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Abstract: Applying an optimal race strategy is a decisive factor in achieving the best possible result
in a motorsport race. This mainly implies timing the pit stops perfectly and choosing the optimal
tire compounds. Strategy engineers use race simulations to assess the effects of different strategic
decisions (e.g., early vs. late pit stop) on the race result before and during a race. However, in reality,
races rarely run as planned and are often decided by random events, for example, accidents that cause
safety car phases. Besides, the course of a race is affected by many smaller probabilistic influences,
for example, variability in the lap times. Consequently, these events and influences should be
modeled within the race simulation if real races are to be simulated, and a robust race strategy is to be
determined. Therefore, this paper presents how state of the art and new approaches can be combined
to modeling the most important probabilistic influences on motorsport races—accidents and failures,
full course yellow and safety car phases, the drivers’ starting performance, and variability in lap times
and pit stop durations. The modeling is done using customized probability distributions as well
as a novel “ghost” car approach, which allows the realistic consideration of the effect of safety cars
within the race simulation. The interaction of all influences is evaluated based on the Monte Carlo
method. The results demonstrate the validity of the models and show how Monte Carlo simulation
enables assessing the robustness of race strategies. Knowing the robustness improves the basis for a
reasonable determination of race strategies by strategy engineers.
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1. Introduction

Motorsport races are competitions held to determine a ranking among the participants. In circuit
races, the result depends not only on the driver and car performance but also on race strategy. Since the
participants of such races drive a certain number of laps on a closed circuit, they can drive into their
pits at the end of every lap. Pit stops are mostly taken in order to obtain a fresh set of tires, allowing the
driver to drive a faster lap time than with an old set. However, since pit stops take some time,
one must find an effective compromise between benefit and expanse. These aspects are determined by
race strategy.

Race simulations are used to simulate and compare the effects of different race strategies.
The common approach to building such simulations is to discretize the race lap-wise, as we presented
in an earlier paper [1]. Thus, the first simulation step in every lap l is to calculate the expected lap times
tlap of the drivers. To obtain them, the simulation adds up a number of different time parts in a lap
time model, as shown in Equation (1) [1]. tbase is the lap time that the fastest car-driver combination
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can theoretically achieve in the race, that is, when the tires are fresh and the car has almost no fuel
on board. It therefore takes into account the characteristics of the race track. To this basis are added:
ttire for the effect of tire degradation (dependent on tire age atire and compound ctire), tfuel for the time
lost due to the fuel mass that is carried in the car, tcar and tdriver for the car and driver abilities, tgrid for
the time that is lost at the race start (dependent on grid position pg) and tpit,in-lap/out-lap for the time
that is lost in pit stops [1].

tlap(l) = tbase + ttire(atire, ctire) + tfuel(l) + tcar + tdriver + tgrid(l, pg) + tpit,in-lap/out-lap(l) (1)

Consecutive lap times of a driver are summed up to obtain his race times trace at the end of every
lap as given by [1]

trace(l) =
l

∑
i=1

tlap(i). (2)

The race times are the central element of the simulation. For example, they can be compared in
order to determine whether an overtaking maneuver would have taken place in reality. This will be
the case if the calculated race time of the pursuer is sufficiently smaller (i.e., faster) than that of the car
in front. Figure 1 visualizes the simulation flow chart. The strategy engineer specifies the participants’
strategies and obtains their race durations (and therefore also their final rank positions).

Race simulation
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Figure 1. Flow chart of a lap-wise discretized race simulation (based on the flow chart presented in [1]).
The block “probabilistic effects” contains most of the extensions proposed in this paper.

The lap-wise discretization provides a good compromise between computational effort,
parameterization effort, and accurate results. Although it causes some modeling difficulties, as will be
discussed later, it is preferred over other approaches because the fast computing times are essential
for the intended application. They enable the strategy engineer to quickly compare the results of
many different strategies before and during a race. Moreover, they make the application of the Monte
Carlo method, and thus the ideas presented in this paper, possible in the first place. For comparison:
A time-discrete simulation or a simulation of the individual driving lines of every car would be orders
of magnitude slower and would be hard to parameterize.

In the presented state, however, the simulation misses one crucial aspect: real races are often
decided by random events. If, for example, a driver causes an accident, race control usually sends a
safety car on the track. Among other things, it significantly reduces the race speed while the crashed
car is removed from the track, which leads to increased lap times. Consequently, probabilistic events
such as this should be modeled within the race simulation to allow the strategy engineer to determine a
stable race strategy. “Stable” in this context means that the strategy should be robust against unforeseen
events, that is, it should have a high probability on the targeted rank position.
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2. Related Work

The literature and also this paper concentrate on the FIA Formula 1 World Championship because
it is the most popular circuit racing series, and accordingly, most data is available. Nevertheless,
the presented ideas could be adapted to other racing series as well.

For the determination of the simulation parameters, as well as for the analysis of the probabilistic
influences in this paper, a comprehensive database is required. In our case, it is based on the Ergast
API [2], which is a web service that hosts Formula 1 timing data. It provides us, for example, with lap
times, positions, and pit stop durations. We restructured and extended the data for our purpose,
for example, by adding information on accidents and failures, safety car and virtual safety car phases,
and the tire compounds used. Furthermore, several cross-checks are carried out during the creation of
the database, for example, that the tire compound only changes during a pit stop. Our database covers
the Formula 1 hybrid era, that is, the seasons from 2014–2019. It is available under an open-source
license on GitHub (https://github.com/TUMFTM/f1-timing-database).

Little literature is available that deals with race simulations, and especially the modeling of
probabilistic effects in this context. The published works on this topic are based on the Monte
Carlo simulation (MCS) concept. MCS “uses random sampling to study properties of systems with
components that behave in a random fashion” [3] p. 1. The result of interest for a strategy engineer
is the final rank position of his driver. Therefore, MCS is applied by implementing realistic models
for the probabilistic effects and then simulating a huge amount of races to determine the estimated
distribution of the rank positions. Table 1 gives an overview of the literature coverage on this topic
as well as an evaluation of the presented models. The evaluation is based on an assessment of the
completeness and accuracy of the models. The models and evaluations are explained in more detail in
the next paragraphs.

Table 1. Overview and evaluation of the modeled probabilistic effects in motorsport published in the literature.

Modeled Effect Bekker et al. [4] Phillips [5] Salminen [6] Sulsters [7]

Starting performance

Variability of lap time

Variability of pit stop duration

Accidents and failures

Damaged car

Full course yellow phases

2.1. Starting Performance

“Starting performance” in this context means the driver’s performance at the start of the race.
A good starter will, on average, gain positions during the race start. This can be modeled by sampling
the number of lost or gained positions at the race start from an empirical distribution based on historical
data [4,7]. The sampled changes are then applied to the drivers’ positions. The problem with this
approach is that the positions are changed without changing the respective lap times accordingly,
which is not realistic. Furthermore, the treatment of edge cases is unclear. For example, how should it
be handled if the driver on the third grid position should win two positions, and the driver on the
second grid position should win one position?

Another possibility is used by Phillips [5] and Salminen [6]. They convert the driver-specific
average number of positions lost or gained in the first lap pchange,start into a positive or negative
delta time. The result is used as the mean µstartperf of a Gauss distribution, cp. Equation (3).
The corresponding standard deviation σstartperf is set 0.25 s [6] or 1 s [5]. In the first lap, the distribution

https://github.com/TUMFTM/f1-timing-database
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is sampled to obtain tstartperf for every driver, see Equation (4). It can be considered in tgrid, which was
introduced in Equation (1).

µstartperf = pchange,start · 0.25 s (3)

tstartperf ∼ N
(

µstartperf, σ2
startperf

)
(4)

Our criticism of this variant is that using the average number of gained and lost positions
per driver distorts the probabilities. For example, Lewis Hamilton (world champion in 2018) lost,
on average, 0.8 positions in the first laps of the 2018 races, whereas Lance Stroll (ranked 18 of 20 in
2018) gained 1.9 positions [8]. There are several such examples. This is because drivers starting mostly
in front positions have only a small potential to improve their position compared to drivers starting at
the back of the starting grid. Additionally, the used values for σstartperf are not based on data.

2.2. Variability of Lap Time and Pit Stop Duration

When analyzing real lap times, it can be observed that they are scattered around a mean value,
since no driver can perfectly repeat a lap. For the analysis of this effect, other influences on the lap
times have to be removed as far as possible, for example, the effects of tire degradation and burned
fuel mass. Therefore, quadratic polynomials of the form tlap,poly(l) = k2 l2 + k1 l + k0 are fitted to the
real lap times tlap for every stint. This is visualized in the upper part of Figure 2. Since we only want
to include “clean” laps, the first two laps (heavily affected by the start of the race) and all laps that
are affected by pit stops or full course yellow (FCY) phases have to be removed from the process.
FCY phases are used by race control to reduce speed when there is danger on the race track.
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Figure 2. Visualization of the lap time variability of Hamilton in Austin 2019. The deviations are
the difference between real lap times and a quadratic polynomial fitted separately for every stint.
The first two laps, as well as laps affected by pit stops or full course yellow phases, are not included in
this process.

The driver-specific lap time deviations tlap,dev shown in the lower part of Figure 2 can then be
calculated by

tlap,dev(l) = tlap(l)− tlap,poly(l). (5)

The deviations are approximately normally distributed. Accordingly, Sulsters [7], Phillips [5]
and Salminen [6] model the lap time variability by adding a sample tlap,var from a Gauss distribution
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with zero mean and driver-specific standard deviation (cp. Equation (6)) to every lap time tlap in
Equation (1).

tlap,var ∼ N
(

0, σ2
lap,var

)
(6)

As can be seen in Figure 3, pit stop durations vary as well. The plot indicates that the pit stop
durations of Mercedes are mostly very close to the minimum duration of the races, whereas Force
India’s pit stops often take significantly longer.
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Figure 3. Histogram plot showing the differences between the pit stop durations and the minimum pit
stop duration of the races for Mercedes and Force India up to a maximum deviation of 4 s (seasons
2014–2019).

The data demonstrate that a symmetric Gauss distribution would not fit for modeling this
variability. Therefore, Phillips [5] uses a log-logistic distribution, also known as Fisk distribution F ,
to model this effect, cp. Equation (7). The distribution is fitted individually for every team using
the three parameters shape, loc, and scale [9]. A sample from the distribution is then added to
tpit,in-lap/out-lap of Equation (1) when a driver performs a pit stop. Bekker et al. [4] state that they
included the effect, but do not describe it any further.

tpit,var ∼ F (shape, loc, scale) (7)

2.3. Accidents and Failures

Accidents and (technical) failures both result in the driver being unable to continue the race,
known as “did not finish” (DNF) or “retirement”. In literature, no distinction is drawn between the
two causes. Bekker et al. [4] use driver-specific probabilities Pdnf to determine in every lap if a driver
retires. Phillips [5] and Salminen [6] extend the driver-specific probabilities by a lap dependency to
consider that there are significantly more retirements during the first lap than in other laps. This results
from the small distances between the drivers shortly after the start of the race.

All the probabilities Pdnf are based on the fraction of real DNFs of a driver. Consequently,
they would be derived to an unrealistic zero if a driver did not have a DNF within the scope of
the database. Table 2 demonstrates that this is the case with Lewis Hamilton in the 2019 season,
for example. Sulsters [7], therefore, uses Bayesian inference to transfer the knowledge from all available
DNFs in the database to the particular driver to determine if he retires within a race. As a result,
even drivers without a DNF get a (low) probability for retirement. The approach seems promising.
However, Sulsters [7] also does not differentiate between accidents and failures, although both causes
affect the races differently, as will be shown later.
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Table 2. Number of accidents and (technical) failures for the drivers of Mercedes and Ferrari in the 2019 season
(data from [10]).

Driver Team Accidents Failures

Lewis Hamilton Mercedes 0 0
Valtteri Bottas Mercedes 1 1
Sebastian Vettel Ferrari 1 2
Charles Leclerc Ferrari 2 1

2.4. Damaged Car

In contrast to cars that retire due to an accident or failure, a damaged car can continue the
race. Salminen [6] is the only author to modeling this case. He introduces a 1% damage chance per
overtaking maneuver for each of the involved cars, and another 1% that both are damaged. A uniform
distribution models the effect of damage according to Equation (8). Besides, damaged cars perform an
immediate pit stop at the end of the lap.

tdamage ∼ U (2 s, 60 s) (8)

The problem with modeling damaged cars is that a lot of detailed data is required to consider them
correctly, especially the relationship between damage, accidents, and FCY phases. To our knowledge,
this data is not available to the public. Since Salminen [6] does not describe where the values come
from, the modeling of the effect seems unclear.

2.5. Full Course Yellow Phases

A regular yellow flag indicates minor danger in a sector of the race track, for example, a slow car.
The effect on the race is negligible. Full course yellow phases indicate a significant danger and therefore
have a bigger impact. They limit the speed of the drivers, which increases the lap times. In Formula 1,
FCY phases are differentiated into virtual safety car (VSC) and safety car (SC) phases. The race control
decides, depending on the danger for the race participants and marshals, which variant is deployed.
A VSC prescribes a minimum lap time tlap,vsc for every driver. Figure 4 indicates, that tlap,vsc is about
140% of the fastest unaffected lap time of a race tlap,min. Since every driver has to keep to it immediately,
the time intervals between the drivers remain more or less constant. During an SC phase, drivers must
also reduce their speed, similar to a VSC phase. Additionally, a physical car drives out of the pit lane
onto the race track in front of the race leader. It drives much slower than the race cars and must not be
overtaken. Therefore, it increases the lap times further to tlap,sc ≈ 1.6 · tlap,min as soon as the drivers
reach it on the track, cp. Figure 4. As a result, the gaps between the drivers vanish. A crucial element
for race strategy is that the relative time loss for driving through the pit lane is significantly reduced
during VSC and SC phases since it depends on how long it takes to pass the pit lane on the race track
in comparison to driving through it. Under SC or VSC conditions, the cars drive slower on the track
while driving through the pit lane is always speed limited and, therefore, not affected.

It can be seen in Figure 4 that the lap times vary considerably during SC and VSC phases.
Therefore, when calculating the average lap time increases mentioned in the previous paragraph,
we apply the following criteria in order to consider only representative lap times. For SC phases,
we use those laps in which the SC has already been on track for more than 1.5 laps before the lap and
which are not the last lap of the phase. For VSC phases, the lap must be fully covered by the phase.
Generally, only the lap times of the drivers on positions 1–3 are used. The values are averaged over all
seasons 2014–2019.
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Figure 4. Lap times of the drivers on positions 1–3 in Le Castellet 2018. The first laps are affected by a
safety car (SC) phase, the last laps by a virtual safety car (VSC) phase. Crosses mark those lap times
that are chosen to calculate the average lap time increase during SC and VSC phases. The horizontal
lines indicate 140% and 160 % of the fastest lap time of the race tlap,min, which is used as a basis.

Sulsters [7] models an SC by increasing the lap time of every driver for five laps by 20%. Phillips [5]
simulates SC phases for six laps. He distinguishes between run-up phase (20% lap time increase)
and following phase (40% lap time increase). Additionally, he reduces tire wear during an SC phase.
Salminen [6] is the only author distinguishing between VSC and SC phases. The VSC is modeled by a
lap time increase of 20%. The SC implementation is similar to Phillips [5] except for the reduced tire
wear, which is neglected. However, Salminen [6] takes into account the reduced time loss of pit stops
during FCY phases tpit,in-lap/out-lap,fcy:

tpit,in-lap/out-lap,fcy = 0.5 · tpit,in-lap/out-lap. (9)

When comparing the implementations in the literature with reality, it becomes clear that several
aspects are not modeled accurately. Firstly, FCY phases in the presented approaches always start
and end exactly on a completed lap, which is not the case in reality. Secondly, in reality, VSC and SC
always appear at the same point in race time trace for every driver, which is different from appearing
at certain race progress, especially if some slower drivers are lapped during the race. For example,
if an SC is deployed in lap 30, it starts when the race leader is in lap 30. A lapped driver, in contrast,
would already be affected in lap 29 in reality. Therefore, it makes more sense to simulate the SC start
at a specified race time, for example, trace = 3000 s, instead of a specified race progress as in literature.
Thus, it affects the race of every driver as it would in reality. Thirdly, according to our assessment of
the data, tlap,vsc and tlap,sc are much bigger than what is assumed in literature. Fourthly, the time loss
of pit stops under FCY conditions tpit,in-lap/out-lap,fcy is highly dependent on the race track layout and
cannot simply be halved. Since this is an important element of race strategy, it should be parameterized
more accurately.

3. Methodology

With the lap-wise discretized race simulation (described in Section 1) as a basis, there are few
alternatives to MCS for evaluating the effects of probabilistic influences. One option would be to use
what-if scenarios, for example, “What happens if the SC gets deployed on lap 30?”. However, this can
only be dealt with if we refrain from considering combinations of many probabilistic influences due
to the rapidly increasing complexity. Another idea would be to discretize the possible range of the
random variables and then simulate races for all combinations (full factorial design). In contrast to
MCS, this approach would lead to better sampling of the parameter space in low-probability regions.
MCS, on the other hand, provides more meaningful results because it utilizes probability distributions
that represent real behavior. Besides, a full factorial design suffers from the curse of dimensionality,
which quickly increases computation time. As in literature, MCS is therefore preferred. MCS requires
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that the generated random numbers are independent and identically distributed [3] p. 4. Provided
that the computer’s random number generator (RNG) fulfills this requirement, it also holds for most of
the commonly used random distributions, since they are sampled based on the RNG. This also applies
to the distributions used in this paper: Gauss distribution [11], Beta distribution [12] and log-logistic
(Fisk) distribution [12].

The following sections describe how we have modeled the influences presented in the previous
chapter in order to overcome the mentioned limitations. Damaged cars are not considered as we do
not have the necessary data available. Besides, it is a rare case that a car that has been involved in an
accident is only damaged so slightly that it can continue the race.

3.1. Modeling of Starting Performance

To be able to distinguish between good and bad starters, we need a reference, that is, an average
starter. Therefore, we measured the times between race start and crossing the start line (in front of
the starting grid) ts as a function of starting grid position pg for the 2019 races. This was done using
videos from the cockpit perspective, which are available on F1 TV [13]. As Figure 5 reveals, a square
root function is a good approximation of the average starter.
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Figure 5. Measured data and reference curve (square root function) for the time between race start and
crossing the start line ts as a function of starting grid position pg in the 2019 season.

The square root function is physically rational if we assume a constant acceleration for the race
start phase. This hypothesis can be made because Formula 1 cars are grip limited and not power
limited in the lower speed range. The function is established as follows:

ts =

√
2(pg − ps)

aavg
+ tr. (10)

The parameters ps and tr stand for the (virtual) position of the start line and the reaction time of a
human driver. They shift the origin so that a driver who would start directly on the start line would
only have to overcome his reaction time. ps is set 0.8 because the start line is located only slightly in
front of the pole position. Therefore, the distance to the pole starter is significantly smaller than the
usual distance between two grid positions (which is 8 m). As a consequence, ps cannot be set 0. For the
reaction time tr we use 0.2 s. The average acceleration during the race start aavg is then determined
using a least-square fit. This results in aavg = 11.2 m s−2 when evaluating the data of the 2019 season
as shown in Figure 5 and using the distance of 8 m between two starting grid positions.

With the parameterized reference curve, as depicted in Figure 5, we can calculate the differences
to the measured data points for every driver. These deviations are then used to calculate mean and
standard deviation of a driver-specific Gauss distribution, which is used to modeling the starting
performance tstartperf as stated by Equation (4). Samples from these distributions are added to the
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first lap time in the race simulation. The parameters of the drivers of the 2019 season can be found in
Table A1 in Appendix A.

3.2. Modeling of Variability of Lap Time and Pit Stop Duration

The modeling of the variability of lap time and pit stop duration is adapted from literature as
presented in Equations (6) and (7). However, the parameterization was carried out on our significantly
larger database. The parameters of the drivers and teams of the 2019 season are given in the Tables A1
and A2 in Appendix A.

3.3. Determination of Accident and Failure Probabilities

As mentioned, we want to differentiate between accidents and (technical) failures. Therefore,
we assume that an accident depends on the driver, while a failure depends on the car, that is, the team.
If a team changed its name from one season to the next, for example, when Sauber became Alfa Romeo
Racing, we treat it under its original name to ensure that the failure probabilities are determined
correctly. The accident and failure probabilities are determined by applying Bayesian inference,
as suggested by Sulsters [7]. For Bayesian inference, a prior distribution and a likelihood function are
required. As with Sulsters [7], the Beta distribution is used as prior distribution, and the Bernoulli
distribution as likelihood function (the possible race outcomes are: “finished” or “did not finish”).
The prior distribution parameters α̂ and β̂ are determined to [7] p. 11

α̂ =

(
1− µ̂

σ̂2 − 1
µ̂

)
µ̂2 and (11)

β̂ = α̂

(
1
µ̂
− 1
)

. (12)

µ̂ and σ̂ stand for mean and standard deviation of the prior distribution. They are determined
using the total accident fraction per driver, and the total failure fraction per team. Hereby, only drivers
and teams with at least 30 races in the database are considered. The two prior distributions for accidents
and failures then represent our knowledge about the respective probabilities on the entire database.

Thereafter, driver-, team- and season-specific posterior distributions are calculated taking into
account the corresponding accident and failure fractions within the particular season. This proceeding
combines the overall knowledge with the specific influence factors of driver, team, and season. For the
chosen combination of prior distribution and likelihood function, the posterior distributions are also a
Beta(α + z, β + N − z) distribution [7] p. 12. z is the number of accidents or failures in the respective
season, and N stands for the number of attended races in that season. Figure 6 shows the resulting
probability density functions of the accident prior distribution and three driver-specific accident
posterior distributions.
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Figure 6. Probability density functions (PDF) of the prior accident probability distribution
in comparison to three driver-specific distributions of the 2018 season. Driver abbreviations:
HAM–Hamilton, GRO–Grosjean, VET–Vettel.
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Finally, the mean values of the posterior distributions are used as accident Paccident and failure
probabilities Pfailure for the simulation. The parameters of the drivers and teams of the 2019 season are
given in the Tables A1 and A2 in Appendix A.

3.4. Determination of Full Course Yellow Phases in Combination with Accidents and Failures

The determination of FCY phases and retirements must be performed before starting the actual
race simulation in order to have the required information available even if backward drivers reach the
specified start of a phase in an earlier lap than the race leader. The alternative would be to determine
the retirements and their corresponding FCY phases “live” during the simulated race, as used in
some of the literature. A small example shows why this does not work correctly with the lap-wise
discretization principle. Looking at exemplary race times in Table 3, we find that driver 1 is ahead of
driver 2 and driver 3 in laps 20–22 because he reaches the end of each lap earlier (actually driver 3 was
even lapped because trace (driver 1, lap 21) < trace (driver 3, lap 20)). Assuming that the simulation
would decide in lap 22 that a VSC phase should be activated at trace = 2110 s, we can conclude that it
would affect driver 1 shortly after starting into lap 22, while driver 2 and driver 3 would have already
been affected in lap 21. Therefore, the problem is that once the simulation decides to activate the VSC
phase in lap 22, the previous lap has already been fully simulated due to lap-wise discretization. As a
consequence, the SC could not be considered for driver 2 and driver 3 in lap 21 anymore.

Table 3. Exemplary race times trace for three drivers at the end of laps 20–22 to explain a modeling
difficulty arising from the lap-wise discretization.

Lap trace (driver 1) trace (driver 2) trace (driver 3)

20 2000 s 2010 s 2102 s
21 2100 s 2120 s 2204 s
22 2200 s 2230 s 2306 s

The solution is to determine all FCY phases and retirements before starting the actual race
simulation, as explained in the following. For the definition of FCY phases, a process to fix start race
times, durations, and type (VSC or SC) is required. The definition must happen in conjunction with
the determination of accidents and failures since they are the causes of FCY phases. For our process,
we assume that accidents lead to SC phases. In contrast, if a driver retires due to a failure, he tries to
drive to a safe spot. Therefore, we assume that this either causes a VSC phase or no FCY phase at all.
We use the following procedure to keep the overall chances of SC, VSC, accidents, and retirements as
realistic as possible, although it violates the real cause-effect principle in the case of SC phases:

1. Determine SC phases (quantity, start, duration) and derive accidents
2. Determine failures (quantity, start) and derive VSC phases (duration)
3. Convert race progress to race time

Determine SC phases and derive accidents

The SC phases are fixed at first because they have a significant impact on race strategy,
and therefore their probability of occurrence should be no conditional probability. The quantity
of SC phases for a race is chosen between zero and three, whereby empirical probabilities Psc,quant

according to the real fractions of the seasons 2014–2019 are used for each of the options, see Figure 7.
The exact values are given in Table A3 in Appendix A.
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Figure 7. Fraction of races in the seasons 2014–2019 with the specified number of safety car deployments.

Then, the start of every SC phase is defined. Therefore, the race is divided into six groupings
(first lap, ≤ 20%, ≤ 40%, ≤ 60%, ≤ 80%, ≤ 100%) with individual probabilities Psc,start. The laps in
each group are then assigned the same proportion of the corresponding probability. This classification
can be compared with the actual data in Figure 8. The exact values for Psc,start are given in Table A4 in
Appendix A. The first lap has to be considered separately since over 36 % of the SC phases start here,
which can be explained by the small distances between the drivers shortly after the start that cause a
high probability of accidents.
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Figure 8. Real and modeled cumulative distribution functions (CDF) of the start of the safety car phases
in the seasons 2014–2019.

The duration of an SC phase is chosen to be between two and eight laps with empirical
probabilities Psc,duration derived from data of the seasons 2014–2019. The exact values are given
in Table 4. The start of an SC phase is further modified by a uniform distribution U (0, 1) to include the
fact that it does not start precisely at the point laps are completed.

Table 4. Probabilities for the duration of a safety car phase (seasons 2014–2019).

Probability 2 Laps 3 Laps 4 Laps 5 Laps 6 Laps 7 Laps 8 Laps

Psc,duration 0.182 0.25 0.227 0.193 0.057 0.068 0.023

Before finally saving the created phase, it is assured that it does not overlap an already existing
phase. This would be the case if

rfcy,s,n ≤ rfcy,e,e + rfcy,d and (13)

rfcy,s,e − rfcy,d ≤ rfcy,e,n (14)

both hold. rfcy,s/e,n is the race progress at the start and end of the new and rfcy,s/e,e the race progress
at the start and end of the existing FCY phase currently in comparison. rfcy,d is a minimum distance
which should be kept between two phases.
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As mentioned before, we assume that every SC phase is caused by an accident. Therefore,
the simulation chooses one driver who retires at the start of every SC phase. The selection happens
based on the drivers’ accident probabilities Paccident that were determined earlier. Selecting only a
single driver for an accident is a simplification, since sometimes two or even more drivers are involved
in reality. However, our available data is not detailed enough to be able to modeling and parameterize
these cases. Furthermore, retired drivers are not crucial for race strategy determination.

Determine failures and derive VSC phases

Thereafter, the simulation determines, for those drivers not involved in an accident, whether they
suffer a failure. The team-specific failure probability Pfailure determined earlier is used in this respect.
Subsequently, the simulation checks for every failure appearing if it causes a VSC phase using the
conditional probability P(vsc|failure). Assuming that every VSC is caused by a failure, it can be
calculated using the number of VSC phases nvsc and the number of failures nfailures (2015–2019, as the
VSC was introduced in 2015) in the database:

P(vsc|failure) =
nvsc

nfailures
= 0.227. (15)

This is a simplification because there are some cases where, after an accident, VSC phases were
first activated and shortly afterward replaced by an SC phase, for example. However, as before,
the available data is not detailed enough to analyze these cases. The start of the failure (and probably
of the phase) is sampled from a uniform distribution U (0, nlaps) since no outstanding race section
could be identified in the data. nlaps stands for the number of laps in the race. The duration of a
possible VSC phase is chosen in the range between one and four laps, with empirical probabilities
Pvsc,duration, and modified by a uniform distribution U (0, 1) as with the start of SC phases. The exact
probabilities for the duration determination are given in Table 5.

Table 5. Probabilities for the duration of a virtual safety car phase (seasons 2015–2019).

Probability 1 Lap 2 Laps 3 Laps 4 Laps

Pvsc,duration 0.479 0.396 0.021 0.104

Convert race progress to race time

Due to the lap-based nature of the information in the database, the definition of FCY phases and
retirements is also based on laps (i.e., race progress). However, as mentioned in Section 2.5, race times
are required instead of race progress so that every driver can be affected at the same point in time.
This is achieved by converting the race progress information into race times using a pre-simulation
of the actual race with a single driver. It gives a reasonable estimate at which race time a particular
stage of progress is reached during the race. Thus, the progress information of the FCY phases can
be converted to race times. Deviations between the race times of the pre-simulation and the real
race simulation cause no problems, as they change the start and duration of the phases equally for
every driver.

3.5. Modeling of Accidents, Failures, and Full Course Yellow Phases

The modeling of accidents and failures is implemented by simply taking the concerned driver out
of the race as soon as his race time exceeds the defined time of retirement.

Modeling of the virtual safety car

The VSC is modeled by increasing the lap times of the drivers to tlap,vsc = 1.4 · tbase, cp. Section 2.5.
However, since FCY phases can start and end at any point during a lap, we have to calculate the lap
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fractions that are driven normally fn and affected by the VSC phase fvsc to obtain the correct lap time.
If, for example, the phase starts within the current lap and ends in a later lap, the resulting lap time
tlap can be calculated by

fn =
trace,vsc,s − trace,l-1

tlap,n
, (16)

fvsc = 1.0− fn, and (17)

tlap = fn · tlap,n + fvsc · tlap,vsc, (18)

where trace,vsc,s is the start race time of the VSC phase, trace,l-1 the race time of the driver at the end of
the previous lap and tlap,n the unaffected lap time of the driver in the current lap. Similar calculations
are performed when the phase ends. Overtaking is forbidden in the simulation if a VSC affects at
least 50% of a lap. Due to the limited speed, tire degradation and fuel consumption are reduced
to 50% during the phase. This is an estimation since the exact values cannot be derived from the
publicly available data. In reality, the saved fuel is, of course, consumed after the phase, for example,
by increasing the engine power. In the simulation, the average consumption per lap after an FCY
phase is therefore automatically adjusted so that the saved fuel is used up by the race finish.

Modeling of the safety car

For the realistic modeling of SCs, we use driver-individual “safety car ghosts” (SCGs). The concept
is illustrated in Figure 9. An SCG can be imagined as a virtual car that is only visible to its
corresponding driver and does not affect any other driver. Since it is a safety car, it cannot be
overtaken. The driver-individual handling is necessary, since the drivers may be affected by the same
SC in different laps due to lap-wise discretization. An SC deployment is modeled in two stages,
a run-up stage and a following stage. If a driver reaches the start race time of an SC phase, we assume
that his SCG starts driving on the finish line exactly at this time. Equally to the VSC, the lap time of
the respective driver is then increased up to tlap,vsc for the remaining part of the lap and following
laps to simulate the run-up stage under full course yellow condition. Every driver catches up with
his SCG within several laps, since it drives at 160% of the base lap time, cp. Section 2.5. The first SCG
lap time is even slower to modeling the real behavior where the SC waits for the leading driver at the
pit exit. If a driver’s calculated race time at the end of a lap is below that of his SCG, he would have
overtaken it. Thus his lap time is artificially increased to stay behind. Keeping a minimum temporal
spacing tgap,sc between the drivers is hereby assured by adding p · tgap,sc to the individual SCG race
times, where p stands for the drivers’ rank positions. Tire degradation and fuel consumption are
reduced to 25% (again an estimation) while driving behind an SC. The value is smaller than that of
the VSC phase because the speed is even lower. The SCGs remain active until the end of the lap in
which the SC phase ends, even if the originally determined end time is reached before the end of the
lap. This models the fact that the SC can only leave the race track by entering the pit lane at the end of
a lap. This proceeding allows a realistic simulation of the re-start of the race with small gaps between
the drivers. After each SC phase, the drag reduction system (DRS) is deactivated for two laps, as in
reality. The DRS allows drivers to reduce drag resistance on straights when following another driver
at a close range. It was introduced in the 2011 season to ease overtaking.
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Figure 9. Illustration of the safety car ghost (SCG) concept. For reasons of illustration, the lap-wise
discretization is disregarded here. The circle symbolizes a lap on the race track starting and ending
at the finish line (FL). During normal driving (left), a race driver drives with his calculated lap time
tlap. As soon has his race time trace exceeds the start of a safety car phase, he is slowed down to tlap,vsc

and his SCG starts driving on the finish line with a lap time of tlap,sc. This is the run-up stage (center).
After some time, the driver will catch up with his SCG due to its slower lap time. As he is not allowed
to overtake the SCG, he will follow it and keep the minimum temporal spacing p · tgap,sc, even though
his “free” lap time would still be tlap,vsc. This is the following stage (right). At the end of a safety car
phase, the SCG always disappears at the finish line.

Adjustment of pit time losses under FCY condition

As mentioned, it is crucial to consider that the relative pit time loss tpit,in-lap/out-lap reduces if a
driver drives through the pit lane during an FCY phase. Therefore, smaller pit time losses are added if
entering or leaving the pit is fully covered by an FCY phase. During an SC phase, the time losses are
often even smaller than during a VSC phase. Since the data are not publicly available, we measured
them using videos from the cockpit perspective in 2018 and 2019, which are available on F1 TV [13].
As Table 6 indicates, the differences between normal conditions and FCY conditions vary largely
depending on the track layout. Substitute values (for tpit,in-lap/out-lap,vsc and tpit,in-lap/out-lap,sc) from
similar tracks can be used for race tracks for which no VSC or SC phases have been declared in 2018
and 2019.

Table 6. Time loss when driving through the pit lane under normal conditions, during a virtual safety
car (VSC) phase, and during a safety car (SC) phase. The values were measured using videos from the
cockpit perspective in the 2018 and 2019 seasons, which are available on F1 TV [13].

Race Track tpit,in-lap/out-lap tpit,in-lap/out-lap,vsc tpit,in-lap/out-lap,sc

Catalunya 19.04 s 10.03 s 7.88 s
Melbourne 17.85 s 12.95 s 12.61 s
Monza 20.60 s 15.42 s 10.16 s
Suzuka 19.48 s 15.05 s 13.60 s

4. Results

The race simulation is implemented in Python. The computation time for a race with 20
participants (as in the 2019 season) is 90 ms to 110 ms on a common computer (Intel i7-6820HQ)
including the pre-simulation. For MCS, the races can be simulated independently from each other.
Therefore, the calculation time benefits from multiple CPU cores almost linearly. This allows us to
perform 10, 000 simulation runs in about 250 s to 300 s using all four cores of the CPU.

For reasons of clarity, only the six drivers of the three currently dominating teams (Mercedes,
Ferrari, Red Bull) are simulated and shown in this section.
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4.1. Effect of Full Course Yellow Phases

Figure 10 shows a comparison between real and simulated race time gaps for laps 29 to 37 of the
2018 Chinese Grand Prix. The gaps trace,gap are calculated by subtracting the lap-wise race times of a
virtual driver from those of the real drivers, cp. Equation (19). The lap time of the virtual driver tlap,virt
is constant and chosen so that his total race duration corresponds to that of the race winner, as given
by Equation (20). The plot then clearly visualizes where the drivers gain (negative gradient) and lose
(positive gradient) time during the race in comparison to the average lap time. The yellow boxes in the
figure mark the laps affected by an SC phase. For this example, the phase was set to fit the real race in
the simulation.

trace,gap(l) = trace(l)− l · tlap,virt (19)

tlap,virt =
trace,winner

nlaps
(20)
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Figure 10. Actual (upper graph) and simulated (lower graph) race time gaps to a virtual driver with
a constant lap time in the 2018 Chinese Grand Prix. The yellow boxes mark the laps affected by a
safety car phase. Driver abbreviations: VET–Vettel, BOT–Bottas, VER–Verstappen, RAI–Räikkönen,
HAM–Hamilton, RIC–Ricciardo.

The figure demonstrates a good correspondence between real and simulated data. As in reality,
drivers approach the SC in the simulation and follow it with the corresponding lap time. As can be
seen from the small gradient, lap 31 is only slightly affected by the SC in simulation and reality because
the SC gets deployed very late in that lap. In this example, all six drivers catch up with the SC within
lap 32 because they were not far apart before the SC deployment. Accordingly, they simply follow the
SC in laps 32–35. The figure also proves that the re-start of the race happens similarly in simulation
and reality in lap 36.
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4.2. Analysis of Monte Carlo Simulations

Figure 11 presents an exemplary MCS output for three of the six drivers. The plots show the
fraction of races that the drivers have completed on the respective positions. They tell us about
the expected race outcome with a given race strategy, which can be used to evaluate different
variants. The first row in the figure (w/o MCS) displays the deterministic simulation output, that is,
without using MCS. The second and third rows (w/MCS) show the resulting position distributions for
two different race strategies for Verstappen when using MCS. In this example, Verstappen’s pit stop
was postponed from lap 14 (strategy 1) to lap 19 (strategy 2).
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Figure 11. Resulting position distributions for three of the six simulated drivers in an exemplary
race without using Monte Carlo simulation (MCS) (w/o MCS) and with using MCS (w/MCS, 10,000
simulation runs). The pit stop of Verstappen was postponed from lap 14 (strategy 1) to lap 19 (strategy
2) in this example. Driver abbreviations: HAM–Hamilton, VET–Vettel, VER–Verstappen.

We want to point out three aspects of the figure. Firstly, the second row provides much more
information than the first row because MCS was applied. For Verstappen, for example, it turns out that
fifth place in the race is only the second most likely outcome, although the deterministic simulation
shows this as a result. For Hamilton, it is almost as likely to finish second as it is to finish first. Secondly,
we can observe a shift in the position distribution of Verstappen when switching from strategy 1 to
strategy 2. It results in an improvement in third positions. This would again not have been visible in the
deterministic simulation. Similar investigations can also be carried out with different tire compounds,
for example. Thirdly, the fraction of rank position six is slightly above the previous ones for Hamilton.
Retirements due to accidents and failures explain this.

Hence, MCS allows us to determine a basic race strategy before a race that already considers
probabilistic influences. At the same time, we gain an idea of the robustness of the strategy against
unforeseen events because it is fixed, that is, not adapted to the race situation during the simulation.
During a real race, of course, this basic strategy must be adapted to the current situation, for example,
SC phases. Without MCS, we would only obtain a single result, which is much less helpful for
strategy determination.
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It is not only final positions that can be evaluated with the combination of race simulation and
MCS. Figure 12 depicts the distribution of race durations after 10,000 simulation runs for this exemplary
race. The durations of races without an SC phase differ only slightly. The widely distributed hill
between 95 min to 103 min indicates races with a single SC phase. Races with two and three SC phases
also have a high spread but appear relatively seldom.
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Figure 12. Race durations of the race winner in an exemplary race after 10,000 simulation runs.

However, the fraction of SC phases in the simulation fits well with the actual data. This is outlined
in Table 7. The VSC fractions differ slightly due to the conditional probability depending on previous
failures, cp. Equation (15).

Table 7. Comparison between actual (seasons 2014–2019 for safety car (SC), 2015–2019 for virtual safety
car (VSC)) and simulated (10,000 simulation runs of an exemplary race with 20 drivers) full course
yellow phase fractions.

0 Phases 1 Phase 2 Phases 3 Phases

SC (actual) 0.455 0.413 0.099 0.033
SC (simulated) 0.462 0.416 0.091 0.031
∆ SC 0.007 0.003 −0.008 −0.002
VSC (actual) 0.637 0.294 0.040 0.029
VSC (simulated) 0.618 0.304 0.067 0.011
∆ VSC −0.019 0.010 0.027 −0.018

But how reliable is the MCS result after, for example, 10,000 simulation runs? According to the
law of large numbers, it approaches the expectation ever more closely, the more often the random
experiment is repeated. Table 8 shows an evaluation of Hamilton’s mean rank position in an exemplary
race after 20 batches of simulation runs. It can be seen that the deviation between the batches decreases
with a rising number of simulation runs per batch. This behavior is similar for all drivers. In most cases,
10,000 simulation runs offer a good compromise between computation time and certainty. However,
it must be emphasized that the result of the race itself depends strongly on a correct parameterization
of the race simulation.

Table 8. Mean rank positions and deviations (95 % confidence) for Hamilton in an exemplary race after
20 simulation batches.

Simulation Runs Per Batch Mean Position Deviation (95%)

100 2.115 ±0.309
1000 2.126 ±0.082

10,000 2.107 ±0.029
100,000 2.107 ±0.011



Appl. Sci. 2020, 10, 4229 18 of 21

5. Discussion

As shown in Section 4.2, the results of the deterministic race simulation do not indicate that
they often do not represent the most likely outcome of a race. Additionally, the theoretically fastest
strategy for a race often turns out to be fragile when probabilistic effects are considered. Consequently,
race simulations should include these effects, which can be evaluated using MCS. Thus, the strategy
engineer can benefit from information on the position distribution and robustness of different race
strategies against unforeseen events.

The significance of the MCS results depends on the accurate modeling of the probabilistic
influences. Therefore, we extended existing ideas (e.g., using Bayesian inference for accidents and
failures) and developed new approaches (determination of FCY phases, modeling of safety cars,
starting performance) to improve on the points criticized in the literature. Of note is the FCY phase
implementation, which affects the drivers equally regardless of their respective race progress. The SCG
concept allows the realistic modeling of safety cars despite the lap-wise discretization. The example in
the results section outlines that the approach represents reality well. The separate consideration of
accidents and failures increases model accuracy and strengthens the cause-effect relationship with the
FCY phases. Finally, the presented model for the starting performance does not distort probabilities for
drivers starting predominantly at the front or back of the starting grid. The database with the seasons
2014–2019 allows a significantly improved and extended parameterization compared to the literature.

There are, however, some inaccuracies. In reality, at the end of an SC phase, lapped drivers may
often catch up one lap to restore the correct ranking of the drivers for the re-start. This behavior cannot
be simulated due to lap-wise discretization. For the same cause, an SC in the simulation does not start
directly in front of the leader, but at a particular race time. However, this disadvantage was largely
eliminated by increasing the first SCG lap time, so that the drivers quickly catch up with their SCG.
Another inaccuracy is that we can currently only consider one driver per accident that causes an SC
phase. This could be eliminated if more detailed data were available, which would allow us to analyze
accidents involving several cars. A thorough analysis of the conditional probability for VSC phases
after failures would also be desirable in that case.

The computing time of the race simulation was kept at a similar level despite the extensions.
For obtaining the results of Monte Carlo simulations even faster, the introduction of Latin Hypercube
sampling could be investigated in the future. Presumably, this reduces the number of simulation runs
required to achieve a defined maximal deviation. Regarding our future research, we aim to focus on
the optimization of race strategy using the developed race simulation. The challenge is that the basic
strategy before a race cannot be determined independently for a single team since every team aims for
an optimum. Consequently, the mutual effects must be taken into account. Furthermore, during a race,
the basic strategy needs to be quickly adapted to the current race situation, for example, in the case of
an SC. This requires a solution that can provide the results very quickly.

6. Summary

In this paper, we presented several new approaches and extensions to modeling important
probabilistic effects on a motorsport race within a lap-wise discretized race simulation. This includes
driver-specific starting performance, accident and failure probabilities, as well as the determination of
full course yellow phases and the modeling of safety cars. The displayed results illustrate the validity
of the SC model and show how a strategy engineer can benefit from evaluating probabilistic effects
using Monte Carlo simulation when determining race strategies.

The entire Python code of the race simulation is available under an open-source license on GitHub
(https://github.com/TUMFTM/race-simulation).
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The following abbreviations are used in this manuscript:
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FCY Full Course Yellow
MCS Monte Carlo Simulation
PDF Probability Density Function
RNG Random Number Generator
SC Safety Car
SCG Safety Car Ghost
VSC Virtual Safety Car

Appendix A. Parameterization of the Probabilistic Effects in the Race Simulation

Table A1. Driver-specific parameterization for accident probability Paccident, lap time variability tlap,var

and starting performance tstartperf for all drivers of the 2019 season. Paccident is season-specific, the other
values are valid for all seasons 2014–2019.

Driver Paccident (2019) tlap,var in s
(
N
(
µ, σ2)) tstartperf in s

(
N
(
µ, σ2))

Alexander Albon 0.045 N
(

0, (0.628)2
)

N
(

0.050, (0.168)2
)

Antonio Giovinazzi 0.058 N
(

0, (0.737)2
)

N
(

0.006, (0.148)2
)

Carlos Sainz Jnr 0.045 N
(

0, (0.606)2
)

N
(
−0.097, (0.126)2

)
Charles Leclerc 0.058 N

(
0, (0.533)2

)
N
(
−0.042, (0.125)2

)
Daniel Ricciardo 0.058 N

(
0, (0.517)2

)
N
(
−0.047, (0.112)2

)
Daniil Kvyat 0.058 N

(
0, (0.586)2

)
N
(

0.027, (0.146)2
)

George Russell 0.072 N
(

0, (0.759)2
)

N
(

0.044, (0.174)2
)

Kevin Magnussen 0.058 N
(

0, (0.608)2
)

N
(
−0.014, (0.171)2

)
Kimi Raikkonen 0.058 N

(
0, (0.499)2

)
N
(

0.088, (0.245)2
)

Lance Stroll 0.058 N
(

0, (0.642)2
)

N
(
−0.095, (0.135)2

)
Lando Norris 0.058 N

(
0, (0.603)2

)
N
(

0.003, (0.142)2
)

Lewis Hamilton 0.045 N
(

0, (0.459)2
)

N
(
−0.052, (0.098)2

)
Max Verstappen 0.058 N

(
0, (0.473)2

)
N
(
−0.001, (0.171)2

)
Nico Hulkenberg 0.058 N

(
0, (0.548)2

)
N
(
−0.027, (0.115)2

)
Pierre Gasly 0.045 N

(
0, (0.591)2

)
N
(

0.044, (0.154)2
)

Robert Kubica 0.045 N
(

0, (0.841)2
)

N
(

0.029, (0.128)2
)

Romain Grosjean 0.072 N
(

0, (0.612)2
)

N
(

0.102, (0.156)2
)

Sebastian Vettel 0.045 N
(

0, (0.458)2
)

N
(
−0.050, (0.115)2

)
Sergio Perez 0.058 N

(
0, (0.550)2

)
N
(
−0.009, (0.152)2

)
Valtteri Bottas 0.058 N

(
0, (0.482)2

)
N
(
−0.028, (0.135)2

)
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Table A2. Team-specific parameterization for failure probability Pfailure and pit stop duration variability
tpit,var for all teams of the 2019 season. Pfailure is season-specific, tpit,var is valid for all seasons 2014–2019.
The parameterization of the pit stop duration variability is based on pit stop durations that are at most
4 s longer than the minimum pit stop duration of a race.

Team Pfailure (2019) tpit,var in s (F (shape, loc, scale))

AlfaRomeo 0.056 F (5.827,−0.953, 2.327)
Ferrari 0.086 F (2.414,−0.153, 0.737)
HaasF1Team 0.101 F (5.324,−0.667, 1.866)
McLaren 0.117 F (2.639,−0.235, 0.980)
Mercedes 0.041 F (1.563,−0.046, 0.480)
RacingPoint 0.056 F (3.498,−0.249, 1.188)
RedBull 0.071 F (2.045,−0.094, 0.598)
Renault 0.086 F (3.876,−0.419, 1.433)
ToroRosso 0.071 F (4.290,−0.568, 1.606)
Williams 0.071 F (2.562,−0.240, 0.966)

Table A3. Probabilities for a specified quantity of safety car (SC) deployments in a race (seasons
2014–2019).

Probability 0 SC 1 SC 2 SC ≥ 3 SC

Psc,quant 0.455 0.413 0.099 0.033

Table A4. Probabilities for the start of a safety car phase in one of the six groupings of the race (seasons
2014–2019). The probability of each grouping is divided equally among the laps in it, depending on the
total number of laps in the respective race.

Probability 1st Lap 2nd Lap to 20% 20 to 40% 40 to 60% 60 to 80% 80 to 100%

Psc,start 0.364 0.136 0.136 0.08 0.193 0.091
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