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Abstract—In this paper, we consider N heterogeneous control
sub-systems sharing a wireless communication channel. Network
resources are limited and they are allocated by a centralized
scheduler. Each transmission is lost with a probability that
is higher or lower depending on the portion each sub-system
receives from the pool of network resources. Furthermore,
state measurements go through a first come first serve (FCFS)
Geo/Geo/1 transmission queue after they are generated by
each sensor. In such a setting, the information at each remote
controller that is observing the state measurements through
the wireless channel gets outdated. Age of Information (Aol)
captures this effect and measures the information freshness at
each controller. By definition, Aol is control unaware thus not
a standalone metric to capture the heterogeneous requirements
of control sub-systems. However, we show how the stationary
distribution of Age of information (Aol) can be employed as an
intermediate metric to obtain the expected control performance
in the network. As a result, we solve the resource allocation
problem optimally and show by simulations that we are able to
improve the control performance indirectly through Aol.

Index Terms—Age of Information, Stationary Distribution,
Networked Control Systems, Remote Estimation

I. INTRODUCTION

With the ongoing advances in computing, communications
and process control, cyber-physical systems (CPS) are envi-
sioned to constitute a serious portion of the data traffic in
communication networks. Environmental monitoring and con-
trol, collision avoidance for autonomous driving, distributed
robotics, manufacturing and smart structures are some of
the most prominent examples of CPS [1]. From a system
theoretical perspective, such applications can be classified as
feedback control loops that are closed over a communication
network, i.e., networked control systems (NCS).

A typical NCS scenario consists of multiple sensors that
measure the system state of their control processes and
transmit the generated data over a shared wireless network
where resources are limited. As in a great portion of current
communication systems, the sensory data might be queued be-
fore being transmitted. This leads to the destination receiving
delayed information that were backlogged in the transmission
queue of the source. Additionally, the packets carrying the
status updates can be lost due to the lossy nature of wireless
transmissions. As a result, this leaves the monitoring appli-
cation, the control process in our case, to deal with outdated
data and make decisions based on less reliable information.

Particularly, since we are dealing with real-time applications
that rely on fast and regular exchange of data, the achieved
performance of NCS applications deteriorates as the network
induces additional delays and packet losses. In such a set-
ting, to measure how well the communication network is
performing with respect to providing regular and prompt status
updates, age of information (Aol) has been proposed as a
metric to quantify information freshness in remote monitoring
scenarios such as NCS [2].

By definition, Aol measures the time that has elapsed since
the generation of the freshest information available at the
receiver monitoring a remote process. It has been adopted as a
cross-layer metric to redesign different layers of communica-
tion network to increase information freshness in the network.
In particular, the vast majority of Aol research focuses on
minimizing average Aol in various settings such as in single-
hop queuing systems [3], [4] or multi-hop networks [5], [6].
In addition to focusing on average performance of age, there
have been recent attempts to go one step further and derive
distributions of age both in single-hop queuing systems [7],
[8] and multi-hop simple line networks [9], [10].

From the existing literature, we know that minimizing Aol
as a standalone metric is sub-optimal when it comes to NCS
scenarios with heterogeneous control loops [11]. Therefore,
control-aware age-penalty functions have been derived and
employed to take optimal decisions [12]-[14] in wireless
networked control systems. In [12] authors study a central-
ized resource allocation problem for multiple, heterogeneous
feedback control loops. They consider an NCS scenario where
each transmission is lost with a probability that is time-
invariant. Under the assumption that sensors are able to replace
outdated packets in their transmission queue, they obtain an
optimal, stationary scheduling policy by solving a discounted
cost minimization problem. In [13] and [14] authors derive
optimal sampling policies in the context of NCS, where they
employ control dependent age-penalty functions as a metric.
Similar to [12], those works assume that sensors are always
able to replace any outdated packet in the transmission queue
with a fresher incoming packet and thus assume zero queuing
delay.

To the best of our knowledge, none of the existing works
study a resource allocation problem for NCS where the sensor
data has to go first through a first come first serve (FCFS)
transmission queue, which is a very commonly found scenario



in current communication devices. Rate allocation for NCS
with queuing has been tackled before in [15], however only
under the assumption that there are no packet losses in the
network.

A. Our Contribution

In the present work, we study a resource allocation problem
where a wireless channel is shared by multiple, heteroge-
neous feedback control sub-systems. The observation data
measured by sensors of each sub-system need to go through
a Geo/Geo/1 discrete time queue with FCFS discipline. The
limited resources of the wireless network is distributed by
a centralized entity which in turn determines the success
probability of individual sub-systems. Leveraging the results of
[7], which provides a stationary distribution of age in discrete
time queuing systems, we show how distributions of Aol can
be applied to solve the scheduling problem optimally in order
to maximize control performance in NCS.

B. Notation

Vectors and matrices are written in small and capital bold
letters, respectively, i.e., v € R™ and M € R™"*™, M7 de-
notes the transpose of a matrix M. Moreover, M? represents
the p-th power of M. tr(-) is the trace operator.

II. SYSTEM MODEL

A. Network Model

Suppose a communication network that is comprised of N
independent, linear time-invariant (LTI) control sub-systems.
Each sub-system consists of a plant P;, a sensor S; and a
controller C;, where each S; is co-located with P; and observes
the system state via an ideal link. The sensor information is
transmitted to C; in a single packet over the wireless sensor-to-
controller link. The controller is responsible for calculating the
control input to drive the plant state to any desired reference
value with the help of incoming sensor observations. We
assume time to be slotted with slot durations normalized to
unity. Throughout the paper, we use ¢ € Ny for time slot
indexing and i = {1,2,..., N} for sub-system indexing.

Any packet transmission starting in slot ¢ ends within the
same slot. Moreover, each wireless sensor-to-controller link
is prone to packet losses and we model it as an erasure
channel with a packet success probability of 1. In our system,
allocation of network resources is decided by a central entity
before operation that defines the constant packet success
probability for each sub-system. One can imagine it as the
distribution of multiple channels that are limited in amount
among sub-systems, where each sub-system transmits multiple
copies of the same packet simultaneously on different channels
that are assigned to it. The probability that at least one of those
transmissions is successful defines the aggregated success
probability of the wireless sensor-to-controller link, i.e., ;.
For the rest of our analysis, we approximate the behavior of

such a wireless link with limited amount of resources with the
following constraints:

N
Zﬂi <R,

i—1

0 < p; <1,V4, (1)

where R € R is the total capacity. Note that R is a constant
scalar only under the assumption that packet success proba-
bilities behave linearly between zero and one, which is what
we assume here.

We suppose that sensors have a packet queue of infinite
capacity to accommodate the state measurements. At the
beginning of each time slot ¢, each S; observes the plant state.
However, we assume that sensors posses limited computational
capability thus each measurement is injected into the packet
queue with a probability of 0 < \; < 1 without any further
processing. In addition, each queue operates under FCFS
discipline and any information is retransmitted until at least
one of its copies is successfully received by the controller'.
As a result, the queue can be modeled as a Geo/Geo/1 discrete
time queue with service rate fi;.

B. Control Model

We represent the behavior of the i-th control sub-system
with LTI model in discrete time:

with time-invariant system matrix A; € R™*™ and input
matrix B]'"*". The system state x; € R™ is fully observable
by S; and u; € R™é is the control input. Moreover, w; €
R™ denotes the system noise acting on the state dynamics of
the source that is characterized by a multi-variate Gaussian
distribution with zero mean and a diagonal covariance matrix
DITNS R7ixni e, w; ~ N(O, El)

In order to compensate for the delays and losses in the net-
work, C; employs an estimator that estimates the current state
given the observation history until ¢. Under the assumption
that C; is aware of the time-invariant system parameters A,
B; and ¥;, the estimated plant state is obtained from:

&i[t] £ E[zift] | 2ifvi(t)]
t—v;(t)
= AT Vailn]+ Y A Bt —q. ()
q=1

where v;[t] is the generation time step of the most recent
information available at C;. The proof is given in appendix
A. Following an estimation at each time step, the controller
determines the control input with the following control law:

w,[t] = —L7&i[t], )

where L*; € R™i*™ denotes the optimal state feedback gain
matrix. L*; is obtained from:

IThis implies that we assume an underlying ACK/NACK feedback system
for each packet in the transmission queue



which is the solution of the discrete time algebraic Riccati
equation:
P,=Q,+ AT (P, - P,B;(R,+ B'P,B,) 'BIP,)A,.
(6)
Here, Q, and R; are weighting matrices of appropriate size
that penalize the state and control inputs in the infinite horizon,
linear-quadratic-Gaussian (LQG) cost function Fj:
1 T-1
F; = T lim sup Z(wl[t])TQla:Z[t] + (w; )T Ryws[t]. (7)
t=0

T—o0

F; is an indicator of control performance that is commonly
used in control theory textbooks and in the literature [15].
The lower F; is, the higher is the quality of control (QoC).

Note that, the controller gain L* is independent of the
network. There are controllers in the literature that take
network delay or packet loss into account to increase the
control performance. However, this is beyond the scope of this
work. Therefore, we assume that the controller design takes
place prior to deployment.

III. MEAN SQUARED ERROR OPTIMAL RESOURCE
ALLOCATION

A. Estimation Error and Age of Information

Given the system model introduced in the previous section
and the control law as in Eq. (3) and (4), let us define the
network-induced error (NIE) as the difference between the
system state and the remotely estimated state, that is:

e;lt] £ z[t] — &[t]. (®)

NIE is defined as the deviation of the real state of P;
from the estimated state at C;. As the NIE decreases, we
consider the estimation to be more accurate. The estimation
performance is measured with the mean squared error (MSE),
ie, E L||ei[t]|2} =E [(e;[t])Te;[t]]. Given the freshest plant
state x[v;[t]] that corresponds to the system state at v;[t] and
available at C; by ¢, one can determine MSE from Eq. (2), (3)
and (8) as:
t—v;[t]—1

S ow((an) am).

i 3 dq
p=0
©)

Proof can be found in appendix B. It is important to mention
that the number of summands in (9) depends on ¢ — v;[t] while
the summands are composed of time-invariant elements, i.e.,
A;, X; are constant matrices. We define the number of time

steps that have elapsed since the generation of the most recent
information that is available to C; as Aol, i.e.:

Ai[t] &t — yit].
As a result, we are able to define an age-penalty function

gi(A;) : N — R of the form:
A,;—l

3t ((AiT)pAiEi) .

p=0

E [ledl® | @il #:lr)] =

(10)

9(A;) = (11)

that maps age to mean squared error.

108 C‘G% —<— ¢=1with A, =1.0 ¢
% B =2 with Ay = 1.1 i
10 9% -0- i=3with Ay =12 9
— o |
S 100 \}o é
= %
= 10° % !
It 9 /
z v §
= o
210 Py ® e
IS s & '
5] % % ¢
2108 ! 9 —F
51 P & $
= % 09 v
10 L o 4
10!

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 1. MSE for varying A; while the service rate is fixed, i.e., 1; = 0.8, V4, is
fixed. Different colors represent different type of control systems with system
matrices Ay 2 3 € {1.0,1.1,1.2}. A higher A; represents a less stable system
that is more challenging to control.

B. Stationary Distribution of Aol in a Geo/Geo/l Queue

From the literature, we know that while communicating
through a FCFS Geo/Geo/1 queue, Aol follows a station-
ary distribution [7]. Given the arrival and service rate of a
Geo/Geo/1 queue, i.e., A; and p; with ﬁ = p; < 1, for random
variable A as Aol, the probability of ﬁaving A =4 is given

as?:

(i — i) (%:2)_
L= pug
(A2 = Nip (pi + 1) + p2) (1 — 1)’
i —

Pr[A = 0] = — b (1 — ;)2

Aipi(1 = X)° '
pad = Ai)°

i — Ai

(12)

As a result, we can obtain the MSE as defined in Eq. (11) by
applying fundamental theory of expectations [16, p. 379]:

T-1
Ci( N\, 1) = lim — T(t)e;(t
(o) = lim = 3 el (t)es(t

I
.
=
s
|
]
S
=

6—1
=Y P =4 Y ((Af)P(Ai)pEi) (13)
p=0

Next, we can plot the MSE against arrival/service rate while
the remaining parameter is fixed. For instance, Fig. 1 shows
how the mean squared error changes for 3 different classes
of scalar control sub-systems with different system matrices
Aq2.3 = {1.0,1.1,1.2}. Note that the packet injection prob-
ability \; is varied while the packet success probability p; is
kept constant at y; = 0.8,Vi. We observe that MSE is high
for low A; due to increased inter arrival times which shows

2Note that Eq. (12) is a shifted version of the original equation in [7], as we
allow A = 1 as the minimum Aol in our system while they assume A = 2
as the minimum possible age after a successful transmission.
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that throttling the sampling rate is counterproductive w.r.t.
estimation performance after a certain point, as it causes the
controller to receive outdated information. The same applies
to high \; values that are close to the service rate, i.e., as p;
approaches 1. This is caused by the increased queuing delays
due to FCFS queuing policy that we assume in our scenario.

Additionally, Fig. 2 shows the effect of increasing the
service rate for a constant arrival rate \; = 0.65,Vi. Note
that we only plot against {g; : 1 > p; > \;}. From the figure,
it is evident that a higher service rate affects the estimation
performance positively, thus leads to a decrease in MSE as p;
increases.

C. Optimization Problem

As introduced in Sec. II, we assume that within a time
slot, distribution of multiple resources to each user ¢ translates
into an aggregated transmission success probability that is
equal to the service rate of the FCFS Geo/Geo/l queue.
Due to the resource constraint, we assume a total service
rate of R, that is to be distributed among flows®. We define
a minimization problem where the arrival rates, i.e., A =
[A1 A2 ... An]T are given and the distribution of resources,
i, = [p1 p2 ... un]? is the only optimization variable.
As a result, the optimization problem can be formulated as:

N

min Z Ci(Ni, 14)
L

S.t. N — wi <0

N
Z i < R.
=1

with C; defined as in Eq. (13).

, Vi
(14)

3In order to make the optimization problem tractable, we assume that set
of feasible arrival and service rates are convex and domain of the problem is
[0, 1].

For instance, for N = 3 sub-systems with A; 53 =
{1.0, 1.1, 1.2}, ¥, =35 =33 =10, Ay = Ay = A3 = 0.5
and R = 2.0, the optimal service rates, i.e., ™ are calculated
as:

Y
1105 | ~0.594
2|05 | ~0673
3005 | ~0733

We used GEKKO optimization suite to obtain the optimal
values which is an optimization suite based on Python pro-
gramming language [17]. Note that, as the eigenvalue of a
scalar system matrix A; equals to the matrix itself. From
discrete time LTI control systems, we know that the higher
the eigenvalue gets beyond 1, it represents a less stable system
and thus becomes more challenging to stabilize. Therefore,
if we look at the optimal allocation vector p*, we observe
that the system with the largest eigenvalue is provided with
the highest share from the total available service rate, which
coincides with our intuition.

IV. RESULTS AND EVALUATION

In order to validate the derivations and confirm that we are
able to minimize the MSE in the network, we implemented
N = 3 scalar control sub-systems in a simulation framework.
A simulation run is 7' = 20000 time slots long where each
run is repeated 2000 times. The system matrices are chosen as
Af123 = {1.0,1.1,1.2} respectively to represent feedback
control loops with heterogeneous time-criticalities. The system
noise and the input matrix are assumed to be equal for all sub-
systems, i.e., 3; = 1.0 and B; = 1.0,Vi. We assume Q, =1
and R; = 0,V:. That is, we take only the state cost into
account but neglect the penalty for control effort. Therefore,
from Eq. (5), the optimal feedback gain matrix is determined
as L7 = A;, which corresponds to deadbeat control strategy.

Next, we select equal packet injection probabilities for all
subsystems, i.e., Ay = Ay = A3 = 0.5. Moreover, the total
available service rate is selected as R = 2 < N to represent
a scenario where guaranteeing successful transmission for all
users is not possible, i.e., 3i : p; < 1. In such a setting, using
the GEKKO optimization suite, we obtained the optimal values
for individual service rates pj =~ 0.594,u5 ~ 0.673, pu3 ~
0.733.

Fig. 3 illustrates both the normalized occurrence frequency
of Aol during our simulations and the stationary distribution
of Aol obtained from Eq. (12) for the selected \; and p*.
We observe that the least critical sub-system, namely ¢ = 1
with A; = 1.0, reached age values beyond 70 during 2000
repetitions. On the other hand, due to its higher allocated
service rate, p3, sub-system 3 did not exceed 30 at all.

In order to validate Eq. (11) and thus the control model,
we measured the mean squared estimation error at each Aol
value. In Fig. 4, we observe that the averages throughout the
simulations match theory for lower Aol values as they are
visited much more often than higher Aol values. For example,
for sub-system 1, the MSE of simulations at Aol values start
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to oscillate beyond 50 since the sample size of these data is
much lower than of age below 30.

As our goal is to minimize the overall MSE in the net-
work, thus to maximize the estimation performance, we are
interested in achieved MSE when the optimal allocation was
employed. Therefore, we measured long-term average of the
squared estimation error as defined in Eq. (13). In addition, to
validate the optimality of the solution, we compared it to other
permutations with 3 users without violating the constraints. As
resolution within the feasible region, we selected 0.05 to limit
our search space. That is, all possible permutations of service
rates are simulated, where for each sub-system i, the linear
space between \; and 1 is divided into equally distant sub-
spaces with a step-size of 0.05. Fig. 5 presents the optimal
solution’s estimation performance, which is illustrated on the
very first column in bold symbols together with the other best
performing selected permutations of (1, f12, f43). We are able
to see that none of the allocations is able to beat the obtained
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Fig. 5. The resulting mean squared error illustrated when different allocation
vectors = [u1 p2 ps3]T along the x-axis are applied. Equal sampling
probability of A\; = 0.5,V7 is selected. Outliers are not displayed to avoid
visual clutter. Simulation MSE is calculated by taking the average of all
2000 repetitions. The lower and upper whiskers represent the first and third
quartiles, respectively.

solution which validates our derivations and claim to maximize
the estimation performance.

By looking at the MSE, we are only able to deduce
that the estimation accuracy is maximized by applying the
optimal resource allocation in the network. However, we
are not solely interested in the estimation performance, but
also in control performance that is indirectly effected by the
estimation process. In fact, suppose a human observing the
control systems’ states. He or she would be able to judge how
the control processes are performing only by looking at the
state evolution over time but not at the MSE that is a metric
quantifying estimation accuracy. Therefore, in addition to MSE
it is important to evaluate the control performance as well. To
that end, we measured the average LQG cost in the network
during our simulations, J, as the QoC metric:

15)

where F; is defined as in Eq. (7).

Fig. 6 presents the resulting LQG cost in the network when
different allocation policies are applied by the centralized
scheduler. Similar to Fig. 5, the optimal solution is illustrated
in bold next to other best performing permutations within
the feasible region. We can observe that our optimal policy,
which aims to maximize the estimation accuracy, is also able
to reduce the total control cost of sub-systems. This effect can
be explained by better decision making at the controller side
when provided with more reliable data. This is an intuitive
but valuable observation showing how Aol can be used as
an intermediate tool to derive age-dependent metrics whose
reduction propagates to other performance indicators that are
indirectly connected to age.
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Outliers are not displayed to avoid visual clutter. The triangle marker is
placed at the overall average LQG cost throughout 2000 repetitions of each
scenario. The lower and upper whiskers represent the first and third quartiles,
respectively.

V. CONCLUSION

Aol is a metric quantifying information freshness at the
receiver in remote monitoring and control scenarios. It has
been employed as a cross-layer metric between control and
communication in the context of networked control systems.
In this work, employ stationary distribution of Aol in discrete
time queuing systems where users are feedback control loops.
To the best of our knowledge, this is the first work studying
centralized scheduling problem for networked control systems
where packets have to go through a FCFS queue.

We consider a scenario where multiple, heterogeneous con-
trol sub-systems that are sharing a wireless communication
channel with packet losses, modeled as an erasure channel.
Given discrete time queuing systems with FCFS Geo/Geo/1
discipline, we derive the mean squared error of a remote
estimation process given an arrival and a service rate. Thus,
we find the optimal distribution of the limited resources of
the shared wireless channel. Our results suggest that we are
able to maximize the estimation accuracy at the receiver which
leads to an increase in control performance. In future work,
we are planning to validate our findings with a practical
implementation of the considered scenario to validate our
theoretical findings in a real-world testbed with software-
defined radios.
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APPENDIX A APPENDIX B

PROOF OF (3) PROOF OF (9)
Given v;(t) < t: Given v;(t) < t and A;[t] =t — v;[t]:
i[t] = Efai[t] | ai[vi(1)] E [||ei[t]||2 | a;i[yi[t}]]
Qe Al Tt 1wt — 11 | 2l ) R
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A: Noise vectors are i.i.d. thus uncorrelated.

B: Expectation of a quadratic norm of a random
vector v with covariance matrix X, is E[v! Mv] =
(E[v])T ME[v] 4+ tr(MX,).



