
DATA RESOURCES

Automatic image analysis of the spine often requires the 
identification and segmentation of vertebrae before pa-

thologies can be assessed (1–3). Several methods have been 
proposed to automatically assess vertebral fractures (4) or 
bone mineral density (BMD) (5–7). Underdiagnosis of 
vertebral fractures is a worldwide problem, as up to 85% of 
osteoporotic vertebral fractures are missed on CT scans (8). 
Given the abundance of CT examinations in recent years 
and a disproportionate increase in workload for radiolo-
gists (9), an opportunity lies in the ancillary detection of 
vertebral fractures on CT scans by computer-aided diagno-
sis. The benefits of computer-aided diagnosis in radiology 
have been demonstrated for other anatomic regions, like 
chest imaging and neuro-oncology (10,11).

Recent advances in computational performance and 
data processing capacity have promoted deep learning. 
Unlike traditional machine learning algorithms, which 
depend on predefined engineered features (12,13), deep 
learning acquires an optimal feature representation for 
any given task directly from the input data. In the form 
of convolutional neural networks (CNNs), deep learn-
ing has been successfully applied to spine segmentation 
tasks (1,14–16). However, deep learning methods of-
ten require a large amount of data with corresponding 
metadata to train models properly. Development pro-
cesses become quite efficient once such data have been 
acquired (17). In the context of spine image analysis, 
such a dataset is lacking. To our knowledge, only small 
public CT datasets exist with vertebral segmentations of 
the thoracolumbar spine (Computational Spine Imag-
ing 2014 Workshop, n = 20 [2,18]) and of the lum-
bar spine (online challenge xVertSeg, n = 25 [19] and 
a lumbar vertebra dataset, n = 10 [20]). Neither dataset 
includes cervical spine data.

We introduce a freely available CT dataset of 160 
image series. Split into training and testing subsets, this 
dataset was used for the VerSe 2019 challenge held dur-
ing the 22nd International Conference on Medical Image 
Computing and Computer Assisted Intervention (MIC-
CAI) (https://verse2019.grand-challenge.org). Moreover, 
semiquantitative fracture gradings per vertebral level and 
opportunistic BMD measurements of the lumbar spine 
are provided.

Materials and Methods

Patients and Image Acquisition
The local institutional review board approved this retro-
spective evaluation of imaging data and waived written 
informed consent (proposal 27/19 S-SR). All imaging data 
were selected from two retrospective studies. Inclusion 
criteria for the first study was the availability of a lumbar 
dual-energy x-ray absorptiometry and a CT scan, includ-
ing the lumbar region, both performed within 1 year; in-
clusion criteria for the second study was the availability of 
a nonenhanced CT scan of the entire spine. For both stud-
ies, patient selection criteria were age older than 30 years 
and no history of bone metastases. Imaging requirements 
were the availability of a 120-kVp acquisition with sagit-
tal reformations reconstructed by filtered back projection 
favoring sharpness over noise (bone kernel) with a spatial 
resolution of at least 1 mm in the craniocaudal direction. 
Using these criteria, we identified 295 patients for study 
one (17 patients excluded due to bone metastasis) and 159 
patients for study two (no patients with bone metastasis in-
cluded). Of these 454 patients, we randomly selected 160 
CT image series of 141 patients that satisfied our imaging 
requirements. All included image series have been obtained 
between January 2013 and November 2017. Imaging was 
performed in inpatients for various indications not related 
to bone densitometry: acute back pain or suspected spinal 
fracture; cancer staging, restaging, or follow-up; exclusion 
of acute abdominal pathology; chronic back pain; and 
postoperative examination. Due to scanner protocol, some 
patient scans of a single time point are subdivided into two 
or three image series (eg, cervical, thoracic, and lumbar 
stack), which represent separate data entities. There was an 
overlap of 15 patients with a previous study investigating 
the association of lumbar BMD with incident vertebral 
fractures (21).

CT Imaging
CT scans were performed with five multidetector CT 
scanners (Philips Brilliance 64, iCT 256, and IQon, Phil-
ips Medical Care; Siemens Somatom Definition AS and 
AS+; Siemens Healthineers); some scans were performed 
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Figure 1: Sagittal reformations of an example CT scan in the dataset with segmentation mask visualized as colored over-
lays. This patient had internal fixation of vertebral levels T11 through L3 augmented with intravertebral polymethyl methacrylate.

Vertebral Segmentation
Segmentation masks of vertebrae were generated in a three-
step approach. First, CT data were anonymized by conversion 
to Neuroimaging Informatics Technology Initiative (NIfTI) 
format (https://nifti.nimh.nih.gov/nifti-1) and reduced in 
resolution to limit computational demands for deep learning 
algorithms. This resulted either in image series of 1-mm iso-
tropic resolution or in sagittal 2-mm to 3-mm series of 1-mm 
in-plane resolution. Second, we implemented a framework 
to predict accurate voxel-level segmentations of the vertebrae 
(16). This framework used a fully CNN to detect the spine 
resulting in a low-resolution heatmap, a Btrfly Net to label 
vertebrae on sagittal and coronal maximum intensity projec-
tions (22,23), and an improved U-Net to segment vertebral 
patches centered around vertebral labels at original resolution 
(24). Vertebral patches are fused to one segmentation mask 
labeled by vertebral level. The U-Net was initially trained 
with public datasets (Computational Spine Imaging and 
xVertSeg) and was continuously retrained with finalized seg-
mentation masks of this dataset. Third, segmentation masks 
were manually refined by one of four specifically trained 
medical students (A.J., A.L.G., A. Scharr, M.K.) and there-
after by one of two neuroradiologists (M.T.L. and J.S.K.) us-
ing the open-source software ITK-SNAP (25). Any material 
not physiologically related to bone mineral and extracellular 
matrix (ie, screw-rod systems, intervertebral cages, and intra-
vertebral polymethyl methacrylate for vertebroplasty or screw 
augmentation) was excluded (Fig 1).

Assessment of Vertebral Fractures and BMD
All CT scans were evaluated for prevalent fractures and for-
eign material at each vertebral level. Only thoracolumbar 
vertebrae were evaluated, as fractures are rare and usually of 

after administration of either both oral (Barilux Scan; Sano-
chemia Diagnostics) and intravenous (Iomeron 400; Bracco) 
contrast medium or only intravenous contrast material. Image 
data were acquired with all scanners in helical mode with a 
peak tube voltage of 120 kVp, a slice thickness of 0.9–1 mm, 
and adaptive tube load. Postcontrast scans were acquired either 
in the arterial or portal venous phase, triggered by a threshold 
of CT attenuation surpassed in a region of interest placed in 
the aorta or after a delay of 70 seconds, respectively.

Abbreviations
BMD = bone mineral density, CNN = convolutional neural 
network, MICCAI = Medical Image Computing and Computer 
Assisted Intervention

Summary
This dataset provides vertebral segmentation masks for spine CT 
images and annotations of vertebral fractures or abnormalities per 
vertebral level; it is available from https://osf.io/nqjyw/ and is intended 
for large-scale machine learning aimed at automated spine processing 
and fracture detection.

Key Points
 n This public CT dataset holds 160 image series of 141 patients 

including segmentation masks of 1725 fully visualized vertebrae; 
it is split into a training dataset (80 image series, 862 vertebrae), 
a public validation dataset (40 image series, 434 vertebrae), and a 
secret test dataset (40 image series, 429 vertebrae, to be released in 
December 2020).

 n Metadata include annotations of vertebral fractures using the 
semiquantitative method by Genant and of instances of foreign 
material per vertebral level, as well as opportunistic measurements 
of lumbar bone mineral density per patient.

 n This dataset was prepared for a vertebral labeling and segmentation 
challenge hosted at the 2019 International Conference on Medical 
Image Computing and Computer Assisted Intervention.
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Statistical Analysis
Means of continuous variables (age and BMD) were compared 
with independent two-sample t test. Proportions of categorical 
variables (sex, intravenous contrast agent, CT scanner) were 
compared with Pearson x2 test. Level of significance was de-
fined at P , .05. Statistics were calculated with IBM SPSS 
Statistics 24 (IBM, Armonk, NY).

Resulting Dataset
To generate this dataset, a total of 141 patients were included, 
with 160 CT image series and 1725 vertebrae encompassing 
220 cervical, 884 thoracic, and 621 lumbar vertebrae (Table). 
This represents a more than fourfold increase in available an-
notated data—in particular for pathologic and cervical ver-
tebrae—compared with previously available datasets with 
vertebral segmentations (2,20–22). The patients had a mean 
age of 66.1 years 6 15 (standard deviation) including 49 men 
(59.8 years 6 16.6) and 92 women (69.4 years 6 12.9). Most 
patients presented with a low BMD (77.8 mg/cm3 6 53.6), 
while women had a significantly lower BMD compared with 
men (63.4 mg/cm3 6 44.1 vs 104.9 mg/cm3 6 59.5, P , 
.001). Ninety-one patients had at least one osteoporotic ver-

nonosteoporotic origin at the cervical spine. Foreign mate-
rial included polymethyl methacrylate–augmentation and 
implants for internal fixation and spinal fusion. Image as-
sessment was performed in consensus by two radiologists 
(M.T.L. and J.S.K.), with 5 years and 17 years of experience, 
respectively. Prevalent vertebral fractures were classified using 
the semiquantitative method by Genant et al (26). Briefly, 
vertebral fractures were graded as mild for a height loss  
20% and , 25%, as moderate for a height loss of  25% and 
, 40%, and as severe for a height loss  40%. The type of 
fracture was categorized into wedge (anterior height loss most 
prominent), biconcave (central height loss most prominent 
with almost equal anterior and posterior height loss), or crush 
(posterior height loss most prominent or uniform height loss 
including the posterior vertebral wall) fracture. Deformities 
and developmental abnormalities, like in Scheuermann dis-
ease, were not graded as fractures.

Opportunistic screening of lumbar BMD was performed 
in all patients using asynchronous calibration (21). In case 
of unenhanced scans, BMD quantification with asynchro-
nously calibrated CT can be considered equal to classic 
quantitative CT (27).

Characteristics of CT Scans and Patients Stratified by Test Secret, Validation Public, or Training Dataset

Characteristic Test Secret Validation Public Training All

Imaging
 No. of scans 40 40 80 160
 No. of vertebrae 429 434 862 1725
  Cervical 47 61 112 220
  Thoracic 218 230 436 884
  Lumbar 164 143 314 621
 No. of fractures* 72 82 135 289
  Grade 1 38 41 63 142
  Grade 2 22 24 50 96
  Grade 3 12 17 22 51
 No. of instances of foreign material 9 5 17 31
Patients
 No. of patients 37 37 67 141
 No. of women 19 25 48 92
 Age (y)† 65.5 6 15.8 67.5 6 13.3 65.7 6 15.5 66.1 6 15
 BMD (mg/cm3)† 80.1 6 47.2 74.1 6 50.9 78.7 6 58.8 77.8 6 53.6
 Intravenous contrast material enhancement
  Nonenhanced 32 32 49 113
  Arterial phase 2 0 4 6
  Portal venous phase 3 5 14 22
 Scanner
  Philips Brilliance 64 13 13 26 52
  Philips iCT 5 5 16 26
  Philips IQon 8 10 10 28
  Siemens Definition AS+ 10 7 14 31
  Siemens Definition AS 1 2 1 4

Note.—Unless otherwise indicated, data are numbers of patients. BMD = bone mineral density.
* Fractures are only evaluated at the thoracolumbar spine.
† Data are means 6 standard deviations.

http://radiology-ai.rsna.org
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Limitations and Future Work
This public dataset had a few limitations. We only included 
patients older than 30 years; therefore, algorithms trained with 
this data could render less reliable results for younger individu-
als. There are many normal variants and vertebral abnormalities 
that are not covered by this dataset (eg, we excluded bone metas-
tasis and primary bone tumors). Several postoperative changes 
including polymethyl methacrylate and screw-rod systems are 
present in both training and test sets, but a rigorous evaluation 
and inclusion of all postoperative changes possible (including 
vertebral replacements) is still missing. Additionally, we focused 
on edge-enhancing reconstructions, as these are usually the re-
constructions used for interpretation of bony structures at CT; 
however, it would also be interesting to include soft-tissue ker-
nels and iterative reconstruction algorithms. Also, due to the 
retrospective design of this data collection, isotropic resolution 
was not available in all scans. We also had to limit the spatial 
resolution to 1 mm in each direction, as a manual correction of, 
for example, 0.5-mm isotropic reconstructions, would increase 
the workload of the manual corrections eightfold compared with 
our approach. An isotropic resolution of 1 mm was thought to 
be the best compromise between still depicting clinically relevant 
structures and manageable workload in a large number of pa-
tients. However, for the cervical spine of small patients, higher 
spatial resolution may be wanted.

tebral fracture; patients with fractures were significantly older 
and had lower BMD compared with those without fractures 
(69.5 years 6 13.1 vs 56.6 years 6 17.2 and 58.7 mg/cm3 6 
40.8 vs 115.3 mg/cm3 6 59.5, each P , .001). Patient charac-
teristics (sex, age, BMD, contrast media applied, scanner used) 
were not significantly different between training and both test 
datasets (each P  .05; Table). Of note, CT image series of 
one patient are contained within one dataset. The number of 
included and fractured vertebrae per level is depicted in two 
diagrams (Figs E1, E2 [supplement]). Wedge type and grade 
1 fractures predominated (Fig E3 [supplement]). Patients in 
their seventies and with osteoporotic BMD (lower than 80 mg/
cm3) represented the largest groups (Fig E4 [supplement]).

Published under the creative commons license CC BY-SA 
4.0, the data are hosted at the open science framework (https://
osf.io/nqjyw/). For the purpose of the labeling and segmentation 
challenge held at MICCAI 2019, the CT data (NIfTI format) 
are separated into training (80 image series, 862 vertebrae), pub-
lic validation (40 image series, 434 vertebrae), and secret test 
data (40 image series, 429 vertebrae, to be released in December 
2020). For training data, accompanying segmentation masks 
(NIfTI format) and labels of all segmented vertebrae (JavaScript 
Object Notation [JSON] format) are provided (Fig 2). Addi-
tionally, we provide the fracture classification for each vertebra 
in a spreadsheet (Appendix E1 [supplement]).

Figure 2: Example segmentations that can be found in the dataset with masks visualized as colored overlays and ap-
proximate centroid labels as colored points. Images show, A, a case without fracture, B, a patient with an osteoporotic fracture 
of T11, and, C, a patient with multiple osteoporotic fractures.

http://radiology-ai.rsna.org
https://osf.io/nqjyw
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Another point of discussion is the correctness of the pre-
sented segmentation masks. Notwithstanding the bias intro-
duced by the automatic approach, the final go-ahead was given 
by a single rater. Adding multiple raters will result in variability 
in the masks. Therefore, a multirater fusion of annotations might 
be also of interest. Third, the inclusion of degenerative changes 
makes it impossible, in some cases, to draw the correct border 
between two fused vertebrae or some low-density degenerative 
calcification and the adjacent soft tissue, for example. On low-
quality scans with a lot of background noise, this differentiation 
can become difficult.

Of note, vertebral segmentation and morphometry is also of 
interest using MRI data (28). Future work could address training 
and validation of automated segmentation algorithms in MRI.

Results from the VerSe 2019 challenge at the MICCAI con-
ference showed that machine learning algorithms proposed by 
the participants can achieve accurate and reliable automated 
spine segmentation. The winning algorithm scored Dice coef-
ficients around 0.9 (16,29). Moreover, with this dataset algo-
rithms for automated fracture detection can be trained and vali-
dated. Future work will be needed to demonstrate if patients can 
benefit from computer-aided diagnosis, which would support 
radiologists in the detection of spine pathology.
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