
Received 3 December 2020; revised 10 January 2021; accepted 11 January 2021. Date of publication 29 January 2021;
date of current version 19 February 2021. The review of this article was arranged by Associate Editor Stamatis Karnouskos.

Digital Object Identifier 10.1109/OJIES.2021.3055461

A Generic Plug & Produce System Composed
of Semantic OPC UA Skills

STEFAN PROFANTER 1, ALEXANDER PERZYLO 1 (Member, IEEE), MARKUS RICKERT 1,
AND ALOIS KNOLL1 (Senior Member, IEEE)

Department of Informatics, Chair of Robotics, Artificial Intelligence and Real-time Systems, Technical University of Munich, Munchen, Bayern 80333, Germany

CORRESPONDING AUTHOR: STEFAN PROFANTER (e-mail: stefan.profanter@tum.de).

This article has supplementary downloadable material available at https://doi.org/10.1109/OJIES.2021.3055461, provided by the authors.

ABSTRACT Typical industrial workcells are composed of a plenitude of devices from various manufacturers,
which rely on their own specific control interfaces. To reduce setup and reconfiguration times, a hardware-
agnostic Plug & Produce system is required. In this paper, we present a system architecture that uses generic
and semantically augmented OPC UA skills for robots, tools, and other system components. Standardized
skill interfaces and parameters facilitate flexible component interchange and automatic parametrization with
a focus on reusability of skills across different platforms and domains. The hierarchical composition of such
skills allows for additional abstraction through the grouping of functionalities. Through the extension of
OPC UA discovery services, available skills are dynamically detected whenever a manufacturing system’s
component is updated. The introduced Plug & Produce system is evaluated in multiple industrial workcells
composed of robots, tool changer, electric parallel gripper, and vacuum gripper—all controlled via the
proposed OPC UA skill interface. The evaluation of our system architecture demonstrates the applicability
of the Plug & Produce concept in the domain of robot-based industrial assembly. Although it is necessary
to adapt existing hardware to comply with the semantic skill concept, the initial one-time effort yields
reoccurring efficiency gains during system reconfiguration. In particular, small lot production benefits from
reduced changeover times.

INDEX TERMS Flexible manufacturing systems, manufacturing automation, middleware, plug & produce,
robotics and automation.

I. INTRODUCTION
Flexible component integration is one of the major chal-
lenges in Plug & Produce production environments. The
main idea behind the Plug & Produce concept is derived
from the well-known Plug & Play concept in the domain
of computer systems: a USB device can be plugged into a
computer and is immediately available to be used without
the need to manually provide a driver for it. Achieving the
same level of automated configuration and interface descrip-
tion in manufacturing shop floors is still a major challenge.
The Multi-Annual-Roadmap (MAR) of the EU SPARC pro-
gramme [1] emphasizes configurability as one of the key sys-
tem abilities of Plug & Produce systems. In [2], the authors
present agile manufacturing as a key technology for coping
with rapidly changing customer requirements. They identify

major research demands regarding the definition of compo-
nent interfaces using scientific knowledge [3].

The main motivation behind a Plug & Produce system is
its flexibility to adapt to new production requirements due to
rapidly changing market demands. In contrast, typical mass
production lines are optimized to produce one specific prod-
uct variant in high numbers at low cost. Industrial automa-
tion components are mainly developed with manufacturer or
domain-specific interfaces and require time-consuming adap-
tion of control applications every time the product specifica-
tion changes. On hardware failure, only devices with the exact
same specification can be used as a replacement.

The higher the variability of the product, the more flexible
a production line has to be. For small lot production down
to even lot size one, the goal is to produce items customized

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

128 VOLUME 2, 2021

https://orcid.org/0000-0002-5709-0348
https://orcid.org/0000-0002-5881-3608
https://orcid.org/0000-0001-6264-0888
mailto:stefan.profanter@tum.de
https://doi.org/10.1109/OJIES.2021.3055461

to the buyer’s needs. Such products only exist after the buyer
provides the associated specifications. Therefore, production
systems must offer higher flexibility and more efficient re-
configurability to adapt to these circumstances. To achieve
automatic configuration and information exchange without
the need of reprogramming automation tasks, one of the basic
requirements is a generic standardized component interface.
Furthermore, it needs to be extensible to not only accommo-
date current devices and system components, but also future
requirements in a highly dynamic market.

II. RELATED WORK
Robots are one of the enabling technologies for the current
shift from mass production to mass customization. Robots
represent the core components of associated production cells.
The OPC Foundation recently released the OPC UA (Open
Platform Communications Unified Architecture) Companion
Specification for Robotics Part 1 [4], which is a first step in
the direction of standardized OPC UA information models for
industrial robots. While the first part mainly defines read-only
access to status variables for predictive maintenance, a control
interface for the high-level control of program sequences is
planned for future parts. However, the proposed specification
still does not include a control interface for specific motions.
Efficient programming of industrial robots for small lot pro-
duction is still a highly researched topic [5].

Skills are one of the current approach to provide effi-
cient robot programming. They can be seen as a tool-centric
approach to process modeling and execution that simplifies
the abstraction of functionalities provided by hardware and
software components [6]–[8]. In [9], a model-based manip-
ulation system with skill-based execution is shown, which
focuses on controlling a specific robot type through skills.
Hardware-independent robot control in the Robot Operat-
ing System (ROS) is implemented via ros_control [10] or
similarly through a specific Hardware Robot Information
Model (HRIM) [11]. The approach in [7] focuses on con-
trolling robots, but does not provide a generic well-defined
interface for other hardware components, such as grippers, to
achieve flexible component exchange. Pedersen et al. further
lists various advantages of using skills in combination with
production systems, i.e., they are generic and allow a higher
product variety, provide an abstraction layer for the hardware,
as well as a more intuitive way for programming robot behav-
iors [12]–[15].

Control on Field-Device-Level with OPC UA is shown
in [16] and [17], where the authors control devices through
OPC UA programs. Compared to our presented approach,
automatic discovery and standardized common interfaces are
missing. This is a necessary feature of Plug & Produce sys-
tems as explained throughout this paper.

The term Plug & Produce was shaped around the year 2000
by Arail et al. [18]. The authors describe the core concept
of Plug & Produce as a methodology that allows to introduce
new manufacturing devices easily and quickly into production
systems. Since then, various approaches were presented to

realize Plug & Produce systems. For instance, [19], [20] focus
on using AutomationML for establishing a flexible system
architecture. The goal is to simplify the modeling of manu-
facturing skills ot technical devices.

In [21], a Plug & Produce system is proposed that focuses
on the theoretical background of mapping skills to products,
processes, and resources. Compared to our approach, they use
a custom-developed model that does not build upon well-
established standards such as OPC UA. A combination of
Semantic Web technologies and OPC UA is shown in [22].
The authors propose to use a central database to store semantic
device information. This may be difficult to achieve on shop
floors, in which devices are regularly exchanged, and when
new devices or device types hit the market.

Our approach eliminates this disadvantage via self-
describing components without the need for a preconfigured
central data storage, while still supporting both, central and
de-central storage for the self description. As shown in [23],
self-describing devices are essential for building a Plug & Pro-
duce system that allows exchanging components independent
of the overall system. The implementation of a skill can only
be applied directly on the device, therefore the de-centralized
storage avoids decoupling of the overall device description.

Other approaches based on IEC 61 499 function blocks
use custom communication protocols for the connection of
components [24], [25]. In [26], a set of services for a service-
oriented architecture based on OPC UA is presented. How-
ever, automatic discovery was not included in the system.

A reference architecture for a Plug & Produce system based
on OPC UA and PLCopen is presented in [27], [28]. In a
similar approach [29], the authors base their architecture on
a IEC 61 131 runtime, while others focus on transforming
EDDL descriptions into the OPC UA address space [30].
These publications mainly use field devices and the presented
architectures are therefore suitable for signal mapping, but not
for a generic skill concept. Still, the authors show that the
presented Plug & Produce concept “enables a faster commis-
sioning process and minimizes the risk for human error due to
high automation.”

Another relevant approach is the Reconfigurable Manufac-
turing System (RMS) paradigm. It is defined as a system “for
rapid adjustment of production capacity and functionality, in
response to new circumstances, by rearrangement or change
of its components” [3]. Such components can be hardware or
software. A robot cell based on the RMS paradigm using ROS
is shown in [31]. As described in Section IV, ROS does not
perform as well as OPC UA, and the semantic expressiveness
regarding information exchange is limited. In [32], a combina-
tion of specialized web services and semantic descriptions is
used for controlling a small production cell with a strong focus
on high-level integration. The low-level device abstraction
concept required for Plug & Produce is missing.

Our proposed solution aims at providing a complete and
generic system architecture based on standardized skill mod-
els that can be applied to any type of component in the system,
be it hardware or software. In doing so, we focus on reusing

VOLUME 2, 2021 129

PROFANTER ET AL.: GENERIC PLUG & PRODUCE SYSTEM COMPOSED OF SEMANTIC OPC UA SKILLS

FIGURE 1. System architecture for realizing a Plug & Produce system with generic device skills. Based on OPC UA as a middleware, the discovery services
are combined with our skill detector for automatically registering components and their skills. The semantic skill model provides low-level abstraction
and hierarchical composition of functionalities. Our semantic MES uses a knowledge base to relate semantic skill information with process knowledge in
order to execute skills.

well-established standards such as OPC UA and keeping the
number of interdependencies as low as possible, e.g., by build-
ing on the discovery mechanisms of OPC UA and supporting
standardization activities in various active working groups.

The presented system architecture is built on top of our
prior work [33]–[35]. In this paper, we extend the previously
conducted middleware evaluation [33] by a set of require-
ments for a suitable middleware protocol used in Plug &
Produce environments. The robot-specific skill model in [34]
is extended and refined, to not only cover hardware compo-
nents, but also to serve as an abstraction layer for software
components. The definition of additional skill types in this
paper shows the generic applicability of the skill model. This
enables a Plug & Produce system to seamlessly interchange
hardware and software components, if they offer the same
types of required skills.

In [35] we described the basic concept behind the OPC UA
discovery mechanisms. Based on this, we present here a new
mechanism for automatic component and skill detection com-
bined with the semantic knowledge in a Knowledge Base. The
execution of these skills is managed by our newly proposed
semantic manufacturing execution system. In this paper we
also evaluate the overall system composed of previously pre-
sented concepts extended with the new concepts.

III. SYSTEM ARCHITECTURE
Fig. 1 depicts the holistic system architecture for flexible skill
integration and execution, which combines a set of individual
concepts, which are introduced in this section. The specific

parts of the presented architecture are described in more detail
in the subsequent sections.

A substantial part of automation systems is information,
the processing of information, and the flow of information.
In order to exchange information, system components need
to use a common communication basis, also referred to as
middleware. For a Plug & Produce system, a middleware
needs to support a specific set of features, and more im-
portantly, provide an adequate performance for exchanging
information between different components. In this work, we
discuss the requirements of such middlewares, and justify our
decision to build our system on top of OPC UA based on our
performance evaluation and feature comparison of different
middlewares (see Section IV).

In Plug & Produce systems, it is essential to have an up-to-
date list of available components, in order to be able to assign
manufacturing tasks to suitable components. Additionally, a
well-defined standardized control interface is required, such
that underlying hardware-specific skill implementations can
be exchanged while maintaining the same interface to higher-
level applications. In this context, we define a skill to be a
specific realization of a functionality that is provided by a
hardware or software component. We propose a mechanism to
automatically detect plugged-in and plugged-out components
and their offered skills (see Section V) based on a generic skill
model (see Section VI).

Through the mapping of device descriptions into cor-
responding ontologies, including the specifications of of-
fered skills and their parameters, we show how formal
knowledge and reasoning in combination with our semantic

130 VOLUME 2, 2021

manufacturing execution system (sMES) can be used to
parametrize the execution of these skills (see Section VII).

The system was evaluated in real robot workcells that
are composed of industrial robot arms and tools, i.e., tool
changer, vacuum gripper and parallel gripper. Our evaluation
shows that the architecture supports the automatic detection
of available skills in the robot cell, the abstraction of execu-
tion parameters, and the compositional grouping of skills (see
Section VIII). While our approach targets robot-based manu-
facturing systems and is built on top of the OPC UA standard,
it could also be applied to other domains or middlewares.

IV. MIDDLEWARE
In [36], a middleware is defined as distributed system services
with standard programming interfaces and protocols helping
to solve customers’ heterogeneity and distribution problems.
These services are called middleware, because they sit “in the
middle,” layering above the operating system and networking
software, and below specific applications.

In the industrial automation domain, a middleware bridges
the gap between software applications of various program-
ming languages and individual subsystems on different hard-
ware platforms and operating systems, in order to exchange
information between components. The importance of this in-
formation is growing proportionally with the size of such
systems. A first attempt in structuring the information flow
was done within the scope of computer-aided manufactur-
ing (CAM) [37]. As a result, a strict subdivision of informa-
tion processing into hierarchical levels was suggested, which
is nowadays known as the automation pyramid. The automa-
tion pyramid itself is not standardized, but is rather a con-
cept that helps in structuring information flow [38]. Typically,
each layer within the automation pyramid uses different pro-
tocols and middlewares to exchange data within one layer and
with other layers, from high-level Ethernet-based communi-
cation protocols to low-level field buses. With the success of
Ethernet-based networks, significant effort was directed into
getting this protocol down to the lowest field level to avoid a
strictly layered architecture and to enable the transition to a
fully interconnected system with a single middleware [39].

Over the last two decades, different middlewares and stan-
dardized protocols have been developed. In [33], we have
compared the features of various middlewares and evaluated
their overall performance. We focused on middlewares that
have a high relevance in the domain of industrial automation
and the Internet of Things (IoT): OPC UA, DDS, ROS, and
MQTT. The interested reader is referred to that publication
for a more detailed analysis of these middlewares. We show
that OPC UA provides flexible means to semantically model
information that is supposed to be shared with other com-
ponents. The approach is similar to object-oriented program-
ming, where specific types can be extended and instantiated,
and objects can be semantically enriched by using specific
reference types to link to other nodes inside the graph-based
data model. ROS is mainly used for research purposes and
provides many different pre-implemented feature packages.

Its recently released successor ROS2 is based on DDS and
benefits from better network performance, while not offering
as many features as ROS. DDS (Data Distribution Service)
has an extensive set of Quality-of-Service settings, whereas
MQTT (Message Queuing Telemetry Transport) mainly fo-
cuses on a lightweight publish/subscribe protocol. The round-
trip-time (RTT) performance evaluation with varying payload
sizes and under different conditions (idle, high cpu load, high
network load) has shown that the evaluated implementations,
namely open62541 for OPC UA and eProsima FastRTPS for
DDS deliver high performance, whereas the used prominent
open-source MQTT and ROS implementations show a signif-
icant slowdown in the package RTT.

As an extension to this previously conducted performance
evaluation, we identify essential requirements for a middle-
ware that is suitable for Plug & Produce systems and sup-
porting the key characteristics of reconfigurable manufactur-
ing systems (RMS) [3]. For each requirement, we briefly list
the level of adoption by the introduced middlewares, i.e.,
OPC UA, ROS, DDS, and MQTT.

For flexible component integration, Reconfigurability is
an essential requirement, which needs to be supported by
the middleware. This is achieved by reducing the amount of
necessary pre-configurations, e.g., through the use of dynamic
IP addresses and discovery mechanisms. While OPC UA and
DDS come with a discovery implementation, which does not
rely on statically defined IP addresses, ROS and MQTT com-
ponents need to be configured for a specific roscore or MQTT
broker.

With an increased number of components in a manufactur-
ing system, Scalability becomes more and more important.
Especially for close-to-hardware implementations of com-
ponents on small footprint microcontrollers, poor scalability
may have a huge negative impact. As shown in our perfor-
mance evaluation, the performance of ROS is drastically re-
duced when 500 ROS nodes transmit data simultaneously, fol-
lowed by MQTT where the bottleneck is the broker-dependent
data communication. DDS and OPC UA deliver good perfor-
mance, even with a large number of components.

For low-level component control in the domain of industrial
automation, Real-Time Capability and Security are addi-
tional requirements, which need to be supported by a Plug
& Produce middleware. ROS is the only middleware in our
examination that does not support data encryption. It also only
supports best-effort data transmission. DDS and MQTT use
Quality-of-Service definitions for real-time data transmission.
OPC UA is integrating Time-Sensitive Networking for real-
time support and has the best support for various encryption
and authentication algorithms.

As we show throughout this paper, a middleware used in
Plug & Produce systems needs to support Semantic Descrip-
tion of its data. OPC UA is the only middleware listed above
that supports rich semantic information models, where the
knowledge is stored as a combination of triples (source node,
reference, target node) forming a directed graph. Access to
the address space of an OPC UA-enabled component, which

VOLUME 2, 2021 131

PROFANTER ET AL.: GENERIC PLUG & PRODUCE SYSTEM COMPOSED OF SEMANTIC OPC UA SKILLS

holds its information model, is provided through a set of ser-
vices, e.g., for variable reading, writing, or calling a method.

Based on these requirements, OPC UA is an ideal mid-
dleware for future-proof automation systems supporting the
Plug & Produce concept. Furthermore, OPC UA was se-
lected as the core communication protocol for flexible pro-
duction lines in the Reference Architecture Model Industry
4.0 (RAMI 4.0) [40]. Therefore, the system architecture pre-
sented in this paper is based on OPC UA.

V. COMPONENT AND SKILL DISCOVERY
To achieve a more Plug & Produce-friendly setup without
any factory-specific pre-configuration, components need to be
able to automatically discover other components in the sys-
tem. The discovery mechanism has to detect when a compo-
nent is plugged into the system or is already online and when
such a component is unplugged again. In addition, the skills
offered by a component have to be detected as well, in order
for the system to be able to consider them when assigning
tasks to specific components.

OPC UA initially used a Web Service-based discovery
mechanism [41]. Since 2015, it includes a decentralized server
discovery mechanism, called Local Discovery Server with
Multicast Extension (LDS-ME) [42]. In [35], we show how
LDS-ME can be used for easy integration of new devices into
the network without any network-specific pre-configuration.
On startup, an OPC UA server is broadcasting multicast
DNS (mDNS) messages to the subnet. This notifies other
LDS-ME servers about the new server instance and they re-
spond with a mDNS message to announce themselves. With
this information, the newly started server can choose a corre-
sponding OPC UA server to register itself. During the server’s
lifetime, additional mDNS messages are broadcasted, and a
re-register call is made every 10 minutes to indicate the alive
status. Before shutdown, the server unregisters itself and the
LDS-ME implementation sends out another message indicat-
ing its imminent shutdown.

The LDS-ME mechanism can only be used to detect the
availability of new components, but does not support the
detection of specific skills that are offered by these compo-
nents. The only information that is directly exchanged during
the server registration is the ApplicationDescription structure,
which is defined in the OPC UA standard. It only contains
basic information on the server, e.g., the application name and
URI or discovery URLs. This information does not suffice to
detect the functionality, i.e., the skills of a specific component.
Building on these concepts, we extend the described OPC UA
discovery mechanism, in order to be able to not only detect
new server instances, i.e., system components, but also their
offered skills in an automatic fashion.

We propose a Skill Detector module, which is able to detect
skills of newly plugged-in components. It is located in every
component that depends on skills of other components. The
Skill Detector reacts on the multicast messages, as shown in
Fig. 2. Right after a component announces its availability,
Skill Detectors inside existing components connect to the

FIGURE 2. Skill detection and execution sequence between two
components: server announcement, skill detection, skill execution, and
component shutdown. The skill detector always keeps an up-to-date map
of available skills for each component.

newly announced OPC UA server and browse its address
space for available skill types. At the same time, the newly
connected component’s Skill Detector browses all other com-
ponents for available skills. An internal map is used to keep
track of the mapping of skill types to server instances. On
skill execution, the availability of all required sub-skills is
checked. Up to that point, the order in which components are
started is not restricted. On component shutdown, the Skill
Detector updates its map to remove skills that are not available
anymore.

By default, the re-register period of an OPC UA server is 10
minutes indicating to other servers that it is still alive. During
graceful shutdown, the component unregisters itself, but in
some failure states, e.g., a broken network connection, this
timeout may be too long for Plug & Produce systems. There
are two solutions proposed in our approach: a skill client uses
a connection timeout of two seconds, and independent of the
standard, a server may periodically send mDNS queries to
update its list of available servers.

Nestability of Industry 4.0 components, as defined in RAMI
4.0 [40], can be achieved by using multiple subnets, e.g., on
the workcell level, to encompass other components in logical
terms and to abstract away the underlying components on a
higher level using skill composition as described in the fol-
lowing sections of this paper. An alternative to hierarchical
grouping is the use of software-defined networking (SDN) as
shown in [43].

132 VOLUME 2, 2021

VI. GENERIC COMPONENT SKILLS
One of the key pillars of a generic system architecture for Plug
& Produce systems is a common interface description for all
of its components. In this regard, a component can be either
a hardware device or a pure piece of software, which both
provide one or multiple skills to other components of the man-
ufacturing system. In addition, higher-level skills should be
hierarchically composable by reusing and depending on other
skills. As a result, more complex functionalities can be built
through the combination of more basic ones. All properties
and parameters of a particular skill must be described in a for-
mal manner to enable other components that rely on this skill
to automatically infer required skill invocation parameters and
to reason about the purpose of interacting with it.

A. GENERIC SKILL MODEL
In [34], we describe the foundation for a generic skill model.
Every skill type is based on the SkillType OPC UA object
type, which is a subtype of the OPC UA ProgramStateMa-
chineType [42]. A skill is represented as a state machine with
specific states, i.e., Halted, Ready, Running, and Suspended,
and transition methods, i.e., Halt, Reset, Resume, Suspend,
Start, which can be used to control skill execution and to
infer a skill’s current state. Additionally, the state machine
inherently provides interlocking functionality by preventing
state changes while the skill is running.

This section describes two important extensions of the in-
troduced skill model: first, we define additional skill types
for tool changers, grippers, and software components such as
a Pick-and-Place skill. Secondly, this section describes the
requirements and extensions of the basic model to enable
the automatic discovery and control of components. If a skill
implements a specific type, all of its supertypes are also im-
plemented. For instance, a robotic hand could implement a
more specific hand grasp skill type (subtype of GraspSkill),
while a parallel gripper could implement a force grasp skill
type (subtype of GraspSkill). Both tools still need to support
the basic GraspSkill parameters and therefore other compo-
nents can still use that skill level, even if they only know
the GraspSkill type, but not its more specific (vendor-specific)
types. In this case, the more generic skill execution must intel-
ligently choose internal parameters in order for the semantics
of the base skill to be valid, e.g., the fingers are closed until a
specific force value is measured or in case of a vacuum gripper
a specific pressure threshold is reached. Alternatively, it must
use a different supertype.

B. SKILL COMPOSITION
An Industry 4.0 component typically offers one or multiple
skills to higher-level components or applications. Such a com-
ponent can either directly provide its functionality through
its own implementation, or it can provide a higher-level skill
functionality by depending on lower-level skills and com-
bining their functionalities. This concept is referred to as
skill composition and an example is shown in Fig. 3. On the
right-hand side of the figure, there are two types of robot and

FIGURE 3. Hierarchical composition of skills. Software components are
used to define new skills based on combining lower-level functionalities,
e.g., a Pick and Place skill is composed of separate robot and gripper skills.

tool combinations, each offering a specific set of skills, and a
device adapter for a tool changer. A software-based skill com-
ponent, which is built upon lower-level skills such as gripper
and robot skills, can be developed to form the same type of
interface as an already given Pick-and-Place skill. Similarly, a
tool changer skill can be used to control the robot and to read
the states of the tool changer and the currently attached tool.
Defining a composed skill is a manual task, since specific base
skill types need to be chosen and the corresponding control
of lower-level skill state machines needs to be implemented.
If a specific skill type definition exists for the implemented
composed functionality, this skill type should be re-used (e.g.,
Pick-and-Place skill).

C. SPECIFIC SKILL TYPES
Fig. 4 depicts a simplified overview on the skill types that
were implemented in our evaluation setup, grouped by the
corresponding Companion Specification. An OPC UA Com-
panion Specification is a specific group of well-defined items
in the OPC UA information model. The basis for all specifi-
cations is the OPC UA Default Namespace. Building on top
of this, we define specific skill types in separate companion
specifications: Device Skills, Robotic Skills, Gripper Skills,
Toolchanger Skills, and Composite Skills.

Every skill implementation needs to refer to a specific
skill type. This is necessary for automatically detecting and
interpreting the purpose of a skill implementation and its
required parameters, in order to enable other components to
interact with it (see Section V). Parameters and properties of
the ProgramStateMachineType, SkillType, and skills defined
in the Robotic Skills specification are described in [34] and
not discussed in more detail here. An example of a robot skill
is the CartesianLinearMoveSkillType with several required
parameters such as TargetPosition or MaxVelocity. The set of
skill types introduced in this paper represent a subset of skills
required for the operation of our test bed and its evaluation.

VOLUME 2, 2021 133

PROFANTER ET AL.: GENERIC PLUG & PRODUCE SYSTEM COMPOSED OF SEMANTIC OPC UA SKILLS

FIGURE 4. Extended OPC UA skill model based on [34] with gripper skill types, tool changer skill types, and a hierarchically composed pick-and-place
skill type. Grey boxes represent different companion specifications, e.g., the base OPC UA data model and domain-specific information models on devices
or robotics.

Further skill types need to be standardized in future work to
support more devices and functionalities.

Both the GraspGripperSkillType and ReleaseGripperSkill-
Type are generic skills for any kind of gripper. The semantics
of a grasp is defined as activating the gripper hardware in such
a way that an interaction object positioned at the grasp point
is getting attached to it, e.g., a parallel gripper is closing its
fingers, while a vacuum gripper enables its suction system to
attach the object. Skill states are used to indicate the success or
failure of a grasp attempt. Release is defined as the opposite
action directly implemented inside the skill, e.g., detaching
the object by opening the parallel gripper or disabling the suc-
tion system. However, the specific implementation of the skill
inside the component is not defined by our model as it differs
for specific gripper hardware. If a component implements a
specific skill, it must adhere to the defined functionality, to
enable other components to rely on it.

Parameters for the grasp skill are the grip point offset
(3DFrameType, offset from the tool mounting plate to the
grip point) and grip point type (Enumeration, i.e., parallel,
vacuum-based, or multi finger). For a robot movement, the
grip point offset is required to move the robot with the at-
tached gripper to the correct position. The gripping type is
required to adapt the grip point offset based on the object’s
shape: a vacuum gripper normally picks up an object from
the top, while a parallel gripper needs to be positioned further
down the object to grasp it from the side. Specific grippers
may implement multiple instances of a grasp skill to represent
multiple grasp points or implement more specific subtypes
giving the skill callee more parametrization options. It may
also be necessary to define a new basic skill type with a more
flexible interface for grip points.

Similar to the gripper skill types, the DetachToolSkillType,
AttachToolSkillType, and ChangeToolSkillType define the se-
mantics of a tool change task. The semantics of the detach
tool skill is to detach a tool, if there is one currently attached,
and to place it at the given location. The attach tool skill
attaches a new tool to the tool mounting plate. The change
tool skill is a combination of first detaching a tool if present,
and then attaching a new tool. In addition, the skills need to
include a reference to a movable component, on which they

are mounted, e.g., a robot flange. This definition does not re-
strict how the tool changing steps are performed. For instance,
the type of motion component can be a robot arm, or any other
actuated device, such as a linear axis. Therefore, the connected
motion component defines the specifics of these kinds of tool
change skills, which cannot be used as stand-alone skills. In
our experiment, the tool changer indicates a connection to a
robot component and uses its CartesianLinearMoveSkillType
to reach the tool docking station. As a result, upper-layer com-
ponents do not need to directly control the underlying moving
device. This is handled by the specific implementation of the
tool changer skill component and its way of parameterizing
underlying skills. Depending on the tool changer’s locking
mechanism, different robot movements or I/O control may be
necessary to attach or detach a tool. Attach tool, detach tool,
and change tool provide the move skill controller endpoint
as a read-only parameter (String). It can either be configured
statically or automatic skill detection can be used to find the
correct endpoint (Section V). In addition, these skills require
an input parameter tool position (3DFrameType), which ex-
pects the absolute coordinate frame (position and orientation)
of where a tool should be picked up or placed. If the skill im-
plementation is not able to reach this position, the skill’s state
machine should change to the halt state to indicate an error.
Attach tool and change tool require an additional parameter
tool app URI (String) to detect the ready state of the newly
attached tool via automatic discovery.

The PickAndPlaceSkillType is a composite skill, as it reuses
other skills that are available in the system, e.g., gripper skills
and move skills. Pick-and-Place is semantically defined as
picking an object, which is identified by a specific ID, with the
given tool, moving the manipulator, and placing the object at a
given position with a given orientation. The caller can rely on
the effect that the given object is moved to the target position
after successful completion. It does not have to know how this
is achieved. The list of skill input parameters does not include
the object size or additional grasping parameters. The object
ID is used internally by the implementation to find the object
location and its properties in either a dedicated world model
component (out-of-scope of this paper) or using an object
detection skill. To find suitable grasping parameters, a grasp

134 VOLUME 2, 2021

planning component could be used. This generic definition
does not limit the trajectory of the robot or other motion com-
ponents. If more specific options are required (e.g., advanced
collision avoidance, move with force feedback), specific sub-
types of this generic Pick-and-Place skill can be introduced to
represent that functionality for higher-level components using
additional parameters. The corresponding skill implementa-
tion still needs to be developed manually once.

Our definition of a generic Pick-and-Place skill requires
four writable parameters. Aside of the already mentioned
object ID (String), the tool skill controller endpoint (String)
and move skill controller endpoint (String) OPC UA end-
point URLs of the tool and move component need to be
given and are used to grasp and transport the tool with the
attached object from the pick position to the place position.
The place position (3DFrameType) parameter indicates the
target position and orientation for the object. Depending on
the Pick-and-Place skill implementation, the move component
can be a robot with a Cartesian linear move skill or any other
component that controls the tool position. There can also be
multiple skill implementations of a particular type at the same
time with different implementation specifics. It is then up to
the higher-level component to select the most suitable one.

VII. DEPLOYMENT OF A MANUFACTURING PROCESS
In the previous section, we describe a generic skill interface
for OPC UA-enabled components that require parametrization
before the skill can be executed. In this section, we present a
semantic representation of these skills in ontologies, in order
to endow manufacturing systems with the capability to link
the skill models with additional types of knowledge from
other sources such as semantic process descriptions, prod-
uct models, or models of the production environment and
the contained resources. The combination of our semantic
manufacturing execution system with a knowledge base, in
which the ontology-based representations are stored, is used
to intelligently parametrize, trigger, and monitor the execution
of higher-level skills.

A. SEMANTIC NODESET REPRESENTATION
The OPC UA information model provides the device self
description. Specific details of this self description are defined
in various companion specifications and are out-of-scope of
this paper. This information model is typically provided in
NodeSet2 XML descriptions.

In [44], we show how NodeSet2 descriptions can be au-
tomatically transformed to an ontology-based representation,
that allows to link the encoded information to other semanti-
cally represented models regarding, e.g., geometry, workcell
layout, device topology, and process and product models. This
approach includes the development of a core OPC UA ontol-
ogy using the Web Ontology Language (OWL2) [45]. Using
OWL2, class and property taxonomies, as well as instantia-
tions of these concepts can be described and reasoned about.

FIGURE 5. Subset of UA NodeSet ontologies of the components used in
the evaluation and their hierarchical dependencies: OPC UA core ontology
with its upper taxonomy, base UA NodeSet, and official OPC UA
companion specifications for Devices and Robotics, skill extensions to
these companion specifications, and device-specific NodeSet ontologies.
Black arrows show owl:imports relations.

The OPC UA core ontology specifies the base classes of the
OPC UA data model and their relations. An excerpt of its up-
per taxonomy is shown as part of Fig. 5. The OPC UA address
space specification [42] defines eight types of nodes, i.e., Ob-
ject, ObjectType, Variable, VariableType, Method, DataType,
View, and ReferenceType. Each of these node types are rep-
resented as an OWL class. Instantiations of these classes are
further characterized through a set of asserted object and data
properties. The ontology is available online.1 In this paper
we use the described concept to transform our newly de-
fined companion specifications along the hierarchical tree of
dependencies into their corresponding OWL representations.
As a result, there is a dedicated OWL ontology for the base
OPC UA NodeSet, companion specifications, as well as hard-
ware and software components. Fig. 5 shows the generated
UA NodeSet ontologies and their dependency structure for
the components used in the evaluation of the proposed con-
cept (Section VIII-B), i.e., a Universal Robots UR5 robot,
a Kelvin tool changer, and a Schmalz vacuum gripper. The
following subsections describe how these models are used
in combination with a Knowledge Base to parametrize skill
executions.

B. KNOWLEDGE BASE
The Knowledge Base (KB) is responsible for persistently
storing all relevant knowledge of the production system as
described further below. It provides both an OPC UA-based
and a REST-based interface for enabling other components of
the Plug & Produce system to interact with the knowledge

1https://github.com/OntoUA

VOLUME 2, 2021 135

https://github.com/OntoUA

PROFANTER ET AL.: GENERIC PLUG & PRODUCE SYSTEM COMPOSED OF SEMANTIC OPC UA SKILLS

through SPARQL queries and update requests. The knowl-
edge representation itself uses ontology-based semantic de-
scription languages that have been defined with the help of
OWL2. The KB further provides means to interpret the se-
mantic models in order to check for logical inconsistencies
and to automatically infer implicit facts from explicitly repre-
sented knowledge.

Apart from manufacturing resources, the KB holds infor-
mation on the manufacturing process and its subtasks as well
as the product to be manufactured. This includes individual
processing steps and their interdependencies and a boundary
representation (BREP) of geometries.

The KB subscribes to the components’ mDNS messages,
and gets notified on changes in component availability. Using
the namespace URIs loaded into the component, the KB can
download additional NodeSet2 descriptions from a remote
location, automatically convert them to OWL2, and load the
ontology. NodeSet2 descriptions define offered skills and con-
tain physical properties of a device. Based on the UA Node-
Set2 ontologies, information on system components and their
skills are available in the knowledge base and can be com-
bined with other sources of information to select suitable skills
for a specific manufacturing task. In this representation, the
components and skills can be linked from semantic process
descriptions and required skill parameters can be retrieved and
set.

Relevant for production system engineering and the seman-
tic interoperability of manufacturing resources, the offered
skills can be annotated with capability metamodels, which
provide a semantic understanding of a skill’s scope [46].
Using inference and querying, required skill parameters are
gathered based on the currently available context knowledge.
For instance, a grasp skill’s target span can be derived from the
geometry model of a rigid interaction object and an annotated
grasp pose.

We further show in [47] how the explicit representation
and interpretation of rich semantic context information along
the value chain of manufacturing companies leads to the cre-
ation of a knowledge-based data backbone that can be used
in combination with the skill-based production paradigm to
autonomously perform high-variance assembly tasks. Given
the high level of autonomy, even small batch assemblies can
be efficiently automated.

C. SEMANTIC MANUFACTURING EXECUTION SYSTEM
In general, a Manufacturing Execution System (MES) is re-
sponsible for managing and monitoring the execution of tasks
of related devices on a shop floor. Our definition of a semantic
MES (sMES) extends this functionality by using semantic
information that is available to the system in order to increase
its level of autonomy.

In our generic Plug & Produce system, the sMES is the
main component, which orchestrates and triggers the top-
level skills. In particular, the sMES makes use of the KB
in order to perform the deployment of individual tasks of a
manufacturing process to the skills provided by hardware and

FIGURE 6. Robot workcell used in evaluation composed of robot arm, tool
changer, and tools.

software components. The sMES itself can be embedded in
a superordinate system that takes care of the planning and
scheduling on the factory level. For the invocation of skills
by the sMES, a high-level process description in the KB is
used for parametrization, which includes a set of specific types
of subtasks that impose certain requirements, which potential
target components have to meet. The low-level skills are dy-
namically selected based on their suitability, physical proper-
ties, and availability in a particular production environment.

For our experiments, we implemented a sMES that interacts
with a knowledge base that contains semantic models of all
necessary skill types and their parameters, as well as infor-
mation on the manufacturing process and the corresponding
products. With this approach, a client only needs to send a
manufacturing process’ identifier to the sMES, which then
queries the knowledge base to retrieve a sequence of skill
types and associated parameters that are required for perform-
ing the production task at hand. Due to the standardized skill
interface, the sMES can interact with every skill available in
the system.

VIII. IMPLEMENTATION AND EVALUATION
For evaluating our proposed Plug & Produce system archi-
tecture regarding the automatic discovery and execution of
skills, we assembled a robot workcell composed of a Uni-
versal Robots UR5, a Kelvin tool changer, and two tools:
the parallel gripper Robotiq 2F-85 and the vacuum gripper
Schmalz ECBPi as shown in Fig. 6.

The integration of these components is described in further
detail in this chapter. We rely on the previously defined skill
model and various device-specific adapters responsible for
wrapping the proprietary interfaces to our standard OPC UA
skill model, and our sMES to control the overall process.

A. SKILL IMPLEMENTATION
OPC UA is a protocol definition and therefore not bound to
a specific programming language. For our implementation in
C++, we use the open source OPC UA stack open62541.2 The

2https://github.com/open62541/open62541

136 VOLUME 2, 2021

https://github.com/open62541/open62541

FIGURE 7. UML class diagram for relevant C++ classes and their members for the generic skill model implementation. Specific skill types inherit from
SkillBase and set the corresponding method callbacks.

following paragraphs explain how the previously defined con-
cepts can be applied to specific hardware components based
on a generic class model.

The source code and OPC UA NodeSets that were devel-
oped for the whole system and its components are published
on GitHub.3 It is also possible to run the system in simulation,
as described in the included README file.

1) FROM INFORMATION MODEL TO EXECUTABLE
A companion specification usually comes with a NodeSet2
XML file which defines all the nodes and references between
the nodes inside this specific information model. For more
complex information models, the more intuitive and less ver-
bose OPC UA ModelDesign format is typically used.

Previously mentioned companion specifications for this
paper were written in the ModelDesign format and are
available on our GitHub account. Using the official UA-
ModelCompiler4 the ModelDesign format is converted to
the NodeSet2 format, which can be consumed by all major
OPC UA implementations. open62541 comes with a Node-
Set compiler that transforms the NodeSet2 XML format into
compilable source code initializing the OPC UA server. We
extended the functionality of this NodeSet compiler to sup-
port additional features and contributed this extension into the
upstream repository.

2) GENERIC C++ CLASS MODEL
Using the NodeSet compiler of open62541, all defined nodes
and references are created in the OPC UA server. Additional
functionality, in particular the handling of the state machine
and the skill functionality, needs to be implemented on top
of the generated code. Using object-oriented programming
in C++, we are able to reuse as much code as possible for
different device-specific skill implementations. Fig. 7 gives an
overview over the defined classes.

The abstract Program contains method callbacks for the
state transition methods of an OPC UA Program using the
provided server API and handles the event triggers for state
transitions. The SkillBase class extends the Program
class and is the basis for all skill implementations. Due to

3https://github.com/opcua-skills/plug-and-produce
4https://github.com/OPCFoundation/UA-ModelCompiler

FIGURE 8. Architectural setup for hierarchical skill composition. Hardware
components are wrapped by custom OPC UA servers and provide their
skills to higher-level components.

this abstraction, a specific skill implementation only needs
to implement the hardware interface and does not need to
handle the OPC UA-specific configuration. When a client sets
the parameters and then calls the start method through the
OPC UA interface, the callback function in SkillBase is
triggered and forwarded to the concrete skill implementation.
Skill parameters are statically defined in the specific skill sub-
classes and passed transparently to the callback method. State
transitions and event handling are performed in the Program
class based on the return value of the callback.

B. DEVICE ADAPTERS
Fig. 8 shows a simplified overview of the components used in
our final evaluation and are described following a bottom-up
approach in this section.

All components in the system implement the proposed skill
interface from Section VI, so that they can be considered for
task deployment. Only very few devices are available that di-
rectly provide a sophisticated OPC UA control interface. Such
devices typically only provide data access for predictive main-
tenance and input/output control. Standardization and adop-
tion of more complex interfaces will take some time and an in-
termediate solution is needed to integrate non-compatible de-
vices. This can be achieved by implementing device adapters,
that wrap proprietary interfaces to provide the proposed skill
interface. The term Brownfield integration is generally used to
refer to such an integration.

VOLUME 2, 2021 137

https://github.com/opcua-skills/plug-and-produce
https://github.com/OPCFoundation/UA-ModelCompiler

PROFANTER ET AL.: GENERIC PLUG & PRODUCE SYSTEM COMPOSED OF SEMANTIC OPC UA SKILLS

An existing suitable skill type needs to be chosen, or a
new one needs to be created by subtyping an existing one,
to represent the device’s functionality. The created definition
then needs to be transferred to an OPC UA NodeSet, which is
the basis for the resulting address space model in the OPC UA
server.

Using our generic C++ class model, state machine handling
is already implemented. Therefore, only the specific control of
the underlying hardware or communication with other skills
has to be implemented. Our provided code also includes a
generic implementation of a skill client that can be used within
a skill implementation for accessing other skills. All device
adapters also implement LDS-ME to be discoverable by other
components.

1) WI-FI MICROCONTROLLER BOARDS WITH OPC UA
As some components require specific hardware circuits to
adapt the proprietary interfaces, we decided to use a micro-
controller with built-in Wi-Fi support. We first evaluated the
RaspberryPi Zero with Wi-Fi and Raspbian. Due to a bootup
time of more than 20 seconds, we chose to use a smaller
microcontroller for that purpose. A good choice with enough
memory and exceedingly small dimensions is the TinyPICO
board based on the ESP32 platform by Espressif running
FreeRTOS. We developed an OPC UA server, which can be
flashed directly onto this microcontroller. Below, we will refer
to this controller as TinyUA. The example implementation
is available on GitHub.5 It takes around 8 seconds for the
microcontroller to power on, join the Wi-Fi network, get the
current time via NTP, start the OPC UA application, and an-
nounce itself through the OPC UA discovery services, which
is significantly faster compared to a Rasperry Pi.

2) KELVIN TOOL CHANGER & ADC ADAPTER
The Kelvin tool changer is a passive tool changer: it does not
use electric or pneumatic control to attach or detach tools. Its
manual locking mechanism can either be operated by a human
or autonomously by suitable robot movements. Through an
analog voltage pin, it provides the current state of the tool
changer and the attached tool ID. Using a TinyUA server
with its built-in analog-digital converter (ADC) as the base
component, the status of the tool changer is provided to the
higher-level software component. It runs on a PC and provides
the AttachToolSkill, ChangeToolSkill and DropToolSkill. It is
connected via wireless network to the ADC adapter to fetch
the tool changer states. Its startup configuration requires a
specification on which robot the tool changer is mounted and
therefore waits for the announce message of the robot to be
ready before connecting to its move skills.

3) VACUUM GRIPPER: SCHMALZ ECBPI
The Schmalz ECBPi vacuum gripper uses the IO-Link proto-
col for its control interface. Our TinyUA board is connected

5https://github.com/Pro/open62541-esp32

FIGURE 9. Custom Wi-Fi OPC UA tool adapter based on the TinyPICO
microcontroller board running FreeRTOS: Schmalz ECBPi (left) and Robotiq
2F-85 (right). The only external connection required is a 24V power supply
provided through the tool changer.

via the IO-Link Master Board from TeConcept. With this
setup, the TinyUA board implements the GraspSkill and Re-
leaseSkill directly on the microcontroller and maps commands
to the IO-Link device. This microcontroller is mounted di-
rectly on the gripper using a custom 3D-printed casing (Fig. 9,
left). This setup only requires an external power source of
24V and can be used to adapt any other IO-Link hardware
to OPC UA directly on the tool side.

4) PARALLEL GRIPPER: ROBOTIQ 2F-85
The Robotiq gripper is shipped with a Modbus RS-485 inter-
face. The serial interface of the TinyUA board is used together
with a MAX3485 chip to connect to the RS-485 interface. We
use parts of the Robotics Library [48] for implementing the
protocol. The TinyUA board provides the GraspSkill and Re-
leaseSkill to other components, and is also mounted directly
on the gripper using a custom 3D-printed casing (Fig. 9, right).

5) UNIVERSAL ROBOTS UR5
To implement our OPC UA skill model for the real-time inter-
face of the Universal Robots UR5, we developed our own C++
application, which combines path planning and robot control
abstraction of the Robotics Library [48] with the open62541
OPC UA stack. This application provides all robot movement
skills as depicted in Fig. 4 via the OPC UA interface to other
components.

6) PICK-AND-PLACE SOFTWARE COMPONENT
The Pick-and-Place software component is not directly con-
nected to any hardware, but provides its functionality by
composing and orchestrating lower-level skills as described
in Section VI. In our evaluation, we developed a software
component that implements the PickPlaceSkill. The internal
skill-specific implementation receives the ID of the object
that should be picked and queries our world model for the
object’s properties (geometry, current pose). In more complex
setups the simple object ID could be replaced with more
detailed object descriptions, e.g., to be used by an internal
object detection. Using the given endpoint for the tool and

138 VOLUME 2, 2021

https://github.com/Pro/open62541-esp32

the robot in combination with the Skill Detector, the grasp
skill and CartesianLinearMoveSkill is detected. As mentioned
before, the grasp skill provides the grip point offset and grip
type. Combining this information with the object’s properties,
a grasp planner can determine the optimal grasp pose for
the object, which is in our case a 5cm offset in z direction
for the approach positions. A more advanced implementation
could include a more complex path planning algorithm while
keeping the same interface. When all required information is
available, the skill implementation triggers the corresponding
lower-level skill sequence.

If there is more than one robot in the system, multiple skills
of the same type may be available. In this case, a higher-level
component needs to intelligently select the correct endpoint
based on additional information from the task or world model,
e.g., the robot’s position and reachable robot’s working area.
Another solution could be to use Software-Defined Network-
ing (SDN) to create different network segments and thereby
shift the intelligence from the lower level to a central in-
stance [43].

C. EVALUATION
We evaluated our proposed Plug & Play architecture on three
demonstrators. One demonstrator is composed of a KUKA
iiwa robot and is used to insert ATO fuses into automotive
fuse boxes. Here, we developed a composite skill for inserting
a fuse, which uses lower-level gripper and robot skills. In a
similar fashion, another demonstrator with a Universal Robots
UR5, a tool changer, and a parallel gripper was developed
for placing terminal blocks onto a DIN hat rail. In order to
further show the applicability of our proposed Plug & Produce
system, we built a third demonstrator setup, as depicted in
Fig. 8, which demonstrates a pick and place task involving
a tool changer and two tools: a parallel gripper and a vacuum
gripper.

A video of the execution and automatic adaptation of the
Pick-and-Place skill for two different tools can be accessed
online.6 The overall process defined in the knowledge base
includes the following steps: change tool to parallel gripper,
pick and place box, change tool to vacuum gripper, pick and
place box, detach tool. Since both tools provide the same pick
and place skill interface, the pick and place composite skill
is able to interact with the tools, independent of the manufac-
turer or used actuation technologies. Our main focus was on
the evaluation of automatic skill discovery on startup and dur-
ing a tool change, the parametrization, and the performance of
the overall system. Other grippers, or even the robot hardware
(see [34]), can now easily be integrated into the system or ex-
changed without the need for changing the process description
or higher-level control applications like the sMES, given that
these components implement the proposed skill interface.

It is difficult to find similar approaches for a quantitative
comparison. Other approaches are mostly designed with dif-
ferent use-cases in mind and, to the best of our knowledge,

6https://youtu.be/BviOXtrQOZ8

there is no suitable numerical quantification to measure the
flexibility of a system.

For an initial quantitative evaluation, we measured the time
between starting a component or connecting its power supply,
and the successful detection of the component’s skills by other
components. The following values are averaged over 5 test
runs in our demonstrator.
� Universal Robots UR5: 313ms
� Pick-and-Place component: 211ms
� Kelvin Tool changer component: 253ms
� Robotiq 2F: 8422ms (8.4s)
� Schmalz ECBPi: 9635ms (9.6s)
As can be seen, automatic component discovery and skill

detection in general takes less than 300 milliseconds. The
Robotiq 2F and Schmalz ECBPi adapters based on TinyUA
require around 9 seconds. This higher value stems from sum-
ming up various necessary steps: Bootloader (1.8s), connect-
ing to Wi-Fi (2.9s), initializing system time with NTP (1.9s),
starting the OPC UA application and announcing itself (1.8s).
The initialization of the IO-Link board requires an additional
1.2 seconds on the Schmalz ECBPi’s TinyUA. These longer
setup times can be reduced by improving the prototypical im-
plementation of our TinyUA controller. With adequate effort,
we estimate them to be below 5 seconds.

IX. CONCLUSION
In this paper, we present a generic system architecture for a
Plug & Produce system. Based on our defined requirements,
we chose OPC UA as a basis for this system. Using a combi-
nation of OPC UA’s decentralized discovery mechanism and
our skill detector, newly plugged-in components and their
skills are automatically detected by the system. The presented
generic skill interface description is used to abstract away
lower-level functionalities. The combination of a semantic
MES and a knowledge base enables flexible component ex-
change without the need of reprogramming control applica-
tions.

The evaluation of our proposed system on multiple robot
workcells shows, that a very well-performing generic Plug &
Produce system can be achieved using OPC UA. An important
aspect to consider is that the cost of flexibility and configura-
bility is performance. In general, for more flexible or generic
systems, a higher performance impact can be expected. Ex-
ecuting skills introduces communication and synchronization
overhead, while a dedicated low-level implementation accom-
plishing the same task can typically achieve a higher perfor-
mance.

Component integration based on a Wi-Fi does not necessar-
ily slow down the system, e.g., robot tools can be efficiently
controlled through stable Wi-Fi. The impact of unstable net-
work connection, real-time control using Time Sensitive Net-
working, and the usage of mobile 5 G networks for real-time
robot control still needs to be investigated.

A major drawback, which currently prevents the direct ap-
plication of our approach, is the fact, that nearly every device
comes with its own protocol specification. Furthermore, the

VOLUME 2, 2021 139

https://youtu.be/BviOXtrQOZ8

PROFANTER ET AL.: GENERIC PLUG & PRODUCE SYSTEM COMPOSED OF SEMANTIC OPC UA SKILLS

requirement to base all skill implementations on a specific
skill type assumes that different manufacturers agree on suit-
able sets of skill types. This task is eased by reusing already
existing standards: via the OPC UA dictionary reference, it
is possible to link external entities, e.g., the corresponding
eCl@ss or VDI 2860 definition to a skill type. As an active
member of the joint working group of OPC UA and VDMA
for integrated assembly solutions, we are supporting the stan-
dardization process of a generic skill model in OPC UA.
Based on this generic skill specification, other companion
specifications can define their own device-specific skill types.
The corresponding skill implementation still needs to be de-
veloped once by the device manufacturer. The work leading
to this publication intends to contribute to this process and
to bring it closer to its goal. However, it will take even more
time until the majority of components support a common Plug
& Produce standard. Skill implementations that comply with
standardized skill types could be distributed through software
libraries or skill stores.

The effort of implementing device adapters quickly pays
off, as they significantly reduce the required reconfiguration
time especially for small lot production. We will continue to
work toward supporting more types of hardware and develop-
ing models for corresponding types of skills such as robotic
spindle systems and force-enabled assembly skills.

REFERENCES
[1] SPARC, “Multi-annual roadmap (MAR) 2020, rev b, section

4.1,” euRobotics, Tech. Rep., 2020. [Online]. Available:
https://www.eu-robotics.net/sparc/upload/about/files/H2020-Robotics-
Multi-Annual-Roadmap-ICT-2016.pdf

[2] Y. Y. Yusuf, M. Sarhadi, and A. Gunasekaran, “Agile manufacturing:
The drivers, concepts and attributes,” Int. J. Prod. Economics, vol. 62,
no. 1/2, pp. 33–43, 1999. [Online]. Available: https://doi.org/10.1016/
S0925-5273(98)00219-9

[3] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren, “Reconfigurable manufac-
turing systems: Key to future manufacturing,” J. Intell. Manuf., vol. 11,
no. 4, pp. 403–419, 2000.

[4] OPC Foundation, “OPC UA for robotics - Part 1: Vertical integration,”
OPC 40010-1, OPC Foundation, 2019.

[5] A. Perzylo et al., “SMErobotics: Smart robots for flexible manufactur-
ing,” IEEE Robot. Automat. Mag., vol. 26, no. 1, pp. 78–90, Mar. 2019.

[6] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann, “A
new skill based robot programming language using UML/P statecharts,”
in Proc. IEEE Int. Conf. Robot. Automat., 2013, pp. 461–466,

[7] M. R. Pedersen et al., “Robot skills for manufacturing: From con-
cept to industrial deployment,” Robot. Comput.-Integr. Manuf., vol. 37,
pp. 282–291, 2016. [Online]. Available: https://doi.org/10.1016/j.rcim.
2015.04.002

[8] S. Malakuti et al., “Challenges in skill-based engineering of industrial
automation systems,” in Proc. IEEE Int. Conf. Emerg. Technol. Factory
Automat., 2018, pp. 67–74.

[9] T. Hasegawa, T. Suehiro, and K. Takase, “A model-based manipula-
tion system with skill-based execution,” IEEE Trans. Robot. Automat.,
vol. 8, no. 5, pp. 535–544, 1992.

[10] W. Meeussen et al., “ros_control: A generic and simple control frame-
work for ROS,” J. Open Source Softw., vol. 2, no. 20, 2017, Art. no. 456.

[11] I. Zamalloa, I. Muguruza, A. Hernández, R. Kojcev, and V. Mayoral,
“An information model for modular robots: The hardware robot infor-
mation model (HRIM),” 2018, arXiv:1802.01459.

[12] H. Herrero, J. L. Outón, U. Esnaola, D. Sallé, and K. López de Ipiña,
“Development and evaluation of a skill based architecture for applied
industrial robotics,” in Proc. Int. Work Conf. Bioinspired Intell., 2015,
pp. 191–196,

[13] R. H. Andersen, T. Solund, and J. Hallam, “Definition and initial case-
based evaluation of hardware-independent robot skills for industrial
robotic co-workers,” in Proc. Int. Symp. Robot., 2014, pp. 1–7.

[14] F. Steinmetz, A. Wollschläger, and R. Weitschat, “RAZER - a HRI
for visual task-level programming and intuitive skill parameteriza-
tion,” IEEE Robot. Automat. Lett., vol. 3, no. 3, pp. 1362–1369,
Jul. 2018.

[15] R. Lindorfer and R. Froschauer, “Towards user-oriented program-
ming of skill-based automation systems using a domain-specific
meta-modeling approach,” in Proc. IEEE Int. Conf. Ind. Inform.,
pp. 655–660, 2019.

[16] P. Zimmermann, E. Axmann, B. Brandenbourger, K. Dorofeev, A.
Mankowski, and P. Zanini, “Skill-based engineering and control on
field-device-level with OPC UA,” in Proc. 4th IEEE Int. Conf. Emerg.
Technol. Factory Automat., 2019, pp. 1101–1108,

[17] K. Dorofeev and A. Zoitl, “Skill-based engineering approach using
OPC UA programs,” in Proc. IEEE Int. Conf. Ind. Inform., 2018,
pp. 1098–1103

[18] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota, “Agile assembly
system by “plug and produce,” CIRP Ann., vol. 49, no. 1, pp. 1–4,
2000.

[19] P. Ferreira and N. Lohse, “Configuration model for evolvable assembly
systems,” in Proc. CIRP Conf. Assem. Technol. Syst., 2012, pp. 75–79.

[20] K. Dorofeev, C.-H. Cheng, M. Guedes, P. Ferreira, S. Profanter, and A.
Zoitl, “Device adapter concept towards enabling plug&produce produc-
tion environments,” in Proc. IEEE Int. Conf. Emerg. Technol. Factory
Automat., pp. 1–8, 2017.

[21] J. Pfrommer, D. Stogl, K. Aleksandrov, S. E. Navarro, B. Hein,
and J. Beyerer, “Plug & produce by modelling skills and service-
oriented orchestration of reconfigurable manufacturing systems,” Au-
tomatisierungstechnik, vol. 63, no. 10, pp. 790–800, Jan. 2015.

[22] V. Jirkovsky, M. Obitko, P. Kadera, and V. Marik, “Toward plug&play
cyber-physical system components,” IEEE Trans. Ind. Informat.,
vol. 14, no. 6, pp. 2803–2811, Jun. 2018.

[23] M. Schleipen, A. Lüder, O. Sauer, H. Flatt, and J. Jasperneite, “Re-
quirements and concept for plug-and-work,” Automatisierungstechnik,
vol. 63, no. 10, pp. 801–820. [Online]. Available: https://doi.org/10.
1515/auto-2015-0015

[24] W. Dai et al., “Semantic integration of plug-and-play software compo-
nents for industrial edges based on microservices,” IEEE Access, vol. 7,
pp. 125882–125892, 2019, doi: 10.1109/ACCESS.2019.2938565.

[25] W. Lepuschitz, A. Zoitl, M. Vallée, and M. Merdan, “Toward self-
reconfiguration of manufacturing systems using automation agents,”
IEEE Trans. Syst., Man Cybern. Part C: Appl. Rev., vol. 41, no. 1,
pp. 52–69, Jan. 2011.

[26] A. Girbea, C. Suciu, S. Nechifor, and F. Sisak, “Design and implementa-
tion of a service-oriented architecture for the optimization of industrial
applications,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 185–196,
Feb. 2014.

[27] H. Koziolek, A. Burger, and J. Doppelhamer, “Self-commissioning in-
dustrial IoT-systems in process automation: A reference architecture,”
in Proc. IEEE Int. Conf. Softw. Architecture, 2018, pp. 196–19609.

[28] P. F. S. de Melo and E. P. Godoy, “Controller interface for industry 4.0
based on RAMI 4.0 and OPC UA,” in Proc. Workshop Metrology Ind.
4.0 IoT, 2019, pp. 229-234.

[29] H. Koziolek, A. Burger, M. Platenius-Mohr, J. Rückert, F. Mendoza,
and R. Braun, “Automated industrial IoT-device integration using the
OpenPnP reference architecture,” Software: Pract. Experience, vol. 50,
no. 3, pp. 246–274, 2020.

[30] S. K. Panda, T. Schröder, L. Wisniewski, and C. Diedrich,
“Plug&produce integration of components into OPC UA based data-
space,” in Proc. IEEE Int. Conf. Emerg. Technol. Factory Automat.,
2018, pp. 1095–1100.

[31] T. Gašpar et al., “Smart hardware integration with advanced robot
programming technologies for efficient reconfiguration of robot work-
cells,” Robot. Comput.-Integr. Manuf., vol. 66, 2020, Art. no. 101979.

[32] J. Puttonen, A. Lobov, and J. L. Martinez Lastra, “Semantics-based
composition of factory automation processes encapsulated by web
services,” IEEE Trans. Ind. Informat., vol. 9, no. 4, pp. 2349–2359,
Nov. 2013.

[33] S. Profanter et al., “OPC UA versus ROS, DDS, and MQTT: Per-
formance evaluation of industry 4.0 protocols,” in IEEE Int. Conf.
Ind. Technol. (ICIT), Melbourne, Australia, 2019, pp. 955–962, doi:
10.1109/ICIT.2019.8755050.

140 VOLUME 2, 2021

https://www.eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
https://doi.org/10.1016/S0925-5273(98)00219-9
https://doi.org/10.1016/j.rcim.2015.04.002
https://doi.org/10.1515/auto-2015-0015
https://dx.doi.org/10.1109/ACCESS.2019.2938565
https://dx.doi.org/10.1109/ICIT.2019.8755050

[34] S. Profanter, A. Breitkreuz, M. Rickert, and A. Knoll, “A hardware-
agnostic OPC UA skill model for robot manipulators and tools,” in Proc.
IEEE Int. Conf. Emerg. Technol. Factory Automat., 2019, pp. 1061–
1068.

[35] S. Profanter, K. Dorofeev, A. Zoitl, and A. Knoll, “OPC UA for plug &
produce: Automatic device discovery using LDS-ME,” in Proc. IEEE
Int. Conf. Emerg. Technol. Factory Automat., 2017, pp. 1–8.

[36] P. A. Bernstein, “Middleware: An architecture for distributed system
services,” Digital Equipment Corporation, Cambridge Research Lab,
Tech. Rep. CRL 93/6, 1993. [Online]. Available: https://www.hpl.hp.
com/techreports/Compaq-DEC/CRL-93-6.pdf

[37] T.-C. Chang and R. A. Wysk, Computer-Aided Manufacturing, 2nd ed.
Englewood Cliffs, NJ, USA: Prentice Hall PTR, 1997.

[38] T. Sauter, S. Soucek, W. Kastner, and D. Dietrich, “The evolution of
factory and building automation,” IEEE Ind. Electron. Mag., vol. 5,
no. 3, pp. 35–48, Sep. 2011.

[39] J.-D. Decotignie, “Ethernet-based real-time and industrial communica-
tions,” Proc. IEEE, vol. 93, pp. 1102–1117, no. 6, 2005.

[40] ZVEI, “The reference architectural model industrie 4.0 (RAMI 4.0),”
Zentralverband Elektrotechnik- und Elektronikindustrie e.V. (ZVEI),
Tech. Rep. Jul., 2015.

[41] M. J. A. G. Izaguirre, A. Lobov, and J. L. M. Lastra, “OPC-UA
and DPWS interoperability for factory floor monitoring using com-
plex event processing,” in Proc. IEEE Int. Conf. Ind. Infor., 2011,
pp. 205–211.

[42] OPC Foundation, “OPC UA Specification. Release 1.04,” OPC 10000,
OPC Foundation, 2019.

[43] B. Madiwalar, B. Schneider, and S. Profanter, “Plug and produce for
industry 4.0 using software-defined networking and OPC UA,” in Proc.
IEEE Int. Conf. Emerg. Technol. Factory Automat., 2019, pp. 126–133.

[44] A. Perzylo, S. Profanter, M. Rickert, and A. Knoll, “OPC UA nodeset
ontologies as a pillar of representing semantic digital twins of manu-
facturing resources,” in Proc. IEEE Int. Conf. Emerg. Technol. Factory
Automat., 2019, pp. 1085–1092

[45] B. Parsia, P. Patel-Schneider, M. Krötzsch, P. Hitzler, and S. Rudolph,
“OWL 2 web ontology language primer (second edition),” W 3C, Tech.
Rep., Dec. 2012. [Online]. Available: https://www.w3.org/TR/owl2-
primer/

[46] A. Perzylo et al., “Capability-based semantic interoperability of man-
ufacturing resources: A BaSys 4.0 perspective,” IFAC-PapersOnLine,
vol. 52, no. 13, pp. 1590–1596, Dec. 2019.

[47] A. Perzylo, I. Kessler, S. Profanter, and M. Rickert, “Toward a
knowledge-based data backbone for seamless digital engineering in
smart factories,” in 25th IEEE Int. Conf. Emerging Technol. Fac-
tory Automat. (ETFA), Vienna, Austria, 2020, pp. 164–171, doi:
10.1109/ETFA46521.2020.9211943.

[48] M. Rickert and A. Gaschler, “Robotics library: An object-oriented ap-
proach to robot applications,” in Proc. IEEE Int. Conf. Intell. Robot.
Syst., 2017, pp. 733–740.

STEFAN PROFANTER studied Computer Science
for the B.Sc. degree with the Technical Univer-
sity of Munich, Germany. In 2014, he received the
M.Sc. degree in robotics, cognition, intelligence
with the same University. Since 2015, he is a Re-
search Scientist with fortiss, research institute of
the free state of Bavaria on software-intensive sys-
tems and affiliated institute of the Technical Uni-
versity of Munich. During this time, he is working
toward the Ph.D. with research interests include
industrial automation, robotics, Industry 4.0, and

readyness of Components for easy integration and adaption. He has authored
or coauthored within the last five years more than 10 technical papers and
a journal paper which are highly relevant in his research field. These pub-
lications support his Ph.D. dissertation in the field of flexible component
integration for robot-based manufacturing systems in Industry 4.0.

ALEXANDER PERZYLO (Member, IEEE) re-
ceived the B.Sc. and M.Sc. degrees in computer
science from Technische Universität München
(TUM), Munich, Germany. In 2010, he joined the
Chair of Robotics and Embedded Systems with
TUM as a Research Assistant and participated in
the EU-funded cloud robotics project RoboEarth.
Since 2013, he works with fortiss, the research
institute of the free state of Bavaria on software-
intensive systems and affiliated institute of the
Technical University of Munich, where he con-

tributes as a Scientist to a variety of European and national research projects
in the fields of industrial robotics and automation. Prominent concluded
and ongoing projects are SMErobotics (EU FP7), VOJEXT (H2020), and
BaSys 4.0 and BaSys 4.2 (German BMBF). He has coauthored around 30 sci-
entific publications on these topics. His research interests include knowledge-
based manufacturing, cognition-enabled robotic systems, and human-robot
interaction.

MARKUS RICKERT received the Diploma degree
in computer science from the Technical Univer-
sity of Munich, Germany, in 2004 and the Doc-
toral degree (summa cum laude) in computer sci-
ence from the Technical University of Munich,
Germany, in 2011. In 2010, he joined fortiss, the
research institute of the free state of Bavaria on
software-intensive systems and affiliated institute
of the Technical University of Munich, where he
founded the research group on Virtual Engineer-
ing and Robotics and the research group on Au-

tonomous Driving. From 2013 to 2016, he was Deputy Head of the Depart-
ment of Cyber-Physical Systems and since 2016, he has been the Head of
Robotics and Machine Learning with fortiss. Dr. Rickert’s research interests
include robotics, motion planning, human-robot interaction, cognitive sys-
tems, artificial intelligence, as well as software and systems engineering. He
is the creator of the open-source software project Robotics Library and has
published more than 60 technical papers in these fields.

ALOIS KNOLL (Senior Member, IEEE) re-
ceived the Diploma (M.Sc.) degree in electri-
cal/communications engineering from the Univer-
sity of Stuttgart, Germany, in 1985 and the Ph.D.
degree (summa cum laude) in computer science
from the Technical University of Berlin, Germany,
in 1988. After his habilitation in 1993, he joined
the Faculty of Technology of the University of
Bielefeld, where he was a Full Professor and the
Director of the research group Technical Informat-
ics until 2001. Since autumn 2001, he has been

a Professor of Computer Science with the Department of Informatics of
the Technical University Munich. In these fields, he has authored or coau-
thored more than 600 technical papers and guest-edited international journals.
Prof. Knoll’s research interests include cognitive, medical and sensor-based
robotics, multi-agent systems, data fusion, adaptive systems, multimedia in-
formation retrieval, model-driven development of embedded systems with
applications to automotive software and electric transportation, as well as
simulation systems for robotics and traffic.

He initiated the First IEEE/RAS Conference on Humanoid Robots and was
General and Program Chair of various IEEE conferences. He also was on
numerous other organising committees as well as editorial boards of inter-
national journals. He is currently the Editor-in-Chief of the Neurorobotics
Journal of Frontiers, a recently founded open access publication for in-depth
robotics articles.

VOLUME 2, 2021 141

https://www.hpl.hp.com/techreports/Compaq-DEC/CRL-93-6.pdf
https://www.w3.org/TR/owl2-primer/
https://dx.doi.org/10.1109/ETFA46521.2020.9211943

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

