
Bounds and Code Constructions for
Partially Defect Memory Cells

Haider Al Kim1,2, Sven Puchinger3, Antonia Wachter-Zeh1
1Institute for Communications Engineering, Technical University of Munich (TUM), Germany

2Electronic and Communications Engineering, University of Kufa (UoK), Iraq
3Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Denmark

Email: haider.alkim@tum.de, svepu@dtu.dk, antonia.wachter-zeh@tum.de

Abstract—This paper considers coding for so-called partially
stuck memory cells. Such memory cells can only store partial
information as some of their levels cannot be used due to, e.g.,
wear out. First, we present a new code construction for masking
such partially stuck cells while additionally correcting errors.
This construction (for cells with q > 2 levels) is achieved by
generalizing an existing masking-only construction in [1] (based
on binary codes) to correct errors as well. Compared to previous
constructions in [2], our new construction achieves larger rates
for many sets of parameters. Second, we derive a sphere-packing
(any number of u partially stuck cells) and a Gilbert-Varshamov
bound (u < q partially stuck cells) for codes that can mask
a certain number of partially stuck cells and correct errors
additionally. A numerical comparison between the new bounds
and our previous construction of PSMCs for the case u < q in [2]
shows that our construction lies above the Gilbert–Varshamov-
like bound for several code parameters.

Index Terms—flash memories, phase change memories, defect
memory, (partially) stuck cells, defective cells error correction,
sphere packing bound, Gilbert-Varshamov bound

I . I N T R O D U C T I O N

The demand for reliable memory solutions and in particular
for non-volatile memories such as phase-change memories
(PCMs) for different applications is steadily increasing. These
memories provide permanent storage, rapidly extendable capac-
ity, and multi-levels devices. However, due to increasing the
number of levels while decreasing the size of the memory, it is
essential to suggest sophisticated coding and signal processing
solutions to overcome reliability issues. The key characteristic
of PCM cells is that they can switch between two main states:
an amorphous state and a crystalline state. PCM cells may
become defect (also called stuck) if they fail in switching
their states. This occasionally happens due to the cooling and
heating processes of the cells, and therefore cells can only hold
a single phase [3]–[6]. The crystalline state consists of multiple
substates which motivates partially stuck type of defects to
happen.

In flash memories, an electric charge might be trapped in the
cell at a certain state, and the cell’s status cannot be switched
to be writable again. The suggested mechanism to deal with
these defect memory cells whose charges are trapped is called
masking. Masking determines a codeword that matches the
stuck level of the stuck memory. Therefore, it can be placed
properly on the defective memory. In multi-level PCM cells,
failure may occur at a position in both extreme states or in the
partially programmable states of crystalline. In [1], a cell that

This work has received funding from the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG) under Grant No. WA3907/1-1. H.
Al Kim has received funding from the German Academic Exchange Service
(Deutscher Akademischer Austauschdienst, DAAD) under the support program
ID 57381412. S. Puchinger received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie Sklodowska-
Curie grant agreement no. 713683.

can only hold levels at least a certain reference level s > 0 are
called partially stuck. For multi-level PCMs, the case s = 1 is
particularly important since this means that a cell can reach
all crystalline sub-states, but cannot reach the amorphous state
anymore. In flash memories, information is stored by different
charge levels. Similar to PCMs, (partial) defects can occur in
flash memory cells. In order to write information in a new
write, either all current levels are only increased or a whole
block has to be erased. Erasing the whole block reduces the
lifespan of flash memory devices.

Figure 1 shows the general idea of reliable and (partially)
defect memory cells.

No value can be stored

The value that cell can store

/Reliable cell stores any value

Level-3 (1 + α)
Level-2 (α)
Level-1 (1)
Level-0 (0)

/ / / / /

Values

Cell Levels 0 1 / α 1 + α 0 1 / α 1 + α

(A) Reliable Cells (B) Defect (C) Partially Defect

Figure 1. Difference between reliable and (partially) defect memory cells. In
this figure, there are n = 5 cells with q = 4 possible levels. The cell levels
∈ F4 are mapped to (0, 1, α or 1 + α). Case (A) illustrates only reliable
cells that can store any of the four values. In the stuck scenario, as shown in
case (B), the defect cells can store only the exact stuck level s. Case (C) is
more flexible (partially defect scenario). Partially stuck cells at level s ≥ 1
can store level s or higher.

A. Related Work

In [7], code constructions for masking stuck memory cells
were proposed. In addition to masking the stuck cells, it is
possible to correct errors that occur during the storing and
reading processes. A generator matrix of a specific form was
constructed for this purpose. In [1], improvements on the
redundancy necessary for masking partially stuck cells are
achieved, and lower and upper bounds are derived. However,
the paper does not consider error correction in addition to
masking.

Combined methods of [7] and [1] to obtain code construc-
tions for joint masking partially stuck cells and error correction
are conducted in [2]. These code constructions reduce the
redundancy necessary for masking, similar to the results in
[1]. In contrast to [1], however, these constructions are able
to correct additional random errors.

B. Our Contribution

In this paper, we extend the constructions of [2]. We obtain
a code construction for combined error correction and masking

ar
X

iv
:2

00
9.

06
51

2v
2 

 [
cs

.I
T

] 
 6

 O
ct

 2
02

0



q-ary partially defect cells by means of binary stuck memory
cells. Our new construction gives higher rates for several sets of
parameters compared to [2, Theorem 4] and it can correct errors
compared to [1, Theorem 9]. In this paper, we also analyze
how close our constructions are to the sphere packing bound
(necessary condition) as an upper bound with the presence of
partially defect memory constraints. Further, we introduce a
Gilbert-Varshamov-like bounds (sufficient condition) to show
the existence of codes with certain parameters that can mask
the partially stuck memory and correct errors.

Similar to the main part of [1], this paper deals with partially-
stuck-at-1 cells, i.e., s = 1, but the results are extendable to
arbitrary s similar to [1, Section VII].

I I . P R E L I M I N A R I E S

A. Notations

For a prime q, let Fq denote the finite field of order q and
Fq[x] be the set of all univariate polynomial with coefficients
in Fq . Fqλ denotes an extension field of Fq of extension degree
λ. Denote [f ] = {0, 1, . . . , f − 1} for f ∈ Z>0.

Throughout this paper, let n be the total number of cells, u
be the number of (partially) stuck cells, and t be the number
of random errors. Let sφi denote the (partially) stuck level at
position i, where i ∈ [u], and φ = {φ0, φ1, · · · , φu−1} ⊆ [n]
denotes the positions of the the (partially) stuck cells.

For our construction, let k1 be the number of information
symbols, l be the number of symbols required for masking,
and r be the required redundancy for error correction.

B. Definitions

1) Defect and Partially Defect Cells: A cell is called a
defect (stuck at level s), where s ∈ [q], if it cannot change its
value and always stores the value s. A cell is called partially
defect (partially stuck at level s), where s ∈ [q], if it can only
store values which are at least s. We fix throughout the paper a
total ordering “≥” of the elements of Fq such that a ≥ 1 ≥ 0
for all a ∈ F∗q (note that such an ordering does not interact
well with addition, but this is not relevant here). If a cell is
partially stuck at 0, it is a non-defect cell which can store any
of the q levels.

2) (u, t)-PSMC: An (n,M)q (u, t)-partially-stuck-at-
masking code C is a coding scheme consisting of an encoder
E and a decoder D. The input of the encoder E is
• the set of locations of u partially stuck cells φ =
{φ0, φ1, . . . , φu−1} ⊆ [n],

• the partially stuck levels sφ0
, sφ2

, . . . , sφu−1
∈ [q],

• a message m ∈ M, where M is a message space of
cardinality |M|.

It outputs a vector c ∈ Fnq which fulfills cφi ≥ sφi for all
i = 1, . . . , u. The decoder is a mapping that takes c+ e ∈ Fnq
as input and returns the correct message m for all error vectors
e of Hamming weight at most t.

C. Code Construction over F2λ

The new code construction works over the finite field F2λ .
We denote by x0, x1, . . . , xλ−1 a basis of F2λ over F2. Hence,
any element a ∈ F2λ can be uniquely represented as a =∑λ−1
i=0 aix

i where ai ∈ F2∀i. In particular, a ∈ F2 if and only
if a1 = · · · = aλ−1 = 0. This is a crucial property of F2λ that
we will use in Construction 1.

In the construction, we also use the notation (Γ)φ for Γ ∈
Fn+1
2λ

and φ ⊆ {0, . . . , n}, by which we mean the sub-vector
of Γ indexed by the entries of φ.

D. Error Models

Assume that the memory has u partially stuck cells at
positions φ = {φ0, φ1, . . . , φu−1} ⊆ [n] and n cells in total.

In the non-overlapping model, the t errors can happen only
at positions Ψ = {Ψ0,Ψ1, . . . ,Ψn−u−1} = [n] \ φ.

In the overlapping model, on the other hand, we assume
that t errors can happen in any cell, i.e., Ψ ⊆ [n]. If errors
happen in the u partially stuck cells, we assume that the error
attains only values such that the corrupted vector still obeys
the partially stuck constraints.

I I I . C O D E S F O R ( PA R T I A L LY ) D E F E C T M E M O R I E S

We propose a new code construction for simultaneous
masking and error correction. The new construction is based
on the masking-only construction in [1, Section VI], which
is able to mask u ≥ q partially stuck positions, where q is
the field size of the masking code, but cannot correct any
errors. We generalize this construction to be able to cope with
errors. Compared to [2, Theorem 4], the new construction may
lead to larger code dimensions for a given pair (u, t), in a
similar fashion as [1, Construction 5] improves compared to
[1, Construction 4].

Construction 1. Let n, u, t, λ, k, k1, r, l be positive integers
with u, t ≤ n, λ > 1, k1 = n− l− r− 1, and k = l+ k1 + 1.
Suppose that there are matrices
• P ∈ Fk1×r

2λ
and

• H0 := [I l×l | Rl×(n−l)] ∈ Fl×n2 that is a systematic
parity-check matrix of a binary code C0 with parameters
[n, k1 + r, d0 ≥ u0 + 1]2, where u0 := b2u/2λc,

such that

G =


H0 0

G1

...
0

1 . . . 1

 :=

 I l×l — Rl×(n−l) — 0l×1
0k1×l Ik1×k1 P k1×r 0k1×1
————– 11×(n+1) ————–


is a generator matrix of a [n+1, k = l+k1 +1, d ≥ 2t+1]2λ
code C.

Based on these definitions, we define a coding scheme in
Algorithm 1 and Algorithm 2.

Theorem 1. The coding scheme in Construction 1 is a (u, t)-
PSMC of length n+ 1 and cardinality

Mu,t = 2λ(k1+l)−l.

Proof. Masking: We first prove that Algorithm 1 outputs a
masked vector (i.e., a vector that contains no zeros in the
partially stuck-at-(s = 1) positions (φ0, . . . , φu−1)).

By construction, the vector (a+ b)φ has length u and its
entries are in F2λ . Consider the partition {c, c + 1}, for all
c ∈ F , of F2λ . These sets are pairwise disjoint for different c
and there are 2λ−1 such sets. By the pigeonhole principle, there
is one such set, say {−z,−z+1}, such that the vector (a+b+
(z + 1) · 11×(n+1))φ contains at most b u|F|c = b21−λuc = u0
elements in {0, 1}.

We need to mask the few remaining entries of w that are 0.
First note that since the last entry of a+b is zero and we add
z + 1 6= 0 to it, the last entry of w is always non-zero (this
is relevant if the last position is partially stuck). We choose a
binary vector z such that [z ·H0 | 0]φ contains a 1 (or 0) in
positions in which the corresponding entry of (w)φ is 0 (or
1, respectively). Such a vector z always exists since



Algorithm 1: Encoding (m;m′;φ)
Input:
• Message:
m = (m0,m1, . . . ,mk1−1) ∈ Fk1

2λ
and

m′ = (m′0,m
′
1, . . . ,m

′
l−1) ∈ F l, where

F := {
∑λ−1
i=0 aix

i ∈ F2λ : a0 = 0} ⊆ F2λ .
• Positions of partially stuck-at-(s = 1) cells:
φ ⊆ {0, . . . , n}

• Notions introduced in Construction 1.
1 a←m′ ·

[
H0 | 0

]
2 b←m · [G1 | 0]
3 w ← a+ b+ (z + 1) · 11×(n+1), where z ∈ F is

chosen such that (a+ b+ (z + 1) · 11×(n+1))φ has at
most u0 = b21−λuc entries in F2

4 Choose z ∈ Fl2 such that, for any i = 0, . . . , u− 1,

(z ·H0 | 0)φi =


0, if (w)φi = 1,

1, if (w)φi = 0,

arbitrary, if (w)φi /∈ F2.

Output: w + [z ·H0 | 0]

Algorithm 2: Decoding
Input:
• y = c+ e ∈ Fn+1

2λ
, where c is a valid output of

Algorithm 1 and e is an error of Hamming weight at
most t.

• Notions introduced in Construction 1.
1 v ← decode y in the code C
2 v′ ← v − (vn + 1)11×(n+1)

3 m̂′′ ← [v′0, . . . , v
′
l−1]

4 m̂′ ← [ϕ(m′′0), . . . , ϕ(m′′l−1)], where

ϕ : F2λ → F ,
λ−1∑
i=0

aix
i 7→ 0x0 +

λ−1∑
i=1

aix
i.

5 v′′ ← v′ − m̂′′ ·
[
I l×l Rl×(n−l) 0l×1

]
6 m̂← [v′′l , . . . , vl+k1−1]

Output: m̂ and m̂′

• the number of {0, 1}-entries in (w)φ is at most u0,
• H0 is a parity-check matrix of a binary code of minimum

distance ≥ u0 + 1, which means that any u0 columns of
H0 are linearly independent, and

• the vector [z ·H0 | 0] is in F2 (since z and H0 are
binary).

Hence, all entries of (w + [z ·H0 | 0])φ are either 1 or in
F2λ \ F2, i.e., non-zero.

Error correction: Next, we show that the output of
Algorithm 1 is a codeword of the code C as defined in
Construction 1, and hence, the first step of Algorithm 2 is
able to correct up to t errors in the masked vector.

To prove this, we rewrite

w + [z ·H0 | 0]

= a+ b+ (z + 1) · 11×(n+1) + [z ·H0 | 0]

=
[
m′ + z |m | z + 1

]
·


H0 0

G1

...
0

1 . . . 1

 ∈ C (1)

Recovery of the messages: We show that Algorithm 2
uniquely retrieves the messages m and m′ from the vector
v := w + [z · H0 | 0], which is obtained after the error-
correction step.

By (1), we have

v =
[
m′ + z |m | z + 1

]  I l×l — Rl×(n−l) — 0l×1
0k1×l Ik1×k1 P k1×r 0k1×1
————– 11×(n+1) ————–


Hence, we can retrieve z+1 as the last entry of v and subtract
it from v, i.e.,

v′ := v − (z + 1)11×(n+1)

=
[
m′ + z |m

] [ I l×l — Rl×(n−l) — 0l×1
0k1×l Ik1×k1 P k1×r 0k1×1

]
Then, the first l positions of v′ equals m̂′′ = m′ + z. Thus,
we can also subtract

v′′ := v′ − (m′ + z) ·
[
I l×l Rl×(n−l) 0l×1

]
= m ·

[
0k1×l Ik1×k1 P k1×r 0k1×1

]
and obtain m = m̂ as the l + 1st to l + k1-th position of v′′.

It remains to prove that we can uniquely retrieve m′ = m̂′

from m′ + z = m̂′′. Recall that the entries of m′ are in F
(i.e., elements are, represented in a polynomial basis xi of F2λ

over F2, of the form
∑λ−1
i=0 aix

i with a0 = 0). Hence, for
α ∈ F2 and β = 0x0 +

∑λ−1
i=1 aix

i ∈ F , we have

ϕ(α+ β) = ϕ

(
αx0 +

λ−1∑
i=1

aix
i ∈ F

)

= 0x0 +

λ−1∑
i=1

aix
i ∈ F = β.

In summary, Algorithm 1 encodes messages m and m′

into a codeword of the code C such that all u partially-stuck
positions are non-zero (i.e., masked). Algorithm 2 then corrects
up to t errors using the code C and recovers the message
vectors. This means that the coding scheme is a (u, t)-PSMC.
The cardinality of the code is given by

Mu,t = |F2λ |k1 |F|l = 2λ(k1+l)−l,

which concludes the proof.

On the first glance, it is not immediately clear how to
construct the matrices H0 and G1 in Theorem 1. An intuition
is as follows: we look for a code C that

• has minimum distance ≥ 2t + 1 (to correct at least t
errors),

• contains the all-one vector, and
• when punctured at the last position, its binary subfield

subcode must contain a code (generated by H0) whose
dual code has minimum distance at least u0 + 1.

Construction 1 can give higher rates for some chosen
codes than using [2, Theorem 4]. Example 1 in the appendix
shows a code C of parameters [15, 11, 3]4 and its generator
matrix G, u = 4 and t = 1. Using Theorem 1, we can store
k1 + l = 6 + 4 = 10 information symbols. In contrast [2,
Theorem 4] can only store k1 = 7 information symbols using
G′, while in both theorems we can mask u = q cells.



I V. B O U N D S O N T H E C A R D I N A L I T Y A N D
M I N I M U M D I S TA N C E

In this section, we derive bounds on (u,t)-PSMCs with the
goal to evaluate the parameters of code constructions. We
derive a sphere-packing-type bound (necessary condition) and
a Gilbert-Varshamov (GV)-type bound (sufficient condition).
Notice that the GV-like bound proves the existence of (u,t)-
PSMCs only when u < q.

A. Sphere-Packing Bound on PSMCs

The sphere-packing bound considers the size of a code by
packing spheres around each codeword. We combine the proof
of the classical sphere packing bound with constraints from
partially stuck cells.

Theorem 2. Any (u,t)-PSMC over Fq of cardinalityMu,t has
to satisfy:
• for non-overlapping errors:

Mu,t ·
t∑

j=0

(
n− u
j

)
(q− 1)j ≤ qn−u

u−1∏
i=0

(q− sφi), (2)

• for overlapping errors under the assumption that sφi <
q − 1, for i = 0, . . . , u− 1:

Mu,t ·
t∑

j=0

j∑
j1=0

(
n−u
j1

)
(q − 1)j1

(
u

j−j1

) ∏
i∈J

(q − 1− sφi)

≤ qn−u
u−1∏
i=0

(q − sφi), (3)

where J denotes the set of cardinality j − j1 of stuck
cells that is affected by errors.

Proof. First we prove the non-overlapping scenario. [1,
Theorem 2] proves that at most Mu q-ary codewords can
be stored in a memory in the presence of u partially stuck
cells, where:

Mu ≤ qn−u
u∏
i=1

(q − sφi). (4)

We assume that the errors can happen only in the n− u non-
stuck cells. A sphere Bt,n−u(a) of radius t around a word

a ∈ Fn−uq is the set of all words in Hamming distance at
most t, i.e, Bt,n−u(a) := {b ∈ Fn−uq : d(a, b) ≤ t}. There
are
(
n−u
j

)
words in distance exactly j from a fixed word and

|Bt,n−u(a)| =
∑t
j=0

(
n−u
j

)
(q − 1)j . Thus, the total number

of words in all decoding spheres (left-hand side (LHS) of (2))
is at most the total number of possible words Mu (right-hand
side (RHS) of (2)).

Second we prove the overlapping scenario. Clearly, (4) is
still an upper bound on the total number of possible words,
i.e., the RHS of the sphere-packing bound. For the LHS in
this case, the errors can happen either in the n− u non-stuck
cells or in the u stuck cells such that sφi + ei ≤ q − 1.

In this case, there are
∑j
j1=0

(
n−u
j1

)(
u

j−j1

)
possibilities

for j erroneous positions (i.e., j1 errors happen at non-
stuck positions and j − j1 errors happen at stuck posi-
tions). Therefore, there are Bt,u,n :=

∑t
j=0

∑j
j1=0

(
n−u
j1

)
(q−

1)j1
(

u
j−j1

)∏
i∈J (q − 1 − sφi) distinct words that can result

from a fixed word when u partially stuck cells and at most t
random errors happen, where J denotes the set of cardinality
j − j1 of stuck cells that is affected by errors.

Since the set of these Bt,u,n words around a fixed codeword
is disjoint to the corresponding set around another fixed
codeword, (Mu,t · Bt,u,n) is at most the total number of
possibilities and the statement follows.

Figure 2 illustrates the new sphere packing bounds. They are
compared to the amount of storable information symbols for a
completely reliable memory (i.e., no stuck cells, no errors) and
the upper bound on the cardinality of an only-masking PSMC
(only stuck cells, no errors) derived in [1]. The figure also
compares the overlapping and non-overlapping error model for
sφi = 1, for all i. In the overlapping scenario, when the number
of errors is small (e.g., t = 3), the number of information
symbols is bounded by the sphere packing bound and it is
slightly better than in non-overlapping case. The more errors
happen (e.g., t = 25 in the right figure), a smaller number
(n− u) of non-stuck cells can be affected by errors, so it is
very likely that many of the errors happen at partially stuck
positions which affects the amount of storable information less
than an error in a non-stuck position.

0 20 40 60 80 100 120
20

40

60

80

100

120

Number of stuck cells u, where 0 ≤ u ≤ n

k
(3

,1
21

)

no errors, no partially stuck cells, t = 0, u = 0
only partially stuck cells [1, Theorem 2], t = 0, 0 ≤ u ≤ n, s = 1

only errors "usual sphere-packing bound", t = 3, u = 0
errors and partially stuck cells (overlapping), t = 3, 0 ≤ u ≤ n, s = 1

errors and partially stuck cells (non-overlapping), t = 3, 0 ≤ u ≤ n, s = 1

0 20 40 60 80 100 120
20

40

60

80

100

120

Number of stuck cells u, where 0 ≤ u ≤ n

k
(3

,1
21

)

no errors, no partially stuck cells, t = 0, u = 0
only partially stuck cells [1, Theorem 2], t = 0, 0 ≤ u ≤ n, s = 1

only errors "usual sphere-packing bound", t = 25, u = 0
errors and partially stuck cells (overlapping), t = 25, 0 ≤ u ≤ n, s = 1

errors and partially stuck cells (non-overlapping), t = 25, 0 ≤ u ≤ n, s = 1

Figure 2. Sphere-packing bounds: Comparison for k(q, n) information symbols for the classical sphere-packing bound ("only errors") and our sphere-packing-
like bounds ("errors and stuck cells") for non-overlapping and overlapping errors. The chosen parameters are λ = 5 and q = 3, and n = ((qλ − 1)/(q− 1)).



B. Gilbert–Varshamov Bound on PSMCs

In this section, we derive a sufficient condition for the
existence of a code with certain parameters that can mask
partially stuck cells and correct errors. To derive this bound,
we rely on our previous construction of PSMCs in [2], which
for u < q masked cells solely required the existence of an
error-correcting code with minimum distance ≥ 2t+ 1, which
contains the all-one vector. In the proof, we therefore prove
the existence of a code which contains the all-one vector as
codeword.

Theorem 3 (Gilbert-Varshamov-like bound). Let the positive
integers n, k ≤ n, d ≤ n, q fulfill:

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k. (5)

Then, there exists an [n′, k′, d]q code that contains the all-one
vector, where n′, and k′ satisfy:

n− d+ 2 ≤ n′ ≤ n+ 1, k − d+ 2 ≤ k′ ≤ k + 1.

The parity-check matrix of this [n′, k′, d]q code can be con-
structed as shown in the proof.

Proof. Similar to the proof of the standard Gilbert–Varshamov
bound, we construct a systematic parity-check matrix by adding
columns hl for l = k+ 1, k+ 2, ... to a k× k identity matrix
as long as:

d−2∑
i=0

(
l − 1

i

)
· (q − 1)i < qn−k. (6)

Recall from the proof of the Gilbert-Varshamov bound that
this condition ensures that there exists a column hl that is
linearly independent of any collection of d− 2 other columns.

If (6) is not fulfilled anymore for l = n+ 1, we append an
additional parity-check column p to the previous n columns
such that the sum of each row is zero (i.e., the weight is even
in the binary case). This matrix is therefore:

He :=

[ (
h1, . . . ,hn︸ ︷︷ ︸

n

)
p

]
,

where
n∑
i=1

hi + p = 0. (7)

However, for He, we cannot guarantee anymore that any d−1
columns are linearly independent (as p might be linearly
dependent on a small number of hi’s.). Therefore, in the
following, we possibly remove a few columns from He to
recover this property while still having zero row sums.

If p is linearly independent of any d − 1 columns in
h1, . . . ,hn, we define H := He.

Else p is linearly dependent of δ ≤ d − 2 columns
{hi1 ,hi2 , . . . ,hiδ} ⊆ {h1,h2, . . . ,hn}, and p is a linear
combination of these δ columns:

p =
δ∑
j=1

hij · aj , where aj ∈ {1, 2, . . . , q − 1}.

Thus with 1 ≤ δ1 ≤ · · · ≤ δq−1 ≤ δ (by assuming w.l.o.g. an
ordering on the indices),

p =

δ1∑
j=1

hij +2 ·
δ2∑

j=δ1+1

hij + · · ·+(q−1) ·
δ∑

j=δq−1+1

hij . (8)

We can rewrite (7) as:
n∑

i=1\{i1,...,iδ}

hi+

δ1∑
j=1

hij +

δ2∑
j=δ1+1

hij + · · ·+
δ∑

j=δq−1+1

hij +p = 0.

Combining this with (8) yields:
n∑

i=1\{i1,...,iδ}

hi +

δ1∑
j=1

hij +

δ2∑
j=δ1+1

hij + · · ·+
δ∑

j=δq−1+1

hij + p

+

δ1∑
j=1

hij + 2 ·
δ2∑

j=δ1+1

hij + · · ·+ (q − 1) ·
δ∑

j=δq−1+1

hij − p.

= 0.

Therefore,
n∑

i=1\{i1,...,iδ}

hi + (2 mod q)

δ1∑
j=1

hij + (3 mod q)

δ2∑
j=δ1+1

hij

+ · · ·+ (q − 1 mod q)

δq−1∑
j=δq−2+1

hij = 0. (9)

Therefore, the matrix

H :=h′1, . . . ,h′n−δ︸ ︷︷ ︸
n−δ

∣∣∣2hi1 , ..., 2hiδ1︸ ︷︷ ︸
δ1

∣∣∣... ∣∣∣− hiδq−2+1
, ...,−hiδq−1︸ ︷︷ ︸

δq−1−δq−2


where h′1, . . . ,h

′
n−δ = {h1, . . . ,hn} \ {hi1 , . . . ,hiδ}, has

sum equal to zero in all rows due to (9) and any d−1 columns
are linearly independent since they are all columns (times a
non-zero scalar) of the matrix (h1, . . . ,hn).

The number of columns n′ of H is bounded by

n− d+ 2 ≤ n− δ ≤ n′ ≤ n+ 1,

where n′ = n+ 1 if p was linearly independent of any d− 2
other columns and therefore no columns have to be removed.

Substituting n in l of (6), we obtain:

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k. (10)

Since n ≤ n′ + d− 2 and since n− k = n′ − k′ (the number
of rows did not change), we get

d−2∑
i=0

(
n′ + d− 3

i

)
(q − 1)i < qn

′−k′ .

Thus, if this is true, there exists an [n′, k′, d]q code that contains
the all-one vector, where k′ = n′− (n′−k′) = n′− (n−k) =
n′ − n+ k ≥ n− d+ 2− n+ k = k − d+ 2.

Corollary 1. Let u < q and let (5) hold, i.e., such that an
[n′, k′, d]q code that contains the all-one vector as codeword
exists. Then, there is a (u,bd−12 c)-PSMC of length n′.

Proof. In [2, Theorem 1], it was shown that if the all-one
vector is a codeword of a code with minimum distance d, then
for u < q, there is a (u,bd−12 c)-PSMC.

Figure 3 compares the new GV-like bound to other well-
known bounds. To explain how, let us first define the following:
• Let nf and kf denote the n and k that is chosen to

compute one point in the figure (here nf = 127, 121, 124,
and 120 and kf = values on the x-axis).



0 20 40 60 80 100 120
0

20

40

60

80

100

120

(a) k information q = 2, n = 127

d
m

in
im

um
di

st
an

ce
BCH Codes
GV bound
GV-Like bound
Ball–Blokhuis bound [8]
Griesmer bound [9]

0 20 40 60 80 100 120
0

20

40

60

80

100

120

(b) k information when q = 3, n = 121

d
m

in
im

um
di

st
an

ce

BCH Codes
GV bound
GV-Like bound
Ball–Blokhuis bound [8]
Griesmer bound [9]

0 20 40 60 80 100 120
0

20

40

60

80

100

120

(c) k information when q = 5, n = 124

d
m

in
im

um
di

st
an

ce

BCH Codes
GV bound
GV-Like bound
Ball–Blokhuis bound [8]
Griesmer bound [9]

0 20 40 60 80 100 120
0

20

40

60

80

100

120

(d) k information when q = 7, n = 120

d
m

in
im

um
di

st
an

ce

BCH Codes
GV bound
GV-Like bound
Ball–Blokhuis bound [8]
Griesmer bound [9]

Figure 3. Comparisons of bounds of our new GV-Like-Bound for different n and q. For BCH codes, we use our previous construction (for u < q) [2,
Theorem 1] since BCH codes have the all-one vector in their generator matrices.

• Let n and k be the designed length and dimension in the
GV bound, i.e., what is used in the inequality (5).

• Let n′ and k′ be the actual length and dimension of the
existing code.

In the plots, we want to know for a fixed pair [nf , kf ], what
the maximal minimum distance d is that guarantees existence
of a code. To have a fair comparison to another lower bound
or construction, we chose the designed n and k to our largest
disadvantage, i.e. (nf = n + 1) which gives (n = nf − 1)
and (kf = k − d + 2) which gives (k = kf + d − 2). Next,
we have to obtain d, so we plugged for d = 1, 2, . . . his n
and k (depending on d) into the bound in (5) and computed
the maximal d that still satisfies the bound. Then we get a d
and Theorem 3 tells us that there is an [n′, k′, d]q code with
(n − d + 2 ≤ n′ ≤ n + 1 = nf ) and (kf = k − d + 2 ≤
k′ ≤ k+ 1). In particular, the actual code has length n′ ≤ nf
and dimension k′ ≥ kf . Hence, a code with exact parameters
[nf , kf ,≥ d]q exists. However, the values obtained for this
d are quite bad (the red curve). For high dimensions kf and
larger q, these values tend to be better as shown in (d), i.e. the
red curve matches, and then is above the BCH curve.

V. C O N C L U S I O N

We have proposed a new construction for combined masking
of partially stuck-at-1 cells and error correction, by masking
only binary classical stuck memory cells as proposed in
[1, Thorem 9], with the error correction possibility similar
to [2, Theorem 4]. Compared to [1, Thorem 9], the new
code construction can correct errors in addition to masking.
Furthermore, for specific examples on the code parameters, a
higher amount of information symbols k1 + l when u ≤ q ≤ n
can be stored compared to the code construction for masking
and error correction in [2, Theorem 4]. Further, we have derived
bounds on the required redundancy for a given number of
partially stuck cells to mask and a given number of errors
to correct. This includes a sphere-packing and a Gilbert–
Varshamov-like bound.

Future work should calculate the capacity of a storage
channel in which u cells can be partially stuck at levels s
with probability p and the rest (u − n) healthy cells with
probability (1− p). If we assume disjoint case, (u− n) cells
have also crossover probability ε, i.e errors occur in (u− n)
cells only. Then we should compare it to the code rate of the
new construction similar to [1, Section IX].

A C K N O W L E D G E M E N T

We would like to thank Ludo Tolhuizen for making us
aware of a more accurate curve regarding GV-like bound by
commenting on the previous version of this paper.

R E F E R E N C E S

[1] A. Wachter-Zeh and E. Yaakobi, "Codes for Partially Stuck-at Memory
Cells," IEEE Transactions on Information Theory, vol 62, no. 2, pp.639-
654, 2016.

[2] H. Al Kim, S. Puchinger, and A. Wachter-Zeh, “Error Correction for
Partially Stuck Memory Cells,” in 2019 XVI International Symposium
"Problems of Redundancy in Information and Control Systems" (REDUN-
DANCY), 2019, pp. 87–92.

[3] B. Gleixner, F. Pellizzer, and R. Bez, “Reliability Characterization of Phase
Change Memory,” in 2009 10th Annual Non-Volatile Memory Technology
Symposium (NVMTS). IEEE, 2009, pp. 7–11.

[4] K. Kim and S. J. Ahn, “Reliability Investigations for Manufacturable
High Density PRAM,” in 2005 IEEE International Reliability Physics
Symposium, 2005. Proceedings. 43rd Annual. IEEE, 2005, pp. 157–162.

[5] S. Lee, J.-h. Jeong, T. S. Lee, W. M. Kim, and B.-k. Cheong, “A Study
on the Failure Mechanism of a Phase-Change Memory in Write/Erase
Cycling,” IEEE Electron Device Letters, vol. 30, no. 5, pp. 448–450,
2009.

[6] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, A.
L. Lacaita, and R. Bez, “Reliability Study of Phase-Change Nonvolatile
Memories,” IEEE Transactions on Device and Materials Reliability, vol.
4, no. 3, pp. 422–427, 2004.

[7] C. Heegard, “Partitioned Linear Block Codes for Computer Memory with
’Stuck-at’ Defects,” IEEE Transactions on Information Theory, vol. 29,
no. 6, pp. 831–842, 1983.

[8] S. Ball and A. Blokhuis, “A Bound for the Maximum Weight of a Linear
Code,” SIAM Journal on Discrete Mathematics, vol. 27, no. 1, pp. 575–583,
2013.

[9] J. H. Griesmer, “A Bound for Error-Correcting Codes,” IBM Journal of
Research and Development, vol. 4, no. 5, pp. 532–542, 1960.

V I . A P P E N D I X

Example 1. Binary Codes for Masking and Correcting
Partially Defect Memory

Let m =
(

1 0 1 α 1 + α 1
)
∈ F6

4, m′ =(
α 0 α 0

)
∈ F4 ⊆ F2λ . Let u = 4 so that u0 = 2. Since

we mask u-PSMC by the mean of u0-SMC, we need a code C0 of a
minimum distance d0 = u0 + 1 = 3 that its dual code is generated
by H0. Let the u stuck positions be φ0 = 1, φ1 = 2, φ2 = 9 and
φ3 = 14. Let G over F4 be a generator matrix of a code C with
parameters [15, 11, 3]4 from Theorem 1:

G =


H0 0

G1

...
0

1 . . . 1

 =



1 0 0 0 1 0 1 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 0
0 0 0 0 1 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


Encoding follows Algorithm 1 by plugging in the given values

and matrices.
G′ over F4 of the code C of the parameters [15, 11, 3]4 in [2,
Theroem 4] is:

G′ =

[
0k1×l Ik1 P k1×r

H0

]
=



0 0 0 0 1 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
1 0 0 0 0 0 1 1 0 1 0 1 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 1 0 0 1 1 0 1 0 1 1 1


.

It is good to mention that if we take the reduced echelon form for
both G and G′, the result is the same matrix Ge. However, applying
Theorem 1 gives higher rate compare to [2, Theorem 4].


