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Abstract

Kinaesthetic robot teaching, where a robot is physically guided by a human demon-
strator, is a fast robot programming paradigm especially suitable for the flexible
automation problems that arise in today’s industrial manufacturing landscape. Un-
derstanding a robot application as a sequence of subtasks, the segmentation of cap-
tured demonstrations and the classification of identified segments are the first key
steps towards an fully automated parameterization of a robot program. These two
steps are typically decoupled from each other and even consider different optimiza-
tion criteria. This thesis aims for a segmentation approach that merges the classifi-
cation and segmentation steps. Specifically, in this work we present a segmentation
technique that incorporates knowledge about the interaction dynamics and simple
human models into its segment model. This enables a joint segmentation and clas-
sification approach based solely on estimated control parameters. Experiments on
a 7 degrees-of-freedom manipulator equipped with a force sensor on its wrist show
promising results in a pick and place scenario and a scenario where a soap dispenser
is pressed. Finally, we also validated the applicability of the segmentation algorithm
in an online fashion during the teaching process obtaining comparable results.
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Chapter 1

Introduction

Among all robot programming paradigms, kinaesthetic teaching has become a popu-
lar method to quickly prototype solutions with robot manipulators, especially in the
field of industrial manufacturing. It aims to take advantage from human cognitive
capabilities, namely the ability to understand a task, its structure, goals and condi-
tions and transfer them to the robot through demonstrations. Human workers are
extremely efficient and flexible: Thanks to their deeper task understanding, they are
able to optimize a task for any desired criteria on the fly and also to detect errors
during the task execution. To achieve the same level performance and flexibility
on a robot from demonstrations, solely mimicking human motions is not sufficient;
the recognition of the higher level human intention from demonstrated behavior is
key. This becomes a very challenging task when one considers all possible semantic
interpretation of a motion captured by a limited set of robot signals. The task seg-
mentation problem is an Divide and Conquer approach, where the task is partitioned
in to sub-tasks with different semantic interpretation. The main challenge of this
problem is to represent and detect these subtasks at the same level of abstraction
that the human teacher might have in mind.

Current approaches separate the segmentation and the segment classification into
two sequential steps. First, a segmentation algorithm identifies a set of changepoints,
i.e. specific points in time that define segments of the time series that represents the
observed behavior. With these segments a segment classification algorithm performs
then a semantic evaluation in order to extract a definition of the identified substask.
However, these two steps are typically decoupled from each other and even have
different optimization goals or heuristics. For instance, the segmentation algorithm
might exploit no information about the possible set of actions that the classification
algorithm considers.

To bypass such a loss of information, this thesis aims for a segmentation approach
that combines the classification and the segmentation task into one step. Specifi-
cally, in this work we present an online segmentation technique that incorporates
knowledge about the interaction dynamics and simple human models into its seg-
ment model. This enables a joint segmentation and classification approach based
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solely on estimated control parameters. Experiments on a 7 degrees-of-freedom ma-
nipulator equipped with a force sensor on its wrist show promising results.

1.1 Related Work

The segmentation of time series data is a omnipresent problem in a wide variety
of fields. In the following sections, we will present divided into event-based, and
model-based current segmentation approaches.

1.1.1 Event-based Segmentation

Events are observable patterns derived from heuristics and physical boundaries are
events . The definition of the event also determines the segment definition, which
means it specifies the requirements such as the input space dimensions. Especially,
the generalizable and scalability of the segmentation is derived from the quality of
the used event. For instance, signal manipulation such as noisy sensor signals can
emit fake segments, which damages the stability of the segmentation. In most cases
the definition of the event is fixed, therefore further training becomes not necessary
and by adding the low computational effort of the observation and pattern matching,
the segmentation algorithm can be applied in an online application case. Without
further information, the verification evaluates the quality of the defined event. Due
to the fact, that most segmentations approaches only use the event segmentation
as the pre-segmentation step and the verification is applied on the final results, the
verification contains a combination of both techniques.
In a robotic scenario and in the case of movement primitive segmentation, the zero
velocity crossing event is widely used. In many papers, this fast technique is used
in a preprocessing step in form form of a pre-segmentation. The result is a reduced
set of possible change points with a more manageable size. Therefore, the main
segmentation part eliminate possible instabilities of these technique, which can be
for instance fake event generated due to signal manipulation. [FMJ02] [LKK16]
[LNMP17] [MTS12] Another approach uses the local minima or maxima in the
joint angle space of a humanoid robot as events to detect movement primitives of
observed gestures [CB04]. Supported with a wearable inertial measurement unit
(IMU) sensor, an event can be defined in the force space to segment the individual
strides a walking human [ZKJ+13].

1.1.2 Model-based segmentation

Approaches from this category use a set of underlying models to identify piece-wise
common features in the input space. By assigning of the sections in the observation
to these underlying models, the segmentation is obtained. The quality of the seg-
mentation is based on the accuracy of the underlying model and the input space.
To simplify the evaluation of the segmentation, the underlying model formulation
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is often based on a probabilistic model, such as the already introduced Partition
Product Model. In the case of model-based segmentation techniques, the segment
definition is completed by the definition of the underlying models. The form of such
a model definition can be a set of model parameters or a library of patterns. The
generalizability and scalability of segmentation highly depend on the definition of
the individual models. For instance, the size of the model library and the correlation
among the models are further significant values for the generalizability and scala-
bility of segment definition. The main task of the segmentation algorithm is to find
the best assignment of the section of the input space to the models. In the case of
a probabilistic model formulation, the segmentation is achieved by maximizing the
likelihood. Depending on the complexity and size of the model library and input
space, the computational effort allows an offline, semi-online, or online application
case. In the case of an adaptive model, the defined model update function has to be
taken into account, especially in the context of the computational effort. In general,
more complex models allow more accurate and detailed segmentation, where simple
models are more suited for the identification of underlying structures in the input
space. The segmentation definition and algorithm can be verified by comparing the
results of a manually labeled data set.

A simple model for segmentation of movement primitives can be defined in the mean
squared or mean of the distance of the position trajectory. As model parameter suits
a mean position and by assigning all position points to a limited amount of models,
the segmentation generates a reduced sequence of positions [Pom00] [JGPV17].

Further, the segmentation can be reformulated as into a classification problem. For
this, every model is represented by a class, and the defined decision rule is used to
assign the input space to the models [YZL+19].

Another approach uses a library of generic movement primitives, which can be gener-
ated and trained supported by for instance Probabilistic Dynamic Movement Primi-
tives (ProDMP) and the segmentation will be achieved by recognizing the movement
primitives [LNMP17]. By a probabilistic formulation, the recognition becomes an
optimization, which allows the usage of Expectation maximization (EM), or max-
imum a posterior (MAP) with a problem formulation. By pre-segmentation, a re-
duced set of possible change points is generated, and therefore, the optimization
space is reduced dramatically. This reduction generates the trade-off, that the best
solution isn’t part of the optimization space.

Bayesian Change point detection

The Bayesian change point detection computes the probability of a change point
for every timestamp based on the Bayesian inference method and a defined proba-
bilistic model. The segment definition contains the definition of the model, which is
extended by the requirement of an adaptive Bayesian prior formulation. The origi-
nal formulation contains a normal distributed with non-specified conjugate prior to
the model parameter [Fea06], but the Bayesian change point detection algorithm
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is able to work with every distribution from the exponential family or other dis-
tribution, for which a conjugate prior formulation exists. Further, the model can
also be extended with for instance a linear model by including the linear regres-
sion formulation [XM07]. Based on the Partition Product model is the Bayesian
change point detection able to perform in an online application case without any
pre-segmentation. This is possible due to the incremental model update function,
which updates the segmentation with every new incoming data point. In an offline
application, the number of possible segmentations increases squared with the size
of the data set, which leads to a high computational effort. To improve the compu-
tational efficiency, Paul Fearnhead introduced an algorithm, which uses a recursive
dynamic programming approach and a pruning threshold to reduce the number of
calculation to the most probable hypotheses [Fea06]. Due to the formulation of the
segmentation result as probability of a change point at ever time stamp, the verifi-
cation can be applied in different sensibilities for a change point. Additionally, the
define model and the Bayesian change point detection approach provide different
hyper parameter, which allow a fine tuning of the result.
The Bayesian’s change point detection demonstrates good performance in other
research areas, for instance, the research of the returns of Dow Jones Industrial
Average to detect significant events [Fea06]. Annual global surface temperature
anomalies are successfully detected in the data from the National Oceanic and at-
mospheric administration (NOAA) and National Centres Data Center (NCDC) by
the Bayesian change point detection extending the model with a linear regression
formulation [Rug13]. An online variation of the Bayesian change point detection
algorithm is used, to identify segments of activity corresponding to the different
states of a epileptic brain. For that, the electrocardiography (ECoG) of an epileptic
patient is used [MKA13].

1.2 Outline

The remainder of this thesis is structured as follows. In Chapter 2, the used tech-
niques and their implications are described. The proposed approach is introduced
in Chapter 3. Chapter 4 presents all considered scenarios and preliminary results.
Finally, in the Chapter 5 the achieved results is summarized.
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Chapter 2

Background

This chapter exposes the necessary background on Bayesian Changepoint detection
(BCPD) algorithm, robot modeling, and control that this thesis builds upon.

2.1 Bayesian changepoint detection

In this section, we will introduce the BCPD algorithm. The BCPD algorithm uses
Bayesian inference and a probabilistic model to compute the probability of every
data point to be a proper changepoint. Therefore, the segmentation can be de-
signed by the used probabilistic model and the corresponding model parameter
search space.
In the Section 2.1.1, and Section 2.1.2, we will introduce the Product Partition
Model (PPM) and the Segment Optimization formulation, which describe the math-
ematical foundation of the BCPD. In Section 2.1, we will introduce the offline BCPD
algorithm and in section 2.1.5 the online Bayesian Changepoint detection (oBCPD)
algorthim. Finally, techniques to reduce to computational effort are introduced in
Sec. 2.1.6.

2.1.1 Product Partition Model

Initially, we will introduce the definition of a partition, by taking advantage of the
structure of the input signal and the definition of the segmentation formulation.
The extension of the segment definition by a probabilistic model formulation will
allow us the definition of the PPM, which enables the evaluation of the assigning
of every possible partition to the defined model parameter. Finally, we will intro-
duce a formulation, which enables us to evaluate a segmentation based on a chosen
set of change points and model parameters [QI03] [Dah09]. The PPM is based on
the assumption of underlying models, where a model is defined by a feature func-
tion. These feature functions, described by the model parameters Θ, generate the
observation Y depending on the input signal X. This result in the formulation
Y = fi(θi, X), for the model i and the corresponding feature function fi. Supported
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by this definition, the subsequently detecting of feature changes can be interpreted
as the switching of the underlying model and thereby, the changing of the model
parameter. Additionally, we assume the input signal will has the form of a discrete-
time signal, which is commonly given by the sampling of sensor signals and will result
in the same form for the observation. Finally, this allows the definition of a partition
as a section in the observation Y1:n like Yi:j : {yi, . . . , yj}, where 1 ≤ i < j ≤ n.
The segmentation can be represented by the set of changepoints C, which contains
the indexes of the first observation of every segment and the index of the final ob-
servation like C : {1, c1, . . . , ck, n} and are sorted chronological. As a segmentation
is considered non-overlapping, the set of changepoints C generate the segmentation
S} as the sequence of segments like

S :{s1, s2, . . . , sk}
si :{Yi:i+1|i ∈ C ∧ i 6= n} ,

(2.1)

where the last segment sk is extended by the last point yn
With the product partition distribution formulation [BH92a], the segmentation can
be formulated as the product of probabilities like

P (Y |S) = P (Ys0)P (Ys1) . . . P (Ysk) =
∏
si∈S

P (Ysi) . (2.2)

With the given model probability density P (y|θ), desired features and characteristics
of a underlying model can be described by the model parameter θ. By assuming, that
every data point is independent and identically distributed (i.i.d.), the correlation
between every data point in a segment and the model parameter θ can be formulated
like

P (Yi:j, θ) =

j−1∏
l=i

P (yl|θ)P (θ) , (2.3)

where P (θ) is the model parameter prior. In the context of the segmentation, the
model parameter θ become a latent variable and with the marginalisation of the
model parameter, the formulation can be written like

P (Yi:j|Θ) =

∫ j∏
l=i+1

P (yl|θ)P (θ)dΘ , (2.4)

where Θ is the set of all model parameter [BH92b].
Finally, the probability of given segmentation S can be formulated like

P (Y1:n|S,Θ) =
S∏
si

P (si|Θ)

=
S∏
si

∫ ∏
yi∈si

P (yi|θ)P (θ)dΘ .

(2.5)
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2.1.2 Segmentation Problem Formulation

The goal of the segmentation is to find the set of changepoints, which separate the
input signal into sections, which have the highest matching to predefined criteria.
These criteria are defined in model formulation and by assigning the set of model
parameters Θ.
Base on the probability of a given segmentation Eq. (2.5) provided by the PPM
formulation and the Bayes’theorem, the switched probability of a segmentation given
a observation can be written like

P (S|Y,Θ) =
P (Y |S)P (S)

P (Y )
, (2.6)

where the segmentation have the form defined in Eq. (2.1) and the segmentation
prior P (S) define segmentation features such as a desired average segment length.

Segmentation Search Space

As the search space for the segmentation optimization, every data point is taken
into account, and therefore, the power set ℘ of every data point generates the set
of possible changepoint combinations D. As every segmentation have to cover the
complete observation, the first and last data point has to be a part of every possible
set of changepoints and thus, the search space is defined like

D := {y0, ℘(Y2:n−1), yn}
DS := {S(C)|C ∈ D} ,

(2.7)

where set of segmentationsDS is generated with the segmentation definition Eq. (2.1).

2.1.3 Segmentation Optimization

With the definition of the search space in Eq. (2.7), the segmentation optimiza-
tion can be formulated as a maximum likelihood estimation of the segmentation
probability Eq. (2.6) and is written like

S? = argmax
S?∈DS

P (S|Y,Θ)

S? = argmax
S?∈DS

P (Y |S,Θ)P (S)

P (Y )

S? = argmax
S?∈DS

∏S∈DS
si

∫
P (si|θ)P (θ)dΘP (S)∑DS

S

∏S
si

∫
P (si|θ)P (θ)dΘP (S)

,

(2.8)

where S? is the optimal segmentation for the observation Y .
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The size of the observation n is depending on the mean resolution r and the duration
of the observation tn. If we combine this linear growing with the squared growing of
the power set D, the computational effort of segmentation will be highly increased
for longer observations O((rn)2). So, especially the reduction of the observation size
is one of the first approaches, to limit the computational effort and thus, achieve
the computational performance for an online segmentation.

2.1.4 Offline Segmentation Algorithm

The offline Bayesian changepoint detection algorithm solves the segmentation prob-
lem formulation introduced in Sec. 2.1.2 , by using a recursive formulation of the
forward-backward algorithm.
The priors introduced in the next two sections allow you to customize the segmen-
tation according to an expected segment length distribution or the desired number
of changepoint numbers. The offline BCPD algorithm consists of three steps. In
the first step, every possible segment likelihood in the given observation is com-
puted and stored. In the next step, the likelihood of every possible segmentation is
computed based on the forward recursion technique. In the final step, the change-
point probability is computed as exclusively dependent on the considered location
by marginalizing the number of changepoints.

Segment Length Prior

The distribution of the resulting segment lengths can be controlled with the segment
length prior Pn. In the case of a data set with a constant sample rate and for a
independence of segmentation result from the segment length, the segment length
prior distribution become uniform distributed with the formulation like

Pn(Yi:j) =

(
1

nmax

)j−i
, (2.9)

where nmax ∈ N+ is the predefined maximum segment length. In an case of an
offline application, the maximum segment length is set to length of the complete
observation.

Number of changepoint prior

With the prior distribution of the number of changepoints Pk, the segmentation
result can be control regarding to the segment quantity. The number of changepoint
prior Pk will be considered as uniform distributed, if the segmentation result has no
relation to the number of changepoint. In this case the number of changepoint prior
Pk is formulated like

Pk(k) =

(
1

kmax

)
, (2.10)
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where k is the number of changepoints, kmax is the maximum number of changepoints
and therefore, equal to the number of observer data points kmax = nmax.

The Segment likelihood

The introduced formulation of the segment likelihood in Eq. 2.4 is extended by the
segment length prior and with the representation of a segment by the segment vector
si:j of contain observation, the formulation can be written like

PS(si:j|Θ) =

∫
P (si:j|θ)P (θ)dΘPn(si:j) , (2.11)

where the P (si:j|θ) and P (θ)0 is considered as given by the model definition.

Forward Recursion Formulation

To provide the segmentation probability of every possible segmentation as defined
in Eq. (2.7), the Forward Recursion formulation define the probability of a given
first changepoint Pi(si:j|c1), where the first changepoint is placed at c1 ∈ Yi:j and
the remaining observations is segmented in any possible segmentation and can be
written like

P (s1:n, c1) = PS(s1:c1)PD(sc1+1:n) , (2.12)

where PD(si:j) is the probability of the segmented remaining observations Yi:j.
Beginning with the smallest possible remaining observations Yn−1:n, the segmented
probability can be written like

PD(sn−1:n) = PS(sn−1:n) + PS(sn−1:n)PS(sn:n) (2.13)

and on this base, the segmented probability of the remaining observation can be
recursively formulated like

PD(sn−2:n) = PS(sn−2:n) + PS(sn−2:n−1)PD(sn−1:n)

PD(sn−2:n) =
n∑

i=n−1

PS(sn−2:i)PD(si:n) ,
(2.14)

where n is a changepoint per definition and therefore, the probability is PD(sn:n) = 1.
Finally, the probability of segmentation of the observation Y1:n is formulated like

PD(s1:n) =
n∑
i=1

PS(sn−2:i)PD(si:n) (2.15)

and as it contains all possible segmentations, PD(s1:n) become the segmentation
marginal likelihood.
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Changepoint distribution

With the definition of the first changepoint in Eq. (2.12), the segmentation marginal
likelihood in Eq. (2.15) and the Bayesian Theorem, the probability of the first
changepoint is formulated like

Pc(c1|s1:n) =
P (s1:n, c1)∑
ci∈C P (s1:n|ci)

=
PS(s1:c1)PD(sc1+1:n)

PD(s1:n)
.

(2.16)

Based on this, the probability of the following changepoints Pc(ck|s1:n) can be re-
cursively formulated like

Pc(ci|ci−1, s1:n) =
PS(sci−1:ci)PD(sci+1:n)

PD(sci:n)
, (2.17)

where the number of changepoints k is limited by the number of observation n and
contains always contains the first and last data point k < n.

Elimination of the number of changepoint dependency

The resulting changepoints density depends on the number of changepoints, by the
relation to position in the changepoint sequence. To eliminate this dependency, the
changepoints density marginalized and like

Pcp(yj) =
k−2∑
i=0

Pc(ci|yj)Pk(i) , (2.18)

where Pk(k) is the prior of the number of changepoints.

2.1.5 Online Segmentation Algorithm

Similar to the offline Bayesian changepoint detection is the online Bayesian change-
point detection is based on the Product Partition model formulation. During an
online application, new data points are generated in intervals, which requires an
update of the segmentation result for each new data point. For this purpose, the
formulation is restructured and focused on the run length rt, which describes the
time since the last changepoint to the most recent data point xt in the observation
X1:t. Therefore, every new data point is investigated in the context of the member-
ship to an already existing segment represented by the run lengths rt > 0 or as the
first data point of a new segment with run length zero rt = 0. For this investiga-
tion, the growth probabilities P (rt = rt + 1, Y1:t) are determined, which represent
the probabilities of each possible run length increased by one, and the change point
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probabilities P (rt = 0, Y1:t) as the probabilities when the run lengths become zero.
Here, the posterior predictive distribution P (yt+1|Y1:t) is required.
In the next three sections, we will introduce the recursive run length posterior, the
changepoint prior and the initial conditions formulations. Based on this definition
the online segmentation algorithm is presented in the final section. Finally, the
online segmentation algorithm is introduced.

Recursive Run Length Posterior

By integrate over the posterior distribution on the current run length, the marginal
predictive distribution can be determine like

P (xt+1|X1:t) =
t∑
l=1

P (xt+1|rt = l, X1:l)P (rt = l|X1:t) (2.19)

with the posterior distribution like

P (rt|X1:t) =
P (rt, X1:t)

P (X1:t)
(2.20)

. The joint distribution over the run length and the observed data in a recursive
form can be written as

P (rt, X1:t) =
t−1∑
l=1

P (rt = l + 1, rt−1 = l, X1:l+1)

=
t−1∑
l=1

P (rt = l + 1, xl+1|rt−1 = l, X1:l)P (rt−1 = l, X1:l)

=
t−1∑
l=1

P (rt = l + 1|rt−1 = l)P (xl|rt−1 = l, X1:l)P (rt−1 = l, X1:l)

(2.21)

, where the conditional prior P (rt|rt−1) can be interpreted as the changepoint
prior and determine the transition of the run length. The predictive distribution
P (xl|rt−1 = l, X1:l) is based on the underlying probabilistic model, which provide
a predictive probability of the new data point based on the data since the last
changepoint.

Posterior Predictive in Underlying Probabilistic Model

By the assumption of an underlying probabilistic model based on the exponential
family and a conjugate prior, the posterior predictive can be formulated by on the
observation like

P (xj+1|Xi:j) =

∫
P (xj+1|θ)P (θ|Xi:j)dθ (2.22)
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, where the hyperparameter θ are defined by the exponential distribution and the
chosen conjugate prior P (θ|Xi:j). In the context of the run length the posterior
predictive can be formulated like

P (xj+1|rt, Xi:j) =

∫
P (xj+1|θ)P (θ|rt, Xi:j)dθ (2.23)

, where the conjugate prior is based on the observation, which is limited by the run
length.

Changepoint prior

Based on the binary of the possible transition, the changepoint prior have only two
possible outcome, where a changepoint will result in rt = 0 and the no changepoint
extend the run length by one rt = rt−1 + 1. A definition of the changepoint prior
can be formulated like

P (rt|rt−1) =


H(rt−1 + 1) if rt = 0

1−H(rt−1 + 1) if rt = rt + 1

0 otherwise

(2.24)

, where H(τ) is the hazard function and in the case of a discrete geometric distri-
bution can be formulated like H(τ) = 1

λ
with the as a constant timescale λ.

Boundary Conditions

For the initial condition, the first data point of the observation can be interpreted
as the first point after a changepoint. In this case the run length prior is defined by
P (r0 = 1).

Segmentation Algorithm

A commonly used algorithm for the online Bayesian changepoint detection is for-
mulated like:

1. Initialize:
Place the underlying probabilistic model parameter on the prior value and
define the the initial condition, where we assume a changepoint at yt=0. The
initial definitions are formulated like

θt = θ0

P (r0 = 0) = 1
(2.25)

, where the underlying probabilistic parameter vector θt ∈ Rt depend on the
run length and the θ0 describe the prior values.
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2. Received New Data Point yt

3. Predictive Probabilities
The predictive probabilities of the new data point for each possible run lengths
{1 . . . rt−1} are computed like:

τt = P (xt|rt−1, X1:t−1) =

∫
P (xt|θ)P (θ|rt, X1:t−1)dθ (2.26)

, where the predictive probabilities vector τ ∈ Rt is defined to structure the
calculation.

4. Growth Probabilities
The probability of the next incremental increased run length rt depends only on
the previous run lengthrt−1 and therefore, the growth probability is formulated
like:

P (rt = rt−1 + 1, Y1:t) = P (rt−1, X1:t−1)P (xt|rt−1, X1:j)(1−H(rt−1)) (2.27)

5. Changepoint Probabilities
The probability of a changepoint at the new location depends on the proba-
bilities of all previous run lengths {1 . . . rt−1} and therefore, the changepoint
probability is formulated like:

P (rt = 0, Xi:t) =

rt−1∑
l=1

P (rl, X1:t−1)P (xj+1|rt, Xi:j)H(rt−1)

=
t−1∑
l=1

P (rt = l + 1|rt−1 = l)P (xl|rt−1 = l, X1:l)P (rt−1 = l, X1:l)

(2.28)

6. Evidence
The observation extended by the new data point, results in the evidence update
like:

P (Y1:t) =
t∑
l=1

P (rt = l, Y1:t) (2.29)

7. Run Length Distribution
The run length posterior will be update like:

P (rt|Y1:t) =
P (rt, Y1:t)

P (Y1:t)
(2.30)

8. Underlying Probabilistic model parameter
The underlying probabilistic model parameter vector is updated for all new
run lengths like

θt = g(θt−1, xt) (2.31)
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, where the update function g(θ, x) depends on the formulated conjugate prior
and exponential distribution of the underlying probabilistic model.

9. Prediction
A further prediction for a the data point yt+1 can be computed like

P (yt+1|Y1:t) =
t∑
l=1

P (yt+1|rt = l, Y1:l)P (rt = l|Y1:t) (2.32)

10. Next Data Point
Finally, the index is moved like t to t− 1 and it continues with the return to
Step 2.

2.1.6 Computational Effort Analysis

As the number of segments increases quadratically with the number of observed data
points O(n2), the computational effort of the BCPD algorithm becomes prohibitive
longer observations. To improve its efficiency, we will introduce the logarithm for-
mulation of the segmentation problem and the pruning condition formulated by Paul
Fearnhead [Fea06].

Logarithm formulation

The logarithm formulation allows as well as the maximum likelihood estimation to
simply and accelerate the probability computations. By replacing the likelihood with
the log likelihood of the normal distribution, the computation of the exponential
can be avoided. Additionally, the numerically stability of the disappearing small
joint probabilities values for longer segments can be replaced by the sum of log
likelihoods, which numerically stabilizes computations. The logarithm formulation
of the segment probability density can be written as

LS(si:j|Θ) =
∑
θ∈Θ

j∑
l=i

LM (yl|xl, θ))L(θ|Θ) , (2.33)

where the notation L indicates the logarithm formulation version of the segment
density.

Pruning Condition

with a progressive computation of the segment likelihoods by increment segment
length, the segment likelihood trend can be observed. If the observed segment exceed
one or more changepoints, the segment will become unlikely and the likelihood will
drop down of a low level. To avoid following unnecessary computations of unlikely
segments, Paul Fearnhead introduced in his paper [Fea06] a truncating conditions,
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which allows to prune the segment likelihood computations with negligible error.
The prune condition is defined like

ηprune <
Ps(si:j)PD(si:j)∑j
s=i Ps(si:s)PD(ss:j)

, (2.34)

where the pruning threshold ηprune ∈ R is a predetermined value. With an obser-
vation, where the number of changepoints increases roughly linear with the number
of observations n, Paul Fearnhead predicts the computational effort as reduced to
linear increasing O(n).

2.2 Robot Control

In this section, we will introduce the formulation of the robot dynamic and robot
control architecture, which enables the kinaesthetic teaching.

2.2.1 Robot Dynamics

The robot dynamics provide the relationship between actuation and contact forces
and the resulting acceleration and motion trajectories [SK16](p.36). In this thesis
we consider the robot dynamical model based on the Euler-Lagrange equations in
Matrix form [SK16] for an n flexible joints [AOFH03] as

M (q)q̈ +C(q, q̇)q̇ +G(q) = K(θ − q) + τext

τm = K(θ − q) +Bθ̈ ,
(2.35)

where q, q̇, q̈ ∈ Rn are the joint angels, joint twists and joint accelerations, θ ∈ Rn

is the motor position vector and Rn is the joint space . M (q) ∈ Rn×n, C(q, q̇) ∈ Rn

and g(q) ∈ Rn are defined as the inertia matrix, centripetal and Coriolis vector
and the gravity vector, respectively. The joint stiffness is described by the diagonal
matrix K ∈ Rn×n and the motor inertia is defined by diagonal matrix B ∈ Rn×n.
The external acting torque is described by the external torque vector τext, the joint
torque vector results from τj = K(θ− q) and τm is the motor torque vector, which
is used as control input. To control the robot with respect to the desired torque τd,
the state feedback controller defined in [AOFH03] with is formulation:

τm = τd −KT (τ − τd)−KS τ̇ (2.36)

is used. The positive-definite controller matrices KT and KS stabilize the torque
dynamics equilibrium: τ = τd. With the singular perturbation consideration the
robot model and link dynamics result in:

M̄ (q)q̈ +C(q, q̇)q̇ +G(q) = τd + τext (2.37)

with M̄(q) = (M(q) + (I +KT )−1B).
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Operational Space - Cartesian space

The conversion of the robot model defined in the joint space into a definition in
the cartesian space allows the aligning of the control goals with the task goals and
manipulators in a common space, which leads to the term operational space. This
transformation of the robot structure of joints and links is known as the forward
kinematic. The function of forward kinematic describes the position and orientation
vector x ∈ R6 of the end effector based on the joint angles in combination with
the robot model. This function is written as x = ff.k.(q). The Jacobian matrix

J(q) = δff.k.(q)
δq

provides a transformation of the joint angle dynamics (q̈, q̇) into the

end effector velocity vector ẋ ∈ R6 and the acceleration ẍ ∈ R6 vector as

ẋ = J(q)q̇

ẍ = J(q)q̈ + J̇(q)q̇ .
(2.38)

In the scope of this thesis, we assume the Jacobian J(q) to have full row rank is
considered workspace, which means the singularity treatment does not have to be
taken into account. The robot model in cartesian space can be obtained by the
substitution of Eq. (2.38) into Eq. (2.37) and leads into the equation:

fext + fc = Λ(q)ẍ+ Γ(q, q̇)ẋ+ η(q) , (2.39)

where fext ∈ R6 and fc ∈ R6 denotes the external and the command forces in
Cartesian space. The relation of the external wrench vector is given by τext =
JT (q)fext, and of the command wrench vector τd = JT (q)fc The pseudo-inertia
matrix Λ(q) ∈ R6×6 is defined like

Λ(q) = J−T (q)M̄ (q)J−1(q) . (2.40)

The Coriolis and centrifugal effects are described by Γ(q, q̇) ∈ R6×6 like

Γ(q, q̇) = J−T (q)C(q, q̇)J−1(q)−Λ(q)J(q)J−1(q) . (2.41)

Finally, the Cartesian space gravitation vector is defined as η(q) ∈ R6 and is given
by

η(q) = J−Tτg(q) . (2.42)

This kinematic mapping also allows formulating robot controlling task in the carte-
sian space.

Cartesian Impedance Control

The goal of the Impedance control is a robot, which behaves like a spring mass
damper system. For that, the desired closed-loop behavior should look like

Λdëx +Ddėx +Kdex = fext , (2.43)
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with the desired mass Λd, the desired damping Dd and the desired stiffness matrix
Kd. Additionally, the position, velocity and acceleration error is defined as ex =
x − xd, ėx = ẋ − ẋd, ëx = ẍ − ẍd, respectively. According to the Cartesian
Impedance control formulation in [AOFH03], the control law is written as

fm = Λ(q)ẍd −Ddėx −Kdex − C̃(q, q̇)ėx − Λ(q)J̇(q)q̇

τd = J(q)Tfm +C(q, q̇)q̇ + g(q) ,
(2.44)

where C̃ is used to ensure the stability of the system in free motion and in feedback
interconnection with a passive environment. C̃ is an arbitrary matrix, which fulfils
the skew symmetry of ˙Λ(q) − 2C̃(q, q̇), for instance C̃(q, q̇) = 1/2 ˙Λ(q) . Finally,
the closed loop dynamics can so be formulated as

Λdëx +Ddėx +Kdex + C̃(q, q̇)ėx = fext , (2.45)

where this equation is used as the passive mapping from the external force fext to
the velocity error ėx [AOFH03].

Solution of the Second order Dynamic in the over damping case

A formulation of a second order dynamical model can be written as the second order
differential equation as

aẍ+ bẋ+ cx = d , (2.46)

where the variables a, b, c and d are considered as time constants. By assuming
x = ert and r as the characteristic root, the homogeneous solution with d = 0 is
written as

(ar2 + br + c)ert = 0. (2.47)

As ert will never be zero for all rt, the characteristic equation can be written as

ar2 + br + c = 0 (2.48)

and the determination of the characteristic roots r1, r2 is achieved by the quadratic
equation formulated like

r1, r2 =
−b±

√
b2 − 4ac

2a
. (2.49)

In the case of a positive discriminant b2 − 4ac > 0 or in the context of the spring-
damper formulation better known as the over-damping case, the characteristic roots
are two real values r ∈ R2. In this case, the general solutions can now be written
like

x(t) = c1e
r1t + c2e

r2t + d

ẋ(t) = c1r1e
r1t + c2r2e

r2t

ẍ(t) = c1r
2
1e
r1t + c2r

2
2e
r2t

,

(2.50)
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where the coefficients c1, c2 ∈ R considered as constants and are used to satisfy the
boundary conditions. Therefore, with the boundary conditions like

xt=0 = x0, xt=∞ = xd

ẋt=0 = 0, ẋt=∞ = 0

,

(2.51)

where xd ∈ R represent the desired value and by substituting the boundary condi-
tions in Eq. (2.51)) into the general solution from Eq. (2.51)) like

x(t = 0) = c1 + c2 + d
!

= x0

x(t =∞) = d
!

= xd

ẋ(t = 0) = r1c1 + r2c2
!

= 0

ẋ(t =∞) = 0
!

= 0 ,

(2.52)

the coefficients c1, c2 and the particular variable can be determine like

d = xd

c1 = (x0 − xd)
(

1− r1

r1 − r2

)
c2 = (x0 − xd)

(
r1

r1 − r2

)
.

(2.53)

Finally, the second order dynamical model function h2(x(t), xd) is formulated like

h2(x(t), a, b, c, xd) : x(t) = c1e
r1t + c2e

r2t + xd

with r1, r2 =
−b±

√
b2 − 4ac

2a
and b2 − 4ac > 0 .

(2.54)
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Chapter 3

Informed linear models for
Bayesian Changepoint Detection

To improve the segmentation efficiency of robot kinaesthetic teaching data, this
chapter aims for the definition of a segment model that considers a priori knowledge
about the dynamics during interaction. In Sec. 3.1, we will explore the interaction
dynamics during kinaesthetic teaching in detail, including a simple human behavior
model. Based on these insights, Sec. 3.2 introduces the informed segment model.

3.1 Dynamics during kinaesthetic teaching

To enable an intuitive interactive behavior, the manipulator dynamics are compen-
sated applying the inverse dynamics [SK16]. Following the Cartesian impedance
control from Sec. 2.2.1, an intuitive guiding behavior is rendered by adding a damp-
ing term, yielding

fext = Λdẍ+KDẋ+ εdynamic , (3.1)

where εdynamic represents model errors.
External forces result from both the human and the environment, i.e.

fext = fhuman + fenv , (3.2)

where fhuman is the human exerted force, fenv is the environmental force vector. See
Fig. 3.1 for an illustrative representation.

3.1.1 Human model

With the human considered as an operator of an outer loop control, the intention
goals become the control inputs and the human haptical, and the visual sensing al-
lows to trace back the control output. The control structure is illustrated in Fig. 3.2,
where the diversities in the human sensing are move into the control function.
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Figure 3.1: This figure shows the resulting force observed during kinaesthetic teach-
ing.

Due to the combination of the complexity of the eye-hand coordination and the
diversity in the execution process of each individual human teacher, the human-
generated force signal will differ from any known control signal behaviors. In terms
of intention recognition, the determination of the desired position and the desired
force as the goal of the motion and the exerted force is paramount. So, we designed a
model based on a proportional controller, to track intention with a possible intention
goal and added a the probabilistic error term as the compensation of discrepancies
like εhuman ∝ N (0, σ2

human).

The contact model is used to model various interactions between the robot and its
environment. Since the modeling of a contact process relies on detailed information
about the environment, which is excluded in the approach, we define discrete states
to model the contact model, where deviations during the transitions are compensated
by model uncertainties.

Within the scope of our work we have focused on the three following contact states,
whereby the defined contact variable u is used to represent the current state. The
first contact state u = 1 represents the robot in the open space, where no contact
with the environment is assumed. In the second contact state u = 2 we assume a
solid contact with a target object. The third contact state u = 3 is the transport of
a target object. Therefore the contact variable u defined like

u =


1 , in free space

2 , in contact

3 , during the transporting

(3.3)
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and with the decision vector u(u) mapped by the contact variable u like

u(u) =


[
1 0 0

]
, u = 1[

0 1 0
]
, u = 2[

0 0 1
]
, u = 3

, (3.4)

the environmental force is formulated with the contact model like

fenv = u

 εsensor

kobjectfhuman + εobject + εsensor

gm+ εload + εsensor

 , (3.5)

where εsensor is the the sensor noise.
In case of contact of the robot with an object, we assume that the human force is
reflected by the object with stiffness scale vector kobject and the uncertainty εobject.
with the assumption that the human force is only exerted in the direction of the
contact point, the transmission of forces is modeled with the stiffness scale as for-
mulated like kobject = kd, k ∈ [0, 1], where d is the direction vector as unit vector
pointed against the contact direction.
In the transport state, the environmental force is based on the object mass (m ∈
R,m > 0) with the gravitational vector (g =

[
0 0 9.81

]
) and, whereby deviations

generated by the dynamics of the object are modeled with uncertainty εload.
Based on presented contact model, the human control force can be formulated like

fh(u,fd,xd) = Kx(x− xd) +Kf

(
u

 0
gm

kobjectfh

− fd)+ εhuman . (3.6)

Figure 3.2: This block diagram shows a possible structure of the human as an outer
loop controller.

3.2 Informed Segment Model

The segment definition of the BCPD from Sec. 2.1 is based on the definition of
the likelihood of the segment like PS(xi:j) in Eq. (2.4). For the observation x, the
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informed segment model is written based on the underlying model function f(t) like

x = f(t) + ε , (3.7)

where the observation is a signal the model input become the time t and the
uncertainty ε is considered as independent, zero mean, normally distributed like
ε ∝ N (ε|0, σ2).
To enrich the underlying model with more information, we extent the formulation of
the underlying model by an linear model function h(t, θ) with the model parameter
θ = (β, µ, σ2) like

h(t, θ) = βΦ(t) + ε , (3.8)

where Φ(t) is the design matrix and β is the model coefficient vector. For a given
coefficient vector of a segment, the segment likelihood of an informed segment model
can be described based on the product partition model and the posterior predictive
distribution.
The posterior predictive distributions describe the distributions of a new ob-
servation based on the already observed observations and can be written in general
terms like

P (x|X) =

∫
P (x|θ,X)P (θ|X)dθ , (3.9)

where P (x|θ,X) is the likelihood of the observation in the context of an assumed
distribution and P (θ|X) is the distribution prior. The posterior predictive distri-
bution for a given observation can thus be determined using the marginalized
likelihood and the updated hyperparameter θi+1. By inserting the linear model
function into the posterior predictive distribution, the segment likelihood can be
written like

P (x1:n|t) =

∫ ∫ n−1∏
i=0

P (xi+1|βΦ(t), θ,x0:i)P (β, θ|x0:i, t)dβdθ , (3.10)

where the uncertainty ε is considered to be independent, zero mean, normally dis-
tributed as ε ∝ N (ε|0, σ2). Because the informed models are defined based on signals
and therefore the observations are always in relation on the time t, the notation |t
is dropped.
In the three dimensional cartesian space, the combination of the observations can
be written like X1:n : [x1:n,y1:n, z1:n] and as the dimension are independent among
each other, the segment likelihood from the three dimensional observations can be
written like

PS(X1:n) = PS(x1:n)PS(y1:n)PS(z1:n) . (3.11)

Finally, as the models are also dimensional independent, the segment likelihood of
the x-dimension is introduced representative for all dimension and the three dimen-
sional segment likelihood is determined by Eq. (3.11).
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The online Bayesian changepoint detection algorithm formulation builds on the pos-
terior predictive distribution and the update function of the hyperparameters to
determine the run-length probability.

In summary, any informed model for segmentation based on Bayesian changepoint
detection must include the definition of the posterior predictive distribution, the
hyperparameter update function from the marginal likelihood and the segment like-
lihood.

In the following sections, the designed informed segment models for kinaesthetic
instruction are presented, which take into account the dynamics Eq. (3.1), Eq. (3.2)
and Eq. (3.8). In Section 3.2.1, we will first consider two models for free space
movements. In the section 3.2.2 the force model is presented, which recognizes
and interprets the application of forces. Section 3.2.3 introduces the contact model,
which focuses on the different contact states of the robot and its environment. Fi-
nally, in Section 3.2.4 the fully integrated model is presented, which is based on the
combination of movements, forces, and contact models.

3.2.1 Motion

We first consider only free space motions. In order to represent the trajectory x
resulting from (3.1), in the following we present two different motion models: a
linear and a second order dynamic model.

Constant Velocity Model

Inspired by the event-based heuristic segmentation technique Zero velocity Crossing
(ZVC), we designed the first model based on the motion heuristics, where we assume
that every motion structured into a moving and a steady part. A simple underlying
model, which fulfil this approach can be labeled as constant velocity model and
generate a piecewise constant robot velocity signal. Therefore, the robot position
signal is considered as the integration of the generated velocity signal and the section
are in the shape of a first degree of the polynomial function. The model function
can be written like

ẋ(t) = β1

x(t) = β1t+ β0 + ε
(3.12)

and for an observation x1:n with n data points the formulation can be written like

x1:n = βTΦ(t) + ε , (3.13)

where the gradient value β1 and the offset value β0 are combined to regression
coefficient the vector β. The design matrix Φ(t) ∈ Rn×2 is generated by setting the
first column to the offset parameter like φ0 = 1 and the second column as the first
polynominal degree like φ1 = ti:j, where ti:j is the relative time vector.
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Model parameter determination Based on the general regression formulation,
the error term ε is assumed as independent, mean zero normally distributed random
variable, the likelihood for a for an observation x1:n with n data points can be
written like

P (x1:n|β, σ2,Φ) ∝ N(x1:n|βΦ, σ2I)

=
1√

(2π)2|σ2I|
e−

1
2

(x1:n−βΦ)T (σ2/κ0)−1(x1:n−βΦ) ,
(3.14)

with the observation vector x1:n, the design matrix Φ, the regression coefficient
vector β, the residual variance σ2 ∈ R, and I as the Identity matrix. The unknown
probabilistic model parameter are estimated by conjugate priors. Therefore, we
define the prior of regression coefficient vector β like

P (β|σ2) ∝ N

(
β|0, σ

2

κ0

)
(3.15)

and based on the zero mean of the regression formulation, the prior of model variance
are defined like

P (σ2) ∝ X−2(σ2|v0, σ
2
0) , (3.16)

where hyperparameter κ0 is used to control in influence of the residual error and
the hyperparameters v0, σ

2
0 can be interpreted as the variance and number of virtual

data points.

The marginal likelihood is based on the derivation in Sec. A.1.2 and the Bayesian
theorem formulation. It can be written like

P (x1:n|Φ) =
P (x1:n|β, σ2,Φ)P (β, σ2)

P (β, σ2|x1:n,Φ)

=
ZNX−2(µn, κn, vn, σ

2
n)

ZNX−2(µ0, κ0, v0, σ2
0)

1

ZN
l

=
Γ(vn/2)|κn|−1/2(v0σ

2
0/2)v0/2

Γ(v0/2)|κ0|−m/2(vnσ2
n/2)vn/2

1

(2π)n/2

=
Γ(vn/2)|κn|−1/2(v0σ

2
0)v0/2

Γ(v0/2)|κ0|−m/2(vnσ2
n)vn/2

1

(π)n/2

(3.17)

with the hyperparameter updates written like

κn = ΦTΦ + κ0I

vn = v0 + n

sn = v0σ
2
0 + κ0β

?Tβ? + (x1:n − β?Φ)T (x1:n − β?Φ)

σ2
n =

sn
vn

.

(3.18)
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The posterior predictive distribution can be written by comparing the for-
mulation the standard t-distribution formulated from Eq. (A.16) and the posterior
predictive derived in Eq. (A.10) like

P (xj|x1:n,Φ, φj) = tv

(
xj

∣∣∣∣∣β?φ, (κn + 1)σ2
n

κn

)
. (3.19)

The segment likelihood is formulated like

P (x1:n) =
n−1∏
i=0

tvi

(
xi+1

∣∣∣β?φ, (κi + 1)σ2
i

κi

)
(3.20)

and the segment log likelihood formulation like

L(x1:n) =
n−1∑
i=0

ln

(
tvi

(
xi+1

∣∣∣β?φ, (κi + 1)σ2
i

κi

))
. (3.21)

Second Order Dynamic Model

By substituting the human force with the human control force model from the linear
intention model from Eq. (3.6) and the robot dynamics from Eq. (3.1) in force
Eq. (3.2) and by assuming that the robot is in free space with u = 0 =⇒ fenv = 0,
the dynamic model is written as follows

Kx(x− xd) + εhuman = Λdẍ+Kdẋ+ εdynamic

−Λdẍ−Kdẋ+Kx(x− xd) = ε ,
(3.22)

where Λd,Kd and Kx are considered as unknown controlling parameters and the
uncertainties εhuman and εdynamic are combined in the uncertainty ε.
Based on the introduced general solution of second order models in the over-damping
case (2.50) and with the boundary conditions formulated like

x(t = 0) = x0 x(t = T ) = xd

ẋ(t = 0) = 0 ẋ(t = T ) = 0 ,
(3.23)

the second order dynamical model function hSOD(t,Λd,Kd,Kx,xd) in one dimension
can be written like

x(t) = c1e
r1t + c2e

r2t + xd , (3.24)

with the conditions written like

r1, r2 =
−Kd ±

√
K2
d − 4ΛdKx

2Λd

, K2
d − 4ΛdKx > 0,

c1 = (x0 − xd)
(

r1

r2 − r1

− 1

)
and c2 = (x0 − xd)

( −r1

r2 − r1

)
.

(3.25)
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Model Parameter Determination As the model parameters are partly con-
strained, a closed form solution is not available. As an alternative, we aim for an
approximated solution that relies on a set of precomputed profiles.
By substituting the coefficient c1 and c2 as defined in (3.25) into the position func-
tion (3.24) and by moving the formulation to the start boundary condition, the
position function can written like

x(t) = (xd − x0)

(
r1

r1 − r2

)
er1t + (xd − x0)

(
1− r1

r1 − r2

)
er2t + xd

x(t) = (xd − x0)

[(
r1

r1 − r2

)
er1t +

(
1− r1

r1 − r2

)
er2t
]

︸ ︷︷ ︸
e(t)

+ xd ,
(3.26)

where the formulation can be interpreted as linear function with the design error
function e(t) and the start position x0 as the offset. Additionally, the model pa-
rameter become θ : (x0, xd, r1, r2), and the model parameter unconstrained model
parameter x0 and xd are separated from r1, r2, which are constrained like formulated
in (3.25) and conditioned by Kx, Kd and Λd

As every motion starts at the first point of the observation and ends at the last
point, the start position and desired position are considered like

x0 = x(0) xd = x(T ) . (3.27)

To limit the control parameter to the over-damping case and to control values with
realistic motion generation, the control parameter search space is predefined as the
set of possible control parameter M .
By combining all possible control parameter, a set the design error functions ei(t)
is generated and collected as a library in the design matrix Φ(t) ∈ Rm×n.
Finally, the best matching set of control parameter can be determined,by minimizing
of the sum-of-squared residual error function as

β? = arg min︸ ︷︷ ︸
β

∑(
xi − xd
x0 − xd

− βΦ(t)

)2

, (3.28)

where β is the decision vector and therefore, a binary vector with one entry set to
one and the remaining to zero.
With the determined second order dynamic model parameter β? by Eq. (3.28) and
with the simulated model position vector x

′
1:n = β?Φ1:n, the probability of the

segment vector x1:n can be written like

PS(x1:n|x
′

1:n, σ
2) =

∫
P (x1:n|x

′

1:n, σ
2)P (σ2)dσ2 , (3.29)

where the variance σ2 follows a scaled inverse chi squared distribution. The prior
distribution can be written like

P (σ2) ∝ X−2(σ2|v0, σ
2
0) , (3.30)
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where the hyperparameter v0 can be interpreted as the virtual data points with prior
variance σ2

0 and therefore, it is used to adjust the convergence rate of the distribution
variance.

The marginal likelihood is based on the derivation in Sec. A.1.3, and can be
written like

p(x1:n) =
p(x1:n|x′1:n, σ

2)p(σ2|v0, σ
2
0)

p(σ2|x1:n,x
′
1:n, v0, σ2

0)

=
N (x1:n|x′1:n, σ

2)×X−2(σ2|v0, σ
2
0)

NX−2(x1:n,x
′
1:n, vn, σ

2
n)

=
ZNX−2(vn, σn)

(2π)n/2ZX−2(v0, σ0)

=
Γ(vn/2) (σ2

nVn/2)
−vn/2

Γ(v0/2) (σ2
0v0/2)

−v0/2

(3.31)

with the hyperparameter update written like

vn = v0 + n

σ2
n =

1

vn

(
v0σ

2
0 +

N∑
i=1

(xi − x
′

i)
2

)
.

(3.32)

The posterior predictive distribution is based on the derivation in Eq. (A.15)
and with student t-distribution formulated like in Eq. (A.16), it is written like

P (xi|x1:n) = tvn

(
xn+1

∣∣∣,β?Φ, σ2
n

)
. (3.33)

The segment likelihood can be written like

P (x1:n) =
n∏
i=0

tvi

(
xi+1

∣∣∣β?Φ, σ2
i

)
(3.34)

and the log likelihood of the segment written like

L(x1:n) =
n∑
i=0

ln

(
tvi

(
xi+1

∣∣∣β?Φ, σ2
i

))
. (3.35)

3.2.2 Force

To model the force, we assume the robot is in contact with the object u = 1 and
the desired position as already reached xd = x. With this assumption, the external
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force become fext = 0 the measured environmental force can be formulated with the
human control force form Eq. (3.6), the force model can written like

fenv = kf (kObjectfenv − fd) + ε

fenv = k(fenv − fd) + ε , (3.36)

where ε combines the uncertainties εhuman and εobject.
In the closed loop control the force in time is described by the first order dynamic
and for a desired force fd can be written like

f(t) = (f0 − fd)e−kt + fd , (3.37)

where proportional human control coefficient is assumed like Kobject = Ik, k ∈ R.

Model Parameter Determination

To define the process in which a force is applied to an object as one step and to
represent it in one segment, we define the initial force as zero f0 = 0, and the desired
force as the last force of the segment fd = fn ∈ f1:n.
Therefore, the force can be separated like

f(t) = fd(1− e−kt)︸ ︷︷ ︸
φi(t)

+ ε ,
(3.38)

where φi(t) is the design function.
As the codomain of the exponential function ae−b is limited to [0, 1] with a > 0
and b > 0, the regression of the coefficient is conditioned and to ensure a stable
segmentation, the design matrix Φf is built from the stable of the sample vectors
as row vectors based on a set of control variable K.
Thus the segment likelihood can be written like

P (f1:n) =

∫
max
β

P (f1:n|βΦf , σ
2)P (σ2)dσ2 , (3.39)

where β is the decision vector and is defined like β ∈ {
[
1, 0, . . . , 0

]
,
[
0, 1, . . . 0

]
, . . . ,

[
0, 0, . . . , 1

]
}.

The prior P (σ2) distribution like

P (σ2) ∝ X−2(σ2|v0, σ
2
0) , (3.40)

where the hyperparameter v0 can be interpreted as the virtual data points with prior
variance σ2

0 and therefore, it is used to adjust the convergence rate of the distribution
variance.
Based on the similarity to the Second Order Dynamic Model formulation, the Force
Model the segment likelihood can be determined in the same way.
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The marginal likelihood is determined by substituting (3.39) and (3.40) into
the derivation in Sec. A.1.3 and written like

P (f1:n) =
P (f1:n|f ′1:n, σ

2)P (σ2|v0, σ
2
0)

P (σ2|f1:n,f
′
1:n, v0, σ2

0)

=
N (f1:n|βΦf , σ

2)×X−2(σ2|v0, σ
2
0)

NX−2(f1:n,βΦf , vn, σ2
n)

=
Γ(vn/2) (σ2

nvn/2)
−vn/2

Γ(v0/2) (σ2
0v0/2)

−v0/2
,

(3.41)

with hyperparameter update like

vn = v0 + n

σ2
n =

1

vn

(
v0σ

2
0 +

∑
(x− βΦf )

2
)

.
(3.42)

The posterior predictive distribution is based on the derivation in Eq. (A.15)
and with student t-distribution formulated like in Eq. (A.16), it is written like

P (fj|f1:n,Φ, φj) = tv

(
fj

∣∣∣β?φ, (κn + 1)σ2
n

κn

)
. (3.43)

The segment Likelihood is formulated like

P (f1:n) =
n−1∏
i=0

tvi

(
fi+1

∣∣∣β?φ, (κi + 1)σ2
i

κi

)
(3.44)

and the segment log likelihood formulation like

L(f1:n) =
n−1∑
i=0

ln

(
tvi

(
fi+1

∣∣∣β?φ, (κi + 1)σ2
i

κi

))
. (3.45)

3.2.3 Contact Model

By the crucial role of the contact model for the dynamics and intention models, the
following Informed Segment Model is focused on the detection of contact state and
generates changepoints with the switching of the contact state. By defining possible
basic contact models as basic components, the segmentation result shows the task
structure as sequence of the basic components. In regards to the pick and place
task, we are going to design the contact models motion, transport and apply force,
where during a possible post processing, higher interaction like the move to contact
can be extracted.
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Depending on the three contact models the expected force signal can be written like

fenv =


εsensor during the motion

fcontact + εsensor in contact

gmload + εload + εsensor during the transport

, (3.46)

where εsensor is the sensor uncertainty, fcontact is the expected force in contact, mload

is the mass of the load, g is the gravity vector and εload is the uncertainty generated
by the load.
With the contact variable u for motion: u : 1, contact: u : 2 and transport: u : 3,
the decision vector u(u) mapped by the contact variable u like

ui =


[
1 0 0

]
, u = 1[

0 1 0
]
, u = 2[

0 0 1
]
, u = 3

(3.47)

and signal distributions expected like

εsensor ∝ N (f |0, σ2
sensor)

fcontact ∝ N (f |0, σ2
contact)

ftransport ∝ N (f |mloadg, σ
2
transport)

(3.48)

, a formulation of the environmental force and the contact model can be written like

fenv = u

 N (f |0, σ2
sensor)

N (f |0, σ2
sensor + σ2

contact)
N (f |mloadg, σ

2
sensor + σ2

transport)


︸ ︷︷ ︸

Φ

.
(3.49)

Finally, the segment probability can be formulated like

P (f1:n) =

∫
P (f1:n|u(u)Φ)P (u)du , (3.50)

where the contact variable u is assumed as categorical distributed. The conjugate
prior written like

P (u|α0) ∝ Dir(u|α0) , (3.51)

where the initial distribution of α0 and Dir donates the dirichlet distributed.

Model Parameter Determination

With the condition m > 0 and the gravity vector defined like g =
[
0 0 −g

]T
, the

load load mass is determined with m = f̄z/−g. To ensure that the transport model
contains a mass, we define the minimum mass of mmin and therefore, the load mass
is determined like

m = max
(
mmin,

f̄z
−g
)

. (3.52)
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The marginal likelihood is written like

P (f1:n) = P (f1:n|uΦ)P (un) (3.53)

,where P (f1:n|uΦ) P (un) is categorical prior distribution. The categorical prior
distribution is based on the classified observations c like

c =
n∑
i=1

arg max
ui

P (fi|uiΦi) (3.54)

and is determined like

P (un) =
α+ c∑
i αi + n

, (3.55)

,where αi is the initial number virtual assumed classifications for every category i.

The posterior predictive formulation is written like

P (fj|f1:n) = P (f1:n|unΦ)P (un) (3.56)

with contact variable after n observations determined like

un = arg max
un

P (f1:n|unΦ)P (un) . (3.57)

The segment likelihood written like

P (f1:n) =
n−1∏
i=0

P (fi+1|uiΦ) , (3.58)

where the contact variable ui is determined with Eq. (3.54) and Eq. (3.55).

3.2.4 Combined Model

In order to detect and segment movements, contacts and force applications simul-
taneously, we will combine the presented Second Order Model Sec. 3.2.1 and Force
Model Sec. 3.2.2 into the Contact Model Sec. 3.2.3 as part of the fully integrated
model. To extend the segmentation model to the entire input space including the
position and force space the model steady θsteady, no-contact θno contactand transport
θtransport is generated, where the model are formulate like

P (x1:n|θsteady) : P (x|σ2
steady)P (σ2

steady|v0, σ
2
0)

P (f1:n|θno contact) : P (f |σ2
sensor)P (σ2

sensor|v0, σ
2
0)

P (f1:n|θtransport) : P (f |σ2
transport)P (σ2

transport|v0, σ
2
0)

(3.59)
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and distributed considered like

P (x1:n|θsteady) ∝ N (x1:n|x1, σ
2
steady)X−2(σ2

steady|v0, σ
2
0)

P (f1:n|θno contact) ∝ N (f1:n|0, σ2
sensor)X−2(σ2

sensor|v0, σ
2
0)

P (f1:n|θtransport) ∝ N (f1:n|gmload, σ
2
transport)X−2(σ2

transport|v0, σ
2
0) ,

(3.60)

where g is the gravity vector, m is the object mass.

The P (x|θmotion) is defined similar to the model definition of the second order dy-
namic model and the P (x|θcontact) is defined similar to model definition in of the
force model, where θmotion and θcontact collect the respective model parameters.

The contact model are generated with the contact variable u and formulated like

P (x1:n,f1:n) = u

P (x1:n|θmotion)P (f1:n|θno contact)
P (x1:n|θsteady)P (f1:n|θcontact)
P (x1:n|θmotion)P (f1:n|θtransport)

 . (3.61)

Model Parameter Determination

The model parameters θmotion and θcontact are determined similar model parame-
ter determination introduced in the respective models. The object mass mload is
determined in Eq. (3.52).

The marginal likelihoods for each model is formulated like

P (x1:n) =

∫
P (x1:n|θ)P (θ)dθ , (3.62)

where θ is individual model parameter and the formulation with the force as input
space results by replacing the x1:n with f1:n.

The posterior predictive is determined on the basis of Eq. (3.33), and Eq. (3.43)
and can be written like

P (xi, fi|x1:n,f1:n) = max
u
u

P (xi|x1:n, θmotion)P (fi|f1:n, θno contact)
P (xi|x1:n, θsteady)P (fi|f1:n, θcontact)
P (xi|x1:n, θmotion)P (fi|f1:n, θtransport)

 . (3.63)

The segment likelihood is formulated like

P (x1:n,f1:n) = max
u
u

Pmotion(x1:n)Pno contact(f1:n)
Psteady(x1:n)Pcontact(f1:n)
Pmotion(x1:n)Ptransport(f1:n)

 (3.64)
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with the segment likelihood of each model formulated like

Psteady(x1:n) =
n−1∏
i=0

tvi(xi+1|x0, σ
2
steady,i) ,

Pno contact(f1:n) =
n−1∏
i=0

tv0(fi+1|0, σ2
not contact,i) ,

Ptransport(f1:n) =
n−1∏
i=0

tv0(fi+1|gmload|σ2
transport,i) ,

(3.65)

Pmotion from Eq. (3.34) and Pcontact from Eq. (3.44).
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Chapter 4

Evaluation

In this chapter, we will evaluate the presented informed segment models 3.2 with the
help of following scenarios: the Three Point Motion scenario, the Parkour scenario,
the Pick and Place scenario and the Soap Dispenser scenario.

4.1 Experimental Setup

Figure 4.1: On the left side, the used objects and the used robot panda are shown.
On the right side, the die robot is shown in front of the desk Graphical User interface
(GUI) provided by Franka Emika.

The experimental setup is shown in Fig. 4.1 and consists of a Franka Emika panda
robot [SHP20], which allows the kinaesthetic teaching by the torque-controlled joints
and the Robot Control unit. To execute tasks, the panda robot brings along a GUI
called Desk, which allows designing the desired task by generating a timeline, which
consists of predefined apps. The robot kinematic, the wrist force, and the gripper
signals are acquired during the kinaesthetic teaching by an interface, which is also
provided by Franka Emika. To avoid any corruption of the force distribution by
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further contact points, the locations of the force impacts points are limited in a
guideline for the kinaesthetic robot teaching . Therefore, the human exerted force
fhuman is limited to the last joint of the robot and therefore, above the wrist force
sensor. Any kind of contact of interaction with the environment is limited to be
located at the gripper jaws and therefore, on the other side of the wrist force sensor.
To reduce the noise, we use the Savitziky-Golay filter to reduce the signal noise
and we sampled the data with a fixed sample rate of 100hz, to achieve a uniformed
time-space data set. The experimental executions and objects are based on the
robot application field, which is focused on tabletop applications. The robot arm
is mounted at the table and in several experimental scenarios, we will imitate real-
world robot applications. In a subsequent step, the application is segmented by
different segmentation models and the resulting application is executed. Based
on the model parameter of every segment, we classify the task components into
components labeled as move, move to contact, apply force, gripper move, gripper
grasp, and transport. The classified segments are extended by the intention goals
like the desired position and transformed into desk apps. Finally, the robot executes
the learned task and the demonstrator evaluates if the robot executes the task as
intended.

Changepoint extraction Based on the segmentation of the probability distribu-
tion for a changepoint generated by the BCPD algorithm, we extract changepoints
by the threshold value cthreshold.

Grasp detection To detect the object grasps, the interface provide a binary grip-
per state signal. Therefore, grasping and gripper move applications are detected by
inspecting the gripper state signal and is applied in a separated pipeline.

4.1.1 Experimental Scenarios

In the next section we will introduce the experimental scenarios, starting with simple
robot tasks and increasing the complexity and scope of execution for each scenario.

Three-Point Motion scenario

In the first scenario a motion including three way points as illustrated in Fig. 4.2 is
taught to the robot. In a real work task, this scenario can be seen as the motions
between action points. The acquired robot signals are shown in the Fig. A.1.



4.1. EXPERIMENTAL SETUP 41

Figure 4.2: Illustration of the three point motion task execution. The robot is guided
in two rounds over the three marked points (A, B, C). In the second round, point
B is passed without stopping.

Parkour scenario

In this scenario, the end effector is moving through a parkour construed by two
obstacles shown in Fig. 4.3. As an additional task goal, during the teaching phase
and the robot execution the contact of a obstacle by the robot have to be avoided.
For better tracking of object contacts, the obstacle are made by tennis balls, which
start rolling way after a small impacts. This scenario simulates robot tasks in which,
due to the environment, it is possible to reach the desired position by following a
trajectory. The acquired robot signals are shown in the Fig. A.2.

Figure 4.3: Illustration of the parkour motion task execution. The robot is guided
in the form of an eight around two obstacles. Additionally, the aim of this task is
not to collide with the obstacles.

Pick and Place scenario

The pick and place scenario is designed according to one of the most common robot
task, where the robot is used to pick an object and place it at desired position as
shown in Fig. 4.4. In general, the pick and place task can be separated into the three
following sub-tasks: move to pick up position, the transport to place position and
the move to end position. These task structure allows us to classify the resulting
segments by assigning them to the labeled sub-tasks and therefore, the evaluation
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can be extended by recognition of the task structure. The acquired robot signals
are shown in the Fig. A.3. The used object have a weight of 250 grams.

Figure 4.4: Illustration of the pick and place task execution.

Soap Dispenser

In this scenario, a commercial soap dispenser is pressed two times as shown in the
Fig. 4.5. The acquired robot signals are shown in the Fig. A.4. The application has
been chosen to represent tasks in which the robot is turned buttons, push buttons
or push objects.

Figure 4.5: Shows left to right the start position, the first contact with the soap
dispenser and finally the pressed soap dispenser with the robot.
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4.2 Experimental Results

In this section, the experimental results of each introduced model and each scenario
are presented and evaluated. In the first step, we will introduce the segmenta-
tion results of the introduced scenario and different models in form of resulting the
probability of a changepoint, which is generated by the BCPD and the investigated
probabilistic model. By extracting changepoints with an threshold filter, the seg-
ments are generated and classified by the model parameter. This sequence of task
components is compared with the expected sequence of tasks, whereby missing and
additional components are examined. Subsequently, the robot execution via the
Desk is generated and executed. Finally, the feedback of the demonstrator is used
to determine the discrepancy between the robot execution and the intended task.

4.2.1 Constant Velocity Model

The segmentation model is generated by presented formulation of the constant ve-
locity model 3.2.1 substituted into the formulation of the BCPD algorithm 2.1 and
with the parameters shown in Tab. 4.1. In the following sections we present the
results of the individual scenarios in the form of a segmentation report and the
evaluated feedback from the test persons regarding the intention recognition.

Configuration Parameter
N. fS[hz] cthreshold v0 σ2

0 κ0

1 10 0.2 1 0.5 1.

Table 4.1: Constant Velocity Model Configuration Parameter
This table shows configuration parameter, where N. is the parameter set number,
fs is the sample frequency in hertz, cthreshold is the changepoint extraction threshold
and the hyperparameter of the conjugate prior are v0, σ2

0 and κ0

The execution of the guided task is realized by generation desk apps based on the
segment parameters. As the segmentation is focused on the motion in free space,
every segment is classified as motion, which is represented by the desk app cartesian
motion to achieve a robot execution.

Three point motion

The segmentation report is shown in Fig. 4.6. By comparing the segmentation
report with the task description, the required three points are detected, whereby
additional segments like the segment s2:3 can be classified as steady and is ignored
by the subsequently execution. The summarized experimental report of the sev-
eral demonstrator describe the segmentation as like intended and a correction as
unnecessary.
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Parkour

The segmentation report is shown in Fig. 4.7. The task description of this scenario
is extend by the goal to avoid any collisions with the obstacles, which requires a high
segmentation sensibility especially, during the passage between the two objects. The
robot learned a movement without collisions. Several demonstrators reported that
further corrections or an adaptive teaching process is required, whereby a movement
must always be followed by a stop at the desired position. The achieve a motion
without any obstacle collisions, the proband experimental reports further correction
or an adaptive teaching process, where the teacher generate changepoints by a stop
and go motion.

Pick and place

The segmentation report is shown in Fig. 4.8. By comparing the structure of the
tasks presented, segments s0:1, s1:2 and s2:3 can be allocated to the pick up movement,
while segments s3:4, s4:5 and s5:6 describe the transport phase. With segments s6:7

and s7:8 the robot is moved into the final position. Thus the segmentation result
let the task structure shine through. In the experience reports of the test users
the pick up point is often not reached because of a collision of a gripper and the
object. Furthermore, the gripping position was set above the object, which caused
the gripping of the object to fail.

Conclusion

Within the definition of the model the focus was set on the velocity of the robot,
which leads to the fact that the classes of the segment classification can be de-
scribed as standing and moving. Thus a typical movement of the robot as described
in Three-Point Scenario 4.2.1 is divided into two segments, shown in the segmen-
tation report 4.6 by segment s0:1 and s1:2. The comparison with the robot motion
generation of a cartesian impedance control robot and a desired position shows the
segmentation of a motion into two segments is over-segmented. Generally, segmen-
tation is described as complete, indicating that human motion profiles have a linear
character
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Segments Parameters
t0 [s] tn [s] x0 [m] xd [m] type

x y z x y z
s0:1 0.0 1.6 0.013 -0.54 0.012 0.039 -0.359 0.029 ConstantVelocity
s1:2 1.6 3.0 0.039 -0.359 0.029 0.035 -0.335 0.03 ConstantVelocity
s2:3 3.0 4.4 0.035 -0.335 0.03 -0.152 -0.436 0.022 ConstantVelocity
s3:4 4.4 5.7 -0.152 -0.436 0.022 -0.171 -0.458 0.017 ConstantVelocity
s4:5 5.7 7.2 -0.171 -0.458 0.017 -0.021 -0.539 0.011 ConstantVelocity
s5:6 7.2 8.5 -0.021 -0.539 0.011 0.022 -0.528 0.01 ConstantVelocity
s6:7 8.5 9.8 0.022 -0.528 0.01 0.043 -0.351 0.032 ConstantVelocity
s7:8 9.8 10.9 0.043 -0.351 0.032 -0.103 -0.391 0.032 ConstantVelocity
s8:9 10.9 11.6 -0.103 -0.391 0.032 -0.184 -0.458 0.025 ConstantVelocity
s9:10 11.6 13.2 -0.184 -0.458 0.025 -0.008 -0.545 0.02 ConstantVelocity
s10:11 13.2 15.1 -0.008 -0.545 0.02 0.011 -0.55 0.018 ConstantVelocity

Figure 4.6: Segmentation Report(Constant Velocity model, Three-point
Motion): This figure illustrates the segmentation report consisting of the acquired
robot signals in the first subplot followed by the changepoint probability, which is
the result of the segmentation with the Bayesian changepoint detection algorithms.
The third subplot shows the motion in position space. The evaluated changepoints
are marked as red crosses and connected with a red dotted line. The table lists the
segment parameters for the selected model and the segmentation result.
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Segments Parameters
t0 [s] tn [s] x0 [m] xd [m] type

x y z x y z
s0:1 0.0 1.3 -0.167 -0.462 0.052 -0.169 -0.458 0.05 ConstantVelocity
s1:2 1.3 2.3 -0.169 -0.458 0.05 -0.085 -0.394 0.06 ConstantVelocity
s2:3 2.3 3.4 -0.085 -0.394 0.06 -0.05 -0.509 0.061 ConstantVelocity
s3:4 3.4 4.2 -0.05 -0.509 0.061 0.052 -0.523 0.067 ConstantVelocity
s4:5 4.2 5.0 0.052 -0.523 0.067 0.045 -0.411 0.066 ConstantVelocity
s5:6 5.0 5.9 0.045 -0.411 0.066 -0.043 -0.419 0.057 ConstantVelocity
s6:7 5.9 6.9 -0.043 -0.419 0.057 -0.08 -0.552 0.094 ConstantVelocity
s7:8 6.9 7.7 -0.08 -0.552 0.094 -0.171 -0.5 0.055 ConstantVelocity
s8:9 7.7 8.9 -0.171 -0.5 0.055 -0.15 -0.459 0.053 ConstantVelocity

Figure 4.7: Segmentation Report(Constant Velocity model, Parkour): This
figure illustrates the segmentation report consisting of the acquired robot signals
in the first subplot followed by the changepoint probability, which is the result of
the segmentation with the Bayesian changepoint detection algorithms. The third
subplot shows the motion in position space. The evaluated changepoints are marked
as red crosses and connected with a red dotted line. The table lists the segment
parameters for the selected model and the segmentation result.
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Segments Parameters
t0 tn x0 [m] xd [m] type

x y z x y z
s0:1 0.0 0.8 -0.028 -0.648 0.244 -0.018 -0.673 0.164 ConstantVelocity
s1:2 0.8 1.8 -0.018 -0.673 0.164 -0.014 -0.673 0.107 ConstantVelocity
s2:3 1.8 4.4 -0.014 -0.673 0.107 -0.015 -0.674 0.104 ConstantVelocity
s3:4 4.4 5.7 -0.015 -0.674 0.104 -0.018 -0.624 0.156 ConstantVelocity
s4:5 5.7 7.5 -0.018 -0.624 0.156 -0.021 -0.475 0.109 ConstantVelocity
s5:6 7.5 10.3 -0.021 -0.475 0.109 -0.017 -0.47 0.104 ConstantVelocity
s6:7 10.3 11.3 -0.017 -0.47 0.104 -0.022 -0.531 0.263 ConstantVelocity
s7:8 11.3 12.8 -0.022 -0.531 0.263 -0.021 -0.562 0.29 ConstantVelocity

Figure 4.8: Segmentation Report(Constant Velocity model, Pick and
Place): This figure illustrates the segmentation report consisting of the acquired
robot signals in the first subplot followed by the changepoint probability, which is
the result of the segmentation with the Bayesian changepoint detection algorithms.
The third subplot shows the motion in position space. The evaluated changepoints
are marked as red crosses and connected with a red dotted line. The table lists the
segment parameters for the selected model and the segmentation result.
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4.2.2 Second Order Dynamic Model

The second order dynamic segmentation model is generated by substituting the
second order dynamic model formulation 3.2.1 into the formulation of the BCPD
algorithm 2.1. Additionally, the Table 4.2 shows the used configuration parameter
sets. In the following sections we present the results of the individual scenarios in
the form of a segmentation report and the evaluated feedback from the test persons
regarding the intention recognition.

Configuration Parameter Sets

N. fS[hz] cthreshold (v0, σ
2
0) K D

1 10 0.2 (1, 0.052) {4, 8, 12, 16, 20, 24} {10, 32.5, 55, 77.5, 100}
2 10 0.2 (1, 0.0252) {4, 8, 12, 16, 20, 24} {10, 32.5, 55, 77.5, 100}

Table 4.2: Configuration Parameter Sets
This table shows the used configuration parameter sets. The column N. is used to
index the parameter sets and possible units are defined in the brackets like [unit].
The column fs describe the sample frequency, v0 and σ2

0 are the hyperparameter of
the conjugate prior ,and the stiffness and damping parameter sets are labeled by K
and D.

Based on the segmentation result, the robot should then perform the task. To enable
this, the segments are translated into desk apps. Since these are only movements, the
Cartesian Motion app is used and parameterized with a default velocity, acceleration
and the desired position. Finally, based on the feedback and necessary corrections,
the robot execution can be evaluated in the context of the intention recognition.

Three point motion

The resulting segmentation for the first configuration set is shown in the Fig. 4.9.
Points A, B and C marked in the task description are identified in the segmentation
results by changepoints and the resulting segments result in movements to desired
positions. So the robot reaches the marked point B in segments s0:1 and s3:4, the
marked point C in segments s1:2 and s4:5 and the marked point A in segments s3:4

and s5:6. For point C the segmentation result shows an error, which places the
changepoint offset. Between the desired positions for point C and point C there is
a deviation in position space.
All testing demonstrator described the robot execution as like desired and experi-
enced a correction of the execution as unnecessary.

Parkour

An example segmentation result of the parkour task with the first configuration set
is shown in the Fig. 4.10. In the frame of this task, the object collision avoidance
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become an additional task goal. In this execution the robot end effector collide with
the objects and the guider has to extend the task execution manually with a further
changepoints.
Therefore, we refine the configuration parameter to the model parameter set two and
rerun the teaching process. An example segmentation result of the parkour task with
the second configuration set is shown in the Fig. 4.11. The new segmentation result
contains additional changepoints which allow for collision-free execution.

Pick and place

An example segmentation result of the pick and place task with the first configura-
tion set is shown in the Fig. 4.12.
By inspecting, the segments can be classified into the sub-tasks, where the segments
s0:1 can be assigned to the grasping motion with the grasping position at the desired
position of the motion, the transport is represented by the segments s1:2 and s2:3

with the place position at the desired position of the segment s2:3 and the end
position is reached with the segment s3:4. The segmentation result thus indicates
the task structure. During several executions, the guider report issues with the pick
and place position as the robot collide with the table or the object and the robot
reports an collision error and stop the execution. To avoid this, the guider replace
the Cartesian Motion App with the Move To Contact App, which is extended by an
contact observer and therefore, the robot expect a contact and stops after detecting
it.

Conclusion

Due to the higher information level used in the definition of the Second Order Model,
the segmentation report 4.9 shows the recognition of a typical movement of the robot
as described in Three-Point Scenario 4.2.2 by segment s0:1. With the additional goal
of not touching the obstacle in scenario 4.2.2, the evaluation of the feedback showed
that the second order model precision depends on the configuration parameters used.
Although in scenario 4.2.2 the robot in free space assumption is not fulfilled during
pick up, transport and place phases, the segmentation report shows a complete
segmentation. Generally, the second order model enables a segmentation in the
intended way and with the focus on the desired position parameter, the intention
recognition convinced.
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Segments Parameters
t0 tn x0 [m] xd [m] type

x y z x y z
s0:1 0.0 3.0 0.013 -0.54 0.012 0.035 -0.335 0.03 SOM
s1:2 3.0 5.9 0.035 -0.335 0.03 -0.16 -0.464 0.018 SOM
s2:3 5.9 8.4 -0.16 -0.464 0.018 0.018 -0.536 0.01 SOM
s3:4 8.4 10.0 0.018 -0.536 0.01 0.034 -0.342 0.031 SOM
s4:5 10.0 11.9 0.034 -0.342 0.031 -0.17 -0.468 0.025 SOM
s5:6 11.9 15.1 -0.17 -0.468 0.025 0.011 -0.55 0.018 SOM

Figure 4.9: Segmentation Report(Second Order Model with first configu-
ration parameter set, Three-Point motion): This figure illustrates the segmen-
tation report consisting of the acquired robot signals in the first subplot followed
by the changepoint probability, which is the result of the segmentation with the
Bayesian changepoint detection algorithms. The third subplot shows the motion in
position space. The evaluated changepoints are marked as red crosses and connected
with a red dotted line. The table lists the segment parameters for the selected model
and the segmentation result.
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Segments Parameters
t0 tn x0 [m] xd [m] type

x y z x y z
s0:1 0.0 1.8 -0.167 -0.462 0.052 -0.151 -0.414 0.053 SOM
s1:2 1.8 3.5 -0.151 -0.414 0.053 -0.046 -0.521 0.064 SOM
s2:3 3.5 5.8 -0.046 -0.521 0.064 -0.037 -0.414 0.06 SOM
s3:4 5.8 7.1 -0.037 -0.414 0.06 -0.1 -0.569 0.083 SOM
s4:5 7.1 8.9 -0.1 -0.569 0.083 -0.15 -0.459 0.053 SOM

Figure 4.10: Segmentation Report(Second Order Model with first con-
figuration parameter set, Parkour): This figure illustrates the segmentation
report consisting of the acquired robot signals in the first subplot followed by the
changepoint probability, which is the result of the segmentation with the Bayesian
changepoint detection algorithms. The third subplot shows the motion in position
space. The evaluated changepoints are marked as red crosses and connected with a
red dotted line. The table lists the segment parameters for the selected model and
the segmentation result.
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Segments Parameters
t0 tn x0 [m] xd [m] type

x y z x y z
s0:1 0.0 1.4 -0.167 -0.462 0.052 -0.169 -0.451 0.048 SOM
s1:2 1.4 2.2 -0.169 -0.451 0.048 -0.096 -0.39 0.059 SOM
s2:3 2.2 3.5 -0.096 -0.39 0.059 -0.046 -0.521 0.064 SOM
s3:4 3.5 4.2 -0.046 -0.521 0.064 0.052 -0.523 0.067 SOM
s4:5 4.2 5.0 0.052 -0.523 0.067 0.045 -0.411 0.066 SOM
s5:6 5.0 6.0 0.045 -0.411 0.066 -0.048 -0.428 0.054 SOM
s6:7 6.0 7.0 -0.048 -0.428 0.054 -0.088 -0.563 0.091 SOM
s7:8 7.0 7.4 -0.088 -0.563 0.091 -0.148 -0.547 0.063 SOM
s8:9 7.4 8.9 -0.148 -0.547 0.063 -0.15 -0.459 0.053 SOM

Figure 4.11: Segmentation Report(Second Order Model with second con-
figuration parameter set, Parkour): This figure illustrates the segmentation
report consisting of the acquired robot signals in the first subplot followed by the
changepoint probability, which is the result of the segmentation with the Bayesian
changepoint detection algorithms. The third subplot shows the motion in position
space. The evaluated changepoints are marked as red crosses and connected with a
red dotted line. The table lists the segment parameters for the selected model and
the segmentation result.
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Segments Parameters
t0 tn x0 [m] xd [m] type

x y z x y z
s0:1 0.0 4.4 -0.028 -0.648 0.244 -0.015 -0.674 0.104 SOM
s1:2 4.4 6.0 -0.015 -0.674 0.104 -0.019 -0.596 0.154 SOM
s2:3 6.0 10.4 -0.019 -0.596 0.154 -0.017 -0.47 0.105 SOM
s3:4 10.4 12.8 -0.017 -0.47 0.105 -0.021 -0.562 0.29 SOM

Figure 4.12: Segmentation Report(Second Order Model with first configu-
ration parameter set, Pick and Place): This figure illustrates the segmentation
report consisting of the acquired robot signals in the first subplot followed by the
changepoint probability, which is the result of the segmentation with the Bayesian
changepoint detection algorithms. The third subplot shows the motion in position
space. The evaluated changepoints are marked as red crosses and connected with a
red dotted line. The table lists the segment parameters for the selected model and
the segmentation result.
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4.2.3 Force Model

The segmentation model is generated by presented formulation of the Force model
from Sec. 3.2.2 substituted into the formulation of the BCPD algorithm 2.1 and with
the parameters shown in Tab. 4.3. Because the force model ignores movements, a
subsequent execution of the segmentation result is incomplete. Therefore we will
focus the evaluation on the recognition of contact states and the applied forces.

Configuration Parameter Set

N. fS[hz] cthreshold (v0, σ2
0) K with (r = eK) f0

1 10 0.2 (10, 1.252) [0, 0.15, . . . , 3]
[
0. 0. 0.

]
Table 4.3: Configuration Parameter Set

The sample frequency fS, for extraction threshold of the changepoints cthreshold, the
conjugate prior inverse-chi-squared hyperparameters (v0, σ2

0), first order dynamic
roots r exponential distributed like K with (r = eK) and the f0 as the fixed force
start value.

Dispenser

The segmentation report for the scenario dispenser presented in Sec.4.1.1 is shown
in Fig. 4.13. The segmentation result shows that the force model recognizes both
the contact and the individual phases of the contact. In the segments s0:1, s3:4 and
s6:7 the robot is moving and not in contact with the soap dispenser. In segments
s1:2 and s4:5 the dispenser is pushed to the stop with an applied force of approx 20
Newton. Because the force does not fall off immediately, the decrease is shown in
the segments s2:3 and s5:6.

Pick and Place

The segmentation report for the scenario dispenser presented in Sec.4.1.1 is shown
in Fig. 4.14. When examining the segment parameters of the segmentation result,
the segments s0:1 and s6:7 show a low desired force, indicating that the robot is not
in contact with the object during these segments. In segment s1:2 and s4:5 the robot
is in contact with the object to pick it up and put it down. Again, the drop in force
is seen in segment s2:3 and s5:6. In segment s3:4 the target object is transported.

Conclusion

In summary, the force model shows the ability to recognize contact and the applied
force. In the Dispenser scenario, the force vector required for successful actuation
could be identified. However, based on the rigid robot and object assumption, the
decrease in force is assumed to be instantaneous, which in reality results in further
segments.
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In the Pick and Place scenario the focus is on identifying the contact state. By
setting a threshold value of 1 Newton the segments can be easily distinguished into
those where the robot and the object are in contact or where the robot is in free
space. Also compensating the weight of the target object during transport could be
detected as applying a negative force.

Segments Parameters
t0 tn f0 [m] fd [m] type

x y z x y z
s0:1 0.0 2.6 0 0 0 -0.032 0.062 -0.157 ForceModel
s1:2 2.6 4.2 0 0 0 1.291 -1.581 21.086 ForceModel
s2:3 4.2 4.7 0 0 0 -0.083 0.918 2.411 ForceModel
s3:4 4.7 7.6 0 0 0 -0.03 -0.033 0.06 ForceModel
s4:5 7.6 9.3 0 0 0 1.806 -1.418 20.331 ForceModel
s5:6 9.3 9.7 0 0 0 -0.058 1.22 4.083 ForceModel
s6:7 9.7 12.2 0 0 0 0.013 0.007 -0.134 ForceModel

Figure 4.13: Segmentation Report(Force Model, Dispenser): This figure il-
lustrates the segmentation report consisting of the acquired robot signals in the first
subplot followed by the changepoint probability, which is the result of the segmen-
tation with the Bayesian changepoint detection algorithms. The evaluated change-
points are marked as red crosses and connected with a red dotted line. The table
lists the segment parameters for the selected model and the segmentation result.
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Segments Parameters
t0 tn f0 [m] fd [m] type

x y z x y z
s0:1 0.0 1.8 0 0 0 -0.027 0.035 -0.064 ForceModel
s1:2 1.8 3.5 0 0 0 -0.278 -1.139 14.986 ForceModel
s2:3 3.5 4.1 0 0 0 -0.631 0.419 3.283 ForceModel
s3:4 4.1 7.5 0 0 0 -0.068 0.095 -2.911 ForceModel
s4:5 7.5 9.8 0 0 0 -0.757 0.318 9.881 ForceModel
s5:6 9.8 10.2 0 0 0 -0.358 0.231 2.524 ForceModel
s6:7 10.2 12.8 0 0 0 -0.005 0.155 0.055 ForceModel

Figure 4.14: Segmentation Report(Force Model, Pick and Place): This figure
illustrates the segmentation report consisting of the acquired robot signals in the
first subplot followed by the changepoint probability, which is the result of the
segmentation with the Bayesian changepoint detection algorithms. The evaluated
changepoints are marked as red crosses and connected with a red dotted line. The
table lists the segment parameters for the selected model and the segmentation
result.
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4.2.4 Contact Model

The segmentation model is generated by presented formulation of the contact model 3.2.3
substituted into the formulation of the BCPD algorithm 2.1 and with the param-
eters shown in Tab. 4.1. Due to the focus on the contact state and the lack of
segmentation in movements and applied forces, the segmentation model quality is
evaluated based on the accuracy of the contact state detection.

Configuration Parameter Sets

N. fS[hz] cthreshold σ2
sensor σ2

contact σ2
transport mmin[Kg] α0

1 10 0.2 0.75 20 0 0.2
[
10 10 10

]
Table 4.4: Configuration Parameter Sets

The sample frequency fS, for extraction threshold of the changepoints cthreshold, the
sensor variance σ2

sensor, the variance during a contact σ2
contact, the variance during

the transport σ2
transport and the Dirichlet distributed conjugate prior hyperparameter

vector α0.

Pick and Place

The segmentation report for the pick and place scenario presented in Sec.4.1.1 is
shown in Fig. 4.15. The segmentation result of the contact model for the pick and
place task shows 5 segments in 3 different contact states. The approach to the object
and the move to the final position are classified as free space in the segments s0:1

and s4:5. In the segments s1:2 and s3:4 the robot was classified as in contact with the
object and a transport of an object with a weight of 276 grams was detected in the
segment s2:3.

Conclusion

With the focus on the recognition of the contact state in the defined three states
Free Space, In Contact and Transport the Contact Model shows the desired results.
In a first evaluation of a pick and place scenario, the Contact Model was able to
recognize the task structure based on the environmental force alone.
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Segments Parameters
t0 tn u m f0 [m] fd [m] type

x y z x y z
s0:1 0.0 1.9 1 - 0.073 -0.013 0.196 -0.158 0.036 2.182 ContactModel
s1:2 1.9 4.2 2 - -0.158 0.036 2.182 -0.203 0.094 1.076 ContactModel
s2:3 4.2 7.5 3 0.276 -0.203 0.094 1.076 -0.068 0.095 -2.911 ContactModel
s3:4 7.5 10.1 2 - -0.068 0.095 -2.911 -0.305 0.196 3.033 ContactModel
s4:5 10.1 12.8 1 - -0.305 0.196 3.033 -0.005 0.155 0.055 ContactModel

Figure 4.15: Segmentation Report(Contact Model, Pick and Place): This
figure illustrates the segmentation report consisting of the acquired robot signals in
the first subplot followed by the changepoint probability, which is the result of the
segmentation with the Bayesian changepoint detection algorithms. The evaluated
changepoints are marked as red crosses and connected with a red dotted line. The
table lists the segment parameters for the selected model and the segmentation
result.
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4.2.5 Fully Integrated Model

The segmentation model is generated by presented formulation of the Fully Inte-
grated Model 3.2.4 substituted into the formulation of the BCPD algorithm. 2.1
and with the parameters shown in Tab. 4.5.
The segments of the Fully Integrated Model segmentation result are classified based
on the model used and are provided with contact variables as segment parame-
ters. The robot execution was generated based on the segment parameters, whereby
movements were realized with the Cartesian motion app and applied forces with
the apply force app. Since the Cartesian Motion app was designed for collision free
movements, we used the contact variable transition from free motion to contact to
replace the Cartesian Motion app with the Move To Contact App. If during a con-
tact a grip or release is detected, the applied force app is replaced by the Grasp or
Gripper move app.

Configuration Parameter Set
N. fS cthreshold θmotion θsteady θno contact θcontact θtransport mmin

[hz] (v0, σ
2
0) (v0, σ

2
0) (v0, σ

2
0) (v0, σ

2
0) (v0, σ

2
0) [Kg]

1 10 0.2 (1, 0.0252) (1, 0.0252) (1, 0.52) (1, 1.252) (1, 0.52) 0.2

Table 4.5: Configuration Parameter Set of the Combined Model
The sample frequency fS, for extraction threshold of the changepoints cthreshold.
The θmotion, θsteady, θno contact, θcontact and θtransport are the individual contact model
parameter sets. The mmin is the minimum weight.

Apply Dispenser

The segmentation report for the Dispenser scenario presented in Sec.4.1.1 is shown
in Fig. 4.16. The segmentation result of the FIM describes the dispenser scenario
in the form of classified and parameterized segments, which can be interpreted on
the basis of the task description. Thus, the movements in the segments s0:1, s3:4,
s4:5 and s7:8 can be described as the approach to the dispenser, the set-down and
renewed approach to the dispenser and the movement to the final position. In the
segments s1:2 and s5:6 the robot is classified as in contact and applies a force of
about 20 Newton, which describes the pressing of the dispenser. The segments s2:3

and s6:7 can be explained by the decrease in force and the assumptions of the rigid
objects and robot in the definition of the force model.
For the execution the segments s0:1 and s4:5 are realized based on the Contact
variable transition with the Move To Contact app. The pressing of the dispenser
in the segments s1:2 and s5:6 is realized with the Apply Force App and the desired
force as applied force vector. With a minimum time threshold filter the segments
s2:3 and s6:7 were filtered out and excluded in the execution. The movement in the
segment s3:4 was realized with the Cartesian Motion App and the desired position.
To prevent damage to the robot and the soap dispenser the power is limited to 10
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Newton. For this purpose the force Vector is scaled appropriately when the Applied
Force App is parameterized.

Despite the force limitation, test users describe the execution generated on the basis
of the segmentation result of the FIM as a successful pressing of the dispensing.
Since the manual generation of an execution as in the dispenser scenario requires
the user to estimate the force, experienced users describe the recognition of the force
vector as a special added value.

Pick and Place:

The segmentation report for the pick and place with a payload of 250 grams scenario
presented in Sec.4.1.1 is shown in Fig. 4.17. By comparing the segments of the
segmentation result of the Fully Integrated Model with the task structure of the
pick and place tasks, the individual sub-tasks show up as classified parameterized
segments. The approach to the target object and the motion to the finale position
is classified as a second order dynamic motion with the desired positions in the
segments s0:1 and s8:9. The contact during the object grab and release is classified
as contact in the segments s1:2 and s5:6. The transport was recognized as a sequence
of two movements in the segments s3:4 and s4:5 and parameterized with an object
weight of 257 grams and 293 grams. In the segments s2:3 and s6:7 the decreasing force
leads to segments that are classified as movements with a target position similar to
the start position.

For the execution the motion in segment s0:1 is realized by a Move to Contact app.
With the grasping detected at time 3s and the opening of the gripper detected
at time 9.2s, the Grasp and Gripper Move app replaced the segments during the
contacts. The transport segments are realized with the help of the transport app
and the average weight of 273 grams.

During the execution of the test users the pick and place scenario could be executed
successfully each time.

Conclusion

As a combination of the force model, the second order dynamic model and the
contact model, the Fully Integrated Model demonstrates the segment result of all
models and is therefore able to detect movements, applied forces and contact states.
In addition, the Fully Integrated Model is based on the position space and force
space and can therefore interpret information from both signals in combination.
The recognition of the structure of the task based on a sequence of classified and
parameterized segments could be proven in the evaluation of introduced scenarios.
In addition, a detailed robot task description and execution has been generated,
which is based on an interpretation of the segment parameters.
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Segments Parameters
t0 tn u m x0 [m] xd [m] type f0 [m] fd [m] type

x y z x y z x y z x y z
s0:1 0.0 2.6 1 - 0.028 -0.558 0.288 0.029 -0.549 0.192 SOM -0.047 -0.038 0.029 -0.032 0.062 -0.157 No Contact
s1:2 2.6 4.2 2 - 0.029 -0.549 0.192 0.028 -0.55 0.181 Zero 0.0 0.0 0.0 1.291 -1.581 21.086 FM
s2:3 4.2 4.7 2 - 0.028 -0.55 0.181 0.029 -0.552 0.19 Zero 0.0 0.0 0.0 -0.083 0.918 2.411 FM
s3:4 4.7 6.6 1 - 0.029 -0.552 0.19 0.027 -0.559 0.242 SOM -0.083 0.918 2.411 0.021 0.024 0.055 No Contact
s4:5 6.6 7.6 1 - 0.027 -0.559 0.242 0.029 -0.549 0.192 SOM 0.021 0.024 0.055 -0.03 -0.033 0.06 No Contact
s5:6 7.6 9.3 2 - 0.029 -0.549 0.192 0.028 -0.55 0.181 Zero 0.0 0.0 0.0 1.806 -1.418 20.331 FM
s6:7 9.3 9.8 2 - 0.028 -0.55 0.181 0.027 -0.55 0.191 Zero 0.0 0.0 0.0 0.086 0.834 -0.368 FM
s7:8 9.8 12.2 1 - 0.027 -0.55 0.191 0.036 -0.556 0.272 SOM 0.086 0.834 -0.368 0.013 0.007 -0.134 No Contact

Figure 4.16: Segmentation Report(Fully Integrated Model, Dispenser):
This figure illustrates the segmentation report consisting of the acquired robot sig-
nals in the first subplot followed by the changepoint probability, which is the result
of the segmentation with the Bayesian changepoint detection algorithms. The eval-
uated changepoints are marked as red crosses and connected with a red dotted line.
The table lists the segment parameters for the selected model and the segmentation
result.



62 CHAPTER 4. EVALUATION

Segments Parameters
t0 tn u m x0 [m] xd [m] type f0 [m] fd [m] type

x y z x y z x y z x y z
s0:1 0.0 1.8 1 - -0.028 -0.648 0.244 -0.014 -0.673 0.107 SOM 0.073 -0.013 0.196 -0.027 0.035 -0.064 No Contact
s1:2 1.8 3.5 2 - -0.014 -0.673 0.107 -0.015 -0.674 0.102 Zero 0.0 0.0 0.0 -0.278 -1.139 14.986 FM
s2:3 3.5 4.2 1 - -0.015 -0.674 0.102 -0.015 -0.674 0.104 SOM -0.278 -1.139 14.986 -0.203 0.094 1.076 No Contact
s3:4 4.2 5.7 3 0.257 -0.015 -0.674 0.104 -0.018 -0.624 0.156 SOM -0.203 0.094 1.076 -0.267 -0.037 -2.777 Transport
s4:5 5.7 7.5 3 0.293 -0.018 -0.624 0.156 -0.021 -0.475 0.109 SOM -0.267 -0.037 -2.777 -0.068 0.095 -2.911 Transport
s5:6 7.5 9.8 2 - -0.021 -0.475 0.109 -0.016 -0.47 0.104 Zero 0.0 0.0 0.0 -0.757 0.318 9.881 FM
s6:7 9.8 10.8 1 - -0.016 -0.47 0.104 -0.021 -0.479 0.166 SOM -0.757 0.318 9.881 0.293 0.356 -0.168 No Contact
s7:8 10.8 12.8 1 - -0.021 -0.479 0.166 -0.021 -0.562 0.29 SOM 0.293 0.356 -0.168 -0.005 0.155 0.055 No Contact

Figure 4.17: Segmentation Report(Fully Integrated Model, Pick and
Place): This figure illustrates the segmentation report consisting of the acquired
robot signals in the first subplot followed by the changepoint probability, which is
the result of the segmentation with the Bayesian changepoint detection algorithms.
The evaluated changepoints are marked as red crosses and connected with a red
dotted line. The table lists the segment parameters for the selected model and the
segmentation result.
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4.2.6 Online Segmentation

With the formulation of the oBCPD algorithm presented in Sect. 2.1.5 we will in-
vestigate an online segmentation based on the combined model. For this purpose
we will compare the segmentation results of the offline segmentation and the on-
line segmentation. The common representation of the segmentation results of the
oBCPD algorithm are the growth probabilities of increasing run lengths. With
each new observation the run length probabilities are updated and a changepoint
is shown by shifting the probabilities from high run lengths to low ones. With fur-
ther observations the segment parameters become more precise and the position of a
changepoint stabilizes with a delay. Therefore, we will consider a delay in comparing
segmentation results and online segmentation results.

Contact Model

Figure 4.18 shows the segmentation results of the offline segmentation and the online
segmentation of the pick and place scenario based on the contact model.
With a delayed evaluation after 0.6 seconds, all four change points of the offline
segmentation are detected in the online segmentation. The calculation time of a cycle
with a non-optimized implementation averages 18,047 milliseconds and is therefore
far below the sampling rate of 100 milliseconds. Thus, the online segmentation result
based on the contact model with the against parameters and with an evaluation delay
of 0.6 seconds already shows a segmentation result which corresponds to the offline
segmentation by evaluating the run length probability.

Fully Integrated Model

Figure 4.19 shows the segmentation results of the offline segmentation and the online
segmentation of the pick and place scenario based on the Fully Integrated Model.
The offline segmentation result recognized changepoints, which are based on a con-
tact state change, i.e. the changepoints after 1.8, 4.2, 7.4 and 10.2 seconds are also
recognized in the online segmentation result with evaluation delays of 0.6 after 2,
4.2, 7.8 and 10.6 seconds. The changepoints detected during the contact after 3.5
and 9.8 seconds in the offline segmentation result could not be detected in the online
segmentation result. The changepoint generated in the transporting phase after 6
seconds could only be detected with the second configuration parameter set for the
second order motion model in Tab. 4.2 and after an evaluation delay of 1.2 seconds.
The calculation time of a cycle with a non-optimized implementation averages 82.6
milliseconds and is therefore also below the sampling rate of 100 milliseconds.

Conclusion

Within the evaluation of the online segmentation for the Contact Model and the
Fully Integrated Model it could be shown for the pick and place scenario that with an



64 CHAPTER 4. EVALUATION

evaluation delay of 0.6 seconds changes in the contact state can already be detected
during the execution. The Fully Integrated Model, which is based on the Force
Model and the Second Order Model, requires an adjustment of the model parameters
with respect to changepoints within a contact state. In addition, these changepoints
require an extended evaluation delay time of 1.2 seconds. Due to the evaluation delay
of 1.2 seconds, changepoints of small segments cannot be detected, which is evident
for the changepoints after 3.4 and 9.8 seconds.
With a cycle calculation time below the sampling rate it could be shown that with
online segmentation the detection of changepoints during execution is possible.
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Figure 4.18: The two three subplots show the acquired position signal of the pick
and place scenario followed by the offline segmentation results. The third subplot
illustrates the increasing run length probability for each start time as a grey value,
with higher probabilities being displayed brighter. The fourth subplot illustrates
different run length probabilities shifted to the segment start.
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Figure 4.19: The top three subplots show the acquired position and force signal of
the pick and place scenario followed by the offline segmentation result. The fourth
subplot illustrates the increasing run length probability for each start time as a
grey value, with higher probabilities being displayed brighter. The fifth subplot
illustrates different run length probabilities shifted to the segment start.
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4.3 Discussion

In summary, it could be shown that a segmentation based on segment classification
for a limited number of scenarios recognizes the task structure and the intention
goals. Different Informed Models have been generated based on assumptions that
simulate the real Robot Dynamic, environment and human demonstrator. However,
the used configuration parameters show an influence on the segmentation precision,
which means that the parameters have to be adjusted according to the task require-
ments. Furthermore, the use case was tailored to a 7- Degree of Freedom (DOF)
robot arm with a gripper and a guideline was generated for the Kinaesthetic robot
teaching, which defines contact points with objects and humans.
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Chapter 5

Conclusion

In the experiments we demonstrated that the introduced segmentation approach
as a combination of simultaneous segment identification and classification based on
the Informed Segment Model and the BCPD algorithm provides results, which have
achieved a good feedback in the context of a first intention recognition interpretation
and execution. With the presented model formulation of the second and first order
dynamic, the focus could be set to the desired position or the desired force as model
parameter, which optimizes the segmentation result regarding the assumption of
the intention goals. However, it is demonstrated that the segmentation accuracy
is dependent on the selected model parameters and with the lack of sensitivity to
the ratio of the selected velocity and the desired precision, especially for tasks with
a varying error tolerance, no model parameter can be found that can both detect
precise movements and filter out non-intended movements. As demonstrated in the
soap dispenser experiment, the presented force model recognizes the applied force
and despite the assumed restriction of no environmental information, the task struc-
ture can still be classified. Since a task consists of a sequence of sub-tasks which
often differ in the contact state, a basic task structure is recognized by its identi-
fication. Such a task structure identification of the different contact states could
be realized in the context of the experiment for the following contact states: free
space, in contact and transport and for a pick an place task and the soap dispenser
scenario. The segmentation result of the Second Order Model and the Force Model,
and thus also the segmentation based on the contact state change from the contact
model, are all shown in the segmentation result of the Fully Integrated Model. To
evaluate the online segmentation, the segmentation result is compared with the of-
fline segmentation result. For the pick and place scenario and the contact model, all
changepoints are also detected in the online segmentation result with an evaluation
delay of 0.6 seconds. The decisive changepoints from the offline segmentation result
are reflected in the online segmentation result by adjusting the model parameters of
the Fully Integrated Model and with an evaluation delay of 1.2 seconds.

In the context of a subsequent work, a direct comparison with other segmentation
techniques would be the next emulation step. In order to prove the segmentation
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result regarding the generic validity, further setups and especially another robot
arm as well as new scenarios would be crucial. With the help of the desired velocity
parameter, human model can be extended to formulate the precision in position
space as a function of velocity. An Informed Model based on the desired velocity
parameter is able to deal with different task requirements regarding precision.
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Appendix A

Appendix

A.1 Style and Expressions

A.1.1 Sets

N+
0 positive natural numbers

N+ positive natural numbers without 0

R+ positive real numbers without 0

A.1.2 Detailed Derivation of the Constant Velocity Model

The marginal likelihood

By collection of the prior Eq. (3.15) and Eq. (3.16) can be written like

P (β, σ) ∝ N(β|0, σ2/κ0)X−2(σ2|v0, σ
2
0)

P (β, σ) =
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(A.1)
where ZNX−2(0, κ0, V0, σ

2
0) is the normalization term.

For a better transparency, the following distribution formulation are determined sep-
arated by the normalization term, where the unnormalized probabilities are labeled



72 APPENDIX A. APPENDIX

like P̃ . The likelihood (3.14) reduced by the normalization term ZN = 1√
2π

with

the unnormalized formulation of the collected prior (A.1) can be written like

P (β, σ|x1:n,Φ) ∝ N(x1:n|βψ, Iσ2)NX−2(β, σ2|0, κ0, v0, σ
2
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P̃ (β, σ|x1:n,Φ) = e−
1
2

(x1:n−βΦ)T (σ2/κ0)−1(x1:n−βΦ)σ−2
(3+v0)

2 e−
1
2σ

(κ0βTβ+v0σ2
0)

= σ−2
(4+v0)

2 e−
1
2σ

(κ0βTβ+v0σ2
0+(Y−βX)T (Y−βX)) ,

(A.2)

with the normalization term formulated like

ZNX−2(µn, κn, vn, σ
2
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1
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0 Γ
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. (A.3)

Therefore, the posterior can be written like

P (β, σ|x1:n,Φ) =
1

ZNX−2(µn, κn, vn, σ2
n)
σ−2

(4+v0)
2 e−

1
2

(x1:n−βΦ)T (σ2/κ0)−1(x1:n−βΦ) .

(A.4)

Based on the rigid linear regression formulation β? = (ΦTΦ−κ0I)−1Φx1:n, where β?

is the optimal coefficient, the squared residual computation term can be formulated
like

n∑
i=1

(xi − βφi)2 =
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(A.5)

where here φi indicates the column vector [1, ti] of the design matrix Φ and the term
2
∑n

i=1(xi − β?φi)(βφi − β?φi) = 0 dissolve, because of
∑n

i=1 xi =
∑

i=1 β
?φi.

Therefore, the exponent of the exponential function can be reformulated like
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with ns2 = (x1:n − β?Φ)T (x1:n − β?Φ).

By comparing the formulation with a quadratic term of a conjugate prior written
like

Qn(µ) = sn + κn(µ− µn)2

= µ2κn − 2µ(κnµn) + (κnµ
2
n + sn) ,

(A.7)
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where the mean defined like µ = β. Therefore, The hyperparameter update can be
written like

κn = ΦTΦ + κ0I
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(A.8)

and the formulation of the posterior can now be written like
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The posterior predictive

For a new data point xj, the posterior predictive distribution can be written like
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A.1.3 Detailed derivation of a model with a known mean

The marginal likelihood

With the segment likelihood (3.29), the prior (3.30) and the mean µ = x
′
1:n, the

segment probability can be written like
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where ZNIX (v0, σ0) is the normalization constant of the distribution. With the com-
parison of the segment distribution with the normal inverse chi squared distribution
with the updated variance like
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, the hyperparameter updates can be written like
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With updated the hyperparameters vn and σ2
n, the posterior distribution of the

variance σ can be formulated like

p(σ2|x1:n,x
′

1:n, v0, σ
2
0) ∝ NX−2

(
σ2|x′1:n, vn, σ

2
n

)
. (A.14)



76 APPENDIX A. APPENDIX

The posterior predictive

On the base of the marginal likelihood, the posterior predictive can be formulated
like
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(A.15)
where tvn is the Student’s t-distributed probability density like Eq. (A.16).

A.1.4 Student’s t-distribution

As reference, the Student’s t-distributed probability density formulation is written
like
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where v > 0 is the degrees of freedom, mu is the mean and σ2 > 0 is the scale.
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A.2 Scenarios

A.2.1 Three point motion

Figure A.1: Shows the acquired end effector position, twist and the environmental
force of the Three Point Scenario
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A.2.2 Parkour

Figure A.2: Shows the acquired end effector position, twist and the environmental
force of the parkour Scenario
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A.2.3 Pick and place

Figure A.3: Shows the acquired end effector position, twist and the environmental
force of the Pick and Place Scenario



80 APPENDIX A. APPENDIX

A.2.4 Soap Dispenser

Figure A.4: Shows the acquired end effector position, twist and the environmental
force of the Soap Dispense Scenario
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