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a b s t r a c t

This paper deals with suboptimal distributed H2 control by dynamic output feedback for homogeneous
linear multi-agent systems. Given a linear multi-agent system, together with an associated H2 cost
functional, the objective is to design dynamic output feedback protocols that guarantee the associated
cost to be smaller than an a priori given upper bound while synchronizing the controlled network.
A design method is provided to compute such protocols. The computation of the two local gains in
these protocols involves two Riccati inequalities, each of dimension equal to the dimension of the
state space of the agents. The largest and smallest nonzero eigenvalue of the Laplacian matrix of the
network graph are also used in the computation of one of the two local gains. A simulation example
is provided to illustrate the performance of the proposed protocols.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The design of distributed protocols for networked multi-agent
ystems has been one of the most active research topics in
he field of systems and control over the last two decades, see
.g. Cao, Yu, Ren, and Chen (2013) or Olfati-Saber and Murray
2004). This is partly due to the broad range of applications
f multi-agent systems, e.g. smart grids (Dörfler, Chertkov, &
ullo, 2013), formation control (Oh, Park, & Ahn, 2015; Yang,
un, Cao, Fang, & Chen, 2019), and intelligent transportation
ystems (Besselink & Johansson, 2017). One of the challeng-
ng problems in the context of linear multi-agent systems is
he problem of developing distributed protocols to minimize
iven quadratic cost criteria while the agents reach a common
oal, e.g., synchronization. Due to the structural constraints that
re imposed on the control laws by the communication topol-
gy, such optimal control problems are difficult to solve. These
tructural constraints make distributed optimal control problems
on-convex, and it is unclear under what conditions optimal
olutions exist in general.
In the existing literature, many efforts have been devoted to

ddressing distributed linear quadratic optimal control problems.
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In Borrelli and Keviczky (2008), suboptimal distributed stabiliz-
ing controllers were computed to stabilize multi-agent networks
with identical agent dynamics subject to a global linear quadratic
cost functional. For a network of agents with single integrator
dynamics, an explicit expression for the optimal gain was given
in Cao and Ren (2010), see also Jiao, Trentelman, and Camlibel
(2020c). In Movric and Lewis (2014) and Zhang, Feng, Yang, and
Liang (2015), a distributed linear quadratic control problem was
dealt with using an inverse optimality approach. This approach
was further employed in Nguyen (2017) to design reduced or-
der controllers. Recently, also in Jiao, Trentelman, and Camlibel
(2020b), the suboptimal distributed LQ problem was considered.
In parallel to the above, much work has been put into the problem
of distributed H2 optimal control. Given a particular global H2
cost functional, Li and Duan (2014) and Li, Duan, and Chen (2011)
proposed suboptimal distributed stabilizing protocols involving
static state feedback for multi-agent systems with undirected
graphs. Later on, in Wang, Duan, Li, and Wen (2014) these results
were generalized to directed graphs. For a given H2 cost criterion
that penalizes the weighted differences between the outputs of
the communicating agents, in Jiao, Trentelman, and Camlibel
(2018) a suboptimal distributed synchronizing protocol based on
static relative state feedback was established.

In the past, also the design of structured controllers for large-
scale systems has attracted much attention. In Rotkowitz and Lall
(2006), the notion of quadratic invariance was adopted to develop
decentralized controllers that minimize the performance of the
feedback system with constraints on the controller structure.
In Lin, Fardad, and Jovanović (2013), the so called alternating

direction method of multipliers was adopted to design sparse
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feedback gains that minimize an H2 performance. In Fattahi,
Fazelnia, Lavaei, and Arcak (2019), conditions were provided un-
der which, for a given optimal centralized controller, a suboptimal
distributed controller exists so that the resulting closed loop state
and input trajectories are close in a certain sense.

The distributed H2 optimal control problem for multi-agent
systems by dynamic output feedback is to find an optimal dis-
tributed dynamic protocol that achieves synchronization for the
controlled network and that minimizes the H2 cost functional.
This problem, however, is a non-convex optimization problem,
and therefore it is unclear whether such optimal protocol exists,
or whether a closed form solution can be given. Therefore, in the
present paper, we look at an alternative version of this problem
that requires only suboptimality. More precisely, we extend our
preliminary results from Jiao et al. (2018) on static relative state
feedback to the general case of dynamic protocols using relative
measurement outputs. The main contributions of this paper are
the following.

(1) We solve the open problem of finding, for a single
continuous-time linear system, a separation principle based
H2 suboptimal dynamic output feedback controller. This
result extends the recent result in Haesaert, Weiland, and
Scherer (2018) on the separation principle in suboptimal
H2 control for discrete-time systems.

(2) Based on the above result, we provide a method for com-
puting H2 suboptimal distributed dynamic output feedback
protocols for linear multi-agent systems.

The outline of this paper is as follows. In Section 2, we will
provide some notation and graph theory used throughout this
paper. In Section 3, we will formulate the suboptimal distributed
H2 control problem by dynamic output feedback for linear multi-
agent systems. In order to solve this problem, in Section 4, we will
first study suboptimal H2 control by dynamic output feedback for
a single linear system. In Section 5 we will then treat the problem
introduced in Section 3. To illustrate our method, a simulation
example is provided in Section 6. Finally, Section 7 concludes this
paper.

2. Preliminaries

2.1. Notation

In this paper, the field of real numbers is denoted by R and the
space of n dimensional real vectors is denoted by Rn. We denote
by 1n ∈ Rn the vector with all its entries equal to 1 and we denote
by In the identity matrix of dimension n × n. For a symmetric
matrix P , we denote P > 0 if P is positive definite and P < 0 if
P is negative definite. The trace of a square matrix A is denoted
by tr(A). A matrix is called Hurwitz if all its eigenvalues have
negative real parts. We denote by diag(d1, d2, . . . , dn) the n × n
iagonal matrix with d1, d2, . . . , dn on the diagonal. For given ma-
rices M1,M2, . . . ,Mn, we denote by blockdiag(M1,M2, . . . ,Mn)
he block diagonal matrix with diagonal blocks Mi. The Kronecker
roduct of two matrices A and B is denoted by A ⊗ B.

.2. Graph theory

A directed weighted graph is denoted by G = (V, E,A) with
ode set V = {1, 2, . . . ,N} and edge set E = {e1, e2, . . . , eM}

satisfying E ⊂ V ×V , and where A = [aij] is the adjacency matrix
with nonnegative elements aij, called the edge weights. If (i, j) ∈ E
we have aji > 0. If (i, j) ̸∈ E we have aji = 0.

A graph is called undirected if aij = aji for all i, j. It is
called simple if aii = 0 for all i. A simple undirected graph is
called connected if for each pair of nodes i and j there exists a
path from i to j. Given a simple undirected weighted graph G,
he degree matrix of G is the diagonal matrix, given by D =

iag(d1, d2, . . . , dN ) with di =
∑N

j=1 aij. The Laplacian matrix is
efined as L := D − A. The Laplacian matrix of an undirected

graph is symmetric and has only real nonnegative eigenvalues.
A simple undirected weighted graph is connected if and only if
its Laplacian matrix L has a simple eigenvalue at 0. In that case
there exists an orthogonal matrix U such that U⊤LU = Λ =

iag(0, λ2, . . . , λN ) with 0 < λ2 ≤ · · · ≤ λN . Throughout this
aper, it will be a standing assumption that the communication
mong the agents of the network is represented by a connected,
imple undirected weighted graph.
A simple undirected weighted graph obviously has an even

umber of edges M . Define K :=
1
2M . For such graph, an asso-

ciated incidence matrix R ∈ RN×K is defined as a matrix R =

r1, r2, . . . , rK ) with columns rk ∈ RN . Each column rk corresponds
o exactly one pair of edges ek = {(i, j), (j, i)}, and the ith and
th entry of rk are equal to ±1, while they do not take the same
alue. The remaining entries of ek are equal to 0. We also define
he matrix

= diag(w1,w2, . . . ,wK ) (1)

s the K × K diagonal matrix, where wk is the weight on each
f the edges in ek for k = 1, 2, . . . , K . The relation between
he Laplacian matrix and the incidence matrix is captured by
= RWR⊤ (Monshizadeh, Trentelman, & Camlibel, 2014).

. Problem formulation

In this paper, we consider a homogeneous multi-agent system
onsisting of N identical agents, where the underlying network
raph is a connected, simple undirected weighted graph with
ssociated adjacency matrix A and Laplacian matrix L. The dy-
amics of the ith agent is represented by a finite-dimensional
inear time-invariant system

ẋi = Axi + Bui + Edi,
yi = C1xi + D1di,
zi = C2xi + D2ui,

i = 1, 2, . . . ,N, (2)

where xi ∈ Rn is the state, ui ∈ Rm is the coupling input,
di ∈ Rq is an unknown external disturbance, yi ∈ Rr is the
measured output and zi ∈ Rp is the output to be controlled.
The matrices A, B, C1, D1, C2, D2 and E are of compatible di-
ensions. Throughout this paper we assume that the pair (A, B)

s stabilizable and the pair (C1, A) is detectable. The agents (2)
re to be interconnected by means of a dynamic output feed-
ack protocol. Following Trentelman, Takaba, and Monshizadeh
2013) and Zhang, Trentelman, and Scherpen (2016), we consider
bserver based dynamic protocols of the form

ẇi = Awi + B
N∑
j=1

aij(ui − uj) + G

⎛⎝ N∑
j=1

aij(yi − yj) − C1wi

⎞⎠ ,

ui = Fwi, i = 1, 2, . . . ,N,

(3)

where G ∈ Rn×r and F ∈ Rm×n are local gains to be designed. We
briefly explain the structure of this protocol. Each local controller
of the protocol (3) observes the weighted sum of the relative
input signals

∑N
j=1 aij(ui − uj) and the weighted sum of the dis-

agreements between the measured output signals
∑N

j=1 aij(yi−yj).
The first equation in (3) in fact represents an asymptotic observer
for the weighted sum of the relative states of agent i, and the
state of this observer is an estimate of this value. Note that, for
the error ei := wi −

∑N
j=1 aij(xi − xj), the error dynamics is

˙
∑N
ei = (A − GC1)ei + j=1 aij(GD1 − E)(di − dj). An estimate of the
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weighted sum of the relative states of each agent is then fed back
to this agent using a static gain.

Denote by x = (x⊤

1 , x⊤

2 , . . . , x⊤

N )
⊤ the aggregate state vector

and likewise define u, y, z, d and w. The multi-agent system (2)
can then be written in compact form as

ẋ = (IN ⊗ A)x + (IN ⊗ B)u + (IN ⊗ E)d,

y = (IN ⊗ C1)x + (IN ⊗ D1)d,

z = (IN ⊗ C2)x + (IN ⊗ D2)u,

(4)

and the dynamic protocol (3) is represented by

ẇ = (IN ⊗ (A − GC1) + L ⊗ BF)w + (L ⊗ G)y,
u = (IN ⊗ F )w.

(5)

By interconnecting the network (4) using the dynamic protocol
(5), we obtain the controlled network(
ẋ
ẇ

)
=

(
IN ⊗ A IN ⊗ BF
L ⊗ GC1 IN ⊗ (A − GC1) + L ⊗ BF

)(
x
w

)
+

(
IN ⊗ E
L ⊗ GD1

)
d, (6)

z =
(
IN ⊗ C2 IN ⊗ D2F

) (
x
w

)
. (7)

Foremost, we want the dynamic protocol (5) to achieve synchro-
nization for the network.

Definition 1. The protocol (5) is said to synchronize the network
if, whenever the external disturbances of all agents are equal to
zero, i.e. d = 0, we have xi(t) − xj(t) → 0 and wi(t) − wj(t) → 0
as t → ∞, for all i, j = 1, 2, . . . ,N .

The distributed H2 optimal control problem by dynamic out-
put feedback is to minimize a given global H2 cost functional
over all dynamic protocols of the form (5) that achieve synchro-
nization for the controlled network. In the context of distributed
control for multi-agent systems, we are interested in the dif-
ferences of the state and output values of the agents in the
controlled network, see e.g. Jongsma, Trentelman, and Camlibel
(2018) and Monshizadeh et al. (2014). Note that these differences
are captured by the incidence matrix R of the underlying graph.
Therefore, we introduce a new output variable as

ζ = (W
1
2 R⊤

⊗ Ip)z

ith ζ = (ζ⊤

1 , ζ⊤

2 , . . . , ζ⊤

M )⊤ ∈ RpM , where W is the weight
atrix of the underlying graph, as defined in (1). Thus, the output
is the vector of weighted disagreements between the outputs
f the agents, in which the weights are given by the square roots
f the edge weights connecting these agents. Subsequently, we
onsider the network (6) with this new output:

=

(
W

1
2 R⊤

⊗ C2 W
1
2 R⊤

⊗ D2F
)(

x
w

)
. (8)

Denote

Ae =

(
IN ⊗ A IN ⊗ BF
L ⊗ GC1 IN ⊗ (A − GC1) + L ⊗ BF

)
,

Ce =

(
W

1
2 R⊤

⊗ C2 W
1
2 R⊤

⊗ D2F
)

, Ee =

(
IN ⊗ E
L ⊗ GD1

)
.

The impulse response matrix from the external disturbance d to
he output ζ is then equal to

Aet

F ,G(t) = Cee Ee. (9)
ext, the associated global H2 cost functional is defined to be
he squared L2-norm of the closed loop impulse response, and
s given by

(F ,G) :=

∫
∞

0
tr

[
T⊤

F ,G(t)TF ,G(t)
]
dt. (10)

The distributed H2 optimal control problem by dynamic output
feedback is the problem of minimizing (10) over all dynamic
protocols of the form (5) that achieve synchronization for the
network. Unfortunately, due to the particular form of the pro-
tocol (5), this optimization problem is, in general, non-convex
and difficult to solve, and a closed form solution has not been
provided in the literature up to now. Therefore, instead of trying
to find an optimal solution, in this paper we will address a
suboptimality version of the problem. More specifically, we will
design synchronizing dynamic protocols (5) that guarantee the
associated cost (10) to be smaller than an a priori given upper
bound. More concretely, the problem that we will address is the
following:

Problem 1. Let γ > 0 be a given tolerance. Design local gains
F ∈ Rm×n and G ∈ Rn×r such that the dynamic protocol (5)
achieves J(F ,G) < γ and synchronizes the network.

Before we address Problem 1, we will first study the sub-
optimal H2 control problem by dynamic output feedback for a
single linear system. In that way, we will collect the required
preliminary results to treat the actual suboptimal distributed H2
control problem for multi-agent systems.

4. Suboptimal H2 control by dynamic output feedback for
linear systems

In this section, we will discuss the suboptimal H2 control
problem by dynamic output feedback for a single linear sys-
tem. This problem has been dealt with before, see e.g. Haesaert
et al. (2018), Scherer, Gahinet, and Chilali (1997), Scherer and
Weiland (2000) or Skelton, Iwasaki, and Grigoriadis (1997). In
particular, in Haesaert et al. (2018), the separation principle for
suboptimal H2 control for discrete-time linear systems was es-
tablished. Here, we will establish the analogue of that result for
the continuous-time case.

Consider the linear system

ẋ = Āx + B̄u + Ēd,

y = C̄1x + D̄1d,

z = C̄2x + D̄2u,

(11)

where x ∈ Rn is the state, u ∈ Rm the control input, d ∈ Rq an
unknown external disturbance, y ∈ Rr the measured output, and
z ∈ Rp the output to be controlled. The matrices Ā, B̄, C̄1, D̄1, C̄2,
D̄2 and Ē have compatible dimensions. In this section, we assume
that the pair (Ā, B̄) is stabilizable and the pair (C̄1, Ā) is detectable.
Moreover, we consider dynamic output feedback controllers of
the form
ẇ = Āw + B̄u + G

(
y − C̄1w

)
,

u = Fw,
(12)

where w ∈ Rn is the state of the controller, and F ∈ Rm×n and
G ∈ Rn×r are gain matrices to be designed. By interconnecting
the controller (12) and the system (11), we obtain the controlled
system(
ẋ
ẇ

)
=

(
Ā B̄F

GC̄1 Ā + B̄F − GC̄1

)(
x
w

)
+

(
Ē

GD̄1

)
d,

z =
(
C̄2 D̄2F

) (
x
)

. (13)

w
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Denote Ae =

(
Ā B̄F

GC̄1 Ā + B̄F − GC̄1

)
, Ee =

(
Ē

GD̄1

)
, Ce =

C̄2 D̄2F
)
. Then the impulse response matrix from the distur-

ance d to the output z is given by TF ,G(t) = CeeAetEe. Next, we
introduce the associated H2 cost functional, given by

(F ,G) :=

∫
∞

0
tr

[
T⊤

F ,G(t)TF ,G(t)
]
dt. (14)

We are interested in the problem of finding a controller of the
form (12) such that the controlled system (13) is internally stable
and the associated cost (14) is smaller than an a priori given
upper bound.

The following lemma is an extension of Theorem 6 in Haesaert
et al. (2018). It provides conditions under which the controller
(12) with gain matrices F and G = Q C̄⊤

1 is suboptimal for
the continuous-time system (11), where Q is a particular real
symmetric solution of a given Riccati inequality. The result shows
that the separation principle is also applicable in the context of
suboptimal H2 control for continuous-time systems.

Lemma 2. Consider the system (11) with associated cost functional
(14). Assume that D̄1Ē⊤

= 0, D̄⊤

2 C̄2 = 0, D̄1D̄⊤

1 = Ir and D̄⊤

2 D̄2 > 0.
Let F ∈ Rm×n. Suppose that there exists P > 0 satisfying

(Ā + B̄F )⊤P + P(Ā + B̄F ) + (C̄2 + D̄2F )⊤(C̄2 + D̄2F ) < 0. (15)

Let Q > 0 be a solution of the Riccati inequality

ĀQ + Q Ā⊤
− Q C̄⊤

1 C̄1Q + ĒĒ⊤ < 0. (16)

If, moreover, the inequality

tr
(
C̄1QPQ C̄⊤

1

)
+ tr

(
C̄2Q C̄⊤

2

)
< γ (17)

holds, then the controller (12) with the gains F and G = Q C̄⊤

1 yields
an internally stable closed loop system (13), and it is suboptimal,
i.e. J(F ,G) < γ .

A proof can be given along the lines of the proof of Theorem
6 in Haesaert et al. (2018). For a complete proof of Lemma 2,
we refer to Jiao, Trentelman, and Camlibel (2020a). We note that
a result similar to Lemma 2 can also be formulated under the
assumptions D̄1D̄⊤

1 > 0 and D̄⊤

2 D̄2 > 0 alone. The assumptions
D̄1Ē⊤

= 0, D̄⊤

2 C̄2 = 0 and D̄1D̄⊤

1 = Ir are made here to simplify
the notation, and can be easily removed.

We are now ready to deal with the suboptimal distributed
H2 control problem by dynamic output feedback for multi-agent
systems.

5. Suboptimal distributed H2 control for multi-agent systems
by dynamic output feedback

In this section, we will address Problem 1. For the multi-agent
system (2), we will establish a design method for local gains
F and G such that the protocol (3) achieves J(F ,G) < γ and
synchronizes the network (6).

Let U be an orthogonal matrix such that U⊤LU = Λ =

diag(0, λ2, . . . , λN ) with 0 < λ2 ≤ · · · ≤ λN the eigenvalues of
the Laplacian matrix. We apply the state transformation(

x̄
w̄

)
=

(
U⊤

⊗ In 0
0 U⊤

⊗ In

)(
x
w

)
. (18)

Then the controlled network (6) with the associated output (8) is
also represented by(

˙̄x
˙̄w

)
=

(
IN ⊗ A IN ⊗ BF

Λ ⊗ GC1 IN ⊗ (A − GC1) + Λ ⊗ BF

)(
x̄
w̄

)
+

(
U⊤

⊗ E
⊤

)
d,
U L ⊗ GD1
ζ =

(
W

1
2 R⊤U ⊗ C2 W

1
2 R⊤U ⊗ D2F

)(
x̄
w̄

)
. (19)

enote

¯ e =

(
IN ⊗ A IN ⊗ BF

Λ ⊗ GC1 IN ⊗ (A − GC1) + Λ ⊗ BF

)
,

C̄e =

(
W

1
2 R⊤U ⊗ C2 W

1
2 R⊤U ⊗ D2F

)
,

Ēe =

(
U⊤

⊗ E
U⊤L ⊗ GD1

)
.

bviously, the impulse response matrix TF ,G(t) given by (9) is
then equal to C̄eeĀet Ēe.

In order to proceed, we now introduce the N − 1 auxiliary
inear systems

ξ̇i = Aξi + λiBvi + Eδi,

ϑi = C1ξi + D1δi,

ηi =

√
λiC2ξi + λi

√
λiD2vi,

(20)

nd associated dynamic output feedback controllers

ω̇i = Aωi + λiBvi + G(ϑi − C1ωi),
vi = Fωi, i = 2, 3, . . . ,N

(21)

ith gain matrices F and G. By interconnecting (21) and (20), we
obtain the N − 1 closed loop systems

ξ̇i
ω̇i

)
=

(
A λiBF

GC1 A − GC1 + λiBF

)(
ξi
ωi

)
+

(
E

GD1

)
δi,

ηi =
(√

λiC2 λi
√

λiD2F
) (

ξi
ωi

)
, (22)

or i = 2, 3, . . . ,N . The impulse response matrix of (22) from the
isturbance δi to the output ηi is equal to

i,F ,G(t) = C̄ieĀit Ēi (23)

ith Āi =

(
A λiBF

GC1 A − GC1 + λiBF

)
, Ēi =

(
E

GD1

)
, C̄i =

√
λiC2 λi

√
λiD2F

)
. Furthermore, for each system (20) the as-

ociated H2 cost functional is given by

Ji(F ,G) :=

∫
∞

0
tr

[
T⊤

i,F ,G(t)Ti,F ,G(t)
]
dt, i = 2, 3, . . . ,N. (24)

Then we have the following lemma:

Lemma 3. Let F ∈ Rm×n and G ∈ Rn×r . Then the dynamic protocol
(3) with gain matrices F and G achieves synchronization for the
network (6) if and only if for each i = 2, 3, . . . ,N the controller
(21) with gain matrices F and G internally stabilizes the system (20).
Moreover, we have

J(F ,G) =

N∑
i=2

Ji(F ,G). (25)

Proof. It follows immediately from Trentelman et al. (2013,
Lemmas 3.2 and 3.3) that the dynamic protocol (3) achieves syn-
chronization for the network (6) if and only if for i = 2, 3, . . . ,N
the system (20) is internally stabilized by the controller (21).
Next, we prove (25). Let F and G be such that synchronization
is achieved. Then we have

J(F ,G) =

∫
∞

0
tr

(
Ē⊤

e eĀ
⊤
e t C̄⊤

e C̄eeĀet Ēe
)
dt.

Since U⊤LU = Λ, L = RWR⊤, we have C̄⊤
e C̄e = C̃⊤

e C̃e with
C̃ :=

(
Λ

1
2 ⊗ C Λ

1
2 ⊗ D F

)
. We also have Ē Ē⊤

= Ẽ Ẽ⊤ with
e 2 2 e e e e
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˜e :=

(
IN ⊗ E

Λ ⊗ GD1

)
. Thus we find that

r
(
Ē⊤

e eĀ
⊤
e t C̄⊤

e C̄eeĀet Ēe
)

= tr
(
Ẽ⊤

e eĀ
⊤
e t C̃⊤

e C̃eeĀet Ẽe
)

. (26)

e now analyze the matrix function C̃eeĀet Ẽe appearing in (26).
y applying suitable permutations of the blocks appearing in the
atrices C̃e, Ẽe and Āe, it is straightforward to show that

˜eeĀet Ẽe = blockdiag
(
0, C2eA2tE2, . . . , CNeAN tEN

)
,

where

Ai :=

(
A BF

λiGC1 A − GC1 + λiBF

)
,

Ci :=
(√

λiC2
√

λiD2F
)
, Ei :=

(
E

λiGD1

)
.

t is easily seen that for i = 2, 3, . . . ,N the systems (Ai, Ei, Ci)
and (Āi, Ēi, C̄i) are isomorphic. Hence they have the same impulse
response Ti,F ,G(t), which is given by (23), see e.g., Trentelman,
toorvogel, and Hautus (2001, Theorem 3.10). As a consequence
e obtain that

˜eeĀet Ẽe = blockdiag
(
0, T2,F ,G(t), . . . , TN,F ,G(t)

)
.

Thus we find that

J(F ,G) =

∫
∞

0

N∑
i=2

tr
[
T⊤

i,F ,G(t)Ti,F ,G(t)
]
dt.

The claim (25) then follows immediately. □

By applying Lemma 3, we have transformed the suboptimal
istributed H2 control problem by dynamic output feedback for
he multi-agent network (6) into suboptimal H2 control problems
or the N − 1 linear systems (20) using controllers (21) with
he same gain matrices F and G. Next, we establish conditions
nder which the N − 1 systems (20) are internally stabilized by
heir corresponding controllers (21) for i = 2, 3, . . . ,N , while
chieving

∑N
i=2 Ji(F ,G) < γ .

emma 4. Let γ > 0 be a given tolerance. Assume that D1E⊤
= 0,

D⊤

2 C2 = 0, D1D⊤

1 = Ir and D⊤

2 D2 = Im. For i = 2, 3, . . . ,N, let F ,
Pi > 0, and Q > 0 be such that the inequalities

(A + λiBF )⊤Pi + Pi(A + λiBF )

+ (
√

λiC2 + λi

√
λiD2F )⊤(

√
λiC2 + λi

√
λiD2F ) < 0, (27)

AQ + QA⊤
− QC⊤

1 C1Q + EE⊤ < 0, (28)
N∑
i=2

[
tr

(
C1QPiQC⊤

1

)
+ λitr

(
C2QC⊤

2

)]
< γ (29)

hold. Then for each i = 2, 3, . . . ,N, the controller (21) with gain
matrices F and G = QC⊤

1 internally stabilizes the system (20), and,
moreover,

∑N
i=2 Ji(F ,G) < γ .

Proof. By (29), for ϵi > 0 sufficiently small, we have
∑N

i=2 γi < γ ,
where γi := tr

(
C1QPiQC⊤

1

)
+ λitr

(
C2QC⊤

2

)
+ ϵi. Since

tr
(
C1QPiQC⊤

1

)
+ λitr

(
C2QC⊤

2

)
< γi,

by taking Ā = A, B̄ = λiB, C̄1 = C1, D̄1 = D1, C̄2 =
√

λiC2,
¯ 2 = λi

√
λiD2, C̄1 = C1 and Ē = E in Lemma 2, it follows that the

controller (21) internally stabilizes the system (20) and Ji(F ,G) <

γi. Thus, from
∑N

i=2 γi < γ it follows that
∑N

i=2 Ji(F ,G) < γ . □

Again, we note that the four conditions D1E⊤
= 0, D⊤

2 C2 = 0,
D1D⊤

1 = Ir and D⊤

2 D2 = Im are made here to simplify notation,
and can be replaced by the regularity conditions D1D⊤

1 > 0 and
D⊤D > 0 alone.
2 2
By combining Lemmas 3 and 4 we have established sufficient
conditions for given gain matrices F and G to synchronize the
network (6) and to be suboptimal, i.e. J(F ,G) < γ . In fact, G is
taken to be equal to QC⊤

1 , with Q > 0 a solution to the Riccati
inequality (28). However, no design method has yet been pro-
vided to compute a suitable matrix F . In the following theorem,
we will establish a design method for computing such gain matrix
F . Together with G given above, this will lead to a distributed
suboptimal protocol for multi-agent system (2) with associated
cost functional (10).

Theorem 5. Let γ > 0 be a given tolerance. Assume that D1E⊤
= 0,

D⊤

2 C2 = 0, D1D⊤

1 = Ir and D⊤

2 D2 = Im. Let Q > 0 satisfy

AQ + QA⊤
− QC⊤

1 C1Q + EE⊤ < 0. (30)

Let c be any real number such that 0 < c < 2
λ2N

. We distinguish two
cases:

(i) if
2

λ2
2 + λ2λN + λ2

N
≤ c <

2
λ2
N

, (31)

then there exists P > 0 satisfying

A⊤P + PA + (c2λ3
N − 2cλN )PBB⊤P + λNC⊤

2 C2 < 0. (32)

(ii) if

0 < c <
2

λ2
2 + λ2λN + λ2

N
, (33)

then there exists P > 0 satisfying

A⊤P + PA + (c2λ3
2 − 2cλ2)PBB⊤P + λNC⊤

2 C2 < 0. (34)

n both cases, if in addition P and Q satisfy

r
(
C1QPQC⊤

1

)
+ λN tr

(
C2QC⊤

2

)
<

γ

N − 1
, (35)

hen the protocol (3) with F := −cB⊤P and G := QC⊤

1 synchronizes
the network (6) and it is suboptimal, i.e. J(F ,G) < γ .

Proof. Wewill only provide the proof for case (i) above. Using the
upper and lower bound on c given by (31), it can be verified that
c2λ3

N − 2cλN < 0. Thus the Riccati inequality (32) has positive
definite solutions. Since c2λ3

i − 2cλi ≤ c2λ3
N − 2cλN < 0 and

λi ≤ λN for i = 2, 3, . . . ,N , any positive definite solution P of
(32) also satisfies the N − 1 Riccati inequalities

A⊤P + PA + (c2λ3
i − 2cλi)PBB⊤P + λiC⊤

2 C2 < 0, (36)

equivalently,

(A − cλiBB⊤P)⊤P + P(A − cλiBB⊤P)

+c2λ3
i PBB

⊤P + λiC⊤

2 C2 < 0,
(37)

for i = 2, . . . ,N . Using the conditions D⊤

2 C2 = 0 and D⊤

2 D2 = Im
this yields

(A − cλiBB⊤P)⊤P + P(A − cλiBB⊤P)

+ (
√

λiC2 + λi

√
λiD2B⊤P)⊤

× (
√

λiC2 + λi

√
λiD2B⊤P) < 0,

(38)

for i = 2, . . . ,N . Taking Pi = P for i = 2, 3, . . . ,N and F = −cB⊤P
in (38) immediately yields (27). Next, it follows from (35) that
also (29) holds. By Lemma 4 then, all systems (20) are internally
stabilized and

∑N
i=2 Ji(F ,G) < γ . Subsequently, it follows from

Lemma 3 that the protocol (3) achieves synchronization for the
network (6) and J(F ,G) < γ . □
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Remark 6. In Theorem 5, in order to select γ , the following
should be done:

(i) First compute a solution Q > 0 of the Riccati inequality
(30) and a solution P > 0 of the Riccati inequality (32) (or
(34), depending on the choice of parameter c). Note that
these solutions exist.

(ii) Let S(P,Q ) := tr(C1QPQC⊤

1 ) + λN tr(C2QC⊤

2 ).
(iii) Then choose γ > 0 such that (N − 1)S(P,Q ) < γ .

bviously, the smaller S(P,Q ), the smaller the feasible upper
ound γ . It can be shown that, unfortunately, the problem of
inimizing S(P,Q ) over all P,Q > 0 that satisfy (30) and (32)

s a nonconvex optimization problem. However, since smaller Q
eads to smaller tr

(
C2QC⊤

2

)
and smaller P and Q lead to smaller

r
(
C1QPQC⊤

1

)
and, consequently, smaller feasible γ , we could

herefore try to find P and Q as small as possible. In fact, one
an find Q = Q (ϵ) > 0 to (30) by solving

Q + QA⊤
− QC⊤

1 C1Q + E⊤E + ϵIn = 0. (39)

with ϵ > 0 arbitrary. By using a standard argument, it can be
shown that Q (ϵ) decreases as ϵ decreases, so ϵ should be taken
close to 0 in order to get small Q . Similarly, one can find P =

P(c, σ ) > 0 satisfying (32) by solving

A⊤P + PA − PBR(c)−1B⊤P + λNC⊤

2 C2 + σ In = 0 (40)

with R(c) =
1

−c2λ3N+2cλN
In, where c is chosen as in (31) and σ >

0 arbitrary. Again, it can be shown that P(c, σ ) decreases with
decreasing σ and c. Therefore, small P is obtained by choosing
σ > 0 close to 0 and c =

2
λ22+λ2λN+λ2N

.

Similarly, if c satisfies (33) corresponding to case (ii), it can be
shown that if we choose ϵ > 0 and σ > 0 very close to 0 and
c > 0 very close to 2

λ22+λ2λN+λ2N
, we find small solutions to the

Riccati inequalities (30) and (34) in the sense as explained above
for case (i).

Remark 7. In Theorem 5, exact knowledge of the largest and
the smallest nonzero eigenvalue of the Laplacian matrix is used
to compute the local control gains F and G. We want to remark
that our results can be extended to the case that only lower and
upper bounds for these eigenvalues are known. In the literature,
algorithms are given to estimate λ2 in a distributed way, yielding
lower and upper bounds, see e.g. Aragues et al. (2014). Also, an
upper bound for λN can be obtained in terms of the maximal node
degree of the graph, see e.g. Anderson and Morley (1985). Using
these lower and upper bounds on the largest and the smallest
nonzero eigenvalue of the Laplacian matrix, results similar to
Theorem 5 can be formulated, see e.g., Han, Trentelman, Wang,
and Shen (2019) or Jiao et al. (2020b).

6. Simulation example

In this section, we will give a simulation example to illustrate
our design method. Consider a network of N = 6 identical

agents with dynamics (2), where A =

(
−2 2
−1 1

)
, B =

(
0
1

)
,

E =

(
0 0
0.5 0

)
, C1 =

(
1 0

)
, D1 =

(
0 1

)
, C2 =

(
0 1
0 0

)
,

D2 =

(
0
1

)
. The pair (A, B) is stabilizable and the pair (C1, A) is

detectable. We also have D1E⊤
=

(
0 0

)
, D⊤

2 C2 =
(
0 0

)
and

D1D⊤

1 = 1, D⊤

2 D2 = 1. We assume that the communication among
the six agents is represented by the undirected cycle graph. For

this graph, the smallest non-zero and largest eigenvalue of the
Fig. 1. Plots of the state vector x1 = (x1,1, x2,1, . . . , x6,1)⊤ and x2 = (x1,2,
2,2, . . . , x6,2)⊤ of the controlled network.

aplacian are λ2 = 1 and λ6 = 4. Our goal is to design a
istributed dynamic output feedback protocol of the form (3)
hat synchronizes the controlled network and guarantees the
ssociated cost (10) to satisfy J(F ,G) < γ . Let the desired upper
ound for the cost be γ = 17.
We adopt the design method given in case (i) of Theorem 5.

irst we compute a positive definite solution P to (32) by solving
he Riccati equation
⊤P + PA + (c2λ3

6 − 2cλ6)PBB⊤P + λ6C⊤

2 C2 + σ I2 = 0 (41)

ith σ = 0.001. Moreover, we choose c =
2

λ22+λ2λ6+λ26
= 0.0952.

Then, by solving (41) in Matlab, we compute a positive definite

solution P =

(
0.9048 −2.2810

−2.2810 6.9779

)
. Next, by solving the Riccati

equation

AQ + QA⊤
− QC⊤

1 C1Q + E⊤E + ϵI2 = 0

ith ϵ = 0.001 in Matlab, we compute a positive definite

olution Q =

(
0.5000 0.5000
0.5000 0.6250

)
. Accordingly, we compute

the associated gain matrices F =
(
0.2172 −0.6646

)
,G =(

0.5000 0.5000
)⊤.

As an example, we take the initial states of the agents to be
x10 =

(
1 −2

)⊤, x20 =
(
2 −5

)⊤, x30 =
(
3 1

)⊤, x40 =(
4 2

)⊤, x50 =
(
−1 2

)⊤ and x60 =
(
−3 1

)⊤, and we
take the initial states of the protocol to be zero. In Fig. 1, we
have plotted the controlled state trajectories of the agents. It
can be seen that the designed protocol indeed synchronizes the
network. The plots of the protocol states are shown in Fig. 2.
For each i, the state wi of the local controller is an estimate
of the weighted sum of the relative states of agent i, it is seen
that the protocol states converge to zero. Moreover, we compute
5
(
tr

(
C1QPQC⊤

1

)
+ λ6tr

(
C2QC⊤

2

))
= 16.6509, which is indeed

smaller than the desired tolerance γ = 17.

7. Conclusion and future work

In this paper, we have studied the suboptimal distributed H2
control problem by dynamic output feedback for linear multi-
agent systems. The interconnection structure between the agents
is given by a connected undirected graph. Given a linear multi-
agent system with identical agent dynamics and an associated
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Fig. 2. Plots of the state vector w1
= (w1,1, w2,1, . . . , w6,1)⊤ and w2

= (w1,2,

2,2, . . . , w6,2)⊤ of the dynamic protocol.

lobal H2 cost functional, we have provided a design method
or computing distributed protocols that guarantee the associated
ost to be smaller than a given tolerance while synchronizing the
ontrolled network. The local gains are given in terms of solutions
f two Riccati inequalities, each of dimension equal to that of
he agent dynamics. One of these Riccati inequalities involves the
argest and smallest nonzero eigenvalue of the Laplacian matrix
f the network graph.
As a possibility for future research, we mention the exten-

ion of the results in this paper to the case of heterogeneous
ulti-agent systems, using, for example, methods from Wieland,
epulchre, and Allgöwer (2011). It would also be interesting to
xtend the results in this paper to suboptimal distributed H∞

ontrol by dynamic output feedback.
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