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Abstract

Many of the existing dynamical system (DS) methods learned from demonstrations
do not enable the robot to adhere to a reference path during execution. And the tra-
ditional open loop control configuration which is used to track a reference trajectory
does not endow the robot with compliance behavior in interaction with environ-
ment. Suppose that a desired DS learned from demonstrations is given, as well as a
desired stiffness profile. This thesis proposes a method to generate a new DS, called
Variable Stiffness DS (VSDS), that encodes desired stiffness profile. This VSDS fol-
lows the desired DS motion, and has the spring like symmetrical attraction towards
a reference trajectory which is decided by original DS and initial position. The
VSDS is fed in a closed loop control configuration, which enables a compliance and
safe behavior in interaction with environment. During the motion, robot will resist
the small perturbations and stick to the reference path because of the symmetrical
attraction. When the robot is far away from the reference path e.g because of a
human perturbation, the method generates another VSDS online based on current
robot state and drive the robot towards goal point. This method is tested on 7DOF
KUKA LWR robot arm, and it performs well in motion execution, human robot in-
teraction, trajectory regeneration and control with variable stiffness profile. A task
of inserting a charger into socket is also accomplished using VSDS.



2



CONTENTS 3

Contents

1 Introduction 5

2 Related Work 7

2.1 Variable Impedance Control . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Closed Loop Motion Generation . . . . . . . . . . . . . . . . . . . . . 9

3 Technical Approach 13

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Stable Estimator of Dynamical Systems . . . . . . . . . . . . . 17

3.1.3 Passive DS control configuration and compliant behaviors . . . 19

3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Variable Stiffness DS with linear DS . . . . . . . . . . . . . . 25

3.2.3 Stiffness behavior of closed loop DS . . . . . . . . . . . . . . . 37

3.2.4 Discussion of stability . . . . . . . . . . . . . . . . . . . . . . 40

4 Evaluation 45

4.1 Motion execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Human robot collision . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Path regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Variable stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Inserting charger into socket . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion 55

A 57

A.1 Gradient of Transfer Function . . . . . . . . . . . . . . . . . . . . . . 57

A.2 Close-loop Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.3 Eigenvector proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



4 CONTENTS

B 61
B.1 C shape SEDS parameters . . . . . . . . . . . . . . . . . . . . . . . . 61
B.2 Convex shape SEDS parameters . . . . . . . . . . . . . . . . . . . . . 62
B.3 SEDS parameters of insertion task . . . . . . . . . . . . . . . . . . . 63

List of Figures 65

Bibliography 69



5

Chapter 1

Introduction

Since robots entered industry, they relieve human from lots of tasks that are
repetitive, dangerous or that demand high precision and high power. Hence, they
play an irreplaceable role in modern industry. Unlike the working environment in
industry which is usually certain and clear for robot, the environment in real life
is unpredictable and complex. So industrial robots controlled in open loop config-
urations, unlike humans, are inherently stiff, unable to interact with an uncertain
environment and unable to collaborate safely with humans. However, endowing
robot with compliance behavior is becoming more and more significant in robot re-
search. On one hand, industrial robots are expected to take over all manipulation
tasks that need a mass of interactions with environments. On the other hand, safe
interactions with environment is one basic requirement for service robots as health
care or work assistance.

Compliance is exhibited at three different levels ([KB19]): 1) Compliance at the
force-level: the robot can fulfill a specific task, but it only keeps compliant toward
small perturbations. 2) Compliance at the motion-level: the robot can finish a
particular task, even there is a perturbation resulting in variation of motions, the
robot can still fulfill the task. 3) Compliance at the task-level: the robot can switch
between tasks based on the intention of human partner. This thesis focuses on the
compliance at both force-level and motion-level.

To realize the compliance, impedance control ([Hog85]) is applied to robots. A
robot is usually modelled as a mass-spring-damper system. Impedance controller
controls the relationship between external forces (torques) and resulting velocity (an-
gular velocity) in terms of impedance of the system. In general, a high impedance
means stiff behavior because the robot tries to rejects external perturbation and stay
in its original position. A low impedance means compliant behavior and robot tend
to comply with the external forces. The benefits of varying the impedance accord-
ing to the task requirements has been shown by many works ([KB13], [RCC+13]).
Defining impedance profile is achieved by many different methods including Learning
from Demonstration (LfD). Among the three impedance parameters, i.e. inertial,
damping and stiffness, the stiffness is most related to robot compliance behavior.
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Therefore, this thesis focuses on encoding desired stiffness profile into robot motion
tasks that is described by a dynamical system with a global attractor.

Dynamical Systems (DS) are becoming increasingly popular to model tasks or
generate motions in robotics. Autonomous DS is a DS that does not depends on time
and extra control input. It takes the state variable, e.g. the robot Cartesian position
or joint position, as input, and returns the change rate of the state variable, e.g.
the Cartesian velocity or joint velocity. With its advantages of convergence to an
attractor point or a limit cycle, it performs well on modeling the periodic movements
or reaching movements, and its application also extends to LfD area. LfD endows
robots with the capability to learn a motion or a task from human demonstrations.
Different DS under the paradigm LfD are proposed, such as DMP ([Sch06]), SEDS
([KZB11]) and LMDS ([KKB15]). These DS will be introduced later in Chapter 2.

Although autonomous DS generates the change rate of state variable only de-
pending on state variable itself, traditional impedance controller configuration can-
not benefit from this property. Traditional configuration of impedance control is
open loop. In this configuration, a reference trajectory is generated by integrating
the DS. The actual position of robot is not applied to the DS except initialization
at beginning of motion. If there is a inconsistency of robot actual state and the
reference trajectory, for instance, the robot is stopped by obstacle or human in the
middle of reference trajectory, the error between actual position and integrated po-
sition increases. As the impedance controller pulls the robot from actual position to
desired position, an increasing force is generated by the controller. This can damage
the robot or the environment. Therefore a passive controller in closed loop config-
uration is proposed in [KB15]. The DS is updated with actual position of robot by
the feedback, and the controller send control command based on velocity error.

The main contribution of this thesis is encoding a desired stiffness profile into the
DS under the closed loop control configuration. With any DS and a start point in-
side the workspace of robot, a reference path and a new modified DS, called Variable
Stiffness DS (VSDS), encoded with the desired stiffness profile are generated. Using
the closed loop motion generation, we get rid of the notion tracking a trajectory,
which tracks the time indexed reference motion. This method realize force-level
compliance and motion-level compliance simultaneously. Without any perturba-
tions, robot will stick to the reference path. If a deviation happens, robot will be
dragged back to reference path. The compliance behavior is defined by stiffness pro-
file, which means the higher the stiffness is, the harder to drag robot from reference
path and the faster robot returns to the path. When a large perturbation happens,
this approach regenerates a DS and fulfills the task.

The rest of this report is structured as follow: Chapter 2 is the literature review
of three topics: variable impedance control (VIC), dynamical systems (DS) and
closed loop motion generation (CLMG). Chapter 3 introduces the approach of this
thesis and illustrates with the simulation results. Experimental results on a 7 DOF
KUKA LWR are shown in Chapter 4. Finally, Chapter 5 presents the conclusion
and future work of this thesis.
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Chapter 2

Related Work

In this chapter, relevant literature is reviewed in three aspects: variable impedance
control, dynamical systems and closed loop motion generation. This thesis is aimed
at endowing robot with compliant behavior, which can be modeled as different stiff-
ness profiles in variable impedance control. The stiffness profiles are encoded in
dynamical systems. Relevant works of variable impedance control and dynamical
systems are reviewed in Section 2.1 and Section 2.2 respectively. The framework of
this thesis is under a closed loop configuration, which is introduced in Section 2.3

2.1 Variable Impedance Control

It is still a difficult problem to control the robot to have physical contact with the
environment. One typical control class which controls robot in physical contact is
impedance control ([Hog85]). Hogan uses the physical concept effort (force) and flow
(velocity) and models a second order linear dynamical system as a virtual inertia,
damping and stiffness system. The causality clarifies a mechanical system can either
take velocity or force as output, but not both. A system uses impedance control
when the input is velocity and output is force. In contrast, a system uses admittance
control when the input is force and output is velocity. In general, impedance control
is more robust in rigid contact, while admittance control provides higher accuracy
in non-contact tasks [OMN10].

Although impedance control with invariant impedance parameters performs well
in some situations ([Hog87, Par01]), constant impedance parameters may not be
ideal in all situations. For instance, a high stiffness makes robot try to maintain
the current states, resulting a performance with higher accuracy. But high stiffness
means low compliance, when interacting with environment, robot applies higher
force to the environment, this may cause danger. [KB12] shows that without varying
the impedance, task like lighting a match is not possible to succeed.

Many researches show that human use varying impedance in task execution
([BOF+01, YGH+11]). For both human and robots, using variable impedance pa-
rameters is more flexible and provides better performance in many tasks. The
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variable impedance profile can be obtained by different methods, one of which is
Learning from Demonstrations (LfD). Free motion task information like desired mo-
tion trajectory or velocity are learned from human demonstrations. However, for
tasks requiring specific contact forces, or tasks requiring compliance when interact-
ing, additional information like impedance should be learned. In [CSC10], a method
deriving stiffness variations for a compliant controller from trajectory demonstra-
tions is proposed. The demonstrations is fitted to Gaussian based DMP model,
and the stiffness profile is defined proportional to the inverse of the observed co-
variance. [RCC+13] uses weighted least square method to estimate stiffness matrix.
By assuming the robot is driven by a set of virtual springs, each stiffness matrix is
estimated from demonstrated positions and sensed forces.

Besides learning impedance profile from demonstrated trajectory data, robot can
also learn stiffness parameters from human robot interaction. [KB12] proposes an
online incremental algorithm that allows the user to interactively teach a stiffness
profile through human-robot interaction. The user teaches the scale of decreasing
stiffness by wiggling the end-effector around the equilibrium point. The stiffness has
a linear relationship to the standard deviation of the perturbations, which is easy
for user to identify the influence of the teaching. This work is extended in [KB13]
with learning the stiffness with haptic signals from human. A frequency domain is
used to separate the interactions. And it extends the framework with a mode for
increasing the stiffness and for stiffness in joint space.

Other approaches to obtain impedance profile including optimal control, rein-
forcement learning and biologically inspired approaches. [HWWAS11] presents a
solution which use optimal control to find the stiffness of variable impedance actua-
tors which maximizes the link side velocity. [BTSS11] uses reinforcement learning for
learning variable impedance policies. The approach formulates the varying stiffness
as a differential equation which is an additional state in the dynamic movement
primitives framework. However, a well-designed cost function is indispensable in
both reinforcement learning and optimal control. Biologically inspired approaches
are also intuitive because humans and animals performs perfectly in terms of com-
pliance. [YGH+11] presents a human-like controller by investigating and modeling
human motor control. The controller adapts position trajectory, feedforward force
and impedance in the presence of unknown dynamics.

2.2 Dynamical Systems

In robotics, Dynamical System (DS) has been advocated as a powerful method
for motion generation and task modeling ([KZB11, KZB14]). As one of the most
general and flexible methods modeling motion plans, numerous DS formulations have
been proposed. Complex tasks such as playing table tennis [KMK+10] or peeling a
zucchini [FB17] are well approximated by DS from human demonstrations.

A popular DS framework is Dynamic Movement Primitives (DMPs), which is first
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proposed in [Sch06] and updated in [INH+13]. DMPs performs well in both rhythmic
and discrete motions. In this framework, a nonlinear forcing term is introduced to
modify the behavior. The forcing term is a nonlinear combination of simple canonical
systems, which are simple dynamical systems converging to zero or a limit circle.
The state of canonical system is called phase variable, as it decays from initial value
to zero, the system converges to global attractor. The phase variable is a function
of time, so DMP depends on time implicitly. DMP shows robustness and flexibility
in application, because it has capacity in both spatial and temporal scaling. It gains
popularity in both reinforcement learning [BTSS11] and imitation learning [SIB03].

Instead of using forcing term in DMP, another class of DS depends only on the
kinematic state variable, e.g. joint or Cartesian positions or velocities. One example
is the Stable Estimator of Dynamical Systems (SEDS) in [KZB11], which is a time
invariant and globally asymptotically stable DS. This method uses GMM for mod-
eling demonstrations of position and velocity. Through rearrangement of the GMM
parameters, a robot motion can be formulated as a non-linear combination of several
linear DS, whose equilibrium point is at the goal point. The parameters are learned
from demonstrations using optimization problem to minimize the likelihood or mean
square error. To ensure global asymptotic stability of the DS, some constraints are
added to the optimization. A continue work introduces another methods to ensure
stability of the existing DS, i.e. SEDS-II in [KZB14]. This approach firstly learns
a valid Lyapunov function from demonstrations by solving optimization problem,
then generates the stabilizing commands which forces the motion in the direction
which the Lyapunov function decreases.

[KKB15] proposed a Locally Modulated Dynamical Systems (LMDS), which lo-
cally reshapes an existing DS while preserving the stability. An incremental learning
algorithm for LMDS is introduced, which is learned from training data using Gaus-
sian processes. [FFB18] proposes a Locally Active Global Stable DS (LAGS-DS),
which is a sum of one global DS which defines the desired trajectory and several local
linear DS which decomposes the desired trajectory and is encoded with spring-like
behavior. The LAGS-DS provides not only global convergence but also a stiffness-
like symmetric attraction behavior around a reference-trajectory.

2.3 Closed Loop Motion Generation

DS as motion generators have the capacity to model a task and generate smooth
trajectories ([KB19], [KZB11]). Traditional motion generator is placed in an open
loop configuration (Figure 2.1). The DS is integrated in a separate loop to gener-
ate a reference trajectory. Then the trajectory is tracked by the classical impedance
control. The actual position of robot is not applied to the DS except initialization at
beginning of motion. However, this makes DS unable to react to the environmental
disturbance, thus the robot behavior does not consist with task model. When a mis-
match between actual robot motion and planned motion happens, the accumulated
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Figure 2.1: An open loop control configuration with DS. [KB15]

Figure 2.2: A closed loop control configuration with DS. [KB15]

error may results in large interaction force or harsh motion.

A robot with closed loop motion generation configuration can respond to physical
perturbations and guarantee a safe interaction. In [KB15], a novel control architec-
ture is proposed, which uses DS in a closed loop configuration and guarantees stable
interaction with any passive environment. As illustrated in Figure 2.2, the DS is
updated with actual position of robot by the feedback, and the controller send con-
trol command based on velocity error. This means the generated motion is affected
by the actual robot state.

[KB19] also proposes a closed loop configuration which has DS as motion gen-
erator. The adaptive motion generator can combine several DS, in order to comply
to the human intention of transiting from one task to another. In Figure 2.3, bi are
the task-beliefs. x̂r and ˙̂xr are the actual robot position and velocity, respectively.
fi (xr) are the corresponding task velocity. The adaptation mechanism of bi is based
on the similarities between each task DS and the actual robot velocity. This work
realizes a task-level compliance behavior of robot.

[KZKB14] proposes a single-loop architecture which performs feedback motion
generation and state varying impedance control at once, meanwhile the stability is
guaranteed (Figure 2.4). The robot motion is modeled as an autonomous DS, which
is formulated from Gaussian Mixture Regression (GMR). Each Gaussian function
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Figure 2.3: Task adaptation with closed loop configuration. [KB19]

Figure 2.4: Single loop configuration. [KZKB14]

in GMR is seen as a linear spring-damper system. This DS takes robot position
and velocity (s, ṡ) as input and generates the robot control torque (τ) as output. A
stability proof based on Lyapunov function is also provided in this work.

Similarly, [KZK17] introduces a unified motion and variable impedance control
policy, which regulates both robot motion and stiffness profile. The control policy is
learned from demonstration data including position, velocity, torque and stiffness.
The learning process is done by solving two optimization problems, which guarantees
the convergence and preservation of velocity profile.
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Chapter 3

Technical Approach

This chapter describes the general approach of this thesis. Some preliminaries like
Dynamical Systems, Lyapunov functions, close loop motion generation and robot
dynamics are firstly introduced in Section 3.1. Then the approach to construct the
new DS is described in Section 3.2.

3.1 Preliminaries

3.1.1 Dynamical systems

Dynamical Systems (DS) describes how a system will change in the next step.
Let ξ ∈ <d be the d-dimensional state vector, which can be defined arbitrarily to
represent the system. In this thesis, ξ is defined as the position in joint coordinates
or Cartesian coordinates. The DS usually depends not only on the state vector, but
also on time and input vector. A DS is called autonomous if it is not an explicit
function of time:

ξ̇ = f (ξ)

where f (ξ): <d 7→ <d is the function that maps current system state to state
changing rate.

A crucial property of DS is stability, which means a well-designed DS converges to
an equilibrium point or a limit cycle. In this thesis we focus on the stable DS which
converges to equilibrium point, we also call it attractor. Consider an autonomous
DS: ξ̇ = f (ξ (t)), ξ (0) = ξ0, where ξ (t) ∈ <d is the state variable. Suppose the
equilibrium of f is ξ∗ ∈ <d, i.e. f (ξ∗) = 0.

• If for every ε > 0, there exits a δ > 0 such that, if ‖ ξ (0)− ξ∗ ‖< δ, then for
every t ≥ 0 we have ‖ ξ (t)−ξ∗ ‖< ε, then equilibrium ξ∗ is globally Lyapunov
stable.

• If there exists δ > 0 such that if ‖ ξ (0)− ξ∗ ‖< δ, then lim
t→∞
‖ ξ (t)− ξ∗ ‖= 0,

then equilibrium ξ∗ is globally asymptotically stable.
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(a) Dynamical System converges to a point
(marked with red diamond)

(b) Dynamical System converges to a limit cir-
cle (marked with red line)

Figure 3.1: Convergence behavior of Dynamical Systems

As will be analyzed in section 3.1.1, the stability of linear DS can be easily seen
from the parameters in the function. Meanwhile, for non-linear DS, the stability
analysis is not trivial. But the Lyapunov function provides a strong tool for stability
analysis. Assume V (ξ): <d 7→ < is a continuously differentiable function, which is
called Lyapunov function.

• If V satisfies following conditions:

– V (ξ∗) = 0

– V (ξ) > 0,∀ξ 6= ξ∗

– V̇ (ξ) ≤ 0,∀ξ 6= ξ∗

– ‖ ξ ‖→ ∞⇒ V (ξ)→∞

then the DS ξ̇ = f (ξ (t)) is globally Lyapunov stable.

• If V satisfies following conditions:

– V (ξ∗) = 0

– V (ξ) > 0,∀ξ 6= ξ∗

– V̇ (ξ) < 0,∀ξ 6= ξ∗

– ‖ ξ ‖→ ∞⇒ V (ξ)→∞

then the DS ξ̇ = f (ξ (t)) is globally asymptotically stable.

If we limit the state variable in a region which contains the origin, i.e. ξ (t) ∈
D ⊆ <d, and we leave the boundlessness of Lyapunov function, then the stability is
said to be locally stable.
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The approach in this thesis is basically a combination of linear DS. This simple
but powerful DS takes the form:

ξ̇ = A (ξ − ξ∗) (3.1)

where A ∈ <d×d is a constant matrix, indicating the stability of the linear DS.
ξ∗ is the global attractor if the DS is stable. The stability is related to eigenvalues
λi, i = 1 . . . d of A. If and only if the real part of all eigenvalues are strictly negative,
i.e. re (λi) < 0,∀i = 1 . . . d, the linear DS in equation 3.1 is stable and converges
to attractor ξ∗. The good properties of linear DS are that 1) there exists only one
global attractor, 2) stability is easy to achieve by tuning the sign of eigenvalues of
matrix A, 3) the shape of DS is easy to vary by tuning the magnitude of eigenvalues
of matrix A.

The effects of eigenvalues on stability and shape of linear DS are here illus-
trated simply with 2-dimensional case. For more detailed explanation please refer
to Chapter 5 of book [Str01].

Without loss of generality, the equilibrium point (also referred to attractor below)
is set to origin. Other attractors can be reached by shifting the equilibrium point.
A linear DS with 2-D state variable x is written as:

ẋ = Ax =

(
a b
c d

)(
x1
x2

)
(3.2)

To get the eigenvalue, a quadratic equation below should be solved:

λ2 − τλ+ ∆ = 0

where

τ = trace (A) = a+ d

∆ = det (A) = ad− bc

Then

λ1 =
τ +
√
τ 2 − 4∆

2
, λ2 =

τ −
√
τ 2 − 4∆

2

With different values of τ and ∆, DS from formula 3.2 has different stability
properties and different shapes:

• If ∆ < 0, the eigenvalues are both real but with opposite signs, then the
attractor is a saddle point (Figure 3.2(a)).

• If ∆ > 0:

– If τ 2 − 4∆ > 0, the eigenvalues are real with same sign, the attractor is
called nodes (Figure 3.2(b), 3.2(c)).
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– If τ 2 − 4∆ < 0, the eigenvalues are complex conjugate, the attractor is
spirals or centers (Figure 3.2(d), 3.2(e), 3.2(f)).

– If τ 2 − 4∆ = 0, on the parabola are star nodes and degenerate nodes
(Figure 3.2(g), 3.2(h)).

– If τ < 0, both eigenvalues have negative real parts, so the attractor is
stable (Figure 3.2(b), 3.2(d)).

– If τ > 0, both eigenvalues have positive real parts, so the attractor is
unstable spirals or nodes (Figure 3.2(c), 3.2(e)).

– If τ = 0, the eigenvalues are pure imaginary, the attractor is centers
(Figure 3.2(f)).

• If ∆ = 0, at least one of the eigenvalues is zero, the attractor is non-isolated.

Figure 3.3 summaries the type and stability.
This thesis focused mainly on the stable node linear DS type. As Figure 3.2(b)

shows, the state in this DS has a behavior that it firstly converges to a ”center line”
symmetrically, then converge to the attractor. This is similar to the goal of this
thesis, which is a symmetrical convergence to a desired path. More details of the
stable node DS type will be discussed in the following.

The constant matrix in 3.2 can be written as:

A = QΛQT

where Q is a direction matrix, here with a rotation matrix form:

Q =

(
cosα − sinα
sinα cosα

)
and Λ is a diagonal matrix with eigenvalues, i.e.

Λ =

(
λ1 0
0 λ2

)
The ratio γ = λ2

λ1
controls the extent of the state variable convergence to the

center line. And the rotation angle α defines the orientation of the center line. The
influence of γ and α can be seen in Figure 3.4.

Then the analytical solution of 3.1 can be written as:

x (t) = c1e
λ1tv1 + c2e

λ2tv2 (3.3)

where the c1 and c2 are constants that are decided by the initial state of 3.1, λ1, λ2
are eigenvalues of matrix A, and v1,v2 are the eigenvectors of A, i.e. the columns
of direction matrix Q.



3.1. PRELIMINARIES 17

(a) Saddle (b) Stable node (c) Unstable node

(d) Stable spiral (e) Unstable spiral (f) Center

(g) Star node (h) Degenerate node

Figure 3.2: Different linear dynamical systems

3.1.2 Stable Estimator of Dynamical Systems

The Stable Estimator of Dynamical Systems (SEDS) is a learning method based
on Gaussian Mixture Model (GMM). It presents robot motion as a non-linear au-
tonomous DS. SEDS is ensured to be global asymptotically stable at the target
([KZB11]). In this report, SEDS is used extensively as the desired original DS. It is
expressed as a nonlinear sum of linear DS:

ξ̇ = f (ξ) =
N∑
i=1

h̃i (ξ) (Aiξ + bi) (3.4)

where Ai ∈ <d×d, bi ∈ <d and Aiξ + bi is the linear DS. N denotes the number of
linear DS. h̃i (ξ) ∈ < is the nonlinear weighting function and satisfies

∑N
i=1 h̃i (ξ) =

1.
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Figure 3.3: Type and stability of different attractors. [Str01]

(a) γ = 1, α = 0 (b) γ = 3, α = 0 (c) γ = 10, α = 0

(d) γ = 10, α = π
6 (e) γ = 10, α = π

3 (f) γ = 10, α = −π4

Figure 3.4: Different linear dynamical systems with stable node attractor

hi (ξ) = pi
1√

(2π)d det (Σi)
e−

1
2
(ξ−µi)TΣ−1

i (ξ−µi)

where the parameters pi, µi and Σi are priors, mean and covariance matrix of GMM.
And
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(a) C shape SEDS (b) Convex shape SEDS

Figure 3.5: Visualization of two SEDS used as desired DS. The black diamond
denotes the global attractor. The starting point is not marked here, for it can be
any point on the plane in our case.

h̃i (ξ) =
hi (ξ)∑N
j=1 hj (ξ)

The above mentioned parameters are learned by solving an optimization prob-
lem which minimizes the likelihood or mean square error. To guarantee the global
asymptotic stability of 3.4, the optimization problem also has the following con-
straints: {

bi = −Aiξ
∗

Ai + AT
i ≺ 0

∀i = 1 . . . N (3.5)

where ξ∗ is the global attractor.

In this report, 2 different SEDS are used (Figure 3.5). One with ”C” shape is
learned from hand drawn demonstration in matlab GUI. Onother with convex curve
shape is learned from a real robot motion demonstration. The parameters of these
2 SEDS can be found in Appendix B.

3.1.3 Passive DS control configuration and compliant be-
haviors

This section introduces robot rigid body dynamics under the closed loop passive
DS control configuration (Figure 2.2) of [KB15]. In this thesis, variable ξ is a
generalized state variable, which can be robot joint position or Cartesian position.
Consider a gravity compensated robot dynamics with state variable ξ:

M (ξ) ξ̈ + C
(
ξ, ξ̇
)
ξ̇ = uc + ue (3.6)
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where M (ξ) ∈ <d×d corresponds to inertia matrix and C
(
ξ, ξ̇
)
∈ <d×d is the Corio-

lis matrix. uc ∈ <d and ue ∈ <d are control torque and external torque respectively.
ξ, ξ̇, ξ̈ ∈ <d denote the position, velocity and acceleration in either joint or Cartesian
space.

In open loop control configuration:

For a tracking problem, an impedance control is written as:

u = M
(
ξ̈d − ξ̈

)
+ D

(
ξ̇d − ξ̇

)
+ K (ξd − ξ) (3.7)

where u ∈ <d is force as output of impedance controller. ξd, ξ̇d, ξ̈d ∈ <d are desired
position, velocity and acceleration, respectively. M ∈ <d×d, D ∈ <d×d, K ∈ <d×d
are the impedance parameters, i.e. inertia, damping and stiffness.

To be more specific, here we choose the PD+ controller proposed in [PP88].
This can be seen as an impedance controller without inertia shaping (i.e compliance
control) . The control torque uc ∈ <d is defined as:

uc = ud + D
(
ξ̇d − ξ̇

)
+ K (ξd − ξ) (3.8)

where ud ∈ <d is a dynamic compensation torque defined as:

ud = M (ξ) ξ̈d + C
(
ξ, ξ̇
)
ξ̇d (3.9)

The closed loop behavior becomes:

ue = M (ξ) ë +
(
D + C

(
ξ, ξ̇
))

ė + Ke (3.10)

where e = (ξ − ξd), ė =
(
ξ̇ − ξ̇d

)
and ë =

(
ξ̈ − ξ̈d

)
are the tracking errors during

the motion.
In the open loop control configuration in Figure 2.1, the desired trajectory is

generated from a separate integration loop. This means the motion generation loop
cannot receive the actual robot state. When an interaction between robot and the
environment happens, or other reasons which causes the mismatch between planned
motion and actual trajectory happens, an error occurs and starts to accumulate.
This can result in a large contact force due to the accumulated error in stiffness
part. For instance, a human stops the robot in the middle of a motion, as the the
difference between desired position/velocity increases, the robot applies rising force
to human. When the robot is released again, it will acquire a large acceleration to
track the reference trajectory. The rising force and the large acceleration are not
safe for both human and robot.
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In closed loop control configuration:

In closed loop control configuration in [KB15], the robot motion planner is aware
of the robot current state all the time, hence robot motion is generated in real time.
This increases the safety in possible uncertainty in the environment or unforeseen
interaction with human. It ensures a compliant behavior of robot, i.e. when the
robot is perturbed, the robot follows the perturbation compliantly. Because the
robot motion is generated from DS based on current position (Figure 2.2), unlike in
open loop, there is no incremental error, thus, no huge jerk when the perturbation
stops. When the robot is again released, the robot starts moving towards the global
attractor smoothly from the position where the perturbation ends. The controller
generate a control signal uc by tracking the desired velocity which is generated from
nominal motion plan DS f (ξ). This controller ensures stable interaction with a
passive environment by using a negative velocity error feedback control law:

uc = −D (ξ)
(
ξ̇ − f (ξ)

)
(3.11)

where D (ξ) ∈ <d×d is a state-varying damping matrix, which enables selective
energy dissipation in desired and undesired directions. The D (ξ) is chosen as:

D (ξ) = Q (ξ) ΛQ (ξ)T

where Λ ∈ <d×d is a diagonal matrix with λ1, · · · , λd ≥ 0 indicating damping val-
ues. The columns of Q (ξ) ∈ <d×d are orthonormal basis e1, · · · , ed. The energy
dissipation direction is related to the direction of desired trajectory, i.e. through
the transform by Q (ξ), the damping matrix dissipates energy in the direction per-
pendicular to the motion, and provide driving force along the motion, hence, e1

is defined as e1 = f(ξ)
‖f(ξ)‖ , which indicates the direction of the desired motion. The

remaining e2, · · · , ed are directions orthogonal to desired motion.
With the definition of D (ξ), DS f (ξ) is eigenvector of D (ξ), corresponding

eigenvalue is λ1 (see A.3). Thus the controller in (3.11) is rewritten as:

uc = −D (ξ) ξ̇ + λ1f (ξ) (3.12)

Combining (3.6) and (3.11), the closed loop dynamics becomes:

ue = M (ξ) ξ̈ +
(
D (ξ) + C

(
ξ, ξ̇
))

ξ̇ − λ1f (ξ) (3.13)

Compare equation 3.13 with impedance control formulation in a open loop control

configuration (equation 3.10), M (ξ) and D (ξ) + C
(
ξ, ξ̇
)

are mass and damping

matrix, respectively. −λ1f (ξ) can be seen as a non-linear stiffness term in controller
(3.13) whose stiffness is:

K (ξ) = −λ1
∂f (ξ)

∂ξ
(3.14)
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(a) DS without attraction behavior (b) DS with attraction behavior

Figure 3.6: Different DS stiffness-like attraction behaviors. Blue lines are the refer-
ence path and red lines are simulated robot motion. In (a), robot generates a new
path after perturbation. In (b), the DS is encoded with high stiffness, the robot
return back to the reference path after perturbation.

This shows that the stiffness depends not only on the damping D (ξ), but also on
the properties of DS. [KB19] derives the stiffness in a particular direction ξs using
Rayleigh quotient is:

K (ξ, ξs) = −λ1ξTs
∂f (ξ)

∂ξ
ξs (3.15)

However, the non-linear stiffness cannot provide the behavior which is able to
follow a reference path in the closed loop control configuration. The behavior which
is similar to a stiffness attraction around the reference path is desired (Figure 3.6).
But because of the complexity and non-linearity of the learned DS, it is difficult to
modify the DS to obtain such desired stiffness behavior. Thus, [FFB18] and this
thesis uses sum of linear DS to encode the stiffness-like attraction behavior.

In [FFB18], a Locally Active Globally Stable DS (LAGS-DS) is proposed under
this passive DS control configuration, which generates the locally active stiffness-
like behavior and ensures global asymptotic stability (Figure 3.7). The LAGS-DS is
formulated as:

ξ̇ = α (ξ) fg (ξ) + ᾱ (ξ) fl (h (ξ) , ξ)

where fg (ξ) is a global DS learned from demonstrated data. α (ξ) ∈ [0, 1] is an
activation function, indicating that the local dynamics is active at the regions in
state space. ᾱ (ξ) = 1 − α (ξ). When α (ξ) = 1 the global DS fg (ξ) is activated.
fl (h (ξ) , ξ) is locally active DS also learned from demonstrated data by clustering
them. h (ξ) ∈ [0, 1] is a hyper-plane partitioning function, indicating the region of
the state-space which each DS belongs to.

However, how to shape the robot stiffness in LAGS-DS is not clear. And the
stiffness of this DS is coupled with the damping value (3.14). As Figure 3.7 shows,
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Figure 3.7: Illustration of LAGS-DS. The orange area denotes the locally activated
area. Demonstrated data is shown with blue line. The LAGS-DS shows a symmet-
rical attraction towards the reference path, and global asymptotic stability.

the attraction behavior is only locally around the path, when the robot is dragged
out of the active area, the symmetrical attraction no longer exists. And LAGS-
DS is learned from demonstrated data, therefore we cannot endow an existing DS
with symmetrical attraction behavior unless we have the original demonstration
data. This thesis proposes a method under the passive DS control configuration to
generate a modified DS with encoded stiffness profile purely based on an existing
original global DS. The robot is locally attracted to a reference path and globally
follows the original DS motion.

Another method is proposed in [KZK17]. The robot motion and its stiffness
behavior are encoded by devising potential function, whose gradient indicates the
motion generation and curvature indicates the stiffness profile (Figure 3.8). The
potential function Φ (ξ) is learned from demonstrations.

The Unified Motion and Impedance Control policy is obtained by taking the
gradient of the learned potential function. It takes the demonstrated data sequence
as center points. A nonlinear weights function is used to transit between the center
points. The control policy τc consists three parts:

τc =
∑
i

τ inominal +
∑
i

τ iattract +
∑
i

τ idamp

= τnominal + τattract + τdamp

where τnominal generate the nominal motion, τattract attracts the state variable to
the closest center point and τdamp damps the unwanted energy. The control policy
is illustrated in Figure 3.9.

In this thesis, the controller in [KB15] is also adjusted. Note that in 3.14, the
stiffness depends on the first eigenvalue of damping. By encoding the stiffness into
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Figure 3.8: Illustration of potential function learned from demonstrations data (red
circles). The arrows denote the motion due to the slope. The green surface visualizes
the stiffness behavior.

Figure 3.9: Illustration of control policy. The cross points are center points and the
circle point is the query points. The RGB color map indicates the value of nonlinear
weights.

DS, we decouple the stiffness from damping. The controller used in this thesis is:

uc = −D (ξ) ξ̇ + f (ξ) (3.16)

the closed loop dynamics then becomes:

ue = M (ξ) ξ̈ +
(
D (ξ) + C

(
ξ, ξ̇
))

ξ̇ − f (ξ) (3.17)

and the stiffness of the closed loop dynamics is:

K (ξ) = −∂f (ξ)

∂ξ
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3.2 Approach

3.2.1 Problem statement

As discussed in 3.1.3, because the actual robot state is not feedback to the
motion planner, the open loop configuration introduces an error accumulation when
the actual robot motion mismatches the time-indexed reference trajectory as time
increases. Using closed loop control configuration will mitigate the problem, for the
motion planner is aware of actual robot state. This eliminates the notion tracking
reference trajectory. Instead of tracking a reference time indexed position, velocity
and acceleration sequence (a reference trajectory), the robot in this thesis try to
follow a path which is generated from desired DS. [FFB18] did not show a clear
way to encode the desired stiffness profile into the DS. [KZK17] did not reflect the
stiffness along the motion, which is not encoding the stiffness totally.

The contribution of this thesis is that under the closed loop control configuration,
this methods encodes a desired stiffness profile into a robot motion which is defined
by an original desired DS. By encoding the stiffness, the stiffness part in the con-
troller is decoupled from damping. And the robot performs force-level compliance
locally and motion-level compliance globally.

Assume that a desired DS describing a motion plan i.e. desired position and
velocity, as well as a desired stiffness profile are given. The goal of the thesis is to
follow this motion plan in a closed loop control configuration while the interaction
behavior of the robot is described by the desired stiffness profile.

To be more explicit, as shown in Figure 3.10, if the robot initial position is x0,1

(for simplicity, x is used in this section to represent a 2 DOF position, instead of
ξ) in the state space, the robot will follow the path defined by the given desired
DS from x0,1 to reach the global attractor. Meanwhile, a stiffness behavior, i.e.
a symmetrical attraction around the path in a certain tube area is encoded. The
attraction tube area is corresponding to the user defined stiffness profile. When the
robot is perturbed to a new position out of the attraction tube, i.e. x0,2, instead of
attracted to the old path, the robot will start a new path define by the desired DS
with stiffness-like attraction behavior.

As seen in equation 3.14, it is difficult to modify the given complex non-linear
DS for a desired stiffness profile. Therefore, to realize the goal, a new DS has to be
built. This new DS should encode the desired stiffness profile.

3.2.2 Variable Stiffness DS with linear DS

As shown in Figure 3.4, a linear DS with stable node attractor shows a sym-
metrical attraction behavior. The state variable firstly converges to a ”center line”
then reaches the equilibrium point. Therefore, to obtain a stiffness-like attraction
behavior around a reference path, it is possible to interpolate the path into several
segments, build a stable node linear DS for each segment and concatenate those
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𝑥0,2

𝑥0,1

Figure 3.10: Illustration of the goal of thesis

Figure 3.11: Illustration of the VSDS algorithm

linear DS. This is the basic idea of the VSDS in this thesis.

The approach is illustrated in Figure 3.11. In this figure, xi are the sampled via
points. xcen,i are centers for each local DS. The local DS are fi (x). ωi are weighting
functions or transfer functions between local DS. li is the length between via points
xi−1 and xi. i = 1 . . . N holds for above mentioned. N denotes the number of local
DS, as well as number of via points. The approach is still under the closed loop con-
trol configuration in [KB15] but with some modification as shown in Figure 3.13(b).
This approach can be easily generalized to higher DOF. In this configuration, a
VSDS f (x) is generated from the given original DS, with the parameters desired
stiffness profile Kdes and initial position xinit = x0. In the following, an original
desired DS is denoted as fg (x) whose global attractor is x∗ = xN .

Each local DS can be seen as a spring whose stiffness is the desired stiffness.
The physical interpretation is that, a sequence of springs are attached to the via
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𝑥0

𝑥1

𝑥2
𝑥3

𝑥4
𝑥𝑁−2

𝑥𝑁−1

𝑥𝑁
𝑥𝑐𝑒𝑛,1

𝑥𝑐𝑒𝑛,2
𝑥𝑐𝑒𝑛,3

𝑥𝑐𝑒𝑛,𝑁

Robot actual position

Figure 3.12: Illustration of the physical interpretation of control force with encoded
stiffness. The thickness of springs denotes the effective stiffness, which is the actual
stiffness multiplies with distance depending weight. The blue arrows indicate the
attraction force of active springs, the width of arrow roughly shows the magnitude
of force. The red arrow is the resultant force which drags robot towards reference
path and the next via point.

(a) Closed loop configuration
[KB15]

(b) Modified closed loop configuration

Figure 3.13: Original and modified closed loop configuration

points, which drags the robot towards the reference path and the global attractor,
as Figure 3.12 shown.

The approach is described in the following step by step.

Sampling a path with via points:

The first step is to interpolate the original DS fg (x) in order to obtain a sequence
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(a) N = 8 (b) N = 12

Figure 3.14: Generated via points with fixed points number. These results shows
that with less number of via points, the distance between adjacent points are larger.

withN+1 via points xsam = {x0,x1, . . . ,xN} from initial point x0 to global attractor
x∗.

The basis of the sampling method is a numerical integration method called
Euler’s method, described in Algorithm 1. Here the given original DS is ẋ = fg (x),
initial position is x0, x∗ represents the global attractor, step size is ∆t and a threshold
is defined as ε. Euler’s method returns a sequence of temporary points on the path,
then the sampling method chooses the via points from the temporary points.

Algorithm 1: Numerical integration with Euler’s method

Result: {xtemp,0 . . .xtemp,n}
1 n = 0;
2 while ‖xn − x∗‖ > ε do
3 n = n+ 1;
4 xn = xn−1 + fg (xn−1) ∆t;

5 end

The number of points N can be set to generate sequence of via point with equal
distance. After sampling the a temporary sequence xtemp using basic Euler numerical
integration with a small stepsize ∆t, the total distance dtemp of the path is summed
up. Then a distance ds is determined by the total path length and number of points.
The first via point is set as the initial point x0. Starting from the second point in
the temporary sequence, check if the distance between current point and last via
point along the path equals to the distance ds. If so, mark the current point as a
new via point, otherwise, continue to next point.

The point number N in sampling with point in equidistance need to be tuned
carefully (Figure 3.16(a), 3.16(b)). According to the approach of constructing the
VSDS, the robot control force directly depends on desired stiffness profile. So this
method reflects the stiffness along the motion directly. When robot interacts with
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Algorithm 2: Sampling with fixed points number

Result: x0 . . .xN
1 n = 0;
2 xtemp,0 = x0;
3 while ‖xtemp,0 − x∗‖ > ε do
4 n = n+ 1;
5 xtemp,n = xtemp,n−1 + fg (xtemp,n−1);

6 end
7 n = n+ 1;
8 xtemp,n = x∗;
9 dtemp = 0;

10 for i = 1 to n do
11 dtemp = dtemp + ‖xi − xi−1‖
12 end

13 ds = dtemp
N

;
14 for i = 1 to N − 1 do
15 di = i ∗ ds
16 end
17 dn = dtemp;
18 i = 1;
19 j = 1;
20 da = 0;
21 while i < N do
22 if da < dtemp then
23 da = da + ‖xi − xi−1‖;
24 i = i+ 1;

25 else
26 xj = xtemp,i;
27 da = da + ‖xi − xi−1‖;
28 i = i+ 1;
29 j = j + 1;

30 end

31 end
32 xN = x∗;
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the environment along the motion direction, the stiffness determines the interaction
force. However, with different stiffness profile, the VSDS constructed from same
sequence will have different force profiles, which decides the robot velocity profile.
Then the robot cannot follow the velocity profile of the original DS well.

To preserve the velocity profile as much as possible, another sampling method
with greedy algorithm respect to an excepted force Fexp is used in generating the
via points sequence. Greedy algorithm is heuristic method to make locally optimal
decision at each step. It cannot guarantee global optimal solution, but it provides
an acceptable solution to our problem. We know that the distance between via
points and the stiffness determine the force f (x) together. And the property of the
A matrix we construct with 3.19 is:

‖ A (x2 − x1) ‖
‖ x2 − x1 ‖

= k1 (3.18)

Detailed explanation can be found in A.3. Note that the first vector in Q should
be parallel to vector x2 − x1. But we know from practice that there is not much
difference between the direction of x2 − x1 and that of f (x1). With this property,
we can define an expected scalar force Fexp. The idea is by adjusting the distance
between two adjacent via points to make the resulted force fi (x) as close as possible
to Fexp.

In this sampling approach, a temporary sequence xtemp is generated using basic
Euler numerical integration with relative small step size. Save the first point in
temporary sequence as first point in the via points sequence. Then starting from
the second point in temporary sequence, check if the current point minimize the
difference between the Fexp and the spring force generated by the desired stiffness
and the current point and the last point in via point sequence (Line 13). If so, add the
current point to via points sequence, otherwise, move to next point in temporary
sequence. A loop is carried out until the last point in temporary sequence are
reached. This algorithm is described in Algorithm 3. By increasing Fexp, less via
points with larger distance are generated. By decreasing the first value of stiffness
profile Kdes,1,1, more via points with smaller distance are generated. The result of
this algorithm can be seen in Figure 3.15.

The parameter Fexp needs to be chosen carefully, because it decides the velocity
profile shape 3.16.

Constructing linear DS with desired stiffness profile:

Although the stiffness in equation 3.14 is complex with the non-linear DS, the
stiffness is simple for a linear DS f (x) = A (x− x∗), since:

∂f (x)

∂x
=
∂A (x− x∗)

∂x
= A

In this case, the stiffness is the matrix A. So we are able to encode the stiffness
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Algorithm 3: Sampling with greedy algorithm with respect to Fexp
Result: x0 . . .xN

1 n = 0;
2 xtemp,0 = x0;
3 while ‖xtemp,0 − x∗‖ > ε do
4 n = n+ 1;
5 xtemp,n = xtemp,n−1 + fg (xtemp,n−1);

6 end
7 n = n+ 1;
8 xtemp,n = x∗;
9 i = 2;

10 j = 0;
11 t = 100000;
12 while i 6 n do
13 if ‖Kdes,1,1 (xj − xtemp,i)− Fexp‖ < t then
14 t = ‖Kdes,1,1 (xj − xtemp,i)− Fexp‖;
15 i = i+ 1;

16 else
17 j = j + 1;
18 xj = xtemp,i−1;
19 t = 1000000;

20 end

21 end
22 j = j + 1;
23 xj = x∗;
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(a) 12 via points generated with Fexp =
10 and Kdes = diag (200, 500)

(b) 6 via points generated with Fexp = 20
and Kdes = diag (200, 500)

(c) 15 via points generated with Fexp =
20 and Kdes = diag (500, 1000)

(d) 8 via points generated
with Fexp = 20 and Kdes =
diag (400 ∗ (sin(8 ∗ x1 + 0.8) + 1)/2, 1000)

Figure 3.15: Generated via points with different Fexp and Kdes. These results shows
that with less via points are generated with larger Fexp and smaller Kdes. (d) shows
the distance between via points decreases with higher stiffness.

into A. As introduced in Section 3.1.1, the constant matrix linear DS is defined as
a multiplication of direction matrix and eigenvalue matrix, i.e.

Ai = −QiKdes,iQ
T
i (3.19)

The eigenvalue matrix is desired stiffness profile which is a positive definite
diagonal matrix:

Kdes,i =

(
ki,1 0
0 ki,2

)
where ki,2 > ki,1 > 0. Here Kdes,i is the desired stiffness profile. The stiffness profile
can either be constant or variable. A variable stiffness depending on robot state x
is denoted as Kdes (x), whose eigenvalues satisfy k2 > k1 > 0. For simplicity, in this
report, the desired stiffness profile is written as Kdes. From equation 3.3, the first
component k1 is the stiffness along the motion, and can be seen as a velocity scale
factor along the path. k2 indicates the stiffness orthogonal to the motion, which is
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(a) 25 via points (b) 35 via points

(c) Greedy algorithm respect to F (d) 80 fixed points

Figure 3.16: Velocity profile simulated with 2 links robot in robot toolbox, whose
control force is generated from different sampling methods. The dash line shows
the velocity profile of original DS (SEDS is used here). Desired stiffness profile is
Kdes = diag (300, 500). Damping matrix is chosen as D = diag (25, 30).

the stiffness of the attraction behavior. i.e. how hard to drag the robot away from
the path.

The direction matrix of the ith linear DS is defined as:

Qi = [ei,1, ei,2]

where ei,1 is parallel to the velocity at state xi, i.e. ei,1 = fg(xi)

‖fg(xi)‖ . And ei,2 is

calculated such that ei,1⊥ei,2.
As mentioned in Section 3.1.1, a linear DS is constructed of a constant matrix

A and an attractor x∗. Except the initial point x0, each via points in xsam is an
attractor for corresponding linear DS, i.e. x∗i = xi,∀i = 1 . . . N . Thus, the ith linear
DS is defined as:

fi (x) = Ai (x− x∗i )

Now the linear DS is constructed and partially illustrated in Figure 3.17. Next
step is to concatenate these DS. But different numerical integration methods will be
introduced.
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(a) The 1st linear DS f1 (x) (b) The 26th linear DS f26 (x)

Figure 3.17: Illustration of single linear DS. The bigger red points indicate the begin
and end of the illustrated linear DS. Blue smaller points are interpolated via points.
And diamond is the global attractor.

Scale function around initial point:

As the initial force at x0 can be large, it can introduce a large robot acceleration
and a very jerky motion at the beginning. To avoid this, a simple scale function
α (x) is defined, whose value depends on the distance relative to x0:

α (x) =

{
1 ‖x− x0‖ > d

sin
(

arcsin (1− b) ‖x−x0‖
d

)
+ b ‖x− x0‖ < d

(3.20)

where b is a value to scale down the initial force, but the value of b cannot be too
small, otherwise the robot keeps still at the initial position because the initial force
is not large enough to overcome the friction. As for d, it is the effective area of this
scale function. Usually it is set as a small portion of the total path length, in this
report. d is usually between 0.01 and 0.1 times of total path length and b is set to
0.6. Figure 3.18 shows one dimensional examples of the scale function.

Constructing weighting functions

To define the weighting function, a distance dependent Gaussian kernel is first
calculated as:

ωi (x) = e
−

(x−xcen,i)
T
(x−xcen,i)

2(σi)2 (3.21)

Where the xcen,i denotes the center of ith linear DS:

xcen,i =
1

2
(xi + xi−1)
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(a) x0 = 0, b = 0.6, d = 1 (b) x0 = 0, b = 0.3, d = 2

Figure 3.18: One dimensional illustration of scale function around the beginning
point x0 = 0 with different effective area t.

And σi ∈ R+ is the smoothing parameter that controls the region of influence of
each linear DS. σi is calculated according the distance li:

σi = δli

li = ‖xi − xi−1‖

where δ is a fraction number to scale the smoothing parameter. Then the weighting
function is a normalization of these kernels:

ω̃i (x) =
ωi (x)∑N
j=1 ωj (x)

(3.22)

The value of δ need to be chosen carefully. If each linear DS has a small area of
influence with small δ, then there can be no transition between linear DS (Figure
3.19(a)), or the force profile is not smooth, which means vibration and jerky motion
of robot(Figure 3.19(d)). With large δ, the influence area is large, so that linear
DS with opposite direction impact on the desired velocity, this drags the attractor
a little backwards in the motion direction (Figure 3.19(q)). Detailed analysis is
in Section 3.2.4. Both situations results in local attractors that destroy the global
asymptotic stability at the desired global attractor x∗ (Figure 3.19(c), 3.19(s)).

Constructing DS as weighted sum of each local linear DS

With all the preparation introduced above, now the VSDS can be simply con-
structed as a weighted sum of local linear DS:

f (x) = α (x)
N∑
i=1

ω̃i (x) fi (x) (3.23)
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Figure 3.19: Influence of fraction value δ. The left column shows the weighting
function of the last three via points in xsam. The right column displays the resulted
VSDS with different δ. The blank area in the figure is because the weights decays
to a extremely small value.

Regenerating the VSDS:

With the VSDS in 3.23, the robot has a behavior of returning to reference path.
However, the intrinsic property of the VSDS is that, the further the robot away from
reference path is, the large control torque the robot need. For the safety of human,
the robot is endowed another motion level compliance behavior, i.e. when human
keep dragging the robot out of an attraction tube area, the robot gives up the old
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(a) N = 10 (b) N = 20

Figure 3.20: Visualization of poscheck =
∑N

i=1 ωi (x), a tube like shape can be seen
clearly. And with different number of via points, the size of tube changes.

path and generate a new path and corresponding VSDS online.
Therefore, we still need to regenerate the VSDS when the robot is deviated from

the attraction tube area. During the execution of robot, a real-time position check
is applied. If current position is out of the effect area, which is defined as the sum
of Gaussian kernel ωi, the approach restarts from sampling via points in original DS
fg (x), with x0 = xcurrent.

This effect tube is defined using the distance based weighting function 3.21.
The value poscheck =

∑N
i=1 ωi (x) is compared with a threshold value. With larger

threshold value, we have a smaller the effect tube around the reference path. How-
ever, the sum value poscheck will change as the number of via points differs or as
the distance between via points differs (Figure 3.20), then the threshold value need
to decided according to the situation.

Summary

In the end, the above mentioned approach can be summarized in Algorithm 4.
This approach is also applied on 6 motions from a library of human handwriting
motions, see Figure 3.21. The motions are firstly learned by SEDS, which are the
desired original DS. And the VSDS and the original SEDS are compared. The
sampling method is fixed number of points with N = 50.

3.2.3 Stiffness behavior of closed loop DS

As shown in equation 3.14, the stiffness is proportional to the Jacobian of DS.
The Jacobian of the VSDS is:

∂f (x)

∂x
=

N∑
i=1

(
− ω̃i (x)

(δi)
2 (x− xcen,i) (x− x∗i )

T AT
i +

ω̃i (x)

(δi)
2 (x− xcen,i) f (x)T + ω̃i (x) Ai

)
(3.24)
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Algorithm 4: Algorithm generation of VSDS

Result: f (x)
1 while ‖x− x∗ > ε‖ do

2 if
∑N

i=1 (ωi) < thres or NotExist( f (x)) then
3 x0 = xcurrent Interpolate fg (x) for via points sequence

xsam = {x0,x1, . . . ,xN};
4 ei,1 = fg(xi)

‖fg(xi)‖ ;

5 ei,2 = FindPerpendicularBasis(ei,1);
6 Qi = [ei,1, ei,2];
7 Ai = −QiKdesQ

T
i ;

8 x∗i = xi;
9 fi (x) = Ai (x− x∗i );

10 xcen,i = 1
2

(xi + xi−1);
11 li = ‖xi − xi−1‖;
12 σi = δli;

13 ωi (x) = e−
(x−xcen,i)

T
Σ−1
i (x−xcen,i)
2 ;

14 ω̃i (x) = ω̂i∑N
j=1 ωj(x)

;

15 f (x) = α (x)
∑N

i=1 ω̃i (x) fi (x);

16 end

17 end
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Figure 3.21: Handwriting library simulation. The initial point is marked as yellow
point. Red line denotes the reference path and black diamond is the goal point.
Row 1 and 3 are VSDS, row 2 and 4 are SEDS.

Detailed derivation is shown in Appendix A. The scale function around initial
point is not considered here, since it has effect only on a small area at the beginning
of the path. Then the stiffness can be decomposed using equation 3.15 into two
directions: along the motion K1 and perpendicular to the motion K2. It can be
visualized in Matlab simulation, as shown in Figure 3.22.

The ellipses are not identical for constant desired stiffness profile, the possible
reason is that the gradient of Ai matrix. As shown in the definition of Ai, it is
depends on the robot state x. However, calculating the gradient is not trivial, so
the Ai is seen as constant matrix here. This will introduce the errors in the stiffness
analysis.
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(a) Kdes = diag (5, 25) (b) Kdes = diag (10, 100)

(c) Kdes = diag (25, 100) (d) Kdes = diag
(

50 sin(2x2)+1
2 , 100

)
Figure 3.22: Stiffness ellipses in simulation

Figure 3.23: DS attractor locates mostly before the desired global attractor of orig-
inal DS.

3.2.4 Discussion of stability

The VSDS f (x) in equation 3.23 is interpreted as concatenated stable linear DS
by a transfer function, which is a distance dependent weighting function. From the
illustration in Figure 3.11, one can imagine that one linear DS fi (x) drives robot
to the local attractor xi and hand it over to next linear DS fi+1 (x) through the
weighting function ω̃i+1. Therefore, it is intuitive to see that the DS is stable and
will converge to an attractor.
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However, the attractor of VSDS can be different from the global attractor (Figure
3.23). This is caused by the instinct of weighting function. To explain this, we can
see the value of VSDS at global attractor x∗. Note that the last local attractor is
the global attractor, i.e. xN = x∗.

f (x∗) = α (x∗)
N∑
i=1

ω̃i (x
∗) fi (x

∗)

=
N−1∑
i=1

ω̃i (x
∗) fi (x

∗) + 0

(3.25)

We know that fi (x
∗) 6= 0 for all i = 1 · · ·N − 1, because the local attractors of

these linear DS are not x∗. To make the attractor of DS identical with the global
attractor, f (x∗) = 0 is required. However, we can see that the weights ω̃i (x

∗) is not
always zero. As the weighting function is based on Gaussian kernel, so only when
the distance is large enough, i.e. out of the influence area, the value of weighting
function can become zero. Remember that the influence area is decided by the
proportional parameter δ. Larger δ means larger influence area. Usually, in our
case, the distance between x∗ and the last several center points is not large enough
to deactivate the linear DS, because we cannot set δ too small. So the last several
linear DS contribute velocities against the desired motion direction. This drags the
attractor a little backward. Also, the normalization of weighting function decreases
the difference between the weights.

To see the effect of weighting function on the attractor more clearly, we will
look at an small example with only 4 via points (Figure 3.24), here we set δ = 1,
with which each local DS will have a large influence on other DS. And we see the
weighting function values of 4 query points on the reference path (Table 3.1), the
result of each linear DS fi (x) and the total velocity f (x) (Table 3.2). Figure 3.25
illustrates the velocity component in each desired velocity.

• Point xque,1 has the maximum at the first linear DS. And the weights of rest
linear DS are not small enough to ignore, except the last one. So the desired
velocity at this point is the sum of the first 3 linear DS. This results in a large
force at xque,1 (Figure 3.25(a)).

• See the ω2 of point xque,2, it has max value at the second linear DS, however, the
value for the 1st and 3rd linear DS is also not small. And after normalization,
ω̃2 shows the 2nd weight doesn’t stand out from the rest. This decrease the
desired velocity, because the 1st and the 3rd linear DS compensate each other
to some extend (Figure 3.25(b)).

• xque,3 has the similar situation. The sum of velocity still points to the goal
point. But the magnitude of the desired velocity is quite small compared to
that of xque,1 (Figure 3.25(c)).
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(a) δ = 1 (b) δ = 0.5

Figure 3.24: Illustration of the 4 via points and the DS generated from them
with different δ value. The blue points are 4 query points, from right to left are
xque,1 · · ·xque,4. Because of the characteristic of the weighting function, such few
number of via points will not be used in this thesis. As can be seen in this figure,
the generated DS is not exactly following the reference path.

(a) xque,1 (b) xque,2

(c) xque,3 (d) xque,4

Figure 3.25: Illustration of control force of query points in the simple example.
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• However, xque,4 has the wrong direction of desired velocity. We can see from
Table 3.1, although it has the maximum weight at the 4th linear DS, how-
ever, the third weights are also not trivial, the sum of desired velocity will be
pointing backwards (Figure 3.25(d)).

In this simple example, the attractor of DS is far from goal point. However, by
increasing the number of via points, or decrease the δ, i.e. decreasing the influence
between adjacent linear DS, this problem is relieved but not solved (Figure 3.23).
The analysis above explains why our DS cannot converge to the desired global
attactor.

i weights

xque,1
ω1 0.9858 0.3232 0.1955 0.0007
ω̃1 0.6549 0.2147 0.1299 0.0005

xque,2
ω2 0.7111 0.9991 0.7065 0.0526
ω̃2 0.2880 0.4046 0.2861 0.0213

xque,3
ω3 0.3393 0.6099 0.9856 0.3455
ω̃3 0.1488 0.2675 0.4322 0.1515

xque,4
ω4 0.0614 0.0533 0.7193 0.9981
ω̃4 0.0335 0.0291 0.3926 0.5448

Table 3.1: Weighting function value of the query points, δ = 1.

i fi (x) f (x)

xque,1
-17.5595 -10.1155 -10.3822 -0.0571 -38.1383
-0.3572 0.7961 1.6023 0.0157 2.0535

xque,2
4.1177 -5.2831 -13.0370 -1.5154 -15.7333
0.7837 -1.6328 -3.6054 -0.1544 -4.6146

xque,3
7.0616 3.5929 -9.6231 -5.9709 -4.9493
2.9635 2.0112 -5.2257 -3.1402 -3.3966

xque,4
3.3573 1.5758 3.4045 -2.0812 6.2546
2.2597 1.4700 6.7965 -8.0304 2.4936

Table 3.2: Velocity of each linear DS and the sum of the velocities, i.e. the desired
velocity, δ = 1.

One solution is to reduce the δ value. As we see in Figure 3.19(g) and 3.19(c),
reduced δ results in less influence area of each linear DS. However, a too small
δ causes the oscillation of f (x), and causes the oscillation of the robot velocity
furthermore (Figure 3.19(d)). From practice, we choose δ = 0.5 in robot execution.

Compare 3.24(a) and 3.24(b), we can see that by decreasing the δ, the attractor
of new DS is closer to desired attractor. For each query point, the maximum weight
stand more out from the rest. Then the force from other local DS has less impact
on the query point.
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Chapter 4

Evaluation

The algorithm is applied on 7 joints KUKA LWR. From Section 4.1 to 4.4, a
SEDS in y − z plane (B.2) is learned from a human demonstrated data. In Section
4.5, another SEDS (B.3) is learned from human demonstration. Then our algorithm
takes them as original DS to generate our VSDS.

4.1 Motion execution

We first tested how the robot moves under our algorithm, and how it follows
the desired original DS. The algorithm is compared with SEDS in open loop control
configuration. A PD controller is chosen for the controller in open loop configura-
tion, we take K = diag (300, 500) and D = diag (30, 30) as stiffness and damping,
respectively. In contrast, our algorithm is applied with closed loop configuration
(Figure 3.13(b)), and the controller we use is 3.16. For our algorithm, we take the
same stiffness and damping. The δ in this experiment is 0.5. And the via points are
generated using greedy algorithm with respect to Fexp. Fexp = 20 is used.

From Figure 4.1 we can see that the motion of the robot follows the original DS
and the velocity profile is similar to that of SEDS.

Now we put SEDS into closed loop control configuration, and take the controller
in 3.12, with dampling values λ1 = 150 and λ2 = 230. Then the performance
of SEDS and our VSDS in closed loop control configuration is compared. Figure
4.2 shows that when a perturbation happens in SEDS, the robot cannot follow the
reference path anymore. In our algorithm, however, the robot shows a spring like
behavior and goes back to reference path after perturbation.

4.2 Human robot collision

A drawback of the open loop control configuration (Figure 2.1) is a non-safe
behavior at human robot collision case. In open loop configuration, the reference
motion is integrated separately. So the motion planner does not get the robot actual
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(a) Motion in Cartesian space (b) Velocity profile

Figure 4.1: Motion execution comparision between SEDS and VSDS. Both use the
impedance value K = diag (300, 500) and D = (30, 30). The background DS in (a)
is the learned SEDS.

(a) Motion of SEDS (b) Motion of VSDS

Figure 4.2: Comparision of motion with perturbation between SEDS and VSDS.
The background DS is the learned SEDS. The red lines indicate the reference path
starting from initial point x0. The blue lines are the actual robot motion.

position. Then when the robot actual state does not match the reference motion, the
accumulated error can cause two main effects in human robot collision: 1) When the
robot is blocked by human, the difference between actual robot state and reference
state increases. This results in an increasing force that robot applies to the human.
2) When the robot is released again, a large acceleration is generated. This results
in a sudden movement which may cause danger to human or robot.

Meanwhile, in the closed loop configuration (Figure 3.13(b)), the robot motion
is generated online according to robot current state. When robot is blocked by
human, the reference motion keeps the same. The interaction force between robot
and human stays in low level, which is safe for human. When the robot is released
again, the robot continues the motion smoothly, without any sudden acceleration.

The setup of an experiment for human robot collision is a 7DOF KUKA LWR
and a ”human” who is sitting inside the robot workspace (Figure 4.3). Robots moves
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(a) Open loop configuration before colli-
sion

(b) Closed loop configuration before col-
lision

(c) Open loop configuration after colli-
sion

(d) Closed loop configuration after colli-
sion

Figure 4.3: Human robot collision experiment.

and hit the head of human. Comparing Figure 4.3(a) and 4.3(c), we see that when
collision happens, the robot using open loop configuration keeps pushing human’s
head. In contrast to this, Figure 4.3(b) and 4.3(d) show that the robot stops when
it hits human head. Figure 4.4 shows the force profile of the experiment. Using
open loop configuration, the force increases to 38N after collision (Figure 4.4(b)).
Meanwhile, Figure 4.4(d) shows the force in closed loop configuration keeps a low
level (5.4N).

4.3 Path regeneration

The motion level compliance behavior path regeneration is also realized during
the robot movement. Here we consider a scenario that human and robot work in
the same workspace, and human blocks the robot motion and push the robot away
to find another path to arrive the goal point.

Figure 4.5(a) shows that, if the perturbation is small, robot will go back to the
reference path. But after human pushes it far from the path, robot generates a new
path and reaches the final goal point. If a small perturbation happens again after
regeneration, the robot still goes back to the new reference path (Figure 4.5(b)).
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(a) Force profile of SEDS in open loop
control configuration

(b) Force norm profile of SEDS in open
loop control configuration

(c) Force profile of VSDS in closed loop
control configuration

(d) Force norm profile of VSDS in closed
loop control configuration

Figure 4.4: Force profile at crash situation. The dash line marks roughly when the
collision happens.

(a) First small perturbation then large
perturbation

(b) First large perturbation then small
perturbation

Figure 4.5: Path regeneration after large perturbation. The DS in background is
the original DS. The red lines indicate the reference path starting from initial point
x0. The blue lines are the actual robot motion.
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4.4 Variable stiffness

Variable stiffness profile can also be endowed to robot. Here we take the stiffness
profile variable depending on robot state, i.e. Kdes = diag (400(sin(8xy + 0.8) + 2)/2, 1000)
and Kdes = diag (300, 400(sin(8xy + 0.8) + 1.5)/2). The greedy algorithm with re-
spect to Fexp is used to generate the via points, and Fexp is 20. The robot motion
and velocity profile are shown in Figure 4.6, and are compared with motion of SEDS
in open loop control configuration. The robot motion and velocity basically follows
the desired original motion.

(a) Motion in Cartesian space (b) Velocity profile

(c) Motion in Cartesian space (d) Velocity profile

Figure 4.6: Motion execution with variable stiffness. The via points are generated
using greedy algorithm with respect to Fexp = 20. (a) and (b) use stiffness pro-
file Kdes = diag (400(sin(8xy + 0.8) + 2)/2, 1000). (c) and (d) are with stiffness of
Kdes = diag (300, 400(sin(8xy + 0.8) + 1.5)/2).

4.5 Inserting charger into socket

The VSDS is also tested in an assignment of plugging a charger into a socket.
A charger is fixed to robot as end-effector, the socket is fixed on the table (Figure
4.7). A demonstration from an initial position to the socket is demonstrated. Then
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(a) Robot at initial position (b) Robot inserts charger into socket

Figure 4.7: Experiment of the charger insertion.

a SEDS in y − z plane is learned from it as desired original DS. Sampling method
of fixed number of point is used with N = 9.

Variable stiffness is necessary in this task. When the robot is in free motion, i.e.
approaching the socket, the stiffness along the motion is relatively low, the stiffness
perpendicular to the motion is relatively high, this makes the robot adhere to the
path and resist perturbations. During insertion, the stiffness along the motion is
increased, for the robot need to apply a larger force to insert the charger, meanwhile
the stiffness in the other direction decreases, because the holes constrain the charger,
the robot need to be compliance to this constraint. The stiffness profile we use in
this insertion task is shown in Figure 4.8(a). s denotes the relative robot position
on the path.

The generated VSDS from the motion is clear (Figure 4.8(c) and 4.8(d)). And
the stiffness along the motion is shown in the colormap. In the experiments we see
that the robot can execute this task successfully. Even when perturbations happens
during approaching the socket, the robot can return to the reference path and finish
the task (Figure 4.8(b)). This would not happen if SEDS in closed loop configuration
is used. Since sticking to a path is critical in this case, otherwise the robot will hit
the side of socket, and be blocked there.

4.6 Discussion

From the robot experiments, we see several advantages of our algorithm. First
is that our approach can finish the tasks which require a specific path even with
perturbations. For instance in the charger insertion task in Section 4.5, it can be
succeeded only when the robot follows the path. Otherwise, the robot will miss the
holes on socket, or even hit the socket from side. Robot using our approach sticks
to the specific path even under small perturbations, while other DS like SEDS do
not have this property, see Section 4.1.

Another advantage of our algorithm is safety. In VSDS, when the task fails, for
instance the robot stops on the socket instead of going into the hole in this insertion
case, the contact force keeps at low level, which will not destroy other objects in
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(a) Stiffness profile (b) Robot motion

(c) VSDS with stiffness k1 (d) VSDS with stiffness k2

Figure 4.8: Experiment parameters and result of the charger insertion. The stiffness
profile changes in the near of socket, s = 0.65. The robot motions are two without
perturbation and two with perturbation.

the environment. In contrast, robot using open loop configuration will apply an
increasing force to the environment as time goes, which is not safe. We can also see
this in Section 4.2.

In addition, the VSDS provides a clear way to shape the stiffness. Compare
VSDS with the LAGS-DS in [FFB18], both methods shows a behavior that returns
to the reference path under perturbation. But the LAGS-DS does not have ability
to shape the stiffness. Meanwhile, the desired stiffness can be encoded to VSDS
easily.

From the principle of the VSDS, we know that as long as the stiffness profile is
positive definite, i.e. Kdes + KT

des � 0, the VSDS will converge to a point, since it is
concatenation of several stable linear DS. And the VSDS will follow the sampled via
points one by one. By rotating the stiffness profile in 3.19, taking a two dimensional
stiffness profile as example, k1 denotes the stiffness along the motion, and the k2
is the stiffness perpendicular to the motion. This helps us to define the stiffness
profile more easily. If a behavior such that the robot come back to the PATH fast is
desired, then the k2 should set larger than k1. If the robot need to stick to a motion,
then we can increase k2 to make the robot resist the perturbation perpendicular to
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motion direction.
Using the fixed number points method makes the robot follows the stiffness

profile well along the motion, see Section 4.5. But there is a compromise on the
velocity profile (Figure 4.9(d)). So another method to sample the via point is also
proposed in this report.

Using greedy algorithm with respect to Fexp, the robot motion is similar as
the SEDS in open loop control configuration, and the robot shows the spring like
stiffness behavior (Figure 4.9(a) and 4.9(b)). However, note that robot stiffness is
not only the spring like behavior in the direction that perpendicular to the motion,
but also the resistance force it exerts to the perturbation along the motion. With
higher stiffness, the robot should apply higher force to the environment in contact
during the movement. However, if we use the greedy algorithm with respect to
Fexp, the robot is expected to be controlled by a constant force Fexp, this means
that the force at contact case still keeps the same, even with higher stiffness. This
can be solved by generating fixed number of via points, which results in a higher
force at higher stiffness, but then the velocity profile is not that similar compared to
the other (Figure 4.9(d)). So there is a trade-off between velocity and the stiffness
behavior.

Another drawback of this algorithm is that, the variable stiffness is not encoded
continuously, because only the stiffness at the via points (Kdes (xi)) are considered
in the algorithm.
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(a) Motion in Cartesian space (b) Velocity profile

(c) Motion in Cartesian space (d) Velocity profile

Figure 4.9: Motion execution with variable stiffness. The stiffness profile Kdes =
diag (400(sin(8xy + 0.8) + 2)/2, 1000). The via points of (a) and (b) are generated
using greedy algorithm with respect to Fexp = 20. (c) and (d) use fixed number
of points to generate the via points. But both methods result in same size of via
points, N = 14
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Chapter 5

Conclusion

This thesis proposes a method of generating a new Variable Stiffness Dynamical
System (VSDS) based on a given desired original DS. The VSDS follows the motion
of original DS, and is encoded with a desired stiffness profile. The stiffness is de-
composed into two directions, along the motions and orthogonal to the motion. The
stiffness along the motion results in different magnitudes of force when interacting
with environment along the motion. The stiffness orthogonal to the motion indicates
how much effort it takes to make robot deviate from the reference path. The VSDS
generates the motion based on the actual robot state, which endows robot with a
compliant behavior in interaction with environment. This VSDS not only shows a
symmetrical attraction around the reference path, but also has a global motion-level
compliance behavior, i.e. when the perturbation is large, the robot generates a new
reference path according to the original DS with locally attraction towards it as well.

Two limitations are in this thesis work. The first limitation of this method is
that, the attractor of the VSDS is not identical with the global attractor in original
DS. It converges always a little earlier than the original one. This is caused by the
weighting function. As the weighting function is not zero outside the linear DS area,
other linear DS in the near always has impact on the final values. The final linear
DS is dragged a little back by several linear DS before it.

The second limitation is that, there is always a trade-off between velocity profile
and stiffness behavior along the motion. It depends on the generation of via points.
Choosing the greedy algorithm respect to Fexp guarantees the preserve of velocity
profile, as long as the Fexp is set properly. But then the stiffness behavior along the
motion does not exactly follow the stiffness profile. On the other hand, using fixed
number of via point makes the robot present a proper stiffness behavior. But the
velocity profile then changes. In addition, the stiffness profile is encoded discretely,
only the stiffness at the via points are considered.

In the future, a better transfer function should be found. This transfer function
should have the following properties: 1) the transfer from one linear DS to the next
DS should be smooth, which guarantees a smooth velocity profile. 2) the transfer
function only has impact on the corresponding linear DS, so that the linear DS do
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not influence the others. Then this transfer function ensures the attractor of VSDS
is identical with original DS.

Another direction is to use variable damping in the controller. As the control
command is consisted of VSDS and damping term, it is possible to adjust the control
force by adjusting the damping. High stiffness results in high VSDS, which increases
the robot velocity. If the damping is also variable and has the same trend with
variable stiffness, then it damps more velocity at higher stiffness. In this way, the
desired stiffness profile and the desired velocity profile can be achieved at the same
time.
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Appendix A

A.1 Gradient of Transfer Function

The distance dependent Gaussian kernel is defined as:

ωi (x) = e
−

(x−xcen,i)
T
(x−xcen,i)

2(σi)2 (A.1)

The transfer function between adjacent DS is a normalization of Gaussian kernel
in A.1:

ω̃i (x) =
ωi (x)∑N
j=1 ωj (x)

(A.2)

Then the gradient of A.2 is:

∂ω̃i (x)

∂x
=

∂ωi(x)
∂x

∑N
j=1 ωj (x)− ωi (x)

∂
∑N
j=1 ωj(x)

∂x(∑N
j=1 ωj (x)

)2
=
− 1

(δi)
2 (x− xcen,i)ωi (x)

∑N
j=1 ωj (x)− ωi (x)

∑N
j=1

−1
(δj)

2 (x− xcen,j)ωj (x)(∑N
j=1 ωj (x)

)2
= − 1

(δi)
2 (x− xcen,i) ω̃i (x) + ω̃i (x)

N∑
j=1

1

(δj)
2 (x− xcen,j) ω̃j (x)

(A.3)

A.2 Close-loop Stiffness

The close-loop stiffness of the robot is:
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∂f (x)

∂x
=

N∑
i=1

∂ω̃i (x) Ai (x− x∗i )

∂x

=
N∑
i=1

(
∂ω̃i (x)

∂x
(x− x∗i )

T AT
i + ω̃i (x) Ai

)

=
N∑
i=1

(
− 1

(δi)
2 (x− xcen,i) ω̃i (x) (x− x∗i )

T AT
i

)

+
N∑
i=1

(
ω̃i (x)

N∑
j=1

1

(δj)
2 (x− xcen,j) ω̃j (x) (x− x∗i )

T AT
i

)
+

N∑
i=1

ω̃i (x) Ai

=
N∑
i=1

(
− ω̃i (x)

(δi)
2 (x− xcen,i) (x− x∗i )

T AT
i +

ω̃i (x)

(δi)
2 (x− xcen,i) f (x)T + ω̃i (x) Ai

)
(A.4)

A.3 Eigenvector proof

We have a vector x ∈ R2×1, whose norm is ‖x‖ = α. Then we define e1 = x
‖x‖

and we find the vector e2 orthogonal to e1, i.e. eT2 e1 = 0. Now we have:

Q =
(
e1 e2

)
the eigenvalues are:

K =

(
k1 0
0 k2

)
now they can construct a A matrix:

A = −QKQT

The product of A and x is:

Ax = −QKQTx

=
(
e1 e2

)(k1 0
0 k2

)(
eT1
eT2

)
αe1

= α
(
k1e1 k2e2

)(eT1
eT2

)
e1

= α
(
k1e1e

T
1 + k2e2e

T
2

)
e1

= αk1e1e
T
1 e1 + αk2e2e

T
2 e1

= k1αe1

= k1x
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We see that x is an eigenvector of A, and it is obvious that

‖Ax‖
‖x‖

= k1

Here we take a 2D example, this relationship in higher dimensional vectors can
be easily get from it.
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Appendix B

B.1 C shape SEDS parameters

The SEDS with a C shape is learned from hand drawn data in Matlab GUI. The
parameters are listed below:

A1 A2 A3

-0.4766 -0.2808 -0.5051 -0.2904 -0.5466 -0.3903
0.2170 -0.0413 0.2546 -0.0630 0.3294 -0.1318

A4 A5 A6

-0.7044 -0.7874 -8.2000 -26.8481 -1.5980 -1.9378
0.5909 -0.2221 -4.4394 -29.8678 -2.6798 -10.5546

Table B.1: A of C shape SEDS

b1 b2 b3 b4 b5 b6

-0.4819 -0.5108 -0.5512 -0.7045 -7.8351 -1.5950
0.2229 0.2618 0.3398 0.6092 -3.9248 -2.5237

Table B.2: b of C shape SEDS

ξ∗

-1.0232
0.0207

Table B.3: ξ∗ of C shape SEDS

µ1 µ2 µ3 µ4 µ5 µ6

-1.0814 -1.4525 -1.7104 -1.8106 -1.2349 -1.6178
1.8413 1.7174 1.3311 0.7280 0.0596 0.2026

Table B.4: µ of C shape SEDS
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Σ1 Σ2 Σ3

0.0100 0.0002 0.0120 0.0051 0.0077 0.0037
0.0002 0.0035 0.0051 0.0096 0.0037 0.0170

Σ4 Σ5 Σ6

0.0181 -0.0000 0.0214 -0.0029 0.0070 -0.0024
-0.0000 0.0516 -0.0029 0.0083 -0.0024 0.0043

Table B.5: Σ of C shape SEDS

p1 p2 p3 p4 p5 p6
0.0700 0.1167 0.1067 0.1067 0.0533 0.0467

Table B.6: p of C shape SEDS

B.2 Convex shape SEDS parameters

The SEDS which we used in Chapter 4 as original DS is learned from demon-
strated data. The parameters are listed below:

A1 A2 A3

-0.16022 -0.62291 -0.76097 -0.34418 -0.10991 -0.86913
0.1679 -0.52685 1.3589 -1.9955 0.31421 -0.73881

Table B.7: A of Convex shape SEDS

b1 b2 b3

0.021045 -0.11823 0.051308
0.076391 0.42896 0.12233

Table B.8: b of Convex shape SEDS

ξ∗

-0.19311
0.083455

Table B.9: ξ∗ of Convex shape SEDS

µ1 µ2 µ3

0.29428 -0.14886 0.087785
0.16028 0.13009 0.20769

Table B.10: µ of Convex shape SEDS
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Σ1 Σ2 Σ3

0.0015358 -0.00058954 0.0022244 0.0010006 0.0057907 0.00011249
-0.00058954 0.0010855 0.0010006 0.0019663 0.00011249 0.0020313

Table B.11: Σ of Convex shape SEDS

p1 p2 p3
0.016857 0.020286 0.012857

Table B.12: p of Convex shape SEDS

B.3 SEDS parameters of insertion task

The SEDS which we used in Section 4.5 as original DS is learned from demon-
strated data. The parameters are listed below:

A1 A2 A3

-2.6166 0.0909 -0.3267 -0.0252 -2.0391 0.0296
-1.9464 -0.8132 0.0220 -0.2177 1.1166 -0.4913

Table B.13: A of insertion task SEDS

b1 b2 b3

1.2679 0.1580 0.9877
0.9350 -0.0127 -0.5452

Table B.14: b of insertion task SEDS

ξ∗

0.4842
-0.0093

Table B.15: ξ∗ of insertion task SEDS

µ1 µ2 µ3

0.4853 0.4927 0.4869
0.0142 0.1551 0.0938

Table B.16: µ of insertion task SEDS
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Σ1 Σ2 Σ3

0.0001260 0.0000017 0.0000445 0.0000150 0.0001868 0.0000152
0.0000017 0.0003598 0.0000150 0.0001155 0.0000152 0.0005311

Table B.17: Σ of insertion task SEDS

p1 p2 p3
0.0265 0.0098 0.0138

Table B.18: p of insertion task SEDS
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