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Abstract—This note is concerned with a suboptimal version of
the distributed linear quadratic optimal control problem for mul-
tiagent systems. Given a multiagent system with identical agent
dynamics and an associated global quadratic cost functional, our
objective is to design distributed control laws that achieve consen-
sus and whose cost is smaller than an a priori given upper bound,
for all initial states of the network that are bounded in norm by a
given radius. A centralized design method is provided to compute
such suboptimal controllers, involving the solution of a single Ric-
cati inequality of dimension equal to the dimension of the agent
dynamics, and the smallest nonzero and the largest eigenvalue of
the Laplacian matrix. Furthermore, we relax the requirement of ex-
act knowledge of the smallest nonzero and largest eigenvalue of the
Laplacian matrix by using only lower and upper bounds on these
eigenvalues. Finally, a simulation example is provided to illustrate
our design method.

Index Terms—Consensus, distributed control, linear quadratic
optimal control, multiagent systems, suboptimality.

I. INTRODUCTION

In this note, we study the distributed linear quadratic optimal control
problem for multiagent networks. This problem deals with a number
of identical agents represented by a finite-dimensional linear input-
state system, and an undirected graph representing the communication
between these agents. Given is also a quadratic cost functional that pe-
nalizes the differences between the states of neighboring agents and the
size of the local control inputs. The distributed linear quadratic control
problem is the problem of finding a distributed diffusive control law
that minimizes this cost functional while achieving consensus for the
controlled network. This problem is nonconvex and difficult to solve,
and a closed-form solution has not been provided in the literature up to
now. It is also unknown under what conditions an optimal distributed
diffusive control law exists in general [1]. Therefore, instead of address-
ing the problem formulated above, in the present note, we will study
a suboptimal version of this optimal control problem. In other words,
our aim will be to design suboptimal distributed diffusive control laws
that guarantee the controlled network to reach consensus.

The distributed linear quadratic control problem has attracted
extensive attention in the last decade, and has been studied from
many different angles. For example, in [2]–[4], it was shown that
if the quadratic cost functional involves the differences of states of
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neighboring agents, then, necessarily, the optimal control laws must be
distributed and diffusive. However, these references do not address the
problem of designing the optimal control laws. In [5], a design method
was introduced for computing suboptimal distributed stabilizing
controllers for decoupled linear systems. In this reference, the authors
consider a global linear quadratic cost functional that contains terms
that penalize the states and inputs of each agent and also the relative
states between each agent and its neighboring agents. In [6] and [7],
methods were established for designing distributed synchronizing
control laws for linear multiagent systems, where the control laws are
derived from the solution of an algebraic Riccati equation of dimension
equal to the state-space dimension of the agents. However, in these ref-
erences, cost functionals were not taken explicitly into consideration.

The distributed linear quadratic optimal control problem was also
addressed in [8] for multiagent systems with single-integrator agent dy-
namics. The authors obtained an expression for the optimal control law,
with the optimal feedback gain given in terms of the initial conditions
of all agents. In addition, in [9], a distributed optimal control problem
was considered from the perspective of cooperative game theory. In
that paper, the problem being studied was solved by transforming it
into a maximization problem for linear matrix inequalities, taking into
consideration the structure of the Laplacian matrix. For related work,
we also mention [10]–[13] to name a few.

Also, in [14], a hierarchical control approach was introduced for lin-
ear leader–follower multiagent systems. For the case that the weighting
matrices in the cost functional are chosen to be of a special form, two
suboptimal controller design methods were given in this reference. In
addition, in [15], an inverse optimal control problem was addressed
both for leader–follower and leaderless multiagent systems. For a par-
ticular class of digraphs, the authors showed that distributed optimal
controllers exist and can be obtained if the weighting matrices are as-
sumed to be of a special form, capturing the graph information. For
other work related to distributed inverse optimal control, we refer to
[16] and [17].

In the present note, our objective is to design distributed diffusive
control laws that guarantee the controlled network to reach consensus
and to provide conditions under which the associated cost is smaller
than an a priori given upper bound. The main contributions of this note
are the following.
1) We present a design method for computing suboptimal distributed

diffusive control laws, based on computing a positive definite so-
lution of a single Riccati inequality of dimension equal to the
dimension of the agent dynamics. In the computation of the lo-
cal control gain, the smallest nonzero eigenvalue and the largest
eigenvalue of the Laplacian matrix are involved.

2) For the case that exact information on the smallest nonzero eigen-
value and the largest eigenvalue of the Laplacian matrix is not
available, we establish a design method using only lower and up-
per bounds on these Laplacian eigenvalues.

The remainder of this note is organized as follows. In Section II,
we introduce the required basic notation and formulate the suboptimal
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distributed linear quadratic control problem. Section III presents the
analysis and design of suboptimal linear quadratic control for linear
systems, collecting preliminary classical results for treating the actual
suboptimal distributed control problem for multiagent systems. Then,
in Section IV, we study the suboptimal distributed control problem
for linear multiagent systems. To illustrate our results, a simulation
example is provided in Section V. Finally, in Section VI, we formulate
some conclusions.

II. NOTATION AND PROBLEM FORMULATION

A. Notation

We denote by R the field of real numbers, and by Rn the n-
dimensional real Euclidean space. For x ∈ Rn , its Euclidean norm
is defined by ‖x‖ :=

√
x�x. For a given r > 0, we denote by B(r) :=

{x ∈ Rn | ‖x‖ ≤ r} the closed ball of radius r. We denote by Rn×m

the set of real n × m matrices. For a given matrix A, its transpose
and inverse (if it exists) are denoted by A� and A−1 , respectively.
The identity matrix of dimension n × n is denoted by In . We denote
the Kronecker product of two matrices A and B by A ⊗ B, which
has the property that (A1 ⊗ B1 )(A2 ⊗ B2 ) = A1A2 ⊗ B1B2 . For a
given symmetric matrix P we denote P > 0 if it is positive definite
and P ≥ 0 if it is positive semidefinite. By diag(a1 , a2 , . . . , an ), we
denote the n × n diagonal matrix with a1 , a2 , . . . , an on the diagonal.
The column vector 1n ∈ Rn denotes the vector whose components are
all equal to 1.

A directed graph is a pair G = (V, E) with nonempty set of nodes
V = {1, 2, . . . , N} and edge set E ⊂ V × V. A pair (i, j) ∈ E, with
i, j ∈ V, represents an edge from node i to node j. We assume that
the graph is simple, meaning that the edge set only contains edges of
the form (i, j) with i 
= j. The graph is called undirected if (i, j) ∈ E

implies (j, i) ∈ E. In this note, we will restrict ourselves to simple,
undirected graphs. We denote the neighboring set of node i by Ni :=
{j ∈ V | (i, j) ∈ E}. The adjacency matrix of G is defined as A =
[aij ] with aij = 1 whenever there is an edge between the nodes i
and j, and aij = 0 otherwise. Obviously, for simple graphs, aii = 0
for all i. Furthermore, a graph G is undirected if and only if A is
symmetric. The Laplacian matrix is defined as L = D −A, where
D = diag(d1 , d2 , . . . , dN ) with di =

∑N
j=1 aij the degree matrix of

G. The Laplacian matrix L of an undirected graph is symmetric and
consequently only has real eigenvalues. Furthermore, all eigenvalues
are nonnegative and 0 is an eigenvalue of L. The graph is connected
if and only if 0 is a simple eigenvalue of L. In the sequel we will
assume that G is connected. In that case the eigenvalues of L can
be ordered in increasing order as 0 = λ1 < λ2 ≤ · · · ≤ λN and there
exists an orthogonal matrix U such that U�LU = diag(0, λ2 , . . . , λN ).
Moreover, we have U = ( 1√

N
1N U2 ) and U2U

�
2 = IN − 1

N
1N 1�

N .

B. Problem Formulation

In this note, we consider a multiagent system consisting of N identi-
cal agents. It will be a standing assumption that the underlying graph is
simple, undirected, and connected. The corresponding Laplacian ma-
trix is denoted by L. The dynamics of the identical agents is represented
by the continuous-time linear time-invariant (LTI) system given by

ẋi (t) = Axi (t) + Bui (t), xi (0) = xi0 , i = 1, 2, . . . , N (1)

where A ∈ Rn×n , B ∈ Rn×m , and xi ∈ Rn , ui ∈ Rm are the state and
input of the agent i, respectively, and xi0 is its initial state. Throughout
this note, we assume that the pair (A, B) is stabilizable.

We consider the infinite horizon distributed linear quadratic opti-
mal control problem for multiagent system (1), where the global cost

functional integrates the weighted quadratic difference of states be-
tween every agent and its neighbors, and also penalizes the inputs in
a quadratic form. Thus, the cost functional considered in this note is
given by

J(u) =
∫ ∞

0

1
2

N∑

i=1

∑

j∈Ni

(xi − xj )�Q(xi − xj ) +
N∑

i=1

u�
i Rui dt (2)

where Q ≥ 0 and R > 0 are given real weighting matrices.
We can rewrite multiagent system (1) in compact form as

ẋ = (IN ⊗ A)x + (IN ⊗ B)u, x(0) = x0 (3)

with x =
(
x�

1 , . . . , x�
N

)�
, u =

(
u�

1 , . . . , u�
N

)�
, where x ∈ Rn N , u ∈

Rm N contain the states and inputs of all agents, respectively. Note that,
although the agents have identical dynamics, we allow the initial states
of the individual agents to differ. These initial states are collected in
the joint vector of initial states x0 =

(
x�

10 , . . . , x
�
N 0

)�
. Moreover, we

can also write the cost functional (2) in compact form as

J(u) =
∫ ∞

0
x�(L ⊗ Q)x + u�(IN ⊗ R)u dt. (4)

The distributed linear quadratic problem is the problem of minimiz-
ing for all initial states x0 the cost functional (4) over all distributed
diffusive control laws that achieve consensus. By a distributed diffusive
control law, we mean a control law of the form

u = (L ⊗ K)x (5)

where K ∈ Rm ×n is an identical feedback gain for all agents.
The adjective diffusive refers to the fact that the input of each agent

depends on the relative state variables with respect to its neighbors.
The control law (5) is distributed in the sense that the local gains for
all agents are identical.

By interconnecting the agents using this control law, we obtain the
overall network dynamics

ẋ = (IN ⊗ A + L ⊗ BK)x. (6)

Foremost, we want the control law to achieve consensus:
Definition 1: We say the network reaches consensus using control

law (5) if for all i, j = 1, 2, . . . , N and for all initial states xi0 and xj 0 ,
we have

xi (t) − xj (t) → 0 as t → ∞.

As a function of the to-be-designed local feedback gain K , the cost
functional (4) can be rewritten as

J(K) =
∫ ∞

0
x� (

L ⊗ Q + L2 ⊗ K�RK
)
x dt. (7)

In other words, the distributed linear quadratic control problem is the
problem of minimizing the cost functional (7) over all K ∈ Rm ×n such
that the controlled network (6) reaches consensus.

Due to the distributed nature of the control law (5) as imposed by the
network topology, the distributed linear quadratic problem is a noncon-
vex optimization problem. It is therefore difficult, if not impossible, to
find a closed form solution for an optimal controller, or such optimal
controller may not even exist. Therefore, as mentioned in Section I, in
this note, we will study and resolve a version of this problem involving
the design of suboptimal distributed control laws.

More specifically, let B(r) = {x ∈ Rn N | ‖x‖ ≤ r} be the closed
ball of radius r in the joint state-space Rn N of the network (3). Then,
for system (3) with initial states in such a closed ball of a given radius,
we want to design a distributed diffusive controller such that consensus
is achieved and, for all initial states in the given ball, the associated cost
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is smaller than an a priori given upper bound. Thus, we will consider
the following problem:

Problem 1: Consider the multiagent system (3) and associated cost
functional given by (7). Let r > 0 be a given radius and let γ > 0 be
an a priori given upper bound for the cost. The problem is to find a
distributed diffusive controller of the form (5) such that the controlled
network (6) reaches consensus, and for all x0 ∈ B(r) the associated
cost (7) is smaller than the given upper bound, i.e., J(K) < γ.

Remark 2: Note that we could also have formulated the alternative
problem of finding a suboptimal controller for a single, given, initial
state x0 . In fact, this would be closer to the classical linear quadratic
problem, which is usually formulated as the problem of minimizing
the cost functional for a given initial state x0 . In that context, however,
the optimal controller is a state feedback that turns out to be optimal
for all initial states. In order to capture in our problem formulation
this property of being optimal for all initial states, we have formulated
Problem 1 in terms of initial states contained in a ball of a given radius.

Before we address Problem 1, we will first briefly discuss the sub-
optimal linear quadratic problem for a single linear system. This will
be the subject of the next section.

III. SUBOPTIMAL CONTROL FOR LINEAR SYSTEMS

In this section, we consider a suboptimal linear quadratic control
problem for single linear systems. The results presented in this section
are standard and can be found scattered over the literature, see e.g.,
[18]–[20]. Exact references are however hard to give and therefore,
in order to make this note self-contained, we will collect the required
results here and provide their proofs.

We will first analyze the quadratic performance of a given au-
tonomous system. Subsequently, we will discuss how to design subop-
timal control laws for a linear system with inputs.

A. Suboptimality Analysis for Autonomous Systems

Consider the autonomous system

ẋ(t) = Āx(t), x(0) = x0 (8)

where Ā ∈ Rn×n and x ∈ Rn is the state. We consider the quadratic
performance of system (8), given by

J =
∫ ∞

0
x�Q̄x dt (9)

where Q̄ ≥ 0 is a given real weighting matrix. Note that the perfor-
mance J is finite if system (8) is stable, i.e., Ā is Hurwitz.

We are interested in finding conditions such that the performance (9)
of system (8) is smaller than a given upper bound. For this, we have
the following lemma.

Lemma 3: Consider system (8) with the corresponding quadratic
performance (9). The performance (9) is finite if system (8) is stable,
i.e., Ā is Hurwitz. In this case, it is given by

J = x�
0 Y x0 (10)

where Y is the unique positive semidefinite solution of

Ā�Y + Y Ā + Q̄ = 0. (11)

Alternatively

J = inf{x�
0 Px0 | P > 0 and Ā�P + P Ā + Q̄ < 0}. (12)

Proof: The fact that the quadratic performance (9) is given by the
quadratic expression (10) involving the Lyapunov (11) is well-known.

We will now prove (12). Let Y be the solution to Lyapunov (11) and
let P be a positive definite solution to the Lyapunov inequality in (12).
Define X := P − Y . Then, we have

Ā�(X + Y ) + (X + Y )Ā + Q̄ < 0.

So consequently

Ā�X + XĀ < 0.

Since Ā is Hurwitz, it follows that X > 0. Thus, we have P > Y and
hence J ≤ x�

0 Px0 for any positive definite solution P to the Lyapunov
inequality.

Next we will show that for any ε > 0 there exists a positive definite
matrix Pε satisfying the Lyapunov inequality such that Pε < Y + εI ,
and consequently x�

0 Pεx0 ≤ J + ε‖x0‖2 . Indeed, for given ε, take Pε

equal to the unique positive definite solution of

Ā�P + P Ā + Q̄ + εI = 0. (13)

Clearly then, Pε =
∫ ∞

0 eĀ�t (Q̄ + εI)eĀ t dt, so Pε ↓ Y as ε ↓ 0. This
proves our claim. �

The following theorem now yields necessary and sufficient condi-
tions such that, for a given upper bound γ > 0, the quadratic perfor-
mance (9) satisfies J < γ.

Theorem 4: Consider system (8) with the associated quadratic per-
formance (9). For given γ > 0, we have that Ā is Hurwitz and J < γ
if and only if there exists a positive definite matrix P satisfying

Ā�P + P Ā + Q̄ < 0 (14)

x�
0 Px0 < γ. (15)

Proof: (if) Since there exists a positive definite solution to the
Lyapunov inequality (14), it follows that Ā is Hurwitz. Take a positive
definite matrix P satisfying the inequalities (14) and (15). By Lemma
3, we then immediately have J ≤ x�

0 Px0 < γ.
(only if) If Ā is Hurwitz and J < γ, then, again by Lemma 3, there

exists a positive definite solution P to the Lyapunov inequality (14)
such that J ≤ x�

0 Px0 < γ. �
In the next section, we will discuss the suboptimal control problem

for a linear system with inputs.

B. Suboptimal Control Design for Linear Systems With Inputs

In this section, we consider the finite dimensional LTI system given
by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (16)

where A ∈ Rn×n , B ∈ Rn×m , and x ∈ Rn , u ∈ Rm are the state and
the input, respectively, and x0 is a given initial state. Assume that the
pair (A, B) is stabilizable. The associated cost functional is given by

J(u) =
∫ ∞

0
x�Qx + u�Ru dt (17)

where Q ≥ 0 and R > 0 are given weighting matrices that penalize
the state and input, respectively.

Given γ > 0 and initial state x0 , we want to find a state feedback
control law u = Kx such that the closed system

ẋ(t) = (A + BK)x(t) (18)

is stable and the corresponding cost

J(K) =
∫ ∞

0
x�(Q + K�RK)x dt (19)

satisfies J(K) < γ.
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The following theorem gives a sufficient condition for the existence
of such control law.

Theorem 5: Consider the system (16) with initial state x0 and asso-
ciated cost functional (17). Assume that the pair (A, B) is stabilizable.
Let γ > 0. Suppose that there exists a positive definite P satisfying

A�P + PA − PBR−1B�P + Q < 0 (20)

x�
0 Px0 < γ. (21)

Let K := −R−1B�P . Then, the controlled system (18) is stable and
the control law u = Kx is suboptimal, i.e., J(K) < γ.

Proof: Substituting K := −R−1B�P into (18) yields

ẋ(t) = (A − BR−1B�P )x(t), x(0) = x0 . (22)

Since P satisfies (20), it should also satisfy

(A − BR−1B�P )�P + P (A − BR−1B�P )

+ Q + PBR−1B�P < 0

which implies that A − BR−1B�P is Hurwitz, i.e., the closed system
(22) is stable. Consequently, the corresponding cost is finite and equal
to

J(K) =
∫ ∞

0
x�(Q + PBR−1B�P )x dt.

Since (21) holds, by taking Ā = A − BR−1B�P and Q̄ = Q +
PBR−1B�P in Theorem 4, we immediately have J(K) < γ. �

In the next section, we will apply the above results to tackle the
suboptimal distributed linear quadratic control problem for multiagent
systems as formulated in Problem 1.

IV. SUBOPTIMAL CONTROL DESIGN FOR LINEAR

MULTIAGENT SYSTEMS

Again consider the multiagent system with the dynamics of the
identical agents represented by

ẋi (t) = Axi (t) + Bui (t), xi (0) = xi0 , i = 1, 2, . . . , N (23)

where A ∈ Rn×n , B ∈ Rn×m , and xi ∈ Rn , ui ∈ Rm are the state
and input of the ith agent, respectively, and xi0 its initial state. We
assume that the pair (A, B) is stabilizable.

Denoting x =
(
x�

1 , . . . , x�
N

)�
, u =

(
u�

1 , . . . , u�
N

)�
, we can rewrite

the multiagent system in compact form as

ẋ = (IN ⊗ A)x + (IN ⊗ B)u, x(0) = x0 . (24)

The cost functional we consider was already introduced in (4). We
repeat it here for convenience:

J(u) =
∫ ∞

0
x�(L ⊗ Q)x + u�(IN ⊗ R)u dt (25)

where Q ≥ 0 and R > 0 are given real weighting matrices.
As formulated in Problem 1, given a desired upper bound γ > 0, for

multiagent system (24) with initial states contained in the closed ball
B(r) of given radius r we want to design a control law of the form

u = (L ⊗ K)x (26)

such that the controlled network

ẋ = (IN ⊗ A + L ⊗ BK)x (27)

reaches consensus and, moreover, for all x0 ∈ B(r) the associated cost

J(K) =
∫ ∞

0
x� (

L ⊗ Q + L2 ⊗ K�RK
)
x dt (28)

is smaller than the given upper bound, i.e., J(K) < γ.
Let the matrix U ∈ RN ×N be an orthogonal matrix that diago-

nalizes the Laplacian L. Define Λ := U�LU = diag(0, λ2 , . . . , λN ).
To simplify the problem given above, by applying the state and
input transformations x̄ = (U� ⊗ In )x and ū = (U� ⊗ Im )u with

x̄ =
(
x̄�

1 , . . . , x̄�
N

)�
, ū =

(
ū�

1 , . . . , ū�
N

)�
, system (24) becomes

˙̄x = (IN ⊗ A)x̄ + (IN ⊗ B)ū, x̄(0) = x̄0 (29)

with x̄0 = (U� ⊗ In )x0 . Clearly, (26) is transformed to

ū = (Λ ⊗ K)x̄ (30)

and the controlled network (27) transforms to

˙̄x = (IN ⊗ A + Λ ⊗ BK) x̄. (31)

In terms of the transformed variables, the cost (28) is given by

J(K) =
∫ ∞

0

N∑

i=1

x̄�
i (λiQ + λ2

i K
�RK)x̄i dt. (32)

Note that the transformed states x̄i and inputs ūi , i = 2, 3, . . . , N
appearing in system (31) and cost (32) are decoupled from each other,
so that we can write system (31) and cost (32) as

˙̄x1 = Ax̄1 (33)

˙̄xi = (A + λiBK)x̄i , i = 2, 3, . . . , N (34)

and

J(K) =
N∑

i=2

Ji (K) (35)

with

Ji (K) =
∫ ∞

0
x̄�

i (λiQ + λ2
i K

�RK)x̄i dt, i = 2, 3, . . . , N. (36)

Note that λ1 = 0, and that therefore (33) does not contribute to the cost
J(K).

We first record a well-known fact (see [21] and [22]), which we will
use later.

Lemma 6: Consider the multiagent system (24). Then, the con-
trolled network reaches consensus with control law (26) if and only if,
for i = 2, 3, . . . , N , the systems (34) are stable.

Thus, we have transformed the problem of distributed suboptimal
control for system (24) into the problem of finding a feedback gain K ∈
Rm ×n such that the systems (34) are stable and J(K) < γ. Moreover,
since the pair (A, B) is stabilizable, there exists such a feedback gain
K [22].

The following lemma gives a necessary and sufficient condition for
a given feedback gain K to make all systems (34) stable and such that
J(K) < γ is satisfied for given initial states.

Lemma 7: Let K be a feedback gain. Consider the systems (34)
with given initial states x̄20 , x̄30 , . . . , x̄N 0 and associated cost func-
tionals (35) and (36). Let γ > 0. Then, all systems (34) are stable
and J(K) < γ if and only if there exist positive definite matrices Pi

satisfying

(A + λiBK)�Pi + Pi (A + λiBK) + λiQ + λ2
i K

�RK < 0 (37)

N∑

i=2

x̄�
i0Pi x̄i0 < γ (38)

for i = 2, 3, . . . , N , respectively.
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Proof: (if) Since (38) holds, there exist sufficiently small εi > 0,
i = 2, . . . , N such that

∑N
i=2 γi < γ where γi := x̄�

i0Pi x̄i0 + εi . Be-
cause there exists Pi such that (37) and x̄�

i0Pi x̄i0 < γi holds for all
i = 2, . . . , N , by taking Ā = A + λiBK and Q̄ = λiQ + λ2

i K
�RK ,

it follows from Theorem 4 that all systems (34) are stable and
Ji (K) < γi for i = 2, . . . , N . Since J(K) =

∑N
i=2 Ji (K), this im-

plies that J(K) <
∑N

i=2 γi < γ.
(only if) Since J(K) < γ and J(K) =

∑N
i=2 Ji (K), there ex-

ist sufficiently small εi > 0, i = 2, . . . , N such that
∑N

i=2 γi < γ
where γi := Ji (K) + εi . Because all systems (34) are stable and
Ji (K) < γi for i = 2, . . . , N , by taking Ā = A + λiBK and Q̄ =
λiQ + λ2

i K
�RK , it follows from Theorem 4 that there exist positive

definite Pi such that (37) and x̄�
i0Pi x̄i0 < γi hold for all i = 2, . . . , N .

Since
∑N

i=2 γi < γ, this implies that
∑N

i=2 x̄�
i0Pi x̄i0 <

∑N
i=2

γi < γ. �
Lemma 7 establishes a necessary and sufficient condition for a given

feedback gain K to stabilize all systems (34) and to satisfy, for given
initial states of these systems, J(K) < γ. However, Lemma 7 does not
yet provide a method to compute such K . In the following, we present
a method to find such K .

Lemma 8: Consider the multiagent system (24) with associated
cost functional (28). Let x0 be a given initial state for the multiagent
system. Let γ > 0. Let c be any real number such that 0 < c < 2

λN
.

We distinguish the following two cases:
1) if

2
λ2 + λN

≤ c <
2

λN

(39)

then there exists P > 0 satisfying the Riccati inequality

A�P + PA + (c2λ2
N − 2cλN )PBR−1B�P + λN Q < 0.

(40)
2) if

0 < c <
2

λ2 + λN

(41)

then there exists P > 0 satisfying

A�P + PA + (c2λ2
2 − 2cλ2 )PBR−1B�P + λN Q < 0. (42)

In both cases, if in addition P satisfies

x�
0

(

(IN − 1
N

1N 1�
N ) ⊗ P

)

x0 < γ (43)

then the controlled network (27) with K := −cR−1B�P reaches con-
sensus and with the initial state x0 we have J(K) < γ. �

Proof: We will only give the proof for case (1) above. Using the
upper and lower bounds on c given by (39), it can be verified that
c2λ2

i − 2cλi ≤ c2λ2
N − 2cλN < 0 for i = 2, 3, . . . , N . It is then easily

seen that (40) has many positive definite solutions. Since also λi ≤ λN ,
any such solution P is a solution to the N − 1 Riccati inequalities

A�P + PA + (c2λ2
i − 2cλi )PBR−1B�P + λiQ < 0

i = 2, . . . , N. (44)

Equivalently, P also satisfies the Lyapunov inequalities

(A − cλiBR−1B�P )�P + P (A − cλiBR−1B�P )

+ λiQ + c2λ2
i PBR−1B�P < 0, i = 2, . . . , N.

(45)

Next, recall that x̄ = (U� ⊗ In )x with U = ( 1√
N

1N U2 ). From

this it is easily seen that (x̄�
20 , x̄

�
30 , · · · , x̄�

N 0 )
� = (U�

2 ⊗ In )x0 . Also,

U2U
�
2 = IN − 1

N
1N 1�

N . Since (43) holds, we have

x�
0

(
U2U

�
2 ⊗ P

)
x0 < γ ⇔

((U�
2 ⊗ In )x0 )� (IN −1 ⊗ P ) ((U�

2 ⊗ In )x0 ) < γ ⇔
(x̄�

20 , x̄
�
30 , · · · , x̄�

N 0 ) (IN −1 ⊗ P ) (x̄�
20 , x̄

�
30 , · · · , x̄�

N 0 )
� < γ

which is equivalent to

N∑

i=2

x̄�
i0P x̄i0 < γ. (46)

Taking Pi = P for i = 2, 3, . . . , N and K := −cR−1B�P in in-
equalities (37) and (38) immediately gives us inequalities (45) and
(46). Then, it follows from Lemma 7 that all systems (34) are sta-
ble and J(K) < γ. Furthermore, it follows from Lemma 6 that the
controlled network (27) reaches consensus. �

We will now apply Lemma 8 to establish a solution to Problem 1.
Indeed, the next main theorem gives a condition under which, for given
radius r and upper bound γ, suboptimal distributed diffusive control
laws exist, and explain how these can be computed.

Theorem 9: Consider the multiagent system (24) with associated
cost functional (28). Let r > 0 be a given radius and let γ > 0 be an a
priori given upper bound for the cost. Let c be any real number such
that 0 < c < 2

λN
. We distinguish the following two cases:

1) if

2
λ2 + λN

≤ c <
2

λN

(47)

then there exists P > 0 satisfying the Riccati inequality

A�P + PA + (c2λ2
N − 2cλN )PBR−1B�P + λN Q < 0.

(48)
2) if

0 < c <
2

λ2 + λN

(49)

then there exists P > 0 satisfying

A�P + PA + (c2λ2
2 − 2cλ2 )PBR−1B�P + λN Q < 0. (50)

In both cases, if in addition P satisfies

P <
γ

r2 I (51)

then the controlled network (27) with K := −cR−1B�P reaches con-
sensus and J(K) < γ for all x0 ∈ B(r).

Proof: Again, we only give the proof for case (1) above. Let P > 0
satisfy (48) and (51) holds. Our aim is to prove that (43) is satisfied for
all x0 ∈ B(r). First note that

1
N

1N 1�
N ⊗ P =

1
N

(1N ⊗ P
1
2 )(1N ⊗ P

1
2 )�

which is therefore positive semidefinite. Now, for all x0 ∈ B(r) we
have

x�
0

((

IN − 1
N

1N 1�
N

)

⊗ P

)

x0

≤ x�
0 (IN ⊗ P ) x0 <

γ

r2 x�
0 x0 ≤ γ.

By Lemma 8 then, the controlled network (27) with the given K reaches
consensus and J(K) < γ for all x0 ∈ B(r). �

Remark 10: Theorem 9 states that after choosing c satisfying the in-
equality (47) for case (1) and finding a positive definite P satisfying (48)
and (51), the distributed control law with local gain K = −cR−1B�P
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is γ-suboptimal for all initial states of the network in the closed ball
with radius r. By (51), the smaller the solution P of (48), the smaller
the quotient γ

r 2 is allowed to be, leading to a smaller upper bound and
a larger radius. The question then arises: how should we choose the
parameter c in (47) so that the Riccati inequality (48) allows a posi-
tive definite solution that is as small as possible? In fact, one can find a
positive definite solution P (c, ε) to (48) by solving the Riccati equation

A�P + PA − PBR̄(c)−1B�P + Q̄(ε) = 0 (52)

with R̄(c) = 1
−c 2 λ2

N
+2cλN

R and Q̄(ε) = λN Q + εIn where c is cho-

sen as in (47) and ε > 0. If c1 and c2 as in (47) satisfy c1 ≤ c2 , then
we have R̄(c1 ) ≤ R̄(c2 ), so, clearly, P (c1 , ε) ≤ P (c2 , ε). Similarly, if
0 < ε1 ≤ ε2 , we immediately have Q̄(ε1 ) ≤ Q̄(ε2 ). Again, it follows
that P (c, ε1 ) ≤ P (c, ε2 ). Therefore, if we choose ε > 0 very close to
0 and c = 2

λ2 +λN
, we find the “best” solution to the Riccati inequality

(48) in the sense explained above.
Likewise, if c satisfies (49) corresponding to case (2), it can be shown

that if we choose ε > 0 very close to 0 and c > 0 very close to 2
λ2 +λN

,
we find the “best” solution to the Riccati inequality (50) in the sense
explained above.

In Theorem 9, in order to compute a suitable feedback gain K ,
one needs to know λ2 and λN , the smallest nonzero eigenvalue (the
algebraic connectivity) and the largest eigenvalue of the Laplacian ma-
trix, exactly. This requires so-called global information on the network
graph which might not always be available. There exist algorithms to
estimate λ2 in a distributed way, yielding lower and upper bounds, see
e.g., [23]. Moreover, also an upper bound for λN can be obtained in
terms of the maximal node degree of the graph, see [24]. Then, the
question arises: can we still find a suboptimal controller reaching con-
sensus, using as information only a lower bound for λ2 and an upper
bound for λN ? The answer to this question is affirmative, as shown in
the following theorem.

Theorem 11: Let a lower bound for λ2 be given by l2 > 0 and an
upper bound for λN be given by LN . Let r > 0 be a given radius and
let γ > 0 be an a priori given upper bound for the cost. Choose c such
that

2
l2 + LN

≤ c <
2

LN

. (53)

Then, there exists P > 0 such that

A�P + PA + (c2L2
N − 2cLN )PBR−1B�P + LN Q < 0. (54)

If, in addition, P satisfies

P <
γ

r2 I (55)

then the controlled network with local gain K = −cR−1B�P reaches
consensus and J(K) < γ for all initial states x0 ∈ B(r).

Furthermore, if we choose c such that

0 < c <
2

l2 + LN

(56)

then there exists P > 0 such that

A�P + PA + (c2 l22 − 2cl2 )PBR−1B�P + LN Q < 0. (57)

If, in addition, P satisfies (55), then the controlled network with K :=
−cR−1B�P reaches consensus and J(K) < γ for all x0 ∈ B(r).

Proof: A proof can be given along the lines of the proof of
Theorem 9. �

Remark 12: Note that also in Theorem 11 the question arises how
to choose c > 0 such that the Riccati inequalities (54) and (57) admit
a positive definite solution that is as small as possible. Following the

same ideas as in Remark 10, if we choose ε > 0 very close to 0 and
c > 0 equal to 2

l2 +L N
in (54) [respectively very close to 2

l2 +L N
in

(57)], we find the “best” solution to the Riccati inequalities (54) and
(57).

Moreover, one may also ask the question: can we compare, with
the same choice for c, solutions to (54) with solutions to (48), and
also solutions to (57) with solutions to (50)? The answer is affirmative.
Choose c that satisfies both conditions (47) and (53). One can then check
that the computed positive definite solution to (54) is indeed “larger”
than that to (48) as explained in Remark 10. A similar remark holds for
the positive definite solutions to (57) and corresponding solutions to
(50) if c satisfies both (49) and (56). We conclude that if, instead of using
the exact values λ2 and λN , we use a lower bound, respectively, upper
bound for these eigenvalues, then the computed distributed control law
is suboptimal for “less” initial states of the agents.

Remark 13: As a final remark, we note that the theory developed
in this note carries over unchanged to the case of undirected weighted
graphs. In that case the expression for cost functional (2) should be
changed to

J(u) =
∫ ∞

0

1
2

N∑

i=1

N∑

j=1

aij (xi − xj )�Q(xi − xj ) +
N∑

i=1

u�
i Rui dt

in which A = [aij ] is the weighted adjacency matrix. Denoting the
corresponding weighted Laplacian matrix by L, also this cost func-
tional can be represented in compact form by (4), and the subsequent
development will remain the same.

V. ILLUSTRATIVE EXAMPLE

In this section, we use a simulation example borrowed from [14]
to illustrate the proposed design method for suboptimal distributed
controllers. Consider a group of eight linear oscillators with identical
dynamics

ẋi = Axi + Bui , xi (0) = xi0 , i = 1, . . . , 8 (58)

with

A =
(

0 1
−1 0

)

, B =
(

0
1

)

.

Assume the underlying graph is the undirected line graph with Lapla-
cian matrix

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We consider the cost functional

J(u) =
∫ ∞

0
x�(L ⊗ Q)x + u�(I8 ⊗ R)u dt (59)

where the matrices Q and R are chosen to be

Q =
(

2 0
0 1

)

, R = 1.

Let the desired upper bound for the cost functional (59) be given as
γ = 3. Our goal is to design a control law u = (L ⊗ K)x such that the
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Fig. 1. Plots of the state vector x1 = (x1 ,1 , . . . , x8 ,1 ) (upper plot) and
x2 = (x1 ,2 , . . . , x8 ,2 ) (lower plot) of the eight decoupled oscillators with-
out control.

Fig. 2. Plots of the state vector x1 = (x1 ,1 , . . . , x8 ,1 ) (upper plot) and
x2 = (x1 ,2 , . . . , x8 ,2 ) (lower plot) of the controlled oscillator network.

controlled network reaches consensus and the associated cost is less
than γ for all initial states x0 in a closed ball B(r) with radius r. The
radius r will be specified later on in this example.

In this example, we adopt the control design method given in case
(1) of Theorem 9. The smallest nonzero and largest eigenvalue of L are
λ2 = 0.0979 and λ8 = 3.8478. First, we compute a positive definite
solution P to (48) by solving the Riccati equation

A�P + PA + (c2λ2
8 − 2cλ8 )PBR−1B�P + λ8Q + εI2 = 0 (60)

with ε > 0 chosen small as mentioned in Remark 10. Here, we choose
ε = 0.001. Moreover, we choose c = 2

λ2 +λ8
= 0.5, which is the “best”

choice as mentioned in Remark 10. Then, by solving (60) in Matlab,
we obtain

P =
(

12.1168 3.1303
3.1303 8.3081

)

.

Correspondingly, the local feedback gain is then equal to K =
(−1.5652 −4.1541 ). We now compute the radius r of a ball B(r)
of initial states for which the distributed control law u = (L ⊗ K)x is
suboptimal, i.e., J(K) < 3. We compute that the largest eigenvalue of
P is equal to 13.8765. Hence, for every radius r such that 3

r 2 > 13.8765
the inequality (55) holds. Thus, the distributed controller with local gain
K is suboptimal for all x0 with ‖x0‖ ≤ r with r < 0.4650.

As an example, the following initial states of the agents satisfy this
norm bound: x�

10 = (−0.08 0.11 ), x�
20 = (0.12 − 0.08), x�

30 =
(0.09 − 0.14), x�

40 = (−0.12 0.04), x�
50 = ( 0.07 −0.16 ),

x�
60 = (−0.11 0.12), x�

70 = (0.15 − 0.16), x�
80 = (−0.05

− 0.14). The plots of the eight decoupled oscillators without control
are shown in Fig. 1.

Fig. 2 shows that the controlled network of oscillators reaches con-
sensus.

VI. CONCLUSION

In this note, we have studied a suboptimal distributed linear quadratic
control problem for undirected linear multiagent networks. We have
considered a multiagent system with identical linear agent dynamics
and an associated global quadratic cost functional. For these, we have
provided a design method to compute distributed diffusive control
laws whose cost is bounded by a given upper bound for all initial
states in a closed ball of a given radius, and such that the controlled
network reaches consensus. The computation of the local gain involves
finding solutions of a single Riccati inequality, whose dimension is
equal to the dimension of the agent dynamics, and also involves the
smallest nonzero and largest eigenvalue of the Laplacian matrix. As an
extension, we have removed the requirement of having exact knowledge
on the smallest nonzero and largest eigenvalue of the Laplacian matrix
by, instead, using only lower and upper bounds for these eigenvalues.
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