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Abstract: Chassis system components such as dampers have a significant impact on vehicle stability,
driving safety, and driving comfort. Therefore, monitoring and diagnosing the defects of these
components is necessary. Currently, this task is based on the driver’s perception of component defects
in series production vehicles, even though model-based approaches in the literature exist. As we
observe an increased availability of data in modern vehicles and advances in the field of deep learning,
this paper deals with the analysis of the performance of Convolutional Neural Networks (CNN)
for the diagnosis of automotive damper defects. To ensure a broad applicability of the generated
diagnosis system, only signals of a classic Electronic Stability Control (ESC) system, such as wheel
speeds, longitudinal and lateral vehicle acceleration, and yaw rate, were used. A structured analysis
of data pre-processing and CNN configuration parameters were investigated in terms of the defect
detection result. The results show that simple Fast Fourier Transformation (FFT) pre-processing and
configuration parameters resulting in small networks are sufficient for a high defect detection rate.

Keywords: automotive; damper; convolutional neural networks; fault detection; diagnosis; machine
learning; deep learning

1. Introduction

Ensuring driving safety and driving comfort when operating vehicles requires their health state
to be properly monitored. This is especially critical for chassis system components such as dampers.
Currently, in addition to the driver’s perception, there is only periodic human inspection for monitoring
the vehicle’s chassis system health state. However, this is error-prone, expensive, and implies periods
of unmonitored driving between inspections. Furthermore, autonomous driving implies that the
driver is not needed as a monitoring instance, either for the actual driving task or for monitoring the
vehicle’s health state. Therefore, an automated system for this task is necessary.

Approaches in the field of Fault Detection and Isolation (FDI) can be categorized as
reliability-based, model-based, signal-based, and statistical-based FDI [1]. Existing approaches in
monitoring the health of the chassis system of a vehicle are often model-based [2–4] or signal-based [5,6].
However, to the authors’ knowledge, there is no such approach applied in a series production vehicle.
Possible reasons are that either additional sensors that are not part of a vehicle’s standard sensor
set (e.g., vertical acceleration sensors) are necessary or measurements at a test-bench are required.
One problem in automotive damper defect diagnosis during actual driving is robustness with regard to
the vehicle’s configuration, e.g., changing tire characteristics, mass variations in the vehicle, or varying
road excitation. Even though driving data incorporate these different vehicle configurations and are
generated while driving, the named approaches cannot benefit directly from more data. The named
approaches need to get fine-tuned, which is time-consuming to match the data.
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Data-driven approaches are based on measurement data that are available from a process [7].
Combining a signal-based with a data-driven approach leads to machine-learning algorithms.
Robustness is therefore automatically incorporated when the supplied training data cover variations
of circumstances regarding different vehicle configurations and usage scenarios. A machine-learning
approach for automotive damper health monitoring using a Support Vector Machine (SVM) for
classifying signal features is presented in [8]. One downside of this approach is the fact that features
that can distinguish between different health states are required. Engineering representative features
is therefore necessary, which is also time-consuming and requires system knowledge.

Deep learning classification architectures are able to learn features directly from the input data.
The parameters of the network are adjusted with respect to minimizing a cost function that accounts
for the classification result. Therefore, the overall algorithm is trained with respect to distinguishing
between different states of the data. However, adding their increased complexity compared to
traditional machine learning algorithms (e.g., SVM) makes sense only if these simple algorithms
are lacking performance. Based on the classification results in [8,9], applying deep learning algorithms
for damper defect detection should be investigated.

Convolutional Neural Networks (CNN) are stated to be able to deal with multidimensional data
as well as having a good local feature extraction [10]. An overview of the different applications of
CNN regarding machine health monitoring is given in [11]. CNN have emerged into a broad variety
of fields, such as predictive maintenance [12,13] and medical [14,15], or mechanical diagnosis [16–23].
The latter has been dominated by model-driven approaches for decades and more recently, data-driven
approaches based on feature engineering. In the past couple of years, researchers have investigated and
successfully employed CNN’s feature learning capabilities to specifically diagnose rotating mechanical
applications such as bearings. However, to the best of the authors’ knowledge, there is no application
of CNN for the diagnosis of automotive suspension components such as dampers. It is therefore an
open question whether CNN are equally suited for the diagnosis of automotive dampers using only
Electronic Stability Control (ESC) system sensors and normal driving data. There might be similarities
due to sensor signals coming from rotating wheels. However, there are big differences from industrial
bearing applications to automotive applications because there is a stochastic excitation of the vehicle
caused by the road profile as well as a high variability of circumstances of vehicle usage (e.g., weather
conditions or parameter variations such as mass).

This paper investigates the suitability of CNN for the diagnosis of defective automotive dampers.
The current state of the art is analyzed in Section 2 with regard to pre-processing methods and network
architectures. Section 3 screens various pre-processing methods. Afterwards, experiments with
different parameters regarding the size of the receptive field, the size of the pooling layer as well as the
network depth of the CNN architecture are conducted and the resulting kernel weights of the trained
networks are analyzed. Section 4 evaluates the robustness of the generated diagnosis systems with
regard to variations of the vehicle setup. The paper closes with a discussion and summary.

2. State of The Art

This section analyzes the state of the art regarding pre-processing methods and network
configurations for diagnosis applications. Hereby, many approaches deal with bearing or gearbox
applications. Since CNN emerged from computer vision with two-dimensional input data such as
pictures, many researchers transform their data into images. But also one-dimensional data (such as
time series data or Fast Fourier Transformation (FFT) data) are used as input data to CNN.

Xia et al. [24] have classified the Case Western Reserve University (CWRU) bearing data set
of [25] without any pre-processing. Acceleration sensor signals are used directly as input data to a
CNN consisting of two convolutional and sub-sampling layers followed by a fully connected layer.
Eren et al. [26] have also proposed no pre-processing and process the CWRU bearing dataset. A CNN
consisting of three convolutional and two sub-sampling layers followed by a fully connected layer is
used. Zilong and Wei [27] have also performed no pre-processing but propose a CNN architecture
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that consists of multi-scale convolutional layers. Those layers incorporate the thought of “inception”
modules from [28] of extracting features with convolutional kernels of different sizes in parallel.
Even though it is a rather deep network architecture, the number of trainable parameters of 52,000
is still in a low range. Zhang et al. [18] have designed a CNN to operate on the noisy raw data.
They claim that using Dropout, a regularization technique in the first convolutional layer helps to
improve anti-noise abilities and suggest a twelve layer-deep network. Additionally, a very small
batch size during training is used as well as an ensemble of CNN to further increase the classification
performance.

Janssens et al. [29] have proposed using a frequency analysis as input to a CNN. Four different
conditions (three different failure types and the intact state) are classified using the FFT data points of
two acceleration sensors which are mounted on the bearing housing. For each condition, five bearings
of the same type are used to generate the dataset for classification. Several numbers of feature maps
and number of layers are tested. Lastly it is stated that a deep version of the proposed architecture is
not beneficial in that use-case.

Jing et al. [17] have compared CNN-based approaches operating on raw time data, frequency
analysis and time-frequency analysis as pre-processing. Different network architectures consisting of
different numbers of convolutional and pooling layers are employed. The investigation was conducted
based on two datasets. Both datasets consist of acceleration measurements of a gearbox housing
with gears of different health states. Frequency-based data are found to work best with the proposed
network. CNN architectures with fewer layers result in higher accuracies than using more layers.
An increase of the input segment size results also in higher accuracies.

Gray-scale images have been employed by Wen et al. in [20] by representing each time step by
a pixel with the relative signal amplitude as pixel strength. Those gray-scale images are classified
using a CNN architecture that is based on the LeNet-5 architecture [30]. Their approach is tested on
three different datasets, namely the CWRU bearing data set, a self-priming centrifugal pump dataset,
and an axial piston hydraulic pump dataset. Other deep learning and machine learning methods such
as Deep Belief Networks, Probabilistic Neural Networks, or Sparse Filter result in similar accuracies as
the proposed approach.

Zhang et al. [31] have also performed pre-processing of time series vibration data by generating
gray-scale images. A CNN consisting of two convolutional layers each followed by a sub-sampling
layer is applied for classification. The approach is compared to using raw time signal data that are
classified using a CNN and using FFT data points that are classified using a neural network.

Lu et al. [32] have proposed a nearly identical approach as in [31]. Gray-scale images are classified
using a CNN with two convolutional and two sub-sampling layers. Some minor adaptions of the
CNN training, such as greedy forward learning or a local connection between two layers, are proposed
to increase robustness of the classification. In addition, the parameters of the convolutional and
sub-sampling layers are different from [31]. To test the robustness, additional noise is added to the
vibration sensor data. The proposed method achieves higher accuracy rates compared to a SVM
or a shallow softmax regression classifier. However, a stacked de-noising Autoencoder results in a
classification accuracy comparable to the proposed CNN approach.

Guo et al. [33] do not mention any pre-processing but transform time series data to a matrix which
is in fact using a gray-scale image. The CNN for classification consists of three combinations of one
convolutional and one sub-sampling layer followed by two fully connected layers.

Liao et al. [16] have compared WT and STFT as a pre-processing method for time series data.
The classification is performed using a CNN that consists of two convolutional layers, each followed
by a sub-sampling layer with a fully connected layer at the end of the network. Vibrational data of ten
different health states of an automotive gearbox are recorded on a test bench. Using WT input data
requires less training iterations compared to using STFT data.

Verstraete et al. [21] have analyzed STFT, WT, and Hilbert-Huang Transformation (HHT) as a
pre-processing method for a classification using CNN. It is claimed that a STFT cannot represent
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transient signals adequately while WT is effective for transient signals. The HHT is said to be suited
for in-stationary signals but has numerical problems resulting in negative values under specific
circumstances of the time signal. The proposed network architecture consists of two consecutive
convolutional layers followed by one pooling layer. This convolution/pooling-layer combination is
repeated three times and then followed by two fully connected layers. The double convolution is said
to reduce the number of parameters of the network and should improve the generated features due
to the additional non-linearity. The approach is tested on two bearing datasets, one of which is the
CWRU bearing data set. The average classification accuracy on both datasets using the WT is slightly
higher than using the STFT and the HHT has the lowest accuracy.

Zhang et al. [34] have performed a STFT on the data of the CWRU and classified them using a
similar network architecture as in [21]. It consists of two consecutive convolutional layers followed
by a pooling layer. In general, the overall approach in [34] is quite similar to [21], which explains the
similar result.

Wavelets have also been employed by Ding and He [23] to face varying operational conditions of
bearing applications. They propose a signal-to-image-approach based on Wavelet Packet Transform.
This representation is used in a customized CNN that combines features from a convolutional layer
and a sub-sampling layer in a special multi-scale layer. The authors claim that it enables more invariant
and robust features with precise details.

The periodicity of a time signal can be visualized using a Recurrence Plot (RP) that analyzes
the signal’s phase space trajectory. It reflects those points at the time at which trajectories in phase
space return to a previous (or close-to-previous) state. The classification performance using a RP as
pre-processing method is compared to seven other time series classification algorithms based on 20
real-world datasets in [35]. The RP approach results in the lowest error rate for 10 of 20 datasets.

Another image generating pre-processing method is the calculation of Gramian Angular Fields
(GAFs). They were first introduced in [36,37] for encoding time series and are used by [38] to detect
defects on railway wagon wheels using a CNN architecture.

Summarizing the state of the art does not give a clear suggestion for selecting a pre-processing
method or a network configuration. Various methods (such as no pre-processing, gray-scale image,
STFT, WT) result in a testing accuracy above 99 % when classifying the CWRU bearing data set of [25].
Therefore, in the next section, we screen several pre-processing methods.

3. Conceptual Analysis Approach

Applications of CNN show promising results in the area of machine health monitoring, as
shown in Section 2. However, we can find neither a favorable pre-processing method, nor do we see
clear suggestions in the literature for the choice of the network architecture or its hyper-parameters,
such as spatial extent, the number of kernels, or the network depth. After a description of the dataset
in Section 3.1, we therefore investigate various established pre-processing methods in Section 3.2.
Promising pre-processing methods are selected as input data for a network architecture investigation
in Section 3.3 concerning the size for the receptive field of the convolutional layers, the size of
the pooling layer as well as the network depth. To further investigate the findings regarding the
network architecture, Section 3.4 investigates the CNN’s feature extraction by analyzing the trained
kernel weights.

3.1. Description of the Dataset

The analysis in this paper is based on the actual driving data of an upper class sedan vehicle of a
Bavarian manufacturer with a semi-active suspension system. Defective dampers are simulated by
setting constant damper currents that lead to reduced damping forces. Figure 1 shows the characteristic
curve of an intact and defective damper for each axle. Even though there is a great variety of different
damper defects and related consequences, simulating defective dampers by changing damper currents
is a reasonable approach according to [6,39].
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Figure 1. Characteristic curve of a single damper

Figure 2 visualizes the overall classification process. Although the measurement data of this
paper were recorded using an upper class vehicle with semi-active suspension, it should be possible to
apply the diagnosis approach to vehicles with a traditional passive chassis system. Therefore, only
seven sensor signals from the vehicle’s ESC system (four wheel speed signals, lateral and longitudinal
accelerations as well as yaw rate) were utilized for our approach. Each sensor signal is logged with
a sampling frequency of fs = 100 Hz generating raw time signals. A sequence of 512 sequential
data points is called an observation and each observation is categorized according to its damper
health state. To comply with an average driving style, an observation is required to have an average
longitudinal and lateral acceleration of less than 1 m/s2 as well as to have an average speed above
30 km/h. The dataset consists of nearly 13,000 observations covering a distance of 1650 km which is
around 18 h of driving on the German Autobahn, national and country roads as well as bad roads.
The dataset is evenly distributed among the classes

• all dampers intact,
• all dampers defect,
• front left (FL) damper defect with other dampers intact and
• rear right (RR) damper defect with other dampers intact,

representing an intact suspension system, wear on all dampers due to aging, and two different single
damper defects. The dataset is divided into 80 % training data and 20 % testing data. For a 5-fold
cross-validation, the training data is further divided into 5 folds, whereas 4 folds are used for actual
training and 1 fold is used as validation data.
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Figure 2. Overview of classification process

3.2. Analysis of Pre-Processing Methods

3.2.1. CNN Architecture for Pre-Processing Analysis

For the analysis of different pre-processing methods, a suitable CNN architecture needs to be
defined. State of the art CNN architectures handle the first convolutional layer differently from the
rest of the network. This stresses that the hyper-parameters of this layer should be chosen carefully.
Furthermore, special building blocks for CNN have been proposed, e.g., Inception Modules [28,40]
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or Residual Connections [41–44]. At this point, we do not know how different kernel sizes affect the
results. Therefore, we use a Inception Module-like block as the first layer. This enables the network to
extract features on different scales and prevents any pre-processing from suffering under unsuitable
network architectures, which would lead to a decrease in performance. The Inception Module is a
powerful, yet complex building block we use in our CNN and does not limit the network to a specific
kernel size. The building block is depicted in Figure 3.

Depth Concat

16 @ 1× 1

16 @ 3× 3

16 @ 5× 5

16 @ 7× 7

16 @ 9× 9

16 @ 11× 11

16 @ 13× 13

Figure 3. Inception-like module that is used as the first convolutional layer. The notation “16 @ 3× 3”
implies 16 filter kernels with a spatial extent of 3× 3. All layers use same padding and a stride of 1.

We use seven branches with different kernel sizes and the same number of kernels for each branch.
The stride is set to 1 and the padding of each convolution is chosen to be same, resulting in equally sized
feature maps. This allows for the depth-wise concatenation of all extracted feature maps. The amount
of filter kernels is chosen identically in order for there to be no one kernel size preferred over the other.
Larger filters can learn lower frequencies from raw data than smaller filters, whereas small filters
can be beneficial for processing peaks in the frequency spectrum data. The Inception-like module is
integrated into the overall architecture given in Table 1.

Table 1. Architecture for the evaluation of different pre-processings

Layer Details

Input 7 channels (4 wheel speeds, lat. & long. acceleration, yaw rate)
Inception-like module See Figure 3
Max-Pooling Kernel size 2× 2, stride 2, valid padding
Fully connected 128 neurons
Dropout Dropout rate 0.5
Output 4 neurons

Except for the Inception-like module, the architecture of the CNN for evaluating different
pre-processing methods remains simple. Max-Pooling is commonly used to establish invariance to
small local changes and reduce the amount of parameters, which is why we add a single sub-sampling
layer. The feature extraction stage is followed by a fully connected layer and uses dropout [45] as
a simple regularization technique. The overall network architecture is shallow. Therefore, we do
not make use of Batch-Normalization [46,47] or Residual Connections [41–44], which can improve
convergence and significantly improve training speed in deeper networks. To prevent our network
from over-fitting, we employ L2-regularization. A hyper-parameter optimization to select learning
rate and L2-regularization is conducted. The cost function of this optimization is the average of the
validation accuracy and the difference of training and validation accuracy to prevent over-fitting.
Further details of the implementation of the neural networks are described in Appendix A.

3.2.2. Description of Pre-Processing Methods

Looking at the state of the art of CNN applications for fault detection and isolation systems
of mechanical components in Section 2, many different pre-processing techniques exist. While
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some publications aim at implementing end-to-end-systems, which operate on raw data, others
choose simple or more complex transformations, e.g., scaling, denoising, or Fourier transformations.
These transformations result in one- or two-dimensional data representations. The selected methods
for investigation are chosen to represent a broad bandwidth regarding the pre-processing complexity
and are explained in the following paragraphs. Figure 4 shows a data sample of the front left wheel
speed nFL that was processed with these methods.

A simple option for pre-processing is removing linear trends within the data samples. Because the
driving data have been recorded at varying vehicle velocities, the magnitude of the wheel speed can
be different. By subtracting a linear function, we aim at removing any bias or non-stationarity and
focus primarily on transient dynamics within the signals. The linear detrend is applied before any of
the other transformations we investigate.

To reduce the pre-processing effort as much as possible, simple scaling can be applied. This is
recommended if the domain of multiple input channels scales differently as in this case, it speeds up
the convergence of the commonly used back-propagation algorithm [48].

One-dimensional frequency-based data can be created by applying a FFT. A hanning window is
applied and the one-sided spectrum is used as input data for the CNN. With a sampling frequency of
100 Hz, the maximum frequency of the FFT is 50 Hz and the input dimension is reduced from 512 data
points to 256 data points per sensor signal.

Grayscale images from [20] are generated by reshaping the time signal vector to a matrix.
The value of the very first data point of the time signal is indicated by the color in the top left
corner and the very last data point of the time signal projected to the bottom right corner. Each row
represents consecutive data points of the signal.

The STFT employs a Fourier Transformation to extract the frequency components of local sections
(windows) of a signal as it changes over time. The width of the windowing function relates between
frequency and time resolution. The choice of transformation parameters is decisive for the resulting size
of the spectrogram. We choose a FFT segment length of 64 and an overlap of 8 samples. The resulting
image is then transformed to a 32× 32 pixel image. [17] suggests using a STFT rather than a combination
of raw signal and FFT data. Therefore, it is employed by [16,21].

A GAF is the trigonometric sum between all points of a transformation of time series data to
polar coordinates.

A phase-based two-dimensional representation, looking similar to GAFs, can be constructed by
RPs [49]. The algorithm calculates a matrix norm of all data points (of a single sample) to each other
and thus maps the time axis to a matrix. Hence, a signal of length n becomes an image of size n× n.
Due to memory requirements, both the GAFs and RPs are down-sampled to a size of 32× 32.

The WT as used in [23] decomposes a signal by wavelet packets [50]. The energy of the signal is
calculated based on the reconstructed coefficients of the wavelet packet nodes. The resulting energy
vector is then modified to a two-dimensional image according to the phase space reconstruction
technique from [51].
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Figure 4. Different pre-processing representations of a data sample of the wheel speed front left nFL.

The results for different pre-processing methods are given in Table 2. The used classification
accuracy is the relation of the number of correct predictions divided by the number of observations.
The statistical robustness is indicated by a mean accuracy and a standard deviation of the 5-fold
cross-validation. Due to the balanced dataset consisting of four classes, randomly guessing results in
25 % classification accuracy.

Table 2. Test data results of a 5-fold cross-validation for different pre-processing methods

Input Data Pre-Processing Type Classification Accuracy

1D

None (raw signal) 25.2± 0.4 %
Detrending (remove linear trend) 79.4± 1.4 %
Detrending and scaling to [−1, 1] 77.4± 1.4 %
Detrending and scaling to Gaussian Distribution 81.2± 0.5 %
Detrending and apply FFT 91.1± 0.2 %

2D

Detrending and apply Grayscale image 25.0± 0.0 %
Detrending and apply STFT (32× 32) 89.8± 0.2 %
Detrending and apply GAF (32× 32) 32.1± 1.8 %
Detrending and apply RP (32× 32) 47.1± 11.7 %
Detrending and apply WT (32× 32) 72.7± 1.0 %

Operating directly on the raw data does not enable a classification due to the different vehicle
speeds of the dataset. Applying a linear detrend to the time signals already improves the accuracy
to nearly 80 %. Additional scaling changes this result only slightly. Applying a FFT results in the
best classification accuracy. Generating gray-scale images behaves as poor as using raw data directly.
The STFT results in the best classification accuracy of the two-dimensional input data versions,
followed by the WT. The rather complex images generated by GAF and RP do not improve the
classification. We further investigate “detrending”, FFT, and STFT as a pre-processing method. Even
though detrending results in a 12 percentage points (pps) lower accuracy compared to using FFT data,
the performance of this simple pre-processing method using an optimized network architecture as
well as the performed analyses of a CNN on time signals is of interest for the derivation of deeper
knowledge of the CNN behavior.
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3.3. Investigation of the Network Architecture

The investigation of the network architecture shall improve the classification performance and
derive recommendations for the application of CNN to damper diagnosis and its hyper-parameter
settings. The analysis is performed by varying the size of the receptive field e, the size of the
max-pooling layer p and the depth of the network in terms of the number of consecutive convolutional
layers d. A first screening shows that using 16 kernels in every convolutional layer is sufficient, as some
kernels tend to have very small weights and therefore, do not make any contribution to the network’s
output. Figure 5 shows the classification accuracy of various network configurations for detrended
(first column), FFT (second column), and STFT (third column) input data using d = 1 convolutional
layer (first row) and d = 3 convolutional layers (second row).
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Figure 5. Mean test data accuracy of a 5-fold cross-validation for the investigation of the network
architecture. p is the size of the pooling layer (with p = 1 effectively resulting in no pooling), e is the
spatial extent of a kernel (for STFT the size of the receptive field is e× e).

When using detrended input data, a greater receptive field (e ≥ 7) is especially important.
A receptive field of e = 7 and a data sampling frequency of 100 Hz corresponds to an oscillation
frequency of approximately 14 Hz. This is approximately a chassis system’s vertical eigenfrequency [52].
Model-based damper defect detection approaches also operate mainly based on this frequency [6].
Therefore, the size of the receptive field in combination with the data sampling frequency should
be selected so that at least this eigenfrequency can be detected. A greater size of the pooling layer
(p ≥ 8) results in the best performance when using detrended input data. The pooling layer generates
local invariance of the generated features of the preceding convolutional layer. Hereby, phase shifts
between the input signal and kernel weights are compensated. This requires a size of the pooling layer
of around p = 8 for the chassis system’s vertical eigenfrequency.

When using FFT input data, the amplitude of the chassis system’s vertical eigenfrequency is
already included in the input data. For a small size of the pooling layer, the performance is nearly
equal for different sizes of the receptive field. A pooling layer may be even disadvantageous for
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frequency analysis input data if the convolutional layer compares different amplitudes at different
frequencies. In fact, the smallest size of pooling layer p = 1 (effectively resulting in no pooling) results
in the highest accuracy.

Similarly to FFT input data, the amplitudes at different frequencies are available in the STFT
input data with additional time-relation information. Therefore, the behavior of using STFT input
data is similar to using FFT input data. Small sizes of the pooling layer result in the best accuracy.
A greater size of the receptive field increases the classification performance, especially for large sizes
of the pooling layer. Even a receptive field that is larger than the actual input data (e = 63) results in
accuracies similar to those of smaller receptive fields. However, this increases the number of trainable
parameters and is therefore of no further benefit.

Additional convolutional layers improve the performance of all network configurations for
every pre-processing method. The accuracies of the best performing network architectures with one
convolutional layer are increased by about 1 pp. Network architectures that result in a very low
accuracy with one convolutional layer have a higher increase of their classification performance with
d = 3 convolutional layers. Due to this behavior and as additional convolutional layers generate more
abstract features, the robustness regarding unknown effects in testing data might be higher for deeper
network architectures.

3.4. Investigation of Kernel Weights

This section investigates the assumptions from Section 3.3 regarding the analyses of the input data
within the neural network. Therefore, the learned kernel weights are investigated. It is assumed that
supplying time-related detrended input data results in a frequency analysis, while supplying frequency
analysis input data such as a FFT leads to a comparison of amplitudes at different frequencies. Figure 6
visualizes two trained kernel weights for a selected network architecture for each pre-processing
method. The network architectures with depth d = 1 resulting in the highest accuracy was selected,
which is d = 1, e = 15 and p = 16 for detrended input data. For FFT input data, the selected network
architecture is d = 1, e = 63 and p = 1 as a greater size of the receptive field allows for greater insight
regarding the comparison of frequency amplitudes compared to a small size of the receptive field.
For STFT input data, the network architecture d = 1, e = 15 and p = 1 was selected as this results in the
highest accuracy and the size of the receptive field still enables the interpretation of the kernel weights.

Figure 6a,d shows the weights of two kernels out of 16 for a network with detrended input data.
Both kernels learned weights to analyze oscillations of the input data at different frequencies. As the
shape of the weights of one kernel is similar for all input signals, each input signal is analyzed for the
same frequency by one kernel. With a sampling rate of the input data of 0.01 s, Figure 6a accounts for
lower frequencies (below 7 Hz), while Figure 6d accounts for higher frequencies of above 15 Hz.

Figure 6b,e shows the weights of a network with FFT input data. The kernels calculate the
weighted average of the signal amplitudes at the frequencies within the receptive field. As the shape
of the kernel weights consists of distinct peaks, the kernels compare amplitudes at given frequencies.
The sign of the weights only matters for the following activation function but has no further physical
interpretation. Sliding these peaky kernels over the FFT input data, results in a comparison of the
signal amplitudes at the frequency difference indicated by the distance of the peaks. The shape of the
kernel weights is similar for all signals within one kernel. Therefore, amplitudes of the same frequency
differences are compared for each signal by a specific kernel. With a frequency difference between
two indices of the receptive field of ∆ f = 1

512∗0.01s = 0.1953 Hz, the kernel in Figure 6b analyzes for
frequency differences of around (37− 13) ∗ ∆ f = 4.7 Hz and the kernel in Figure 6e analyzes for
frequency differences of around (46− 9) ∗ ∆ f = 7.2 Hz.
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Figure 6. Kernel weights of the convolutional layer of different network architectures.

Two-dimensional input data results in two-dimensional kernels for each signal. Figure 6c,f
visualizes the kernel weights for the rear right speed signal for a network with STFT input data. Aside
from noise, noteworthy characteristics are dark horizontal lines. This demonstrates that this CNN
performs analyses similar to the CNN using FFT input data by analyzing for amplitude differences
at different frequencies independently from the time information on the x-axis. With the input data
resolution of 32 pixels, the frequency resolution is ∆ f = fs

2∗32 = 1.56 Hz. Therefore, the kernel in
Figure 6c analyzes for frequency differences of (11− 5) ∗ ∆ f = 9.4 Hz and the kernel in Figure 6f
analyzes for frequency differences of (14− 4) ∗ ∆ f = 15.6 Hz. While the frequency difference of
15.6 Hz has no obvious technical interpretation, 9.4 Hz are about the difference of the vehicle’s body
vertical eigenfrequency and the chassis’s system vertical eigenfrequency. Because the time information
is not used by the CNN, using a STFT is of no benefit compared to using FFT input data. It even
reduces the resolution of the frequency analysis and therefore even might be disadvantageous for the
classification task.

4. Results And Robustness

To evaluate the robustness of the trained classification systems, we created two additional different
test datasets. We changed from summer to winter tires while leaving the rest of the vehicle setup
unchanged. This dataset is called “tire variation”. The vehicle setup of the second robustness test
dataset, called “mass variation”, consisted of an additional load of 200 kg in the trunk of the vehicle.
Due to the package of the vehicle, this additional mass mainly affected the rear axle. Both datasets
were gathered on the German Autobahn as well as national and country roads. The mass variation
dataset consists of 1270 observations from 180 km. The driven roads are partly equal to the training
dataset and partly different. The tire variation dataset consists of 2049 observations from 270 km,



J. Sens. Actuator Netw. 2020, 9, 8 12 of 19

driven on completely different roads compared to the original test dataset from Section 3. Defective
dampers were simulated identically as explained in Section 3.1. The distribution of the four defective
classes was nearly balanced for both datasets. In the following, the networks were trained based
on the training dataset from Section 3. Therefore, effects of changed tires or additional mass are
completely unknown to the trained networks. Figure 7 shows the classification accuracies of the
network architectures from Figure 5 applied to the mass variation dataset and Figure 8 shows the
results for the tire variation dataset.
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Figure 7. Mean accuracy of the 5-fold cross validation network architectures from Figure 5 applied to
the mass variation dataset.

In general, the classification performance on both robustness datasets is lower than on the initial
test dataset from Figure 5. Compared to the initial test dataset, the accuracy of the best network
architecture using detrended input data is reduced by 13 pps on the mass dataset and by 23 pps on
the tire dataset. When using FFT input data, the reduction of the accuracy is 11 pps on both the mass
and tire dataset. Using STFT input data results in the highest reduction of classification accuracy.
The accuracy on the mass dataset is 25 pps lower than on the initial test dataset and reduced by
approximately 40 pps on the tire dataset.

Effects of the network architecture regarding the size of the receptive field e and the size of the
pooling layer p are identical to the findings from Section 3.3. The accuracy is increased by about
1 pp for the best performing network architectures with an increasing depth of d = 3. When using
FFT input data, the performance on the mass and tire datasets is increased by over 5 pps with an
increase of the network depth when investigating the best network architectures from Section 3.3
(e = 1, p = 1 and d = 1). The classification performance using STFT input data is also increased with
more convolutional layers but still remains at a low level of 50 and 60 %.
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Figure 8. Mean accuracy of the 5-fold cross validation network architectures from Figure 5 applied to
the tire variation dataset.

5. Discussion

The best performing network architectures using frequency analysis input data (FFT and STFT)
require a small size of the pooling layer as well as a small size of the receptive field. The extreme case
of e = 1 and p = 1 even results in a simple scaling of the frequency analysis of each sensor signal and
averaging across the data points of all sensor signals. The actual classification is performed in the
fully connected layer using those averaged frequency analysis data points. This raises the question
of whether a CNN is necessary or if a Multi-Layer Perceptron (MLP) neural network is sufficient for
solving the classification task. Therefore, a MLP neural network consisting of only a fully connected
layer with 128 neurons was trained using the FFT input data. The resulting classification accuracy on the
test dataset was 87.27 %, 72.97 % on the mass dataset and 68.37 % on the tire dataset. This demonstrates
that the convolutional operation adds robustness to the performance of the neural network.

While promising results for diagnosing defective dampers using Convolutional Neural Networks
are presented in this paper, limitations for a real-world implementation still exist, which will be
discussed in the following paragraphs.

There are only data of one specific vehicle used in this paper’s investigations. All networks
were trained and tested using data of this vehicle. Recording training data for every unique vehicle
configuration with different damper defects during the development phase seems challenging for an
actual implementation. Therefore, portability of a trained classification system with high generalization
capabilities for the diagnosis of different vehicles is desirable.

Robustness is a critical aspect for a real-world application. Even though the network architectures
showed a robust behavior for tire and mass variations, further robustness analysis is necessary because
there is a great variety of different circumstances during the usage of a vehicle.

Real damper defects might not occur in a switching manner, but the loss of damping forces might
increase gradually over a long period of time. A classification process for the damper’s health state
might therefore not detect a minor defect. This can be encountered in two ways: Adding additional
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classes or predicting a continuous score for the health state of each damper. However, both approaches
raise the need of additional training data.

6. Conclusions

This paper analyzed the suitability of using Convolutional Neural Networks for the diagnosis of
automotive damper defects using driving data of the longitudinal and lateral acceleration as well as
yaw rate and wheel speeds. The classification performance using different pre-processing methods was
analyzed. Using detrended time-signals as well as frequency analyses such as FFT or STFT showed
the best results.

The analysis of the network architecture showed that the size of the receptive field and the size
of the pooling layer needs to be chosen according to relevant oscillation frequencies of the input
signal when using time-related detrended input data. The analysis of the trained kernel weights
demonstrated that a frequency analysis is performed by the CNN for detrended time-signal input data.

Using FFT input data results in the overall best classification performance. A small size of the
pooling layer performs best and the size of the receptive field can be chosen arbitrarily. The trained
kernels perform a comparison of the amplitudes for several frequency differences.

Using STFT input data results in a similar classification performance as using FFT input data.
The investigation of the trained kernels showed that the time information is not used by the CNN.
Therefore, the STFT pre-processing does not result in any benefit. The reduced frequency resolution
compared to a FFT pre-processing even decreased the robustness regarding unknown characteristics
in the testing data such as additional mass or changed tires.

Table 3 shows the performance of the best network configurations of the three investigated
pre-processing methods. The number of Floating Point Operations (FLOPs) for the execution of
the model as well as the number of tuneable parameters are an indicator of the possibility of an
implementation on the Electronic Control Unit (ECU) of a vehicle. However, since a specific value for
the computing power of an automotive ECU cannot be found, the authors are not able to judge about
the real-time implementation. The selected network configurations were chosen with regard to the
performance of the three different datasets. The best classification accuracy results from using FFT
input data with less network parameters than when using STFT input data.

The software and data of this paper are available online [53] (see the Supplementary Materials).

Table 3. Comparison of best performing network configurations

Pre-
Processing

Network
Architecture

Tuneable
Parameters

Number of
Model FLOPs

Mean Accuracy in %
Test Mass Tire

Detrended Time-Signals e = 15, p = 16, d = 3 69.444 485k 85.40 72.08 63.21
Detrending with a FFT e = 1, p = 2, d = 3 264.484 3.67M 92.22 80.14 81.65
Detrending with a STFT e = 1, p = 1, d = 3 2.102.564 14.7M 90.17 63.17 48.40

Supplementary Materials: The software and data is available online at [53]. https://github.com/TUMFTM/
Damper-Defect-Detection-Using-CNN/.
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Appendix A. Implementation Details

The CNN were implemented in TensorFlow 1.9 using Python 3.5. During training, we use Adam
optimizer [54] with a mini-batch size of 128. The optimizer minimizes the sum of a Sparse Softmax
Cross Entropy plus the sum of weight decay (L2 regularization). Training is stopped after 650 epochs
or if the accuracy with validation data has not significantly improved for 50 epochs (Early Stopping).
Kernels and weights are initially set following He Initialization scheme [55] and the bias terms are
initially set to a small constant (0.01). We use Rectified Linear Unit (ReLU) activation functions for
every layer except for the output units, which are linear neurons.
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