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1. Introduction 

Automated Production Systems (aPS), including manufacturing machines and logistics, are re-

quired to cope with various and varying production requirements over their long lifecycles 

[VFST15]. These various requirements lead to the increased complexity of aPS [DKKK12, 

FKWV19, McBu00], introducing a lot of changes in various forms and objectives with different 

reasons, and, accordingly, their engineering becomes more complex, following current trends and 

increasing customer flavor varieties [VFST15]. Malfunctions (i.e., severe failures) of aPS might 

cause severe issues economically and safety-relatively [UlVo18a], as aPS are socio-technical sys-

tems, which are defined as operational processes and people (i.e., operators) are inherent parts of 

the system [Somm15]. Therefore, aPS have high requirements on availability and reliability during 

the running period [VFST15] not only for its productivity concerning dramatic maintenance or 

product producing cost but also for its safety not to harm any personnel or customer of the product. 

In the meantime, the proportion of system functionality realized in software is increasing [Thra10]; 

the control software of aPS is, therefore, to be developed and revised continually, e.g., due to bug 

fixing or changed/new functionalities [VFFL15], requiring continuous quality (re-)assurance ac-

tivities accordingly.  

In today’s industrial practice, software quality is commonly achieved by dynamic validation either 

by manual stepwise testing or by running automated testing [UlVo18b] as a quality assurance 

activity “in which a system or component is executed under specified conditions, the results are 

observed or recorded, and an evaluation is made of some aspect of the system or component” 

according to the definition of ISO [ISO10]. However, one of the main weaknesses of traditional 

testing is coverage. One test case covers only a particular execution of the software and, thus, 

many possible cases remain uninvestigated. Therefore, testing is useful for typical or expected 

faults while unpredictable and rare cases, which can also have severer consequences, are less likely 

to be discovered using testing. In aPS engineering processes, changes also occur during the com-

missioning and start-up procedure [VFST15] for on-site assembling [Voge09] and fine-tuning. 

According to the time delay analysis [Hack18, ReWü07, VFST15], software debugging during the 

commissioning takes more than half of the effort though it requires small changes. In detail, it is 

observed that 15-25% of the total project time is used for commissioning, and almost 63% of it is 

used for control software debugging [ReWü07]. This commissioning procedure also requires test-

ing (mostly manual [VFFU17]) under the high time pressure [UlVo18a] and the high chances of 

damage either by operating incompletely integrated machine or by switching the operation mode 

[VFRF15] for testing, since quality assurance through testing requires real equipment executions.  
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As one other main method of quality assurance, there is formal verification. In this formal verifi-

cation framework, the behavior of the target artifact (typically formal model) is examined mathe-

matically and proved (or guaranteed) as conforming/violating given conditions [CWAC96] 

through the mathematical and exhaustive checking, providing full coverage in contrast to testing. 

Since it calculates the given artifacts by (mathematical) analysis, the equipment, i.e., plant and 

machine in aPS’ case, is not needed to be running in contrast to testing and, thus, damages during 

the (testing) execution do not have to be concerned. The conditions to be satisfied are actually the 

requirement that is desired to be implemented (or designed in case of early stage of the develop-

ment) in and satisfied by the artifact. These are stated and documented in a way that could be 

comprehended and processed, which is called as specification. Although the specification is the 

essential entity within the formal verification context, providing the criteria to decide the target-

under-verification is correct or not, a good specification is still lacking [Sesh12, UlVo18b]. Spec-

ifications for many aPS in operation are not easily found [VFST15] because, on the one hand, aPS 

have been built decades ago going through a lot of changes in the meantime without appropriate 

and precise history records, and on the other hand, the way of providing formalism, such as tem-

poral logics, is not what typical automation engineer would take and develop [Holz02]. Ultimately, 

the absence of formal specification hinders applying formal verification along the automation en-

gineering processes.  

The importance of the specification is highlighted not only for verification purpose. Specifications 

are involved in almost all engineering processes including the maintenance phase, not only for the 

initial development processes but also for modification (i.e., change implementation) processes 

[Somm15] as it indicates the intention to be implemented. Explicit documentation is also required 

to comply the legal regulations and guidelines, such as Good Automated Manufacturing Practice 

(GAMP [ISPE20]), for some particular type of product production. Furthermore, formally speci-

fied requirements could be handled systematically to synthesis or generate another artifacts (e.g., 

program code) by transforming it or forming/extracting information into/from formalism respec-

tively [Li14]. It would become more beneficial in the context of aPS engineering, for which vari-

ous types of developers and engineers collaborate by communicating with each other and deliver-

ing their results to others, even only within the software discipline [VFST15]. 

The objective of the research in this thesis is to provide a support for increased control software 

quality for aPS in production automation. A formal specification approach for the aPS control 

software behavior description to support software is proposed aiming at accessibility from the 

automation engineers and systematic manipulation for further utilization, tackling the motivations 

and challenges above. Accessible notations to describe comparably small scale software changes 
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retrofitting the production automation are approached, grounded on the practices which are typi-

cally used in the industry settings. Besides used as a formal specification in formal verification 

framework, additional concepts of utilizing specifications are also presented to strengthen the con-

trol software quality assurance through the proposed approach: generating monitoring block from 

the specification and mining the preliminary specification in a user-guided way (Figure 1).  

 
Figure 1: Schematic representation of the thesis scope: complementing quality control driven by specifi-

cation 

This thesis has been developed in the context of the German Research Foundation (DFG) Priority 

Programme 1593 (SPP1593) IMPROVE APS project in close cooperation with the group of Pro-

fessor Bernhard Beckert and Dr. Mattias Ulbrich in Karlsruhe Institute of Technology (KIT). The 

formal basis of the introduced concept (i.e., Generalized Test Tables) has been proposed by KIT 

(Alexander Weigl) as well as the regression verification tool (cf. [Weig21]). The contents and 

contributions of this thesis are based on previous publications by the author, which are [BCUV17, 

CUVW17, CUWB19, CVWU21, CWUB18a, CWUB18b, VoCh20, WWUU17]. The overall re-

quirements for the concept have been derived jointly, and the focus of this thesis is put on the 

automation engineering perspectives and applications of the concept from the mechanical require-

ments and use cases, to the notation without its formal underpinning. The work in this thesis also 

include the empirical evaluation with students and the expert evaluation with industrial engineers.  

The thesis is structured as follows. First, an overview on the field of investigation together with 

basic definitions is provided in Chapter 2, considering the characteristics of the target system and 

its engineering domain that presented approaches are to be applied to, precisely aPS as a specific 

type of mechatronics system. In Chapter 3, considered requirements as a formal specification 

method are presented, separated into the different views on system characteristics, engineering 

characteristics, usability to be satisfied by the presented approach. The related works which have 

Requirement
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code

Integrated 
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Implementation
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tackled the presented requirements are introduced and analyzed in Chapter 4 to identify the re-

search gap as a current state of the art. In Chapter 5, the approach developed in the course of this 

thesis to satisfy the identified requirements and research gap are presented. The approaches are 

presented into two parts: presenting the formal specification syntaxes and their applications as the 

concepts for further utilization. The prototypical tool concept, embedded within the IEC 61131-3 

code development environment, is overviewed in Chapter 6 to demonstrate how the proposed ap-

proach is to be implemented as an add-on to the aPS control software development process. The 

approaches are evaluated in Chapter 7 in three different manners: feasibility studies with practical 

application examples, usability studies through empirical observation from the survey, and indus-

try expert feedback through the intensive discussion. In Chapter 8, the conclusive finding and the 

assessed results obtained throughout the evaluation are presented. Finally, the thesis concludes the 

summary of the achieved results and the outlook on future works in Chapter 9.  

 



 

 

2. Field of Investigation 

The approach is researched and developed to strengthen the quality of the implemented control 

software, easing engineering processes of aPS, especially for the case of control software changes. 

To specify the target of the presented approach and the domain requirements, descriptions about 

the target system, engineering processes, as well as the related techniques are to be introduced. 

First, the target system has to be narrowed down regarding the relevant characteristics to apply the 

presented approach. The root of the formal specification with respect to the formal verification 

comes from the computer science field targeting pure software behavior verification; this work 

aims at aPS, which realize the technical processes being interwoven with the multi-discipline ar-

tifacts. Second, among the various constituents of aPS, the focus is put on the control software 

part of the system and its small changes, especially during/after commissioning and start-up, more 

specifically. The control software gets more complicated to cope with the increasing and varying 

requirements and takes part in a bigger role than before by being attended as its flexibility 

[VFST15]. The description of these two characteristics answers the question – where this approach 

aims at to be applied. Along the engineering process of the aPS control software, the quality as-

surance step will be focused as the target stage that the presented approach is to be applied, espe-

cially while implementing small changes. Among various techniques of system validation, formal 

methods and verification concept are under consideration of the approach. Thus, the fundamentals 

to understand the approach will be introduced in this chapter so that the following concept de-

scription could be easily understood.  

2.1. Technical characteristics of automated production systems 

The presented approach aims at the formal behavior specification of the software changes of aPS. 

Therefore, special properties of the target system and its control software will be presented in the 

following to allow for a better understanding of the requirements and the approach. 

2.1.1. Process automation and aPS 

The target systems, i.e., aPS, are process automation systems specialized in controlling production 

processes. APS are defined in [VFST15] as “…comprised of mechanical parts, electrical and elec-

tronic parts (automation hardware) and software, all closely interwoven, and thus represent a spe-

cial class of mechatronic systems. ” In the viewpoint of engineering and operations, “aPS, a par-

ticular type of mechatronic system on which this paper focuses, is designed-to-order systems. 

These are complex manufacturing systems, and they have a typical lifetime in the operation of 

several decades”. In the functionality point of view, aPS refer to the manufacturing and logistics 
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plants like production lines for automobiles or bottling beverages focusing on the production au-

tomation.  

During the operation, the system status is changed by the technical processes with relevant parts 

(de)activated. The technical processes proceeded within aPS are based on the definition in 

[VFRF15] – a process by which the involved object, i.e., matter, energy, or information, is altered 

in its state (Figure 2). Thereby, a technical process is the totality of all operations in which material, 

energy, or information is converted, transported, or stored. Automation [IEC13] in general requires 

to access to information from this technical process (via sensors) to influence the technical process 

(via actuators) based on its behavior. Here, material, energy, and information are the objects of the 

technical processes. Also, human interaction is an important element in aPS since a human is one 

of the main elements contained in the process automation as an entity, who develops, follows the 

process event, controls and influences process, and handles the faults [VFRF15].  

 
Figure 2: Technical process and technical system (reproduced from [VFRF15]) 

2.1.2. Control software of aPS 

The execution of the aPS control software is based on the operation mode of the system [VRFS16]. 

As presented by Güttel et al. [GüWF08], the main operation modes of function blocks can be 

defined as follows: 

 Automatic mode: the normal and usual behavior of the machine part  

 Setup mode: the behavior of a machine part before or during the operation (if necessary) 

to set up the machine part to a specific status to proceed to the further operation mode 

 Manual mode: the behavior to move the machine part as the manual input drives 

System operator

Human-process communication

Control and communication system

Control software

Control platform

Communication system

Sensor Actuator
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Information

Product
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 Semi-automatic mode: the behavior to operate the machine part automatically but also 

guided by the manual input 

 Initialize: the behavior of a machine part executed at the beginning or after a resume fol-

lowed by the halt of the machine (part) to be prepared for the further modes  

 Shut down: the behavior of a machine part when the machine (part) finishes the execution 

 Save stop: the behavior of a machine part when the machine (part) gets into the safe mode  

These operation modes of aPS are explicitly defined and modeled including the states valid within 

each mode and the transitions of those states, as represented in OMAC standard typically for food 

and beverage production systems, and OMAC state machine is a part of PackML [Omac09], which 

accommodates the operational consistency of packaging as a standard. Thus, most of the control 

software is implemented its various functionalities considering its operation mode.  

The control to execute computing and signaling is conducted by Programmable Logic Controllers 

(PLCs) for aPS. It consists of a central processing unit(s) (CPU), memory, and I/O units with all 

connected by bus systems [Hans15]. The control software is loaded on the memory part and exe-

cuted by CPU, accessing I/O units, where all the sensor and actuators are connected ultimately for 

signaling. The control software, which is loaded on the PLC, is similar to the typical software in 

the sense that they cause some changes on the system as its task by being fetched, calculated, and 

update the system status. Typically, software running on a PC is executed to get a result at the end 

or in the middle of the execution by updating variable values on each statement in a program. 

Different from this typical software system, the PLC control software should react to every envi-

ronmental signal concerned and, thus, this has to be under consideration of the executing by read-

ing the values frequently. Therefore, PLC operates in a cycle-based way, which consists of internal 

processing, reading inputs, program execution, and updating output [LaGö99] (Figure 3). First, 

the PLC checks its state to ensure the availability of the operation regarding any error or interrupt 

in the initial processing. After that, the input status (i.e., sensor values) is read from the clamp and 

stored in the memory part. Based on the stored value to be participated in the calculation, the 

program execution takes place. Once all the output and internal variable values are calculated and 

decided, the output memory is read and put on the clamps so that the corresponding signals could 

be updated. These four steps repeat in a cyclic manner within PLC and continue until the controller 

is turned off. As the name already infers, a PLC requires a high-level language element, i.e., con-

trol software, to control the connected element to execute the technical process as the user of the 

  
Figure 3: Schematic view of a cyclic operation of PLCs (reproduced from [LaGö99]) 

Internal 

processing
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inputs
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system intends [IEC09]. In other words, functional operations of the PLC is achieved by an ap-

propriate (to the system mission) program. Many PLC programming standards have been sug-

gested over the years and converged to IEC 61131 standard IEC 61131-3 [IEC09], being followed 

by most of the major PLC manufacturer [Hans15]. 

IEC 61131-3 consists of three types of program organization units (POUs) of Programs, Function 

Blocks, and Functions, implemented in five language varieties, two textual languages, which are 

Instruction List (IL) and Structured Text (ST), and three graphical languages, which are Ladder 

Diagram (LD), Function Block Diagram (FBD), and Sequential Function Chart (SFC). Function 

type POUs could be considered as a subroutine without any memory inside of it, meaning that it 

depends on the parameter value when it is called by other POUs and results in the same output 

whenever it is called as long as the input parameter is the same. In contrast, Programs and Func-

tion blocks could have the individual state of the execution inside of them, meaning that POUs in 

these type change their internal state and result in different output depending on the state, in which 

the POU is, even if they get the same input. Programs are the highest level to define the execution 

of the program within a Task, which is an execution control element (of the resource) as a whole, 

and a Program consists of a network of Function blocks and Functions within its implementation. 

Thus, Task(s) could be defined for the missions of the target system on a resource (i.e., PLC) in a 

particular configuration, and the mission is realized by calling the Programs and following Func-

tion Blocks and Functions. 

Among the five different languages of IEC 61131-3, ST and SFC are mainly focused on in this 

thesis. ST is a high-level language with similar characteristics to Pascal language as well as C and 

C++ [Hans15]. It has the strength to handle arithmetic calculations and structured data types with 

compressed expression (e.g., compared to Ladder Diagram) as a textual language benefitting from 

its higher degree of freedom. SFC is one of the graphical IEC 61131-3 languages, derived from 

GRAFDCET (IEC 60848), typically used to describe the control flow structure of the system in a 

sequential manner. With the advantage that it is suitable to used various levels (i.e., higher level 

to define the abstract process description and lower level to define the code events in the detailed 

level) [Hans15]; it is accepted as one of the major languages of PLC programming. Since the 

syntax of ST is similar to the other conventional languages as mentioned and the syntax itself is 

not the focus of the work of the thesis, it is not described in detail, while that of SFC is to be 

introduced here mainly following [IEC09] and [Hans15] as a preliminary knowledge to understand 

the application concept further especially Section 5.4.2.  
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Basics of SFC 

SFC consists of three main elements: steps, transitions, and actions. Steps are the unit of the se-

quence controls. Transitions indicate turning over the control from one step to another step decided 

by the transition guard. Actions are the events included in the step and executed while the step is 

active (e.g., Figure 4). Execution consists of activation, execution of the actions, and deactivation 

of the step in order. When the control is in the previous step, and the entry transition guard is 

satisfied (Entry Guard of the Step in Figure 4), then the step is activated, and the actions are exe-

cuted. Actions shall be either associated with action blocks or declared in the nested form in all 

kinds of IEC 61131-3 languages; the action block cases are only considered in this thesis. After 

one cycle of the action execution, step deactivation is decided by checking the exit transition guard 

(G2 in Figure 4). The following step is activated once the guard is satisfied. Each step might have 

entry and exit action, which is executed when the step is activated and deactivated, respectively. 

  
Figure 4: A step of SFC with entry and exit guard 

An action block consists of a qualifier to indicate relevant action type and a Boolean variable as 

the target of the indicated action. Among all the behaviors of the qualifiers (Table 1), SD (Stored 

& Delay) and SL (Stored & Time Limited) are excluded since their timing behaviors are independ-

ent of the activation of the step. They violate the step activation, so they are not recommended due 

to the unpredictable risks [Hans15]. It is only considered that the final scan is disabled, so P1 has 

the same behavior as P, although the action control can have a “final scan” option to enable or 

disable all actions executed one extra time after the deactivation. The enabled case can be easily 

derived by applying a disabled case with an additional execution at the end of the step.  

Table 1: SFC action qualifiers 

Requirement ID Requirement description 

N Set the value during active(Non-stored) 

S Set and store the value (Set) 

R Reset and store the value (Reset) 

P Generate a pulse for one cycle (Pulse) 

P1 Generate a pulse on step activation 

P0 Generate a pulse on step deactivation 

L Perform for a certain time as long as it is active (time Limited) 

D Perform after a certain time as long as it is active (time Delayed) 

DS Performed after a certain time and store the value (Delayed Set) 

Step A

Entry Guard of the Step

Qualifier Target variable

Exit Guard of the Step
Action block
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2.2. Control software engineering of automated production systems 

The presented approach is to be used for validation of developed control software, which lies in 

the process of aPS engineering. To define the field of investigation more clearly, aPS engineering 

processes focusing on the control software and its validation will be presented in the following. 

2.2.1. Implementation of the aPS – focusing on the software development 

Since aPS, a particular type of mechatronic system, are designed-to-order systems, each aPS en-

gineering process goes through specific engineering methods depending on the own requirements 

and objectives of the system. The engineering life cycle has been depicted in [VFST15] (Figure 

5), and the focus of the explanation here is put on software development. Basically and ideally, it 

is assumed that project-independent activities (upper part in Figure 5) are already done in the meta-

level, or this could be regarded as to be done from the former project by extracting common ele-

ments over the projects. Common and reusable artifacts and their arrangement developed and kept 

in the solution repository to be used further within the individual project. Libraries modules are 

expected to be developed by the module developers [VFND18] during the project-independent. 

Later, customer-specific projects are designed and developed in particular (lower part in Figure 

5). Coping with the customer requirements, a specific type of plant is developed. Application en-

gineers organize the library modules adding some glue codes to generate the project-specific soft-

ware. Though the overall process of engineering from requirement specification to the mainte-

nance in the coarse level is similar to the other systems, like pure software systems, one of the big 

difference is that aPS have physical substances. Many plant pieces are shipped in part, assembled, 

and commissioned on-site [Voge09]. Although the software has been already validated regarding 

 
Figure 5: V-Modell XT with separation of the project-independent and project related activities 

(primarily presented in [VERE10], reproduced from the figure in [VFST15]) 
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the module composition (earlier done in house), there comes further adjustment, not only for hard-

ware adjustment but also for software modification, during the commissioning stage [VFST15]. 

As longer life cycle (usually decades) and corresponding aging cause components from different 

disciplines to go through re-engineering and modernization (mechanical engineering: 5-40 years, 

electrical engineering: 10-15 years, software engineering: weeks to months), it is unavoidable to 

face various changes with various reasons, e.g., physical wear and tear of the components 

[Kern19], changing requirements, lack of spare part availability [VHCR17], or technology trends. 

For the change implementation, project-specific engineering processes are gone through itera-

tively. Conclusively, aPS developers face many chances of developing (including validating) and 

changing/adjusting software functionalities over the lifecycle. This means that the effort to engi-

neer aPS is not only put on the initial implementation entirely, but a lot of maintenance activities 

as well as following up changes including to update or add functionalities, to improve behavior, 

or to debug,  occur very often (cf. [VoOc18]: frequency of software updates of machine and plant 

manufacturers were revealed as every less than 6 months for 44% and 13%, as every less than 12 

months for 44% and 64% respectively) and also require quite amount of resources, i.e., cost and 

time (cf. [ReWü07]). 

2.2.2. Control software quality assurance 

During and after the implementation or the change realization, the implemented part of the system 

is required to be assured that it meets the specification as well as the expectation of the customer. 

Following the engineering steps, the implementation goes through unit level validation – for its 

functional conformance (in the implementation stage), integration validation – to assure the func-

tional correctness as a part of the whole system (in the integration stage), and the acceptance test-

ing – to be validated under the actual operating environment (commissioning and start-up stage).  

These validations are typically being done in the form of testing, which is defined as “An activity 

in which a system or component is executed under specified conditions, the results are observed 

or recorded, and an evaluation is made of some aspect of the system or component” [IEEE14A]. 

Testing is intended to discover the system defects before its usage by executing the system (or 

system part) under test (SUT) with the artificial but plausible data to provide the input to the SUT, 

and observing the outcome [Somm15]. In other words, the correctness of the implementation is 

determined by controlling the system to traverse a specific execution path of the statements within 

the code. Strictly speaking, testing can show the executed system run is safe and correctly working 

without any error. However, since executing all possible execution paths is not feasible, only a 

limited number of test runs could be conducted, which means some existing errors (in the executed 

part of the system) could be figured out, but error-freeness cannot be assured. Formal methods, 
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which is one of the static analysis of verification techniques and represented by the formal verifi-

cation, are considered as a complementary technique not only to this weakness of testing 

[Somm15], but also its less resource usage, i.e., state analysis does not require the physical system 

which could help to save cost and time of the validation process. More details on the formal veri-

fication rationale are to be discussed in the following section (cf. Section 2.3). To have a closer 

look at the current industry practices, although a number of companies apply automated testing, 

there exist still many of them adopting manual testing or some companies relying solely on the 

testing at commissioning: 84% and 10% of the participants respectively of the survey presented in 

[VoOc18]. Also, it was shown in the same research that many companies are testing every speci-

fied scenario to obtain the requirement coverage (61%) though the code coverage is comparably 

low (15%), resulting in low efficiency of the testing. 

As an a posteriori quality control mechanism, monitoring takes an important role for safety-critical 

systems such as aPS [AbRo10] since any malfunction may cause not only damage on the system 

(itself) or the operating personnel but also the payload that the system handles and that the harm 

to the user of the resulting product might be inherent potentially. To avoid these critical effects, 

the main objective of monitoring is identifying both error situations during runtime and unex-

pected behavior of the technical process or the hardware not covered by the specification. Possible 

causes for erroneous states of these parts of the system are, for example, wear on the hardware and 

manipulation of the technical process or the aPS. Malfunctions and their resulting harms could be 

avoided by faults identified and handled as soon as possible. Today, monitoring functions are often 

related to a specific piece of hardware and are directly connected to functions that abstract the 

interface to that component (driver functions). Information about the hardware behavior is tapped 

from the inputs and outputs of the drivers. In case of undesired hardware behavior, warnings are 

given to the driver and the rest of the software system. It is of utmost importance that the moni-

toring functions work as intended and detect all errors and unknown states of the system to allow 

the system to give appropriate warnings, handle these errors or bring the system into a safe state 

by performing an emergency stop to prevent further damage.  

2.3. Formal verification terms and basics 

Formal methods are software engineering methods through the application of mathematics for 

modeling and analyzing systems utilizing the benefits of its rigor [BaKa08]. As the complexity of 

the control software and its functionality grows, and the demand for high-quality solutions as well 

as reduced engineering cost (including time), formal approaches in aPS engineering, or in PLC 

programming more specifically, are required [FrLi00]. The formalisms within aPS engineering 

processes have been introduced in the form of specific modeling languages like UML or SysML 
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for the design phases in the scope of model-based engineering, and later, also for the quality as-

surance purposes as formal verifications [Vyat13]. As the focus of this thesis is put on the formal 

specification of the aPS control software, the basics of the formal verification follow below. 

2.3.1. A framework for formal verification 

System verification is defined as “the process of evaluating a system or component to determine 

whether the products of a given development phase satisfy the conditions imposed at the start of 

that phase” according to [IEEE14A] It is often stated with the “written statement,” which is the 

specification comparable to the “conditions” in the earlier quotation. That means verification is an 

activity to assure the flawless of the target system concerning the specification, meaning the target 

system behavior conforms to the required conditions, which are reflected in specification. 

Such activities mainly aim to obtain dependability, including the quality properties of availability, 

reliability, and safety of the system [IEEE14B]. The verification result is not meaningful if there 

exists any ambiguity regarding the requirement interpretation, and, accordingly, system verifica-

tion activities fall in the range of formal analysis in this sense since the formal descriptions do not 

allow any ambiguity with rigorous syntaxes and semantics. In addition, formalisms allow the au-

tomated tool supporting since mathematical expressions can be easily transformed into a form, in 

virtue of its formalisms, that computer systems can process.  

As a static analysis technique, formal verifications do not require the system execution, and, thus, 

no plant is needed. They use mathematical calculations to prove the conformance of the system to 

the given properties. There are two different approaches to verification: one is theorem proving, 

and the other is model checking [BaKa08]. In theorem proving, the system is described as a set of 

logic formulas (i.e., system axioms), and so the properties are. Theorem proving is to find proof 

to obtain the properties as conclusions from the system formulas as premises. In model checking, 

the system is described as a finite model, and the properties are in logic formulas. Model checking 

methods compute whether the asserted hypotheses (properties) are valid in any case. In both ap-

proaches, it is necessary to have formal descriptions of the system (either as a set of formulas or a 

formal model) and formal specifications as the properties to be confirmed (Figure 6). Though this 

thesis focuses on the formal specification part in the formal verification, all the concepts intro-

duced are framed within the model-checking scope since the overall approach has been developed 

under the model checking approach. 
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Figure 6: Generic schematic view of the system verification [BaKa08] (reproduced) 

The result of the formal verification may appear in three types [HaMM16]: proven (meaning that 

the given system representation conforms to the specification), a violation with a counterexample, 

and timeout (meaning that the proof calculation takes a too long time or runs out of memory). If 

the software is proven as conforming to the specification, it would be the most favorable case from 

the viewpoint of the user (of the verification) since building a system satisfying the given require-

ment is the gold of the engineering. Even if the proof fails, it is still meaningful if the verification 

gives the information of counterexample, which shows the execution path leading the system sta-

tus to a state that violates the property described as specification, starting from the initial state. 

The third type, timeout, is the worst case of verification, which is also regarded as one of the 

barriers to utilize formal verification. As easily seen in many practical cases [BaKa08], the state 

space could be very large, which leads to the so-called state explosion. This is critical for the 

approaches using state-space search algorithms, such as model-checking. State variables with a 

number of values, e.g., integer, or higher number of parallelisms of separate processes, entail states 

growing exponentially in the program model [BaKa08] and consume extremely large size of 

memory as well as long computation time [CaHN11].  

PLC control software has been also targeted of the formal verification, using model checking, 

taking predefined software modifications into account [SüVZ13], approached over various IEC 

61131-3 languages (e.g., [BEHL04, Huuc05]) investigates by means of the model checker. Cou-

pling simulation and formal verification has also been approached to compensate each other (e.g., 

[BaKa08]).  

2.3.2. Regression verification  

In the single program verification, the program is examined with respect to the specification. How-

ever, formal verification has not been commonly used yet since it is not realistic to expect whole 

formal specification of the software when it comes to industrial size [StGo08]. Especially in many 

cases of the industry practices, not even an informal description of the requirements is available, 

which could be used as a basis for a formal specification [CWUB18a]. Different from the typical 

formal verification, regression verification [StGo08] focuses on the comparison of two different 
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versions of the programs and proves that there is no regression during the implemented change 

with assuming that the previous version of the program is correct. It executes a process of provid-

ing deductive evidence (i.e., a proof) showing that the behavior of one software is in a well-spec-

ified relation to the other software behavior. That is, new software revision can be proved to be 

“as correct as of the previous version” rather than to be “correct” absolutely.  

The main advantage of regression verification is that no functional or behavioral specification is 

required besides the old version software. Actually, this verification technique is suitable and rea-

sonable for the aPS evolution, in which the implementation is usually based on the previous ver-

sion of the system; and benefits of the advantage could be fully realized. The applicability of this 

methodology on the aPS control software in PLC code in IEC 61131-3 has been shown in 

[BUVW15]. In this case, regression verification proves that a new revision of the PLC code shows 

the same behavior as the old revision, and no unintentional behavior is introduced. Additionally, 

it was also shown that the size of the specification can be reduced to the difference of the versions 

by applying regression verification in [UUWK16]. 

Regression verification can be described as a process to assure that the trust earned by a previous 

version of the system remains through the evolution steps: whether the software is still trustful 

(partially or entirely) after the evolution. Formal methods might be suggestive to the application 

engineers of “correctness,” and the regression verification, which is a sort of formal methods also 

might. However, the “correctness” of software in the regression verification scope is different from 

the one in the view of the defined specification but rather more related to the “still-trustfulness” 

after some changes in the software. In [CUWB19], the obligation of the regression verification in 

the sense of the trust preservation during aPS evolution was shown. The sources of trust on regres-

sion verification of system software are  

 A (formal) analysis of the software against properties trusted to be adequate 

 A (formal) analysis on a model of the system (i.e., comprising not only the software but 

also trusted adequate models of electrical and mechanical parts) 

 Executing test runs on the systems 

 Simulation executions 

 Successful (test) operation 

 Long-running successful in-service operation. 

Also, the transference of the trust over the evolution could be classified depending on the different 

level of changes as a) a complete change, b) a partial change outside of the observed range, c) a 

change including observed range partially, d) a change including all observed range, and e) A 

change including all observed range. This explicit trust inheritance analysis was to clarify for the 
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engineers to understand the extent of the trust that regression verification provides and conse-

quently facilitates them to utilize this formal technique for system validation. 

2.3.3. Formal specification of the requirement 

The formal specification is essential constituent in the context of the formal verification, which is 

described in logics aiming to model the situations designers/developers/testers encounter in such 

a way that they can reason about them formally [Gora06]. However, its meaning is not limited 

only to formal verification but rather spread over the entire engineering processes in this thesis. A 

system is built to satisfy the user’s requirements, which are defined in SWEBOK [IEEE14B] as 

“software requirement is a property that must be exhibited by something in order to solve some 

problem in the real world,” and SEBOK as “that describe optional, functional, or design-related 

aspects of a system” [IEEE14B]. The required system characteristics are specified in the specifi-

cation regarding what and how the system is supposed to behave and what not [BaKa08]. The 

informality of a requirement description, i.e., specification, may cause ambiguities, which could 

cause severe and extensive flaws in the following artifacts eventually [HuRy04]. Also, manual 

verification of real-world problems is not feasible when it comes to the industrial scale. Consider-

ing these concerns, the formal specification is required, being defined including formalisms as in 

[Lams88] “the expression in some formal language at some level of abstraction of a collection of 

properties some system should satisfy.” Nevertheless, it is still observed that no formally described 

requirement transmitted over the aPS engineering in practice; even the specification is only done 

oral description without any document. Almost 12% of participants answered they fall into this 

case in the survey conducted in [VoOc18] and this appeared even worse in the serial machine 

builders (this data is not published yet). 

Specifications are claimed as essential in [Lams88] for almost all of the engineering phases and 

activities, namely designing, validation, documenting, communicating, reengineering, and reus-

ing. Huth and Ryan also highlight the reason of specification in [HuRy04] as documentation, de-

creased time-to-market, reuse, through the clear specifications. Especially, Lamsweerde shows the 

same view with this thesis on the various utilization of the specification depending on the user of 

it and the usage, which is “One of the problems with the formal specification is that they may 

concern different classes of consumers having fairly different background, abstractions and lan-

guages - clients, domain experts, users, architects, programmers, and tools.” 

Within the formal verification, one checks that the system description satisfies the formal specifi-

cations in terms of mathematical logic mostly regarding the following properties: a) Functional 

correctness – the system should do what it is supposed to do, b) Safety – something bad (including 

deadlock) will not happen, and c) Liveness – something good will happen eventually [BaKa08, 
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HuRy04]. Formal specifications are described in the formal specification language, defined as 

“textual languages that use basic notions from mathematics (for example, logic, set, sequence) to 

rigorously and abstractly define software component interfaces and behavior” [IEEE14B]. Since 

Pnueli suggested the functional properties of reactive systems in temporal logic [Pnue77], these 

temporal logic expressions have been widely accepted [CHVB18, EiFi18]. The term ‘temporal 

logics’ means and is intended to express such that a logic formula is not statically true or false in 

a model, but its notion of truth might change dynamically depending on the states and the order of 

events [BaKa08, HuRy04]. Therefore, temporal logics, typically represented by Linear Temporal 

Logic (LTL) or Computational Tree Logic (CTL), depicts these event occurrence’s orders.  

 





 

 

3. Requirements on a Formal Specification of 

Reactive System’s Control Software Behavior 

Today’s quality assurance in aPS software engineering is done through testing most of the time. 

For some software code, however, not all the cases are suitable for testing, e.g., break- or tear-

down, and also, it is not possible to validate the target code for all the possible test cases most of 

the time. In practice, many mandatory test cases are rather omitted on purpose, especially after 

change implementation on the existing code, due to the lack of time. Despite the known power of 

exhaustiveness of the formal verification, it is not widely used in aPS software engineering, and 

one of the main reasons is the barrier to the specification. Through the discussion with industry 

experts, it is learned that the stipulated specification, even in a natural language (informal), often 

does not exist in the current state of practices (cf. some survey result was shown in Section 2.3.3). 

To utilize the formal verification, formal specification of the targeted properties is a prerequisite 

since the verification process requires them as a main subject. Also, aside from the formal verifi-

cation, formal specification takes an essential role in system validation as an uncontroversial base-

line to decide (by a human or by the responsible system automatically) the correct behavior 

through formalism. Still, engineers in the field like module developers, application engineers, and 

commissioning personnel have little knowledge or experience in the formal languages [Holz02]. 

To approach these barriers to achieve formal specifications and ultimately to apply formal verifi-

cation on the aPS engineering process, requirements are derived below. 

Requirements are analyzed from various angles. First, the approach should be feasible to be ap-

plied to the technical characteristics of the target system in Section 3.1. Second, the approach 

should be embeddable into the engineering processes of the system in the context of validation, 

especially for the software change cases, in Section 3.2. Third, the approach should be usable for 

the field engineers to be promoted in Section 3.3 for effective effort reduction (i.e., cost and time). 

All requirements are summarized in Section 3.4. 

3.1. Requirement considering target system characteristics 

APS are basically reactive systems, which adapt the behavior based on the environment as pro-

grammed in the control software. In the viewpoint of the functional hierarchy of automation sys-

tems, the layer concerned in the approach includes field devices like sensors (as input) and actua-

tors (as output). The control software refers to input, executes its logic, and results in output to 

control the target process.  
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Requirement specification does not have to describe the exact behaviors (or a sequence of them) 

in detail to specify how operations should consist, but rather have to describe what would be the 

result of the operations. For example, to describe a function block for multiplying calculation, the 

requirement specification would describe the result to be the multiplication of the operands as its 

input, not how the multiplication to be implemented. In the process’ subject point of view, the 

software accepts sensor information (signal) and generates actuator information (signal), which 

are involved in the information flow. Thus, the developed specification language shall allow pre-

senting the relationship of input and output of the technical system regarding the information flow 

effectively (R-T1).  

The specification information can be classified in either functional description, structural descrip-

tion, or behavioral description as defined in [HSFS17]. The targeted specification shall describe 

the target software from the functional point of view macroscopically; however, the function is 

realized by the behaviors representing states and procedures. If the system is non-causal, whose 

output depends only on the current input, the expected output can be described only using the 

current input value; however, the calculation is complicated. For a causal system, whose output is 

decided not only based on the current input but also the past input (or, in other words, the current 

state of the system), behaviors appear differently depending on the current state and form a se-

quence of them to realize a specific functionality. Thus, the specification in the developed lan-

guage shall present the state changes regarding its condition and the results including timing con-

straints (R-T2). As the target of the specification is not describing specific execution sequence 

with concrete values but describing states (i.e., transition conditions, results, and timing con-

straints) and their procedures for general behavior properties, the specification shall present the 

state in abstracted value ranges (R-T3). 

Industrial processes can be classified as continuous (including batch) or discrete. In the continuous 

process, although the behavior changes over the process, it is not easy to divide into separate states 

clearly due to its continuous change of the material’s state. Therefore, stopping the process, re-

turning the system status back to a certain status, and resuming it cannot be simply done. Rather, 

the process should be handled as a whole. Contrastively, a discrete process can be separated into 

apparently divided behavioral steps, recognizing exact input and generating corresponding output. 

Since it is targeted to verify the state-based behavior regarding the input and output signals, the 

target of the specification shall be the discrete event processes (R-T4). 

The control software of the targeted technical system is loaded and executed in PLC. Instead of 

control circuits consisting of relays, switches, and clocks, PLC allows programmable logic and 

input/output interfaces [Hans15]. PLC operates in a cyclic-manner in which a procedure to execute 
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the control code repeats at every certain time. Each cycle consists of scanning values (input), ex-

ecution, and updating values (output), so the unit of the input recognition and output change cycles 

(cf. Section 2.1.2). Thus, the specification in the developed specification language shall be capable 

of the cyclic execution representation (R-T5). Also, IEC 61131-3 is the standard language to pro-

gram the PLC software and is applied throughout the production automation industries [VFST15]. 

Thus, the specification language shall be compatible with the software in IEC 61131-3 as well as 

its execution (R-T6). In this way, common library functions do not have to be described regarding 

their detailed behavior when they are used within the description, but rather could be used just as 

they are (as assumed that no fault exists in the library functions); using the common library func-

tions with the description, therefore, will provide both description efficiency and readability. 

3.2. Requirements considering engineering processes of aPS 

A technical system realizing its corresponding technical process is developed throughout aPS en-

gineering processes. As a designed-to-order system and also for serial machines (which means a 

number of machines in a type), the aPS engineering process goes through specific engineering 

methods depending on the own requirements and objectives of the system or the type of the sys-

tem. Nevertheless, a general engineering life cycle can be defined as described in Section 2.2 

(Figure 5). Over the engineering steps, system requirement specification is to be generated and 

used. In this section, the requirements regarding the engineering activities related to the require-

ment specification are described. 

Control software is more promoted to consist of module libraries to speed up the development and 

validation [VFST15], developed by module developers and integrated by the application engineers 

into an application project [VFND18]. When a module is developed for the first time for new 

behavior, a behavior specification grounded on the customer requirement would be delivered to 

module developers or created by them interpreting the requirement intention to develop the soft-

ware [VFND18]. Then, the module is developed in the company’s convention programming lan-

guage, and an application engineer is supposed to build up the desired project out of the modules 

inserting glue codes [KBSK10]. 

The developed software module is to be validated. The correctness of the behavior is determined 

based on the previously defined specification regarding how it is supposed to behave to the ex-

pected input sequences by testing and verification. A formal specification language is required 

over the aPS engineering processes to describe requirement as the most important prerequisite of 

all engineering activities (R-E1). That is, the characteristics of the expected output sequences are 
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defined according to the input (or input sequence) sorts. Thus, the specification shall allow de-

scribing the input/output trace characteristics of modules, and this also holds in the engineering 

point of view. In this way, the changed part or behavior, which is mainly aimed in this work, can 

be described. As a prevalent validation method, applicability to the testing would also be beneficial 

to the current practices right away. In the form of model-based testing, the test cases shall be 

instantiated easily from the specification (R-E2). For sure, the specification in the developed for-

mal approach would be a form that a model checker can interpret and process since the approach 

also targets the specification to apply formal verification not only to document requirements (cf. 

[Weig21]). Through the verification, conformance of the specification is checked. In case of any 

proof failure, a counterexample exists, and this could be fed back to the engineers for further de-

bugging. Therefore, the approach shall provide a way for automation engineers to use the verifi-

cation result effectively for further debugging (R-E3). 

The completed developed project is delivered to the real production environment and executed for 

the test run during the commissioning stage by the on-site start-up technician [VFFU17]. The per-

sonnel (i.e., commissioner) adjusts system parts (hardware and software) to accustom the inte-

grated plant to the best fitting condition. In the meantime, some parts of the software are discov-

ered to be revised or reconfigured. Although the best way to make any change on the software 

would be analyzing the inappropriate behavior, re-designing, re-implementing, and validating by 

the development department, the commissioning stage often lacks of time so this entire re-engi-

neering process is not possible to be conducted [Voge09]. An optimized and ideal way to solve it 

is that the start-up technician implements the change, validate it regarding the correctness of the 

behavior and side-effect freeness as much as possible, and document it delivering to the corre-

sponding office (then the further proof would be done within the development department). The 

same requirement as R-E2 and R-E3 applies here for the validation process. However, this orga-

nized procedure is still lacking in practices, appearing as just individual development forms; thus, 

it threatens the following maintenance and update efficiency by generating unauthorized variants 

and versions [VFFU17].  

During the operation, significant signals within the system are supposed to be monitored to detect 

unexpected behaviors or unconsidered conditions during the requirement specification stage. 

Monitoring functions are often related to a specific piece of hardware and are directly connected 

to functions to obtain information about the hardware behavior by tapping from inputs and outputs, 

and to invoke alarms if necessary. In case of undesired hardware behavior, warnings are given to 

the system. It is of utmost importance that the monitoring functions work as intended and detect 

all errors and unknown states of the system to allow the system to give appropriate warnings, 
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handle these errors or bring the system into a safe state by performing an emergency stop to pre-

vent further damage. As the monitoring block conducts a role of dynamic validation, the most 

efficient way is to generate the code directly and automatically from the specification to conduct 

the monitoring function. Thus, the specification shall be in the suitable form to generate the mon-

itoring block, and the generation method is to be developed (R-E4).  

Over the aPS’ lifecycle, changes are caused by various reasons unavoidably [VFST15], e.g., to fix 

some bugs, to implement additional functionality, or to come up with some technology trend. Thus, 

the aPS control software often has to be adapted to the changed requirements for these reasons. 

The change has to be carefully implemented not only to realize the intended change effect but also 

not to introduce any side effect. Over this change implementation activity in the maintenance stage 

including functionality updates, debugging, and behavior improvement, intended change specifi-

cation would be conducted and these shall also be supported by the specification and validation 

activities similarly. What is different from the initial development process is that not the entire 

part of the system is to be checked, but the change-related part is the scope of the validation, which 

is especially effective for small changes. Nevertheless, the unchanged part of the system also 

should be validated regarding the side effect caused by the change. Therefore, the changed part 

should be described clearly and formally at best to apply validations methods systematically, e.g., 

test case generation, model validation, or formal verification (R-E5). Overall, documenting the 

software behavior with various objectives and utilizing them should be easily embedded as a 

method of each engineering process and different users by exchanging them (R-E6, cf. Figure 7). 

3.3. Requirements considering the users’ point of view 

For all descriptions necessary over the engineering processes so far, other specification forms or 

languages, e.g., a path-time diagram, might work theoretically since it can describe the multiple 

signals, their value sequences, and synchronization of them. Although it is a very intuitive graph-

ical representation of signals, it is effective with a fewer number of signals and time sequences to 

read it at a glance. Actually, one of the machine and plant manufacturing company expressed to 

reject timing diagram explicitly in an interview due to its scalability and also its additional nota-

tions for automation engineers to learn and familiar with, but proposed test tables as a more pref-

erable and already familiarized means instead. When the value ranges are wider, or for some ag-

gregately representable values, graphical notation has some limitations. Also, as a graphical nota-

tion, it is not easy to export and import the information systematically and automatically. There-

fore, the approach shall support the systematic handling of the information with structured data 

representation from usable practices and, correspondingly, a software tool shall enable various 

users to utilize the approach (R-U1). This premises to ease the applications of the approach by  
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various type of users (i.e., module developers, application engineers, as well as the commission-

ing/start-up personnel, as stated).  

Thus, the approach shall be accessible regarding its usage (R-U2), namely to be understandable(R-

U2), to enable to create (R-U3), and to be learnable (R-U4). Considering the applicability to the 

industrial cases, scalability is another factor to be evaluated (R-U5). Ultimately, the developed 

method is expected to satisfy the user of the approach so that they would like to use it for the 

intended purpose with minimum resistance (R-U6). 

3.4. Summary of requirement 

In short, the overall requirement could be summarized as “the specification language shall enable 

automation engineers to express the requirement and the behavior of the system in a formal way 

without knowing the conventional formal logic to specify and understand small changes.” Detailed 

requirements and its description is given in Table 2. 
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Table 2: Summary of the requirements 

Requirement ID Requirement description 

R-T1 
The developed specification language shall allow presenting the relationship of input 

and output of the technical system regarding the information flow effectively 

R-T2 
The specification in the developed language shall present the state changes regarding 

its condition and the results, including timing constraints. 

R-T3 The specification shall present the state with the abstracted value range. 

R-T4 The target of the specification shall be the discrete event processes. 

R-T5 
The specification in the developed language shall allow the cyclic execution repre-

sentation. 

R-T6 
The specification language shall be compatible of the software in IEC 61131-3 as 

well as its execution.  

R-E1 
Formal specification language to be used over the aPS engineering process shall be 

developed. 

R-E2 The test cases shall be instantiated from the specification. 

R-E3 
The approach shall support for implementation debugging with respect to the speci-

fication. 

R-E4 The specification shall be a suitable form to generate the monitoring block. 

R-E5 
The changed part should be described clearly and formally at best to apply valida-

tions methods systematically. 

R-E6 

Documenting the software behavior with various objectives and utilizing them 

should be easily embedded as a method of each engineering process and different 

users by exchanging them. 

R-U1 
The approach shall support the systematic handling of the information through a tool 

with structured data representation. 

R-U2 
The approach shall be understandable, meaning the typical automation engineers can 

understand (after reasonable training) by reading the specification in GTT. 

R-U3 
The approach shall support creation of specification, meaning the typical automation 

engineers can create the specification in GTT (after reasonable training). 

R-U4 

The approach shall be learnable, meaning that it requires reasonable time and effort 

from the typical automation engineers to utilize the language regarding reading and 

creating activities. 

R-U5 The approach shall be usable for the scaled behavior description. 

R-U6 
The approach shall be satisfactory, meaning that the users of it (i.e., automation en-

gineers) would be willing to use it. 
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4. State of the art 

There have been approaches introduced that could be applied to satisfy the requirements presented 

in the previous chapter. To give an overview, specification approaches that are targeted to be ap-

plied over the aPS control software engineering processes are discussed in this chapter. Not only 

the basic characteristics of the specification approach targeting technical aspects of the aPS (T1 – 

T6) but also the engineering viewpoint (E1 – E6) and usability aspects (U1 – U6) are discussed 

(Section 4.1). As one of the major concepts of the thesis, monitoring techniques which are not 

connected to the formal specification approach is separately reviewed (Section 4.2). The usability 

aspect focused in Section 4.1 is more general; as one other primary requirement of the approach 

introduced in this thesis is usability to the automation engineers, research and evaluation ap-

proaches concerning this point are discussed (Section 4.3). The conclusive research gap is derived 

at the end of this chapter. 

4.1. Formal specifications behavior: language and utilization 

Formal modeling and verification techniques are originally created in the pure computer science 

field, and aPS behavior verification is a comparably recent research topic [HLLT06]. Since initi-

ated by the early works such as [MPBC92], verifying PLC software has been actively researched 

(e.g., up to [ShVy20]), motivated by the fact that software engineering techniques in automation 

engineering today are not sufficient to thoroughly assure the required level of quality efficiently 

along with the system operation duration with shortened evolution cycles. Formal methods provide 

proofs that the implemented steps are correctly conducted with respect to the specification 

[Berg82]. Behavioral specifications define how the system is supposed to process, i.e., require-

ments, and the system model is verified regarding its conformance to the specification in the for-

mal verification. In this section, formal specification languages introduced for or utilized in auto-

mation system engineering are reviewed and compared with respect to the requirements presented 

in the previous chapter (Chapter 3). Note that mature languages with more utilization methods 

with respect to the requirements were selected here among various newly introduced languages. 

Namely, test case generation, specification inferencing, and monitoring/debugging approaches 

will be focused for each formal specification language. 

4.1.1. Text based temporal logics 

Pnueli suggested the functional properties of reactive systems in temporal logic [Pnue77] as almost 

the earliest one, and these temporal logic expressions have been widely accepted 

[CHVB18][EiFi18] by providing the expressions for sequences or order (causality) of the states 
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in a system [PiPn18] and relations over time in reactive systems [LÅ FE14]. Consisting of the 

symbols Boolean operators, temporal operators, and path quantifiers, the sequencing of the system 

states along the path is defined [HuRy04]. LTL and CTL are common temporal logics so far among 

other temporal logics [LÅ FE14]. LTL, introduced in [Pnue77], frames the property in the linear-

times view, as the name indicates, “in the sense that at every moment in time there is only one 

possible future”; thus, other possible executions are treated as independent sequences, as an ex-

cerpt from and explained in [PiPn18]. The branching-time framework was considered deriving 

CTL, introduced in [EmCl82] and [QuSi82], accepting that there may be multiple possible future 

options from a state. Although the third type of temporal logic, CTL*, was invented as a logic 

combining LTL and CTL [EmHa86], it is not as common as LTL or CTL since many model 

checking tools do not support it yet [BBFL13, Rozi11]. Added with timing concept, they have 

been extended to Timed Adaptive-LTL (TA-LTL) [ZJMC00], LTLt [KrPA03], and Timed-CTL 

[AlDi92].  

As additional feasibility targeting embedded or automation systems, time constraints limit the state 

duration or transition with the timed notation in the viewpoint of state changes concerning corre-

sponding input and output; the state transition is not clearly seen regarding whether the specifica-

tion describes the mandatory state changes of the system. Still, LTL and CTL have been often 

applied to describe the behavior of IEC 61131-3 for the formal verification as presented exempla-

rily in [HBZY19] or [VFAM15]. There are some researches such as [CCDM05] or [PiQu13] for 

supporting run-time monitoring, but it has not been actively researched further. Test case genera-

tion has also been approached as seen in [ZhZK07] or [AHDR18], deriving possible test cases 

from the specification; however, many are mostly based on the model checker result, not directly 

from the specification itself. That is, the counterexample, which the model checker results in when 

it fails the proof, indicates a signal sequence that does not satisfies the target system. The test cases 

generated from these counterexamples are limited to the case that they represent, but cannot cover 

generally what the original specification intended. 

Initiated from these basic languages, there have been introduced many approaches focusing on the 

specification languages targeting industrial systems. Property Specification Language (PSL) 

[IEEE10] developed as a standardized specification logics to reduce the incompatibility of the 

different temporal logics and data exchange [TuSc05], targeted to be compatible circuit design 

languages. As an extension of LTL, it follows most of the characteristics, adding various practical 

and standardized features, such as cycle representation, to improve the readability [PPBV16]. In 

[OdMB06], Test vectors are approached to be generated from the properties in PSL, targeting to 

generate the input of the micro-control circuit (namely, VHDL). Instead of explicit supports for 
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the debugging of the implemented artifact (model or code), debug pattern specification language 

was introduced in [GhFu09] to match the bug to the defined patterns.  

ASTRAL [GhKe91] uses a state machine process specification with state variables and transitions. 

Specific transition timing is also specified within the specification when the state starts or ends. 

Targeting the real-time software requirement specification, it was applied to the embedded system 

analysis [BBKL98], putting the focus more on the interfacing and communication of the processes. 

The ASTRAL Software Development Environment provides design and analysis tool support for 

the specification. Specifying the transitions in detail with precise timing annotations might work 

as the documentation of the function block specification documentation though the specification 

is still fully in not-structured texts. Research about its adaptation or application to support speci-

fication inferencing was not found.  

LUSTRE [CPHP87] is a dataflow specification language, which regards programs as simple func-

tions that process the input to obtain the output with loops that are unfolded and assumptions of 

no circular dependencies among variables. Therefore, usually, an output variable is presented as 

an algebra equation over input and local variables [CGKT16]. It is known that this simplicity 

provides easy programming and debugging environment. LUSTRE has been approached to be 

used for IEC 61131-3 software mainly done by Kabra (e.g., [KBKW12]). Formalization in LUS-

TRE of SFC programs to apply model checking, similar to the presented method in this thesis; 

however, it was to have a rigorous model for SFC program as a model to verify, not as a specifi-

cation. Test case generation from LUSTRE has been actively researched. Test objective was 

guided by LUSTRE property in [RNHW98], and a method to build Boolean test input constrained 

by LUSTRE property was presented [BORZ99], both provided with tooling. Covering the limita-

tion of testing invariants of these approaches, [MaAr00] presented a method and a tool to derive a 

test sequence from leading the test to an arbitrary state. The tool has been stabilized with SCADE 

[Ansy21] in the industry. Still, the inconvenience of such dataflow style description is regarded as 

to improve further [Halb05] to be used as readable and accessible documentations. As an execut-

able specification, efficient code generation was shown to be feasible through the construct of the 

finite automata in [CPHP87]. CoCoSPEC [CGKT16] extends LUSTRE by adding constructs to 

specify contracts for individual nodes (which are similar to states in the context of input/output 

pair), as LUSTRE comments. Authors of [CGKT16] claimed that a mode-specific requirement is 

necessary (similar to [MaAr00]) and introduced the mode-awareness manner of the LUSTRE de-

scription. 
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4.1.2. Graphical and signal pattern based languages 

Specification patterns were introduced in [DwAC99] with the motivation of accessibility from 

practitioners so that they can define similar requirements instantiating the patterns. Commonly 

occurring requirements in the abstracted description were introduced as property specification pat-

terns in the finite-state model, and the pattern must hold to the extent of the program execution. 

The authors also showed that the majority of the used examples (92% of 500 examples) matched 

to the presented patterns. The pattern-based specification has been developed in further researches 

such as [GrLa06], [KoCh05], or [SACO02], attracted by lower barriers to access to the formalisms 

[GrLa06]. However, the presented approach was claimed recently as hard to directly apply when 

it comes to the industrial control domain [PPBV16]. Nevertheless, code synthesis approaches and 

tools have been developed as presented in [DDHM02] for pure software systems. Very few ap-

proaches were found for test case generation from the specification pattern except that extracting 

finite-state machine was considered as abstract test case generation indirectly in [NgMT12]. For 

specification inferencing, patterns are useful to handle the non-decidable behaviors by restricting 

the possible behaviors within patterns (e.g., [GaSu10]).  

Both Live Sequence Chart (LSC) and Property Sequence Chart (PSC) are based on the UML 

statechart diagram and interaction sequence diagram, respectively, which are UML behavioral 

diagrams. LSC [DaHa99] was presented aiming at the description of liveness. Based on the state 

sequence on a lifeline for each component, interactions between them, including message trans-

missions, dependencies, cause, and effect are represented in the graphical representation. Many 

features of LSC is adopted within the UML 2.0 interaction sequence diagram [AuIP07], and Prop-

erty Sequence Chart (PSC) [AuIP07] was developed to cover and extend the features of LSC in 

UML 2.0. Thus, PSC also targets to describes the cause-effect relationships reusing the concept of 

‘chain’ (introduced in [DwAC99]), which indicates the message sequences. Although the specifi-

cation is not used directly in formal verification, some translation approaches are suggested to 

obtain the formal specifications in automata, into LTL [KuMB09] or CTL*[KHPL05]. Based on 

the clear and intuitive behavior expectation from the specification, the monitoring method based 

on the specification [ZLWG11] and its tool [ZSZL10] followed the primitive approach. Lo et al. 

presented the method to mine the LSC specification from the execution trace in [LoMK07]. Both 

are more suitable languages to describe the interactions but not a stand-alone component to be 

specified. In addition, researches about supporting debugging through those languages were hardly 

found.  

Petri nets (PN) are one other well known graphical and analytical specification language to be 

used for formal specification or model with a firm mathematical foundation [HuKi11]. The desired 

system is characterized as a structured process in this executable type specification languages 
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[Hoar78], including PN. Theoretical results concerning PN are plentiful being extended to be ap-

plied to a wide variety of systems, also depending on the analysis objectives, e.g., concurrencies, 

synchronization, or probability models (cf. [Mura89] for PN overview); and there the Condi-

tion/Event type PN is introduced as a most typical for automation system engineering and compa-

rable form to the presented method. A PN comprises places (representing locations where objects 

await processing or the conditions that objects are in), transitions (representing processes or 

events), arcs (representing path or process evolving from place to transition or from transition to 

place), and tokens (representing the resources or readiness of the places to fire the transition) 

[MoGu96]. Satisfying the requirements of discrete event system modeling, it has been actively 

used in manufacturing system engineering [GiDi93]. Inspired by PN, GRAFCET was proposed 

and adopted as a standard to represent specifications for software control systems accepted as IEC 

(IEC 60848) [GiDi93]. Steps, transitions, and links in GRAFCET correspond to places, transitions, 

and arcs in PN, respectively. As similar to the PN, various formalisms and applications are being 

researched actively (e.g., [JTFN19]), benefiting from its graphical representations. The major dif-

ferent between these two languages is: GRAFCET was intended to specify how the system pro-

cesses input unambiguously to reach the output, while nondeterminism is allowed in PN based on 

the nature that the language was developed to describe the system [GiDi93]. Mature research on 

both languages include code generation (exemplarily for IEC 61131-3 as [Frey00, JSSF17, 

MuGM05, QaTP17]), test case generation ([SPMK15]) and also tooling (e.g., [WKMS19] or 

[GoMH16]) while researches for the specification mining (e.g., [LHFL15]) and usability study are 

rather less found comparably (e.g., partially[SaLo05]). 

4.1.3. Specification approaches for automation systems 

The approaches so far (summarized in Table 3) could be regarded as originated from and targeted 

to a more general-purpose or informatics point of view, and these have been reviewed with respect 

to the derived requirements. As the focus of this thesis is put on the property specification of the 

automation systems, the target and taste could be scoped down to the more specific aPS boundary 

conditions.  

First of all, the targeted systems experience a lot of changes over the longer lifecycles up to several 

decades, and the target method has to be compatible to handle it properly. Changes appear in 

different forms and objectives for different reasons. Typical changes considered are fixing the 

detected bugs, for example, if any faulty behavior is detected due to the incorrectly implemented 

control software. Coping with the changed or new requirement is another cause of control software 

changes. Experiencing changing and growing customer requirements and demands, adding or fix-

ing functionalities are required.  
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Moreover, aPS are typically unique systems, which are implemented on the basis of customer 

requirements, also taking into account the boundary conditions at the customer’s premises 

[FBSS18] often with a great number of variants not only in plants tailored to specific customers 

but even in case of serial machines which also often need to be adapted to their specific purpose, 

e.g., to the properties of the used production material [FBSS18]. Another specific change charac-

teristic of aPS is it also appears in the stage of system commissioning. Even if the system has been 

gone through the validation phases during its development, some last adaptations for a complete 

operation combined with another part of the machine or plant is usually necessary. During this 

commissioning, control software adjustment is many times unavoidable, as adapting the software 

is easier than exchanging the hardware, and the quality still needs to be assured after having per-

formed such adjustments despite the high time-pressure during this phase and. The changes stated 

so far are deeply related to the quality of the control software. Additionally, aPS are specifically 

required to be reliable not only regarding their productivity but also regarding the business sector 

they are developed for. Different laws and standards need to be considered, especially as a wide 

range of aPS is applied to safety-critical business sectors like medical or pharmaceutical. Systems 

in this sector have to be handled strictly according to the laws and corresponding guidelines (e.g., 

quality management in medical applications (MedTech) [ISO16] or hygiene regulations in the 

food and beverages sector); and this means the approach also has to be compatible to this environ-

ment satisfying the constraints required. Easing engineering effort is another point to be satisfied 

by the approach since an increasing proportion of system functionality is implemented by software 

[Thra10], and companies need to reduce their time-to-market to stay competitive on a global scale. 

Repeated change implementations and validation activities are time and cost consuming tasks, and, 

thus, appropriate techniques such as transformation of the specification to the executable control 

software, or vice versa, to lower the engineering cost in this context is mandatory to the approach 

development. Furthermore, an aspect to be considered for all the characteristics mentioned so far 

is that there are various stakeholders involved who need to handle and understand the control 

software [BVFS19]. While module developers are in charge of implementing and validating the 

library modules intending for reuse in the earlier development stage, application engineers organ-

ize and connect these library modules to generate the customer-specific software project. Subse-

quently, developed and validated system is handed over to the start-up technicians for the com-

missioning, who are under high time pressure to interface various machine parts, adjust them for 

the best fit for the operation, and, in the end, make the whole system to operate. Finally, mainte-

nance and operation personnel need to understand the control software in order to be able to iden-

tify and react to faults during the system’s operation phase to keep the system downtime at a 
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minimum, which sometimes requires changes of the control software. All these involved stake-

holders, the situation they are in, and their educational background as well as specific goals or 

tasks are to be targeted and considered throughout the approach.  

PN and GRAFCET have been actively approached for the manufacturing system engineering en-

abling the description of discrete event system modeling [GiDi93]. A modeling scheme of control 

logics using PN was presented in the model level in [PaTK01] but not the PLC control software 

level yet. The metamodel of the GRAFCET was considered as a modeling tool for the logic control 

design and analyzed to be transformed to the control code in IEC 61131-3 [ScSF13]. Focusing on 

the absence of formal models of production plants, derivation of the PN model from the signal 

traces [LHFL15] to ease the engineering processes [VDFJ14], and this has been extended to the 

code generation of control software from the formal models [JSSF17] succeeded from [Frey00, 

MuGM05]. GRAFCET metamodel was also developed for the graphical editor tooling to improve 

the utilization of the language by the control technicians [JTFN19].  

UML state-chart was approached to be integrated with IEC 61131-3 through the bi-directional 

mapping targeting the model checking of the control code [WiVo11]; in this work, actual signal 

based behavior representation was introduced, namely “PLC-statechart,” and additional notation 

was suggested to provide a cyclic execution formalism for the model checker. In a similar way, 

the UML sequence diagram was tailored for the executable test case description, and further test 

case code could be generated through defined code generation semantics [KoTV12].  

Timing diagrams have also been a way of information representation using known low access 

barriers in the context of expertise. TimeLine Editor [SmHE01] was presented to substitute LTL 

formula writing to describe a preamble type requirement (which is a pattern expected to be 

matched) in a telephone system and corresponding responses, meaning similar to the ‘chain’ as 

previously introduced for PSC. This focus supported well for specific properties but not generally, 

as shown through an example of partial ordering specification in [AuIP07]. A conversion method 

for test automata was also presented, but still, the targeted specification type is limited. One other 

aspect highlighted in [PPBV16] is that the ordering of the events could be defined, but actual 

timing is not addressed; this can also be a drawback in the viewpoint of aPS engineering to define 

signal requirements at the exact timing or cycles. Another approach using a timing diagram in the 

automation field was presented by Vyatkin and Bouzon in [VyBo08]. Different from the previous 

one, this approach separates the condition part (“if”) and the conjecture part (“then”), allowing the 

CTL properties in graphical representation. Its possibility to be used for (automated) testing was 

stated in [BoVH05], although further approaches were not found regarding the other applications 

such as monitoring and debugging method. The timing diagram was also approached with respect 
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to the automated fault injection [Rösc16, RTSV14], improving the state representation of the con-

tinuous value change through the lifeline from the conventional timing diagram. From the possible 

and expected fault injection, the work was improved to generate the test cases and corresponding 

tooling adapting the script into CODESYS [RöVo17]. 

ST-LTL [LAFY10] was developed specifically for IEC 61131-3 ST language based on LTL to 

support automation engineers who are familiar with this language. Invariant descriptions are tar-

geted, which would apply to all possible sequences of input. The notations are aligned to the syntax 

of IEC 61131-3 ST and the typical signal characteristics treated in the language (e.g., rising/falling 

edges), including the temporal operators given in LTL. Although it was aimed to be more acces-

sible to the formal specification from the automation engineers’ point of view, what was shown in 

the empirical study (cf. [LÅ FE14]) was that most of the prepared properties were able to be rep-

resented in ST-LTL, and improved support was observed for specific types of the functionalities 

and signals. Engineers still required the representation of the specification in their wordings to use 

ST-LTL, as also pointed out in [DaMV15]. For this specific language, no research approach was 

found for code generation or specification inferencing. 

One of the important points of describing and modeling variability aPS is reuse [VMKL15]. Re-

lying on the FOCUS theory [BrSt01], which is an interface based component description, behaviors 

are described for each component in the viewpoint of interfaces, and these are applied to the phys-

ical interface and connection to capture the multidisciplinary characteristics [LMCH14]. This 

component-based system specification is interconnected with the separately described process 

specification [HCLM14]. This work has been extended to include availability metrics in the prob-

abilistic specification in [MJBC17] to analyze the system availability analysis based on the com-

ponent faulty probabilities.  

Darvas et al. introduced PLCspecif [DaBM15], a specification scheme also to support a convenient 

way for PLC programmers. In the approach, several (semi-)formal methods, including truth tables, 

state machines, and data flow diagrams [DaMB16], were combined to specify various aspects like 

state changes or output definitions. As it includes a detailed description of the various aspect of 

input, output, behavior state change logic (called as ‘core logic’ within PLCspecif), it seems to be 

beneficial to use it as a way to do documentation. Although the integrated specification could 

provide broader information about the target system (or component), the part that required to be 

formal specification to be used within the formal verification is limited to the part that adopts 

originally formal specification. In this context, it was not clearly shown that how the specification 

approach tackle the accessibility of the formal specification from the user’s point of view. As an 

example, authors presented how the invariants are checked in [DaMV17] using PLCspecif; the 
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invariants were assumed to be described in CTL or LTL. Code generation scheme was also pre-

sented in the same work and more in detail in [DaVM16], and this was based on generation of 

automata from state machine (described in the core logic) considering the input/output definition.  

4.2. Monitoring of aPS execution 

Testing is often executed limitedly, most of the time during the implementation stage disregarding 

the long-term behavior of the system. To complete this weakness, runtime monitoring approaches 

have been proposed [DoHF14]. Kustarev et al. [KBMA15] proposed a PLC behavior monitoring 

approach at runtime by installing an additional monitoring controller to preserve and analyze the 

observation results. This controller monitors actual input and output pairs of the PLC; i.e., it per-

forms an overall system behavior monitoring. Steinegger et al. [SMZS16] presented an approach 

of automatic generation of diagnostic code mainly targeted at monitoring communication inter-

faces. Using these methods, monitoring code is generated from additionally specified models, 

which requires additional effort often not available in aPS engineering. Ladiges et al. [LaFL16] 

gave a good overview regarding the model-based diagnosis during the operation targeting produc-

tion plants. They classify the diagnosis approaches into a classical manner, i.e., supervision 

through fault detection and isolation, and model learning techniques for the automata to capture 

the system behavior. [KKST13] introduced an integrated development environment (IDE) for the 

rapid development of a monitoring program supporting EtherCAT, the popular real-time Ethernet 

communication profile for PLCopen standards. 

While many of the monitoring approaches are focusing on widening monitoring targets and easing 

the monitoring block generation, another stream appeared within the underlying idea that moni-

toring the conformance of the formal requirements [DoHF14]. Scoping down to the PLC software, 

possible signal behavior types are formally defined, and corresponding models are used as moni-

toring criteria during runtime for the conformance check [WeZB15]. Signal traces based system 

characteristic inferencing technique was integrated with the formal interface description to check 

the conformance of the physical signals to the specified characteristics [HLLF14]. In the mean-

time, the runtime enforcement monitoring paradigm [FMFR11] has been applied to PLC monitor-

ing. That is an extended version of monitoring: similar to conventional monitoring, monitors ob-

serve current execution status but, additionally, halt the execution when it deviates from a specific 

property. This could be regarded as a kind of fault avoidance activity in the sense that the monitor 

detects abnormal executions and actively prevent further execution before it gets to the faulty 

states by intervening. In [LaMM20] targeting cyber-physical attack monitoring on the PLC net-

works and prevent potentially corrupted sensor signals and dropped actuator signals by modifying 
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and inserting actions while [Mcla13] approached to mediate the signals transmitted from PLC to 

the plant by concealing actuator commands. 

4.3. Usability studies of specification approaches 

Usability studies of the approaches used within the aPS engineering processes have been another 

major topic to consider transferring the knowledge to the field, although not all the approach re-

searches do not count it as mandatory. In this section, usability studies done on the specification 

approaches will be introduced.  

Domain-specific languages provide concepts, notations elaborated for a specific purpose, and 

higher productivity in system engineering [DeKl02]. Since model-based engineering methodolo-

gies are more pervasive, metamodels as well as these types of languages, appear in various forms, 

conforming to the satisfaction of goals and needs. Focusing on aims often hinders the actual usage 

aspects, and then the language is only left in theory. There are studies regarding the usability of 

modeling languages that are usually used to design the system. Since our approach is aimed at 

requirements of formal specification languages, some works that focus on the evaluation of re-

quirement/specification description languages are stated here. 

Teruel et al. [TNLM14] present a brief result of usability evaluation in regard to a requirement 

modeling language showing a completeness rate and the result of a user satisfaction analysis. 

Snook and Harrison [SnHa04] compare a formal specification language, namely Z, with the im-

plementation of Java in regard to comprehensibility and show that there is little difference. Carew 

et al. [CaEB05] experiment with the acceptance level of formal and informal specification and 

training time for formal language. Razali et al. [RSPG07] present the usability experiment result 

of the combination of semi-formal and formal language in regard to comprehensibility and pref-

erences and conclude that the combination is useful in promoting specification. Timing diagram 

based language (e.g., [VyBo08]) implies usability of the conventional timing-diagram although it 

turned out to be not so practical in the field to be applied due to its limitation of scaling (this was 

figured out through an interview with one of the major packaging machine provider). Similarly, 

pattern-based specifications (e.g., [Bits01, CaMa09]) might be usable since they have been initi-

ated by categorizing existing specifications and extracting the patterns. Looking at this aspect, 

Pakonen et al. [PPBV16] review accessibility of some specification languages in regard to cover-

age of predefined formal properties as effectiveness evaluation in terms of ISO standards. As high-

lighted in [SPGV19], formal methods are required to be evaluated empirically in industrial sce-

narios to be applied in the practices. Also, even though the developed or extended language is 
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regarded to entail a certain level of usability implicitly inherited from the origin, the usability of 

the developed language should be re-evaluated in regard to formation as well as objective changes.  

4.4. PLC software programming tools 

There are a variety of PLC manufacturers who provide controllers, such as Siemens, Beckhoff, 

Schneider, Festo, or ifm electronic, and some are providing their own PLC control software pro-

gramming environment. On the other hand, there also exist several PLC control software IDEs 

providing compatibility to many different types of controllers and components. As general-pur-

pose IDEs, MULTIPROG (Phoenix Contact Software GmbH, earlier KW Software), OpenPCS 

(Infoteam Software AG), and CODESYS Development System (abbreviated as CODESYS, from 

CODESYS GmbH) could be counted; these IEC 61131-3 IDEs enable to develop the control soft-

ware for the PLCs, where the software is to be deployed and run, and these are targeting different 

aspects like support for the development platform (Operating Systems), compatible PLCs, simu-

lation functionality, or IDE customization. Among these, CODESYS provides broad support of 

devices as well as extensive expandability through libraries and add-on components. Furthermore, 

a large number of manufacturer-specific PLC IDEs are based on CODESYS [KeMa19, RBKP13], 

for example, IndraLogic (Bosch Rexroth), TwinCAT (Beckhoff), EcoStruxure™ Machine Expert 

(Schneider Electric), or e!COCKPIT (WAGO) but do not offer all of its features and have addi-

tional functionality implemented, tailored to their customer base. In detail, it provides all five IEC 

61131-3 for a great number of devices worldwide, mostly for programmable automation compo-

nents within more than 400 industrial companies [Code20a]. CODESYS also provides various 

add-ons, and one of these is CODESYS Test Manager [Code20b] to support the automated testing. 

Defined test cases can be converted into executable test cases within the control software project 

and the corresponding test report is provided after the test execution [Ulew18]. Within this testing 

environment, table format is embedded to represent the test case variants, and the users, who are 

automation engineers, are already familiar with a table-based notation to specify test cases 

[UlVo15] (cf. the interview comments shown in Section 3.3).  

4.5. Discussion of the research gap  

Approaches introduced so far satisfied the requirements derived in the previous chapter partially, 

and no research has been found to fulfill all the imposed requirements. In detail, the specification 

approaches introduced in Section 4.1.1 and 4.1.2 are more general approaches, while the ones from 

Section 4.1.3 are more scoped down to the aPS engineering domain. Approaches for monitoring 

to capture the runtime errors are developed but not systematically related to the specification ap-

proached sufficiently to maximize its utilization (cf. Section 4.2); usability of such specification 
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approaches has to be supported by appropriate evaluations (cf. Section 4.3). Furthermore, it is also 

important to consider that many automation engineers developing IEC 61131-3 are already famil-

iar with a specific form of developing and testing (cf. Section 4.4). Conclusively, an approach for 

change descriptions for control software validation purposes to be used over the engineering pro-

cesses, considering the current development environment, is still missing. Also, formal verifica-

tion and specification have not become a familiar method to the automation engineers yet despite 

its advantageous characteristics while testing is prevalent as a quality assurance method. Although 

there have been various specification languages are developed, cost-wise efficiency as well as the 

accessibility from the automation engineer’ point of view is still to be improved. That is, the barrier 

of the effort to obtain the specification would still be high from the viewpoint of automation engi-

neers, and the concept regarding how to utilize correspondingly generated specifications more 

effectively to improve the aPS control software quality is also required. Therefore, the approach 

developed in this thesis is to fulfill the requirements, filling the derived research gap. 





 

 

5. A Concept of the Table-Based Formal 

Specification Language For Reactive System 

Software  

The system software of the production system is required to be dependable and reliable, so the 

quality of the implemented system should be controlled during the implementation process. Also, 

the correctness of the system execution has to keep being monitored during operation to comple-

ment the overall quality of the system. Necessary properties should be verified, and some plausible 

scenarios should be considered and tested. Once validated, the integrated system is under the com-

missioning phase and then on the operation. Expected faults and failures could be captured and 

prevented during the implementation; however, unexpected and unintended behavior should also 

be captured and handled correctly. This explains the necessity of the run-time validation or mon-

itoring, complementing the actual environment. Both the validation during the development and 

the monitoring during operation requires the specification of the requirement, i.e., how the control 

software is supposed to behave, as a base. Generalized test tables (GTTs), the presented approach, 

shall take the role of this specification which can be handled by the developers and validation 

engineers. 

In the following, the table-based formal specification approach to ease obtaining the formal spec-

ification for production system software, or reactive system in more general scope, is presented. 

Although the separate proof will not be delivered, the approach also works for the cyclic behavior 

of mobile vehicles developed in IEC 61131-3 (e.g., software developed for CR0133 controller of 

ifm electronics ltd., a programmable controller for mobile machines) as the system software char-

acteristics are similar.  

The goals of the presented concept are basically to embed formal specification and its usage within 

the control application development and operation regarding quality control. During the develop-

ment, assured quality is required to obtain reliability and dependability and can benefit from for-

mal verification, which requires a formal model of the system part and formal specification of the 

requirement part. Typical development activities for the control applications are to implement the 

required behavior newly or to change the existing code. After that, the implemented code should 

be validated regarding the conformity to the requirement. Formal verification could step in the 

validation of the model or the code level requiring formal model and specification. After the ver-

ification, its result shall be useful to debug and fix the code (cf. R-E3). Also, for the purpose of 

regression validation, regression verification reduces the effort of obtaining formal specifications 
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for the unchanged part. Thus, in any cases, formal specification is required, and the effective spec-

ification method is beneficial that users (i.e., module developer, application engineers, and com-

missioning technician) describe the desired system behavior precisely from the initial states and 

further state changes (cf. R-E5, R-E6) with respect to the cycles or specified timings (cf. R-T1, R-

T2, R-T5). The created specifications should be useful to describe not only a specific behavior but 

also the same sort of behavior so that the verification coverage could be as wide as possible (cf. 

R-T3). In addition, the fact that the user (module developers, application engineers, and start-up 

technician, cf. Figure 7) should be able to easily access to the language to create, understand, and 

modify, is required (cf. R-U2 – R-U6). 

The presented approach aims at reaching these goals by specifying the software behavior in the 

form of tables, which are based on the expert feedback from industrial companies of machine and 

plant manufacturing regarding the development processes. The concept of utilizing formal speci-

fication will be overviewed in Section 5.1, followed by the detailed approach description (Section 

5.2) and application example (Section 5.3). The created specification in this concept takes a role 

of a formal specification in the format of tables with abstracting notations in cells describing con-

straints instead of specific values. Since it is grounded on the knowledge and experience of auto-

mation engineers, specification in this language shall be easily handled by them. Thus, the existing 

specification can be used for the validation process, which is to be proven in chapter 7, or, if not 

available, a base of the sound specification can be generated so that engineers can complete it to 

their tastes as a further use case of the presented approach, introduced in Section 5.4.1. As a re-

quirement description, the created specification in this language can be transformed into a program 

for monitoring block as a supplementary run-time validation in Section 5.4.3. 

5.1. Concept overview 

One of the most significant problems to apply formal verification lies in the preparation of the 

formal specification. The requirement specification is not generated even in a natural language in 

the previous engineering processes for new modules or existing modules. Thus, the developers 

have to generate the specification newly in addition to handle (i.e., generate or revise) the test 

cases for testing. These are typically in the form of regression testing, meaning to check the orig-

inal behavior, which should not be affected by the code revision. In a similar concept, regression 

verification [StGo08] (cf. Section 2.3.2) could be applied to the IEC 61131-3 control software 

change [BUVW15] using the original software as the original behavior description. However, still, 

the changed part, although it is small, has to be described to complete the change implementation 

verification. With conventional formal languages, it is hard due to the low accessibility from the 
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developers. Many logic languages are not easy to learn and also to be applied for the description 

of complicated processes. 

Testing, or also for regression testing, requires the automation engineers to specify test cases, and 

these are done in table form in the industry. Focusing on the point that test cases and their proce-

dures are described in a consistent way (not always perfectly but most of the time partially), which 

is concrete test tables, a formal specification language is developed providing generalizing con-

cepts on the existing test tables. Suggested concepts are threefold: abstracting concrete values, 

referencing other values in the same or other timing, and abstracting timing. Presented concepts 

are enlightened by being applied in an application example over the engineering processes. 

The suggested method can take a significant role to control the quality of the control software and 

be embedded over the lifecycle of a production system (Figure 1). First, during the development, 

the software is implemented after the requirement specification is understood by the module de-

veloper. Even if the specification has not been generated in the previous step, developers would 

generate one to be used in the validation step. The implemented software is validated by formal 

verification and testing. In the formal verification, the specification and the implemented model 

(including code) is the input of the verification process, and the conformance of the given model 

to the specification is the output, not requiring exact execution while the testing requires the exact 

execution in a given case. At this point, the requirement specification is a basis to decide the cor-

rectness of the behavior. After modules are developed, application engineers understand the be-

havior of modules from the specification and select the appropriate modules to consist a project.  

Once the integrated system is validated, it is delivered to the site and gone through the final ad-

justment during the commission by the on-site commissioning technician. The detailed behavior 

is understood by reading the specifications for the integrated system or the module level if neces-

sary. In case any small change is to be made on-site, the change is to be documented in the change 

specification and implemented change is verified regarding that.  

During operation, significant signals have to be monitored for contingencies using monitoring 

functions. Monitoring functions are also generated directly from the specification to be independ-

ent of the implemented software, aimed at preventing any violation against the in-tension and 

recognizing any unconsidered case occurring during the operation. Also, the software could be 

requested to change its behavior. In this case, the specification would be updated if any exists. If 

not, running software could be a source to generate the specification base, on which the change 

intention can be added. After the change specification is correctly generated and the software 

change is implemented, the application developer can execute the validation process again with 
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regard to implemented change. System quality of the initial implementation of the change imple-

mentation can be supported in this two-way (forward and backward) quality assurance process. 

5.2. Generalizing test tables as a specification representation 

In this section, the formal specification approach is presented, namely GTTs. The name comes 

from the concrete test tables from which the structure was conceptually taken, taking benefits 

regarding the requirements of input/output traces and sequence of state changes. Generalization 

concepts are added on top of the structure of GTTs to sort the same type of states as well as the 

same type of state cascading could be represented specifically suitable for the change description. 

This part of the approach was preliminarily published in [BCUV17, CWUB18a, WWUU17]. 

5.2.1. Structure of GTTs 

A control software initializes at the beginning by the initialization part of the program if required. 

It might just continue for a certain time regardless of any input or keep checking a specific status 

(input) of the system to terminate the initialization process. After the initialization is done, the 

software waits for a certain signal to execute a specific behavior, to result in certain output status, 

or already executes proactively. This kind of state changes, i.e., executing a certain behavior until 

it gets some signals and changing the behavior, repeat over the entire execution of the control 

software. Therefore, first, a correct description of the control software behavior would include 

conditions to change status and the resulting behavior necessarily. Also, as the change appears 

cascading, the sequence of the state changes should be intuitively represented. Second, the format 

should be easily accessible by the engineers (i.e., module developers or application engineers 

mostly), exploiting or extending existing practices optimally so that they could be easily embedded 

within the present engineering workflow.  

In a concrete test table, each cell contains a specific value corresponding to the variable. Input 

values are what is assumed to be given to the test target, and output values are what is expected to 

be obtained from the software execution result of that cycle(s) at a specific time or time duration. 

Though there is no formally defined notations of concrete test tables, the characteristic of clearly 

structured input/output sequence traces could be taken as a promising structure for the specifica-

tion language. Furthermore, the applicability can be reserved as they are the current practices.  

A generalized test table is constructed in the form of a table including columns of the sequence 

number, variables, and duration (Figure 8).   

 Sequence number: A sequence number is the index of each row. Example: the sequence 

number of the 1st row is 1.  
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 Variables: variables are assorted into input (IVar1 or IVar2 in Figure 8), output (OVar1 

or OVar2 in Figure 8), and local variable if necessary. Each column header indicates the 

name of the corresponding one. Input is not limited to the exact input wires (or variables) 

of the function block but might include any global variables which affects the behavior of 

it. Similarly, output includes all the signals that would be asserted after the execution of 

the function block in the cycle, assuming the variable values in input section. (cf. R-T1) 

 Duration: a duration (typically shortened as Dur.) indicates for how many cycles or for 

how long time the set of variables would take place as valid behavior (cf. R-T2, R-T5).  

 As an optional column, a remark column could be added to annotate a row with text for 

better understandability of the behavior description. 

 In each row, each variable value are written within the corresponding cell in order from 

the top row.  

The input in a row is the assumed variable value(s) to be induced to the system at a specific time. 

Therefore, the input section is described with the values that would be expected to occur while the 

system is being in the previous state. Also, the output section is filled with the output variable 

values that would be observed mandatorily. Values that would be assumed to be given after the 

target function block starts to execute and corresponding output are found in row 1. Further se-

quences appear in the following rows in order, e.g., the input part of row 2 indicates the condition 

that makes the state which produced the output indicated in the output part of row 2. 

Seq. 
Input Output 

Duration Remark 
IVar1 IVar2 … OVar1 OVar2 … 

1         

2         

…         

Figure 8: Basic structure of the GTTs 

The structural definition of the GTT does not include any concept of generalization but provide 

the standardized structure of the specification in table form. It could be applied to the typical test 

tables. 

5.2.2. Value referencing and generalization 

As reactive systems, the control software of aPS accepts the input trace and results in the corre-

sponding output trace continuing to changes behaviors depending on the states. The signals affect 

each other, mostly output is affected by input (history) and sometimes input is also affected in 

reverse as the previous output changes the status of the environment. Therefore, the relationship 

between the signals is important information for the behavior. In concrete test case, exact values 

of signals (input and output) are designated in the corresponding cells, but exact values cannot 

allow to represent the relationship of them.  



46 A Concept of the Table-Based Formal Specification Language For Reactive System Software 

 

 

Having a test table (or also in a timing diagram which represent the concrete value in a graphical 

way) implies a concrete value trace of input/output values, which goes through a specific program 

run path. As our target is to describe the behavior of the program path, not the exact value trace, 

possible values are to be aggregated to present a corresponding path that the same sort of value 

trace would go through. If it is described in the concrete test tables, a bunch of test tables would 

be required to cover all possible value combinations. It is worse in a timing diagram to represent 

a varying possible range of a signal envelope. Therefore, it is required to formally describe a range 

of a signal or a constraint of it to be more general. This will be related to the coverage of the 

verification in the sense that it allows the model checking to prove the software to satisfy with 

respect to all possible values within the range or under the constraints.  

In GTTs, therefore, constraints of the signal of each state is allowed to be represented as presented 

initially [BCUV17, WWUU17]. Constraints mean the possible eligible values to appear or to have 

on that state (or row in the table point of view). Constraints might appear in different forms: 

 A variable is to be a certain value as a typical concrete test table does. The values should 

follow in the data type of variable, including enumeration.  

 A variable is to be within the range of an interval with either minimum limit or maximum 

limit, or both. This case also includes a specific impossible value. The values are indicated 

by using mathematical symbols such as equals sign (“=”), inequality signs (“>”, “<”, “≠”, 

etc.), and intervals (“[,]”, “(,)”).  

 A variable might not be effective as an assumption (input) or assertion (output). In this 

case, the cell value is indicated as ‘don’t care’ with a dash symbol (“ꟷ”). 

 Mathematical and logical expressions using operators in IEC 61131-3 ST are also allowed 

as a cell value. That is, the constraints explained earlier could be concatenated with logic 

operators and even library functions can also be used to describe the cell value.  

A variable cell could also refer to the other cells to expand the expressiveness of the constraint (cf. 

R-T3). As discussed, signals in aPS depend on each other in many cases. Also, the system behavior 

depends on not only the current input but also previously input values. Two expressive means to 

formulate such dependencies are possible in GTTs.  

 Past-referencing: Values can be referred by using a specific variable name with a timing 

index which indicating the backtracking cycle amount. If the value is referred from the 

current row (i.e., in the same cycle), the variable name is to be used along with the timing 

index omitted.  

 Global-referencing: Values can be referred to by using a specific symbol over relevant 

cells. The symbol is typically assumed to be selected from a lower-case alphabet letter not 
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overlapping with the variable names. After designating a cell with the selected symbol, 

the relational value is described referring to it.  

As IEC 61131-3 expressions are allowed within a cell as a constraint representation, reference 

symbols used for past- and global-referencing are eligible to be the operands for those expressions. 

(cf. R-T6).  Table 4 shows allowed expressions and values in the cells of a GTT under the variables 

section:  

Table 4: Possible cell values and notations 

 Cell value Description Examples 

1 Specific values as typical concrete test tables could, cells under variable sort can 

include specific values in the type of variable including defined 

enumerations. 

1, 0, TRUE, GREEN 

2 Intervals Range of the values [1,5], [7,∞] 

3 Constraints Restriction on the value ≥5, ≠7 

4 ST-expression Expressions allowed in ST language including library functions =I
3
*O

5
, = MIN(I

1
, 10)  

5 – Don’t care – 

6 References Referring to the other cell with a column name or a symbol =I
3
, =O

5
, =a 

7 Past references Referring to the same cell or the other cell with timing index =I
3
[-1], =O

3
[-2],  

8 Boolean constraints Conditions to be adhered by the input/output values I
2
>I

3
 AND I

3
≥5 

 

5.2.3. Generalizing duration 

Signals are the motive to evolve the process within aPS. In addition to this, timing is also a critical 

condition to be observed carefully since, first, the signals affecting each other and they are sup-

posed to be synchronized correctly in complex systems like aPS, and second, the elapsed time is 

also related to the production performance which is put first as the main goal of aPS engineering. 

A certain state may stay in a state resulting in output. That is, as long as the input condition meets, 

the output would be repeated for a designated number of cycles. Or, a state might wait for a specific 

signal with a timeout and this should also be enabled to represent. Thus, it can be said that the cells 

in the duration column determine the number of repetitions for each row. In this column, as pre-

sented [BCUV17, WWUU17] and further extended in [CWUB18b], the following values are pos-

sibly entered: 

 The cell could include a certain value as a typical concrete test table does regarding the 

allowed repetition number of cycles or the exact time specifying the unit.  

 The duration can be defined within the range of an interval with either minimum limit or 

maximum limit or both. This case also includes a specific impossible value. The values 
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are indicated by using mathematical symbols such as equals sign (“=”), inequality signs 

(“>”, “<”, “≠”, etc.), and intervals (“[,]”, “(,)”) indicating unit. 

 The undefined duration is indicated with a dash symbol (“ꟷ”) meaning ‘don’t care’ (i.e., 

[0, INF]), also meaning ‘it might not occur.’ 

 The undefined duration guaranteeing the occurrence is represented by a dash symbol with 

‘INF’ subscripted, i.e., “ꟷINF”. This notation assumes that the row occurs at least once and 

the system keeps staying in that state. Thus, any row appearing after this notation is not 

meaningful.  

 Block repetition: A duration could also be defined for some consecutive rows (i.e., row 

group) to be repeated as a block with the symbol “ I ” over the corresponding row span 

with its own duration constraints subscripted, e.g., “ [1,3]” 

Table 5 shows allowed values in cells under the duration section:  

Table 5: Possible durations and notations 

 Cell value Description Examples 

1 Specific values Exact values for cycles (default) or time (with specific 

unit) 

1, 10, 7 sec 

2 Intervals Range of the timing duration [1,5], [1,∞], [7sec,∞] 

3 – Means [0,∞] which allows row to be skipped or repeated 

arbitrary times. 

– 

4 –
INF

 Strong repetition: program state stays in this row If a program should arrive a 

certain state and stay in that 

state 

5 I Indicating row group which would be repeatedly executed 
I[1,3] 

 

5.2.4. Simplifying exclusion 

In GTTs, each row could be mapped to the conditions to change the state of the function block 

(input) and the corresponding state of the result (output). Sequential state changes are the target to 

describe. During execution, a system could stay in a state for a while (i.e., multiple cycles) as 

described in the duration section it waits for a certain condition, i.e., input constraint in the next 

row in the context of GTTs, satisfying the exact input constraint in the row and the timing condi-

tion in duration section. With this characteristic, there sometimes appears tedious, and longer ex-

pressions and following notations are to achieve description efficiency  

Exclusion over the adjacent row 

During the execution conforming to the GTT, the PLC control software could be said as staying 

in a (defined) state or defined row in the term of GTT. Valid execution would be decided by 
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checking the input to decide the row and the corresponding output from that row. That is, the input 

will be continuously checked input first whether the current state (row) is eligible to retain, mean-

ing that the current input is satisfying the input column of the row with eligible duration, or 

whether the next row condition is satisfied as the enabled state. Violation of the output is to be 

checked after the row eligibility based on the input is determined. 

Within the GTTs, the conditions, which decide the state retention or the state transition, are the 

input section. Describing the adjacent input section with overlapped values confuse the tester or 

let the state space bigger, meaning the code execution control could stay in multiple adjacent states 

(rows) although it is expressively possible. To obtain compressed expression but to avoid confus-

ing meaning, progress flag, a specially described don’t care duration with an additional annotation 

(“ꟷp”), is developed to discriminate the input condition easier by introducing a symbol than having 

several rows, meaning ‘this row could be repeated as long as the condition of the successor row is 

not satisfied.’ Suppose the indication of the initialization of a function block having EN as an 

enabling signal and I as an input signal with initialization criteria ‘EN = TRUE and I > 10 for two 

seconds’. The system is not under the concerned condition yet at the beginning most probably. 

One might write the initial condition as ‘don’t care’ and put the initialization condition on the 

second row (Figure 9 – a). In this case, every input value combinations could be accepted as valid 

for the first row even if the initialization is over and the module is supposed to behave normally, 

resulting in different output (e.g., READY = FALSE even after satisfying the initialization criteria 

would be regarded as valid behavior since it satisfies the first row) though it is not the intended 

behavior. GTTs should be described precisely, distinguishing the adjacent rows explicitly to avoid 

and overcome the unintended ambiguity; this might require more rows or complicated conditions 

to describe the inversion of the target condition. So one might also want to check enabling signal 

(EN) first and then check input signal (I) if EN is satisfied (Figure 9 – b). However, this will cause 

more rows to distinguish different states, e.g., EN is not satisfied in the first row, and EN is satis-

fied but I is not satisfied in the second row. If there are variables, describing transient states before 

initialization would be more complicated. To ease this exclusive expression, the duration could be 

specially described with the progress flag (Figure 9 – c). Thus, as soon as the input condition of 

the successor row is satisfied, the current row is not valid anymore and the validation should pro-

gress to the next row. 
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Seq. 
Input Output 

Dur. 
EN I READY 

1 – – F – 

2 T >10 F <=2sec 

3 T >10 T - 

 …    
 

Seq. 
Input Output 

Dur. 
EN I READY 

1 F – F – 

2 T <=10 F – 

3 T >10 F <=2sec 

4 T >10 T – 

 …    
 

Seq. 
Input Output 

Dur. 
EN I READY 

1 – – F –p 

2 T >10 F <=2sec 

3 T >10 T – 

 …    
 

(a) (b) (c) 

Figure 9: GTTs to check the initialization condition (EN = TRUE and I >10 for 2 seconds). (a) not cor-

rect with too relaxed condition at the beginning, (b) correct but requiring more rows, and (c) 

compact exclusion representation with progress flag 

Indication of triggering  

Input condition changes appear in separate rows in GTTs. When a certain sensor value should 

trigger a certain behavior, the observing pattern would be FALSE continuously and a sudden 

TRUE (rising edge) then appears. The triggering often occurs in a moment and then the rest of the 

signal (until the software expects another condition) is not concerned after triggered. Thus, the 

output section is identical in both the triggering moment and the rest (Figure 10 – a, #2-3, # mean-

ing the sequence number hereafter). In this case, the input condition could be represented as “trig-

ger” signal by adding a corresponding symbol, i.e., “v” within the cell, in front of the exact value 

(Figure 10 – b, #2). This reduces the number of rows to describe the triggering signal, increasing 

the readability of the table by showing the signal characteristic (triggering) explicitly. 

Seq. 
Input Output 

Dur. Remark 
X Y 

1 F F –  

2 T T 1 Rising edge observed 

3 – T 99  

 …    
 

Seq. 
Input Output 

Dur. Remark 
X Y 

1 F F –  

2 v T T 100 Rising edge observed 

 …    
 

(a) (b) 

Figure 10: GTTs to check the rising edge of X. (a) waiting for the input condition to be true and then out-

put continues for 100 cycles by designating two different values of X in two rows, and (b) 

compact rising edge check expression with triggering symbol 

5.3. Application example 

To show the concepts of GTTs more intuitively from the potential user’s point of view as this is 

an important requirement (R-U2 – R-U6), a case of conventional logic is shown here exemplarily 

and the main features are presented. The overall description (Section 5.3.1) and the requirements 

(Section 5.3.2) are the information which has been recognized by the engineer. Using the test 

tables (Section 5.3.3), a GTT to describe the required behavior will be created (Section 5.3.4). 
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5.3.1. Description of the module 

A linear conveyor module transports a work piece from one edge to the other (Figure 11). During 

the transportation, work pieces could be separated by being guided into different direction depend-

ing on the material types: one is metal and the other is plastic. There is one storage for plastic (i.e., 

non-metal) type work pieces at the end of the conveyor. Metal work pieces are supposed to be 

redirected to another conveyor for a further process (Figure 12). One work piece is put and assorted 

into the appropriate place (i.e., storage or the further conveyor) at one time and the next one comes 

after the earlier one is processed.  

 

 

(a) (b) 

Figure 11: Conveyor separation module to sort different type of work pieces and the corresponding func-

tion block to control the separation process: (a) graphical overview of the machine, and (b) 

schematic view of the function block with interface indicated 

 
Figure 12: Separation behavior flow chart with the illustration of the machine and the work piece  
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5.3.2. Requirements of the module 

For an automatic control of the separation process, requirements in the textual description are put 

as below: 

 A work piece is put on the conveyor at position 1. The presence of the work piece and its 

type is detected by the presence sensor LS1 and the inductive sensor IND respectively. 

Both are binary sensors indicating positive with True value. 

 The conveyor is actuated by the motor, controlled with a Boolean variable M. (True: 

move, False: stop) 

 For stabilization after being put on the conveyor, the conveyor starts its operation 200 ms 

after the arrival of the work piece. 

 Conveyor moves until the work piece arrives at position 2, indicated by the additional 

presence sensor LS2. 

 When a work piece arrives at LS2, the switch is controlled either to stay open or to close 

depending on the type of the work piece material. If it is metal type, then the switch, which 

is controlled by a Boolean variable S, closes so that the work piece is guided into the 

conveyor 2. 

  After the switch is controlled while the work piece is passing by the LS2, the conveyor 

continues to operate for 2 seconds so that the separation is completely done. 

5.3.3. Test cases for the module in test tables 

Based on this requirement, an application engineer compose the existing function blocks (e.g., 

switch function block, conveyor function block) which are developed earlier by the module devel-

opers, using the glue code. The developed code is supposed to be validated so some test cases 

would be generated, as depicted in Figure 13 showing two possible cases in the test tables (cf. R-

E2).  

First, the plastic work piece separation test is shown (Figure 13–a). Once the conveyor module is 

started to operate, it waits for the work piece and it is assumed to insert the work piece after three 

second although it is fine to place the work piece at any time (#1). Then, the work piece is detected 

and conveyor should remain as stopped for 200 ms (#2). After this time passage, the conveyor 

operation is enabled (#3, M=TRUE). In the meantime, the work piece leaves position 1 (#4, 

LS2=FALSE), and arrives at position 2 (#5, LS2=TRUE). At this moment, although the conveyor 

continues the operation, the switch has to be controlled. As the work piece is detected earlier as 

non-metal (#2, IND=FALSE), the switch is to remain open so that the work piece is delivered to 

the storage at the end (#5, S=5) after two seconds of the conveyor operation. After the separation 

is done, the conveyor stops. 
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In the second test case, another separation behavior is tested for the metal work piece type (Figure 

13–b). In this case, the timing of putting work piece is selected differently to benefit of diversity, 

which is five second. Since the testing material is metal, the inductive sensor gives positive value 

(#2, IND=TRUE). The next steps process similar to the first test case up until the work piece 

arrives at LS2. When it is passing by LS2, the switch has to be closed so that the work piece can 

be guided to another direction, which is conveyor 2 (#5, S=TRUE).  

 
(a) 

 
(b) 

Figure 13: Test cases for (a) non-metal work piece, and (b) metal work piece 

5.3.4. Behavior specification in GTTs 

Test cases are generated and they can be used to test those exact cases, missing other possible 

cases. For example, the timing of the work piece put on the conveyor, or the time passage for the 

work piece traveling from LS1 to LS2 vary. Also, some sensor values do not have to be considered 

all the time. For example, the inductive sensor value while the module is waiting for the work 

piece should not affect the behavior. One might think it is necessary to test such a situation (i.e., 

no work piece but the inductive sensor is detected – although this is obviously malfunction of the 

sensor, sensor correctness is irrelevant to the subject at this moment, so is not considered as a case 

to resolve). The variety of possible values and their combination makes an infinite number of test 

tables. However, all these cases are included in the same sort of behavior. Changes often occur 

within the machines – in this separation module case, there could be many points to be changed 

such as reestablishment of the sensors due to the physical restrictions of the machine position, 

adjustment of the conveyor belt length due to interfacing with the other machine part, and so on. 

In the case of changes, especially when it is implemented on-site, it is hard to execute all test cases. 

Instead, verification could be done statically using the changed code part and the specification. 

Now, the generalized behavior is presented in GTTs as the formal specification language using 

the introduced concepts (Figure 14). 
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At the beginning of the module execution, the motor and switch are disabled as long as there is no 

work piece on the conveyor (Figure 14 – a #1, LS1=FALSE, LS2=FALSE). Since it is obvious 

that the inductive sensor value is invalid, it is not considered as an effective condition, so that the 

output still remains as inactivated. Thus, ‘don’t care’ symbol (“–”) can be put for this signal. 

Considering duration, the module may wait for a work piece for an arbitrary time because it is not 

deterministic when the work piece will be inserted (#1, DUR.). This will cover the test case of 

putting work piece at various timing. As ‘don’t care’ in the duration cell indicates that the state 

(row) might happen multiple cycles and even might not happen. In other words, there might exist 

a work piece already when the module starts to execute. 

When a work piece arrives, or when a module starts and a work piece is already detected (i.e., the 

state of row#1 has not appeared), the conveyor should wait further for 200 ms in case the work 

piece is to be stable. During this time, the existence of the work piece is indicated as well as the 

material type. From the requirements, it could be learned that this material type information affects 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 14: Generation of a GTT  
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one of the actuator, i.e., switch. But as the timing, when this information is used, comes later, a 

variable named ‘p’ is put in this IND cell (Figure 14 – b, #2).  

After the stabilization time (200 ms) exceeds, the conveyor starts to move with the exit condition 

that change the output (M and S) state as ‘LS2=TRUE’ (Figure 14 – c, #3). Until that moment, the 

conveyor should keep moving. During this movement, the work piece is detected by LS1 at the 

beginning, and then not detected anymore as it leaves the position 1 although the movement should 

go on. Therefore, LS1=TRUE is the condition that is satisfied at the beginning definitely but it 

does not have to be considered anymore (#3, LS1 = vTRUE). This triggering abstracts the possible 

timings when the work piece would be out of sight of LS1, which cannot be exactly decided in 

fact.  

The output status changes when work piece passes by the position 2. The separation is prepared at 

this point with the switch open or closed depending on the material type. The material type has 

been detected at the position 1 (thus, reading IND at this point is meaningless as the work piece 

has been already moved away) and this will decide the switch signal. By the requirement, the metal 

work piece (IND=TRUE) will be moved to conveyor 2 (S=TRUE), and the plastic one 

(IND=FALSE) will be moved to the storage at the end (S=FALSE). Therefore, the relationship 

between the IND and S based on the effect of IND can be described simply (Figure 14 – d, #4). 

For a tweaked example, if the separation storage is swapped, it would have been described as 

inversion (i.e., �̅�). Though this output change is started to be affected when the work piece passes 

by position 2, the change should be effective for two seconds until the work piece is handed over 

to the target. Therefore, the LS2 value should also have a triggering symbol as the condition of the 

output so that the output remains after the work piece is out of sight of LS2.  

After the separation is completed, the conveyor should stop and the switch should also be open (to 

the default state) as long as no work piece appears (Figure 14 – e). In fact, this condition and the 

behavior are same as the initial state. So the function block could be said that it comes back to the 

initial state, which is #1. In addition to this, it could be easily expected that further execution would 

follow the behavior shown so far. Therefore, the repetition indicator is inserted with its duration 

condition omitted, which means it repeats infinitely. 

Conclusively, the formal specification of the conveyor separation module is prepared (Figure 14 

– f). Based on this, one might generate possible test scenarios in the case of testing. This could 

also be inserted into the model checker together with the IEC 61131-3 code for formal verification. 

Later on, another application engineer would need to know the behavior of this separation block; 

(s)he would read this specification and then figure out the behavior by seeing the relationship 
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between the signals and state changes together with the conditions for that. Though the shown 

example was assumed for GTTs to be used by application engineer, module developers also could 

do similar to document the formal specification of the target module for the validation activities 

and to keep the description for the others or further uses (cf. R-E6). 

5.4. Extension of the developed approach 

Software specification is an essential entity in the formal verification context, and this forward 

direction verification has been the main focus so far to explore the possible formal specification 

language which is accessible to the automation engineers (forward validation, Figure 15 – F). 

Extending the scope, further utilizations of the developed formal specification technique are pre-

sented in this section to support better software quality. After the verification, its result includes 

counterexample information with regards to the corresponding specification in case of proof fail-

ure. The counterexample is a very important source to inform the developer, in which execution 

trace the specification is violated; and it is, thus, beneficial to present the counterexample to the 

developer in an intuitive way (forward, F, Section 5.4.1). During operation, or even during com-

missioning, developed systems face changes to fix some unresolved bugs or to cope with the re-

quirement change, and there has to be validated (backward, B1, Section 5.4.2). Also, expected 

faults and failures could be captured during operation and prevented during the implementation; 

however, unexpected and unintended behavior should also be captured and handled correctly by 

the run-time validation or monitoring (backward, B2, section 5.4.3).  

 

Figure 15: Two-way quality assurance process – forward (F) and backward (B1 and B2) 
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5.4.1. Debugging through the counterexample presented as related to GTT(F) 

The counterexample provided from the model checker is a good 

source for developers since such a counterexample consisting of 

relevant variable traces exhibits a particular execution where the 

proof failure, meaning the execution of the implemented code 

does not satisfy specification. In other words, the counterexample 

represents the execution traces up to the violation point, and the users can follow the input/output 

traces step by step with the program code. As the focus during the validation (through the verifi-

cation here) of the developer is put to assure the conformance of the implemented code to the 

specification, any violation is what to be resolved right away (cf. R-E3). The variable value track-

ing with regards to the specification could also be manually; however, it is a tedious and vulnerable 

(to make mistakes by hand) task when the signal trace is long or many variables are involved in 

the trace.  

Graphical representation of the counterexample 

The variable values could be presented in a timing diagram also to present the sequences of the 

concrete values with each variable has its own lane to present the value sequences presented hor-

izontally with the unit of the cycle. For this graphical representation, some additional concepts 

could be added to improve the effectiveness. First, the last few timing cycles before the violation 

occurs are to be shown with hiding all the earlier values. This allows the developers to focus on 

the last few value or state changes (Figure 16 – i). At the same time, the visible variables are also 

to be contracted since typically many variables are involved; but the violated variables are only to 

be visualized (Figure 16 – ii).  

 

Figure 16: Counterexample representation (i) timing contracting/expanding, and (ii) variable contract-

ing/expanding 
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Connecting traces to the GTT 

The counterexample is a sequence of concrete execution values resulted from the code execution 

regarding all relevant variables. Therefore, it is an instance of the GTT with all concrete values, 

and all durations and repetitions unfolded. This means again, each tuple of variable values in the 

counterexample are corresponded to a specific row of the GTT in order. Therefore, presenting the 

corresponding GTT rows for the value tuples of counterexample helps developers to observe the 

changes of the value and state in the counterexample more effectively.  

One exemplary way of putting the GTT besides the counterexample representation with displaying 

the connection between them is shown in Figure 17. Basically, all the counterexample value tuples 

correspond to a specific row of the GTT from the trace until the violation conforms to the GTT. 

On the cycle where the violation occurs, the violated variable value within the GTT is highlighted 

to inform the developer the direct violation point graphically, together with the entire row. In this 

way, the developer can intuitively recognize which row of the GTT is violated (from GTT high-

lighting) with which value (from counterexample). 

 

Figure 17: Connecting the counterexample to the GTT 
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especially in the case of implementation of changes (cf. R-E5). This part of the approach was 

preliminarily published in [CWUB18b]. 

Software consists of state changes and these state transitions are motivated by the input or timing 

condition. Following the control flow within the software assuming conditions, a program run 

could be extracted and the assumed conditions as well as the extracted program part could be 

represented as a partial specification of the software. This is especially useful for the automation 

software change that is small. In the small change case, a specific program run is supposed to be 

affected and this fits very well with the characteristics of GTTs as they target to depict a specific 

program run.  

SFC is one of the graphical IEC 61131-3 languages. It is used to describe the control flow structure 

of the system in a sequential nature. SFC consists of three main elements: steps, transitions, and 

actions. Steps are the unit of the sequence controls. Transitions indicate turning over the control 

from one step to another step decided by the transition guard. Actions are the events included in 

the step and executed while the step is active. Each SFC step execution consists of the execution 

of the actions, which could be regarded as an output state. In other words, if a program control is 

located in a step within SFC program, this means that the actions within the step is repeatedly 

executed un the exit condition is satisfied.  

Converting from SFC into GTT 

SFC software is implemented following the control sequence, which is also the nature of GTT. 

Thus, this can be systematically converted into GTT form by mapping its SFC elements into 

GTTs’. A step with actions is converted into two rows (for non-timed related actions: N, S, R, P 

and P0) or three rows (for time-related actions: L, D and DS) in the Table 6.  

Table 6: SFC action qualifiers and its converting pattern into GTT 

(a) N  

 

Seq_Name Input Output Dur. 

 Step G1 TRUE Tc 

 Step(w) !G2  [0,*] 

 Next step G2 FALSE Tc 
 

(e) P0  

 

Seq_Name Input Output Duration 

 Step G1 FALSE Tc 

 Step(w) !G2 FALSE [0,*] 

 Next step G2 TRUE Tc 
 

(b) S  

 

 Step G1 TRUE Tc 

 Step(w) !G2  [0,*] 

 Next step G2  Tc 
 

(f) LT#Tx  

 

 Step G1 TRUE Tc 

 Step(t) !G2 TRUE [0,Tx-Tc] 

 Step(w) !G2 FALSE [0,*] 

 Next step G2 - Tc 
 

(c) R  

 

 Step G1 FALSE Tc 

 Step(w) !G2  [0,*] 

 Next step G2 - Tc 
 

(g) DT#Tx  

 

 Step G1 FALSE Tc 

 Step(t) !G2 FALSE 0,Tx-Tc 

 Step(w) !G2 TRUE [0,*] 

 Next step G2 FALSE Tc 
 

(d) P  

 

 Step G1 TRUE Tc 

 Step(w) !G2 FALSE [0,*] 

 Next step G2 - Tc 
 

(h) DST#Tx  

 

 Step G1 FALSE Tc 

 Step(t) !G2 FALSE 0,Tx-Tc 

 Step(w) !G2 TRUE [Tc,*] 

 Next step G2 - Tc 
 

(w): waiting, (t): timing constraint, !: negation, Tc: cycle time, Tx: timing constraint  
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First, entry transition guard in SFC is regarded as the input constraint of the first row with one 

cycle time (Tc). This row represents the activation of the step. On activation of the step, the actions 

are executed and, therefore, the effect of the actions should be observable in the output columns 

depending on the action types. For example, execution of N, S, P, P0 and L will set the variable 

TRUE and execution of R, D, and DS will set the variable FALSE. This step activation also exe-

cutes time-related actions. This row appears one cycle duration as an activation process.  

The next row is added as a “waiting” row (represented as “(w)”). This indicates the condition to 

stay until the exit guard is satisfied. Thus, the input condition of this row is the negation of the exit 

transition guard. This lets the exit transition occur as soon as the exit transition condition is satis-

fied. The duration of this row differs depending on the qualifier types. For non-time related actions, 

i.e., N, S, R, P, and P0, this row can be repeated zero or multiple times, i.e., [0,*], until the exit 

transition guard is satisfied. Output values depend on the action type (cf. Table 6 – a-e). 

For time related actions, it is trickier because they includes time limit or time delay in their exe-

cution. The timing constraints of limit or delay is represented additional row (represented as “(t)”) 

before the waiting row. In other words, it requires a row to indicate the behavior before the spec-

ified time, Tx, elapses. For L type action, it retains the value to be set up to time limit Tx, but step 

transition has higher priority. Thus, the timing value in the duration column is to be [0,Tx‒Tc]. For 

delaying actions (i.e., D and DS), this is similar: the value should be set after the time delay Tx. 

One difference is that the step activated less than Tx  is not allowed to avoid the risky case of step 

deactivation with unexpired delay as warned in [JoTi10]. This forces to have Tx‒Tc in the duration 

column. These time-related actions also have a waiting row. Obviously, the value would be reset 

for L or set for D, DS. One remark is that this row should be executed at least one cycle, i.e.,  

[Tc, *], for D and DS cases to set the value after the delay while L type action does not require 

mandatory execution of this row, i.e., [0, *] (cf. Table 6 – f-h).  

Additionally, a sequence name column is added to represent the step on the original GTT. One 

last row in the conversion patterns in Table 6 (whose sequence name is “Next step”) will be filled 

with the successor SFC step information. The last rows in each table (Italic font) is what should 

appear unless another action is defined on that variable in the following step. 

For the initial step of SFC, which is a special case of step with no transition into the step, just one 

row is required in the form of S2 since there is no entry transition condition. For the selective 

divergences, branch designation is required since GTT has a consecutiveness characteristic. There-

fore, the user needs to specify the intended sequence for the conversion.  
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Multiple action blocks on one SFC step can be handled. Since variables are allocated in the col-

umns in GTT, non-time related actions can be converted independently. Regarding multiple time-

related actions in a step, the standard [IEC09] does not allow more than one time-related action 

block within a step.  

Workflow of change validation for verification using generated specification base 

If the formal specification can be achieved automatically, formal verification will be more facili-

tated for aPS quality assurance. When a system is evolved, a specification for the changed require-

ment should be prepared for verification. This would be done by a module developer or a tester. 

The control software is modified to implement changes of the software behavior to come up with 

the new requirement. The evolution of aPS supported by verification is suggested in [UUWK16]. 

Its third phase, i.e., delta verification, can be facilitated by the automated GTT generation.  

Regarding the modification of the aPS system, a control code is often reused and copying, pasting, 

and modifying is widely practiced in the automation control software development [KaFV04]. 

Like the reuse of the control code, the specification of the new system can also be based on the 

preexisting one if it is available. For the modification of the control software, the module developer 

generates the new version of the software with implementing the new requirement based on the 

previous version of the software (Figure 18 – i). This is done by modifying the relevant part, in 

which the behavior is supposed to be changed so the developer cares. For this part, partial formal 

model of the relevant part of the previous software version is generated by automatic conversion 

with a user interaction (Figure 18 – ii). This generated model is provided to the application devel-

oper (or tester if tasks are separated.) And then, the application developer revises the generated 

model of the user-guided system part to include a new requirement (Figure 18 – iii). The revised 

specification is regarded as a delta description. The three necessary artifacts, i.e., the previous 

version, the new version of the software and the delta description, are input to the verification 

process (Figure 18 – iv) for verification-supported evolution of aPS. 

 
Figure 18: Overview of the change verification procedure achieving change specification base on the ex-

isting code [CWUB18b] 

ii. Automated partial 

model generation

Changed behavior

iv. Verification

T 0 0 F F 0

F 0 1 T F 0

T 1 2 T F 1

F 1 3 T T 2

Input Output

i. Revise the code

Yes
No

T 0 0 F F 0

F 0 1 T F 0

T 1 2,a T F a

F 1 3 T T 2

Input Output

2,a T a

iii. Enter Delta

GTT

Deployment

(rev)



62 A Concept of the Table-Based Formal Specification Language For Reactive System Software 

 

 

5.4.3. Obtaining monitors by the transformation of the specification into IEC 

61131-3 function block (B2) 

For the identification of both error situations during runtime and 

unexpected behavior of the technical process or the hardware not 

covered by the specification, monitoring functions are commonly 

used. Possible causes for erroneous states of these parts of the 

system are, for example, wear on the hardware and manipulation 

of the technical process or the aPS. To avoid malfunctions or harm to personnel, system errors or 

faults need to be identified as soon as possible to allow proper fault handling or shut down into a 

safe state (cf. R-E4). This section of the approach includes the part preliminarily published in 

[CUVW17]. 

Monitoring functions are often related to a specific piece of hardware and are directly connected 

to functions that abstract the interface to that component (driver functions). Information about the 

hardware behavior is tapped from the inputs and outputs of the drivers. In case of undesired hard-

ware behavior, warnings could be given to the driver itself and the rest of the software system. It 

is of utmost importance that the monitoring functions work as intended and detect all errors and 

unknown states of the system to allow the system to give appropriate warnings, handle these errors 

or bring the system into a safe state by performing an emergency stop to prevent further damage. 

Therefore, these functions need to be carefully designed and thoroughly tested and require con-

siderable amounts of resources to achieve this reliability. To improve the quality and the coverage 

of monitoring, a monitoring function can be generated from the specifications in GTT. The gen-

erated functions are used to assess the conformance of the system to its specification during 

runtime and detect situations that are unexpected, not covered by the specification and, thus, un-

tested and unverified. With these objectives, the monitoring functions observe the input and output 

behavior of a driver function, detecting (a) a divergence between specified and observed behavior 

of the software and (b) unexpected inputs not covered by the specification.  

 
Figure 19: Overview of monitoring function block generation and its usage [CUVW17] 
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A test table provides a detailed, step-wise definition of the expected behavior of the function block, 

thus it can be transformed into a code form, which checks the allowed behavior sequences. The 

monitoring function block generation and functioning schematic is illustrated in Figure 19. Given 

a function block and (one or more) GTTs as a specification, GTTs can be converted into a moni-

toring function block. At runtime, this monitoring function block accepts inputs and outputs of the 

function block as its input as well as an enabling signal for monitoring function block. Then, the 

system is considered not to perform as specified if the input satisfies the test tables but the output 

does not (Figure 19 – i). Monitoring also can detect unexpected (i.e., unspecified) situations. If the 

input does not satisfy any of the specifications, an alarm can be raised to let the system know that 

this situation is not covered (Figure 19 – ii) in the specification. In that case, to cover the unex-

pected situation, either one of the existing GTTs needs to be extended or an entirely new GTT 

could be added.  

Behavior of the Monitoring Function and its Generation 

Source code for the monitoring function block can be generated by following the table row-by-

row since the table describes the deterministic expected behavior of the block. The behavior of the 

monitoring function block can be represented in the form of a state diagram as displayed in Figure 

20. The main purpose of the monitoring function block is to detect violations of the specifications, 

identify unspecified situations, and raise warnings correspondingly. It monitors whether any of the 

inputs and outputs violates the GTT description. More specifically, if the input satisfies the table 

but the output does not, it turns on the warning, i.e., W, the monitor’s warning output value, is set 

to ‘WARNING’, which means that the output violates the table in the considered case. In other 

cases where the input violates the table, the warning value is set to ‘UNKNOWN’, which means 

it is not specified in the GTT. In case of warnings, this information can be used to review the 

original specification or the function block as a follow-up activity (cf. Figure 19 – i and ii). Surely, 

the monitoring function block is to be regenerated from the refined GTT in this case. The status 

of the function block after this kind of warning depends on the user’s choice. If it requires contin-

uing to run with the next input-output pair, it is to be reset, i.e., the state changes to the state of 

checking the first row. Otherwise, if it requires to hold on until the situation is sorted out by an 

operator or engineer, it is to be idling until the enable signal is injected again. The usage of these 

differentiated warning levels may be different from this and the form of the warning may also vary 

such as logging, displaying on HMI system, and so on. If no violation is detected, no warning is 

given, i.e., the monitoring output, W, is set to ‘OK’. 
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Figure 20: State diagram derived from the generalized test table with Sn relating to the currently active 

row in a generalized test table [CUVW17] 

The automaton starts as soon as an enabling signal for the monitoring function block is detected. 

Once the monitoring function block is enabled, it expects an input-output pair which satisfies the 

constraints of the first row of the table. The notation ‘In(k)’ and ‘On(k)’in Figure 20 refers to func-

tions which judge if the current input-output pair (indexed with k) satisfies all input constraints 

(In(k)) and output constraints (On(k)) on the n-th row of the GTT respectively. The allowed number 

of repetitions, which is described in the duration column, is also checked. The notations ‘dmin,n’ 

and ‘dmax,n’ in the figure refer to the minimum and maximum value of the allowed duration on the 

n-th row. ‘t’ represents the counter value which displays the number of repetitions of the satisfying 

input-output set. This is initialized when the state changes. If it satisfies these conditions, i.e., input, 

output, dmin,n, and dmax,n, the state transits to the next state with setting W to be ‘OK’ depending on 

the satisfied guards which are described on each edge in the figure. For performance reasons, the 

presented approach is limited to deterministic GTTs in which it can always be decided in which 

test step the system is. This means that it is not possible that input values satisfy both the input 

constraints of the current row (In(k)) and the ones of following row   (In+1(k)) if repetition is allowed. 

Also, if the row allows the infinite number of the repetition (timeout), comparisons of t with with 

dmax,n is regarded as true. Once any violation arises regarding inputs or outputs, a state transition 

is executed to the ‘UNKNOWN’ or ‘WARNING’ states.  

GTTs can be converted into code blocks with the behavior specified in Figure 20. An IEC 61131-

3 Structured Text (ST) code generator can be implemented and could be extended to other standard 

languages such as Sequential Function Charts (SFC) and Ladder Diagram (LD). First, the function 

signature is organized. As seen in Figure 19, the inputs and outputs of a function block are con-

nected to the inputs of the monitoring function block. Additionally, an input for the enabling signal 

and an output for the warning signal are generated. Right below these variable definitions, internal 
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stay within the same state depending on the comparison results of inputs and the values in the table. 

Figure 21 shows the basic structure of the code block.  

FUNCTION_BLOCK monitorFuncion 

VAR_INPUT 
  … (* I/O signals as well as the enabling signal *) 

END_VAR 
 

VAR_OUTPUT 
  … (* warning signal *) 

END_VAR 
 

VAR 
  … (* internal variables and reference values *) 

END_VAR 
IF EN = TRUE THEN 

CASE state OF 
  … 
END_CASE 

END_IF 
END_FUNCTION_BLOCK 

Figure 21: Structure of the code block for cases 1 and 2 in IEC 61131-3 (ST) 

Operations 

Multiple GTTs may be used to describe the behaviors of a block for different situations. They can 

be combined and converted into one consolidated monitoring function block. At code level, this 

can be implemented by cascading CASE statements for each GTT. Using multiple tables requires 

differentiated processing of the individual violation statuses corresponding to each table and these 

are described within each CASE statement. During runtime, tables that are satisfied with the se-

quence of the input-output pairs in order and return ‘OK’ can be regarded as valid. Once any 

violation of the inputs happens on a table (‘UNKNOWN’), as long as no GTT is valid, this table 

is ‘excluded’ to imply that the sequence is not aligned with this GTT description. Similarly, any 

violation of the output might raise a warning only when there is no other valid GTT. Once an 

activated (valid) table is scanned overall without any violation, it is excluded from monitoring. As 

long as one or more valid tables remain activated, the monitoring continues and the monitoring 

status remain as ‘OK’. All tables are re-included (exclusion is reverted) if the last activated table 

finishes its last row. The monitoring function block will generate an overall warning signal W from 

the individual evaluations: 

 OK: At least one of the GTTs is activated with the input-output pair and all the other GTTs 

are excluded. 

 WARNING: At least one of the GTTs is activated and they are only violated with output 

at some point. 

 UNKNOWN: None of the tables defines the currently given input, i.e., all tables are ex-

cluded. 
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By using GTTs, which provide expressive behavior specification means for reactive systems and 

are initially used for formal verification and validating a function block, the monitoring function 

block can be generated and helps to discover faults as well as unspecified situations during runtime. 

In addition, this runtime specification-based approach allows the function block to handle and 

return more practical values and the engineer to correct the function block to be aligned with spec-

ifications as well as to refine the specifications themselves. Moreover, this systematically gener-

ated code can improve the monitoring quality by avoiding human error during manual program-

ming and reusing existing specifications, notably generalized cases. This supports more efficient 

engineering since additional specifications for the monitoring block may not be required.  

5.5. Summary: table-driven two-way quality assurance process – 

embedding user-friendly formal specification in the engineering 

process 

 
Figure 22: Embedding two-way quality assurance process using GTTs in the control software engineer-

ing process 

Using the presented formal specification language, i.e., GTTs, the software behavior can be spec-

ified and this specification could be used for system software quality assurance activities. This 

table-based specification could be embedded over the aPS engineering lifecycle pursuing contin-

uous quality control from the development steps to the operation steps (Figure 22). Properties are 

specified and verified during the development until the required properties are satisfied by the 
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developed software. The integrated system composed of the validated modules is under the com-

missioning phase and on the operation. Even validated in the earlier phase, developed systems 

face changes during commissioning and operation to fix bugs or to cope with the changed require-

ment. After the change is implemented, the change intention has to be validated and side effect 

freeness has to be verified. For these activities, change specification is required and a method to 

obtain the specification base to be given to the automation engineer was shown. Additionally, 

besides expected faults and failures which could be planned to prevent during the implementation, 

unexpected and unintended behavior could also be captured and handled correctly by the run-time 

monitoring. Based on the formal specification of the target function block to be monitored, an 

approach to generate the monitoring function block systematically was presented. The generated 

monitoring block is capable of detecting errors generated during the manual programming with 

respect to the specification and of diagnosing the cases which have not been considered during the 

planning and implementation. Using this formal specification based two-way quality assurance 

process, the correctness of the control software as well as the specification could be improved in 

an efficient way. 

 





 

 

6. Implementation 

The presented approach involves and spans over the engineering processes from the requirement 

specification to the operation and also to the change management beyond the operation. Tools that 

support to apply the approach systematically would enable it to be embedded in the engineering 

process, accommodating effectiveness and efficiency. Module developers define the module level 

specification, assign it as an attribute of the module through the editable tool, and run the verifier 

(i.e., model checker) to check the conformance of the developed module to the defined specifica-

tion within the integrated development environment (IDE). Through the tool, consistent and uni-

fied information could be stored and exchanged between the automation engineers and the gener-

ated information regarding validation could be connected to the original sources of program code 

and the specification, compared to the manual documentation and process. (cf. R-E6, R-U1) 

This functionality as a prototypical tool has been implemented in the form of the add-on in 

CODESYS (cf. Section 4.4) through the extendable software developer toolkit (SDK) for add-ons. 

As the IDE supports a great number of devices worldwide independent from PLC manufacturers, 

the prototypical tool would be beneficial if it is compatible with this major IDE. The add-on im-

plementation presented in this chapter was done with a support of a professional programmer.  

In the formal verification point of view, the starting point of the activity chain is to generate the 

formal specification in a way that could be processed further programs systematically. On the 

other hand, the program code will be implemented by the developer. These are to be supported by 

the IDE for their generation, and are to be delivered to the backend verifier. GETETA [Weig19] is 

the backend tool to generate the automata for the GTT and the IEC 61131-3 code to call the model 

checker (nuXmv). Model checking results are retrieved by the GETETA and delivered to IDE and 

presented to the user. Figure 23 shows the overview of the toolchain with specifying the scope of 

this thesis. 

Following the introduced concept, the implementation consists of three parts: a) table editing part, 

b) calling the verifier transporting the verification target and the properties, and c) the result rep-

resentation. Each will be described in the following sections with respect to the implemented fea-

tures and its utility in the presented approach.  
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Figure 23: Prototypical toolchain of the formal verification using GTT (scope of the thesis is specified by 

the dashed line; the gray area is discussed in [Weig21]) 

6.1. Overview 

The tool, named table-based verification manager (TBV manager), is to be added within an exist-

ing CODESYS project as an add-on object. When the object is loaded, it shows the object plane 

consisting of three different parts (Figure 24). The whole code tree within the project is shown in 

the code directory view. There is a code plane to show the selected code from the code directory 

as the target for the verification. Corresponding GTTs are to be edited in the GTT editor plane to 

load and manipulate the properties in GTT. Once the code and the specification in GTT is ready, 

user could click the verify button to execute the verification by calling the backend model checker 

inducing the target code and the property. When the verification fails, it generates an additional 

window to represent a counterexample. The development of the tool was done in Microsoft Visual 

C# within the Microsoft .NET framework 4.8.  

 
Figure 24: Add-on overview 
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6.2. Generating and editing the generalized test tables 

The user selects the target code to verify from the code directory view. CODESYS projects can 

be accessed through the POUObject package, provided by CODESYS, to support further exten-

sion add-on development since the project is not directly accessed to get the software code as text 

(cf. [Code20c]). Using the package library, the software code is recognized as IEC 61131-3 code 

instance and retrieved as a text object.  

The table editor section (Figure 25 – a) shows the basic table structure of input and output at the 

beginning. This section was build up based on the DataGrid class provided by the Windows 

Presentation Foundation (WPF) subsystem and usable in .NET framework (cf. [Micr18]). The grid 

and controlling buttons consist of a separate window section for the GTT editor. As the user of the 

editor wants, each input and output of the POU is automatically extracted (from the target POU) 

and shown as possible options to be added as columns when Add Column menu is clicked so that 

the table contents are consistent with the defined variables. The variables are also accessed through 

the CODESYS project POU object and retrieved as done in the project tree. Depending on the 

type of variable (input or output), the selected variable column is generated either input section or 

output section (Figure 25 – b). The sequence could be added by selecting Add Row menu and 

selecting Add Group in case of grouping several sequences. For a specific row or group, the dura-

tion value is inserted in Time column to designate the allowed time information. The grouping 

aggregation symbol appears outside of the table on the right not to consume too much space for 

the duration section. Additionally, the Comment cell appears for each row for remarks of additional 

information or an important description regarding the row. Rows, columns, and the groups can be 

deleted with the corresponding buttons. Each cell value could be directly editable and then saved 

by clicking Save Table menu. GTT can also be loaded from a file by Load Table menu. This allows 

to reuse the existing properties as they are or after revising them. The loaded file is parsed follow-

ing the defined grammar (cf. [Weig19]) through the generated parser from ANTLR4 [Antl20]. 

  
 

(a) (b) 

Figure 25: Editing GTT – (a) GTT editor plane, and (b) guided variable selection 
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6.3. Connecting to the verifier 

Once the program code part is ready to be checked regarding its conformity to the given specifi-

cation in GTT, TBV manager object is to communicate with the external model checking by trans-

ferring the given code part and the properties. The ultimate model checker is nuXmv and this is 

called within GETETA [Weig19] which is in charge of the symbolic model generation of the code 

and the properties in GTT. To deliver the objects to be processed in GETETA (i.e., program code 

in IEC 61131-3 and the property in GTT) from TBV manager, the selected POU and the property 

is saved as a form of text file in a specific directory so that the GETETA can read it. Once the Verify 

button is clicked, the corresponding files are stored in the specific directory and GETETA is called 

in the command line. Executing GETETA is done through the System.Diagnostics.Process class to 

call it as if it is called in the command line interface. After it starts, it waits for the termination of 

the backend program (i.e., GETETA for here) execution.  

6.4. Verification result representation 

The verification result is either conformity proved, in case of the program code satisfies the given 

property specification, or failed, in case of any violation of the program code execution result (or 

some situation expected as execution results) to the property observed. 

In the case of conformed, the program code could be said as well-implemented as intended so it 

could be deployed if necessary. However, in the violation case, the program code part of the pro-

gram execution flow which causes the violation should be captured and revised. Since the model 

checker provides counterexamples, which is the execution traces up to the violation point, users 

can follow the input/output traces step by step along with the program code. As presented in Sec-

tion 5.4.1, the value tracking provides the chances of debugging. This could also be done manu-

ally; however, it is a tedious and vulnerable (to mistakes by hand) task when the signal trace is 

long, or many variables are involved in the trace. Therefore, an efficient way to represent the 

counterexample to support correcting the code is provided in this tool. In TBV manager, the log 

file generated by GeTeTa is read if it is proven as not conforming. From the log file, the execution 

traces of input and output values are extracted. This information extraction is also done by the 

parser, specifically created for GeTeTa output log file. The extracted trace information is presented 

in the timing diagram (Figure 26). For this timing diagram implementation, DataGrid was basi-

cally used with an appropriate presentation for the timing diagram (cf. grid in table representation 

in Section 6.2). Each variable has its own lane to present the value sequences which is presented 

horizontally with the unit of the cycle. Thus, each tuple of input and output values satisfies at least 

one table row in GTTs. From there on, the following sequences are also satisfying the following 
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rows in the GTT. This means that each sequence step can be mapped to the table and the log 

includes the information for each value set about on which sequence the model checker decides 

that the property is not satisfied by the execution. Therefore, it is implemented to allow select a 

specific set of sequence and then the corresponding table row is also highlighted. The end of the 

sequence would be the point of violation. Therefore, the user can backtrack the value sequences 

from the violation point if the origin of that violation has occurred in the previous cycle(s). 

 

Figure 26: Displaying counterexample in case of verification fail 





 

 

7. Evaluation of the approach 

The presented approach shall improve the efficiency of the quality control activities within the 

aPS control software engineering. This chapter is to present the evaluation of the proposed speci-

fication language, i.e., GTT, with respect to the requirements (cf. Table 7). Three types of evalu-

ation experiments are conducted and presented. First, its applicability and feasibility on the aPS 

system and its engineering activities is investigated using a community demonstrator in Section 

7.1, mainly focusing on the requirements regarding the characteristics of technical systems and 

Table 7: Requirements and the corresponding evaluation 

ID Brief description Section and type (a,e,i)* of evaluation 

R-T1 Presenting the relationship between input and output. 
7.1.1 (a – single component module), 

7.1.2 (a – multi-component module) 

R-T2 
Presenting the state changes including the conditions 

and timing constraints 

7.1.1 (a – single component module), 

7.1.2 (a – multi-component module) 

R-T3 Abstracted value range 
7.1.1 (a – single component module), 

7.1.2 (a – multi-component module) 

R-T4 Supporting discrete event processes 
7.1.1 (a – single component module), 

7.1.2 (a – multi-component module) 

R-T5 Supporting cycling execution representation.  
7.1.1 (a – single component module), 

7.1.2 (a – multi-component module) 

R-T6 Compatible to the software in IEC 61131-3  
7.1.1 (a – single component module), 

7.1.2 (a – multi-component module) 

R-E1 Formal specification language shall be developed. 
7.1.1-7.1.4 (a) 

7.3 (i – expert interview) 

R-E2 
The test cases shall be instantiated from the specifica-

tion. 

7.1.1 (a – single component module), 

7.1.2 (a – multi-component module) 

R-E3 Supporting verification based debugging  6 (Implementation) 

R-E4 Supporting monitoring block generation 7.1.4 (a – monitoring block generation) 

R-E5 Supporting change validations  7.1.3 (a – specification generation) 

R-E6 
Supporting automation engineers documentation and 

exchanging activities 

7.1.1-7.1.4 (a) 

7.3 (i – expert interview) 

R-U1 Tool supporting 6 (Implementation) 

R-U2 Understanding specifications 
7.2 (e – questionnaire), 

7.3 (i – expert interview) 

R-U3 Creating specifications 7.2 (e – questionnaire) 

R-U4 Learning specifications 7.2 (e – questionnaire) 

R-U5 Scalability of specifications 
7.2 (e – questionnaire), 

7.3 (i – expert interview) 

R-U6 Satisfaction with the specification approach 
7.2 (e – questionnaire), 

7.3 (i – expert interview) 
*a: application case presentation (demonstrator), e: empirical study, i: industry feedback 
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their engineering processes. Second, since the major motivation of the approach is to provide the 

user-friendly formal specification language, usability survey based on the user perception was 

conducted among the students from the mechanical engineering department, presented in Section 

7.2. Third, interviews with the experts from the industry have been executed and presented in 

Section 7.3 to justify the practical applicability.  

7.1. Feasibility analysis through application case studies 

In this section, the case studies provide the application of the GTT using community demonstrator 

(including its components) scenarios to illustrate the applicability and feasibility of formal speci-

fication in GTT. Considering the engineering process of the aPS control software, four different 

cases were selected to demonstrate the corresponding engineering activities. The use cases are 

selected considering different level of ISA-88 [IEC97], i.e., control module and equipment module. 

The first use case (UC1) is a function block to control a pneumatic cylinder as a single component 

module (or control module). During or after developing a module library function block (module 

developer), formal specification is to be existed to verify the behavior accordingly. The second 

use case (UC2) is a sorting module consisting of component modules (or equipment modules). 

This is assumed to be implemented by application engineers, composing existing library modules. 

The third use case (UC3) demonstrates how the presented approach can support the change vali-

 
Figure 27: Use cases mapped on the engineering processes 
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dation to infer the specification. While the current software is running, a change is to be imple-

mented due to the change request of the functionality of the existing (being already implemented) 

module part in UC2. The fourth use case (UC4) shows how monitoring a function block could be 

generated from the specification in GTT by the presented approach. Overall use cases will envision 

how the information exchange and transformation could be supported using and through the spec-

ification, created in the presented language.  

The demonstrator that is used to present along the following section is Pick & Place Unit (PPU) 

[VLFF14] and its extended version (xPPU) [VOBS18], a lab-size manufacturing plant demonstra-

tor to benchmark evolution scenarios for aPS with a recent extension of that demonstrator for its 

functionality and safety features (Figure 28). It has been established within the DFG priority pro-

gramme SPP 1593 in Germany as a common case study for evolution in plant and machine auto-

mation. Although the xPPU is quite simple, it realizes the basic functionalities representative in 

intralogistics systems as identified by Spindler et al. [SAVF17]. The xPPU consists of four com-

posite modules basically: a stack to load work pieces initially for the whole operation, a stamp to 

demonstrate manipulations conducted on the work pieces, a sorting module to store the work 

pieces according to its given mission, and a crane as a transporter to transfer work pieces between 

the other modules. A wide range of evolution scenarios have been defined and implemented for 

the (x)PPU with different motivations (e.g., changing requirements, fixing failures, and unantici-

pated situations on-site). 

 
Figure 28: Community demonstrator: extended Pick&Place Unit 

7.1.1. Behavior description of a single component – in the viewpoint of module 

developer (use case 1) 

In industrial use, pneumatic controls are common, especially for a fixed distance reciprocation of 

objects [BuVy17]. Pneumatic cylinders cause motion by extending and retracting their pistons 
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using pneumatic controls. Here, a single-acting cylinder (also known as a monostable cylinder) 

and its behavior description in GTT is introduced. 

A single-acting cylinder includes one pressure port, to control the extension, and often has a spring, 

to make the piston return to the base position using the elasticity (Figure 29). The piston position 

is indicated by binary sensors at each end (e.g., with limit switches or inductive sensors) to indicate 

fully extended or retracted. This component has been used within the xPPU in stack (to move out 

one work piece from the magazine), stamp (for stamping on the work piece), and sorting module 

(to separate a work piece from the conveyor to the storing ramps).  

                     
(a)                                                                          (b) 

Figure 29: Single acting cylinder: (a) extension and (b) retraction 

The module is to be developed as a library, to have a unified code for the efficiency of develop-

ment, maintenance and further updates (i.e., changes), implementing the extending and retracting 

behaviors with timing constraints of 500ms for extending and 200 ms for retracting. If it is not 

extended in 500 ms for the extending behavior, it should force to give the retracting signal for 200 

ms. If it is not retracted after that, it should give the alarm. If the cylinder is not retracted in 200 

ms for the retracting signal, it should give the alarm right away. 

The extending behavior is to be described in GTT (Figure 30). The extended and retracted position 

is represented with the input variable E and R, respectively. The extending signal and the alarm is 

represented with the output actuating variable Ext and Alarm. When it is to be extended (e.g., 

called through extend()), the output signal is to be activated and the piston shall reach the extended 

position within 500ms (Figure 30 – a, #1), retaining the extending signal onwards (Figure 30 – b, 

#1). In case of abnormal extending behavior (Figure 30 – b), which means that the piston is indi-

cated as “not extended” (i.e., E = False) for 500 ms (Figure 30 – b, #1), the cylinder is forced to 

retract for 200 ms (Figure 30 – b, #2). After that, depending on the piston position, a value for the 

variable Alarm is decided: Alarm to be true if it is still not retracted (i.e., E = False), otherwise 

false (Figure 30 – b, #3). In a similar way, retracting behavior could also be represented in GTT 

(Figure 30 – c). The abnormal retracting behavior could be described as simpler than faulty ex-

tending (Fig 7-1d). When the piston is indicated as “not retracted” for 200 ms even after the re-

tracting signaling (Figure 30 – d, #1), it just have to alarm (Figure 30 – d, #2).  

Pressure port Ventilation 

Piston rod
Spring Spring

Ventilation 
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(c) (d) 

Figure 30: Single acting cylinder behavior description considering the timing constraint and correspond-

ing alarm signal: (a) normal extension behavior within 500 ms, (b) abnormal extension be-

havior with the piston not reaching the expended position within 500 ms, (c) normal retrac-

tion behavior within 200 ms, and (d) abnormal retraction behavior with the piston not reach-

ing the retracted position within 200 ms  

Feasibility of using GTT for the specification of single component modules has been proven. As 

it is assumed that the module developers are skilled programmers, the usability is evaluated 

through the empirical (in Section 7.2) study and through expert interview (cf. Section 7.3). It is 

expected that all the modules would be specified in the future with this stepwise manner to achieve 

formally specified module over the time.  

7.1.2. Behavior description of a multi-component module – in the viewpoint of ap-

plication engineer (use case 2) 

The target scenario in this case study is Sc10d of xPPU scenarios, which was developed to demon-

strate rather small step evolution compared to the major scenario change. The target module of the 

scenario consists of pusher and conveyer modules and the scenario is to evolve to Sc11 in the next 

section (Section 7.1.3) to demonstrate a small change case.  

In Sc10d, the main focus is put on the sorting module (Figure 31). Work pieces are transferred to 

the sorting module at the end of the processes to be stored in the intended storage ramps depending 

on types. Once the work piece arrives at the initial point of the conveyor, conveyor starts to move. 

When the work piece is detected in the optical sensor area, it stops shortly to detect the work piece 

type. And then it continues to move for a specific time, depending on the target ramp: Ramp1 or 

Ramp2. If the detected type is black plastic, it will be pushed out by Pusher1. Other work piece 

types (i.e., white plastic and metal) are assorted in Ramp2 pushed out by Pusher2. 
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Figure 31: Sorting module: Black WPs are sorted in Ramp1 and the others in Ramp2 

This sorting module is multi-component module and each subcomponent have its own functional 

implementation most likely as a library function, e.g., pneumatic cylinder module as seen in the 

previous use case. Thus, the application engineer has to understand each module’s functionality 

to utilize them. In this use case, the application engineer is supposed to build up this sorting mod-

ule. After deciding to put a cylinder component, he/she will have to know how the selected library 

function block behaves exactly, which can be done by understanding the specification generated 

by a module developer. Being aware of the module behavior, the application engineer organizes 

and rearranges components with some glue code. Also, the behavior of this module is also sup-

posed to be described by this application engineers both to apply formal verification and to docu-

ment the implemented module (cf. R-E6). An excerpt of the Pusher2 behavior in GTT is illustrated 

in Figure 32. If the target is set to Ramp2 (#12), Pusher2 will be activated (#17).  

Seq. 

Input Output 
Dur. 
(ms) 

Remarks 
WPsorted 

Motor 
Stopped 

R1 R2 P2E P2R 
Motor. 
Stop 

P2.Ex WPsort 

(omitted) 

11 – – !(R1R2) !(R1R2) – – F F F [0,*] OnConv(w) 

12 – – F T – – F F F 10 OffConv2 

13 – – – – – – F F F 1730 OffConv2(t) 

14 – F – – – – T F F [10,*] OffConv2(w) 

15 – T – – – – T T F 10 ExtP2 

16 – – – – F – T T F [0,*] ExtP2(w) 

17 – – – – T – T F F 10 RetP2 

18 – – – – – F T F F [0,*] RetP2(w) 

19 – T – – – T T F T 10 SetWPsort 

20 F – – – – – T F – [0,*] SetWPsort(w) 

*R1: “WP sorting in R1”, R2: “WPsorting in R2”, P2E: “Pusher2 is extended”,  

P2R: “Pusher2 is retracted”, P2.Ex: “Extend the Puser2” 

Figure 32: Excerpt of GTT for the sorting module behavior 

As seen, the GTT is applicable to describe multi-component modules. Whether it is easy or effi-

cient to apply by application engineers will be discussed in Section 7.2. It is expected that espe-

cially for very critical part of such applications (e.g., ones in the market segment of medical related 

systems) or part of applications that will most probably frequently used, application engineers 

would be willing to document it as in GTTs and also even it should be encouraged cost-wise; and, 

consequently, the percentage of specified applications on this level will increase.  
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7.1.3. Obtaining changed specification based on the preliminary specification 

generated (use case 3) 

In this use case, it is assumed that a change request arrives on the existing implementation of 

Sc10d (introduced in Section 7.1.2). Instead of the behavior of sorting out the black work pieces 

only, it is additionally required to sort out white ones to be Ramp2 and the metal ones to be addi-

tional storage, Ramp 3, at the end of the conveyor, meaning that black, white, and metal are all 

separated (Figure 33). In this scenario, an additional inductive sensor is to be attached to distin-

guish metal WP. In the control software, the assorting function needs to be revised to make the 

metal WPs gathered in Ramp3.  

 
Figure 33: Sorting module (evolved from Figure 33: Black WPs are sorted in Ramp1 and the others in 

Ramp2 [CWUB18b]  

When the application engineer is assigned such a task, he/she would revise the control code as 

requested, specifically regarding the control of Pusher2 – not to push all the work pieces. After 

that, he is supposed to validate the behavior and to document the description (cf. R-E5, R-E6). 

When it is planned to be verified using formal verification to save the testing time with already 

running hardware, its formal specification is necessary (e.g., in GTT), which would be more high-

lighted for its necessity by regulations in case of safety-related industry sectors, e.g., medical de-

vices. If there has been already existing a formal specification regarding the behavior of Pusher2, 

it could be used by the engineer to obtain the new behavior as a base. If not, however, it has to be 

created manually from scratch. In this case, the preliminary specification can be generated by 

converting existing code using the approach introduced in Section 5.4.1. (One remark here that 

the code implementation activities and specification generation activities are to be independent 

from each other so that the specification does not reflect what is already implemented but what is 

intended to be implemented. Recall Figure 18: code revision and partial model generation are 

separately done and then used in the verification).  

The language used for this implementation is assumed as IEC 61131-3 SFC and the earlier code 

is implemented with two different cases (Figure 34): target ramp is Ramp1 (R1=True) or target 

ramp is Ramp2 (R2 = True). Since the change is applied to the Pusher2 behavior, the interest of 
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the engineer would lie in the relevant part of the code (dashed line in Figure 34) and this part needs 

to be revised by the developer. For the changed behavior description, the base of it could be ob-

tained in the formal language (here in GTT) by converted into GTT and this will be in the form as 

seen in Figure 32. 

 

Figure 34: Part of SFC for sorting behavior of conveyor (Sc10d) with a specific behavior branch high-

lighted with a dashed line [CWUB18b] 

After obtaining the GTT base to describe the changed behavior, the engineer would revise the 

given table to reflect the changed behavior regarding the following points (cf. Figure 35): 

 A new input variable, e.g., “R3”, is added equivalently to the “R1” and “R2” which indi-

cates in which ramp the WP needs to be sorted. 

 The exit transition condition of the OnConv is revised and also added for the new variable 

to consider R3. (Seq#11) 

 The conditions on which the new functionality is executed are described, e.g., “if R3 is 

true” in this scenario. (Seq#12) 

 Since the conveyor should transport the WP to the Ramp3, the time duration of the con-

veyor motor execution must be revised to be prolonged properly, e.g., 2990ms. (Seq#13) 

 The pushers are nothing to do any more with metal WPs, or Ramp3, the rows related to 

the pushers are removed from the GTT. (Seq#15-18) 

 The condition to decide if the WP is sorted needs to be revised since pusher retraction 

does not mean the WP is sorted any more, but stopping of the conveyor means instead. 

(Seq#19) 
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Figure 35: The GTT for the revised functionality achieved by editing the automatically generated one. 

Revised part is highlighted in dark gray [CWUB18b] 

It has been shown that specification base in GTT could be generated from IEC 61131-3 SFC soft-

ware code. The automation engineers, especially for the ones who handles changes and are re-

sponsible for validation of the change (many times start-up technicians during the commissioning 

phase, sometimes application engineers for adaptation during the application generation, and also 

module developers to generate variants or versions of the library function), benefit from the base 

specification generation out of the existing software code by not preparing the specification from 

scratch. The obtained GTT will be used as a formal specification to verify the intended revision of 

the code, as well as for the documentation purpose. The feedback from the industry experts re-

garding the usefulness of the specification generation will be discussed in Section 7.3. 

7.1.4. Monitoring of the target function block – automated generation of the mon-

itoring block (use case 4) 

In this use case, it is assumed that the cylinder behavior is supposed to be monitored. Since the 

one introduced in Section 7.1.1 includes the monitoring function within its module implementation 

(thus, additional monitoring block is not required for it), a cylinder without monitoring function-

ality is introduced here (cf. R-E4). Furthermore, it is an extended version of the previous cylinder, 

i.e., a double-acting cylinder, to add some more complexity. 

A double-acting cylinder (also known as a bistable cylinder) extends and retracts using hydraulic 

power having two pressure valves, one on each end (Figure 36), to provide multiple stable posi-

tions controlled. This component has been used within the xPPU in the stamp for the work piece 

Seq. 

Input Output 
Dur. 
(ms) 

Remarks WP 
sorted 

Motor 
Stopped 

R1 R2 R3 
Motor. 
Stop 

P2.Ex WPsort 

(omitted) 

11 - - !(R1R2R3) !(R1R2R3) !(R1R2R3) F   [0,*] OnConv(w) 

12   F F T F   10 OffConv2 

13   - - - F   2990 OffConv2(t) 

14  F    T   [10,*] OffConv2(w) 
(Pusher related behavior is removed) 

15  T      T 10 SetWPsort 

16 F -   -    [0,*] SetWPsort(w) 

*P2E, P2R omitted 

    
(a)                                                                                    (b) 

Figure 36: Double acting cylinder: (a) extension and (b) retraction 

Piston rod

Pressure/airflow port 

Piston rod

Pressure/airflow port 
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slider as it has two active positions (retracted: under the stamp, extended: under the crane gripper). 

In this example, piston position is indicated by an analog sensor for more precise position detec-

tion.  

The behavior of the module is similar to the single-acting cylinder, i.e., extending and retracting. 

The extension behavior is described here: when the extend function (extend()) is called with the 

piston positioned at the base position, the piston should leave within 10 ms and then arrive Position 

2 within 500 ms. Specifically, different behavior is considered: ‘extending after resetting’. When 

the extension function is called with the piston positioned not at the base position but in between 

the base position and working position, the piston should be fully retracted and the extension be-

haviour should start. The behavior description in GTT corresponding to this resetting added ex-

tension is given in Figure 37 – a (#1-3) is the resetting behavior and #4-6 is the extension behavior. 

Retracting is done simply: once to be retracted, valve at the working position is open to make the 

piston move to the based position (Figure 37 – b). During this behavior description in GTT, a 

typical IEC 61131-3 library function SEL(x,a,b) is used, meaning “If x is true, then a. Otherwise, 

b.” 

From the specified GTTs, a monitoring function block can be generated for this cylinder module 

to indicate whether it is working as intended, incorrect (WARNING), or unexpected (UN-

KNOWN) using the approach introduced in Section 5.4.3. Besides the optional monitoring ena-

bling signal, the input set of the monitoring function bock includes all the input and output varia-

bles of the function block, which are TarInAPos, TarInExtend, TarOutVal1, TarOutVal2, 

TarOutPos (Figure 38).  

Seq. 
Input Output 

Duration 
A_Pos Extend Val1 Val2 Pos 

1 [3,97] TRUE FALSE FALSE NONE 10ms 

2 <=A_Pos[-1],>=3 TRUE FALSE TRUE NONE <= 500ms 

3 <3 TRUE FALSE FALSE POS1 10ms 

4 >=A_Pos[-1], <3 TRUE TRUE FALSE POS1 <=10ms 

5 >=A_Pos[-1], >=3, <=97 TRUE TRUE FALSE NONE <=490 ms 

6 >97 TRUE FALSE FALSE POS2 - 
 

(a) 

Seq. 
Input Output 

Duration 
A_Pos Extend Val1 Val2 Pos 

1 - FALSE FALSE FALSE =SEL(A_Pos<3, POS1, SEL(A_Pos>97,POS2, NONE)) 10ms 

2 >=A[-1], >=3 FALSE FALSE TRUE =SEL(A_Pos<3, POS1, SEL(A_Pos>97,POS2, NONE)) <=490 ms 

3 <3 FALSE FALSE FALSE POS1 - 
 

(b) 

Figure 37: Extension behavior description with the resetting function (a) extending after resetting and 

(b) retracting 
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Figure 38: A cylinder driver function block and its monitoring function block [CUVW17] (reproduced) 

Note that the generated monitoring function block (Figure 39) is assumed to be re-enabled after a 

warning or unknown signal is resolved, meaning the monitoring would be active only when it is 

just enabled or indication signals (i.e., warning and unknown) is not active (line 23). When it is 

just re-enabled, all the GTT checking information as well as indication signals are initialized (line 

27-30). After that, each GTT is checked regarding the corresponding input, output, and its dura-

tion; duration is controlled by timers. If the expected input is entered, the output is checked and 

the warning indication is decided (line 32-66). As two GTTs exist, each GTT is checked and then 

it is decided whether the state corresponds to the GTT, and on which row if so. Any violation 

(single or multiple) will raise a warning signal (variable W). If the input is not as expected, the 

unknown signal will be activated since the case is not handled within the GTT; if all GTTs are not 

handling such input/output state, the monitoring bloc raises an unknown signal (variable UNK, cf. 

line 68-70). 

Feasibility of monitoring block generation has been shown that the code of the monitoring block 

could be systematically generated also for multiple GTTs. Still, the performance for scalability of 

the monitoring block depending on the number of GTTs and the number of concurrently active 

rows over GTTs (with corresponding timers), should be further researched as well as monitoring 

the non-deterministic states (rows).  

  

FB_CylDriver

Extend:Bool

A.Pos

Val1

Val2

Pos

Position 2
(97..100)

Pneumatic
valve

Analog position sensor

Piston

FB_CylMonitor
Monitoring

enable

Position 1
(0..2)

TarInAPos

TarInExtend

TarOutVal1

TarOutVal2

TarOutPos
Warning

Unknown
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00: 

01: 

02: 

03: 

04: 

05: 

06: 

07: 

08: 

09: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

TYPE E_Warn: (OK,WARNING,UNKNOWN); END_TYPE 

FUNCTION_BLOCK diagFunction 

VAR_INPUT 

 TarInAPos : USINT; TarInExtend: BOOL;  

 TarOutVal1: BOOL; TarOutVal2 : BOOL; TarOutPOS: BOOL; EN : BOOL; 

END_VAR 

VAR_OUTPUT 

 W : BOOL;  

 UNK : BOOL;  

END_VAR 

VAR 

 state1: INT := -1; counter1: INT := 0; a1: INT; 

 state2: INT := -1; counter2: INT := 0; a2: INT; 

 OldEN: BOOL; 

 ActRow: ARRAY [1..2] OF INT:= [2(0)];//which row is targeted to check for each GTT 

 CntRow: ARRAY [1..2] OF INT:= [2(0)];//which row is targeted to check for each GTT 

 TimerRow: ARRAY [1..2] OF Timer;//which row is targeted to check for each GTT 

 t : TON; 

END_VAR 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

31: 

32: 

33: 

34: 

35: 

36: 

37: 

38: 

39: 

40: 

41: 

42: 

43: 

44: 

45: 

46: 

47: 

48: 

49: 

50: 

51: 

52: 

53: 

54: 

55: 

56: 

57: 

58: 

59: 

60: 

61: 

62: 

63: 

64: 

65: 

66: 

67: 

68: 

69: 

70: 

71: 

72: 

73: 

/*It has been enabled but W = TRUE from the previous cycle*/ 

 

IF EN = TRUE THEN 

 IF (W = TRUE OR UNK = TRUE )AND OldEN = TRUE THEN  

  /*warning to be handled with disabling monitoring and to be enabled again*/ 

 ELSE 

  IF OldEN = FALSE THEN /*initialization necessary*/ 

   W = FALSE; 

   UNK = FALSE; 

   ActRow[1] = 1;  

   ActRow[2] = 1; 

  END_IF 

 /*check GTT1*/ 

  CASE ActRow[1] OF 

  1: /*Seq1 of the Extension behavior GTT*/ 

   IF (TarInAPos>=3) AND (TarInAPos<=97) AND (TarInExtend=TRUE) OR NOT t.Q THEN 

    /*input condition of Seq1 in GTT1*/ 

  t(IN:=TRUE, PT:=T#10MS) 

    IF NOT (TarOutVal1 = FALSE AND TarOutVal2 = FALSE AND TarOutPOS = NONE) THEN 

     ActRow[1]=0; 

     W = TRUE; 

    END_IF 

   ELSIF t.Q THEN 

    ActRow[1]=2; 

   ELSE 

    UNK = TRUE; 

   END_IF 

  ... 

  END_CASE 

 /*check GTT2*/ 

  CASE ActRow[2] OF 

  1:   

   IF TRUE OR NOT t.Q THEN 

    /*input condition of Seq1 in GTT2*/ 

  t(IN:=TRUE, PT:=T#10MS) 

    IF NOT (TarOutVal1 = FALSE AND TarOutVal2 = FALSE AND  

      SEL(TarInAPos<3, POS1, SEL(TarInAPos>97,POS2, NONE)) THEN 

     ActRow[1]=0; 

     W = TRUE; 

    END_IF 

   ELSIF t.Q THEN 

    ActRow[2]=2; 

   ELSE 

    UNK = TRUE; 

   END_IF 

  ... 

  END_CASE 

 END_IF 

 IF UNK = TRUE AND ( ActRow[1] + ActRow[2] > 0 ) THEN /* any GTT is active */ 

  UNK = FALSE; 

 END_IF 

END_IF 

OldEN = EN; 

END_FUNCTION_BLOCK 

Figure 39: An excerpt of the automatically generated monitoring block for the cylinder behaviors in 

Figure 38 



Evaluation of the approach 87 

 

 

 

7.2. Empirical study of the usability evaluation 

To observe detailed and more objective behavior aspects, empirical study was executed as a user 

evaluation together with the industry expert interviews (cf. Section 7.3). The user evaluation ex-

periments were conducted to understand effectiveness and user satisfaction. Effectiveness means 

the possibility of accomplishing a successful task and that a user should be able to comprehend 

and create artifacts in the (modeling) language to an acceptable degree as summarized by Schalles 

et al. in [Scha13] in this regard. User satisfaction means the degree to which user needs are satis-

fied in the usage [ISO11] (it is defined similarly in different works of literature such as [Beva95, 

Scha13]). Over the 2019 summer semester and the 2019-2020 winter semester, three experiments 

were conducted with master and bachelor students of the mechanical engineering department at 

the Technical University of Munich. These students were regarded as the potential users of GTTs 

because they are future module developers and also application engineers [Voge14]. They partic-

ipated in the training, exercises, and a user perception questionnaire survey over three experiments 

for the analysis of: (i) how much effectiveness is achieved compared to conventional language and 

(ii) how much satisfaction the users perceive during usage of the language. Additionally, it was 

also planned to assess feedback to elaborate the developed language coming up with users’ per-

spectives. The experiments were conducted in a paper-based manner since the tool was still in 

development and the details of the experiment are presented in the following sections regarding 

hypotheses (7.2.1), experiment plans (7.2.2) and results (7.2.3 and 7.2.4). This evaluation was 

preliminarily published in [CVWU21]. 

7.2.1. Experimental hypotheses 

Considering major usage activities of the specification language, as applied in [ZeVe07] and de-

scribed in [Lude89], effectiveness could be defined as the ability to understand, create, and learn 

perspectives. Looking at each of these chronologically, enabling to create is important to represent 

the intention of the requirement (properties) in the viewpoints of the automation engineers, i.e., 

module developers for the library module, application developers for the compound modules (cf. 

Figure 7), of the automation system software, as grounds for verification (R-U2b). In the experi-

ment with master students, module developers are assumed and the experiment with bachelor stu-

dents, application engineers, are assumed and targeted since module developers are more skilled 

programmers and, thus, more familiar with such a behavior specification. Also, understandability 

is important for automation engineers to figure out whether the existing specifications depict the 

property correctly or how the specifications diverge from the intention (R-U2a). For the proper 

use of the language, the user must understand it correctly in regard to its syntaxes and semantics. 
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To measure usability in regard to these aspects, the evaluation was done by comparing the pro-

posed approach with another specification language (comparative experiment). The experiment 

factor was differences of the languages requested to the participants to handle. As a control factor, 

another formal language (PN) was selected to see the superiority or inferiority of GTT, compared 

to the conventional language objectively. More precisely, Condition/Event (C/E) type PN 

[DaAl92] were selected for two reasons: First, students had been taught with this language previ-

ously in another mandatory lecture; and C/E PN are the simplest type to avoid unnecessary disad-

vantages in the control language. The language should be able to deliver the originally intended 

semantics to the user (who is reading the specification) through the understanding activity. This 

can be assessed by observing whether participants comprehend the intention of the specified de-

scriptions in the language (H1.1).  

In reverse, the language should be able to be used to describe intended behavior appropriately by 

the user (who is creating the specification). This can be assessed by observing whether participants 

use defined notations of the language properly to describe the given behavior (H1.2).  

Table 8: C/E type PN notations and comparable elements in GTTs 

Graphical symbol Description Interpretation Comparables in GTTs 

 Place (state) 

Status where objects await pro-

cessing or conditions that ob-

jects are in 

Rows 

 
Transition 

(event) 
State transition Cascading rows 

 Edge 
Connection between places and 

transitions 
- 

 
Initial transi-

tion (event) 

Initial transition with omitting 

the common initial place 
The first row 

Variable names and 

values 
Variables Variable value changes Columns (input/output) and cells 

 

If the understanding and creating activities regarding the target language depend on the specific 

knowledge or experience of the user, the aim of user accessibility is challenged since the successful 

result of these activities would be affected by some individual knowledge or background levels, 

not by the accessibility of the language itself, and the domain experts with prior knowledge are 

not necessarily the language’s end users [BAGB14] (H1.3). Additionally, scalability of the lan-

guage is to be considered for practical and industrial cases. Although it would be systematically 

possible to describe enlarged behavior, comprehension and creation of the scaled version by users 

shall be assessed separately (H1.4). The degree of user satisfaction is another aspect to be re-

searched in regard to the usability of the language, experimented through the questionnaire. Based 
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on the system usability scale items [Broo96] in consideration of the major activities of language 

usage, users must have confidence regarding comprehension and creation after some experience 

of using it (H2.1, H2.2). From the same point of view, the degree of experience for learning should 

not be regarded as very large (H2.3). In addition, the degree of satisfaction would be related to the 

users’ will to utilize it as a solution or, more specifically, as a form to achieve the solution (H2.4, 

H2.5). The hypotheses regarding each research question are summarized in Table 9.  

Table 9: Hypotheses and proving methods  

Category Hypothesis Proof method 

E
ff

ec
ti

v
en

es
s 

H1.1: A user can understand a system behavior by the speci-

fications in GTTs similar to or better than by the conventional 

language (PN). 

Score comparison of the un-

derstanding specification 

task in GTTs and PN  

H1.2: A user can create a specification regarding a system 

behavior in GTTs similar to or better than in the conventional 

language (PN). 

Score comparison of the cre-

ating specification task in 

GTTs and PN 

H1.3: Understanding and creating specifications in GTTs is 

less related to the background knowledge of the user regard-

ing software engineering than to the conventional language 

(PN). 

Correlation study between 

the understanding task score 

and the personal grade 

H1.4: The score of understanding task is less sensitive to the 

scale of the specification in the target language than the con-

ventional language (PN). 

Correlation study between 

the specification complexity 

and the score comparison of 

the understanding task  

U
se

r 
sa

ti
sf

ac
ti

o
n

 

H2.1: Users have confidence in understanding a specifica-

tion in GTTs. 
Questionnaire 

H2.2: Users have confidence in creating a specification in 

GTTs. 
Questionnaire 

H2.3: Users think the language, i.e., GTTs, is reasonably 

learnable. 
Questionnaire 

H2.4: Users are satisfied with the language, i.e., GTTs as a 

behavior specification representation method in general. 
Questionnaire 

H2.5: Users would like to use the language, i.e., GTTs, as a 

behavior specification representation method in the future. 
Questionnaire 

 

7.2.2. Experiment planning 

Regarding the three experiments, the following sections describe each of the experiment designs 

and participants. All of the program codes given to students during the experiments were in IEC 

61131-3 ST and C/E type PN were selected as the control language in the comparison experiment, 

as commented earlier. 
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7.2.2.1 Comparing the effectiveness of GTT and PN concerning understanding and cre-

ating with separated participant groups (Exp-1) 

The first experiment (Exp-1) was planned to conduct the effectiveness comparison of GTT and 

PN as a measurement of the appropriate level of tasks. The aspects of the effectiveness targeted 

here were mainly understandability and creatability, as well as the effect of the different scales to 

those aspects. Thus, participants were divided into two groups and assigned with the understanding 

and creating tasks in each language.  

Exp-1 consisted of one hour tutorial of GTTs, given to the participants in the form of a lecture in 

the classroom allowing them to ask questions and including a review of examples. The corre-

sponding lecture is Industrial Software Development for Engineers 2 (in German: Industrielle 

Softwareentwicklung für Ingenieure 2), a master course lecture in the mechanical engineering de-

partment. The lecture has well prepared and the contents are mature enough to be run more than 

five years. As they are master students, they were assumed to be future module developers with 

comparably mature programming skills. Before going to the tasks, the participants were asked to 

answer a questionnaire designed to collect data for their profile, including demographic data (Ap-

pendix A.1). Following paper-based exercise tasks had to be answered during another hour, one 

week after the tutorial, due to the timing constraint. Three tasks were prepared regarding: i) to 

understand the behavior in the specification (GTT or PN) and correct the given code in a compa-

rably smaller scale problem, ii) same task with i) but in a comparably greater scale problem, and 

iii) to create the formal specification after reading the given natural language description (cf. Ap-

pendix A.2). The participants were divided into two groups and provided with the behavior de-

scribed in GTT or PN. Basic notations are given to the participants for both languages (cf. Appen-

dix A.3). Each group received the specification of each language alternately in two understanding 

tasks so that they would not be biased by the learning effect of the tasks. 

In task1 (simpler understanding task, 15 min), a brief description in the natural language and a 

formal specification (in GTT for Group1 and in PN for Group2) were provided as information of 

the target system block. Participants were requested to understand the given information and to 

then find errors in the program code. Task2 (scaled understanding task, 15 min) was framed the 

same way, but with another system block and the formal specification was assigned the opposite 

way: in PN for Group1 and in GTT for Group2 to avoid the learning effect over task1 and task2. 

The assigned time was set the same as with task1 despite the increased scale, since the number of 

erratic parts was reduced. For task3 (a creating task, 30 min), a precise description in the natural 

language and the corresponding program code were provided as information about the target sys-

tem block. Participants were requested to understand the given information and to then create a 

formal specification in both GTT and PN. More time was assigned, assuming that creating requires 
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more time than understanding since it requires more processes such as notation diversity, syntax 

check, and structuring [ShLo88].  

7.2.2.2 Comparing the effectiveness of GTT and PN concerning understanding and cre-

ating by the same participants (Exp-2) 

This experiment (Exp-2) was designed based on the analysis of Exp-1 and conducted as part of 

the class exam with 34 master course students of mechanical engineering department. The students 

are fond of software engineering, but basically with mechanical background, interested in appli-

cations. Learning from the Exp-1 and its result, which will be discussed in detail in the result 

discussion section, as well as the complexity level between GTTs and the control language (PN), 

were to be balanced more precisely and correctly. Since the participants had to handle both GTTs 

and PN as specification languages for each task, the target behavior of each should not be the same 

due to the learning effect. In other words, one might recognize behavior with the easier language 

for him/herself and try to apply it to the other if the same system is given in two languages. Instead, 

the system for each language was different, but the complexity of the behavior described in the 

language was controlled to be at the same level. For this, each had the same table size when de-

scribed in GTTs and the same number of places and transitions in PN. 

Two tasks were provided in Exp-2 with subtasks for each. In the first task, a brief description in 

the natural language and a formal specification in PN were provided. The first subtasks are regard-

ing the understanding of the specification consisting of two questions of understanding overall 

behavior and tracking some signal pair changes. Different from Exp-1, program code was not 

involved in this task on the one hand to simplify the task focusing on the specification, and on the 

other hand to remove any bias due to program comprehension abilities. Since the amount of infor-

mation and the number of questions were reduced, the assigned time was also decreased to 6 

minutes. The second subtasks were in regard to creating the specification, which was partially 

based on a given specification. The creating of repeated behavior was the special focus in this 

creation experiment. The partial behavior was thus indicated as a repeated part on the given spec-

ification and participants were asked to generate the change on the sheet. In PN, two options were 

given: to implement the change with a counting variable (easy), and to implement the change by 

adding places and corresponding edges (hard) to see which level the GTT is comparable to. The 

next task was framed the same way as with the first one with PN, but targeting a different system 

with the formal specification in GTT. Program code was also left out to remove the bias factor, 

and the amount of writing was slashed to focus on the specific notation (for repetition description) 

as well as to harmonize with the other exam questions in the viewpoint of the difficulty level. 

Materials used for Exp-2 is described in Appendix B. 
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7.2.2.3 Evaluating subjective user satisfaction (Exp-3) 

This experiment (Exp-3) was designed and planned to be conducted at the bachelor student level 

(5th semester) in perspective of behavior complexity and the range of notation. While the master 

students could be regarded as module developers who are able to and willing to deal with this type 

of formal specification, the bachelor students are comparable to the application engineers. Based 

on this assumption, the subjects were decided to be master students in the previous experiments 

and then extended down to the bachelor level in this experiment to conform to the appropriateness 

in an immature background level.  

These are downsized and reduced to consider the level of the participants as well as to focus on 

the effectivity of some specific notations of GTT. The ultimate goal of this experiment compared 

to the previous experiments is to achieve a qualitative assessment from the participants regarding 

their subjective perceptions. The experiment was conducted through the lecture in a classroom, 

consisting of 40 minutes of tutorial and exercise tasks asked of participants to answer for 35 

minutes, including a qualitative questionnaire. 

The exercises consisted of an understanding task and a creating task like the other experiments: 

answering the question regarding behavior with respect to the brief natural language description 

and a specification in GTT and creating the specification based on the partially given specification 

in GTT. After that, the participants were asked to answer the evaluation questionnaire, which is a 

tailored version of the System Usability Scale (SUS) [Broo96] regarding understanding, creating, 

and general impression. The questionnaire was intended to rate these aspects as perceptions in a 

Likert scale of one to five. Answer options consisted of five levels from the least to the most, 

namnely, strongly disagree, disagree, uncertain, agree, and strongly agree. To avoid unintentional 

factors, the statements were prepared in a mixed tone (of positives and negatives) by forcing the 

respondent to read each statement and make an effort to think about it (cf. [Davi89, WoRB03]).  

Materials used for Exp-3 is described in Appendix C and the overall experiment plan is summa-

rized in Table 10. 

7.2.3. Participants profile 

In the experiments, the participants participated in training and were asked to perform the exercise 

tasks and answer the subjective assessment questionnaire depending on the experiment. Additional 

questionnaires were given to the participants to collect their profiling information.  
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Table 10: Summary of the tasks performed in the experiments   

Exper-

iment 
Task description 

Time 
(min) 

Diffi-

culty 

level 

Remarks 

C
o

m
p

a
ri

n
g

 e
ff

ec
ti

v
en

es
s 

E
x

p
-1

  
(N

 =
 9

) 
*
fo

r 
G

ro
u

p
1

 a
n

d
 G

ro
u

p
2

 e
ac

h
 ▪ Target group: Master students 

1. Understanding Spec. (1) in GTT/PN 

 To read the specification and find violation in 

the given shorter IEC 61131-3 code: checking 

branch condition and missing implementation 

15 Base 1 
▪ Given specification: Group1 in 

GTT, Group2 in PN 

2. Understanding the specification (2) in 

GTT/PN– scaled 

 To read the scaled specification and find viola-

tion in the given longer IEC 61131-3 code: 

checking branch condition 

15 > Base 1 

▪ Given specification: Group1 in 

PN, Group2 in GTT (switched 

specification language) 

▪ Scaled size specification and 

program code targeting more 

difficult level 

3. Creating the specification 

 To generate the specification regarding the nat-

ural language description and corresponding 

code in IEC 61131-3 

30 Base 2 

▪ Group1 in GTT → PN, Group2 

in PN → GTT 

- Conversed creating order of 

the language  

▪ More time assigned on creating  

E
x

p
-2

  
(N

 =
 3

4
) 

▪ Target group: Master students 

1. Understanding the specification in PN 

 To read the specification with respect to the 

overall behavior understanding and specific var-

iable pair traces 

6 
< Base 1 

(Base 3) ▪ Tasks are simplified by remov-

ing the code inspection part 

and balanced complexity-wise 

regarding the target system in 

GTT and PN questions 

▪ The order of solving tasks and 

time limit is not controlled 

- Marked on the left column is 

the expected time duration 

for each task 

- Participants would assign as 

they wish within the overall 

allowed time duration (90 

min) 

2. Creating the specification in PN 

 To implement partial repetition on the given PN 

(i) using a variable and (ii) adding more places 

6 
< Base 2 

(Base 4) 

3. Understanding the specification in 

GTTs 

 To read the specification with respect to the 

overall behavior understanding and specific var-

iable pair traces 

6 = Base 3 

4. Creating the specification in GTTs 

 To implement partial repetition on the given 

GTT table 

2 = Base 4 

S
u

b
je

ct
iv

e 
sa
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sf

a
ct

io
n

 

E
x

p
-3

  
(N

 =
 7

3
) 

▪ Target group: Bachelor students 

1. Understanding the specification in 

GTTs 

 To read the specification with respect to the 

overall behavior understanding and specific var-

iable pair traces 

15 = Base 3 

▪ Similar tasks to Exp-2 with 

more time considering the 

level of participants 

▪ Reduced scope in creating 

task compared to Exp-1; but 

most basic notations are in-

cluded 
2. Creating the specification in GTTs 

 To implement partial repetition 
10 

< Base 1 

&  

> Base 4 

3. Qualitative questionnaire 10 N/A  - 
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One of the reasons for the conduct of these evaluations with university students is that they would 

be at a similar level to junior engineers [Usbu20] in the field as major future users of the language, 

i.e., GTTs and that they are likely to use such types of languages in (future) practices. Therefore, 

bachelor students represent immature engineers with some basic theoretical knowledge about en-

gineering and embedded system implementation, and master students are more mature in automa-

tion software engineering inclusive of specifications.  

In Exp-1, although the number of individuals attending was 29, 18 of them were valid participants 

(9 for each group) who had the knowledge about the PN and had attended the training session one 

week before the evaluation (i.e., there was a timing difference between the training and evaluation 

due to the timing constraint of the lecture as explained in the experiment planning). The overall 

profile is also effective for Exp-2 in which participants from the same group (i.e., students from 

the same lecture within the same semester) attended. In Exp-2, there were 34 participants. Alt-

hough it was not revealed clearly who had attended the tutorial due to the anonymity of the exper-

iments, the participants could be regarded as fully trained since it was an exam that matters to their 

degree results. The participants were master course students with mostly a mechanical engineering 

major with an average grade of 2.26 (σ: 0.50) in the German grade mark scale with 1 as the highest 

and 5 as the lowest grade (Figure 40 – a). More than 80% of the participants had some experience 

in the industry in the form of internships and working. The work duration among the experienced 

ones spans from 2 to 8 months for an internship and from 6 to 48 months for part-time or full-time 

work (Figure 40 – b,c). The participants evaluated their programming skills as intermediate level 

(mean: 3.17 and σ: 0.17 in a Likert scale with 1 as the lowest and 5 as the highest) in a self-

assessment.  

The participants of Exp-3 were 73 bachelor students. Assuming that the students did not have 

influential industry experiences since the lecture was taken in the fifth semester of the bachelor 

course, only the grade information of the participants was gathered (Figure 40 – d). 

 
   

(a) (b) (c) (d) 

Figure 40: Profiles of the participants: (a)-(c) for Exp-1 and (d) for Exp-3 [CVWU21] 

1.0-1.7
7%

1.7-
2.3

33%

2.3-3.0
30%

3.0
-

3%

no 
answer

27%

Grade

Yes, 
84%

No, 16%

Internship experience

Yes, 
54%

No, 
46%

Working experience

1.0-1.7

1.7-2.3
19%

2.3-3.0
47%

3.0-
15%

not answered
7%

Grade

Average grade:  

2.26 (σ: 0.50) 

Yes, 
82%

No, 
18%

Group1

Yes, 
86%

No, 
14%

Group2

Internship duration: 5.6 months (σ: 2.3) 

Yes, 
62%

No, 
38%

Group2

Yes, 
45%

No, 
55%

Group1

Working duration: 16.5 months (σ: 14.7) 
Average grade:  
2.43 (σ: 0.53) 



Evaluation of the approach 95 

 

 

 

7.2.4. Experiment results 

The following sections describe each of the experiment results collected in the experiments are 

presented with descriptive and inference statistics. 

7.2.4.1 Understanding and creating with separated participant groups (Exp-1) 

First, in the understanding tasks (i.e., task1 and task2) of Exp-1, the participants are asked to find 

faults within the program code with respect to the given specification in GTT or PN (Figure 41 –

a,b). In the first task, GTT specification (Group1) showed better scores than PN one (Group2). 

Conversely, PN specification (Group1) showed a better result than GTT one (Group2). Although 

the overall point was higher in task2 for both languages, direct comparison between task1 and 

task2 would not be meaningful because of differences in the type of system behavior, the size of 

specifications, and the length of the given code. Although the second task was targeted to evaluate 

the scaled case (i.e., more difficult), the PN specification scale was not managed well while GTT 

specifications and the given program size were scaled. Therefore, it is hard to say which one lan-

guage is dominant to the other regarding understandability (H1.1: understanding GTT similar to 

or better than PN).  

For the creating task, the participants were asked to create specifications in both languages for one 

target system. The overall mean value of the results was very similar in GTT and PN (Figure 41 –

c), and thus H1.2 (creating GTT similar to or better than PN) is true. However, the results of each 

group are very interesting. For Group1, the specification creation task of GTT was given before 

PN, which is in reverse order in Group2. For each group, the preceding one (i.e., GTT for Group1 

and PN for Group2) got a lower point. They probably learned behavior during the first specifica-

tion creation task and could then represent the second specification creation better, which is prom-

ising for practical use (applied to both cases).  

   

(a) (b) (c) 

Figure 41: Exercise score comparison of Exp-1 (normalized mean value with error bars of the standard 

error): (a) – task1 (understanding), (b) – task2 (understanding, scaled), and (c) task3 (creat-

ing) [CVWU21] 
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One additional observation of tasks is the sensitivity to the specification scale (cf. Table 11). Since 

the specification size grew around 2.3 times in GTT (from 3 to 7 rows), a degradation was expected 

and observed as 25% degraded in the scaled size (7 rows) compared to the smaller one (3 rows). 

In PN, since the specification size grew 2.3 times (from 8 edges to 18 edges), a 37% degradation 

was observed. Although it is a simple comparison, not considering the difference in the number of 

inputs/outputs that affect the GTT size, the sensitivity of the language to the growth of the speci-

fication seems less in GTT than in PN (H1.4: less sensitivity of the understanding ability to the 

problem scale).  

Table 11: Task and specification complexity comparison in Exp-1*  

a. GTT 

Group Task I/O Specification size Program size Score 

Group1 Task1 2 IN / 1 OUT 3 rows 18 lines 0.67 

Group2 Task2 6 IN / 4 OUT 7 rows 53 lines 0.50 
 

b. PN 

Group Task I/O Specification size Program size Score 

Group1 Task2 6 IN / 4 OUT 5 places, 8 edges 53 lines 0.80 

Group2 Task1 2 IN / 1 OUT 5 places, 18 edges 18 lines 0.44 

 

*The number of rows for GTT, and the number of places and edges for PN as specification size 

 

The result was also analyzed with respect to the background knowledge of the participants. Based 

on the participant’s profile, grade, working and internship experience could be regarded as criteria 

for the background level. The trend line of GTT showed a more gentle slope than the one of PN 

(Figure 42 – a) even though it takes the position lower than PN. Here, the creation task result was 

considered for comparison since the effective comparison is possible between GTT and PN with 

the valid number of samples who answered the task and shared the grade (6 for GTT and 8 for 

PN). The comparison of the mean value of creation results also showed that the internship experi-

ence is less influential in GTT than PN (Figure 42 – b). The comparison for working experiences 

showed no difference between GTT and PN (Figure 42 – c). Therefore, H1.3 (understanding/cre-

ating ability related to background less in GTT than PN) is concluded as true. 

   

(a) (b) (c) 

Figure 42: Correlation (based on Exp-1) of (a) score vs. grade, (b) score vs. internship experience, and 

(c) score vs. working experience [CVWU21] 
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Through this first experiment, some bias points were found. Some of the participants turned not 

to get used to the IEC 61131-3 language, different from the expectation. Although the implemen-

tation was comparably simple, this biased the result. Also, the time difference between training 

and evaluation affected the controlling of attendance of the participants. Splitting the training ses-

sion and evaluation, and non-compulsive evaluation resulted in attendance with a smaller number 

of valid participants. In addition, the fact that each group was given different tasks made the com-

parison harder, especially due to the small number of subjects. Task1 and task2 were planned to 

see the effect of the scaled problem; however, the result could not be compared directly due to the 

low number of participants, which led to dependent results in the participants’ profiles.  

7.2.4.2 Understanding and creating in different language by the same participant (Exp-2) 

In this experiment, each participant had to solve two tasks (GTT and PN specification). The tasks 

are balanced validated by transforming each specification from one language to the other. Scores 

are presented as normalized to ease the comparison. Although measuring understanding and cre-

ating effectiveness had been targeted in Exp-1, the number of valid participants was not sufficient 

to justify the result of the experiment. So it was measured in Exp-2 again with the higher number 

of participants (N=73) to strengthen the experiment for H1.1, H1.2 (Understanding and creating 

ability comparison) and H1.3 (understanding/creating ability related to background). 

There were two points targeted in the understanding task: one was understanding overall behavior 

(allotted 8 points) and the other was tracking of variable value set changes (allotted 3 points). For 

both, GTT showed a statistically meaningful improvement (5.1% and 7.7% respectively) and 5% 

for overall score in comparison, supporting H1.1 (understanding GTT similar to or better than PN) 

to be true (Figure 43 – a). 

   

(a) (b) (c) 

Figure 43: Score comparison of GTT and PN from Exp-2(a) Understanding task, (b) Creating task, and 

(c) Correlation of score to the total score [CVWU21] 
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Creating specification task was focused on representing the repetition of certain behavior. The 

block repetition notation of GTT was to be compared with that of PN. In the case of PN, two 

options were given: using a counter variable (easy) and adding places and corresponding edges 

(hard). It is hypothesized that participants would get higher scores by using a counting variable 

than by adding more PN notation elements (i.e., places and transitions) and thus was proved to be 

true as seen in the scores received by the students (Figure 43 – b). Comparing GTT to PN, students 

obviously got more points with the repetition block notation in GTT than by changing the net 

structure and slightly more than using the variable. Therefore, H1.2 (creating GTT similar to or 

better than PN) is true.  

The score of PN and GTT was related to the overall score, assuming that the total score indicates 

their background knowledge regarding software engineering. If one specification language re-

quired higher knowledge, the slope would be proportional to the overall score. As seen in Figure 

43 – c, GTT shows a more gradual slope than PN, which means that GTT has less correlation with 

the knowledge or background regarding software engineering. This supports H1.3 (understand-

ing/creating ability related to background less in GTT than PN) to be true. 

7.2.4.3 Subjective user satisfaction (Exp-3) 

The focus of the third evaluation concerned the subjective perception of GTT. After the tutorial, 

participants were asked to solve exercise tasks and then to answer the questionnaire. The exercises 

were similar to the understanding task of Exp-2 but were simplified, the choice question consid-

ering the different student levels. The score of the understanding task was 0.84 (normalized mean 

with standard deviation σ = 1.53 and skewness γ1 = -1.4), which is slightly less than Exp-2 but 

could be an indication that the participants were following the concept successfully. The creating 

task was also adapted to the level by providing the table and filling the blanks. The mean score of 

the creating task was 0.78 (σ = 3.57, γ1 = -1.2). 

The scores were to be checked if they were related to the overall grade of the participants assuming 

that the higher grade implies a higher knowledge level of system engineering. For this experiment, 

the overall grades of the students up to that point were collected through the questionnaire. Con-

sistent to the results of the previous experiments, the result of this experiment also supports the 

uncorrelated relationship between the score of the exercises and the overall grade (Figure 44). This 

partially supports H1.3 (understanding/creating ability related to background less in GTT than PN) 

since the result could not be compared to the PN cases, which were not evaluated during the Exp-

3. At least, the result showed that irrelevancy trend of the understanding and creating scores over 

the grades. 
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Figure 44: Correlation of the GTT exercise score and the overall grade (Bachelor course) from Exp-3 

[CVWU21] 
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H2.3 (learnable) to be true. However, the answer to the question regarding future usage is compa-

rably lower than to the other questions although the result is still positive with the mean of 3.33 (σ 

= 0.62) with γ1 as 0.05. This supports H2.5 (willing to use in the future) to be true. 

7.2.5. User evaluation summary 

The usability of GTT was investigated through user evaluation and its analysis with. It was hy-

pothesized that users can understand the system behavior through GTT specification similar to or 

better than another conventional language (H1.1). In Exp-1 and Exp-2, the control language was 

chosen as PN. Although it was not clearly revealed in Exp-1, GTT showed better results than PN 

regarding understanding behaviors and tracking variable value changes in Exp-2. Therefore, the 

 

(a) 

 

(b) 

 

(c) 

Figure 45: Qualitative evaluation result in Exp-3. (a) Understanding, (b) Creating, and (c) overall. Re-

produced from [CVWU21] 
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result could be considered as valid. For creating the specification (H1.2), Exp-1 showed similar 

results in both languages and Exp-2 showed the superiority of GTT with respect to representing 

the repetition of some specific block. However, Exp-1 did not have a large enough number of 

participants that were not biased by differences of each, and Exp-2 focused on a specific notation 

only for the creation task. Therefore, the validity level could be said to be weak, and the hypothesis 

should be investigated with a wider range of notation usages to support the hypothesis more 

strongly. Also, the correlation between usability and background of the user was examined (H1.3).  

Although the examined result shows as hypothesized, it is under the assumption of the implying 

relationship between the background knowledge levels and the academic grades or internship ex-

periences. Thus, the validity of this relationship should be clarified to fully validate the correlation 

analysis. Regarding the sensitivity of the specification scale (H1.4), it was concluded as true com-

paring the results from the tasks; however, the direct comparison between the groups in Exp-1 was 

not entirely sound. This is because on the one hand, the results are from different groups, and on 

the other hand, the groups lack representativeness due to the limited number of participants. Also, 

the scale of the specifications and of the established problem, including the described system, was 

not well enough managed to be able to verify the hypothesis. Thus, the result cannot be regarded 

as valid. On remark for Exp-1 and Exp-2 is that the evaluation was done in the paper-based man-

ner. It was an advantage as the participants could freely express as they want without being af-

fected by the maturity of the tool. It is a threat as field engineers will only have to accept a notation 

given in an appropriate tool. 

Speculating about the subjective perception levels of the language users, a positive user perception 

level for understanding and creating activities was hypothesized (H2.1, H2.2). As the result shows, 

a high rate of positive feedback on both (higher in understanding) was observed. Users also re-

garded the language to be reasonably learnable (H2.3). However, for this point, additional evalu-

ation regarding learning would be necessary to measure the precise level of learnability. While the 

overall user perception regarding its complexity and satisfaction was positive (H2.4), it was also 

found that almost half of the participants were still wavering over whether to use it in practice in 

spite of positive feedback on the average (also observable as γ1 = -0.20 – the lowest among all the 

questions). Therefore, performing successive work to figure out the main reason for this phenom-

enon and the corresponding adaptation of the language would be necessary. In addition, to make 

the results of the qualitative assessment stronger, a further survey comparing other formal speci-

fication languages with a promising number of participants should be conducted. 
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Table 12: Summary of the hypotheses evaluation  

Related hypothesis Experiment Result (validity) 

H1.1: A user can understand a system behavior through the speci-

fication in GTTs similar to or better than through the conventional 

language (PN). 

Exp-1, Exp-2 
True  

(valid) 

H1.2: A user can create a specification regarding a system behav-

ior in GTTs similar to or better than in the conventional language 

(PN). 

Exp-1, Exp-2 
True  

(weakly valid) 

H1.3: Understanding and creating specifications in GTTs is less 

related to the background knowledge of the user regarding soft-

ware engineering than conventional language (PN). 

Exp-1, Exp-2, 

Exp-3 

True  

(weak valid) 

H1.4: The score of understanding task is less sensitive to the scale 

of the specification in the target language than the conventional 

language (PN). 

Exp-1, Exp-2 
True  

(not valid) 

H2.1: Users have confidence in understanding a specification in 

GTTs. 
Exp-3 

True  

(valid) 

H2.2: Users have confidence in creating a specification in GTTs. Exp-3 
True  

(valid) 

H2.3: Users think the language, i.e., GTTs, is reasonably learna-

ble. 
Exp-3 

True  

(valid) 

H2.4: Users are satisfied with the language, i.e., GTTs, as a behav-

ior specification representation method in general. 
Exp-3 

True  

(valid) 

H2.5: Users would like to use the language, i.e., GTTs, as a behav-

ior specification representation method in the future. 
Exp-3 

True  

(weakly valid) 

 

7.3. Expert evaluation from industry 

Earlier, the applicability evaluation has shown the feasibility of the presented approach to be used 

for realistic use cases. A usability evaluation has been also conducted with the potential users to 

measure how much the presented approach is acceptable for them. To strengthen the usability 

measurement, direct feedback from the current industrial field is necessary. Therefore, the expert 

evaluation has been conducted with the field engineers and managers. Since it is not suitable to 

gather that many personnel in companies as done in the empirical study, scattered interviews 

within workshops and meetings were conducted instead. All experts have a deep understanding of 

IEC 61131-3 code development project. No questionnaire sheets were used but rather the topic 

was discussed in the informal conversation after giving them a presentation (15min) of the ap-

proach. And then, the current quality management processes of the companies were discussed 

followed by the impression and feedback of the approach. This section summarizes the feedback 

obtained from these interviews. 
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The first workshop was with experts from five different companies of machine & plant manufac-

turing companies and IEC 61131-3 compliant engineering environment provider. Some positive 

feedback was delivered also including some concerns about scalability to be applied in practices. 

Each comment was stated from different participants. 

“For some cases, we apply test-driven development and debugging. The way of describing the 

sequence seems interesting and could be applied there.” (cf. R-E2) 

“The table form is consistent and intuitive. The approach could be improved with some adaptations 

like handling the size – columns for the relevant input and the rows for the sequences. Addition-

ally, the function dependency representation will help to be applicable in a scaled system. ” (cf. 

R-U2 – R-U6) 

“It would be beneficial in a sense that the library functions could be verified easily since they are 

used very often and more times. Formal verification is still hard to apply to prepare the specifica-

tion of each.” (cf. R-E1) 

“We have tried generating specification in Petri nets but did not work out well. If the specification 

in tables could be obtained inexpensively, we would like to try.” (cf. R-E5) 

There was another interview with the department leader of the software standards in a machine & 

plant manufacturing company. This company is active in the field of medical manufacturing and 

packaging automation. Since the medical-related systems are under the effect of legal regulations, 

the implementation history and quality assurance activities have to be carefully managed.  

“Although it might require some adjustment, the concept is good. It seems to be worthy to check 

the applicability to the real industry cases.”  

In a joint seminar with a manufacturer of industrial automation devices, the concept of the ap-

proach as well as a short demonstration of the use case was presented. After that, some feedback 

from the automation engineer’s point of view was collected. The opinion was more regarding the 

documentation of the software behavior than the formal verification. 

“Even if we cannot apply the formal verification directly at once, at least the approach could be 

applied to the functionality description especially for the changed part description. It would be 

helpful to document so that the others could read it to understand the behavior for further reuse.” 

(cf. R-E6) 
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An additional opinion was collected from a chief software development officer of a machine and 

plant manufacturing company, covering automotive system components and medical technology 

products. Highlighting the importance of obeying the regulations, as also published in [VoCh20], 

the industry expert reported his interest:  

“To follow up the regulation like GAMP, it is necessary to document a specific description about 

the specification, test procedures, and change history to track the all the activities of the change 

implementation. These points could be helped by the presented approach as it supports the docu-

mentation as well as the formal verification of the implemented control software.” (cf. R-E1, R-

E5, R-E6) 

Conclusively, the gathered feedback was mainly positive (cf. Table 13). Although some concerns 

were also observed for the feasibility to the industry settings, the basic ideas of the approach were 

agreed. One of the companies stated above agreed on joint work of adjusting the approach and 

applying it in the form of the transfer project within the control software development processes 

for medical related business sector; this reflects that the approach satisfies the necessity of the 

industry and fits for the needs. 

Table 13: Summary of the expert evaluation comments relating to the requirements  

Opinion (summerized) Relevant requirement(s) 

Applicable to test-driven development  R-E2 

Intuitive format, scalability to be reviewed R-U2 – R-U6 

Generating specification with less effort would be beneficial R-E5 

Applicable for the documentation purpose R-E6 

Pragmatic way to adhere to the legal regulations R-E1, R-E5, R-E6 

 

 



 

 

8. Assessment  of  the  Fulfillment  of  the 

Requirements 

The requirements discussed in chapter 3 were envisioned in three points of view: target system, 

its engineering processes, and usability, and these are evaluated throughout the case studies, em-

pirical studies, and expert interviews. In this chapter, the assessment of the evaluation with respect 

to the requirement are presented (summarized in Table 14). 

As the system characteristics could be prescribed in terms of input and output sequences, the spec-

ification language was required to present the relationship of these two sequences (R-T1). The 

basic structure of GTT allows to present the input (sequences) and corresponding output (se-

quences) in a structured form; the fulfillment was, thus, clearly shown through the application 

cases. Since the target system is reactive systems, which has its own state and changing the state 

into another state depending on the input sequences, each state (accepting input and resulting out-

put) and its transition condition should be described in the specification (R-T2). Specific values of 

the system component control signals and discrete event processes correspondingly were targeted 

(R-T4). Rows, which are regarded as a state (each) in a system, in GTT could satisfy these char-

acteristics as also shown the application cases. However, only a specific path of the control can be 

described within a GTT due to the nature of the table. Although the behavior repetition was achiev-

able through the repetition symbol, diverging/converging the execution control (branching) is not 

capable in GTT at the moment. A state in a system is not defined by or limited to a specific in-

put/output value only but allows a range of the values with the constraint expressions (R-T3). 

Allowing generalizing expressions in cells could fit this requirement, as shown in all application 

cases (cf. Section 7.1) and especially the one introduced in Section 7.1.4. Considering the cyclic 

execution of PLC (R-T5), the value set in a row should retain during the defined duration in a 

GTT. Consistent representation of common library functions in IEC 61131-3 was targeted (R-T6); 

this was shown as satisfied within the case example in Section 7.1.4.  

The approach is developed based on the testing practices. Although testing could provide the 

chances to control the quality, it is not always feasible and cheap to execute the system for testing, 

which are the characteristics to be covered by formal verification (R-E1). Since the concept is 

generalizing same sort of test cases, test cases could be derived in reverse by designating specific 

values in the existing GTT (R-E2). Initiated from one of the motivations of applying formal veri-

fication on aPS engineering processes, GTTs as a formal specification in the formal verification 

procedure is shown in the previously published paper, [CWUB18a], and [Weig21]. The result of 
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the verification should also be easily used for the debugging in theviewpoint of automation engi-

neers (R-E3); the way of connecting counterexample and the corresponding GTT was presented 

in Section 5.4.1. The capability of systematic data handling is a requirement to be implemented in 

a tool and also to be integrated with a model checking, not managed solely in a manual manner 

(R-E5). This was proven by the implemented tool integrated into an IEC 61131-3 IDE, and this 

also supports the debugging support requirement (R-E3). Transformation cases from and into GTT 

(shown in Section 5.4.2 and 5.4.3) also showed that they support the systematic data handling 

requirement (R-E5). One of the major requirements and the motivation of the presented approach 

is the characteristic of the control software change in aPS lifecycle: it changes very often in a small 

scale. That is, the software goes through a validation process very often accordingly. Since testing 

could not always be the best solution due to its dynamic execution manner requiring a physical 

system and quite some time, regression verification was focused on completing it, and the changed 

part description was required accordingly (R-E5). To fulfill this requirement, an approach to 

achieve preliminary specification from the existing code was presented (Section 5.4.2) with a use 

case to show its feasibility (Section 7.1.3). Still, specification inferencing from the existing code 

is limited to a specific language (SFC) and needs to be further researched into the other languages. 

Strengthening quality management through the presented concept supporting change management 

and monitoring (R-E4, R-E6) was approached as its extended utilization to strengthen quality 

management. R-E6 also targets the specification as a tool for communication and data exchange 

between automation engineers, and this was demonstrated over the presented use cases (Section 

7.1). 

Promoting formal verification requires usable formal specification language (R-U2); this is re-

quired to be supported by a corresponding tool for efficient engineering processes (R-U1). Proto-

typical tool implementation (cf. chapter 6) proves the feasibility of the tooling. Usability aspects 

were approached in the empirical study (Section 7.2) through the experiment with the mechanical 

department students who were regarded as potential automation engineers. Understanding, creat-

ing ability, and the comparison regarding the scalability was assessed by being compared with PN 

(R-U2, R-U3, R-U5). Some weak point of the experiment in Exp-1 were observed, including a 

smaller number of participants. Although the understanding and creating performance was shown 

as satisfactory, partial notations were targeted in creating part. The subjective aspects were as-

sessed through the questionnaire (R-U4, R-U6). Mostly positive results were observed; however, 

there still are some open points to decide the validity of the creating aspect. In the workshops and 

interview, opinions from the industry experts were gathered and this also turned out to be positive 

for its usage although some concerns about the scaling were observed as not entirely resolved. As 
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mentioned, a joint project is being prepared with one of the interviewee to apply presented ap-

proach to their engineering process.  

Table 14: Summary of the evaluation of the presented approach with respect to the requirements  

Requirement 

Tool 

supporting 

(Section 6) 

Feasibility 

analysis 

(Section 7.1) 

Empirical 

study 

(Section 7.2) 

Expert 

evaluation 

(Section 7.3) 

Overall 

evaluation 

R-T1. Presenting the relation-

ship between input and output 
 

+ 

(UC1, UC2) 
  + 

R-T2. Presenting the state 

changes  
 

+ 

(UC1, UC2) 
  + 

R-T3. Abstracted value range 

for wider coverage 
 

+ 

(UC1, UC2) 
  + 

R-T4. Supporting discrete 

event processes 
 

+ 

(UC1, UC2) 
  + 

R-T5. Supporting cycling exe-

cution representation  
 

+ 

(UC1, UC2) 
  + 

R-T6. Compatible to the soft-

ware in IEC 61131-3  
 

+ 

(UC1, UC2) 
  + 

R-E1. Usable over engineering 

processes 
 

+ 

(UC1 - UC4) 
 + + 

R-E2. Test case instantiation 

from the specification 
 

+ 

(UC1, UC2) 
  + 

R-E3. Supporting debugging 

of the implementation 
+    + 

R-E4. Supporting monitoring 

block generation 
 

+ 

(UC4) 
  + 

R-E5. Supporting change vali-

dations  
 

+ 

(UC3) 
  + 

R-E6. Supporting documenta-

tion and information exchange 
 

+ 

(UC1 - UC4) 
 + + 

R-U1. Tool supporting +    + 

R-U2. Understanding specifi-

cations 
  

+ 

(Exp-1 - Exp-3) 
+ + 

R-U3. Creating specifications   
0 

(Exp-1 - Exp-3) 
 0 

R-U4. Learning specifications   
+ 

(Exp-1 - Exp-3) 
+ + 

R-U5. Scalability of specifica-

tions  
  

0 

(Exp-1) 
0 0 

R-U6. Satisfaction with the 

specification approach 
  

+ 

(Exp-3) 
+ + 

*+: Fully satisfied, 0: Partially satisfied, -: not satisfied, empty cell: not available 





 

 

9. Conclusion and Outlook 

Software specification itself takes a role of a language over the lifecycle of the software in the 

sense that various stakeholders express their requirements and understand others’ intentions. 

Moreover, the importance of the correct software specification gets highlighted since engineering 

activities including design, implementation, validation, and deployment, are grounded on it and, 

thus, correct and efficient generation of artifacts throughout those activities could be affected by 

the specification. That is, well-structured specification could support not only describing the re-

quirement for further understanding of the corresponding engineers but also being used systemat-

ically during engineering processes to improve the quality of the implemented control software. 

In this thesis, the requirements of a control software specification language for aPS to be used to 

improve control software quality efficiently were presented. Completing testing, which is useful 

for typical or expected faults and also requires the execution of the artifact consuming quite some 

time, the advantage of formal verification was claimed, especially for aPS change cases that occurs 

frequently, are typically small, but require effort to validate. As a mandatory element of the formal 

verification, the requirements for the specification were analyzed to maximize the utilization as a 

well-formed document for a description of the implementation characteristics and for utilization 

in another artifact form, focusing on the fact that the specification could be used by and exchanged 

between different types of engineers (i.e., module developers, application engineers, and commis-

sioners). To fulfill the requirements, a concept of the tabled-based formal specification language 

was presented as well as its applications. The table form specification is grounded on the industry 

practices basically and could reflect the characteristics of the aPS technical processes. By putting 

the variables in the columns and representing the state sequences in the rows, a program execution 

path can be described in a table. The generalizing concepts enable the table to abstract a number 

of behaviors (maximally infinite) of the same sort. Referencing the other cells, using IEC 61131-

3 libraries, and timing abstraction notations allow for the table to be compact and understandable. 

Also, this approach aims at the accessibility from the automation engineers, so that they can easily 

generate and understand the specification. It was also presented that the approach could be applied 

various stages of the engineering to strengthen the quality management, namely implemented soft-

ware verification, obtaining specification, and monitoring block generation. The tool to support 

the presented approach was implemented prototypically by being embedded in one of the major 

control software IDE. The following evaluation showed the feasibility of the approach to be ap-

plied to the existing systems for their specification and further utilization. Four use cases were 
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introduced as the application cases of the presented approaches : i) description of a single compo-

nent module, ii) description of a multi-component module, iii) obtaining preliminary change spec-

ification from the existing IEC 61131-3 software, and iv) generating the monitoring function block 

from the specification. The result of the empirical study, conducted with the mechanical engineer-

ing department students as potential automation engineers, and the discussion with the industry 

experts enlightened that the presented approach has potential usefulness in the real industry field. 

Formal verification can complete the validation cases where testing cannot be entirely and ex-

haustively done due to the time limitation and the plant execution; the presented approaches, as a 

result, could promote an early application of regression verification through the incremental step-

wise approach from the single component modules up to the complex compound modules. It was 

proven as promising by the interest of a company to apply the given approaches through a transfer 

project. 

Although the evaluation of feasibility and the applicability have been conducted and the result 

turned to be positive, it was demonstrative level, and more case studies of the approach with var-

ious scales should be conducted. Here, the scale could be considered in various dimensions as 

experts argued. First, it could be regarding the size of the table. With more number of input/output 

and sequences, the table scales up horizontally (more columns) and vertically (more rows), re-

spectively. The borderline of the accessibility from the user point of view depending on the table 

size is to be more precisely measured. This will also require how to manage the abstraction of the 

unnecessary or omit-able cells with specific effective notations. Second, the scale could be handled 

in the sense of POU architecture level. Especially in the viewpoint of application engineer, some 

detailed behavior of modules could be abstracted during the implementation, meaning not know-

ing the details. In this case, corresponding GTTs for detailed behaviors could be merged after 

being abstracted to get the specification of the higher level of POU (i.e., a composition of the 

smaller POUs). Correspondingly, the merging techniques of GTTs should be approached in future 

research. This will allow to generate the specification of an integrated component block easily. 

The executed user evaluation was mainly with the potential users; however, the approach is to be 

applied in the real industry engineering workflows to hear the voice of the engineers, to be justified 

for its utility and usability. This includes the evaluation of the tool itself since it has not been 

assessed.  

Additional evaluation would also be necessary to strengthen the justification of the approach. Re-

garding learning the specification approach, it would be necessary to measure the precise level of 

learnability. While the overall user perception regarding its complexity and satisfaction was shown 

as positive from the conductive evaluation, it was also found that many participants were still 

wavering over about the usage in practice (in spite of positive feedback on the average, it was 
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lowest among the results). Therefore, performing successive work to figure out the main reason 

for this phenomenon and the corresponding adaptation of the language would be necessary. In 

addition, to make the results of the qualitative assessment stronger, a further survey comparing 

other formal specification languages with a promising number of participants should be conducted. 

For its applications, the generation of the specification base was approached on one of the IEC 

61131-3 language, i.e., SFC (cf. use case 3). As the other languages, such as ST or LD, are also 

prevalently used in the field, specification mining from the software code in those languages (not 

only graphical but also textual ones) should also be approached. To complete the generated spec-

ification for improved accuracy, various skills could be applied and integrated, such as recognizing 

typical code patterns by the code analysis or learning through the signal traces, to also support 

extended inferencing ability for nested cases in various type of languages. Domain’s typical be-

havior architectures such as OMAC states [Omac09] and ISA-88 [IEC97] architecture level could 

also be considered to decide the typical templates or patterns. Furthermore, the method of the 

monitoring block generation has a room to be improved overcoming the assumptions (cf. use case 

4). Within the current approach, rows are not overlapped to consider only the deterministic cases, 

meaning the only row is active at one time. However, more rows could be active in the real cases 

non-deterministically. In this case, the monitoring should consider different possible cases at the 

same time; this will require modification of the generation rules of the monitoring block and also 

affect the performance of the monitoring. These extensions of the presented methods are to be the 

direction of further research. In addition, the approach could produce a huge synergy together with 

testing as an artifact related to the quality assurance activities. It was shown that test cases could 

be provided by GTT through instantiation. Significant criteria to be designated to generate the 

most effective test cases out of GTT should also be researched depending on the objectives and 

testing aspects for the cases where the dynamic analysis is more required and effective.  
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