on ac-
tive learning behavior and the relative performance of active versus passive learners.
In this follow-up study, participants’ active learning behavior was best-described by a
non-parametric learning model, which can flexibly learn any type of function rather than

only linear functions like the rule-based model we considered, and participants’ active
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sampling strategies were also consistent with UCB sampling. We also found limited
benefits of active over passive learning, which only applied to specific applications of
participants’ newly acquired knowledge. This second study therefore provides more nu-
anced insights into active function learning strategies and the relative benefits of active

over passive learning.
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6 General Discussion

This dissertation investigated how two crucial factors directly related to the implemen-
tation of active learning strategies —the hypothesis space and sampling strategies — are
implemented in children and adults, and how changes in these factors may lead to doc-
umented developmental and task-related differences, as well as how they may interact
with certain cognitive skills.

The studies presented in this dissertation are in line with previously identified de-
velopmental shifts in active learning strategies between the ages of 5 and 10, and have
broadened previous findings to a wider range of tasks. Our results suggest that children’s
active learning strategies generally progress from less cognitively complex strategies
such as considering one hypothesis at a time to strategies requiring more sophisticated
skills such as representing information hierarchically and attending to multiple hypothe-
ses at once. Furthermore, these studies also show that this progression can manifest
in counterintuitive ways. For instance, while younger children favor search strategies
which focus on one hypothesis at a time in question asking and some causal learning
tasks, in tasks like multiple-cue inference, they engage in more information-intensive
strategies, which, at first glance, may seem to induce greater cognitive load but which
actually incur lower load due to the less complex nature of the hypothesis space, as
shown in the first publication (Jones et al., 2021, in press).

Furthermore, this publication confirmed the link between cognitive skills such as
executive functions and the ability to implement efficient search strategies, in line with
findings from work with adults (Hoffmann, von Helversen, & Rieskamp, [2013}; Smith,
Patalano, & Jonides, (1998)). Although the memory load manipulation in Jones et al.
(2021, 1 press) was imprecise, its effect on children’s hypothesis space and perfor-
mance strongly suggests working memory, and probably other executive functions, ei-
ther constrain or are tied to the ability to reason about information in a more abstract, hi-

erarchical manner and therefore implement and learn from more efficient active learning
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strategies. While executive functions are likely to have strong links with learning strate-
gies in any kind of task, being crucial cognitive skills, many other cognitive factors are
probably also related to information search strategies more generally. For example, as
discussed in Supplement 2, metacognition is an important factor in causal learning, and
targeting students’ metacognitive skills leads to improvements in their self-led science
learning (Zepeda, Elizabeth Richey, Ronevich, & Nokes-Malach, 2015). Sensitivity
to probabilities is also present from an early age and crucial for strategy adaptiveness,
as discussed in the Introduction (Chapter 3) and in Supplement 2, and is likely to be
applicable to most kinds of search strategies.

Another key finding was the first evidence that the hypothesis space is not necessar-
ily stable throughout a task, but can change between different phases of a task (here, it
changed between the search and prediction phases of the multiple-cue inference task in
Jones et al., 2021, in press). This raises a number of important research questions, which
are outlined in section 6.1 (Future directions). As a result of exploring how children’s
hypothesis space is represented in multiple-cue inference tasks, it is also less clear how
directly active learning strategies can be mapped onto a learner’s hypothesis space. The
assumption from work with adults (e.g., Markant & Gureckis, 2012; Markant et al.,
2016) and from the question asking literature (e.g., Herwig, |1982; Rugger1 & Feufel,
2015; Ruggert et al., 2016) was that this mapping should be relatively direct, but our
findings from this paper paint a more nuanced picture, as the youngest children (5-year-
olds) did not use a hypothesis space structure we considered, although they were still
able to perform well, indicating that were were unable to capture their approach to the
task.

On one hand, our candidate hypothesis space models were inspired by work with
adults (Enkvist et al.| 20065 |Juslin, Jones, et al., 2003}; Juslin, Karlsson, & Olsson, [2008};
Juslin, Olsson, & Olsson, 2003) and may therefore not have been suitable to describe

young children’s strategies. On the other hand, the fact that they did capture older
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children’s strategies, and that even 5-year-olds were able to reason about hierarchical
cue relationships when trained using a forced-choice learning phase, raises the possi-
bility that the ability to represent task-relevant information hierarchically may not have
been the only factor to determine whether or not children used such a representation to
guide their search. Therefore, it is also possible that the mismatch between our can-
didate models of the hypothesis space and 5-year-olds’ search patterns was caused by
5-year-olds’ strategies not mapping onto the kinds of hypothesis space representations
we considered, rather than because they were simply unable to create such a representa-
tion. The mapping between search strategies and hypothesis space representations may
also undergo developmental changes, or drive them.

Another important finding was the fact that sampling strategies may not always de-
pend on the specific task, as participants used UCB (Upper Confidence Bound) sampling
in the function learning tasks presented in the second paper (Jones et al., 2018, see also
the follow-up study in Supplement 1), echoing sampling strategies from tasks involv-
ing exploration-exploitation trade-offs. This indicates that sampling strategies may be
conserved across a range of tasks. Although this question has not often been explicitly
investigated, this result is consistent with efforts to determine which measures of infor-
mation utility best describe human information search, which showed that probability
gain (wherein information is sought based on how much it increases the probability
of finding the correct answer) best described sampling strategies in different kinds of
tasks (e.g., experience learning and summary-statistics-based tasks; Nelson, McKenzie,
Cottrell, & Sejnowski, 2010). However, note that the tasks used were all related to prob-
abilistic category-learning and therefore did not constitute as broad a range of tasks as
would be ideal to truly capture how far sampling strategies might be transferred between
tasks. Moreover, these results also stand in contrast to later findings which showed that
search-payoff structures determined what kind of information adults preferred (Meder

& Nelson, 2012). Therefore, the evidence on the extent to which sampling strategies
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are conserved between tasks is mixed, but our findings do suggest that there is some
transfer, at least within a certain range, which may have important implications for the
development of active learning strategies (see section 6.1).

In addition, Jones et al.| (2018)) also contributed to a more nuanced perspective on
the relative benefits of active versus passive learning. We found no advantage of active
over passive learning in this study, which suggested either that there truly was no benefit
of this learning condition in our task, or that there was a ceiling effect due to the high
number of learning trials which may have masked any benefits of active learning. The
first interpretation would be consistent with evidence that the benefits of active learning
depend on the specific task (e.g., [Enkvist et al., 2006; Henriksson & Enkvist, 2018])
and applications of learners’ knowledge (Plancher et al., 2013)), while the second would
suggest that the benefits of active learning may depend on the amount of information
the learner has access to, in line with Steyvers et al.| (2003)).

Supplement 1, which examined the effects of search horizon (i.e., the amount of
information available) and function type on active function learning using the same
paradigm, showed that active learning and a longer search horizon were only advanta-
geous when participants had to explicitly predict a criterion value, rather than compare
two sets of cue values. However, note that improvements in learning outcomes from
active learning were not mediated by search horizon, suggesting that the benefits of ac-
tive learning did not depend on how much information learners could uncover during
learning, as was theorized from the results of Jones et al.| (2018). Further, this advan-
tage was only present when participants’ predictions fell outside the range of values
they had trained on, and did not depend on the difficulty of the function to be learned.
This suggests that the first interpretation of the results of Jones et al.| (2018) was more
likely: any improvements in learning outcomes from active learning were only relevant
for very specific applications of learners’ knowledge. Therefore, any benefits of active

learning depend on the specific task and learning goal, and it should not automatically
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be considered more effective than passive learning.

Based on this premise, it is interesting to consider the kinds of tasks in which active
and passive learning have been compared, as several tasks where active learning was
more clearly advantageous could broadly be classified as “explicit” learning tasks, in the
sense that they were tasks where the learning goal was to learn facts or items that needed
to be explicitly retrieved from memory (e.g., in memorization; Ruggeri, Markant, et
al., [2019). In contrast, learning in tasks such as function learning and some kinds of
categorization was found to be broadly comparable between learning conditions, or even
better with passive learning (Enkvist et al., [2006; Henriksson & Enkvist, 2018} Jones
et al., 2018). These kinds of tasks could be considered more “implicit”, in the sense
that explicit, verbalizable knowledge of the material to be learned, such as a function,
is not required for successful learning. In these cases, it might make sense for active
learning to provide limited advantages, as any experience with the material, whether it
is under the learner’s control or not, would be enough for learning. However, note that
this tentative distinction is not necessarily so clear-cut; a lack of advantage from active
learning can also be caused by learners’ use of an inappropriate learning strategy rather
than because active learning is inherently not beneficial (e.g., Henriksson & Enkvist,

2018).

6.1 Future directions

Several future research directions arise from the findings of this dissertation, chiefly
related to achieving a better understanding of the development of the hypothesis space
and sampling strategies, and identifying more precise potential targets for interventions
aiming to optimize active learning strategies.

First, it is an open question whether the change in hypothesis space found in Jones
et al.| (2021, 1n press) was due to participants’ young age, and would therefore stabilize

with time, or if this malleability may continue into adulthood, and may depend on task
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difficulty. Further research is needed to clarify these questions. If this is a function
of age, changes in the ability to reliably represent task-relevant information in a more
abstract fashion may therefore drive the development of information search strategies.
If not, it would be important to determine the precise conditions under which such
changes in hypothesis space representation occur. For instance, it may be that being
able to guide information search directly using the hypothesis space leads to increases
in strategy efficiency, perhaps because this allows learners to more effectively reduce
uncertainty between specific hypotheses. Future research should seek to clarify these
questions, as this would be helpful in identifying precise targets for any interventions
seeking to improve active learning strategies.

Furthermore, achieving a more complete understanding of how learners’ hypothesis
space representations are structured in a wider variety of tasks, both in and out of the
classroom, may be helpful in determining whether learners have any misconceptions
about the material to be learned which may hinder not only their learning outcomes but
also the active learning strategies they use. For instance, the supporting study presented
in Supplement 2 has shown that it is crucial to be able to determine whether students
hold any misconceptions about the best approaches to different kinds of causal learning
tasks, as students may resist applying strategies such as CVS if they do not believe it is
the best approach. This would help avoid situations where students misapply strategies
due to such misunderstandings, rather than because they have not learned the strategies
correctly. Investigating these questions would help develop meta-strategic interventions
aimed at resolving these misunderstandings and facilitate efficient and effective learning
strategies tailored to each individual learner.

Second, Jones et al.[|(2018) also showed some level of transfer of sampling strategies
between different kinds of tasks. It would be important to determine what tasks in
which certain sampling strategies are preferred have in common, as well as how this

element of information search changes with age. For example, it is possible that children
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may start by over-generalizing certain sampling strategies and gradually become more
selective, or the opposite may be true, with children being highly selective at first and
then beginning to transfer some sampling strategies to related tasks. Adults’ ability to
tailor their information sampling to reward structure, when considered with the results
of the studies in this dissertation, suggests that they have a variety of such strategies in
their toolbox, which they apply according to the task characteristics and their specific
goals. This would be in line with the principles of the adaptive toolbox, an idea proposed
by (Gigerenzer and Todd| (1999), but this possibility must be investigated directly.

In addition, another important research direction would be to draw a clearer link
between specific cognitive skills and the quality and development of active learning
strategies. For instance, it would be helpful to determine the extent to which skills
and characteristics such as categorization, metacognition and socioeconomic status (ex-
plored in Jones, Swaboda, & Ruggeri, 2020), not just executive functions, relate to the
development and quality of active learning strategies. Targeting these skills could be a
viable way to improve children’s learning strategies, instead of trying to optimize the
strategies directly.

On a related note, the circumstances under which active learning is preferable to
passive learning, as well as the reasons for it being better or worse than passive learning,
also need to be explored in more depth. This dissertation points to the task context and,
in some situations, cognitive skills, as two factors which are likely to impact the relative
benefits of these two learning conditions. The literature on active learning has also
highlighted the importance of applying the right kind of learning strategy to the right
kind of task, a skill which may also undergo developmental changes, and which even
adults still occasionally struggle with, as shown by Henriksson and Enkvist (2018).
This may also be a potential target for interventions, either directly or, perhaps, through

instruction in metacognition.
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6.2 Conclusion

In sum, the results of the studies presented in this dissertation have provided important
insights into the mechanics of how active learning strategies are implemented at the
computational level and which factors may undergo or drive developmental changes,
and in doing so have raised several additional research questions that should be pursued
in order to achieve a more complete understanding of active learning. As such, this
dissertation takes some of the first steps towards building up a scientific framework that
could potentially guide instructors and educational app creators in designing interven-
tions to properly harness and enhance these cognitive and computational processes to

boost children’s learning.
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Paper 1:
Jones, A., Markant, D. B., Pachur, T., Gopnik, A., & Ruggeri, A. (2021). How is

the hypothesis space represented? Evidence from young children’s active search and
predictions in a multiple-cue inference task. Developmental Psychology. Preprint doi:
10.17605/0SF.IO0/D75BM
Jones, A., Schulz, E., Meder, B., & Ruggeri, A. (2018). Active function learning, In
Kalish, C., Rau, M., Zhu, J., & Rogers, T. (Eds.), Proceedings of the 40th Annual Meet-
ing of the Cognitive Science Society, (pp. 578-583), Madison, WI: Cognitive Science
Society.

Supplement 1:
Jones, A., Schulz, E., Meder, B., & Ruggeri, A. (under revision). Learning functions
actively. Submitted to Cognitive Science.

Supplement 2:
Jones, A., Bramley, N. R., Gureckis, T. M., & Ruggeri, A. (under review). Changing
many things at once sometimes makes for a good experiment, and children know that.

Submitted to Developmental Psychology. Preprint doi: 10.17605/0OSF.IO/E3MKC
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Abstract

How do people actively learn functional rules, i.e. a mapping of continuous inputs onto a
continuous output? We investigate information search behavior in a multiple-feature
function learning task in which participants either actively select or passively receive
observations. We find that participants benefit from actively selecting information, in
particular in their function extrapolation performance. By introducing and comparing
different models of active function learning, we find that participants are best described by
a non-parametric function learning model that learns about both the underlying function
and inputs that are likely to produce high outputs. These results enrich our understanding
of active function learning in complex domains.

Keywords: active learning; function learning; self-directed learning; search
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Introduction

In every day life, we often have to learn functional relationships between different
variables. How far can I drive with my new electric vehicle when the battery is fully
charged?” How much breading do I need for the perfect schnitzel? How many rhetorical
questions should I pose to make my introduction compelling?

Traditionally, function learning behavior has been studied in passive
information-processing paradigms. In these paradigms, participants are sequentially
confronted with continuous inputs, for example the length of a horizontal line, followed by
a continuous response, such as the length of another horizontal or vertical line (Carroll,
1963; DeLosh, Busemeyer, & McDaniel, 1997; Kalish, 2013). Often these inputs and
outputs represent concrete, meaningful variables such as the amount of a chemical
substance (inputs) and the resulting amount of arousal in test subjects (outputs; DeLosh
et al., 1997; McDaniel, Dimperio, Griego, & Busemeyer, 2009). Participants’ task is to
learn the underlying function relating inputs to outputs. Learning success can be tested,
for instance, by asking participants to make predictions about the outcome variable given
previously unobserved input values (i.e., function extrapolation). These experiments have
focused on passive function learning, where the provided inputs are either randomly
determined or selected by the researcher. However, we often actively decide for which
inputs we want to observe the outcome in the real world. For instance, to learn about how
far one can drive an electric vehicle with a full charge, one could measure the maximum
distance covered when driving at different speeds. How can and should an agent actively
learn about functional relations among continuous variables? And what models describe
human active function learning best?

In this paper, we implement a multiple-feature function learning task to investigate
how adult participants actively select inputs for which they want to observe the resulting

output. Our behavioral results show that people’s understanding of the underlying
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function is more accurate when learning actively compared to passively observing randomly
selected inputs and corresponding output. The advantage of active over passive learning is
particularly pronounced when participants have to make judgments about new inputs (i.e.
extrapolation judgements). To better characterize participants’ search behavior, we
evaluate several combinations of function learning models and active sampling strategies.
The best-performing model is a Gaussian Process function learning model combined with
an Upper Confidence Bound sampling strategy. This indicates that participants learn
functions in a flexible way and can adapt to different underlying functional rules instead of
assuming only one particular rule (e.g., a linear function). Moreover, the fact that this
model fits best when combined with an Upper Confidence Bound sampling strategy
suggests that participants care about both learning the function and finding inputs that

produce high outputs.

Function learning

Studies on function learning usually present participants with several input-output
pairs (e.g., two bars of different lengths), and then test their learning of the underlying
function by asking them to infer the output for inputs that have not been observed before
(e.g., to predict the length of a second bar, given the first), either included in the range of
the training inputs (interpolation task; e.g., the length of the first bar is very similar to one
previously observed) or outside the range of training inputs (extrapolation task; e.g., the
length of the first bar is different from any previously observed).

Studies using interpolation tasks have shown that linear, increasing functions are
easier to learn than non-linear, decreasing functions (Brehmer, 1974; Brehmer, Alm, &
Warg, 1985; Byun, 1996; McDaniel & Busemeyer, 2005). Studies using extrapolation tasks
(DeLosh et al., 1997; McDaniel & Busemeyer, 2005) have demonstrated that participants
tend to extrapolate in a linear fashion (Kalish, Lewandowsky, & Kruschke, 2004; Kwantes

& Neal, 2006), even when the underlying function is nonlinear (DeLosh et al., 1997).
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However, people are capable of non-linear extrapolation (Busemeyer, Byun, Delosh, &
McDaniel, 1997), for example when the underlying function is quadratic (Byun, 1996) or
cyclical (Bott & Heit, 2004), although the latter case is subject to debate (Kalish, 2013).
They therefore have a strong linear bias when learning functional relationships, but remain
generally exible learners, able to adapt to the type of function being learned.

Di erent theories have been developed to explain these ndings and account for
human function learning. The most prominent are similarity-based and rule-based theories.
Similarity-based theories (e.g., Busemeyer et al., 1997; DeLosh et al., 1997) assume that
people associate similar inputs with similar outputs, without learning an explicit
representation of the underlying function. Similarity-based theories successfully capture
some aspects of the observed performance, for instance that some functions are easier to
learn than others. However, they fail to explain participants' systematic extrapolation
patterns.

Rule-basedtheories (Carroll, 1963; Koh & Meyer, 1991) assume that participants
learn explicit parametric representations, for example linear or power-law functions.
Rule-based theories of function learning can successfully predict linear function
extrapolation performance, for example by simply assuming that participants learn linear
rules. However, they fail to explain that some rules are more di cult to interpolate than
others (McDaniel & Busemeyer, 2005).

Hybrid models of function learning contain a similarity-based learning process that
acts on explicitly-represented rules. They assume similarity-based interpolation, but
extrapolate using simple linear models (Bott & Heit, 2004; Busemeyer et al., 1997;
McDaniel & Busemeyer, 2005). Some hybrid models are able to capture both extrapolation
and interpolation patterns (McDaniel et al., 2009), such as the EXAM (DeLosh et al.,
1997; McDaniel & Busemeyer, 2005) and POLE models (Kalish et al., 2004). For instance,
EXAM has been shown to capture participants' linear bias, interpolation and extrapolation

performance, but does not account for participants' ability to extrapolate non-linear
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functions (Bott & Heit, 2004; McDaniel et al., 2009). POLE does not always capture
interpolation or extrapolation performance as well as EXAM, but it does account for the
phenomenon of knowledge partitioning (McDaniel et al., 2009).

A related model has been proposed by Gri ths, Lucas, Williams, and Kalish (2009),
who have put forward a rational theory of function learning based on Gaussian Process
regression. Gaussian Process (GP) regression is a non-parametric method to perform
Bayesian regression. Moreover, GP regression exhibits an inherent mathematical duality
that makes it compatible with both a rule-based and a similarity-based account of function
learning. Gaussian Processes generate predictions based on the similarity between di erent
input values as expressed through a kernel, reminiscent of similarity-based models, and
every kernel can be considered the result of performing a Bayesian regression, echoing
rule-based models, as each kernel corresponds to a particular prior over functions. Lucas,
Gri ths, Williams, and Kalish (2015) and Schulz, Tenenbaum, Duvenaud, Speekenbrink,
and Gershman (2017) showed that GP regression can account for a wide range of human

interpolation and extrapolation patterns.

Active learning

In the past years, a strong interest in human information search and active learning
has emerged, with several studies nding bene cial e ects of active compared to passive
learning (see Coenen, Nelson, & Gureckis, 2018, for a review). For instance, Lagnado and
Sloman (2004) found that learners who were given the opportunity to actively intervene on
a causal system made more accurate inferences than passive learners who could not freely
decide which information to obtain (see also Steyvers, Tenenbaum, Wagenmakers, & Blum,
2003). In category learning, Markant and Gureckis (2014) found that active learners
sampled more along the line of the category boundaries, thereby selecting more informative
inputs, which in turn increased their categorization performance. Furthermore, recent

studies have demonstrated that active control of the study experience leads to enhanced
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recognition memory in both children and adults (Markant, Ruggeri, Gureckis, & Xu, 2016;
Ruggeri, Markant, Gureckis, Bretzke, & Xu, 2019), compared to conditions lacking this
control, and that this bene t persists over time.

However, studies investigating whether active learning is bene cial in multiple-cue
learning tasks, which are related to function learning, are less clear (Enkvist, Newell,
Juslin, & Olsson, 2006; Osman & Speekenbrink, 2012). Active learning led to learning
enhancements in multiple-cue learning but not when the cues were binary (Enkvist et al.,
2006) and was no better or worse than passive observation in dynamic environments
(Osman & Speekenbrink, 2012), suggesting that the bene ts of active learning may depend
on the type and context of tasks. Whether the opportunity to learn functions actively
results in performance enhancements is an open question.

A critical question discussed in research on active learning is how to de ne the
usefulnessof pieces of information (see Nelson, 2005; Settles, 2010, for reviews). Di erent
formal measures have been put forward, with the most prominent ones including the
reduction in uncertainty measured via Shannon (1948) entropy (Lindley et al., 1956), the
increase in the probability of making a correct classi cation decision (Nelson, McKenzie,
Cottrell, & Sejnowski, 2010), and obtaining information for improving payo s (Meder &
Nelson, 2012; Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018). Crupi, Nelson, Meder,
Cevolani, and Tentori (2018) demonstrated that several of these measures can be uni ed
into a coherent mathematical framework, thereby connecting formerly competing models of
the value of information.

It is still unclear which measure best accounts for how human learners select
information. For instance, probability gain consistently best described human search
decisions in experienced-based category learning, where the goal is to maximize overall
classi cation accuracy (Meder & Nelson, 2012; Nelson et al., 2010). In other tasks,
however, information gain (expected reduction in Shannon entropy) is a better predictor

for human search behavior (Bramley, Lagnado, & Speekenbrink, 2015; Markant &
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Gureckis, 2012; Meder, Nelson, Jones, & Ruggeri, 2019; Nelson, Divjak, Gudmundsdottir,
Martignon, & Meder, 2014). Moreover, search behavior can vary depending on how
information about the structure of the environment is communicated (Nelson et al., 2010;
Wu, Meder, Filimon, & Nelson, 2017). These ndings suggest that there might not be one
single measure of usefulness that can account for behavior across all paradigms. Generally,
it is still debated which measure of usefulness best describes active learning behavior in
more complex domains such as function learning, category learning and causal learning,
which require combining a model of learning and a sampling strategy for evaluating and

selecting queries (Bramley et al., 2015; Wu et al., 2018).

The present study: Active function learning

In this paper, we investigate the impact of active control over the function learning
process on performance. To do that, we propose an experimental and theoretical
framework for studying function learning that marries research on human function learning
with recent advances in psychological theories of active learning.

Next, we describe the paradigm we developed to investigate active function learning.
We then report analyses of the behavioral data, complemented by a computational analysis
of participants' learning and search behavior, in which we compare di erent models of

active function learning.

Experiment
Participants

Participants were 720 adults (mean age36:34, SD = 10, 294 females), recruited
from Amazon Mechanical Turk. Average task duration wa41:83 minutes (SD = 10:71).
Participants received a participation fee of $2.00 and a bonus of up to $1.40 (mean
bonus=%$0.97, SD=%$0.23). Study approval was obtained from the Max Planck Institute

Ethical Review Board and participants gave informed consent prior to participating.
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