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Für meinen Vater,
einem einzigartigen Menschen, mit dem ich viele großartige Stunden verbringen durfte.

Ruhe in Frieden
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Abstract

In recent years the demand on new more versatile engineering components and new metal
printing techniques led to an increase in material development and testing. As research
progresses on this field new methods in industrial manufacturing became available to set
parameters like the texture or microstructure. Therefore it is necessary to provide reliable
and fast measurement techniques to characterize and predict all basic mechanical parameters
such as the single-crystal elastic constants, critical resolved shear stresses and the stress
distribution among phases.
This work provides a diffraction measurement technique for the investigation and characteriza-
tion of the mechanical behavior on polycrystalline multiphase engineering alloys. Diffraction
techniques are used first to determine all relevant elastic properties, the single-crystal elastic
constants, anisotropy and all bulk elastic moduli. This includes a self-consistent calculation
to determine and account for the stress distribution in multiphase materials improving
significantly the obtained results. Then they are used to determine plastic parameters such
as the critical resolved shear stresses and track the microstructural evolution by evaluating
the Bragg peak areas and FWHMs occurring at different deformation stages during the
experiment. The last section contains an elasto plastic self consistent modeling based on
the previous results. The obtained lattice-strain - macro-stress curves are directly compared
to the experimental data. The reliability and accuracy of this method has first been tested
on different single and dual phase ferrous metals. It was later used to not only investigate
the titanium alloys Ti64 and Ti38644 two single-phase alloys consisting of a h.c.p. and
b.c.c. crystal structure. But it was also used to determine all eight single-crystal elastic
constants considering the load partitioning of the dual phase alloy Ti6246 during a single
experiment for the first time. The Experiment was further evaluated in the plastic regime
and different deformation behaviors of Ti6246 are discussed.
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Kurzzusammenfassung

In den letzten Jahren hat sich die Nachfrage und Entwicklung nach flexibleren Komponen-
ten stark erhöht. Einerseits sind die Kosten für die industrielle Fertigung von komplexen
Verbundmaterialien stark gesunken andererseits drängen neue Fertigungstechnologien, wie
die Möglichkeit eine Vielzahl von Materialien zu drucken, auf den Markt und verändern
diesen entscheidend. Aus diesem Grund ist es unerlässlich neue schnelle und verlässliche
Methoden zur Materialcharakterisierung zu finden, um den zukünftigen Herausforderungen
in Forschung und Industrie begegnen zu können.
In dieser Arbeit wird eine diffraktometrische Messmethodik zur Bestimmung und Charak-
terisierung der mechanischen Eigenschaften von polikristallinen multiphasen Werkstoffen
vorgestellt. Zunächst werden alle relevanten elastischen Eigenschaften wie die elastischen
Einkristallkoeffizienten, Anisotropie und makroskopischen Module mittels Diffraktion bes-
timmt. Dies beinhaltet insbesondere eine selbstkonsistente Berechnung der Lastverteilung
in multiphasen Werkstoffen, die die Auswertung der elastischen Einkristallkoeffizienten
wesentlich verbessert. Die so erworbenen Materialkennwerte werden anschließend als
Ausgangsdaten für eine elasto-plastische selbstkonsistente Modelierung verwendet. Die
berechneten Spannungs-Dehnungskurven werden direkt mit den experimentel erworbenen
Gitterdehnungen und Makrowerten verglichen. Die Methodik wird zunächst an verschiedenen
Eisen- und Stahllegierungen auf ihre Genauigkeit geprüft. Im späteren Verlauf werden nicht
nur die einphasigen Titanlegierungen Ti64 und Ti38644 auf ihre mechanischen Eigenschaften
untersucht sondern es ist auch gelungen alle acht elastischen Einkristallkoeffizienten der
zweiphasigen Titanlegierung Ti6246 unter Berücksichtigung der Lastverteilung der Phasen
innerhalb eines einzigen Experiments zu bestimmen. Der letzte Teil der Arbeit umfasst eine
ausführliche Auswertung der plastischen Deformation von Ti6246 mittels Diffraktionsexperi-
menten.
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1 Introduction

The demands on modern engineering components led to an increase in materials development
and testing in recent years. New reliable and precise methods for the characterization of the
basic mechanical parameters such as the single-crystal elastic constants, critical resolved
shear stresses of slip families among many others are needed to meet future requirements in
science and industry.
One aspect in modern engineering is to predict the stress-strain behavior of the key com-
ponents during operation. These predictions are often used to decide which materials are
of general interest or to solve specific problems for researchers and industry, alike. Most
commonly finite element models (FEM) are used for the prediction of large scale deformation
behavior and the FEM rely on a precise knowledge of the single-crystal elastic constants,
yield stress, present micro structure and in some cases the elemental composition.
Besides the requirements every material has to full-fill during operation, the manufacturing
and shaping during assembling additionally stresses the materials and can sometimes reduce
the durability significantly. An important technique to investigate the evolution of materials
during use or assembling is the diffraction based classical stress analysis. It takes into
account the present phases and its precision depends on the accuracy of the diffraction
elastic constants used for the evaluation of the measurement. They can either be measured
in-situ by diffraction in a tensile experiment or they can be calculated from the single-crystal
elastic constants using different grain-to-grain interaction models.
The classical stress analysis is also widely used in geology and encounters even larger diffi-
culties. Many of the investigated materials have low symmetry crystal structures, complex
microstructures and are brittle which is very common for rocks or ceramics.
There are only few limited methods to access these single-crystal elastic constants and
besides the diffraction techniques all of them require the measurement of single-crystals. The
most established method uses ultra-sounds. The use of single-crystals during measurements
is essential to gain accurate results [1]. Another technique to determine single-crystal elastic
constants is inelastic neutron scattering which measures the phonon dispersion relation [2].
This gives access to constants even in extreme conditions or unstable phases. However, it
is difficult to grow single-crystals with similar elemental composition as used in modern
engineering alloys.
As mentioned above, it is not possible to grow single-crystals for most engineering materials.
To overcome the limited access to single-crystals, different approximation models have been
developed to project the elastic constants from one alloy to a similar one. Depending on the
complexity these projections may be afflicted by large uncertainties which heavily influences
the accuracy of the predictions.
Improved manufacturing processes allow production of multi-phase materials with defined
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phase ratios. Components made from such multi-phase materials often benefit from com-
bining the properties of the constituent phases. For example in aerospace turbines high
durability in extreme conditions needs to be ensured. It was discovered that especially
dual-phase titanium alloys match the high requirements needed. Here the α-phase ensures
the ductility while at the same time the β-phase improves corrosion resistance and high
temperature yield. However, in many cases one or more of the occurring phases are only
meta stable and therefore exist only in presence of the other phase. In this case it is inevitable
to investigate mechanical properties of the compound as well as single-crystal properties at
the same time. This is of particular interest, when the elasticity differs strongly from phase
to phase the stress does not uniformly distribute among the present phases and leads to so
called “load-transfer” where the stress in one phase is significantly higher than in the other
during loading.
In a similar way additive manufacturing is gaining more and more interest in industry
and research as an advanced production process. Sharp and distinct textures are created
commonly during the printing of engineering components. An investigation on the impact
to the elastic bulk properties will reveal if any artificial setting of the grain orientation would
improve the components mechanical properties.
Single-elastic constants are required in all common deformation theories to predict mechani-
cal behavior of engineering components. However, the difficulty to access these constants
led to a severe lack of data in modern material developments. Only for a small proportion
of materials reliable literature values are available and even fewer remain consistent in case
of varying measurement conditions. One of the few well known materials on this area are
ferrous metals. Their versatility ensured their use over many decades and their importance in
modern days is hard to underestimate. Therefore they still are object to extensive research
due to their high value in all different kinds of modern industries [3, 4, 5, 6, 7, 8].
The steady amount of new materials and the increasing amount of research require the
development of standard procedures to generalize the obtained results for an easier use
among the many different areas of application. The diffraction technique introduced here,
offers a sophisticated method to meet these requirements. It ensures high precision and
straightforward evaluation of experiments. Besides the experimental procedure a newly
implemented software written in a modern programming language is introduced which allows
an easy evaluation of the measurement. The software accounts for a wide range of materials
and is flexible enough to adapt to the different micro structures and diffraction methods
give information on any present phase. Therefore the software accounts for multiple phases
present and the distribution of stress between them.
Many of the utilized theories were included into the Elasto-Plastic Self-Consistent (EPSC)
modeling. Therefore the EPSC modeling implemented into the software benefits from
directly measured input parameters from a single experiment. The wide field of accessible
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materials offer countless opportunities for further development and research.
The accuracy of the experiment and evaluation procedure is demonstrated here on ferrous
metals. The results of the f.c.c. and the b.c.c phase of single and dual-phase alloys are
compared to available literature data. The EPSC framework implemented is used to describe
and predict the deformation behavior of austenitic steel. The prediction of the EPSC model
is tested against experimental data obtained during a diffraction tensile test on ferritic
structural steel S235JR. Further investigations on a dual-phase titanium alloy and the load
distribution between the α and the β phase are presented. A detailed overview of the
morphology and texture is also given as it is required to perform a correct analysis and
develop a proper understanding for the mechanism acting. The last part of this work presents
the plastic deformation behavior of a dual phase titanium alloy. Diffraction techniques are
used in combination with the microstructural investigation to qualify the plastic deformation
mechanism such as dislocation or stress pile-up, slip transfer and stress redistribution.

3



2 Historical Review on the Deformation of Solids

In this section a historical review and a timeline (figure 1) on titanium alloys and on the
modern theory of elasticity is given with a particular focus on embedding diffraction methods
into the characterization and modeling.

17th and 18th century
The first principles of linear elastic deformation have been stated in the late 17th-century by
the British physicist Robert Hooke. Hooke’s law states that “The force needed to extend or
compress a spring by some distance scales linearly with respect to that distance”. It was
easily recognized that Hooke’s law in his linear form is only a first order approximation to
describe the deformation behavior of real solid bodies.
After 1800 a.d. when matrices became more popular in mathematics a generalization of
Hooke’s law for small deformations has been elaborated and the modern theory of elasticity
has been founded.
In 1791 titanium was first discovered by the English pastor William Gregor. But due to the
high melting point of 1993 K its practical use at that time was very limited.

1910 - 1930
Evolving manufacturing processes and better equipment in research draw the interest of
M. A. Hunter and the General Electric Company on titanium alloys in the believe it could
withstand 6000◦C in its pure metallic form. So in 1906 Hunter was the first to produce pure
metallic titanium and found that its melting point is lower than expected. But, anyhow
he invented a commercially method of production for TiCl4 the Hunter process which was
named after him.
The elasticity of most commonly used materials had been only partly described by the
single-crystal approximation and therefore the theory was expanded for polycrystals. At
the beginning of the 20th century Voigt and Reuss elaborated an analytical solution for
the deformation behavior of polycrystals for small strains with extreme assumptions. Voigt
assumed that the occurring strains distribute evenly in the solid and the stress varies accord-
ingly. This led to isotropic behavior of the polycrystal [9, 10]. The other extreme was solved
by Reuss, he assumed that the stress is distributed homogeneously over the solid which lead
to an anisotropic solution for the deformation behavior [11].
At the same time engineering was evolving and the behavior of large strains, i. e. the plastic
behavior, became more important. The first approach for the large strain behavior of an
ideal single-crystal was emphasized by Taylor and Elam in 1923 [12].

4



1946
A study conducted by the U.S. Air Force in 1946 concluded that titanium-based alloys meet
all requirements needed for aerospace industry. Importantly they exceed the strength-to-
weight ratio of either steel or aluminum by far. In consequence the nations as to name the
U.S.A, United Kingdom, Japan and the U.S.S.R. founded new titanium branches among
their metalworking industry. The new availability of the metal to other branches of the
industry and research gave rise to many new opportunities in for example chemical processing,
medicine and power generation.

1950s
The next major advancements in the theory of elasticity were made in the 1950s. The first
and most reliable measure for the anisotropy was introduced by Zener in 1948 for cubic
materials [13]. A new description of the strain behavior along different crystal orientations
is established. The anisotropy gets more complicated with growing degree of freedom for
lower crystal symmetries. Only many years later several approaches were established to
create evenly reliable measures of anisotropy for different crystal symmetries.
At the same time Hill verified the solutions of Voigt and Reuss as the upper and lower limit
for the predicted strains and proposed the arithmetic mean introduced by Wu and Walpole
as a more accurate description for the strain behavior of a crystalline aggregate often called
as Hill’s approximation [14].
One of the most common used titanium alloys Ti-6Al-4V is introduced in 1954 to aerospace
and armor industry. It is the first titanium alloy used for mass fabrication.

1960s
In 1957 Eshelby introduced what is best described as an elastic susceptibility by introducing
the inclusion model into the modern theory of elasticity. Many models describing small or
large strain behavior rely strongly on the inclusion model [15]. One year later Kroener derived
a more elaborated approach for the grain-to-grain interaction and provided new equations for
the large strain behavior of single crystals [16]. In 1963 Kneer extended the work of Kroener
to hexagonal symmetries [17]. The next couple of years Hill elaborated a new generalization
between differential increments of stress and strain during the different stages of plastic
deformation. This approach establishes a basis for the description of plastic deformation
behavior in poly-crystalline materials also known as Elasto Plastic Self-Consistent Modeling
(EPSC) [18, 19, 20].
At the same time high-temperature applications of titanium were gaining the interest of the
U.S. and U.S.S.R because of their use for space flights. To win the space race both nations
put a huge effort into the development of new alloys capable of resisting extreme conditions.
One of the least dense β-alloys Ti-3Al-8V-6Cr-4Mo-4Zr was introduced just before in 1966.
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An alloy featuring a similar high-strength as the titanium α-phase and the high corrosion
resistance of the β-phase is introduced to the metal community. The well behavior of the
metastable β phase during manufacturing leads to a fast development for mass fabrication
of this alloy.

1970s
In the following years Hutchinson evaluated the models proposed by Hill through extensive
research and experiments. He further developed and simplified the models and made signifi-
cant contributions to the Elasto Plastic Self-Consistent Modeling of f.c.c. and b.c.c. crystal
symmetries. He analyzed the influence of different parameters during the modeling and
backed his conclusion with different types of tensile loading experiments. [21, 22].

1979
For the improvement of the prediction by EPSC models the precise knowledge of the
input parameters became of great importance. Therefore in the same time period many
research groups started collecting elastic and plastic properties of different single crystals by
ultrasound measurements. A suggestion of how to overcome the obstacle of measuring the
single-crystal elastic constants in technologically relevant polycrystals was first emphasized
by Hauk & Kockelmann in 1979. The basic idea is to apply an externally known stress
to the material and measure the average resulting strains by diffraction methods. It arose
from the classical stress analysis were internal stresses are calculated by measuring occurring
strains in the materials which is essentially its reverse [23].

Figure 1 – The time line shows some of the important research groups. The blue and green
line indicates large advancements on field of elastic and plastic deformation, respectively.

1990s
In the early 90s Ti6Al-4V was recognized as highly flexible implant with low Young’s modulus.
Its mechanical properties combined with its high bio compatibility makes it unique until
today. Next major advancements in EPSC modeling were made around the turning of the
century. Computational power increased and was easily accessible in research. Thus, it was
realized that the averaging methods used during the EPSC modeling are naturally suited
to be used for comparison to diffraction data. Throughout the 90s Tome and his group
implemented a new version of the models suggested by Hill and Hutchinson in Pascal[24].
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2000s
The models implemented in the EPSC evaluation developed by Tome were extended to
account for grain reorientation due to twinning and enabling the modeling of hexagonal
crystal structures for the investigation of Zircaloy-2 [25, 26, 27]. The computational power
reached the point where different types of texture could be included into the modeling and
Matthies investigated the influence of the texture on the different types of grain-to-grain
interaction models. At the same time he introduced a new average between Voigt and Reuss
models which better suits real physical conditions [28, 29].
In the year 1997 the grain-to-grain modeling suggested by Kroener was extended by De
Wit to account for present anisotropies by including an orientation dependence of the shear
modulus into the equations [30]. One year later Gnäupel-Herold et al. further applied the
idea of Hauk & Kockelmann and derived the single-crystal elastic constants of different f.c.c
and b.c.c phases in ferrous metals by diffraction methods [8] on basis of Kroeners approach.
Howard & Kisi extended the equations elaborated by Reuss to fit for all different types of
crystal symmetries in the same year to derive all 5 elastic constants of the α-phase in Ti64
[31]. This technique was further modified to fit different models proposed by Hill and Reuss
[32, 5, 6].
The economical pressure forces the aerospace industry among many others to produce more
efficient components. To meet the negotiated standards all industries are pushed into new
fields of development for high efficiency materials. In consequence different properties are
combined and the availability of dual-phase alloys grows as new opportunities for research
arise. Ti 6246 combined the high ductility of the α-phase and the high temperature per-
formance of the β-phase in extreme environments and became a new standard alloy in
high-temperature jet engines, gas turbine compressor components and in high performance
automotive valves. Even though the field of applications was growing only few groups as for
example Fre’our et al. put effort into the further development of grain-to-grain interaction
models or the influence of doping elements on the single-crystal elastic constants[33, 34, 35].

2010s
Upcoming printing methods enable the printing of three dimensional shapes. The technology
was first available for plastic parts, only. In a short time the technology was further developed
to print metal components. Soon Ti64 emerged to a highly appropriate candidate for addi-
tive manufacturing and to create shapes which are challenging for conventional production.
Investigations show an interesting texture development during additive manufacturing which
leads to the conclusion that the texture development can be used as advantaged depending
on the given shape of the component.
The easy availability of even very complex engineering materials and a growing interest in
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the development of texture leads to a need of more complex anisotropy measures. During
the last years there is growing effort to find equally good measures which apply to a more
wide range of structures[36, 37, 38, 39].
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3 Goals

The aim of this work is to develop an easy to use and fast procedure to measure and predict
the stress-strain behavior of engineering materials. The use of diffraction methods provides
advantages during the investigation because they are able to deliver precise information on
lattice spacing even in complex multi-phase materials. On this basis the technique is able to
determine the single-crystal elastic constants of materials as they are deployed for operation.
The similarities between diffraction techniques and the EPSC modeling framework provide
a good premise to compare the predictions of the EPSC modeling to diffraction data and
ensure the correctness of the modeled plastic stress-strain behavior. This means that this
method allows to quantify the elastic and plastic behavior of any crystalline material during
a single measurement.
To achieve this goal a technique first used by Gnäupel-Herold et al. to determine the elastic
constants of single-phase cubic alloys is implemented and is further developed to handle
modern anisotropic multi-phase alloys including texture effects. A standard experimental
procedure is given using a specific test rig with a rotatable load axis on diffractometers. The
method allows simultaneous measurement of multiple phases in a compound and extract all
relevant single-crystal and bulk elastic properties.
To account for the stress re-distribution among the different phases a self-consistent method
is developed and applied which quantifies the load transfer by transition factors for every
phase. These allow to calculate the stress present in each phase from the applied sample
stress.
For the data treatment a dedicated software had to be developed due to a lack of existing
maintained solutions developed for modern computer systems which are able to process
diffraction and other experimental data for a full analysis of every aspect during elastic and
plastic deformation. The software accounts for multiple phases and predicts the load transfer
depending on the elastic properties of the phases. It is designed to handle diffraction, tensile,
texture and crystallographic data comfortably and includes them into the evaluation process.
For the plastic regime an EPSC modeling framework is used. It predicts the average strain
values measured by diffraction. In addition, it allows further predictions of strains along
orientations, which are not accessible by diffraction experiments.
The accuracy of the evaluation is tested on different ferrous metals because of the large
amount of available literature data. The results of two single-phase alloys with f.c.c. and
b.c.c. crystal structure and two dual-phase alloys are compared to these reference values and
a detailed analysis of the different grain-to-grain interaction models and texture is provided.
The technique was finally applied to determine all 8 single-crystal elastic constants in an
industrial used dual-phase titanium alloy, simultaneously. To account properly for the phase
interaction this work provides detailed information on the morphology and texture. The
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predicted constants are compared and discussed with respect to a detailed analysis of the
corresponding phases in single-phase alloys.
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4 Theory

This section summarizes all necessary parts of the theoretical background needed for complete
data treatment and analysis. The formalism used mainly originates from Behnken, Hill,
Hutchinson and Gnäupel-Herold [40].
In the first part all principle definitions regarding mechanical deformation are introduced.
This comprises basic definitions, notations and commonly used coordinate systems. For
proper understanding it is vital, how the experimental measurements are aligned with respect
to the coordinate systems defined in modern deformation theory. The same applies to the
length scales for which different types of strains are considered. It is important to describe
how the applied tensile force during diffraction experiments distributes among the different
grains and present phases.
In the following basic units as measured strains and applied stresses are categorized in scale
and coordinate systems. The introduced transformations are used to involve basic elements
such as micro structure and texture into this framework and combine it to experimentally
accessible parameters such as diffraction elastic constants. In this way even with standard
industrial characterization methods poorly available properties such as anisotropy are covered.
The core of the introduced framework is how the grains interact with another, usually referred
to as grain-to-grain interactions. This part introduces different assumptions on how the
stress or strain is distributed among the single-crystal domains and it combines basic micro
structure into the evaluation. Diffraction experiments are sensitive to all present phases and
in most cases the individual strains are measured simultaneously. To improve the evaluation
of multi phase alloys the theoretical basis of how stress distributes in multi-phase compounds
is introduced.
The final part focuses on the plastic deformation and gives a detailed introduction into
the common theory of single-crystal deformation. It summarizes different slip families for
different crystal symmetries and introduces slipping of crystallographic planes along specific
directions as the basic mechanism causing large strains in single crystals. A way to predicting
the stress-strain behavior is introduced along with the basic concept of crystal hardening.
Finally, the single-crystal deformation theory is expanded by a self consistent approach to
describe large strains in polycrystals, also known as Elasto-Plastic Self-Consistent Modeling
(EPSC).

4.1 Mechanical Properties and their Orientations

The shape and volume are fundamental parameters to describe solids. Their mechanical
behavior defines the change of these parameters under a given stress. The properties are
macroscopic values but are linked on atomic scale.
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4.1 Mechanical Properties and their Orientations

The Strain Tensor is defined by any change in volume or shape in solids, e.g. through
deformation. It is caused by external forces and can be described by the displacement u of
an arbitrary point r in the solid to r′ (Figure 2). The length dl before deformation and dl′

after is described by [41]:
dl =

√
dr2

1 + dr2
2 + dr2

3

dl′ =
√

(dr1 + du1)2 + (dr2 + du2)2 + (dr3 + du3)2

With the substitution dui = ∂ui

∂uk
drk and some permutations dl′2 can be rewritten into:

dl′2 = dl2 + 2εikdridrk (1)

Equation (1) defines dl′2 as the sum of dl and a second term consisting of the so called
strain tensor εik defining the deformation given by:

εik = 1
2

(
∂ui
∂rk

+ ∂uk
∂ri

+ ∂ul
∂ri

∂ul
∂rk

)
(2)

The strain tensor is by its definition symmetric, εik = εki. This means that for every point

Figure 2 – The displacement vector u = r′ − r describes the difference in space between the
location r and r′. The components of the strain tensor εik are formed from derivatives of ∂u

∂r .

of the strain field there exists a coordinate system, the so called principal axis, in which the
only non-zero components of the strain tensor are the diagonal elements ε11, ε22 and ε33

[41].
Even if the displacement vector may be large in special cases, the deformation of the solid
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4.1 Mechanical Properties and their Orientations

remains small, e.g. the components of the strain tensor are small in most cases. Therefore
the last part of equation (2) can be neglected as small quantity of second order except for a
few special cases1[41].

εik = 1
2

(
∂ui
∂rk

+ ∂uk
∂ri

)
(3)

Figure 3 – The components of the stress tensor which are describing an applied force are
shown for different interaction points [40].

The Stress Tensor is most widely used to describe acting forces in solids. In a non-
deformed solid in thermal equilibrium the atoms are arranged in a way that all parts are
in mechanical equilibrium, too. This means the effective forces acting on any fraction of
a volume disappear if cut out. During the deformation process the state of equilibrium is
left and so called internal stresses appear in the solid in order to reestablish the equilibrium.
These internal stresses are caused by inter-atomic forces which act only on a small scale,
e.g. neighboring atoms. The resulting force on a specific volume part of the solid is given
by
∫

FdV . The forces acting on one volume element can only act through the surface of
the volume, therefore all three components of the force can be rewritten into an integral
over the surface of the volume. This implies that the forces Fi can be represented by the

1In general a solid cannot undergo any deformation such that the shape in one dimension is getting
especially small without causing heavy strains and compression.
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4.1 Mechanical Properties and their Orientations

divergence of a second rank tensor[41].

∫
FidV =

∫ ∂σik
∂rk

dV =
∮
σikdfk (4)

fk are the normal components of the considered surface and σik are the components of the
stress tensor, which is a symmetric (3x3) second rank tensor [41]. Figure 3 shows how the
stress tensor components act on different orientations of the surfaces. Depending on the
surface orientation the stress tensor has one component in the normal direction and two in
the tangential direction.
The average of the stress tensor is given by integrating ∂σil

∂rl
rk over the total volume of the

body. ∫ ∂σil
∂rl

rkdV =
∫ ∂(σilrk)

∂rl
dV −

∫
σil
∂rk
∂rl

dV = 0 (5)

The first integral gets rewritten into a surface integral and considering ∂rk

∂rl
= δkl the above

equation becomes to: ∮
σilrkdfl −

∫
σikdV = 0

The surface integral expresses the external forces acting on the whole surface of the
considered body. Which means that the average of the stress tensor can be immediately
calculated by external forces without solving the basic equations of the equilibrium [41].

∫
σikdV = V σik (6)

Hooke’s Law If an external force is removed from the body the elastic part of the
occurring strains will relax and the plastic part will remain permanently. The total strain
can then be divided into an elastic and a plastic part:

ε = εel + εpl (7)

If the acting stress remains below the elastic limit all occurring strain are elastic and their
dependence on the stress is linear. Because of the tensor nature of applied stress and
occurring strain each component of the stress tensor depends on all components of the
strain tensor and vice versa. They form a total of 81 linear equations [40].

σij = cijklεkl εij = aijklσkl, with A = C−1 (8)

The equation shown above defines the fourth rank tensors of stiffness C and of compliance
A, both consisting of 81 elements. Due to the symmetries of σ and ε the relation
aijkl = ajikl = aijlk holds for both tensors and reduces the independent elements from 81
to 36. Using these symmetry elements the two indexes ij of the tensor notation may be
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4.1 Mechanical Properties and their Orientations

combined into one index of the Voigt notation as shown in Table 1 [40]. In this notation

Table 1 – Transformation of the index from tensor to Voigt’s notation.

11→ 1 23→ 4 32→ 4
22→ 2 13→ 5 31→ 5
33→ 3 12→ 6 21→ 6

σ and ε become vectors with six rows and A reduces to a second rank tensor (6x6). The
tensor A in Voigt’s notation is symmetric which is caused by additional symmetry properties
linked to the elastic energy from stresses and strains, e.g. aijkl = aklij. This reduces the
number of independent elements to 21.

ε1

ε2

ε3

ε4

ε5

ε6


=



a11 a12 a13 a14 a15 a16

· a22 a23 a24 a25 a26

· · a33 a34 a35 a36

· · · a44 a45 a46

· · · · a55 a56

· · · · · a66





σ1

σ2

σ3

σ4

σ5

σ6


(9)

Equation (9) shows Hooke’s law in the notation of Voigt and all independent 21 components
of the tensor A. Depending on the crystal symmetry an additional reduction in the
independent constants may appear or parts of the elements may be zero. The color-code
used for underlining in the equation shows the example of a cubic symmetry. In this
case all gray components are zero and the elements of the same color are identical which
reduces the number of independent components to three. For isotropic materials additionally
a44 = 2(a11− a12) holds which means there are only two independent components left. The
color-code on the components are an example of the hexagonal symmetry. For this lattice
type a66 = 2(a11 − a12) holds universally.

Coordinate Systems and Transformations between them are needed to describe all
properties within their own orientations. In order to describe the physical relations properly,
transformations between the different coordinate systems are necessary[40] .
Properties related to the crystal, for example the single-crystal compliances, are expressed in
the so called crystal frame Ĉ in which the unit vectors are oriented along the (100), (010)
and (001) crystal direction.
The different orientations of the grains and the applied load in loading experiments are
expresses in the so called sample frame Ŝ . The S3-axes is oriented along the sample normal
and the other two axis left are oriented along the symmetry directions of the surface of the
sample.
In every experiment the physical properties are measured along a so called measurement
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4.1 Mechanical Properties and their Orientations

Sample
Frame Ŝ

Measurement
Frame L̂

Crystal
Frame Ĉ

Stress Components
Grain Orientation Measurement Direction

Strain Components

Single Crystal Data

ωT

ω

ξT

ξ

κT

κ

Figure 4 – Coordinate systems and their relative orientations [40]. During diffraction experi-
ments the load is applied in the sample frame Ŝ. The strain are measured in the measurement
frame L̂ and deformation itself is defined in the crystal frame Ĉ. For the evaluation of
the experiments all input and output data has to be synchronized to the same frame. The
transformation between the frames is defined by their relative orientation to one another and
is calculated with the transformation matrices ω, ξ and κ and their transposed.

direction Q, also known as the scattering vector in diffraction experiments, which in most
cases is not aligned to Ĉ or L̂. The measurement frame L̂ is oriented in such a way that L3

is parallel to Q and L2 is aligned parallel to the sample surface [40]. Figure 4 shows the
different coordinate systems and the transformations between them.
Equation (10) shows the transformation matrix ω from the sample to the measurement
frame. The first rotation φ is done around the S3-axes and puts S2 perpendicular to L3.
Then the coordinate system is rotated at the angle ψ around the S2-axes to parallelize S3

and Q. The last rotation aligns S1,2 with L1,2. These angles are illustrated in Figure 5 on
the right[8].

ω =



− cos(ψ) cos(φ) sin(ϕ) − cos(ψ) sin(φ) sin(ϕ) sin(ψ) sin(ϕ)
+ sin(φ) cos(ϕ) + cos(φ) cos(ϕ)

− cos(ψ) cos(φ) cos(ϕ) − cos(ψ) sin(φ) cos(ϕ) sin(ψ) cos(ϕ)
+ sin(φ) sin(ϕ) + cos(φ) sin(ϕ)
sin(ψ) cos(φ) sin(ψ) cos(φ) sin(ψ)


(10)

The second transformation matrix ξ is shown in equation (11). As illustrated in Figure 5
on the left the first rotation around the C3-axes turns C2 perpendicular to projection of L3.
The second rotation around C2 rotates C3 parallel to Q. The last rotation aligns C1,2 with

16



4.2 Size Scales in Deformation

Figure 5 – The angular relation between the sample frame Ŝ and measurement frame L̂
is shown on the left and on the right the relation between the crystal frame Ĉ and the
measurement frame is shown. During single-axis loading test, as used during the tensile
diffraction experiments the load is applied along L3. The angles φ and ψ are adjusted by
turning the complete load axis from the horizontal to a vertical position. Depending on the
orientation of the crystallites during the diffraction experiment only certain grains will make a
contribution. Their orientation is typically related to the orientation of the applied load [42].

L1,2[8].

ξ =



− cos(ϕ2) sin(φ2) cos(ψ2) cos(ϕ2) cos(φ2) cos(ψ2) cos(φ2) sin(ψ2)
+ cos(ϕ2) sin(φ2) + sin(ϕ2) sin(φ2)

− sin(ϕ2) sin(φ2) cos(ψ2) cos(ϕ2) sin(φ2) cos(ψ2) sin(φ2) sin(ψ2)
− cos(ϕ2) cos(φ2) sin(ϕ2) cos(φ2)

sin(ϕ2) sin(ψ2) cos(ϕ2) sin(ψ2) cos(ψ2)


(11)

In order to ensure the correct orientations of L3 to the diffraction planes (h k l ) the
rotations in equation (10) and (11) are defined by the Euler angles {ϕ + π, ψ, φ} and
{$2, ψ2, π/2− φ2}, respectively[8].
The last transformation κ from the crystal into the sample frame can be executed by
successively applying the transformations ω and ξ.

4.2 Size Scales in Deformation

All deformations in solids can be split up into three different length scales, the overall sample,
the grains and the atomistic level, i. e. macroscopic, mesoscopic and microscopic scale. In
Figure 6 the different scales of deformation are shown. In general the force is applied to the
sample aligned with the sample frame, shown in the top. In this case the elastic tensor CS
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4.2 Size Scales in Deformation

Figure 6 – All three length scales on which solids are deformed under external load. The
macroscopic scale is indicated by σS and εS . The mesoscopic scale represents the average
over a certain number of grains with different orientations and is denoted by σ and ε. The
microscopic scale is a single grain in a specific orientation and denoted by σ and ε.

in Hooke’s law is calculated by averaging the average single-crystal elastic constants Cα of
the different phases.
For any sample orientation only those lattice planes are contributing to the scattering signal,
i. e. the Bragg reflection, for which grains are oriented within the measurement geometry.
This ensemble of grains is described in the measurement frame, therefore to correctly apply
Hooke’s law the elastic tensor Cα of one phase is calculated by averaging the single-crystal
elastic constants over the different grain orientations and taking into account the orientation
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4.3 Diffraction based stress-strain analysis

distribution (texture). As described later, it is important to take other effects like the
grain-to-grain interaction or the load transfer into account during the averaging on the
mesoscopic scale.
The microscopic scale is illustrated at the bottom of Figure 6 and is aligned with the
crystal frame. All single-crystal properties such as the single-crystal elastic constants, critical
resolved shear stresses, dislocations and many other properties are described in this frame.
The following list contains an overview over all used notations and their meaning

• For all of the second order tensor the same notations are used. The S in σS and εS
indicates the sample. This means every component of these tensors is given in the
sample frame and as they represent the sample, all averages of lower size scales are
averaged again into the two tensors.

• The bar of σ and ε indicates the grain level. Therefore the stress or strain of a defined
ensemble of grains is averaged into the tensors. The distribution of the ensemble
is chosen freely but follows specific rules depending on the properties the ensemble
is representing. For example during tensile diffraction experiments the ensemble is
chosen in a way that it represents every grain orientation meeting the diffraction
condition.

• No indication on σ or ε means the tensor is defined in a single orientation. They
represent the most basic unit and do not contain any average information. They can
be viewed as a single-crystal domain along a specific orientation.

• All notations introduced, apply for all fourth-order tensors as well. Similar to the
second order tensors, no indication C represent the conditions met in a single-crystal
domain. The indication C′ shows if the tensor is defined along any specific orientation
with respect to the sample frame S.

• In the case of Cα the bar indicates that this tensor is averaged over an ensemble
of tensors C along different orientations. Similar to the stress or strain tensors the
ensemble is chosen depending on what they are representing, indicated by the lower
letter. S represents the hole sample while greek symbols stand for different phases.
During the averaging it is convenient to apply any texture weightings.

4.3 Diffraction based stress-strain analysis

In diffraction experiments only average values for the strains are measured. As described
in 4.1 the measured values depend on the angles ψ and ϕ, e. g. Q and on the crystal
orientation 〈hkl〉), giving ε(Q, hkl) = ε. In a similar way the average applied stress is the
macroscopically applied stress, σ = σS.
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4.3 Diffraction based stress-strain analysis

As shown in equation (6) the macroscopic average of the strains and stresses is obtained by
volume averaging over the total sample volume. This average can be applied to Hooke’s
law:

ε = Aσ = Aσ (12)

The average compliance tensor A is calculated only over those orientations which are

Figure 7 – The neutrons or X-rays involved in the scattering process are indicated by black
dotted lines. The grains exhibiting green lattice planes are involved in the scattering process,
which means that Q||m. The grains marked by red lattice planes are not oriented along the
direction to fullfill die scattering condition. The sample frame is shown in blue and determines
the orientation angles ψ and ϕ.

contributing to the diffracted intensity during the experiment. A schematic view of an
diffraction experiment is shown in Figure 7, only those lattice planes are contributing to the
observed Bragg peak for which the plane normal m coincides with the scattering vector Q.

A′uwij(g) = ξum(g)ξwn(g)ξio(g)ξjp(g)Amnop (13)

A is transformed from the crystal- to the measurement frame, A′(g) by the transformation
matrix (11) leading to Equation (13). In this manner Equation (12) can be expresses as
[40]:

ε(Q,m) =
∑
i,j

Fijσij + εpl(Q,m) (14)
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4.3 Diffraction based stress-strain analysis

with the stress factor Fij(Q,m) given by:

Fij(Q,m) =
∑
u,w

∫
m||Q A′uwij(g)mumwf(g)dg∫

m||Q f(g)dg (15)

In most solids the grains are not randomly oriented. A quantitative measure of how many
grains are oriented along a specific direction is given by multiples of random distributions
(m. r. d.) combined into an Orientation Distribution Function (ODF) f(g). To solve
Equation (15) analytically different assumptions can be taken into consideration [40].

(i) No plastic strains are occurring, e. g. εpl(Q,m) = 0

(ii) No texture, e. g. f(g) = 1

(iii) Elastic isotropy, e. g. the elastic properties do not depend on the lattice direction.

During the introduction of the elastic regime assumption (i) always applies except it is
explicitly stated otherwise.
In Equation (14) the strains are measured along Q and expressed in the measurement frame.
In this case, the only observed component of the strain tensor is ε33 and assuming (iii) it
follows:

ε33 = 1
2π

∑
i,j

∫
m||Q

A′33kl(g)dg · σij (16)

A′r =
∫

m||Q
A′(g)dg (17)

Equation (16) can be transformed with the knowledge of the rotation symmetry of the
average tensor and the measurement direction in the measurement frame, yielding:

ε33 = A′r3311tr(σ′) + (A′r3333 −A′r3311)
∑
i,j

σijm
′
im
′
j (18)

Equation (18) can then be transformed into the specimen reference frame, which leads to
the general equation of stress analysis [40]

ε33 = s1(σ11 + σ22 + σ33) + 1
2s2

(
cos2(ϕ)σ11 + sin2(ϕ)σ22) sin2(ψ) + σ33 cos2(ψ)

)
(19)

with the diffraction elastic constants (DEC) s1(hkl) and 1
2s2(hkl):

s1(hkl) = A′r3311 (20)

1
2s2(hkl) = A′r3333 −A′r3311 (21)

The averaging in equation (20) and (21) can be solved analytically if the grains are randomly
oriented in the measurement volume (ii), leading to the following equations with the
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4.4 Diffraction Elastic Constants

orientation paramters γi defined in table 2 [40] .

A′
r

3311 = 1
2γmγn(δpq − γpγq)Amnpq (22)

A′r3333 = γmγnγpγqAmnpq (23)

If the material is further considered as elastically isotropic (iii), the integration in equation
(20) and (21) becomes independent of the orientation distribution of the grains yielding the
following equations for the DEC.

s1(hkl) = A1122; 1
2s2(hkl) = 2(A1111 −A1122) (24)

Table 2 – The orientations parameters γi represent angles between the lattice direction and
the crystal frame C.

γ1 γ2 γ3

h√
h2+k2+l2

k√
h2+k2+l2

l√
h2+k2+l2

4.4 Diffraction Elastic Constants

In classical stress analysis DECs are used to link measured strains to existing phase stresses
and therefore calculate for example the residual stresses in a given sample via equation (19).
The phase stress of phase α can be derived by measuring the strains of different orientations
in ϕ and ψ.

σα = 1
d0

1
1
2s2

∂d(ϕ, ψ)
∂ sin2(ψ) (25)

Equations (25) is for many cases linear and s1 and 1
2s2 can be easily evaluated by the slope

and by the point of intersection to the y-axis. In some cases the d(sin2(ψ)-distribution is
non-linear due to texture effects or plasticity induced micro stresses. The texture effects
are minimized by maximizing the grain statistics and increasing the number of orientations
measured. It has been shown by different authors that in this case the influence of the
texture in the derived DECs are small and negligible [28, 7]. In the case of micro stresses
induced by large plasticity the evaluation has to be performed on lattice planes which are
not or only insignificantly affected [40].
In multi-phase systems it is possible to derive the compound DEC 1

2s
C
2 , but its use for the

evaluation of phase stresses is in this case limited. As described later in section 4.7, the
phase stress σα in a compounds is given by equation (53) and combined with equation (25)
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4.5 Elastic Grain-to-Grain Modeling

the following relationship for compound DECs is derived [40].

1
d0

1
1
2s
C
2

∂d(ϕ, ψ)
∂ sin2(ψ) = σL + 1

fα
σα0 (26)

The microstresses σα0 are caused by different different plastic or thermal behavior. The two
cases where compound DECs may be used for the evaluation are given below. In all other
cases the transition factors fα have to be taken into account for the evaluation.

i σα0 is very small or zero. In this case the compound DECs are the same as the
single-phase DECs.

ii The phase fraction of the measured phase is > 95% or the elastic difference is small,
e. g. fα ≈ 1.

4.5 Elastic Grain-to-Grain Modeling

The single crystals forming a polycrystal are defining the respective elastic properties of
the material. The physical interactions between the single crystals are essential for the
derivation of the polycrystalline elastic properties, for example the macroscopic Young’s
or shear modulus. The DECs provide a link between the bulk properties and the lattice
strains measured in diffraction experiments i.e. the DECs are related to the single-crystal
elastic constants via grain-to-grain interactions. An overview of the most important relations
between the bulk elastic parameter in isotropic materials is provided in table 3.
The assumption that all strains are homogeneously distributed as suggested by Voigt [9],
A = 〈C〉−1, leads to following expressions for the DECs for all crystal symmetries.

s1 = x+ 4y − 2z
2(x− y + 3z)(x+ 2y) ; 1

2s2 = 15
2x− 2y + 6z (27)

x = c11 + c22 + c33; y = c12 + c13 + c23; z = c44 + c55 + c66; (28)

Equations (22) and (23) can directly be solved with the replacement of A = S with the
assumption of a homogeneous distribution of stress inside the grains [11], which is referred
to as the Reuss approximation. In this approximation the elastic behavior is anisotropic
and the equations for the DECs contain the orientation parameters, Γ and H, for different
crystal symmetries, shown for cubic and hexagonal symmetries in table 4.

s1 = s12 + (s11 − s12 −
1
2s44)Γ (29)

1
2s2 = s11 − s12 − 3(s11 − s12 −

1
2s44)Γ (30)
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4.5 Elastic Grain-to-Grain Modeling

Table 3 – Relations between the different bulk elastic parameters in isotropic materials to
the single-crystal and diffraction elastic constants. A more detailed overview is provided by
Behnken [40]

E, ν E, G κ, G c11, c12
Young’s modulus

E E E 9κG
3κ+G

(c11−c12)(c11+2c12)
c11+c12

Materials response to uniaxial
tension or stress
Shear modulus

G E
2(1+ν) G G c11−c12

2 Materials response to shear
stress

Poisson ratio
ν ν E−2G

2G
3κ−2G
6κ+2G

c12
c11+c12

Materials response orthogonal
to applied stress
Bulk modulus

κ E
3(1−2ν)

EG
3(3G−E) κ c11+2c12

3 Materials response to
hydrostatic stress

s1 − ν
E

2G−E
2EG

2G−3κ
18κG − c12

(c11−c12)(c11+2c12) -

1
2s2

1+ν
E

1
2G

1
2G

1
c11−c12

-

Equations (29) and (30) show a linear relationship in the orientation for cubic symmetries
and equations (31) and (32) a parabolic relationship in H2 for hexagonal symmetries.

s1 = 1
2[s12(1−H2) + s13H

2 + (s11 + s33 − 2s13 − s44)(1−H2)H2] (31)

1
2
s2 =

1
2

[s11(1−H2)(2− 3H2)− s12(1−H2) + s13(H2(5− 6H2)− 1) + s33(3H2 − 1)H2 + 3s44H
2(1−H2)] (32)

Table 4 – Orientation parameters for different crystal symmetries and there dependence on
the γi

Crystal symmetry Parameter γi - dependence

cubic 3Γ 3(γ2
1γ

2
2 + γ2

2γ
2
3 + γ2

3γ
2
1)

hexagonal H2 γ2
3

Hill investigated the elastic behavior of aggregates and found that the assumptions of Voigt
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4.5 Elastic Grain-to-Grain Modeling

and Reuss are leading to following conditions [14].

κr ≤ κ ≤ κv; Gr ≤ G ≤ Gv; Er ≤ E ≤ Ev (33)

Where κ, G and E are representing the bulk-, shear- and Young’s modulus, respectively.
The index r denotes the Reuss approximation, v Voigts approximation and no index the
real value. He found empirically that the arithmetic or geometric average would “suggest
themselves as good approximations” [14]. However, the arithmetic average was widely
referred to as Hill approximation in literature, therefore this work sticks to the same reference.
Hill focused in his work on the bulk properties and their characteristics, while Matthies
investigated both the single-crystal and bulk properties in combination and found that
a simple arithmetic mean,indexed by a, leads to an inequality in the averaged elastic
compliances derived for Reuss and Voigt as shown below [28].

S(g)a = SReuss 6= SVoigt = [CVoigt]−1 = [C(g)a]−1 (34)

The arithmetic average of both approximations shown in Equation (34) leads to the following
conditions:

SHill(S) = SReuss + SVoigt

2 ; CHill(C) = CReuss + CVoigt

2
SHill(S) = [CHill(S)]−1; CHill(C) = [SHill(C)]−1

SHill(S) 6= SHill(C); CHill(C) 6= CHill(S)

(35)

To avoid the dependence of operation sequence, e. g. calculating from S or C, Matthies
suggested a geometric mean which can be formerly interpreted as [28].

SMatthies = {[SHill(S)SHill(C)] 1
2}

CMatthies = {[CHill(S)CHill(C)] 1
2}

(36)

It is easily shown that equation (36) obeys SMatthies = [CMatthies]−1.
Besides the approaches by Voigt, Reuss and the different averages between these models,
there exist self-consistent approaches based on the inclusion model developed by Eshelby.
Kroener started from the assumptions of a grain ensemble in a solid which is distributed in
a way that all macroscopic forces applied to it will distribute homogeneously. From this one
can calculate a valid average stress tensor σ and accordingly the connected average strain
tensor ε over the whole volume. These average values will differ from the values obtained
for a single grain depending on its orientation g and shape and may be described by a linear
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4.5 Elastic Grain-to-Grain Modeling

relationship [16].

σ(g) = p(g)ε

ε(g) = q(g)σ
(37)

The relationship between the fourth-rank tensors p(g) and q(g) may be derived by applying
Hooke’s law to σ(g) and ε.

p(g) = C(g)q(g)C (38)

With the assumption of spherical grains equation (37) is integrated over all orientations.
The obtained average values of the strain ε′ and stress σ′ for the grains may deviate to some
extend from the average value over the whole ensemble of grains.

σ = σ′ + α = Cε

ε = ε′ + β = Sσ
(39)

Without defining α and β it is obvious that if σ > σ′ then ε > ε′ or vice versa. Combined
with equations (37) and (39) these define upper and lower borders for sample stiffnesses via
the following conditions [16]:

p′ < C < q′, or p′ > C > q′ (40)

Equation (37) can then be rewritten into the following equation:

σ(g) = (C + r(g))ε

ε(g) = (S + t(g))σ
(41)

And since equation (12) and its inverse must hold, r(g) and t(g) or their grain averages
r′(g) and t′(g) averaged over all orientations are vanishing [16].

∫
r′(g)dg = 0;

∫
t′(g)dg = 0; (42)

r(g) and t(g) are representing the difference in single-crystal elastic constants for the average
grain of a polycrystal to those of an average oriented grain. Therefore both can be physically
interpreted as an “elastic susceptibility” or in combination with the primitive volume as
“elastic polarizability” [15].
In case of an anisotropic sphere with the single-crystal elastic constants C1 in an isotropic
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4.5 Elastic Grain-to-Grain Modeling

medium with constants C2 the polarization r(g) and t(g) can be derived analytically [16].

r′(g) =C1(g)−C2 + C1(g)u(g)

t′(g) =u(g)S1(g)

u(g) =− v−1(g)[C1(g) + C2]

v(g) =C1(g)−C2 + C2w

(43)

With the Eshelby’s tensor w.
To derive the bulk properties the integration in (42) has to be calculated. For r′(g) this
leads to a fourth order polynomial for the shear modulus.

G4 + aG3 + bG2 + cG+ d = 0 (44)

a =3κ+ 2ν
4 ; b = 9κ2 + 12κν − 8κµ− 96µν

64

c =− (3κ+ 52ν)µκ
64 ; d = −6κ2µν

64
And to a third order polynomial for t′(g) [16].

G3 + αG2 + βG+ γ = 0 (45)

α = 3κ+ 4ν
8 ; β = −(κ+ 12ν)µ

8 ; γ = −κµν4
κ = c11 + 2c12; µ = c44; ν = c11 − c12

2
Later Gairola derived together with Kroener the effective shear modulus G describing the
polycrystal in terms of a comparison medium G0 i.e the matrix [43].

G = α2G
2
0 + β2G0 + γ

G2
0 + α1G0 + β1

(46)

α1 = 3
40(15κ′ + 12ν + 8µ); α2 = 1

5(2ν + 3µ)

β1 = 3
20κ

′(3ν + 2µ); β2 = 3
40(6κ′ν + 9κ′µ+ 20νµ); γ = 3

4κ
′νµ

(47)

Where the bulk moduli where set to κ′ = 1
3κ . If the shear modulus of the effective medium

is set to the same as the comparison medium, G0 = G, equation (45) with α = α2 − α1

and β = β2 − β1 will be recovered [30].
De Wit modified the constant in (47) by introducing the orientation parameter Γ from table
4 into equations (47) α1 and β1.

α1 = 3
8(3κ′ + 4[µ+ 3(ν − µ)Γ]; β1 = 3

4κ
′[µ+ 3(ν − µ)Γ] (48)
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4.6 Derivation of Single-Crystal Elastic Constants

The DECs are the same for Kroener’s and de Wit’s model.

S1 = 1
9κ′ −

1
6G ; 1

2S2 = 1
G

(49)

4.6 Derivation of Single-Crystal Elastic Constants

To obtain the single-crystal elastic constants from reverse stress analysis a minimization
problem must be addressed which includes the elastic constants as fitting parameters. The
χ2-minimization technique offers a straight forward fitting procedure with enough flexibility
and performance to be further modified for the use inside a self-consistent calculation scheme
to incorporate multi-phase analysis. There exist two different approaches to define the
χ2-function.

The diffraction elastic constants are offering the first possibility for the definition of
the χ2-function as suggested by Gnäupel-Herold et al. [8].

S(hkl, aijkl) =
 S1(hkl, aijkl)

1/2S2(hkl, aijkl)

 (50)

By defining S as a two dimensional vector the χ2-function can be defined in the following
way:

χ2(aijkl) =
n∑
i

[
S1(hkl)meas − S1(hkl, aijkl)calc

σ(S1(hkl)meas)

]2

+
[ 1

2S2(hkl)meas − 1
2S2(hkl, aijkl)calc

σ(1
2S2(hkl)meas)

]2

(51)
In this case the DECs Smeas are fitted from the experimental data and minimized to calculated
ones Scalc from the single-crystal elastic constants by selecting a grain-to-grain interaction
model.

The strains ε33 directly offer the second possibility to define the χ2-function, leading to
following expression:

χ2(aijkl) =
k∑
i

[
ε33(hkl)meas − ε33(hkl, aijkl)calc

σ(ε33(hkl)meas)

]2

(52)

In principle both techniques are leading to the same results with an important difference.
Equation (51) is a more specialized form of (52), which leads to a great reduction in the
summation terms of χ2, e. g. n >> k because the Si are combined values from the different
measurement directions and only depend on the scattering planes.
In both cases the texture is taking into account by applying additional weightings to equation
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(51) and (52) based on the respective m.r.d. values of the crystal orientations involved
during the experiment. In case of the DECs the m.r.d. weightings are first applied during
the fitting process for each scattering plane involved during the measurement, then for each
DEC a total weighting factor is calculated and applied in equation (51). For the strain based
minimization function the weightings are applied during the calculation of the integral in
the denominator of equation (15). This leads to a higher impact of strains measured on
lattice planes involving more grains during the scattering process [42].

4.7 Load Transfer

In materials containing more than one phase the grain-to-grain interaction models discussed
earlier are not covering the interactions between the different phases, figure 8. In the
case the phases have significantly different rigidity the stress appearing in the sample
distributes differently among those phases. As a result only the effective stiffness of the
corresponding phase is observed during diffraction experiments. The difference between the
elastic properties are a measure for the difference between the effective and single phase
values and lead to large differences in the stress distribution among the phases as shown in
figure 9 [42]. Additionally, depending on the microstructure micro stresses are appearing
between the phases directly influencing the apparent phase stresses which act effectively on
one phase. This means that the phase stresses consist of a macro stress dependent and an
independent part:

σα = σα0 + fα[σL + σI ] (53)

Where σα is the overall average phase stress of phase α, σα0 is the independent part, σI is
the residual stress, σL is the applied load and fα is a 4th rank tensor similar to the elastic
constants and its components are the stress transition factors [40].

fαijkl =
∂σαij

∂(σL + σI)kl
;with

n∑
α=1

pαfα = I (54)

fα− I is measure for the difference of elasticity of the phases and is therefore called elastically
induced and I representing the unity tensor. It represents the micro stress dependent part
and therefore directly quantifies σII .

σII = σα0 + [fα − I][σL + σI ] (55)

To derive an expression for the stress transition factors in dependence of the elastic
properties of the sample and containing phases one starts with Eshelby’s inclusion model
from equation (41). The stress in the inclusion σE, is derived by the equivalent stress free
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4.7 Load Transfer

Figure 8 – Schematic illustration of a multi-phase system where the elastic properties of
one phase are different from the other. In this case the load is distributed from the blue to
the red phase. The amount of transferred stress depends on the elastic properties as well as
microstructure of the phases.

transformation εT .

εT = −[(CE − CM)(w−1 + p(w−1 − I)) + CM ]−1(CE − CM)ε (56)

σE = −CS(w−1 − I)[(Cα − CS)w−1 + CS]−1(Cα − CS)ε+ CSε (57)

Where the indexm represents the matrix, and s indicates the sample averages. The transition
factors are derived by redefining the inclusion as α-phase and the elastic constants of the
matrix by homogeneous elastic constants of the sample in equation (57) and comparison of
Hooke’s law with equation (54) [40].

fα = −CS(w−1 − I)[(Cα − CS)w−1 + CS]−1(Cα − CS)SS + I (58)

30



4.8 Elastic Anisotropy

Figure 9 – The effective phase stress as a function of the applied macro stress σL + σI

for different elastic properties of the phases [40]. Depending on the Young’s modulus for
raising phase stress the difference in stress between the phases is varying but the average
stress remains constant. The three examples above illustrate the stress distribution among
the phases for varying compliances of the phases.

Where w is the Eshelby’s tensor defined in equation (59) for a sphere in a homogeneous
matrix .

w−1
1111 = 7− 5ν

15(1− ν) ; w−1
1122 = −1 + 5ν

15(1− ν) ; w−1
1212 = 4− 5ν

15(1− ν) (59)

4.8 Elastic Anisotropy

Anisotropic behavior mainly depends on the crystal symmetry and gets more complicated for
lower symmetries. This means that different physical properties depend on the orientation
of the crystal, like mechanical properties, elasticity, the development of plastic deformation,
cracking, thermal expansion, residual stress distribution and many others. An example of
this is shown in figure 10 where the Young’s modulus is shown for a varying anisotropy.
For A = 1 the Young’s modulus is equal in any direction and the plot shows a circle. A
quantification of the anisotropy for all crystal symmetries is not straightforward. Different
approaches have been developed by Zener, Chung et al., Ledbetter et al., Ranganathan et
al., Tromans and Kube [13, 36, 44, 37, 38, 39].
For cubic symmetry lattices Zener defined the ratio of the maximum and minimum values
of the oriented shear moduli as the anisotropy index A [13]. An illustration of the Young’s
modulus along different crystallographic directions for a wide range of A is given in figure
10.

A = 2c44

c11 − c12
(60)

The crystal behaves elastically isotropic for A = 1, which means the resistance to shear on
[100] in 〈0kl〉 equals the resistance on [110] in 〈−110〉 [13].
The adaption of equation (60) to lower symmetries causes difficulties. As illustrated in
equation 9 in hexagonal crystal symmetries five independent single-crystal elastic constants
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4.8 Elastic Anisotropy

Figure 10 – The Young’s modulus E is shown for the [1 0 0] x [0 1 0] plane. For A = 1
the Young’s modulus is equal in any direction and the plot shows a circle. A is continously
growing from black to yellow showing large differences for changing anisotropies. The lines
pointing inwards represent theoretical values of if E for anisotropies smaller than one.

exist resulting in more than two independent shear moduli. Thus, the additional degrees of
freedom in those system invalidates the application of the Zener anisotropy
Chung et al. suggested the difference of the two limiting shear moduli given by Voigt GV

and Reuss GR as a measure for the elastic anisotropy and defined the dimensionless quantity
AC .

AC = GV −GR

GV +GR

= 3(A− 1)2

3(A− 1)2 + 25A (61)

Howerver, equation (61) can also be applied only to cubic symmetries. AC is always positive
and zero for elastic isotropy [36].
Ledbetter et al. generalized equation (60) to all symmetries by solving Christoffel’s equations
(62) for the minimum and maximum shear wave velocities, v1 and v2.

det(Cijklninl − ρv2δjk) = 0 (62)

Where the components of the wave propagation vector are denoted by ni. Applying the
relationship of the single-elastic constants to the mass density ρ and the shear wave velocity,
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equation (63) is obtained.

AL = v2
2
v2

1
(63)

AC and AL lack universality, since AC is only defined for cubic crystal and per definition
AL > 1 and therefore does not cover cubic crystals with A < 1 such as alkali halides like
CsF or KCl [37]. Ranganathan et al. introduced an anisotropy measure AU which accounts
for the tensor nature of the elastic properties by taking into account the shear and bulk
modulus

AU = 5G
V

GR
+ κV

κR
− 6 (64)

AU ≥ 0 and equals zero if the crystal is locally isotropic. In the case of cubic crystal
symmetry AU may be expressed in terms of A or AC to enable a comparison between the
different anisotropy measures.

AU = 6
5

(√
A− 1√

A

)2

= 10
(

AC

1− AC

)
(65)

4.9 Stress-Strain Behavior for Single Crystals

The following section describes the stress-strain behavior of polycrystals beyond the elastic
limits. The approach introduced here is based on Hill’s formalism of deformation theory
reworked into a self-consistent calculation scheme by Hutchinson, the Elasto-Plastic Self-
Consistent Modeling (EPSC). For this approach basically the common theory of single-crystal
deformation is expanded to describe large strains in polycrystals by dividing the deformation
into piecewise linear fractions which are calculated self-consistently step by step.

Slip Systems build the basis of all modern theories of plasticity. It is assumed that plastic
deformation in single-crystals is caused by slip of different crystallographic planes in certain
directions without disturbing the lattice geometry. The combination of a plane with a certain
slip direction is called slip-system and all symmetrically equivalent planes and direction are
summed up into so called slip families. In ideal single crystals the close packed planes are
activated along the direction with the lowest number of obstacles, i.e atoms in glide direction.
Therefore only certain slip families are activated depending on the crystal structure.

In face centered cubic lattices only one slip family is activated during loading, the close
packed planes in close packed directions {111}〈110〉, as shown in Figure (11). This family
consist of four planes each associated with three possible slip directions making a total of 12
slip systems summarized in table 5, each may be activated in positive or negative direction.
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Figure 11 – f.c.c. crystals only contain one slip family along the closed packed planes (111)
in the closed packed directions 〈110〉.

Table 5 – The four slip planes with their three associated slip directions for the (111)〈110〉
slip family.

Plane Directions
(111) [110] [011] [101]
(111) [110] [101] [011]
(111) [110] [101] [011]
(111) [110] [101] [011]

In body centered cubic structures some uncertainties exist with respect to which slip
planes are activated during plastic deformation [21]. Taylor proposed that in this crystal
structure the exact knowledge of every possible slip system is not necessary to correctly
model the macroscopic deformation and now it is commonly accepted that slip may occur
on any plane associated with any of the four 〈111〉 slip directions. In Figure 12 two glide
planes with the lowest Miller indices (110) and (211) which define the basic slip families
are shown. In both cases there exist three symmetry equivalent planes in four different
direction leading to a total of 48 slip system summarized in the two slip families {110}〈111〉
and {211}〈111〉. A full table of all 24 slip systems is given in 6. There exist many other
slip planes associated with the slip direction 〈111〉 but most of them can be obtained by
superposition of the (110) and (211) planes. This is in particular true for the slip plane
(321) = (110) + (211) which is a closed packed plane as well.

Hexagonal systems act similar to f.c.c., close packed planes slip in close packed directions.
These planes are divided into three categories.

• Pyramidal planes (hkn) are divided into two sub-categories: Type 1 planes where
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Figure 12 – For b.c.c. crystal structures all slip planes with an associated slip direction in any
of the four 〈111〉 directions are commonly accepted. The main slip plains are (110) and (211)

Table 6 – The detailed slip systems of the two main slip families {110}〈111〉 and {211}〈111〉.

Plane Direction Plane Direction Plane Direction Plane Direction

(110) [111] (110) [111] (110) [111] (110) [111]
(101) [111] (101) [111] (101) [111] (101) [111]
(011) [111] (011) [111] (011) [111] (011) [111]

(112) [111] (121) [111] (211) [111] (112) [111]
(121) [111] (211) [111] (112) [111] (121) [111]
(211) [111] (112) [111] (121) [111] (211) [111]

either h = 0 or k = 0 and type 2 where both h 6= 0 and k 6= 0.

• Basal planes (00l) behave in the same way as the basal planes in f.c.c. structures.

• Prism planes are defined by l = 0 and are divided into type 1 planes (hh0) and type
2 planes (hh0).

The basal plane consists of one slip plane which may be activated in three directions. For
prism type 1 three planes may be activated in six directions and for type 2 one plane may
be activated in three directions. The pyramidal type 1 consists of six planes in six different
directions and type 2 consists of three planes in one direction.

The Slip Initiation process is started when the resolved shear stress on a crystallographic
plane i reaches a critical yield stress or yield strength τ ic associated with the given system in
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Figure 13 – For hexagonal crystal structures similarly to f.c.c. slip occurs on close packed
planes along close packed direction. The three different types of slip planes are illustrated:
basal (00l) in blue, prism type (hh0) in red, (hh0) and pyramidal (hkn) in green.

the slip direction. The resolved shear stress τ ir on a given slip system i is the resolved force
divided by the slip plane area. As shown in Figure 14 in the case of a uni-axial tensile force
applied along the tensile axis, τr can be written as:

τr = F

A
cos(φ) sin(λ) (66)

Where cos(φ) · sin(λ) is known as the Schmid factor. Commonly the components of the
second-order stress tensor σ described in section 4.1 are non zero.

αikl = 1
2(mi

knil + mi
lnik) (67)

In this case τ ir is calculated with the so called resolving parameter α. Where ni is normal to
the slip plane i and mi its slip direction [22].

τ ir = σαi (68)
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Figure 14 – Slip occurs when the applied stress on the slip plane reaches a critical value in
slip direction

To calculate plastic deformation first a set of slip systems is chosen from all possible systems
by checking if τ ir = τ ic . If this condition is satisfied the slip systems may load or unload
depending which condition is satisfied [22].

σ̇αi = τ̇ ic ; γ̇ ≥ 0 loads

σ̇αi < τ̇ ic ; γ̇ = 0 unloads
(69)

For an inactive system τ ir < τ ic with γ̇ = 0.
Plastic deformation is driven by the sum of the contribution of the shear rates γ̇i of every
active slip system.

ε̇p =
∑
i

γ̇iαi (70)

Slip Hardening is a process which arises from condition equations (69). It is obvious for
the yield τ ic to change during plastic deformation, i.e. it “hardens”. The rate of change τ̇ ic is

37



4.9 Stress-Strain Behavior for Single Crystals

positive and a function of the shear rate γ̇i and is called the generalized law of hardening.

τ̇ ic =
∑
j

hij γ̇i (71)

Equation (71) accounts for observations on latent hardening and double slip and allows
hardening of one system by the glide of another system. Latent hardening describes the
hardening of a slip system even if the system itself is not activated and double slip occurs if
more than one slip system is active at the same time. Due to the linearity of equation (71)
coupling remains the same independent of the number of activated glide systems. There
exist different types of hardening defining the shape of the matrix h [20].

• Perfect plasticity occurs if all components of h are zero.

• Isotropic hardening occurs when all components of h are equal.

• Independent hardening occurs if the only non-zero components of h are the diagonal
elements.

• Kinematic hardening occurs if hij = h · αiαj

By adding the elastic part to equation (70) the general stress-strain relation (72) is obtained.

ε̇ = Aσ̇ +
∑
i

γ̇iαi (72)

Given that in h all principal minors of all orders do not vanish, equation (72) can be explicitly
expressed by a piecewise-linear function [20].

σ̇ = Lε̇ (73)

L is piecewise constant and relates ε̇ and σ̇ uniquely together if h is positive semi-definite.
In the case of no active systems it is obvious that L = A−1 follows. For plastic deformation
every branch of L results from the shear rate γ̇i defined by the set of active slip systems.
Each non-zero shear rate satisfies the conditions given by equations (71) and (70). Defining
N relations for every non-zero shear rate [22].

∑
j

γ̇jX ij = αiCε̇; withXij = hij + αiCαj (74)

The shear rates are not always uniquely defined for a given state of stress, however it is
always possible to find at least one set of shear rates for which all constitutive relations are
satisfied [20].

γ̇i = f iε̇; f i :=
∑
k

YikCαk;with Y = X−1 (75)
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4.10 Stress-Strain behavior for polycrystals

In consequence the number of active slip systems defines L.

L = C(I−
∑
m

αmfm) (76)

If h is positive definite and the shear rates are unique an inverse M of L always exists. In
the case of isotropic hardening h is only semi positive semi-definite. Therefor L happens
to be singular and its inverse M does not exist. This restricts the stress rate into certain
regions of the stress rate space.

4.10 Stress-Strain behavior for polycrystals

The general idea to describe the deformation behavior of polycrystals is to average the single-
crystal behavior over a sufficient number orientations. This concept was first introduced
by Hill and he proved in case of a sufficient large collection of single-crystals that the
influence of the applied loading on the predicted crystal behavior becomes negligible, i. e.
the macroscopic elastic moduli remain the same independent if the deformation behavior is
calculated from a uniform straining or homogeneously applied stress [45]. Matthies later
estimated the lower limit of statistical relevance during the averaging to a couple thousand
grains [29].

σ̇ = Lε̇ ε̇ = Mσ̇, with M = L−1 (77)

L and M depend on the entire collection of L and M and will therefore vary continuously
along with the given stress or strain rate. The strict non-linear stress-strain behavior arises
the problem to maintain a uniform straining for certain stress inputs and the consistency of
the proposed model in selecting a particular branch of L or M among an infinite number of
branches [22]. However, Hill proposed a self-consistent modeling which naturally sticks to
particular branch of L or M with the restriction that changes in the used stress or strain
rates remain below a certain limit [45].
To simplify further explanation, a specific deformation history is assumed from which one
specific stress or strain state is selected for each grain. This defines the set of active slip
systems and L and therefore the corresponding stress-strain curve of each single-crystal as
shown in the previous section. Hill proposed each of these aligned and ellipsoidal crystallites
to be embedded into an homogeneous matrix with moduli L of the poly crystal as shown in
figure 15 [18, 22]. The inclusion theory of Eshelby predicts the stress and strain rates to be
uniform and relates them to macroscopic rates σ̇ and ε̇ with two fourth order tensors A and
B [15].

ε̇ = Aε̇, σ̇ = Bσ̇ (78)
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4.10 Stress-Strain behavior for polycrystals

In order to more closely define the transition tensors A and B it is necessary to quantify
the discrepancies between the stress and strain rates of the inclusions and the matrix.

σ̇ − σ̇ = L∗(ε̇− ε̇), ε̇− ε̇ = M∗(σ̇ − σ̇) (79)

The “constraint tensor” L∗ and its inverse M∗ are defined to be ellipsoidal voids of the
same alignment contained by the matrix. Under these conditions the constraint tensor only
depends on the shape, orientation of the inclusion and L. Hutchinson gave formulas for L∗

in the Appendix of his work in 1970 [22]. From equations (73), (77), (78) and (79) direct
expressions for A and B are directly accessible.

Figure 15 – The figure shows the ellipsoidal inclusions of the grains as suggested by Hill.
All are equally aligned in the Matrix. The same shape and alignment is considered for voids
assumed for L∗

A = (L∗ + L)−1(L∗ + L) B = (M∗ + M)−1(M∗ + M) (80)

As stated before the average of the single-crystal collection defines the behavior of the poly
crystal. In this scope a similar statement for L is derived from the equations (73), (77) and
(78).

L = LA M = MB (81)

In order to derive M, M of every single-crystal contained by the collection must be derived.
In case of a singular L its inverse does not exist and M is not available at this point in
stress-strain space, therefore the use of L a more straight forward solution to predict the
stress-strain behavior. But as shown earlier both ways lead to an identical solution.
In case of two-phase composite materials are straightforward adapted. In this case the grains
of every constituent phase are calculated individually with use of the overall moduli of the
combined material. The averages in equation (81) are adapted according the phase ratio of
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4.10 Stress-Strain behavior for polycrystals

the composite.

L = c1 · L1A1 + c2 · L2A2 M = c1 ·M1B1 + c2 ·M2B2 (82)

The same principle applies to A and B from equation (78).

Ai = (L∗ + Li)−1(L∗ + L) Bi = (M∗ + Mi)−1(M∗ + M) (83)
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5 Experimental

The measurement of the elasto plastic properties requires diffractometric tensile or compres-
sion tests. Section 4 shows in detail the theoretical background and the arising requirements
to successfully perform the measurements. In general any diffractometer is suited for the
experiments provided it has the necessary resolution to distinguish the peak shifts, ∆d

d
,

between the load steps and enough intensity to ensure the statistical significance of the
obtained strain values, i. e. to ensure the strains measured represent the average strain along
a specific crystallographic direction. In the following part of this section four diffractometers
are introduced which were used during the diffraction studies.
The elastic properties vary over the crystallographic direction and therefore the reversal of
the classical stress analysis requires accurate strain values along different directions, i. e.
shifts measured for a given bragg peak (hkl) at a specific load step. The minimum amount
needed to specify all independent single-crystal elastic constants of a given phase depends on
the symmetries given by its crystal structure. Effectively, for each independent component
of the elastic tensor an corresponding equation has to be solved.
The diffraction elastic constants require to measure the strains for different ψ angles, the
angle between the measurement direction and the load axis. In the case of most neutron
instruments the Debye-Scherrer cones are to large to be captured completely by a single
detector. However, because of the large scattering angles the peak shifts are in many cases
more pronounced. To align the ring segment accordingly a rotateable tensile rig is used.
Its compact design makes it highly flexible and easy to ship, a detailed description is given
in a later section. The large dimensions of typical neutron beams allow sampling a large
number of grains even for coarse grain materials. On the other hand, high-energy synchroton
beamlines allow the collection of complete Debye-Scherrer cones in very short time interval
albeit with very small beam sizes.
The total number of measured strain values depend on the number of orientations nor and
the number of load steps nls at which diffraction patterns are collected. The total number of
Bragg peaks measured is equal to nor · nls therefore the largest gain in statistics is achieved
if both numbers match because the statistical significance increases quadratically. The most
efficient measurements are performed between three to five different ψ orientations and load
steps depending on the grain size, texture and crystal structure.
A summary of all investigated samples is provided at the end of this section. It contains a
detailed description of the sample composition and all instruments which where used during
the experiments including all settings. For each sample a detailed experimental procedure is
given which contains all relevant information on the measured orientations and load steps.
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5.1 High-Resolution Neutron Powder Diffractometer SPODI

5.1 High-Resolution Neutron Powder Diffractometer SPODI

The powder diffractometer SPODI located at the Heinz Maier-Leibnitz Zentrum (MLZ)
in Garching near Munich is a high-resolution thermal neutron diffractometer optimized for
structural studies of complex systems.

Figure 16 – Experimental setup at SPODI showing the scattering geometry and the mounted
tensile rig. On the left a top down view is shown. The ω angle is defined by the angle of the
load axis and the outgoing beam. On the right the tensile rig is shown in tilted position. The
χ angle is defined to be 90◦ when horizontal and 180◦ when vertical.

Figure 16 shows photos of the tensile rig mounted onto the instrument and figure 17
illustrates a schematic of the instrument SPODI. The neutrons are generated at the source
and then transported via a neutron guide to the monochromator. Depending on the take-
off angle and selected diffraction plane of the germanium monochromator crystals the
wavelength is selected. The monochromator is 200 mm high and consists of a stack of 15
germanium wafer crystals with 551 planes parallel to the surface with a mosaicity of 20′

and 11′ in horizontal and vertical direction, respectively. The standard take-off angle is 155◦

with a monochromator-to-sample distance of 5 m. At that angle three different wavelengths
of 1.548 Å, 2.536 Åand 1.111 Å can be selected for the diffraction planes Ge(551), Ge(331)
and Ge(771) [46]. The evacuated beam tube between the monochromator and sample
contains slits which control the beam shape and divergence at the sample. From the sample
the neutrons are scattered into the detector consisting of 80 3He detector tubes covering
160◦ around the sample with a total height of 300 mm. Fixed Soller collimators are mounted
in front of every detector tube allowing a 10′ horizontal divergence. This multi detector
setup requires a stepwise data aquisition. Typically the position is varied in 0.05◦ per step
which requires a recording of 40 individual steps for a complete diffraction pattern. This
detector setup causes a higher data collection time for comparable statistics, but offers a
very high resolution over wide scattering angle as shown in Figure 18. An example of the
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5.1 High-Resolution Neutron Powder Diffractometer SPODI

Figure 17 – Illustration of SPODI. The neutrons are generated at the source, are transported
to the monochromator through a neutron guide. The wavelength of neutrons is set via the
monochromator angle 2ΘMono. The neutrons are approaching the sample and are scattered
into the detector.

2D data acquired during a typical experiment on SPODI is shown in Figure 19 [46].
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5.1 High-Resolution Neutron Powder Diffractometer SPODI

Figure 18 – Illustration of the resolution function of SPODI and D20 at ILL. The FWHM of
SPODI is indicated in black for a take-off angle of 155◦ and the Ge(551) Monochromator. It
remains nearly constant over the detection range. In red the resolution of D20 is shown and
shows a good resolution compared to its significant higher neutron flux.

Figure 19 – The collected 2D-Data from SPODI. Only parts of the Debye Scherrer rings are
collected during a measurement.
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5.2 Materials Science Diffractometer STRESS-SPEC

5.2 Materials Science Diffractometer STRESS-SPEC

The materials science diffractometer STRESS-SPEC is build for non-destructive material
investigations with diffraction methods. With it’s flexible design it can be equally applied
for phase specific residual stress, texture analysis as well as phase analysis.

Figure 20 – Illustration of STRESS-SPEC. The neutrons are generated at the source, are
passing the primary slit system, then scattered at the sample and then detected after the
secondary slit system.

From the source the neutrons are collimated to the monochromator as shown in Figure
20. For the experiments three different monochromator crystal setups are available: Ge
(511), Si (400) and PG. The take-off angle 2ΘMono influences the wavlength and intensity
of the neutron beam and is given by the angle of the sample to the monochromator. The
resolution of the instrument is defined by the horizontal divergence, the variation of the
wavelength ∆λ

λ
and 2ΘMono. The Take-Off angle can be varied between 35◦ and 110◦ which

allows high flexibility in intensity and resolution. The neutrons are passing the primary
slit system before the sample and the secondary slit system after being scattered from the
sample [47]. The slit systems define the gauge volume measured in the sample and can be
varied from 1x1x1 mm3 to 5x5x20 mm3. The definition of a fixed gauge in sample during
the measurements is important for the reproducibility of the geometrical alignment for strain
and texture studies. The two dimensional 3He detector has an active area of 200x200 mm2

with a spatial resolution of about 1.5x1.5 mm2. A radial oscillating collimator is mounted in
front of the detector. This diminishes scattering from the sample environment and has no
effect on the “accuracy” of the instrument. The instrumental resolution is given in Figure 22
for the different monochromator setups. A typical picture of the collected data is given in
Figure (21). Due to the measurement geometry and size of the detector only approximately
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5.2 Materials Science Diffractometer STRESS-SPEC

Figure 21 – The collected 2D-Data from STRESS-SPEC. Only parts of the Debye Scherrer
rings are collected during a measurement and the angular coverage is approximately 16◦.

Figure 22 – The crsolution of STRESS-SPEC for different wavelength and monochromator
setups.

16◦ are covered during the diffraction experiment. As illustrated in figure 20 The detector
is able to move around the sample retaining a constant scattering angle of 90◦ during the
measurement. Therefore the vertical divergences do not affect the spatial resolution and
the gauge volume remains near the ideal cubic shape [47].
The instruments setup is optimized to measure texture and strains along crystallographic
directions. The constant scattering angle aligns the tensile angle χ with ψ which allows a
straightforward evaluation of the experimental data and to measure the extension of every
(hkl) peak for ψ = 0. However, the alignment of χ to ψ is only valid for a short interval in
the scattering angle 2Θ on the detector and therefore limits its covering range to about
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5.3 High-Intensity Neutron Powder Diffractometer D20

15◦. Unless the peaks are in close proximity to one another every peak has to be measured
separately increasing the beam time for the experiments.

5.3 High-Intensity Neutron Powder Diffractometer D20

The high efficiency neutron diffractometer D20 is located at the Institute Laue-Langevin
(ILL). It operates at a maximum neutron flux of 108 neutrons

scm2 . A large curved linear position
sensitive detector provides the fastest counting rate, at a given resolution, among any other
reactor based two-axis diffractometer [48].

Figure 23 – Illustration of D20. The neutrons are generated at the source and are first
passing the primary Collimator. The wavelength is selected by the monochromator. Then the
neutrons are guided through two slit systems to the sample. The second monochromator in
front of the detector is optional.

The neutrons are generated at the source in 17.5 m distance to the monochromator. Then
they are passing the α1 collimation focusing the beam with a horizontal angular divergence
from 27′ to 10′. At the monochromator a wavelength between 0.82 Å and 2.41 Å can be
selected with one the three monochromator types. For high beam intensities the take-off
angles my be varied from 26◦ to 30◦ and from 42◦ to 46◦ for Cu. High resolution is obtain
by using the Ge Monochromator at an take-off angle between 63◦ to 120◦. The beam is
then defined vertically and horizontally by two slit system. The position sensitive detector
covers a 2Θ range of 156.6◦ with 48 black-glass plates consisting of 32 cells filled with
three bar 3He and one bar CF4. It provides an intrinsic resolution of about 3 mm at a
detection efficiency of 60%. The resolution function is plotted in Figure 18. Optionally a
radial oscillating collimator can be mounted in front of the detector [48].
The Instrument is highly flexible due to its multiple operation modes. The high neutron
flux allows to measure sample with a low total scattering power but the lower resolution,
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5.4 High Energy Materials Science Synchroton Beamline HEMS

especially at scattering angles above 110◦, increases the uncertainty for the position of the
peaks to a large extend.

5.4 High Energy Materials Science Synchroton Beamline HEMS

Figure 24 – Image of HEMS. The beam is scattered at the sample and scattered into the 2D
Detector. The maximum available range of the scattering angle depends on sample detector
distance and is chosen individually during each experiment. Covering larger detection angles
leads to loss in resolution because the distance between the detector is lowered.

The High Energy Materials Science Beamline (HEMS) at DESY is build for high energy
x-ray diffraction using energies between 30 keV and 200 keV. It can deliver a maximum flux
of 7 · 1011 ph/s at 100 keV at a source brilliance of 1018 ph/s / 0.1% bw/mA. The high flux
combined with fast detector systems allows dynamic in-situ studies of processes like phase
transitions or continuous loading experiments in samples. The beamline energy resolution
varies between 5 eV and 250 eV at a beam energy of 80 keV [49].
The main beam optics of HEMS consists of two bent Si(111) Laue crystals with a 35.36◦

asymmetric cut, triangularly shaped with a base of 35 mm, a length of 89 mm and each 1.25
mm thick. The fixed exit with a horizontal deviation of 21 mm keeps the beam at a high of
1400 mm above the floor level. The energy is tuned with a double crystal monochromator
in horizontal scattering geometry. The focusing optics allow spot sizes from 1x1 mm2 down
to 2x30 µm2.
At the heavy load end station (EH3) the sample positioning is performed by a PI hexapod
with a load capacity of 1 t and 1 µm resolution. The position ranges from +202-−237 mm
for x, ±204 mm for y and ±100mm for z. The maximum rotation angle of the table is
±180◦.
A total of 6 different 2D detectors are available for data acquisition. The most suitable
detector for tensile experiments is the Perkin Elmer XRD 1621 Flat Panel with a field of
view of 410x410 mm2. The pixel size is 200x200 µm2 giving a spatial resolution of 200 µm.
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Figure 25 – The collected 2D-Data from HEMS. Full Debye Scherrer rings are collected
during a measurement.

The angular resolution as well as the 2Θ-range depend on the used setup, e.g. the selected
sample detector distance. On the detector portal it has 5 degrees of freedom for rotation
and translation. The read-out time is 66 ms and the typical collection times are between
0.1 and 8 s.
Using synchroton radiation for the investigation of mechanical properties is typically resulting
in very low scattering angles, which allow to cover full Debye Scherrer rings for the detector.
The rings contain information of the strain development of every ψ orientation at the once
for each loading step. Additionally, due to the high brilliance the measurement time for each
pattern is approximately 1− 2s allowing measurements with continuous loading resulting in
low measurement times. On the other hand the continuous loading introduces additional
uncertainties for the applied stress and additional difficulties arise because depending on
the measurement intervals a manual evaluation of collected experimental data is getting
impossible due to a lack of time and the successful evaluation mainly depends on the quality
and degree of automatisation.

5.5 Rotatable Tensile Rig

In typical neutron diffraction experiments only parts of the Debye-Scherrer rings are collected
at the detector as shown in Figure 27. To measure the entire elasticity tensor the strains
must be measured in as many directions as possible. To achieve this the load axis of the
sample has to be oriented in the Euler space to cover as many orientation with respect to
the measurement direction as possible.
As shown in Figure 26 the tensile rig designed at the Heinz Maier-Leibnitz Zentrum which
has been used for the experiments is able to orient its load axis in all three angles of Euler
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5.5 Rotatable Tensile Rig

Figure 26 – The measurement geometry for neutron experiments. The χ- and ϕ-rotation
rotations are the same standards as for an eulerian cradle. The Ω-rotation is achieved via the
rotation of the sample table where the rig is mounted. The load axis is defined as L3 and its
angle to measurement vector defines the angle ψ. ϕ is defined by the angle between L1 and
the scattering vector. On the tensile rig, i. e. the sample frame, L1 is defined as shown in the
illustration for ϕ∗ = 0 [42].

space χ, Ω and ϕ*. The Ω angle is covered by the turnable sample table on which the rig
is mounted. The Ω angle ranges between 0◦ and 90◦, depending on the definition either of
which is set parallel or perpendicular to the beam. χ can be varied between 90◦ and 180◦

where 90◦ is defined as the horizontal and 180◦ as vertical alignment of the load axis. For
ϕ* any angle between 0◦ and 360◦ may be selected and 0◦ is defined by the sample while
setting up the measurement [50].
The load axis is able to put compression or tensile forces up to 50 kN on the sample. There
are two different designs available, the first is able to apply additional torque up to 100 Nm
but is unable to rotate ϕ. The second design allows the ϕ* rotation but is unable to torque.
The maximum travel distance between the crossbar is 50 mm and 75 mm for design 1 and
2, respectively [50].

51



5.6 Materials and Samples

Figure 27 – Illustration of the Debye Scherrer rings and the detector collecting parts of them.

5.6 Materials and Samples

This section provides all important information on the samples. Three families of alloys have
been measured in the scope of the work. To ensure the quality of the data treatment and
the accuracy of the obtained results four different ferrous metals have been investigated. For
the investigation of the mechanical behavior these types of materials are specially suited for
developing new methods. Due to extensive prior research and wide availability of literature
data. The further development of this method allows to measure single-crystal elastic
constants on dual-phase alloys with distinct different elastic properties. This method was
finally applied to a dual-phase titanium alloy containing a h.c.p. and b.c.c. phase. The
results are compared to measurements performed on two single phase titanium alloys. The
last sample investigated is heavily irradiated Zr4 which is compared to literature data derived
from non-irradiated Zr4. A full list of every sample measured is provided in table 7.
The sample geometry used for the tensile tests DIN 50125 is given in the Appendix. The
macroscopic Young’s modulus of each ferrous sample was measured in three independent
tensile test. For each test the stress was ramped up to 300 MPa in 0.1 MPa steps. Most
of the neutron measurements where done with a diameter of 8mm and the synchrotron
experiments were done with 6mm in diameter, Figure 28.
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Table 7 – A full list of every sample investigated for this work.

Sample Composition (wt%) Experiment Instrument Phase

Ferritic Steel Fe T. D.* SPODI, STRESS-SPEC I m 3 m
S235JR Single

Austenitic Steel Fe 10Ni 18Cr max. 0.07C T. D. SPODI F m 3 m
X 5 Cr Ni 18–10 1Si 2Mn 0.045P 0.015S 0.11N Single

Duplex Steel Fe 22Cr 5Ni 3Mo 0.15N T. D. SPODI I m 3 m, F m 3 m
X2CrNiMoN 22–5–3 Dual

ADI Fe 3K 3Si T. D. SPODI I m 3 m, F m 3 m
Dual

Ti 64 Ti 6Al 4V M.**, T. D. AMSL***, D20 HCP
Single

Ti 6246 Ti 6Al 2 Sn 4 Zr 6Mo M., T. D., EBSD AMSL, HEMS, LMU HCP, I m 3 m
Dual

Ti 38644 Ti 3Al 8V 6Cr 4Zr 4Mo M., T. D. AMSL, D20, HEMS I m 3 m
Single

*Tensile Diffraction
**Microscopy

***Advanced Materials Science Lab

5.6.1 Ferrous samples

The validation of the measurement principle and the accuracy of the evaluation was shown on
different ferritic (b.c.c.) and austenitic (f.c.c.) steel and cast iron samples. The diffraction
studies of these samples were carried out on SPODI at a monochromator angle of 155◦

using Ge(511) for a wavelength of 1.5483 Å:

Ferritic structural steel S235JR is very simple to fabricate and widely used in
construction. For the elastic measurements on SPODI the Ω-angle was set to 45◦

and two loadings were applied, 0 kN and 5 kN, according to 0 MPa and 176.929
MPa at a sample diameter of 8 mm. Each load was measured for seven different
χ-orientations: 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦. Second in situ measurements
during plastic deformation have been performed on STRESS-SPEC. Three detector
positions were used to cover the (110), (200) and (211) peak for four χ-orientations
at 0◦, 30◦, 60◦ and 90◦. The maximum stress reached during the second experiment
was 600 MPa. Four steps were measured in elastic region and 15 in the plastic region
reaching a total sample strain of 2.8%.

Austenitic stainless steel of AISI type 304 (X5CrNi 18–10) is the most commonly
used stainless steel. The experiments were performed at a constant Ω-angle of 45◦

while totally 10 different χ-orientations were measured for each load step beginning
at 0◦ increasing to 90◦ in 10◦ steps. 0 kN, 4 kN and 7 kN were applied to the sample
with a diameter of 8 mm corresponding to an applied stress of 0 MPa, 141.543 MPa
and 247.700 MPa.
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Duplex steel (X2CrNiMoN 22–5–3) consists of two phases one austenitic and one
ferritic phase and combine easy casting methods with a good corrosion resistance.
All measurements were performed at a constant Ω-angle of 45◦. For each load step
diffraction patterns for 5 different χ-orientations were collected at 0◦, 22.5◦, 45◦,
67.5◦ and 90◦. 4 load steps of 0 kN, 3.33 kN, 6.67 kN and 10 kN were applied to the
sample with a 8 mm diameter resulting in an applied stress of 0 MPa, 117.776 MPa,
235.906 MPa and 353.682 MPa.

Austempered ductile iron (ADI) is a specially heat treated ductile iron. Due to
its microstructure the mechanical properties are better than most other iron or steel
compositions. For the measurements 4 load steps were applied from 0 kN to 15 kN in
5 kN steps. For each load step diffractions patterns were collected at 0◦, 22.5◦, 45◦,
67.5◦ and 90◦ χ-angle with a constant Ω-angle of 45◦.

Figure 28 – Two tension samples of Titanium with diameters of 6mm are shown. Ti64 on
the left and Ti6246 on the right. The shape was manufactured based on the DIN norm shown
in the Appendix for a sample diameter of 6mm.

5.6.2 Titanium Samples

Further investigations where performed on three titanium samples with different phase
compositions for the α (hexagonal) and β phase (b.c.c.).

Microstructure investigations to determine the grain size and form were carried out
with an optical microscope. The samples where cut along and perpendicular to rolling
direction and embedded according to figure 29. Titanium is known for its extreme ductility
which produces long chips when machine cut therefore silicon carbide cut-off wheels were
used and to avoid heat damage water cooling was applied during cutting. After embedding
the samples a two-step grinding is performed on the surface. For plane grinding a MD-Mezzo
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Figure 29 – The image shows the the cut samples before embedding. The next steps are
grinding and polishing.

disk with a Diamond size #220 abrasive is used. The rotation speed is set to 300 rpm with
an applied force to the surface of 25 N. The grinding is performed under water suspension
until the surface is plane. Titanium is known for its extreme ductility. This causes the
surface to smear out during the fine grinding and polishing of surface. During the fine
grinding this cannot be completely avoided, see figure 30 β-Ti. Therefore only one step of
fine grinding with a hard surface, MD-Plan with 9 µm diamond abrasive, is applied before
polishing. The rotation speed is reduced to 150 rpm at 15 N applied Force on the specimen.
The fine grinding is performed for 5-10 minutes with a DiaPro Largo 9 suspension. This will
remove all major and most of minor scratches while the smear-out is reduced to a minimum.
A chemical-mechanical polishing is used to remove the minor scratches and smearings from
the fine grinding. The chemical is applied as suspension OP-S which is a mixture of colloidal
silica and H2O2 hydrogen peroxide (30 %). The reaction of the chemical works slow enough
that all reaction products of the titanium and H2O2 are removed and no corrosion effects
remain. In this way small layers of the surface are removed while keeping it free of any
mechanical deformation. As surface a MD-Chem with 0.04 µm size collodial silica abrasive
was used. The rotation speed of the samples was set to 150 rpm with a force of 10-20 N
on the samples. The polishing time varied from 5 to 15 minutes depending on the results of
the fine grinding. Etching improves the contrast of the images greatly by coloring coloring
the individual phases differently. The most common etchant to color the β phase brown is
Kroll’s reagent.

• 100 ml water
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Figure 30 – Images of the samples after fine grinding at a scale of 2 mm. The upper row is
made with white light while the lower row is taken under polarized light. The images show
Ti64 on the left, in the middle Ti6246 and Ti38644 on the right. After the fine grinding the
best result was achieved for Ti6246 and the worst for Ti38644 due to heavy smearing.

Figure 31 – An illustration of the cutting direction. The Ti6246 sample was cut along and
perpendicular to the rolling direction.

• 1-3 ml hydrofluoric acid

• 2-6 ml nitric acid

During diffraction experiments the texture of the sample was measured on Stress-
SPEC using the Ge(311) monochromator, setting the wavelength to 1.68 Å. Each reflection
intensity was measured from 0◦ to 360◦ in 5◦ steps in ϕ and seven different orientations in
χ.

Ti-6Al-4V (Ti64, near-α alloy) is a high strength titanium alloy and is considered as
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the "workhorse" alloy for aerospace applications. This alloy offers a very good strength,
toughness up to 400◦ C combined with good fabricability. The ODF was calculated
from the reflections {002}, {100}, {101}, {103} and {112}. The macroscopic Young’s
modulus was determined using 5 different sets of tensile testes, three elastic tests
up to 1 061 MPa in 0.3 MPa/s steps and two tests were performed until rupture at
a constant strain rate of 0.001% per second. Elastic diffraction measurements were
performed on D20 at ILL in Grenoble with an constantly set ω angle to 43.5◦ on 8
mm diameter samples at a constant wavelength of 1.544 Å. The stress was varied in
three steps 4 MPa, 199 MPa and 398 MPa. The χ angle was varied from 0◦ to 90◦ in
10◦ steps. No φ rotation was applied to the sample. A large amount of reflections was
used for the evaluation of elastic data, totally 13 different crystallographic directions
ranging from {100} to {203}

Ti-3Al-8V-6Cr-4Zr-4Mo (β-Ti, β-alloy) has a high corrosion resistance due its
cubic b.c.c. phase and very high strength but has a lower elastic modulus. Two
Tensile tests up to 600 MPa at a stress rate of 0.01 MPa/s were used to determine
the Young’s modulus and two stress-strain curves until rupture were collected at a
constant strain rate of 0.001 %/s The ODF was calculated from the reflections {100},
{110} and {111}. This sample was measured on D20 with the same wavelength, ω
angle and no φ rotation as Ti64. The sample diameter was 8 mm and the stress
varied in four steps: 0 MPa, 199 MPa, 398 MPa and 597 MPa. The evaluation of
the elastic properties was based on 5 different crystallographic directions

Ti-6Al-2Sn-4Zr-6Mo (Ti6246, α- and β-alloy) is a very high strength two phase
titanium alloy but with lower toughness than Ti64 but it can be operated at higher
temperatures. The phase composition, texture, elemental composition was measured
by EBSD and EDX. Preparation for electron backscatter diffraction (EBSD) and
energy-dispersive X-ray diffraction (EDX) was performed by mechanical cutting and
polishing. The EBSD images of the Ti6246 sample where taken on two different
surfaces one along and one perpendicular the rolling direction as shown in figure 31.
After cutting, plane grinding was performed with an MD-Mezzo surface followed by a
single fine grinding with a 9 mm diamond suspension abrasive on an MD-Largo surface.
The first polishing was performed with an MD-Chem surface and a 0.04 mm collodial
silica abrasive and a final step of ion polishing with a Hitachi IM4000PLUS cross
section ion polisher operated at 5 kV and 200 mA for 60 min with sample oscillation.
EBSD maps were measured on a Hitachi SU5000 field-emission scanning electron
microscope equipped with an Oxford Instruments NordlysII EBSD detector and an
ULTIM MAX EDX detector. The employed acceleration voltage was 20 kV. EBDS
and EDX signals were collected simultaneously with the sample inclined by 70 towards
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the EBSD detector. Data evaluation was performed with the Oxford Instruments
AZTec and CHANNEL5 software. The elastic measurements have been performed
on P07 HEMS at DESY using a Perkin Elmer detector setup and samples of 6 mm
in diameter. The photon energy was set to 98.25 keV resulting in a wavelength of
0.12619 Å. The detector distance was set to 138 cm. At that range 16 peaks are
collected for the α phase and 5 for the β phase. ω is set to a position where the
load axis is perpendicular to the photon beam. No ϕ or χ rotation is used during the
experiment because at these scattering angles full Debye-Scherrer rings are collected.
For the evaluation the rings are sliced into pieces of 10◦ from 0◦ to 180◦ and assigned
to their corresponding χ value. The stress was driven continuously to 882 MPa at
a speed of 5 N

s . The rings were collected over 2s corresponding to an error of 0.35
MPa. For acquiring of the DEC and the single crystal elastic constant over 500 load
steps were evaluated leading to a total of 9 000 diffraction patterns. After reaching
the desired stress in the elastic regime the experimental mode was changed to strain
mode. During this mode of operations the tensile rig adjusts the applied sample stress
to reach a constant strain rate. The plastic regime was investigated up to a total
sample strain of about 18% at a constant strain rate of 0.02 %

s . The instrument and
detector settings remained the same as for the elastic regime. The collection time of
the detector remained at 2s resulting in a systematic error of 0.04% for the sample
strain values.
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6 Data Treatment

The elasto-plastic analysis of the diffraction data is performed using a self-designed software.
The basic concept of this software is to store all relevant data for the analysis of the material
centrally and to derive the elasto-plastic properties with as few analysis steps as possible.
Furthermore, after all basic mechanical parameters are set the program is able to predict
the stress strain behavior of the material and contains a set of tools for the analysis of the
anisotropy, load transfer, texture and activated slip system along different crystal orientations.
The elasto-plastic simulation includes the stress-strain behavior of differently oriented grains

Diffraction
Pattern

Peak Data

Yield Surface

Strain Data

Sample Data

Elasto-Plastic
Experiment

DEC

Single-Crystal
Elastic Constants

Texture
Information

Figure 32 – Flow chart of the program developed for the strain-data treatment. Black lines
indicate the storage, for example “Diffraction pattern” is stored at “Sample Data”. Blue
lines indicate that the inclusion of this data in the evaluation is optional. Red lines show the
requirements to derive specific parameters. For example to derive the single crystal elastic
constants the strain data is required. Green lines indicate an alternative way for calculation,
for example the single-crystal elastic constants may be calculated by the strains directly, they
can also be determined using the DEC.

in the sample and their plastic shear rate caused by the activation of different slip-systems.
Furthermore, it includes the average stress-strain behavior of the material.
Figure 32 shows a flow chart illustration of the software. The core of the program consists
of the class Sample Data which stores all relevant information of the sample.

• The phase composition of the sample is stored in a separate class called CODData.
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6.1 Strain data

It stores all cell parameters, the composition of the phase and its symmetry group.
Additional parameters regarding the phase fraction and microstructure are stored for
the multiphase analysis. For each phase it can be selected whether it is the matrix or
the inclusion. The geometry of the inclusion can be set to either spherical or ellipse
type.

• Multiple tensile tests of different sample geometries are attached to the sample class.
They contain the applied force, the measured extension, the cross-sectional area of the
sample, the applied stress and the resulting strain. For diffraction experiments carried
out during the tensile test it is possible to synchronize automatically the diffraction
data with the tensile data.

• The ODF (Orientation Distribution Function of grains) is attached to Sample Data
and is loaded via a file which contains in the first three columns the Euler angles and
in the fourth the m.r.d. values. The texture can be added optionally during any stage
of the analysis.

• The yield surface including its slip systems is pre-added to each phase during its
invocation. The yield strength and hardening parameters of each individual slip
system can be edited by hand. Optionally, the system may be turned off during
the simulation. The values of the yield strength are either derived directly from the
measured diffraction data or imported from literature.

6.1 Strain data

The basic data class stores all important data needed to derive all elastic properties. It
consists of a measured strain, which is associated to a Bragg peak (hkl), the orientation φ
and ψ with respect to the measurement vector Q and the applied macroscopic stress in
L3-direction. The data can either be added directly via an ASCII file, with the formatting
given in the Appendix or it can be retrieved straight forward by fitting 1D-diffraction patterns.
An example of this feature is given in Figure 33. The peaks are automatically scanned while
adding the pattern data to the sample. Two options can be selected for the peak search.
The first estimates the position of the peaks based on the given wavelength and the second
one applies a peak finding algorithm and determines the position of the peaks independent
of the given crystal structure. The applied stress and the sample orientation is entered for
each diffraction pattern individually. The Bragg peaks can be described by three different
peak functions, Gaussian, Lorentzian and Pseudo-Voigt2 where the last is set as standard
with 90% Gaussian fraction fraction, close to the average fraction obtained on SPODI .
The position, FWHM and the exact Gaussian fraction is obtained from the pattern data

2Pseudo-Voigt is a linear combination of Gaussian and Lorentzian.
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Figure 33 – A diffraction pattern of Ti64 collected on D20. The vertical lines indicate the
position of the peaks estimated by the lattice parameters and used wavelength.

by a Levenberg-Marquard fitting algorithm. For this purpose the width of the peaks in the
patterns is estimated by the instrument resolution function of the given instrument. All
overlapping peaks are grouped together and their parameter are optimized simultaneously
to minimize χ2, see figure 34.
To obtain all strain values are calculated relative to the reference position of the lowest
applied stress, i. e. ε = d−d0

d0
. This way the non-linearities sometimes observed in equation

(25) are minimized since existing phase stresses are taken into account which do not change
during elastic deformation.

6.2 Single-Crystal Elastic Constants and Load Transfer in Dual
Phase Alloys

The program allows to use two different routes to derive the single-crystal elastic constants.
As indicated in figure 32 the single-crystal elastic constants may be derived from the strain
data directly or via minimizing the differences in the DECs. The DECs are derived by sorting
the data according to match equation (19) which is implemented in its rewritten form shown
in equation (84). The y-values of the data points are given by the measured strain divided
by the applied stress and the x-values are calculated from the orientation ψ. An example of
the data and the fit is given in Figure 35 [42].

ε33

σ33
= s1 + 1

2s2 cos2(ψ) (84)

To avoid additional non-linearities caused by plasticity induced micro stresses in equation
(84) only values of the elastic deformation should be evaluated for the fit. The texture of
the sample is taken into account by weighting the strain values according to the m.r.d. value
of the corresponding orientation. The different models for the grain-to-grain interaction are
implemented through equations (29), (30), (31), (31) (34), (36) and (49). The fitting is
performed by a Levenberg-Marquard χ-minimization algorithm. As in case of the DEC the
texture is taken into account by weighting either the DEC or the strain values according to

61
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Figure 34 – Screenshot of the peak fitting window during the evaluation. On the left in the
red box there is a list of peaks contained in regions. The selected region is shown in the plot
while the blue line indicates the fitted curve. In addition each peak can be adjusted manually
in the green box. Each fit is performed in an own thread, therefore a large number of region
can be fitted simultaneously. By adding a diffraction pattern to the sample data each pattern
is searched for peaks, these are combined into regions and automatically fit for their positions.
A special algorithm improves the starting values each time a peak is fitted.

Figure 35 – This screenshot taken during the evaluation shows an example fit of the DEC of
the (220) Bragg reflection in the β-phase of titanium.

the m.r.d. values of the covered orientations.
The self consistent calculation of the single-crystal elastic constants including the load
transfer is shown in Figure (37). First the stress-strain data for the phases are set, from the
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Figure 36 – Screenshot of the evaluation of the single-crystal elastic constants. On the top
left in the blue box the fit constants and on the right the DECs are shown. Below the settings
for the analysis such as the displayed phase, the grain-to-grain interaction model or whether
stiffnesses or compliances should be displayed are selected. Below in the green box the DECs
predicted by the selected model are shown. On the right average values of Young’s, shear
and Bulk modulus are given according to the used grain-to-grain interaction model where
fit indicated the values obtained by the measurement. In the red box each experimentally
obtained DEC is listed. In the orange box the analysis of the anisotropy is performed where in
the case of cubic crystal symmetries multiple fits of the elastic constants for different fixed
values of A are performed and saved as ASCII or .xlsx.The plot settings for parameters such
as the Young’s and shear modulus along different crystal direction are found here, too. In the
right corner inside the purple box the transition factors for the phases are displayed if a load
transfer analysis is applied.

data the elastic constants are derived either directly or via the DEC. The load transfer of
the phases is calculated by equation (54) and the stress-strain data is adjusted according
to the transition factors. The calculation is repeated until a satisfying convergence of the
transition factors is reached and the stress in the phases does not change anymore.

6.3 Elasto-Plastic Self Consistent Modeling (EPSC)

The software also allows to predict plastic stress-strain behavior and here all elastic properties
described in the previous section are needed for the evaluation. The program is designed
to synchronize straining data obtained by diffraction experiments, tensile test and EPSC
modeling. This design allows the comparison of each aspect of EPSC modeling to exper-
imental parameters on the corresponding length scale: Diffraction experiments yield the
lattice strains at a given macroscopic stress which corresponds to the average elastic strain
of all crystallographic directions perpendicular to the scattering planes. This in turn reveals
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Stress-Strain
Data DEC Single Crystal

Elastic Constants
Fit DEC

Fit Single Crystal
Elastic Constants

Calculate the transition values fi
and reset the stress-strain data

Figure 37 – The scheme for the self-consistent calculation single-crystal elastic constants
accounting for the load transfer.

the stress state of the diffracting grains and therefore allows to compare the diffraction data
to the forecast stress-strain values of oriented grains through the EPSC simulation. On the
other hand tensile tests show the macroscopic stress-strain behavior. This covers the elastic
and plastic strain caused by all grains of every orientation caused by an uni-axial tensile or
compression force. The measured values are then compared to average stress-strain results
of the simulation.
There are only few input parameters required for EPSC modeling. The elastic behavior is
completely described by the single-crystal elastic constants. The plastic behavior is charac-
terized by the activation of different slip systems in the corresponding grains. This requires
the input of the slip-systems which are defined by the given crystal structure. The forecast
of the slip activation during loading depends on the yield strength and hardening of every slip
system. Different methods exist to calculate the shear stresses acting on a crystallographic
plane. The software supports three basic slip criterion: von Mises, Tresca and a standard
projection of the stress tensor on the plane along the slip direction. The software is able to
track the hardening for each grain orientation individually or uses calculated average values
for every grain among all orientations. The orientations used during the EPSC simulation
are stored individually in a list. This allows to use any texture input desired which can be
modified to match possible texture changes during plastification. To compare the simulation
results to different types of experiments, the software handles diffraction and tensile data
and offers a wide range of plotting options as described in Figure 38.
The main recipe of the EPSC scheme implemented is shown in Figure 39 and was given
by Hutchinson in 1970 [22]. The program supports four data input types, the stress and
strain tensors or their rates, respectively. The simulation input is split up into individual
calculation steps for each stress or strain state reached during the simulation. For each
of which a self-consistent loop is calculated until the tensor L converges as indicated by
red in Figure 39. Based on the previous deformation history a new set of potentially active
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Figure 38 – The image shows a screenshot of the settings and options of the EPSC Modeling.
“Diffraction Data” in the red box contains the strain data obtained by the input diffraction
patterns. The upper “ListView” contains a list of peaks measured for different lattice planes
and ψ-orientations and allows according plots. “Simulation Experiments” in the green box
contains a management of different input values for the EPSC simulations. Below the input
matrix two “ComboBox” allow are detailed view of the input and output parameters of the
modeling. The EPSC simulations are organized by a queuing system in “Simulation” in the
blue box. Every task contains the single-crystal elastic constants, shear conditions and other
different options. The tasks are executed from top to bottom and the progress is shown
together with some statistics of the modeling. The lower half of the window contains the
grain orientation management found in “Grain Orientation” marked by the purple box. All
grain orientations can be modified or added here. This allows the input of any type of texture
for the EPSC simulation. The slip families of the grains are managed in “Slip Systems” in the
orange box it contains the yield strength and hardening of every slip system of each phase
used during the modeling.

slip systems is created for each predefined input state. The list of potential slip systems
are chosen from all available slip systems of this crystal symmetry according to which slip
system satisfies equation (68). From this set the active systems meeting the requirement
(69) are determined in the loop indicated by the orange line. In this loop all important
parameters to describe the plastic deformation are calculated as shown in section 4.9. For
each orientation L in equation (73) is calculated using equation (76). At this stage of the
calculation all parameters necessary to derive A and B in equation (80) for the grain are
given. Finally, the yield change of the available slip systems is updated according to the
yield change given by equation (71).
After every parameter for each grain is determined, equations (81) or (82) are solved de-
pending on how many phases are present. The obtained average values are compared to the
values of the last cycle until the change is small enough to meet a user defined convergence
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Figure 39 – The EPSC modeling scheme needs a list of second order stress or strain tensors
as input parameters. They represent according stress or strain states of the sample. The
scheme consists of two loops. The first iterates as long as L converges self-consistently and
does not change from iteration to iteration. The second inner loop ensures that only the
correct combination of slip systems is active.

criterion. The stress-strain data of the simulation is finally stored to the “Elasto-Plastic
Experiment” class and a new circle for the next input step is initiated as indicated by the
blue line.
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6.4 Estimation of Uncertainties

The previous sections described the necessary evaluation steps from measuring the lattice
distances under load, calculating the strain values and assigning the experimental parameters
to fit the DEC and finally the single-crystal elastic constants. How the data is supplemented
with critical resolved shear stresses and potential slip families and ultimately used to predict
the plastic stress-strain behavior under load.
The main source of uncertainty arises from the measurement of the exact scattering angle
to determine the lattice distance or lattice strains for each experimental step.

∆ε =

√√√√(∆d
d0

)2

+
(
d

d2
0
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)2

(85)

Considering each individual peak shift in the elastic region not to be larger than 5 · 10−3, by
assuming d

d0
≈ 1 equation (85) reduces to:
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√

2 ·
(
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d0

)
(86)

The error of the strain is therefore directly proportional to the diffraction instrument
resolution. Each additional measured load step beyond the instrument resolution only
contributes to the statistical confidence of the overall solution.
Error sources during the measurement such as the angles provided to orient the load axis
and measurement vector Q are considered to be negligible because the accuracy of the
positioning during the experiment causes overall deviations to the parameters orders of
magnitude smaller than the typical errors of the measured strains.
The only input parameter during the experiment of significant importance is the applied
load to the sample. Depending on the experiment mode, neutron diffraction with long
measurement times and stepwise ramping up the applied load and synchroton diffraction with
rapid measurement times and continuous loading, different types of errors are encountered.
During neutron diffraction experiments the gravitational forces changes the applied force
by about 0.5% depending on the orientation of the load axis. Additionally, after reaching
the plastic regime the long measurement times cause an additional load drop to keep the
strain constant for each measurement step. In the case of continuous measurements the
deviation of the stress ∆σ = tD · σA depends on the collection time of the detector tD and
the applied stress rate σA. This error decreases with higher applied loads as ∆σ remains
constant for all applied loads.
The errors of the DEC are calculated by the covariance matrix obtained during the fit. By
calculating the strains from the first load step the gravitational offset is fully taken into
account and non-linearities in the cos2-functions are reduced reaching an average error
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of about 6-8% for the fitted DEC in this work depending on the instrument resolution.
During the continuous measurement the error increases by about 1% on average due to the
additional uncertainties during loading caused by collection time of the detector.
In a similar way the errors of the single-crystal elastic constants are derived from covariance
matrix of the strain or DEC fit. The quality of underlying data defines the accuracy of
the fit and therefore the same principles as for the DEC are applying to the single-crystal
elastic constants as well. The margin of error for the single-crystal elastic constants varied
in this work between 8% and 12%. The observed errors for c44 were found to be higher by
1-2% on average than those of the other two constants in cubic crystal lattices due to the
accessibility during the experiments as later discussed.
Another more important error arises from the applied models and averaging methods. In
general all different models for calculating the single-crystal elastic constants show consistent
values and in most cases do not vary above the found uncertainties. As discussed in more
detail in the following section the best indicators for the optimal model are the present
microstrucure and predicted anisotropy. The same applies for the EPSC modeling. In this
case the obtained errors are mainly caused by the applied calculation model therefore the
errors are estimated by comparison to experimental data and directly visible in the plots.
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7 Results

In the first part of this section the technique and its accuracy is tested on well-known ferrous
metals. These metals offer the opportunity to investigate two different cubic phases, namely
the ferritic and austenitic phase. Their wide spread use in modern industry leads to high
standards and sophisticated manufacturing techniques which ensures a comparable high
quality even in complex dual-phase alloys. Here also it turned out that the data storage and
methods described in section 6 showed a high flexibility for automation. This reduces the
potential for mistakes and grants fast evaluation times even for large data sets.
The second part shows how single-crystal elastic constants and their associated mechanical
properties are derived from a dual-phase titanium alloy. The different elastic properties of
the containing phases - in particular the significant lower stiffness of the β-phase - goes
along with a large relocation of stress from the softer β to the harder α phase. The amount
distributed is quantified and used during the evaluation to gain knowledge of all eight elastic
constants from both present phases in a single diffraction experiment. To ensure the qual-
ity the obtained results are compared to corresponding values measured on single-phase alloys.

All grain-to-grain interaction models contain certain assumptions which enables to de-
rive an analytical solution during the averaging over the different grain orientations. It has
to be ensured during the measurement that the average strain observed is of statistical
significance which Matthies concluded is reached by measuring a couple thousand different
grain orientations [28]. In diffraction studies the elastic strains are measured over an average
of different single-crystal domains. The number of grains measured depends on the size of
the grains and the illuminated sample volume. Typically neutron experiments are illuminating
large volumes of the sample in order of cm3 and therefore for most materials the statistical
significance of approximately 1000 grains contributing to the peak is exceeded by several
orders of magnitude. In the case of photon experiments the beam size is in the order of
only 1 mm which can reduce the statistical nature of the strain measurements to near
single-crystal behavior. This is reached if the grains a larger than 50-100 µm depending on
the texture, sample shape and maximum beam size. The orientation distribution function of
the grains influences the measured intensities of Bragg peaks but not their positions. The
number of measured grains during the diffraction experiment is considered to be constant
for the different measurement directions because the grains are not reorienting during elastic
deformation [42].
The elastic constants of all measured samples were evaluated using all available grain-to-grain
interaction models, expect the interaction model proposed by Voigt [9]. This model showed
multiple results or did not converge without constraints. Therefor the results are only shown
once for the structural steel S235JR. The grain-to-grain interaction model introduced by
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Reuss [11] has been found to be the most stable with the shortest time to convergence of
less then 10 fitting cycles. Equation (45) in the proposed interaction model by Kroener [16]
leads to invalid results which had to be sorted out during the fitting, thus increasing the
average conversion time. The additional direction dependence modification introduced by
de Wit doubles the average number of needed cycles compared to the interaction model
of Kroener and in rare cases converged into multiple results. The load transfer approach
described in section 4.7 could be applied to all models without affecting their performance
or accuracy. The self-consistent routine shown in Figure 37 typically converged after 4 to 7
cycles independent of the interaction model used.

7.1 Ferrous Metals

This section provides values on the DECs and the single-crystal elastic constants of four
different ferrous metals: Ferritic steel, austenitic steel and two dual-phase alloys. The
obtained results show an excellent agreement with existing literature and the differences
in the different grain-to-grain interaction models are discussed in detail. The influence of
anisotropy on the mechanical properties are shown and its importance to the evaluation as a
measure which interaction model to use is highlighted. These investigations were performed
to check the applied methodology and to validate software performance and accuracy.
In the second part of this section the EPSC modeling is used to describe the plastic behavior
of S235JR. The results of the modeling described in section 4.9 and 4.10 implemented as
shown in section 6.3 are presented and discussed for their abilities and accuracy.

7.1.1 Diffraction Studies and Elastic Modeling

The neutron diffraction patterns used for the analysis of the elastic properties of all ferrous
metals were obtained on the instrument SPODI. A close-up of the austenitic {111} and the
ferritic {110} peaks of duplex steel is given in figure 40 as an example. The instrumental
resolution was sufficient to resolve the peak shift caused by the applied stress.
Usually a good indicator for the quality of the experimental data is given by the evaluation
of the DEC. Possible non-linearity of the data and the deviations of ε33

σ33 at specific orienta-
tions cos(ψ)2 increase the uncertainty of derived single-crystal elastic constants. Besides
experimental issues non-linearity might be caused by strong texture and/or strain gradients.
However, we are using the first strain state as a reference during the evaluation, thus texture
effects as well as strain gradients obviously are canceling out in the elastic regime as seen in
figure 41. On the other hand in dual-phase alloys with different stiffness between the phases
additional phase stresses caused by load relocation can induce significant non-linearities in
the cos(ψ)2 curve. An example of this specific behavior will be discussed in detail in the
titanium section.
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Figure 40 – A close-up of the austenitic {111} and the ferritic {110} reflection of X2CrNiMoN
at zero load in blue and 3.33 kN load in red corresponding to an applied stress of 118 MPa.
The shift in the peaks between the loading steps is clearly large enough to be detected even
visually.

The DEC for the ferrous metals are given in table 8, a total of 6 and 5 peaks could be
evaluated for the austenitic and ferritic phase, respectively. An example fit of the {220} and
the {111} reflection of duplex steel is given in figure 41.

Figure 41 – The images show an example fit of the DEC of the ferritic {200} reflection on
the left and of the austenitic {200} reflection on the right of duplex steel

The single-crystal elastic constants of the ferritic phase obtained from the measurements in
S235JR are shown in Table 9 for all implemented grain-to-grain interaction models. Most
interaction models agree reasonably to each other, with the exception of Voigt and De
Wit models. As discussed earlier Voigt converges into multiple results therefore finding
the global minimum during the fit is impossible. This is probably the reason no literature
references to this modeling are found. The orientation dependence in shear modulus of
the de Wit approach, shown in equation (49), causes restrictions to the stress-strain states.
Certain parameters lead to only negative solutions for the shear modulus in equation (45)
or multiple valid solutions. However, in both cases the algorithm converges into the last
valid result after reaching these undefined states. Using Hill’s approach the elastic constants
derived in this work c11 = 230.0 GPa, c12 = 121.0 GPa and c44 = 120.8 GPa show very
good agreement to values obtained by Finkel [32], c11 = 232.0 GPa, c12 = 125.8 GPa and
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Table 8 – The DEC for different orientations measured in the austenitic and ferritic phase of
various ferrous metals.

s1∗ 1
2s2∗ s1∗ 1

2s2∗ s1∗ 1
2s2∗

I m 3 m S235JR Duplex Steel ADI
(1, 1, 0) −1.0373 4.9776 −1.8302 7.6875 −1.2303 6.2330
(2, 0, 0) −1.6360 6.7086 −2.3079 9.4342 −1.9831 8.7780
(2, 1, 1) −1.2021 5.6412 −1.6572 7.4323 −1.0482 6.0217
(2, 2, 0) −1.1672 5.5656 −1.8992 7.7236 −1.3980 7.1732
(3, 1, 0) −1.6403 7.2495 − − −1.8139 7.1732

F m 3 m AISI type 304 Duplex Steel ADI
(1, 1, 1) −0.8770 4.8730 −1.1020 5.5534 −0.9063 5.7919
(2, 0, 0) −2.1914 8.7626 −2.3275 10.339 −2.1701 9.3606
(2, 2, 0) −1.1597 5.7837 −1.2109 6.1637 −1.3393 6.8607
(3, 1, 1) −1.5396 6.9464 −1.8176 7.8696 −1.6518 8.6992
(2, 2, 2) −0.9210 5.0774 −1.1930 5.9382 −1.2099 5.9297
(4, 0, 0) −2.0420 8.3331 − − − −

* Unit given in 10−6

Table 9 – The single-crystal elastic constants and the bulk properties of S235JR measured
on SPODI [42].

Model c1
11 c1

12 c1
44 E1 G1 µ2 ν A* c12

c11

I m 3 m
Voigt3 199 142 90 235 82 −12.10 0.436 3.1 0.71
Reuss 240 118 106 214 84 −7.51 0.276 1.7 0.49
Hill** 230 121 121 210 82 −7.57 0.278 2.2 0.53
Kroener 229 129 109 207 80 −7.86 0.288 2.2 0.56
DeWit 184 89 120 203 84 −5.51 0.219 2.5 0.49
Matthies** 224 129 112 216 85 −7.24 0.27 2.5 0.57

Literature
Martin Finkel [32] 232 126 115 220 86 −8.20 0.289 2.2 0.54
Gnäupel-Herold et al. [8] 225 122 121 217 86 −8.05 0.283 2.4 0.54
Adams et al. [5] 240 136 121 − − − − 2.3 0.60
Kim et al. [6] 232 135 116 212 82 − 0.289 2.4 0.58

1 Units are given in GPa
2 Units are given in 1

TPa
3 For this model the fitting routine does not converge to a single solution
* The anisotropy is calculated after Zener [13]
** The anisotropy was fixed for this fit
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Table 10 – The results of AISI type 304 (X5CrNi 18-10) austenitic stainless steel measured
on SPODI. The texture data were measured on STRESS-SPEC [42].

Model c11
1 c12

1 c44
1 E1 G1 µ2 ν A** c12

c11

F m 3 m
Reuss 226 108 100 202 80 −7.85 0.271 1.7 0.48
Reuss* 225 107 100 202 80 −7.77 0.269 1.8 0.47
Hill 210 115 138 202 80 −7.85 0.271 2.9 0.55
Hill* 209 114 140 202 80 −7.77 0.269 3.0 0.55
Kroener 208 136 116 192 74 −8.97 0.300 3.2 0.65
Kroener* 205 139 124 194 75 −8.89 0.299 3.8 0.68
DeWit 212 130 121 204 80 −8.30 0.284 2.9 0.61
DeWit* 212 130 122 204 80 −8.27 0.284 3.0 0.61
Matthies 214 121 135 202 80 −7.85 0.271 2.9 0.56
Matthies* 213 120 136 202 80 −7.80 0.270 2.9 0.56

Literature
Martin Finkel [32] 207 121 119 202 79 −9.76 0.296 2.8 0.59
Ledbetter et al. [4] 209 133 121 197 76 −8.27 0.290 3.2 0.64
Ledbetter et al. [3] 205 138 126 − − − − 3.8 0.67

1 Units are given in GPa
2 Units are given in 1

TPa
* For the fitting of the elastic constants the DEC texture adaptation was used
** The anisotropy is calculated after Zener [13]

c44 = 115.2 GPa, and obtained by Gnäupel-Herold [8], c11 = 224.9 GPa, c12 = 122.2 GPa
and c44 = 120.7 GPa, using a similar steel and the same interaction model [42].
The agreement of Kroener’s model is examplarily shown on austenitic steel AISI type 304
(X5CrNi 18-10) presented in Table 10. The values published by Ledbetter were obtained by
ultra-sound measurements on single crystals [4] yielding c11 = 209.0 GPa, c12 = 133.0 GPa
and c44 = 121.0 GPa were in good agreement compared to the values obtained in this work
of 208.0 GPa, 135.7 GPa and 116.3 GPa for the isotropic approximation [42].
The results of the dual-phase alloy X2CrNiMoN 22-5-3 are shown in Table 11. The load
transfer between given phases increases with increasing difference in the elastic properties.
In case of the investigated dual-phase alloy the small differences in the single-crystal elastic
constants resulted in a load transfer of only 0.3 %, not enough to change the elastic constants
significantly. The high carbon amount in ADI forms a graphite phase of approximately
10 volume % besides the ferritic and austenitic phase. The graphite grains are shaped in form
of nodules with Young’s and shear moduli of essentially zero leading to an immediate plastic
deformation on any amount of stress. Therefore the graphite phase was not considered for
evaluation of the load transfer. The results presented in Table 12 are the effective elastic
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Table 11 – The single-crystal elastic constants of X2CrNiMoN 22-5-3 duplex steel, the dual-
phase stainless steel alloy measured on SPODI. The texture data were taken on STRESS-SPEC
[42].

Model c1
11 c1

12 c1
44 E1 G1 µ2 ν A** c12

c11

I m 3 m
Reuss 227 121 70 165 63 −11.7 0.323 1.3 0.53
Reuss* 228 121 70 165 62 −11.8 0.324 1.3 0.53
Hill 218 125 81 165 63 −11.7 0.323 1.8 0.58
Hill* 219 125 79 165 62 −11.8 0.324 1.7 0.57
Kroener 221 126 76 167 63 −11.5 0.324 1.6 0.57
Kroener* 210 137 87 164 62 −12.1 0.331 2.4 0.66
DeWit 214 126 79 165 63 −11.7 0.323 1.8 0.59
DeWit* 206 117 78 164 62 −11.4 0.314 1.8 0.57
Matthies 217 126 82 166 63 −11.7 0.322 1.8 0.58
Matthies* 219 125 79 165 63 −11.8 0.324 1.7 0.58

Literature
Martin Finkel [32] 210 108 83 177 69 −9.9 0.296 1.6 0.51
Kim et al. [51] 222 144 114 194 74 −11.8 0.317 2.9 0.65

F m 3 m
Reuss 203 103 89 177 70 −9.62 0.284 1.8 0.51
Reuss* 208 107 88 178 70 −9.75 0.288 1.7 0.51
Hill 189 110 129 177 70 −9.62 0.284 3.3 0.58
Hill* 194 114 125 178 70 −9.75 0.288 3.1 0.58
Kroener 198 109 105 190 75 −7.85 0.272 2.4 0.55
Kroener* 189 120 120 190 74 −8.17 0.279 3.5 0.63
DeWit 222 154 112 186 71 −1.10 0.324 3.3 0.70
DeWit* 221 156 110 183 69 −11.40 0.328 3.4 0.70
Matthies 197 117 119 178 70 −9.66 0.286 3.0 0.59
Matthies* 201 119 116 179 70 −9.74 0.290 2.8 0.59

Literature
Martin Finkel [32] 189 110 125 198 79 −9.61 0.285 3.2 0.58
Kim et al. [51] 207 134 114 188 72 −12.29 0.311 3.1 0.65

1 Units are given in GPa
2 Units are given in 1

TPa
* For the fitting of the elastic constants the DEC texture adaptation was used
** The anisotropy is calculated after Zener [13]
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constants with a 10 volume % graphite phase present [42]. All tables reveal discrepancies in
c44 for the different interaction models resulting in larger deviations of the Zener anisotropy
A [13] and the c12

c11
ratio. c44 is related to the shear stresses/strains and is only indirectly

accessible during tensile/compression diffraction experiments by covering the strains for
different orientations. Torsion experiments as suggested by Woraczek et al. could improve
the accuracy [52, 42]. However, in a systematic study of the single-crystal elastic constants
on different monocrystals of austenitic stainless steels and Fe-Cr-Ni alloys Ledbetter found
that the values A = 3.53 and c12

c11
= 0.635 remain nearly constant [4]. Both parameters

are suited to serve as orientation which model fits the investigated alloy microstructure
best and will ultimately lead to the most accurate results. A similar behavior is observed
in the case of duplex steel where A varies significantly from 1.3 to 3.5. This has a large
impact on the elastic properties. The left image in figure 42 shows the shear modulus of the
austenitic phase while the right images shows the Young’s modulus of the ferritic phase along
different lattice directions for different grain-to-grain modelings. For both phases Kroener’s
grain-to-grain interaction model returns values for the Zener anisotropy closest to 3.53, the
value published by Ledbetter. Relying upon Ledbetter’s study leads to the conclusion that
the most accurate elastic constants in duplex steel were obtained by Kroener’s model. In the
ferritic phase c11 was measured to 210 GPa, c12 to 137 GPa and c44 to 87 GPa and in the
austenitic c11 = 189 GPa, c12 = 120 GPa and c44 = 120 GPa. In ADI the values obtained
for A and the c12

c11
ratio differ significantly from the values found by Ledbetter. Therefore

the influence of the of graphite phase in ADI is considered to be significant.
The influence of the texture on single phase materials during the evaluation is exemplarily
shown on austenitic steel. The pole figures of the texture are shown in the work of Finkel
[32]. The material is fiber textured an shows m.r.d values between 0.4 and 4. Taking into
account the texture yield values of 204.8 GPa, 138.9 GPa and 124.2 GPa, for the respective
single crystal elastic constants c11, c12 and c44. Similar results are found for the dual-phase
X2CrNiMoN steel and ADI the average deviation varied from 0.5 % to about 3 % only, thus
remaining below the uncertainties of the predicted constants. All tables reveal the average
deviation of the single-crystal elastic constants due to texture remains below 1 GPa for
all grain-to-grain interaction models. Therefore assuming that the grain orientations are
randomly distributed over the Euler space is adequate for the investigation [42].
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Table 12 – The single-crystal elastic constants of austempered ductile iron consisting of
ferrite, austenite and graphite measured on SPODI. The texture data were measured on
STRESS-SPEC [42].

Model c1
11 c1

12 c1
44 E1 G1 µ2 ν A** c12

c11

I m 3 m
Reuss 232 107 88 195 76 −8.24 0.281 1.4 0.46
Reuss* 218 103 92 191 75 −8.23 0.274 1.6 0.47
Hill 220 113 104 195 76 −8.24 0.281 2.0 0.51
Hill* 204 110 120 191 75 −8.23 0.274 2.6 0.54
Kroener 228 104 90 197 77 −7.67 0.274 1.5 0.46
Kroener* 231 101 90 200 79 −7.24 0.266 1.4 0.44
DeWit 217 116 102 198 78 −8.00 0.279 2.0 0.53
DeWit* 216 115 102 198 78 −7.98 0.278 2.0 0.53
Matthies 220 114 105 195 76 −8.16 0.280 2.0 0.52
Matthies* 202 112 126 192 76 −8.06 0.270 2.8 0.56

Literature
Martin Finkel [32] 201 124 108 185 72 − − 2.8 0.62

F m 3 m
Reuss 203 92 85 179 71 −8.59 0.269 1.6 0.46
Reuss* 204 94 85 179 71 −8.73 0.272 1.5 0.46
Hill 190 99 109 179 71 −8.59 0.269 2.4 0.52
Hill* 191 100 108 179 71 −8.73 0.272 2.4 0.52
Kroener 200 88 85 182 72 −7.65 0.259 1.5 0.44
Kroener* 205 91 84 182 72 −7.93 0.266 1.5 0.45
DeWit 184 105 103 179 71 −8.84 0.273 2.6 0.57
DeWit* 183 104 103 178 70 −8.82 0.272 2.6 0.57
Matthies 193 101 105 179 71 −8.48 0.268 2.3 0.52
Matthies* 195 102 104 179 71 −8.62 0.271 2.3 0.53

Literature
Martin Finkel [32] 192 102 96 180 71 − − 2.1 0.53

1 Units are given in GPa
2 Units are given in 1

TPa
* For the fitting of the elastic constants the DEC texture adaptation was used
** The anisotropy is calculated after Zener [13]
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Figure 42 – The images show different elastic moduli of duplex steel along different lattice
directions. On the top the shear modulus of the austenitic phase F m 3 m and on the
bottom the Young’s modulus of the ferritic phase I m 3 m is shown. The colors indicate the
grain-to-grain interaction model used, the elastic constants are listed in table 11.
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7.1.2 Elasto Plastic Self Consistent Modeling

EPSC modeling as described in section 6.3 is applied to predict the plastic behavior of the
ferritic steel S235JR measured on STRESS-SPEC. This evaluation is performed to test the
accuracy of the implemented model and show the potential for further extensions because
of the extensive research already performed on ferritic structural steels it is best suited
for accuracy and model testing. A full overview of the material is given in section 5.6.
The averaging methods applied during the EPSC modeling are perfectly suited to calculate
average lattice strains in the same way as diffraction techniques measure the average lattice
strain along specific crystal directions. This reveals the stress state of each average grain
including the stress state of orientations and lattice directions unavailable for diffraction
experiments. This means the EPSC simulation complements the experimentally covered
χ-orientations and gives access to the full state of stress in any direction of the sample or
grain. Naturally, the averaging provides much faster evaluation times as common Finite
Element Method modelings but at the cost of modeling freedom in terms of available sample
geometry and precision.
Potential sources of uncertainties during the experiments are discussed for their influence on
the overall results. Plastic deformation occurs when the applied macroscopic force surpasses
a critical amount and remain constant over time. In this case the deformation is driven by
small changes in the stress states of each grain interacting with each other. This means
during non-continuous loading experiments additional strains will be introduced into the
investigated sample. Depending on the scattering power of the sample a single diffraction
pattern of a loading state can take from one to two minutes up to more than half an our.
Other potential uncertainties arise from counting statistics and uncertainties of the tensile
rig during the application of load, both of which are comparably small and any efforts to
obtain better statistics beyond average counting statistic in the diffraction peaks will increase
the experimental time significantly more than the gain of accuracy.
Figure 43 shows an example on how the applied force changes during the measurement
of a load step to keep the macroscopic strain constant during the measurement in strain
controlled mode. As illustrated the stress decreases by more than 20 MPa for covering four
χ orientations during the experiment. Thus, the total uncertainty introduced by keeping the
macroscopic strain constant during the measurement of each loading is about 25 MPa or
5%. The reason for this is the gravitational force acting on the force measurement device
during rotation of the tensile rig as shown in Figure 26, the force is reduced by moving into
horizontal position or increased the other way around by approximately 100N or about 2-4
MPa depending on the sample diameter.
In consequence during each loading step additional macroscopic plastic strains are introduced
into the sample after reaching the plastic deformation during the measurement. This leads
effectively to larger strains measured after reaching the yield stress resulting in a higher
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Figure 43 – The image shows the experimental macroscopic stress-strain curve in black of the
(110) peak of S235JR for different χ orientations. The green line shows measured stress-strain
curve for the horizontal sample position which was measured first. After each measurement
the sample was tilt by additional 30◦ in χ and measured until the lateral contraction was
reached indicated by the blue line. To keep the macroscopic strain constant at the input value
during the measurement the stress is automatically reduced constantly by the tensile rig.

Table 13 – Input parameter for the different slip families of the EPSC simulation.

Slip Family Yield Strength (MPa) Hardening
(110) [111] 225 100
(211) [111] 235 75
(321) [111] 410 500

curvature for the stress-strain behavior on sample level, especially at late deformation states.
The theory and experiments show alike that by introducing plastic strains into any material
will increase its total yield strength, thus the sample will show higher yield strength earlier
into the experiment than expected. In other words after exceeding the yield stress the
macroscopic stress-strain curve will appear to yield larger stress and in later stages of
deformation it will show a higher strain rate than during continuous loading experiments.
Figure 44 shows the effects compared to the EPSC modeling on the macroscopic stress-strain
curve obtained during the diffraction experiment in horizontal position, it is identical to the
blue line in Figure 43.
As described in section 4.9, the basic implementation of the EPSC modeling requires only
few input parameters. At first the SCEC. In addition, each slip system is characterized by
its yield stress and hardening parameters For the simulation of S235JR exhibiting s b.c.c.
crystal structure three slip families were used to describe the deformation behavior. The
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Figure 44 – The green dots are the measured macroscopic stress-strain values. The blue line
shows the EPSC simulation. As expected the yield stress increases faster for the measurement
than the prediction.

specific values of the yield strength and hardening for each slip family are listed in table 13.
As the name S235JR suggests its yield strength of 235 in MPa is encoded into the name.
At first 235 MPa were assumed for each slip family and later these values were refined to
match the diffraction and macroscopic stress-strain relations best. The higher yield stress of
the (321) slip plane is due the Schmid factor of the slip family. Figure 45 shows the slip
activity over the macroscopic stress in which the (321) slip plane is activated first followed
by (110) and (211). The slip activity in this context is defined as the ratio of active slip
systems of one slip family compared to every possible-active slip system. The single-crystal
elastic constants obtained by the Reuss grain-to-grain modeling from table 9 were used.
They offered the best description of the elastic regime and the second best in the plastic
regime compared to simulations with elastic constants obtained by other grain-to-grain
interaction models. The best description in the plastic regime was achieved with constants
obtained from the Hill model but the Young’s modulus is underestimated. The main reason
for the better agreement in the elastic regime is due to the averaging process which in
this implementation essentially breaks down into the same assumptions as Reuss suggested
while remaining below the yield stress. On the other hand the EPSC model follows the Hill
approximation for the plastic regime during the grain-to-grain averaging.
Figure 44 shows the EPSC simulation together with measured macroscopic stress-strain
relation. There is a mismatch between the Young’s moduli of about 7%. Nevertheless the
values show a reasonable agreement. The main discrepancies are found at the beginning
of the plastic regime between 400 MPa and 550 MPa. In this regime the simulated values
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are showing higher strain values than those from the diffraction data. As mentioned before
additional hardening is introduced to the sample during the measurement. However, the
model shows discrepancies beyond the hardening in the early plastic region which need to
be improved in the calculation scheme. Lowering the yield stress of (321) and increasing
the hardening values by several orders of magnitude better result may be achieved on
macroscopic scale. This change in parameters however is causing strain rate drops in later
stages of the estimated deformation. These drops are physically not reasonable and causing
issues on grain scale which further suggests an unaccounted deformation mechanism. From
Figure 44 the largest mismatch of the strain rate is found at around 1% strain but it rapidly
adjusts to the correct strain rate resulting in slightly higher yield strength of approximately
20 MPa in this case. In comparison the applied force varied during each load step by about
25 MPa for the different χ and lattice orientations.
The next part focuses on the obtained microscopic data which includes measurements

Figure 45 – The red line shows the (321) slip family which is activated first. Followed by the
(110) slip family and finally family (211) is activated. The macroscopic strains are mainly
caused by the slip on (110) and (211).

on the lattice straining during plastic deformation along lattice directions accessible by
diffraction. This grants access to the activated slip systems and to the average stress state
of the sample and grains during the measurement. Figure 45 shows the slip system activity
during plastic deformation depending on the applied macroscopic stress. First the (321)
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slip family is activated causing only a small increase in the sample strain rate at the early
plastic deformation stage. 30 MPa later the (110) slip family is getting more and more
active causing the first strong increase in the sample strain rate at the midpoint. The last
slip family activated is (211) which starts to take over the (321) slip family due to a higher
resolved shear stress on the individual slip systems. Therefore the (321) slip family starts to
decrease its activity after 500 MPa. This take over process slows the increase in the strain
rate down causing the earlier mentioned discrepancy in the strain rate at 1% strain. The
slip family (211) is increasing the strain rate even further where the stress-strain curve is
almost horizontal. In summary the (110) and (211) is mainly responsible for the plastic
strains observed while the (321) slip family only causes small strains in the early stage of
the deformation.
The upper image of figure 46 shows the longitudional expansion for the (110), (200) and
(211) planes. The experimental data shows the largest lattice strains, respectively stress,
for the (200) planes and the (110) and (211) planes are located with about two thirds
lower strains. The lower maximum strain in the (110) and (211) planes is caused by
lower deformation resistance along these lattice directions. This behavior is typical for
unstable b.c.c. phases because closest packed crystal structures are more preferable [53, 54].
Martensitic phase transformations from an open b.c.c. lattice structure to closest packed
hexgonal or f.c.c. structures are achieved by a simple combination of displacements [53, 55].
For example the b.c.c. to hcp transition established by Burgers [56]: (110)bcc||(00.1)hcp
and [1̄11]bcc||[2̄10]hcp is achieved by two equivalent shears of (11̄2)[1̄11] and (1̄12)[11̄1]
deforming the b.c.c. octahedron into a hcp structure [55]. The EPSC model predicts
the lattice strains of the (200) well within the uncertainties but shows some deviations by
entering the plastic area. The experimental data shows a rather smooth transition into
the plastic regime while the model predicts a more defined entry. By lowering the yield
values of (321) and increasing its hardening by two orders of magnitudes a similar result
may be achieved. This indicates further improvement of the modeling as suggested by
Lorentzen where the EPSC model was improved by taking into account the stress pile-ups
on boundaries for cyclic loading. This could improve the match to experimental neutron
data because it accounts for the stres release during the measurement [57]. Hounkpati and
Freour suggested further improvements on the modeling of intergranular strains at grain
boundaries in presence of a small fraction of a second phase on β titanium alloys, their
recent work could give access to improved results, as well [58]. The strains are predicted
higher for (110) and (211) which indicate the models prediction is more isotropic than the
measured diffraction data.
The lateral contraction for the same (110), (200) and (211) plains are shown in the lower
image of figure 46. While the (110) and (211) plains are predicted well, the strains for the
(200) show a difference. While the trend is captured well, the experimental data above
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Figure 46 – In the upper graphic shows the longitudional expansion and the lower shows the
lateral contraction. The red dots indicate the (110) plane which is the essentially identical
to the (211) plane indicated by green. Yellow dots indicate the (200) plane. The lines are
predicted by the EPSC model and yellow represent the (200) plane while blue indicates the
(110) and (211) planes. The model predicts the trends well, for example the reduction of stress
on the (200) plane after entering the plastic regime. However, it predicts a more isotropic
behavior than the experimental data shows.
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the elastic limit shows only two thirds of the strains predicted by the model. In conclusion
the anisotropy for plastic strains is not captured well by the model. Other improvements
as suggested by Kneer who relied on Kroener introduce a model which could improve
the predictions regarding the anisotropy which was later used by Matthies to improve the
averaging between Voigt and Reuss [16, 17, 29].
In the literature Daymond et al. applied a similar EPSC scheme during the investigation of
a ferritic steel containing a small amount of graphite [59]. The ferritic steel shows a higher
hardening rate as S235JR and enters the plastic regime about 50 MPa later. The literature
values on stress-strain curve show essentially the same behavior at different hardening rates,
after reaching the critical yield stress, the strain are evolving faster than observed during
the experiment. In later stages of deformation the simulation reaches a maximum deviation
at 0.8 % and catches up to the experiment again in the late stage of plastic deformation
[59]. Comparing the findings obtained by diffraction to this analysis we again find the same
behavior for each plane (110), (200) and (211). While the planes (110) and (211) are
acting in the same way, (200) shows the lowest Young’s modulus and highest yield during
the tensile testing. Considering the lateral contraction the α-iron shows a similar decrease
along (200) as this work shows with the difference that the effect in α-iron phase is more
distinct [59].
In summary the EPSC framework predicts the observed deformation well and reproduces the
observed stress states. In compliance with available literature the calculated macroscopic
deformation shows minor discrepancies to the experiment at the beginning of the plastic
regime. But contrary to the macroscopic prediction the lattice strains of the model and
experiment match well in the early plastic regime but show a more isotropic straining in the
late plastic regime along the (200) direction than experimentally observed in figure 46.
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7.2 Titanium Alloys

A new self-consistent algorithm was used to incorporate the stress-distribution among present
phases into the evaluation of multi-phase alloys. This section explains how the new method
is applied to determine the single-crystal elastic constants of a dual-phase titanium alloy.
It provides a detailed analysis of the morphology and texture. This analysis is needed to
provide the necessary input parameters of the phases, the grain shape and phase fraction,
for the calculation. Since no literature data of this alloy is known the accuracy of this
evaluation is tested against the obtained single-phase values from a near α-alloy Ti64 and a
pure β-alloy Ti38644 and show a very high level of consistency after applying the algorithm.
The elastic values of the corresponding phases again are compared to available literature
data [42].

7.2.1 Morphology and Texture

Figure 47 – Images of the surface of Ti64, Ti6264 and Ti38644 after etching all on the same
scale. On the top Ti6246 is shown after 10s of etching. The lower left image shows Ti38644
after 30s of etching and the lower right image shows Ti64 after 20s of etching. The etching
times are adjusted to reach the highest contrast to estimate the grain size. Example Grains
are marked for each sample.

The morphology of the samples have been investigated with an optical microscope. Figure
47 shows a selection of images from the surface of Ti64, Ti6264 and Ti38644 after different
etching periods. The average grain size is found to be about 15 µm for Ti64 and roughly 30
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µm in large spherical grains for Ti38644. The α phase of Ti6246 shows grain sizes of about
5 µm while the β phase contains much larger grains averaged to be 20 µm, see figure 48.

Figure 48 – Images of the surface of Ti6264 after ion polishing at four different scales: 10
µm at 5 keV, 5 µm at 3 keV, 2 µm at 3 keV and 1 µm at 5 keV.

Additional investigations on Ti6246 were done using EBSD and EDX. The sample surface
was prepared with an additional step of ion polishing and different images of the surface
along and perpendicular to the rolling direction were taken at different scales. Figure 48
shows the surface perpendicular to the rolling direction at four different scales, 10 µm, 5
µm, 2 µm and 1 µm.

Figure 49 – An example image of the band contrast and the phase composition of Ti6246.
The α phase is easily distinguished from the β phase resulting in high band contrast over all
phases, left picture. On the right hand side the phase composition is shown, red corresponds
to the α phase, while blue indicates the β phase
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Figure 50 – The images on left show the color-coded orientation of the α phase and below
the β phase acquired by EBSD. Next to these images on the right side the upper image shows
the projection of the measured data. Below the pole figures of the {100}, {111}, {110},
{112} and {123} for α- and {001}, {100} and 〈100〉 for the β directions are shown.

87



7.2 Titanium Alloys

The EDX analysis was carried out in standardless mode. The α phase is easily distinguished
from the β phase resulting in high band contrast over all phases, see figure 49, left picture.
The measured grain size 4.5 µm and almost 25 µm of the α and β phase agree well with
the values measured optically. The β phase shows large spherical grains while the α phase
contains small needle like grains. On the right hand side of figure 49 the phase composition
is shown, red corresponds to the α phase and accumulates to a fraction of 78.4%, while
blue indicates the β phase with 20.1%. The missing 1.5% could not be associated to any
phase resulting in a phase fraction of 79.6:20.4 α:β. These values show excellent agreement
to the values 78.4:21.6 evaluated from obtained diffraction patterns using Rietveld analysis
(MAUD and FullProf suite) [60, 61].

Figure 51 – The pole figures measured according to the orientations shown in figure 50 .The
measurements were made on STRESS-SPEC [42]

Figure 50 shows the orientations of the grains in this section for the α phase, upper left,
and β phase, lower left. The upper left shows the projection of the measured orientations
and below shows the calculated pole figures. For the α phase the pole figures of {100},
{111}, {110}, {112} and {123} and for the β phase {001}, {100} and 〈100〉 are shown.
The overall texture is small never exceeding a m.r.d. value of 4 but the orientation along
the rolling direction shows the largest values. Figure 51 shows a bulk measurement of
the texture with neutrons on the instrument STRESS-SPEC. The pole figures are ordered
according to direction and in both recordings the rolling direction shows the largest m.r.d.
values. The neutron data for the respective β phase of the same measurement could not be
evaluated because due to the low phase fraction and low scattering power.
The EDX shows the expected elemental composition, table 14, only the Al is slightly lower
than expected. The doping of Al, Zr and Sn is homogeneous but Mo forms islands of
approximately 7 µm of poor Mo content surrounded by Mo rich regions. The Mo content in
the poor regions reaches a maximum of 2.8 wt% while even dropping to zero over large areas.
In the Mo rich regions on the other hand the Mo content on average exceeds the average
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Table 14 – The EDX results of TI6246 show the overall composition compared to the Mo rich
and poor regions. The other elements were homogeneously distribution over the measured
sections [42].

Overall Mo poor regions Mo rich region
Weight % σ nominal Weight % Weight %

Ti 82.87 0.03 82 83-87.5 78.7-80.0
Mo 5.84 0.02 6 0-2.8 6.6-8.3
Al 5.39 0.01 6 5.6-6.5 4.6-5.1
Zr 3.84 0.02 4 3.5-3.6 3.9-4.0
Sn 2.06 0.01 2 1.8-2.4 1.9-2.1

overall value and varies between 6.6 and 8.3. An example section of the Mo distribution is
given in figure 52. The Mo does not pile up in any specific phase nor does it have any other
visible connection to the microstructure.

Figure 52 – The image shows the Mo distribution among a measured section from black
where no Mo is found to green where high amounts of Mo are found [42].

7.2.2 Diffraction Studies

Diffraction studies of Ti64 and Ti38644 for the determination of single-crystal elastic
constants were carried out on D20 (ILL, Grenoble), an example pattern of Ti64 is given in
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figure 53. The dual phase alloy Ti6246 was measured with a synchroton experiment on the
HEMS Beamline (Desy, Hamburg). The large grain size of the β phase in the dual phase
alloy leads to only a couple of thousand illuminated grains. Effects of the low grain statistics
are observed on the Debye Scherrer rings in figure 54. However, the estimated number of
grains involved in the scattering process is higher than the predicted minimum amount of a
couple thousands by Matthies [28] and the quality of the data reduction to 1-D Data sets
in slices of 10◦ remained unaffected. The lowest intensity reflections have areas above 1000
counts and the peak position could be determined on average with an uncertainty below
0.0005◦.
The stress interval between the pattern during the continuous loading measurement was

Figure 53 – A diffraction pattern of Ti64 measured on D20. 13 peaks of the α-phase where
investigated during the experiment. No peaks from the β-phase could be observed.

Figure 54 – A raw image of the data collected by the Perkin Elmer detector of Ti6246
measured on HEMS Beamline. The discontinuities in the β-phase are due to low grain
statistics and texture. However, this does not affect the data reduction. The diffraction
patterns on the right show the summation over the slices with lowest intensities in the β-phase.
The peak shift is about 0.005◦.

set to 200 N. For such low stress rates the peak shift is about 0.005◦ and well above the
uncertainties. Five DEC of the β phase and 16 of the α-phase could be evaluated and are
listed in table 15. In total for the dual phase alloy about 94 500 peaks were evaluated. An
example of the DEC obtained from the single and dual phase alloys is given in figure 55.
The fit of the single phase alloys appears to be linear with no larger deviations over the
different loading directions. The quality of the DEC in Ti6246 show minor non-linearities in
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Table 15 – The DEC for different lattice planes measured in Ti38644, Ti64 and Ti6246.

s1∗ 1
2 s2∗ s1∗ 1

2 s2∗

I m 3 m Ti38644 Ti6246
(1, 1, 0) −3.483 14.897 −3.261 12.871
(2, 0, 0) −4.983 18.437 −3.865 15.142
(2, 1, 1) −3.725 14.659 −1.825 12.356
(2, 2, 0) −3.319 14.241 −2.709 12.436
(3, 1, 0) −4.426 16.402 −3.700 14.681

P 6(3) /m m c Ti64 Ti6246
(1, 0, 0) −4.219 15.603 −3.468 13.425
(0, 0, 2) −2.322 10.535 −2.569 10.184
(1, 0, 1) −3.118 13.330 −2.788 12.379
(1, 0, 2) −2.811 12.577 −2.672 12.379
(1, 1, 0) −3.589 13.757 −3.222 13.048
(1, 0, 3) −2.441 11.723 −1.729 10.878
(2, 0, 0) −3.145 12.762 −3.485 12.495
(1, 1, 2) −3.378 13.467 −2.835 12.495
(2, 0, 1) −3.237 12.806 −3.103 13.059
(0, 0, 4) −2.053 10.222 −1.786 10.282
(2, 0, 2) −2.957 12.747 −2.800 12.672
(1, 0, 4) −2.333 11.911 −2.092 10.675
(2, 0, 3) −2.824 12.377 −2.808 12.240
(2, 1, 0) − − −3.586 13.422
(2, 1, 1) − − −2.212 11.777
(1, 1, 4) − − −2.485 11.728

* Unit given in 10−6

the data but due to the large number of peaks used for the evaluation the uncertainties
remained small.
Tables 16, 17 and 19 reveal quite similar results for the different model assumptions. In
addition, the values obtained for the α + β alloy Ti6246 agree quite well, especially if the
load transfer is taken into account, with the corresponding data for the α phase in Ti64
and the β phase in Ti38644, respectively [42]. Table 16 also includes the results of Howard
& Kisi (1999) on the Ti64 alloy determined by the Reuss (1929) approach, as well as values
obtained by ultrasonic studies on single crystals of pure Ti measured by Fisher & Renken in
1964.
Good agreement with ultrasonic data was found in the hexagonal phases for c11 and c44.
The largest deviation between the results presented in this work and earlier work is found
for c33, and minor deviations in the c12 and c13 elastic constants. In hexagonal systems
the behaviour in the ab plane is completely isotropic owing to the requirement for the
c66 = c11−c12

2 elastic constant. As c11 and c12 are determined accurately, this also gives
access to the shearing parameter c66 . On the other hand, hexagonal systems show additional
anisotropies regarding the c axis which influence the precision of parameters c12 and c13.
Similar elastic constants for α phases in different titanium alloys can be expected owing to
the low quantity of alloying elements, shown already by the comparison of Howard & Kisi
(1999) with pure titanium [31, 42].
In figure 56 the fitted single crystal elastic constants are shown for different grain-to-grain
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Figure 55 – The DEC of the single-phase alloys are compared to those of the dual-phase
alloy. For the α phase the (100) plane and for the β phase the (200) plane is shown.

Table 16 – The single-crystal elastic constants of Ti64 measured on D20. Texture data were
measured on STRESS-SPEC [42].

Model c1
11 c1

33 c1
12 c1

13 c1
44 E1 G1 µ2 ν

P 6(3) /m m c
Reuss 149 142 81 54 42 104 40 −16.9 0.303
Reuss* 150 137 83 53 42 103 40 −17.0 0.302
Hill 168 144 108 39 44 104 40 −16.9 0.303
Hill* 176 134 118 38 46 103 40 −17.0 0.302
Matthies 160 148 99 45 44 104 40 −16.9 0.302
Matthies* 173 136 113 41 45 103 40 −16.9 0.299
Howard & Kisi [31] 154 173 82 61 45 114 43 −15.9 0.307
Fisher & Renken [1] 162 181 92 69 47 116 44 −16.6 0.319

1 Units are given in GPa
2 Units are given in 1

TPa
* For the fitting of the elastic constants the DEC texture adaptation was used

interaction and with applied texture weightings. Only minor influence of the additional
texture analysis is observed in case of Hill’s and Matthies grain-to-grain interaction model.

92



7.2 Titanium Alloys

Table 17 – The single-crystal elastic constants and macroscopic values of Ti38644 measured
on D20 and literature values of other titanium alloys containing a stable β phase [42].

Model c1
11 c1

12 c1
44 E1 G1 µ2 ν A* c12

c11

I m 3 m
Reuss 125 70 38 86 32 −23.91 0.337 1.4 0.56
Hill 120 73 45 86 32 −23.91 0.337 1.9 0.61
Kroener 120 69 39 88 33 −22.39 0.329 1.5 0.58
DeWit 117 72 43 86 32 −23.63 0.334 1.9 0.62
Matthies 120 73 45 86 33 −23.76 0.336 2.0 0.61

Freour et al.[34] 174 116 41 96 35 −25.16 0.382 1.4 0.67
Ledbetter et al.[62] 98 83 38 44 15 −64.61 0.418 4.50 0.83
Petry et al.[2] 134 110 36 55 19 −50.93 0.422 3.00 0.82
Raghunathan et al.[63] 140 128 50 36 13 −89.24 0.424 8.33 0.91
Raghunathan et al.[63] 165 118 45 89 32 −27.82 0.389 1.92 0.72
Hounktpati et al.[58] 154 110 42 84 30 −29.73 0.388 1.91 0.71
1 Units are given in GPa, 2 Units are given in 1

TPa
*The anisotropy is calculated after Zener [13], **Forged, ***Forged and aged

Figure 56 – Five different single crystal elastic constants are shown. Three grain-to-grain
interaction models were applied and a texture weighting was tested. The texture only shows a
small difference regarding Hill’s and Matthies grain-to-grain interaction model.

It increases c11 and c12 and decreases c33 and c44. Even though the effects are not large
the texture may considerably influence the mechanical properties if occurring in a sharp,
very distinct way, as for example experienced during additive manufacturing. Hounkpati
et al., 2016 provided a comparison of single-crystal elastic constants for different β-alloys
measured with different techniques in various conditions [58]. Significant variations in the
elastic properties for β phases can be found in the literature, table 17. However, the results
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Table 18 – A summary of the materials and techniques to investigate the elastic properties
of the β-phase of titanium.

Name & Group Composition w% Phase Method
Freour et al.[34] Ti - Al 5 - Cr 4 - Zr 2 - Mo 4 - Sn 2 α, β XRD

Ledbetter et al.[62] pure Ti β Ultrasound
Petry et al.[2] pure Ti β Phonons

Raghunathan et al.[63] Ti- V 10- Fe 2- Al 3 β Synchroton
Hounkpati et al.[58] Ti - Mo 15 - Nb 3 - Al 3 - Si 0.2 α, β EPSC

found in this work varied only little by applying different grain-to-grain interaction models,
as shown in figure 57. In the literature two sets of constants were found in pure Ti alloys
under elevated temperatures. First Petry et al. measured the phonon dispersion relation on
in-situ grown b.c.c. Ti at 1020 ◦C in 1991 [2]. Later Ledbetter et al. reported a different
set obtained via resonant ultrasound spectroscopy at 1000 ◦C in 2004. He could only access
c11 and c12 directly and therefore calculated c44 by assuming different values for the Zener
anisotropy [62]. Both Petry et al. and Ledbetter et al. obtained similar values regarding
c44 which agree to values obtained in this work. The main differences are observed for c11

where Petry et al. show a better agreement with the results of the current work. On the
other hand for c12 better agreement is achieved to the measurements of Ledbetter et al..
The previous measurements suggest a high Zener anisotropy value at high temperatures.
All measurements performed at room temperature on the other hand show a significantly
lower anisotropy. Except the measurement performed by Raghunathan et al. on forged
Ti–10V–2Fe–3Al which shows an incredible high Zener anisotropy bigger than 8 resulting
in a very low Young’s modulus of only 36 MPa for this kind of material. Leading to the
conclusion that higher temperature causes more anisotropic mechanical behavior of the
β-phase in Ti. Another cause for the reduced anisotropy may be in the alloying elements.
Ledbetter et al. and Petry et al. report Zener values of 4.5 and 3.0 on pure Ti while
measurements on alloyed Ti report values near 2.0. To determine the exact contribution
of either temperature or alloying on the anisotropy a more detailed study is needed to be
performed. At room temperature Freour et al. estimated the single-crystal elastic constants
of the β-phase by applying an explicit three-scale inverse self consistent model onto the dual
phase Ti-17 alloy [34]. Elasto-plastic self consistent investigations have been performed by
Hounktpati et al. on the dual phase alloy Ti-β21S. Both of which show quite high values for
c11 and c12 compared to values obtained for Ti38644. The values of c11 agree much better
to values measured in the dual phase alloy Ti6246 without taking into account the load
transfer indicating that the calculation schemes used by Freour et al. and Hounktpati et
al. are influenced by the second present phase and lead to “effective” single-crystal elastic
constants.
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Figure 57 – All single crystal elastic constants of the β phase are shown for different grain-
to-grain interaction models. The difference of the single-crystal elastic constants between the
different interaction models is very small.

From the literature and the results of this work it can be concluded that the differences
in the single-crystal constants arise from the presence of a second phase while the alloying
elements contribute little to the observed discrepancies.
The load partitioning applied to the Ti6246 sample indicates a significant load transfer from
the β phase to the α phase. The stress in the β phase is reduced by 11 % and transferred to
the α phase, increasing its stress by 3 % (note that the smaller increase is mainly due to the
ratio of phase fractions of around 1:4). The single-crystal elastic constants corrected for load
transfer are shown in table 19. Figure 58 reveals the impact of the load transfer approach
on the resulting elastic constants in Ti6246. A clear shift of the values towards those of the
single phase alloys can be observed [42]. In particular the load transfer corrected values for
the β-phase in Ti6246 almost match the corresponding values in Ti38644. The impact of
the load transfer in the β phase for the Reuss (1929), Hill (1952) and Matthies et al. (2001)
models yields a change of about 10 % in most cases, whereas for the Kroener (1958) and
de Wit (1997) models the changes in the elastic constants remain below 5 %. As illustrated
c11 of the β phase was shifted from 143.8 to 124.3 GPa, c12 from 78.9 to 66.3 GPa and
c44 from 43.1 to 37.8 GPa for the Reuss model. The single-phase values of 124.9, 69.9
and 38.0 GPa for the same model almost match the ‘load-transfer-corrected’ ones. Similar
behaviour is also observed for all other models. Especially the obtained bulk properties
match the single phase values more accurately, decreasing the Young’s modulus in the β
phase to 88 GPa. Owing to the lower increase in stress in the α phase the changes remain
rather small, but the results achieved with the load transfer model match the single-phase
values more consistently. The comparatively small changes in the elastic constants when
using the Kroener (1958) and de Wit (1997) models are supposedly due to the assumption
of inclusions in a matrix, which is essentially the same assumption as used for the load
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Table 19 – The single-crystal elastic constants of Ti6246 which consists of a hexagonal α-
and b.c.c. β-phase measured on P07 HEMS [42].

Model c1
11 c1

33 c1
12 c1

13 c1
44 E1 G1 µ2 ν

P 6(3) /m m c
Reuss 146 139 76 49 43 103 39 −17.7 0.311
Reuss* 150 144 78 51 46 106 41 −17.2 0.311
Hill 164 140 103 35 48 103 39 −17.7 0.311
Hill* 168 146 105 35 50 106 41 −17.2 0.311
Matthies 157 143 96 39 48 103 39 −17.5 0.309
Matthies* 162 149 98 40 50 106 41 −17.0 0.309

I m 3 m
Reuss 144 − 79 − 43 99 37 −20.5 0.335
Reuss+ 124 − 66 − 38 88 33 −22.6 0.329
Hill** 138 − 82 − 50 99 37 −20.5 0.335
Hill+ 120 − 69 − 43 88 33 −22.6 0.329
Kroener 132 − 72 − 44 99 38 −19.0 0.320
Kroener+ 129 − 74 − 37 88 32 −23.7 0.342
DeWit 128 − 75 − 48 99 37 −19.6 0.323
DeWit+ 125 − 78 − 43 91 34 −22.6 0.338
Matthies** 138 − 81 − 50 100 37 −20.4 0.335
Matthies+ 119 − 69 − 43 88 33 −22.6 0.329

1 Units are given in GPa
2 Units are given in 1

TPa
+ Calculated with load partitioning
** The anisotropy was fixed for this fit

transfer.

7.2.3 The Plastic Deformation of Ti6246

The plastic deformation of Ti6246 has been investigated during the same diffraction experi-
ment on the HEMS beamline by extending the tensile test beyond the elastic regime. As
described earlier the small scattering angles of the synchroton radiation allows to capture
full Debye Scherrer rings during a continuous measurement. This eliminates additional
uncertainties caused by adjusting the load applied to sample to keep the strain constant
during the collection at different sample orientations as shown in figure 43.
The macroscopic stress-strain relation in figure 59 shows a maximum yield of 1 300 MPa
which is reached early on during the deformation at about 1% total strain. After reaching
the maximum yield the total yield stress drops by 2% and remains nearly constant until
more than 10% strain is introduced into the sample. The macroscopic behavior suggests
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Figure 58 – The single-crystal elastic constants of the α- and β-phase os Ti6246 are compared
to the results obtained from the corresponding single-phase measurements. For each single-
crystal elastic constant two sets of columns are shown to compare the effective constant to
the values obtained by applying the load transfer which is indexed by LP. The values measured
in the corresponding single phase alloys are marked by red. For both phases a significant
better agreement agreement to corresponding values is achieved by applying the load transfer.

that strain hardening is either very small or not present during the plastic deformation of
Ti6246 indicating perfect plasticity or even strain softening.

The individual lattice strains of the α-phase planes (100), (002) and (101) and of the
β-phase planes (110), (200) and (310) are shown in figures (60) and (61). The lattice
strains of the longitudional expansion in the β-phase evolve more pronounced than those of
the alpha-phase after reaching the plastic regime, indicating a larger load transfer between
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Figure 59 – The macroscopic stress-strain of Ti6246 consisting of an α- and β-phase. The
plastic regime starts after the applied load reached more than 1 100 MPa. The maximum
yield is about 1 300 MPa. It is reached at the beginning of the plastic regime at about 1%
strain. The macroscopic stress remains nearly constant until the strain reaches 10% and drops
later as the diameter of the sample gets significantly smaller.

different lattice directions in this phase. For the (002) peak of the α-phase the average
strain is growing by 0.001 while the (200) peak of the β-phase increases by more than
0.002. Contrary to the β-phase the other lattice strains of the α-phase are decreasing by
approximately 10% at the beginning of the plastic deformation suggesting that parts of the
stress redistribution during the elastic loading is reversed at this point. After the stress
redistribution in the α-phase is complete the strains of lattice plains are continuously growing
until the macroscopic strain reaches more than 11% and the applied macroscopic stress
is reduced significantly to keep the total strain rate constant. This behavior shows that
during the early stages of deformation stress is piling-up in the average grains of both the α
and β-phase. In the late stages of plastic deformation, above 11% macroscopic strain, the
stress pile-up stops with one exception on each phase, the (002) peak of the α-phase which
increases the stress in two steps and the (110) peak of the β phase, first decreasing the
lattice strains and in the second phase increasing them again. This feature is most visible
for the lateral contraction as shown in figure 61.
The refinement of the diffraction patterns at different deformation stages shows that

the change in the peak area is only caused by the microstructural changes concerning the
orientation of individual grains. Figure 62 shows the evolution of the peak area for different
peaks during the plastic deformation. The increase of the area in the α-phase is mainly
caused by twinning even if the β-phase grains prohibit twinning, but in the case of Ti6246 a
large volume fraction of the α phase is not neighboring the β phase. The strong decrease of
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Figure 60 – The lattice strains of three peaks of the α- and β-phase. The (200) peak of
the β-phase shows the largest lattice strains in the elastic regime and the strongest evolution
of lattice strains after entering the plastic regime. The lattice strains caused by elastic
deformation are getting smaller showing that the stress reduces for the (200) lattice plains
during plastic deformation indicating a load transfer to other lattice directions.

the peak areas for β-phase is caused by microstructural changes resulting in a reorientation
of the large grains or by parts of it after critical slip families are activated causing a stress
relief by slip transfer in the late deformation stages. As the data obtained for the lattice
strains suggest a large quantity of dislocations are piling-up in β-phase increasing the stress
in this phase significantly. Figure 63 shows the increase in the Full Width at Half Maximum
(FWHM) of the peaks over the sample strain. The FWHM in diffraction is coupled to micro
strains, point-defect density and dislocation density if the microstructural effects are excluded.
Because the grain size of both phases exhibits 1µm as shown in figure 48 the increase in
the β-phase is mainly caused by dislocation pile-ups caused by the plastic deformation as
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Figure 61 – The effects obsverved during the latteral contraction are very similar to those
observed from linear expansion but are more pronounced. The lattice strains of the same
three peaks of the α- and β-phase are shown. The effects on the (200) peak of the β-phase
are mopre pronounced. The lattice strains caused by elastic deformation are getting smaller
after entering the plastic regime showing that the stress reduces for the (200) lattice plains by
introducing more plastic strains.

reported earlier in the literature [64]. The increase is large enough to accumulate significant
quantities of stress in the grains decreasing their total yield. The effect on peaks measured
in the α-phase is significantly smaller. They show only a small increase over all different
stages of plastic deformation.
Figure 48 shows a microstructure typically formed by a slow cooling process from high

temperatures on titanium alloys containing β-stabilizing elements. The α-phase forms from
the β-phase in basket-weave structures with distinct alignment to the surrounding β-colonies.
The orientation relation originates from the Burgers orientation relationship between the
two phases, {110}β/(0001)α and <111>β/<1120>α characterizing the transformation
from the β- to the α-phase [65]. This microstructure promotes slip transfer across grain
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Figure 62 – The area increase of the observeg peaks over the sample Strain. The b.c.c.
phase shows a light decrease of the peak are along the (200) and (310) lattice directions.
The only increase is observed along (110). During the same time the area of the peaks is
increasing suggesting strong microstructural changes during the deformation in the β-phase.
The increase in the peak area for the α-phase is mostly caused by twinning.

Figure 63 – The FWHM increase of the observed peaks over the sample strain. The b.c.c.
phase shows a strong increase of the peak are along the (200) and (310) lattice directions
resulting in large pile-up of dislocations. During the same time the area of the peaks is
decreasing suggesting strong microstructural changes during the deformation in the β-phase
due to additional stress.

boundaries as it sets the angle of intersection lines of possible active slip planes.
Figure 64 shows the lattice strain over the macroscopic strain of three lattice planes of
the α- and β-phase of Ti6246 for the longitudional expansion. The evolution of the lattice
strains of the{110} plane of the β-phase is very similar to the (0001) lattice plain of the
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Figure 64 – The lattice strains of three peaks of the α- and β-phase for linear expansion.
The β-phase shows higher average lattice strains than the α-phase. The strains of the{110}
lattice plane of the β-phase is very similar to the (0001) plain of the α-phase. It is getting
smaller after entering the plastic regime and remaining constant until the macroscopic strain
reaches 9% indicating slip activity during this period. The strains then increase again until
15% after which slip activity increases again.

Figure 65 – The lattice strains of three peaks of the α- and β-phase for the lateral contraction.
The β-phase behaves differently compared to iron because the lattices strains of the (110)
plane are getting smaller in late deformation stages. The α-phase shows the largest contraction
along the c-direction. The strain evolution of the (002) lattice plane shows a large increase
during early plastic deformation indicating a yield strength along this crystal direction.

α-phase indicating a similar slip activity along these orientations. The lattice strain evolution
also shows that the α-phase shows basal slip during all stages of deformation and prismatic
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slip starting only at late stages of deformation above 15% macroscopic strain.
Besides the correct alignment of individual grain slip transfer only occurs if the correct set
of slip systems is activated in both phases at the same time minimizing the Burgers vector
of grain boundary dislocations. The lattice strain evolution in the case of Ti6246 shows
that the average stress along specific lattice directions is getting smaller in the late stage of
deformation after the prismatic slip systems of the α-phase are activated. This indicates the
slip transfer is caused by prismatic slips of the α-phase crossing to the (110) slip plane of
the β-phase. A similar behavior is reported in the near α alloy Ti6246Si by Joseph et al.
[64].
The lateral contraction of the lattice planes is shown in Figure 65. The stress pile-up in the
early stages of plastic deformation causes pressure along the c-axis of the α-phase resulting
in a large lattice strain rate of the (002) plane until the macroscopic strain reaches 13%.
The β-phase behaves differently to the investigated b.c.c. iron phase. The decreasing strains
along the planes (110) may be caused by the prismatic slip systems activated in the α-phase.
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8 Conclusion

Diffraction techniques were used to determine the mechanical behavior of multi-phase
alloys. A technique for the measurement of single-crystal elastic constants introduced by
Gnäupel-Herold et al. was further developed to account for texture and possible stress
distributions among different phases present in the material. The properties derived from
the elastic measurements are further used as input to treat plastic deformation within the
Elasto Plastic Self Consistent (EPSC) framework. In order to evaluate the diffraction data a
special evaluation software was developed. The software was first tested for its accuracy
and performance on ferrous metals. The technique was then applied to investigate different
titanium alloys used in aerospace industry. The single-crystal elastic constants of the α
and the β phase are measured on different single phase alloys and discussed with literature.
The dual phase titanium alloy Ti6246 was investigated for its elastic deformation behavior
and compared to the results achieved by single-phase measurements and for its plastic
deformation behavior.
The software developed to evaluate the obtained experimental data is capable to determine
the Diffraction Elastic Constants (DEC) and single-crystal elastic constants of materials
consisting of f.c.c., b.c.c., h.c.p crystal structure or any combination of them. For this
purpose the classical stress analysis is applied in reverse via fitting the elastic constants from
measuring the lattice strains at specific applied stress states of the sample. The specific
microstructures of the engineering materials investigated are taken into account by selecting
one of five implemented grain-to-grain interaction models introduced in the theory section
of this work. To account for the texture the software introduces weightings based on an
input Orientation Distribution Function (ODF) for the different crystallographic directions
measured during the diffraction experiment. The stress distribution in dual phase materials
is calculated based on the elastic constants and assumed microstructure of each individual
phase using a self-consistent approach based on Eshelby’s inclusion theory. A natural
extension to the elastic analysis via diffraction is offered by the EPSC framework suggested
by Hutchinson which was implemented to describe the plastic deformation behavior. The
software uses the obtained single-crystal elastic constants for the EPSC modeling of the
plastic deformation and compares the results to diffraction or tensile data.
The accuracy and utility of the technique was tested on different ferrous metals. They are
the perfectly suited candidates for that purpose as they are commonly used in industry and
a large amount of characterizations are available. From the six grain-to-grain interaction
models implemented Voigt prooved to be not useful for the evaluation since the strains
are not uniquely defining the elastic constants and the algorithm tends to converge into
multiple results depending on the starting values given. The Kroener and consequently the
de Wit grain-to-grain modeling show minor gaps in the domain of the function. This follows
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from the self consistent approach used to derive the shear modulus from a third degree
polynomial. However, the gap in the domain does not influence the accuracy of the gained
results but only increases the iterations needed to fit the single-crystal elastic constants.
The results of the grain-to-grain interaction models compare well to existing literature values.
The differences between the grain-to-grain interaction models were significant enough and
influence the overall results. Therefore it is essential to select the most suitable interaction
model depending on the present microstructure of the material. For cubic materials the
Zener anisotropy has proven to be a quite strong indicator for the result quality of the
interaction model and can be used to qualify the result additionally to microstructure. In
a similar manner but not restricted to cubic symmetries is the use of c11

c12
. This relation is

quite similar to the Zener anisotropy but may be used in hexagonal systems as well.
The influence of the texture was also tested on the ferrous metals. But for the investigated
samples the use of additional weightings during the evaluation did not change the results
significantly above the uncertainties. It is therefore adequate to assume a random orientation
distribution among the grains while evaluating the single-crystal elastic constants in case of
not strongly textured, i. e. multiple of random distribution values below 8. This results was
also predicted by Matthies in 2001 but with the restrain of a sufficient number of grains
taking part in the deformation process.
The EPSC framework introduced is perfectly suited for comparison to diffraction data.
The averaging applied during the modeling can be modified to match the average strains
measured during diffraction and reveals the stress state of prior inaccessible orientations
and directions. In this work the framework was used to test the prediction of the stress-
strain behavior of the steel S235JR. The simulation matches well with the experimentally
observed data and literature data obtained on a ferrous dual-phase alloy. On sample level
the macroscopic strain rate in the experiment is somewhat higher in the early plastic regime
than predicted by the framework but in later stages of deformation they agree well. Contrary
the diffraction data agree better in early stages of deformation because in later stages the
simulation is more isotropic than observed experimentally. By including more deformation
mechanisms the accuracy of the simulation may improve further on sample and on lattice
strain level. Similar results are found in the literature for α-iron.
Titanium alloys are modern high performance alloys first used in the 1940’s by the aerospace
industry. The two most important phases of titanium are the α phase (h.c.p.) and the β
(b.c.c.). Even though both phases are known for a while, reports on the single-crystal elastic
constants of both phases show discrepancies to one another. Especially for the β-phase
at room temperature where reported Young’s moduli vary from 40 MPa to almost 100
MPa. This inconsistency originates from the thermodynamic instability of the β-phase and
most samples investigated contained α-phase to different extends without properly taking
it into account during the evaluation. In other cases the β-phase was stabilized at room
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temperature by alloying. This work shows similar single-crystal elastic constants of this
phase measured on two different titanium alloys with different evaluation approaches.
Modern engineering is improving many high performance alloys by using the properties of
multiple phases and balancing them by modifying the phase fraction to best suit the working
environment. Only diffraction techniques are able to deliver distinguishable experimental data
in situ of all present phases. Since one phase influences the other for example by redistributing
the stress only “effective” properties are measured during this kind of experiment. To be
able to directly access the single-crystal elastic constants a self-consistent scheme to account
for the load transfer is introduced into the calculation suggested by Gnäupel-Herold. It
was successfully used to evaluate all 8 single-crystal elastic constants of the α and β phase
of Ti6246 in a single experiment at once. The results are compared to measurements
performed on single-phase alloys containing respective phases. The calculations show a large
redistribution of the stress from β to the α phase shifting the single-crystal elastic constants
to almost the values obtained by the single-phase measurements. This new method improves
the accuracy and accessibility of elastic properties on high performance alloys greatly.
Further investigations of the plastic deformation of Ti6246 show very little strain hardening
and the maximum applied stress is reached in the early stages of plastic deformation. Most
of the measured lattice strains show continuous increase indicating a stress pile-up at the
grain boundaries of the α- and β-phase. The stress pile-up can be observed along different
lattice directions in both phases with only a few exceptions. In later stages of plastic
deformation, at about 13 % sample strain this behavior changes after the basal slip in the
α-phase is initiated. At this point in deformation the stress distribution between the phases
has completely changed and the distribution valid in the elastic regime is reversed. The
formation of the α-phase from cooling is restricted to certain orientations depending on
the alignment of the neighboring β grains. This behavior promotes slip transfer between
grain boundaries causing a reduction of the pilled-up stress in both phases. During this
deformation phase the stress tensor in the grains is changing relieving stress along some
lattice directions and redistributing it along others.
The presented diffraction techniques and evaluation methods offer a wide range of possibilities
for further methods of characterization. The evaluation and comparison of the EPSC
modeling to diffraction data could be improved by performing a classical stress analysis.
The obtained values would help to further develop EPSC prediction models for the stress
pile-up at grain boundaries as observed during the early stages of the deformation of Ti6246.
These stress pile-ups are caused by a dislocation pile-up at the grain boundary and there
have been efforts by different groups to incorporate these effects into the EPSC scheme
[66, 67, 68, 69]. For a description of the stress release during slip transfer the theoretical
work of these groups is of great importance because it allows an incorporation of the slip
transfer at certain stages of modeling. The knowledge of the stress tensor development of
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average grain gives the possibility to test the theoretical predictions against measured values
and would validate the averaging principles applied to find analytical solutions.
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A Appendix

A.1 C# Code Examples of the Basic Classes

public class Sample

{

# region Parameters

private string _name;

private double _area;

public List < DataManagment . CrystalData .CODData >

CrystalData ;

public List < Pattern . DiffractionPattern >

DiffractionPatterns ;

public List < Stress . Macroskopic . TensileTest >

TensileTests ;

public List <List < Stress . Microsopic .REK >>

DiffractionConstants ;

public List <List < Stress . Microsopic .REK >>

DiffractionConstantsTexture ;

public List <List < Stress . Microsopic . ElasticityTensors >>

ElasticTensorData ;

public

List < MathNet . Numerics . LinearAlgebra .Matrix <double >>

StressTransitionFactors ;

public List < Stress . Plasticity . ElastoPlasticExperiment >

SimulationData ;

...

# endregion

# region Methods

...

}

Listing 1 – All basic parameters implemented into the sample class. This class represent the
heart of the data utilized by the software.
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A.1 C# Code Examples of the Basic Classes

public class StrainStressAssociation

{

# region Parameters

public double PhaseFractionStress ;

public double Stress ;

public double PsiAngle ;

public double PhiAngle ;

private bool _elasticRegime ;

public double _macroskopicStrain ;

public double _Strain ;

public double _StrainError ;

private double _mRDValue = 0;

public MathNet . Numerics . LinearAlgebra .Vector <double >

MeasurementDirektionVektor ;

public Analysis .Peaks. DiffractionPeak DPeak;

...

# endregion

# region Methods

public MathNet . Numerics . LinearAlgebra .Matrix <double >

MeasurementSystemStress ();

...

# endregion

}

Listing 2 – All basic parameters implemented into the Strain class. This class handles the
strain values obained by diffraction experiments. It is the core class for the elastic calculations.
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A.1 C# Code Examples of the Basic Classes

public class YieldSurface

{

# region Parameters

public List < ReflexYield > ReflexYieldData ;

public List < ReflexYield > PotentialSlipSystems ;

public DataManagment . CrystalData . CODData CrystalData ;

...

# endregion

# region Methods

public MathNet . Numerics . LinearAlgebra .Matrix <double >

HardeningMatrixSlipSystem (List < ReflexYield >

potActiveSystems , ...)

public MathNet . Numerics . LinearAlgebra .Matrix <double >

HardeningMatrixSlipSystem (List < ReflexYield >

potActiveSystems )

public MathNet . Numerics . LinearAlgebra .Matrix <double >

SlipSystemX (List < ReflexYield > potActiveSystems , ...)

public MathNet . Numerics . LinearAlgebra .Matrix <double >

GetInstStiffnessFactors (List < ReflexYield >

potActiveSystems , ...)

public bool CheckForMise ( ReflexYield reflex ,

MathNet . Numerics . LinearAlgebra .Matrix <double >

aStress )

public bool CheckStandard ( ReflexYield reflex ,

MathNet . Numerics . LinearAlgebra .Matrix <double >

aStress )

...

# endregion

}

Listing 3 – All basic parameters and methods implemented into the YieldSurface class. This
class handles the strain values obained by diffraction experiments. It is the core class for the
EPSC calculations.
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A.1 C# Code Examples of the Basic Classes

public class ElasticityTensor

{

# region Parameters

public MathNet . Numerics . LinearAlgebra .Matrix <double >

_stiffnessTensor ;

public MathNet . Numerics . LinearAlgebra .Matrix <double >

_stiffnessTensorError ;

public MathNet . Numerics . LinearAlgebra .Matrix <double >

_complianceTensor ;

public MathNet . Numerics . LinearAlgebra .Matrix <double >

_complianceTensorError ;

public Texture . OrientationDistributionFunction ODF;

public List <REK > DiffractionConstants = new

List <REK >();

public List <REK > DiffractionConstantsTexture = new

List <REK >();

public double AnIsotropy = 1.0;

...

# endregion

# region Methods

public double

S1ReussCubic ( DataManagment . CrystalData . HKLReflex hKL)

public double

HS2ReussCubic ( DataManagment . CrystalData . HKLReflex

hKL)

...

# endregion

}

Listing 4 – All basic parameters implemented into the ElasticityTensor class. This class
handles the basic methods for elastic behavior. It is the core class for the elastic calculations.
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A.1 C# Code Examples of the Basic Classes

public class SimulationData

{

# region Parameters

public List < MathNet . Numerics . LinearAlgebra .

Matrix <double >> StressSFHistory ;

public List < MathNet . Numerics . LinearAlgebra .

Matrix <double >> StrainSFHistory ;

public List < MathNet . Numerics . LinearAlgebra .

Matrix <double >> StressRateSFHistory ;

public List < MathNet . Numerics . LinearAlgebra .

Matrix <double >> StrainRateSFHistory ;

public List <List < GrainOrientationParameter >>

GrainOrientations ;

public List <List <List <List <double >>>>

YieldChangeCFHistory ;

public List <List <List < MathNet . Numerics . LinearAlgebra .

Matrix <double >>>> StressRateCFOrientedHistory = new

List <List <List < MathNet . Numerics . LinearAlgebra .

Matrix <double >>>>();

public List <List <List < MathNet . Numerics . LinearAlgebra .

Matrix <double >>>> StrainRateCFOrientedHistory = new

List <List <List < MathNet . Numerics . LinearAlgebra .

Matrix <double >>>>();

public List <List <List <List < ReflexYield >>>>

ActiveSystemsCFOrientedHistory = new

List <List <List <List < ReflexYield >>>>();

...

# endregion

# region Methods

...

}

Listing 5 – All basic parameters implemented into the Simulation class. This class handles
the complete data during the EPSC modeling. It is the core class for the EPSC data storage.
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A.2 C# Code Examples of the Basic Methods

public static bool FitElasticityTensor ( ElasticityTensors ET)

{

ElasticityTensors TrialET = ET.Clone ();

for (int TotalTrials = 0; TotalTrials <

MaxFittingTrials ; TotalTrials ++)

{

Vector <double > ParamDelta ;

ParamDelta = ET. ParameterDeltaVektor ( Lambda );

TrialET . Parameter += ParamDelta ;

double Chi2Trial = Chi2. Chi2Classic ( TrialET );

double Chi2Real = Chi2. Chi2Classic (ET);

if (Math.Abs( Chi2Trial - Chi2Real ) >

FunctionFittingAcuraccy )

{

if ( Chi2Trial > Chi2Real )

{

TrialET . Parameter = ET. Parameter ;

Lambda *= FittingLambdaMulti ;

}

else

{

ET. Parameter = TrialET . Parameter ;

Lambda /= FittingLambdaMulti ;

}

}

else

{

if ( TotalTrials > 3)

{

return true;

}

else

{

if ( Chi2Real > Chi2Trial )

{
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A.2 C# Code Examples of the Basic Methods

ET. Parameter = TrialET . Parameter ;

Lambda /= FittingLambdaMulti ;

}

}

}

}

return false;

}

Listing 6 – Basic LMA implementation for the elasticity tensors.
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A.2 C# Code Examples of the Basic Methods

public static bool FitElasticityTensorLoadTransfer (...)

{

while( difference < limit)

{

Matrix <double > first = -1 * sampleStiffnesses

* ( eshelbyTensor - unity);

Matrix <double > second = ( _stiffnessTensor -

sampleStiffnesses ) * eshelbyTensor ;

second += sampleStiffnesses ;

Matrix <double > third =

(this. ReussTensorData [ inclusion ]. _stiffnessTensor

- sampleStiffnesses ) * sampleCompliances ;

Matrix <double > ret1 = first * second . Inverse ()

* third;

ret1 += unity;

...

FourthRankTensor firstFR = -1.0 *

sampleStiffnessesFR * ( eshelbyTensorFR -

unityFR );

FourthRankTensor secondFR =

( phaseStiffnessesFR - sampleStiffnessesFR ) *

eshelbyTensorFR ;

secondFR += sampleStiffnessesFR ;

FourthRankTensor thirdFR = ( phaseStiffnessesFR

- sampleStiffnessesFR ) * sampleCompliancesFR ;

...

FourthRankTensor secondInverseFR =

secondComp . Inverse ();

FourthRankTensor ret1FR = firstFR *

secondInverseFR * thirdFR ;

ret1FR += unityFR ;

Matrix <double > ret1Comp =

ret1FR . GetVoigtTensor ();

Matrix <double > ret2 = +-1 -
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(this. CrystalData [ inclusion ]. PhaseFraction *

ret1;

ret2 /= this. CrystalData [ matrix ]. PhaseFraction ;

this. StressTransitionFactors .Clear ();

ResetPhaseStresses () ...

RefitAllDECStressCorrected () ...

RefitElasticConstants () ...

difference = elasticConstantsTrial -

elasticConstants ;

}

Listing 7 – This listing shows the self-consistent routine to determine elastic constants in
multi-phase alloys
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A.3 C# Code Examples of the EPSC Modeling

public static void PerformStressExperiment ( Sample actSample ,

...)

{

FourthRankTensor overallStiffnesses =

GetSampleStiffnesses ( textureActive );

FourthRankTensor overallStiffnessesComp =

overallStiffnesses .Clone ();

...

for (int phase = 0; phase <

actSample . CrystalData .Count; phase ++)

{

potentialActiveGOriented .Add(new

List <List < ReflexYield >>());

grainStressesOriented .Add(new List <Matrix <double >>());

grainStrainsOriented .Add(new List <Matrix <double >>());

shearRate .Add(new List <List <double >>());

yieldChangeOriented .Add(new List <List <double >>());

averageYieldChange .Add(new double [5]);

plasticTensorPhase .Add(new List < PlasticityTensor >());

}

for (int actCycle = 0; actCycle < cycleLimit ;

actCycle ++)

{

constraintStiffness =

actSample . PlasticTensor [0]. GetConstraintStiffness (eTmp ,

2);

for (int phase = 0; phase <

actSample . CrystalData .Count; phase ++)

{

for (int grainIndexTmp = 0; grainIndexTmp <

grainIndexCounter ; grainIndexTmp ++)

{

if ( singleCrystalTracking )

{

...

for (int pS = 0; pS <

YieldInformation [phase ]. PotentialSlipSystems .Count;

pS ++)

{
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PotentialSlipSystems [pS]. YieldMainHardennedStrength

+= hardennedYield [pS];

}

}

Matrix <double > transformationMatrix ;

if ( actCycle == 0)

{

for (int k = 0; k < n; k++)

{

actStressGrainBc +=

StressRateCFOrientedHistory [phase ][k][ grainIndex ];

}

actStressRateGrainBc = stressRateS ;

}

else

{

FourthRankTensor lastBc ;

for (int k = 0; k < n; k++)

{

actStressGrainBc

+= StressRateCFOrientedHistory [phase ][k][ grainIndex ];

}

actStressRateGrainBc = lastBc * stressRateS ;

}

actStressOriented = actStressGrainBc +

actStressRateOriented ;

List < ReflexYield > potentialActive =

GetPotentiallyActiveSlipSystems ( actStressOriented ,

slipCriterion );

if ( potentialActive .Count != 0)

{

YieldInformation [phase ]. CheckDependencies (...);

while( trialSystems .Count != 0)

{

...

HardeningMatrix =

YieldInformation [phase ]. HardeningMatrixSlipSystem

( trialSystems );

...

ConditionX =

YieldInformation [phase ]. SlipSystemX ( trialSystems ,
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plasticTensorGrain . HardeningMatrix , ...);

for (int i = 0; i < trialSystems .Count; i++)

{

InstantStiffnessFactors .Add

( YieldInformation [phase ]. GetInstStiffnessFactors

( trialSystems , TensorData [phase], i,

plasticTensorGrain . ConditionY ));

}

GrainStiffness =

GetInstantanousGrainSiffnessTensor ( trialSystems ,

TensorData [phase],

plasticTensorGrain . InstantStiffnessFactors );

if ( invDifference < 0.0001)

{

GrainTransitionStiffness =

PlasticTensor [phase ]. GetTransitionConstants

( constraintStiffness ,

plasticTensorGrain . GrainStiffness ,

overallStiffnesses );

SetShearRates () ...

if (! negativeShear )

{

SetYieldChange () ...

if ( difference < 1)

{

ParameterSave () ...

}

}

}

}

}

overallStiffnessesPhase [phase] =

AverageInnerProduct ( plasticTensorPhase [phase ]);

}

for (int phase = 0; phase <

actSample . CrystalData .Count; phase ++)

{

overallStiffnesses +=

actSample . CrystalData [phase ]. PhaseFraction *

overallStiffnessesPhase [phase ];

}
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if ( overallDifference < 100)

{

break;

}

else

{

overallStiffnessesComp = overallStiffnesses .Clone () as

Tools. FourthRankTensor ;

}

}

SaveAllParameters () ...

}

Listing 8 – This listing shows major parts of the EPSC routine
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