
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Cost of Network Slice Collaboration: Edge Network
Slicing for In-Flight Connectivity
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Abstract—Network edge environments like in-flight or in-train
communications utilize satellite-terrestrial integrated networks.
These networks however suffer from limited backhaul and
cache resources, leading to sustainability issues due to increasing
traffic demands. The problem becomes more challenging for
5G ecosystems, where applications have distinct requirements,
rendering the management and orchestration of conventional
satellite-terrestrial networks harder. Therefore, software-defined
networking and edge network slicing are envisioned to enhance
resource management and increase flexibility of resource alloca-
tion. However, the complexity of management and orchestration
increases in cases where service providers, allocated to a slice, do
not share information about their users with the infrastructure
providers, due to privacy or other concerns. To incorporate
the aspect of slice collaboration, we define network slices with
respect to their willingness of sharing user traffic statistics with
the infrastructure provider. Taking in-flight entertainment and
connectivity services (IFECS) as an interesting 5G use-case, we
introduce a system model mimicking the practical deployment of
slicing for aircrafts using satellites. We propose a mixed integer
non linear program that aims at maximizing the number of slices
served. Utilizing our model we evaluate the deployment cost of
slices with respect to cache and backhaul resources. Our results
show that uncooperative slices have a lower selection probability.
Nonetheless, we demonstrate that if the slice cost is paid by
slice owners, uncooperative slices increase their chances of being
served by 33%. Overall, cooperative slicing can revolutionize the
IFECS system as it accommodates 200% more slices compared
to uncooperative slicing.

Index Terms—SD-RAN, Edge Network Slicing, 5G, Virtualiza-
tion, IFECS.

I. INTRODUCTION

Ubiquity is foreseen as one of the main challenges of next
generation networks, especially since now users demand to be
connected everywhere, while still maintaining high data rates
and low delays. In that regard, the integration of satellite and
terrestrial networks is becoming crucial to accommodate such
requirements for extreme network edge environments such as
aircrafts or trains [1], [2], [3]. However, given the distinct
nature of applications in 5G and limited backhaul capacity
offered by satellite links [4], current satellite-terrestrial net-
work infrastructures urge for more dynamic techniques for the
control and management of network resources.

An interesting 5G use-case in a network edge environ-
ment is the In-Flight Entertainment and Connectivity Services
(IFECS), where the market is expected to reach USD 7.65
billion by 2023 [5]. For IFECS the complexity of resource

management grows due to limited backhaul capacity (e.g.,
a satellite link [4] or an Direct Air to the Ground (DA2G)
link [6]) and large round trip delay, (e.g., delay of a Geo-
stationary (GEO) satellite link is ∼ 200 ms). Additionally,
the possibility to store large data volumes in the aircraft is
restricted, leading to reduced cache sizes, while the traffic for
capacity demanding and heterogeneous applications on board
(e.g., video streaming, Voice over-IP (VoIP) calls and web
browsing) is increasing.

On the one hand, to cater for high round trip delays,
the enhancement of the Radio Access Network (RAN) with
storing and computing capabilities to reduce the usage of the
limited backhaul link is suggested [7]. On the other hand,
solutions to ease the management and orchestration of the
limited resource bottleneck in the aircraft are emerging 5G
techniques such as Software-Defined Networking (SDN) and
edge network slicing. The former is foreseen as a powerful tool
to enable programmability in the RAN by centralizing control
over Software-Defined RAN (SD-RAN) controllers [8]. The
latter benefits from the multiplexing gain of the stochastic user
behavior. It enables the support of multiple heterogeneous net-
works/applications under the same infrastructure. It moreover
offers the ability to co-exist and share wireless connectivity,
cache and backhaul resources, yet without interfering with
each other and thus enabling network slice isolation [9].

Previous works [10], [11], [12] that considered network
slicing for both cache and backhaul links, assume that the
user file request profile is shared with the slice manager as a
part of the slice request. This is an assumption that may not
be possible for some slices especially due to privacy concerns.
Service providers may not have access or may not be willing to
share such data. We refer to these slice types as uncooperative
slices. Moreover, some slices may not have access to a user
profile but may share the anonymized file user statistics over
time. We call these slices semi-cooperative. Finally, the slices
that are willing to share the real profile of users we refer to
as cooperative. The network slice multiplexing gain cannot
be benefited from in case of many uncooperative slices and
the number of slices served is minimized if all slices are
uncooperative.

Thus, it is of utmost importance to investigate the cost of a
slice with respect to the slice type and incorporate that to the
network slicing problem. The main contributions of this paper



are summarized below:
1. An evaluation of the cost of a network slice with re-

spect to cache and backhaul resources for IFECS is
presented, while distinguishing among cooperative, semi-
cooperative and uncooperative slices with different slice
profiles.

2. A dynamic approach is introduced to investigate the effect
of the runtime of slicing algorithms in case an adaptation
is required. We pose user profile learning as an exemplary
problem that requires adaptation and investigate the effect
of learning to the network slice cost.

3. An optimization approach based on Mixed Integer Non
Linear Programming (MINLP) is formulated and solved
for increasing the number of served slices for IFECS and
thus, increasing the profit.

The rest of the paper is structured as follows: We provide
an overview on edge network slicing in Section II. Section
III introduces the system model and details the problem
formulation. The evaluation of the cost of a network slice
with respect to backhaul and cache resources as we well as
results of the optimization problem are presented in Section
IV. Finally, the paper is concluded in Section V, where the
main findings of our work are summarized and discussed.

II. RELATED WORK

The problem we consider is mainly investigated under the
topic of edge network slicing. In principle edge network
slicing consists of Radio Access Network (RAN) slicing, cache
or computing slicing and backhaul slicing. Previous works
tackle RAN slicing, where an efficient allocation of the radio
resources for the network slices is achieved while maintaining
isolation and achieving QoS [13], [14]. However, none of the
aforementioned works considers content storing or backhaul
allocation for the network slicing problem. In our scenario,
RAN slicing can be tackled by applying more sophisticated
wireless technologies inside the aircraft such as optical fiber
or LiFi, that have high re-usability in short range. Although
the efficient use of the scarce wireless resources is one of the
most important challenges in a wireless scenario, studies in the
literature demonstrate that effective caching techniques in the
wireless access points can enhance the network performance
and reduce the backhaul usage [7], [15]. Recent papers [10],
[11], [12], [16], [17] consider also cache storing and task
offloading for the network slicing problem. While the proposed
schemes are relevant and provide interesting insights on the
joint allocation problem, they do not consider a constrained
backhaul capacity such as a satellite link and they all assume
perfect knowledge about the user profile within a slice.

Content popularity prediction is proven challenging espe-
cially because the user profile changes dynamically according
to time and it is not known beforehand [18]. Differently from
previous works, we assume that the user profile is not always
known and an interaction with network slices is required. The
interaction concerns building of such a profile dynamically and
investigates the impact of time required until correct estimation
of the user profile in terms of resource utilization.
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Figure 1: SD-RAN platform architecture. An SD-RAN con-
troller is envisioned for the management of the cache and
backhaul resource distribution. Each network slice is identified
as a manager and exchanges statistics with the SD-RAN
controller for the resource allocation.

Motivated by the user behavior, we investigate the definition
of the cost of a network slice with respect to the amount
of cache and backhaul resources required to achieve the
goal. A similar approach is taken in [19] for identifying the
cost of caching among the network and service providers.
Alternatively, we also consider the cost of backhaul resources
in our model since it is the most critical bottleneck for aircraft
communications.

III. SYSTEM MODEL

We propose a system inside an aircraft where the com-
ponents of the IFECS system, wireless connectivity, cache
and backhaul link are called the infrastructure, managed by
the infrastructure provider through an SD-RAN controller as
shown in Fig. 1. The aircraft can utilize a radio technology
among WiFi, LiFi or 5G for the wireless connectivity. In the
latter the 5G RAN is deployed in the aircraft or satellites [1],
whereas the 5G core is deployed on the ground.

Moreover, the infrastructure contains an internal cache of
size B files and a backhaul link of capacity Γ Mbps (i.e.,
a satellite link). The infrastructure is leased to a set of
network slices S of size m slices, that are assigned cache and
backhaul resources. These resources are denoted by γs and
βs, respectively and specify percentages among total capacity.
The entity, SD-RAN controller, is in charge of deploying and
assigning these resources to slices. For each accepted network
slice, the SD-RAN controller creates a slice manager. The
latter manages the users within a slice. It is responsible for
accepting the users in the system, exchanging information
with the SD-RAN controller about the users and distribute the
received resources within the slice’s domain. The information
regarding the users and their file preference profiles is not
always shared between the slice managers and the SD-RAN
controller. However, in some cases (i.e., semi-cooperative,
cooperative slices) anonymous content statistics are shared to
improve the network performance.

Each network slice contains a set of users Us that can
request files among the file catalog K. The probability of a user
u ∈ Us to request file f is expressed with pu,f and follows a



Zipf distribution as assumed in [10]. For each file f ∈ K the
pu,f given |K| files, is calculated according to

pu,f ;z,|K| =
1/(fz)∑|K|
j=1 1/jz

. (1)

Each user of each slice has a λu mean number of file requests
per second obeying Poisson distribution.

This profile is then utilized by the slice managers and the
SD-RAN controller to help assigning the cache and backhaul
resources, respectively. To assign resources according to the
request, the usage of cache and backhaul resources need to be
considered. This can be achieved via modeling cache hit and
miss rate. In the following section we introduce these models.

A. Caching Model

We adopt the caching technique introduced in [10], where
for each file in the slice’s catalog the hit probability is defined
as follows:

hs,f =

∑|Us|
u=1 λu,f∑|Us|
u=1 λu

· βs ·B ∀ s ∈ S, (2)

where λu,f = pu,f ·λu, denotes the request rate of each file
f for each user u in slice s.

The rate of files that are found in the cache is referred to
as hit rate. For each user u, the hit rate is denoted by λhit

u and
expressed as λhit

u =
∑|K|
f=1 λu,f · hs,f .

Finally, the caching miss rate for each user is given by

λmiss
u = λu − λhit

u

= λu{1−
|K|∑
f=1

pu,f ·
∑|Us|
u=1 λu,f∑|Us|
u=1 λu

· βs ·B}.
(3)

B. Backhaul Model

In our system, once the file results in a cache hit, then
it is downloaded with no delay to the user in the aircraft. In
contrast, if the file is missed then the file should be downloaded
from the data center on the ground including the round trip
delay from the satellite link. In that case, the backhaul link
should be used. We model the delay of the backhaul link
assuming an M/M/1 queuing system and the backhaul delay
is given as:

D[γs, βs] =

{
1

µs(γs)−λmiss
s (βs)

+ trtt, 0 ≤ λmiss
s (βs) < µs(γs)

∞, otherwise
(4)

where µs(γs) = γs· ΓL , is the backhaul rate in terms of files/s
given L is the size of each file in Mbit and Γ the capacity
in Mbps. Finally trtt is added as the satellite round trip time
whereas λmiss

s =
∑|Us|
u=1 λ

miss
u the total cache miss rate of the

network slice.

C. Learning Model
As already described in the beginning of the section, the

SD-RAN controller collects statistics from the slice managers
that are willing to share their information with respect to their
user profiles. For cooperative slices, we assume the SD-RAN
controller possesses instantly all the information about the user
profiles from the respective slice managers. Such details can
be obtained by the slice managers by utilizing sophisticated
estimation techniques before the flight or by requesting user
preferences in advance. Alternatively, for semi-cooperative
and uncooperative slices, the slice manager estimates the file
profile for its users over flight time according to a learning
model as detailed in Alg. 1. The initial estimate i.e., t = 0
follows a uniform distribution. For uncooperative slices, the
estimate does not change over time as no information is shared
between the uncooperative slice managers and the SD-RAN
controller. Alternatively, for each semi-cooperative slice, the
slice manager keeps track of the user preferences for each time
instance t and builds a file profile pt,f for that time instance.
Furthermore, it updates the estimated file profile ps,f with a
learning rate α and sends these information to the SD-RAN
controller to perform the resource allocation.

Algorithm 1 Slice File Profile Updates

1: Inputs: |S|, K, α
2: Initialization:
3: ps,f ← 1

|K| ∀f ∈ K, ∀s ∈ S.
4: for t ∈ Learning Rounds do
5: Slice Manager:
6: Record the anonymized requested files for each user of

the slice with respect to λu and create pt,f
7: Update ps,f := ps,f + α · pt,f ∀f ∈ K
8: Send ps,f to the SD-RAN controller
9: end for

D. Optimization Model
The goal of the SD-RAN controller is to distribute the

cache and backhaul resources in the most efficient way.
That entails maximizing the number of served slices. In that
regard, we model our optimization as a resource maximization
problem while satisfying the slice constraints. The developed
optimization is denoted by P0 and is detailed in the latter.

Let as be a binary decision variable whose value is 1
if slice s ∈ S is served and 0 otherwise. Let γs and βs
be continuous decision variables and denote the amount of
cache and backhaul resources in % assigned to each slice
s accordingly. Moreover, let Ds denote each slice’s average
maximum tolerable delay requirement.

The objective is given in Eq. (5)

P0 : max
γs,βs

∑
s

as (5)

The additional constraints related to the maximization prob-
lem are as expressed as:



∑
s∈S

γs · as ≤ 1 (6)

∑
s∈S

βs · as ≤ 1 (7)

λmiss
s ≥ 0 ∀s ∈ S (8)

µs − λmiss
s ≥ 0 ∀s ∈ S (9)

fs =

{
1, if λmiss

s > 0

0, otherwise
(10)

D[γs, βs] ≤ as · fs ·Ds ∀s ∈ S. (11)

Constraints (6), (7), assure that the number of backhaul,
cache resources cannot exceed 100% for the assigned slices.

Let constraint (8) and (9) assure that the cache miss rate
can never be smaller than 0, whereas the cache miss rate
cannot surpass the serving rate. Furthermore, let fs be a binary
variable that takes the value 1 if λmiss

s > 0 and 0 otherwise
as detailed in Eq. (10). We will use this binary variable as a
helper to solve P0. At last, constraint (11) guarantees that if
the slice s is being assigned any resource, then the average
maximum delay Ds must be fulfilled. If fs = 0, that means
that the delay is 0 due to all the requests resulting in a cache
hit, whereas if fs = 1 the backhaul link must be utilized.

While identifying the number of served slices, the minimum
required amount of resources to achieve the constraints can be
retrieved. We refer to these amount of resources as slice cost.
In order to be fair among the slices and increase their chances
of being selected, even for slices with high cost, we propose
an alternative maximization problem similar to P0. The slice
cost denoted by ws is added as a price that has to be paid by
the slice owner to increase its chances of being selected and
name this problem P1 as follows:

P1 : max
γs,βs

∑
s

as · ws. (12)

IV. PERFORMANCE EVALUATION

In the performance evaluation we investigate the effect
of slice cooperation in the overall system performance and
demonstrate the results of our proposed optimization approach
P0 stated in III-D. We utilize ApOpt solver of Gekko [20]
in Python to solve our optimization. Initially we categorize
slices into types i.e., cooperative (C), semi-cooperative (sC)
and uncooperative (uC). Accordingly, we evaluate their cost
depending on system parameters such as cache size B, back-
haul capacity Γ, slice delay requirement Ds and slice arrival
rate λs. Finally, we make use of the defined slice cost and
propose a pricing method via setting ws formulated in P1

for network slices in order to increase their chances of being
served. Unless stated otherwise, we consider video streaming
and web browsing as applications, |K| = 5000 files per slice,
and the file size L = 100 KB.
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Figure 2: Number of maximum served slices with respect
to time for various slice type combinations. Increasing time
entails higher accuracy of the user profile for semi-cooperative
slices.

A. Maximum number of served slices

In this subsection we investigate the impact of combinations
of slice types in terms of the maximum number of served
slices. For the given scenario we assume 45 slices each with a
distinct file profile following a Zipf distribution with a different
z value ranging from 0 to 1. Moreover, we select a cache
size of B = 2000 files [10], backhaul capacity of Γ = 112
Mbps (i.e., reflecting a real aircraft setting [4]), whereas for the
slices we consider an average delay requirement of Ds = 1 s
and a slice arrival λs = 200 files/s constituted of 20 users
each requesting 10 files/s. For our evaluation we select 5
different configurations for the slice type ratios. The first is
the one where all the slices are cooperative. Furthermore we
consider 3 additional configurations, where alternatively one
of the slice types is the majority and finally a configuration of
average number of slice types. For each of the configurations
we run the optimization 100 times generating different user
file profiles each run. The results are illustrated in Fig. 2.

The case where all the slices are cooperative admits the
most number of slices. The algorithm minimizes resources
allocated per slice which is achieved easier if the user profile
is known. At time 1s, the configurations with most cooperative
slices have high number of slices served. However, with time
the number of slices served increases also for configurations
with semi-cooperative slices. At time 7200s, i.e., when a
good estimate of the user profile is obtained, the outcome
of the configuration with semi-cooperative and cooperative
slices is almost the same. Finally, the configurations where
the uncooperative slices are the majority demonstrates the least
number of admitted slices. Thus, it is concluded that different
slice types, even though all their parameters are the same, incur
different resource cost. In this example, 9 slices are served with
cooperative slices compared to 3 with uncooperative slices.
The effect of cooperation is 200% more slices served.

We again stress that the time axis in Fig. 2 can also be
considered as the user profile estimation accuracy. In the initial
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Figure 3: Cost of cooperative slices with respect to various
delay, slice arrival and cache combinations for different Zipf
distribution shape parameters z.

state (1s), the slice managers possess an inaccurate estimate
about the user profile, whereas in the last state (7200s) an
accurate estimate is obtained by the slice managers.

B. Slice type cost

In this subsection we investigate the cost of a network
slice for various slice types. The cost of a network slice is
defined as the % of cache and backhaul resource usage and
it is evaluated while varying the z parameter of the Zipf
distribution. 8 different configurations are investigated with
a high and low cache size B ∈ {200, 2000} files, a high and
low slice arrival rate λs ∈ {20, 200} file requests per second
and a high and low average delay requirement Ds ∈ {0.25, 1}
seconds. The configuration [B = 200, λs = 200, Ds = 0.25]
is expected to have the highest cost while the configuration
[B = 2000, λs = 20, Ds = 1] is expected to have the lowest.

Fig. 3 illustrates the analysis for the cooperative slices,
where the SD-RAN controller knows the file distribution
perfectly from the beginning. The y-axis depicts the cost and
x-axis depicts the z parameter. The configurations that request
more than the available network resources (i.e., 200%) are
considered infeasible and thus are not presented in the figure.

In general, the slice cost increases with increasing slice
arrival rate λs and decreasing average maximum tolerable
delay Ds. Moreover, the slice cost is inverse proportional to
the cache size B. According to the Zipf distribution, increasing
z parameter depicts a more skewed distribution. Therefore, the
slice cost decreases with increasing z. However, in low slice
arrival rate scenario (i.e., λs = 20 files/s) presented by the
triangular shape, using the cache is more costly than using the
backhaul resources. Therefore, backhaul resources are always
booked for that slice and as such, irrespective of the z and
cache size value, the cost is the same and the black and
blue lines coincide. Nonetheless, in a high cache size scenario
depicted by black lines in Fig. 3, for more skewed file profiles
(i.e., z ≥ 0.8) the cache resources are less costly and the
slice cost decreases overall. Imposing tight delay constraints
increases the resource cost only slightly as demonstrated with
the differences between dotted and straight lines.
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Figure 4: Cost of semi-cooperative slices with respect to
various delay, slice arrival and cache combinations for different
Zipf distribution shape parameters z at t=1000s.

In a similar fashion we demonstrate the cost of semi-
cooperative slices in Fig. 4, where the SD-RAN controller
has a semi-accurate file distribution of the slice. The semi-
cooperative slice cost at time t=1000s is shown in Fig. 4.
A similar trend with the cost of cooperative slices is ob-
served. However, differently for the same configurations at
time t=1000s, the cost for semi-cooperative slices is higher.
Nonetheless, the semi-cooperative slice cost at time t=5000s
is almost the same as that of cooperative slices due to
increasing file profile accuracy, thus the results are omitted.
Furthermore, the slice cost at time t=1s is the same as that of
the uncooperative slices as elaborated next.

The cost of the uncooperative slices can be obtained from
Fig. 3, while observing the results for z = 0, which denotes
a uniform distribution. The delay requirement makes a slight
difference in terms of cost. 10 folds increase in arrival rate
almost quadruples the cost. Cache size is the most dominant
factor and the slice cannot be served with low cache size. It
can be concluded that the highest cost is noted for uncooper-
ative slices since no information is shared with the SD-RAN
controller to improve the estimation.

C. Probability of slice selection

In this subsection, we investigate the slice discrimination
with respect to the slice type. We achieve this through inves-
tigating the slice selection probability for various scenarios.
We investigate the case of 45 network slices while randomly
selecting the slice types and performing 100 optimization
rounds. We want to emphasize that the resources are scarce,
i.e., not sufficient to serve all slices. The z parameter is
randomly selected for each slice at each round. This problem
is inputted in P0 and the average number of served slices is
taken over all cases and the selection probability is reflected
in Fig. 5a. The x-axis represents the slice type, whereas the y-
axis shows the selection probability. The results reflect that in
a resource scarce scenario the uncooperative slices are almost
never served and semi-cooperative slices are served only after
an accurate estimation of the user profile.
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Figure 5: Probability of selection for multiple time instances and slice types:cooperative (C), semi-cooperative (sC) and
uncooperative(uC). If weights are introduced into the objective function, slices have almost equal chances of being served.

In order to overcome such starvation for different slice
types, we envision that the SD-RAN controller should use
weights ws as in P1 for the resource allocation problem.
Furthermore, we propose to set these weights as the slice
costs introduced in the previous section. We have illustrated
the selection probabilities with P1 in Fig. 5b. In the optimal
case we would observe ≈ 33% selection probability for all the
slice types, which is almost achieved by the proposed weights.
These weights are considered as the price to pay for providing
each slice fairness without sacrificing network resources.

V. CONCLUSION

In this paper we investigate the network slicing problem
for an IFECS based system, where both cache and backhaul
resources are considered as bottleneck. Following a realistic
scenario we do not assume a perfect knowledge of the user
profiles and distinguish among cooperative, semi-cooperative
and uncooperative slices. We propose a MINLP approach that
incorporates all slice requirements and aims at maximizing the
number of served slices in the network. Moreover, for each
slice type we define the deployment cost, and investigate the
dependency on time, system and slice parameters. In order to
increase the chances of uncooperative slices being served, we
propose a pricing system added to the original maximization
problem. Our approach increases the selection probability of
uncooperative slices by 33% if the slice cost is paid by the
slice owners. Overall, we show that cooperative slicing can
revolutionize the IFECS system as it accommodates 200%
more services compared to uncooperative slicing.
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